Safe Haskell | Trustworthy |
---|---|
Language | Haskell2010 |
Protolude
Contents
- Base functions
- Function functions
- List functions
- Data Structures
- Show functions
- Bool functions
- Monad functions
- Functor functions
- Either functions
- Applicative functions
- String conversion
- Debug functions
- Panic functions
- Exception functions
- Semiring functions
- String functions
- Safe functions
- Eq functions
- Ord functions
- Traversable functions
- Foldable functions
- Semigroup functions
- Monoid functions
- Bifunctor functions
- Bifunctor functions
- Deepseq functions
- Tuple functions
- Typelevel programming
- Monads
- Integers
- Complex functions
- Char functions
- Maybe functions
- Generics functions
- ByteString functions
- Text functions
- Read functions
- System functions
- Concurrency functions
- Foreign functions
Synopsis
- data Int
- data Float = F# Float#
- data Char
- data IO a
- data Bool
- data Double = D# Double#
- data Word
- data Ordering
- class a ~R# b => Coercible (a :: k) (b :: k)
- data Symbol
- data Integer
- type Type = TYPE LiftedRep
- type Constraint = CONSTRAINT LiftedRep
- callStack :: HasCallStack => CallStack
- even :: Integral a => a -> Bool
- class Enum a where
- succ :: a -> a
- pred :: a -> a
- toEnum :: Int -> a
- fromEnum :: a -> Int
- enumFrom :: a -> [a]
- enumFromThen :: a -> a -> [a]
- enumFromTo :: a -> a -> [a]
- enumFromThenTo :: a -> a -> a -> [a]
- class (Real a, Enum a) => Integral a where
- type Rational = Ratio Integer
- class Show a
- data Ptr a
- ord :: Char -> Int
- (++) :: [a] -> [a] -> [a]
- seq :: a -> b -> b
- class Num a where
- class Num a => Fractional a where
- (/) :: a -> a -> a
- recip :: a -> a
- fromRational :: Rational -> a
- class IsLabel (x :: Symbol) a where
- fromLabel :: a
- fromIntegral :: (Integral a, Num b) => a -> b
- realToFrac :: (Real a, Fractional b) => a -> b
- class (Num a, Ord a) => Real a where
- toRational :: a -> Rational
- class HasField (x :: k) r a | x r -> a where
- getField :: r -> a
- class Bounded a where
- class Fractional a => Floating a where
- pi :: a
- exp :: a -> a
- log :: a -> a
- sqrt :: a -> a
- (**) :: a -> a -> a
- logBase :: a -> a -> a
- sin :: a -> a
- cos :: a -> a
- tan :: a -> a
- asin :: a -> a
- acos :: a -> a
- atan :: a -> a
- sinh :: a -> a
- cosh :: a -> a
- tanh :: a -> a
- asinh :: a -> a
- acosh :: a -> a
- atanh :: a -> a
- log1p :: a -> a
- expm1 :: a -> a
- log1pexp :: a -> a
- log1mexp :: a -> a
- class (RealFrac a, Floating a) => RealFloat a where
- floatRadix :: a -> Integer
- floatDigits :: a -> Int
- floatRange :: a -> (Int, Int)
- decodeFloat :: a -> (Integer, Int)
- encodeFloat :: Integer -> Int -> a
- exponent :: a -> Int
- significand :: a -> a
- scaleFloat :: Int -> a -> a
- isNaN :: a -> Bool
- isInfinite :: a -> Bool
- isDenormalized :: a -> Bool
- isNegativeZero :: a -> Bool
- isIEEE :: a -> Bool
- atan2 :: a -> a -> a
- class (Real a, Fractional a) => RealFrac a where
- class KnownNat (n :: Nat)
- class KnownSymbol (n :: Symbol)
- data Ratio a
- data FunPtr a
- data StaticPtr a
- data CallStack
- (^) :: (Num a, Integral b) => a -> b -> a
- type family CmpNat (a :: Natural) (b :: Natural) :: Ordering where ...
- data SrcLoc = SrcLoc String Int Int
- type HasCallStack = ?callStack :: CallStack
- getCallStack :: CallStack -> [([Char], SrcLoc)]
- minInt :: Int
- maxInt :: Int
- ($!) :: (a -> b) -> a -> b
- until :: (a -> Bool) -> (a -> a) -> a -> a
- asTypeOf :: a -> a -> a
- currentCallStack :: IO [String]
- subtract :: Num a => a -> a -> a
- boundedEnumFrom :: (Enum a, Bounded a) => a -> [a]
- boundedEnumFromThen :: (Enum a, Bounded a) => a -> a -> [a]
- divZeroError :: a
- ratioZeroDenominatorError :: a
- overflowError :: a
- underflowError :: a
- ratioPrec :: Int
- ratioPrec1 :: Int
- infinity :: Rational
- notANumber :: Rational
- reduce :: Integral a => a -> a -> Ratio a
- (%) :: Integral a => a -> a -> Ratio a
- numerator :: Ratio a -> a
- denominator :: Ratio a -> a
- numericEnumFrom :: Fractional a => a -> [a]
- numericEnumFromThen :: Fractional a => a -> a -> [a]
- numericEnumFromTo :: (Ord a, Fractional a) => a -> a -> [a]
- numericEnumFromThenTo :: (Ord a, Fractional a) => a -> a -> a -> [a]
- odd :: Integral a => a -> Bool
- (^^) :: (Fractional a, Integral b) => a -> b -> a
- (^%^) :: Integral a => Rational -> a -> Rational
- (^^%^^) :: Integral a => Rational -> a -> Rational
- gcd :: Integral a => a -> a -> a
- lcm :: Integral a => a -> a -> a
- integralEnumFrom :: (Integral a, Bounded a) => a -> [a]
- integralEnumFromThen :: (Integral a, Bounded a) => a -> a -> [a]
- integralEnumFromTo :: Integral a => a -> a -> [a]
- integralEnumFromThenTo :: Integral a => a -> a -> a -> [a]
- data SomeNat = KnownNat n => SomeNat (Proxy n)
- type Nat = Natural
- natVal :: forall (n :: Nat) proxy. KnownNat n => proxy n -> Integer
- someNatVal :: Integer -> Maybe SomeNat
- data SomeSymbol = KnownSymbol n => SomeSymbol (Proxy n)
- symbolVal :: forall (n :: Symbol) proxy. KnownSymbol n => proxy n -> String
- someSymbolVal :: String -> SomeSymbol
- prettySrcLoc :: SrcLoc -> String
- prettyCallStack :: CallStack -> String
- withFrozenCallStack :: HasCallStack => (HasCallStack => a) -> a
- data Location = Location {
- objectName :: String
- functionName :: String
- srcLoc :: Maybe SrcLoc
- getStackTrace :: IO (Maybe [Location])
- showStackTrace :: IO (Maybe String)
- identity :: a -> a
- pass :: Applicative f => f ()
- ($) :: (a -> b) -> a -> b
- const :: a -> b -> a
- (.) :: (b -> c) -> (a -> b) -> a -> c
- flip :: (a -> b -> c) -> b -> a -> c
- fix :: (a -> a) -> a
- on :: (b -> b -> c) -> (a -> b) -> a -> a -> c
- (&) :: a -> (a -> b) -> b
- applyN :: Int -> (a -> a) -> a -> a
- module Protolude.List
- unzip :: [(a, b)] -> ([a], [b])
- repeat :: a -> [a]
- cycle :: HasCallStack => [a] -> [a]
- genericLength :: Num i => [a] -> i
- genericReplicate :: Integral i => i -> a -> [a]
- genericTake :: Integral i => i -> [a] -> [a]
- genericDrop :: Integral i => i -> [a] -> [a]
- genericSplitAt :: Integral i => i -> [a] -> ([a], [a])
- group :: Eq a => [a] -> [[a]]
- filter :: (a -> Bool) -> [a] -> [a]
- unfoldr :: (b -> Maybe (a, b)) -> b -> [a]
- transpose :: [[a]] -> [[a]]
- sortBy :: (a -> a -> Ordering) -> [a] -> [a]
- zip :: [a] -> [b] -> [(a, b)]
- data NonEmpty a = a :| [a]
- scanl :: (b -> a -> b) -> b -> [a] -> [b]
- scanl' :: (b -> a -> b) -> b -> [a] -> [b]
- scanr :: (a -> b -> b) -> b -> [a] -> [b]
- iterate :: (a -> a) -> a -> [a]
- replicate :: Int -> a -> [a]
- takeWhile :: (a -> Bool) -> [a] -> [a]
- dropWhile :: (a -> Bool) -> [a] -> [a]
- take :: Int -> [a] -> [a]
- drop :: Int -> [a] -> [a]
- splitAt :: Int -> [a] -> ([a], [a])
- break :: (a -> Bool) -> [a] -> ([a], [a])
- reverse :: [a] -> [a]
- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
- isPrefixOf :: Eq a => [a] -> [a] -> Bool
- isSuffixOf :: Eq a => [a] -> [a] -> Bool
- isInfixOf :: Eq a => [a] -> [a] -> Bool
- intersperse :: a -> [a] -> [a]
- intercalate :: [a] -> [[a]] -> [a]
- inits :: [a] -> [[a]]
- tails :: [a] -> [[a]]
- subsequences :: [a] -> [[a]]
- permutations :: [a] -> [[a]]
- sort :: Ord a => [a] -> [a]
- nonEmpty :: [a] -> Maybe (NonEmpty a)
- map :: Functor f => (a -> b) -> f a -> f b
- uncons :: [a] -> Maybe (a, [a])
- unsnoc :: [x] -> Maybe ([x], x)
- data Map k a
- data Set a
- data IntSet
- data Seq a
- data IntMap a
- module Protolude.Show
- show :: (Show a, StringConv String b) => a -> b
- print :: (MonadIO m, Show a) => a -> m ()
- module Protolude.Bool
- data Bool
- otherwise :: Bool
- (&&) :: Bool -> Bool -> Bool
- (||) :: Bool -> Bool -> Bool
- not :: Bool -> Bool
- module Protolude.Monad
- liftIO1 :: MonadIO m => (a -> IO b) -> a -> m b
- liftIO2 :: MonadIO m => (a -> b -> IO c) -> a -> b -> m c
- module Data.Functor.Identity
- module Protolude.Functor
- module Data.Either
- module Protolude.Either
- module Protolude.Applicative
- class Applicative f => Alternative (f :: Type -> Type) where
- class Functor f => Applicative (f :: Type -> Type) where
- (<**>) :: Applicative f => f a -> f (a -> b) -> f b
- liftA :: Applicative f => (a -> b) -> f a -> f b
- liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d
- optional :: Alternative f => f a -> f (Maybe a)
- newtype Const a (b :: k) = Const {
- getConst :: a
- newtype ZipList a = ZipList {
- getZipList :: [a]
- guarded :: Alternative f => (a -> Bool) -> a -> f a
- guardedA :: (Functor f, Alternative t) => (a -> f Bool) -> a -> f (t a)
- module Protolude.ConvertText
- module Protolude.Debug
- module Protolude.Panic
- module Protolude.Exceptions
- data ArithException
- newtype AssertionFailed = AssertionFailed String
- bracket :: IO a -> (a -> IO b) -> (a -> IO c) -> IO c
- class (Typeable e, Show e) => Exception e where
- toException :: e -> SomeException
- fromException :: SomeException -> Maybe e
- displayException :: e -> String
- mask :: ((forall a. IO a -> IO a) -> IO b) -> IO b
- try :: Exception e => IO a -> IO (Either e a)
- catch :: Exception e => IO a -> (e -> IO a) -> IO a
- data IOException
- data BlockedIndefinitelyOnMVar = BlockedIndefinitelyOnMVar
- newtype TypeError = TypeError String
- data SomeException = Exception e => SomeException e
- data ErrorCall where
- data MaskingState
- interruptible :: IO a -> IO a
- getMaskingState :: IO MaskingState
- onException :: IO a -> IO b -> IO a
- mask_ :: IO a -> IO a
- uninterruptibleMask_ :: IO a -> IO a
- uninterruptibleMask :: ((forall a. IO a -> IO a) -> IO b) -> IO b
- finally :: IO a -> IO b -> IO a
- evaluate :: a -> IO a
- data ArrayException
- data AsyncException
- data SomeAsyncException = Exception e => SomeAsyncException e
- newtype CompactionFailed = CompactionFailed String
- data AllocationLimitExceeded = AllocationLimitExceeded
- data Deadlock = Deadlock
- data BlockedIndefinitelyOnSTM = BlockedIndefinitelyOnSTM
- asyncExceptionToException :: Exception e => e -> SomeException
- asyncExceptionFromException :: Exception e => SomeException -> Maybe e
- ioError :: IOError -> IO a
- data NestedAtomically = NestedAtomically
- data NonTermination = NonTermination
- newtype NoMethodError = NoMethodError String
- newtype RecUpdError = RecUpdError String
- newtype RecConError = RecConError String
- newtype RecSelError = RecSelError String
- newtype PatternMatchFail = PatternMatchFail String
- catchJust :: Exception e => (e -> Maybe b) -> IO a -> (b -> IO a) -> IO a
- handle :: Exception e => (e -> IO a) -> IO a -> IO a
- handleJust :: Exception e => (e -> Maybe b) -> (b -> IO a) -> IO a -> IO a
- mapException :: (Exception e1, Exception e2) => (e1 -> e2) -> a -> a
- tryJust :: Exception e => (e -> Maybe b) -> IO a -> IO (Either b a)
- bracket_ :: IO a -> IO b -> IO c -> IO c
- bracketOnError :: IO a -> (a -> IO b) -> (a -> IO c) -> IO c
- data Handler a = Exception e => Handler (e -> IO a)
- catches :: IO a -> [Handler a] -> IO a
- allowInterrupt :: IO ()
- throwIO :: (MonadIO m, Exception e) => e -> m a
- throwTo :: (MonadIO m, Exception e) => ThreadId -> e -> m ()
- module Protolude.Semiring
- class IsString a
- module Protolude.Safe
- module Data.Eq
- data Ordering
- class Eq a => Ord a where
- newtype Down a = Down a
- comparing :: Ord a => (b -> a) -> b -> b -> Ordering
- module Data.Traversable
- mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m ()
- forM_ :: (Foldable t, Monad m) => t a -> (a -> m b) -> m ()
- class Foldable (t :: Type -> Type) where
- fold :: Monoid m => t m -> m
- foldMap :: Monoid m => (a -> m) -> t a -> m
- foldr :: (a -> b -> b) -> b -> t a -> b
- foldr' :: (a -> b -> b) -> b -> t a -> b
- foldl :: (b -> a -> b) -> b -> t a -> b
- foldl' :: (b -> a -> b) -> b -> t a -> b
- toList :: t a -> [a]
- null :: t a -> Bool
- length :: t a -> Int
- elem :: Eq a => a -> t a -> Bool
- maximum :: Ord a => t a -> a
- minimum :: Ord a => t a -> a
- concat :: Foldable t => t [a] -> [a]
- maximumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a
- minimumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a
- traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f ()
- sequenceA_ :: (Foldable t, Applicative f) => t (f a) -> f ()
- sequence_ :: (Foldable t, Monad m) => t (m a) -> m ()
- for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f ()
- and :: Foldable t => t Bool -> Bool
- or :: Foldable t => t Bool -> Bool
- any :: Foldable t => (a -> Bool) -> t a -> Bool
- all :: Foldable t => (a -> Bool) -> t a -> Bool
- notElem :: (Foldable t, Eq a) => a -> t a -> Bool
- concatMap :: Foldable t => (a -> [b]) -> t a -> [b]
- foldrM :: (Foldable t, Monad m) => (a -> b -> m b) -> b -> t a -> m b
- foldlM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b
- asum :: (Foldable t, Alternative f) => t (f a) -> f a
- msum :: (Foldable t, MonadPlus m) => t (m a) -> m a
- find :: Foldable t => (a -> Bool) -> t a -> Maybe a
- stimesIdempotent :: Integral b => b -> a -> a
- stimesIdempotentMonoid :: (Integral b, Monoid a) => b -> a -> a
- class Semigroup a where
- stimesMonoid :: (Integral b, Monoid a) => b -> a -> a
- data WrappedMonoid m
- cycle1 :: Semigroup m => m -> m
- diff :: Semigroup m => m -> Endo m
- mtimesDefault :: (Integral b, Monoid a) => b -> a -> a
- module Data.Monoid
- module Data.Bifunctor
- class Eq a => Hashable a where
- hashWithSalt :: Int -> a -> Int
- hash :: a -> Int
- hashUsing :: Hashable b => (a -> b) -> Int -> a -> Int
- deepseq :: NFData a => a -> b -> b
- class NFData a where
- rnf :: a -> ()
- ($!!) :: NFData a => (a -> b) -> a -> b
- force :: NFData a => a -> a
- uncurry :: (a -> b -> c) -> (a, b) -> c
- fst :: (a, b) -> a
- snd :: (a, b) -> b
- curry :: ((a, b) -> c) -> a -> b -> c
- swap :: (a, b) -> (b, a)
- class Typeable (a :: k)
- type TypeRep = SomeTypeRep
- typeRep :: forall {k} proxy (a :: k). Typeable a => proxy a -> TypeRep
- typeOf :: Typeable a => a -> TypeRep
- cast :: (Typeable a, Typeable b) => a -> Maybe b
- eqT :: forall {k} (a :: k) (b :: k). (Typeable a, Typeable b) => Maybe (a :~: b)
- gcast :: forall {k} (a :: k) (b :: k) c. (Typeable a, Typeable b) => c a -> Maybe (c b)
- module Data.Void
- type family (a :: k) == (b :: k) :: Bool where ...
- data (a :: k) :~: (b :: k) where
- sym :: forall {k} (a :: k) (b :: k). (a :~: b) -> b :~: a
- trans :: forall {k} (a :: k) (b :: k) (c :: k). (a :~: b) -> (b :~: c) -> a :~: c
- castWith :: (a :~: b) -> a -> b
- gcastWith :: forall {k} (a :: k) (b :: k) r. (a :~: b) -> (a ~ b => r) -> r
- data Coercion (a :: k) (b :: k) where
- coerceWith :: Coercion a b -> a -> b
- repr :: forall {k} (a :: k) (b :: k). (a :~: b) -> Coercion a b
- data Proxy (t :: k) = Proxy
- class Monad m => MonadFail (m :: Type -> Type)
- class Monad m => MonadState s (m :: Type -> Type) | m -> s where
- newtype StateT s (m :: Type -> Type) a = StateT {
- runStateT :: s -> m (a, s)
- type State s = StateT s Identity
- runState :: State s a -> s -> (a, s)
- execState :: State s a -> s -> s
- evalState :: State s a -> s -> a
- withState :: (s -> s) -> State s a -> State s a
- evalStateT :: Monad m => StateT s m a -> s -> m a
- execStateT :: Monad m => StateT s m a -> s -> m s
- modify :: MonadState s m => (s -> s) -> m ()
- gets :: MonadState s m => (s -> a) -> m a
- newtype ReaderT r (m :: Type -> Type) a = ReaderT {
- runReaderT :: r -> m a
- type Reader r = ReaderT r Identity
- runReader :: Reader r a -> r -> a
- class Monad m => MonadReader r (m :: Type -> Type) | m -> r where
- asks :: MonadReader r m => (r -> a) -> m a
- throwE :: forall (m :: Type -> Type) e a. Monad m => e -> ExceptT e m a
- newtype ExceptT e (m :: Type -> Type) a = ExceptT (m (Either e a))
- class Monad m => MonadError e (m :: Type -> Type) | m -> e where
- throwError :: e -> m a
- catchError :: m a -> (e -> m a) -> m a
- type Except e = ExceptT e Identity
- runExcept :: Except e a -> Either e a
- mapExcept :: (Either e a -> Either e' b) -> Except e a -> Except e' b
- withExcept :: (e -> e') -> Except e a -> Except e' a
- runExceptT :: ExceptT e m a -> m (Either e a)
- mapExceptT :: (m (Either e a) -> n (Either e' b)) -> ExceptT e m a -> ExceptT e' n b
- withExceptT :: forall (m :: Type -> Type) e e' a. Functor m => (e -> e') -> ExceptT e m a -> ExceptT e' m a
- catchE :: forall (m :: Type -> Type) e a e'. Monad m => ExceptT e m a -> (e -> ExceptT e' m a) -> ExceptT e' m a
- class Monad m => MonadIO (m :: Type -> Type) where
- lift :: (MonadTrans t, Monad m) => m a -> t m a
- data ST s a
- runST :: (forall s. ST s a) -> a
- fixST :: (a -> ST s a) -> ST s a
- module Control.Monad.STM
- module Data.Int
- data Word8
- data Word
- data Word64
- data Word32
- data Word16
- class Bits b => FiniteBits b where
- finiteBitSize :: b -> Int
- countLeadingZeros :: b -> Int
- countTrailingZeros :: b -> Int
- class Eq a => Bits a where
- (.&.) :: a -> a -> a
- (.|.) :: a -> a -> a
- xor :: a -> a -> a
- complement :: a -> a
- shift :: a -> Int -> a
- rotate :: a -> Int -> a
- zeroBits :: a
- bit :: Int -> a
- setBit :: a -> Int -> a
- clearBit :: a -> Int -> a
- complementBit :: a -> Int -> a
- testBit :: a -> Int -> Bool
- bitSizeMaybe :: a -> Maybe Int
- bitSize :: a -> Int
- isSigned :: a -> Bool
- shiftL :: a -> Int -> a
- shiftR :: a -> Int -> a
- rotateL :: a -> Int -> a
- rotateR :: a -> Int -> a
- popCount :: a -> Int
- bitDefault :: (Bits a, Num a) => Int -> a
- testBitDefault :: (Bits a, Num a) => a -> Int -> Bool
- popCountDefault :: (Bits a, Num a) => a -> Int
- toIntegralSized :: (Integral a, Integral b, Bits a, Bits b) => a -> Maybe b
- byteSwap16 :: Word16 -> Word16
- byteSwap32 :: Word32 -> Word32
- byteSwap64 :: Word64 -> Word64
- module Data.Complex
- data Char
- isLetter :: Char -> Bool
- isAlpha :: Char -> Bool
- ord :: Char -> Int
- chr :: Int -> Char
- intToDigit :: Int -> Char
- isAscii :: Char -> Bool
- isControl :: Char -> Bool
- isPrint :: Char -> Bool
- isSpace :: Char -> Bool
- isUpper :: Char -> Bool
- isLower :: Char -> Bool
- isAlphaNum :: Char -> Bool
- isDigit :: Char -> Bool
- isHexDigit :: Char -> Bool
- toUpper :: Char -> Char
- toLower :: Char -> Char
- toTitle :: Char -> Char
- digitToInt :: Char -> Int
- data Maybe a
- mapMaybe :: (a -> Maybe b) -> [a] -> [b]
- maybe :: b -> (a -> b) -> Maybe a -> b
- isJust :: Maybe a -> Bool
- isNothing :: Maybe a -> Bool
- fromMaybe :: a -> Maybe a -> a
- maybeToList :: Maybe a -> [a]
- listToMaybe :: [a] -> Maybe a
- catMaybes :: [Maybe a] -> [a]
- class Generic a where
- class Generic1 (f :: k -> Type)
- class Datatype (d :: k) where
- datatypeName :: forall k1 t (f :: k1 -> Type) (a :: k1). t d f a -> [Char]
- moduleName :: forall k1 t (f :: k1 -> Type) (a :: k1). t d f a -> [Char]
- packageName :: forall k1 t (f :: k1 -> Type) (a :: k1). t d f a -> [Char]
- isNewtype :: forall k1 t (f :: k1 -> Type) (a :: k1). t d f a -> Bool
- class Constructor (c :: k) where
- class Selector (s :: k) where
- selName :: forall k1 t (f :: k1 -> Type) (a :: k1). t s f a -> [Char]
- selSourceUnpackedness :: forall k1 t (f :: k1 -> Type) (a :: k1). t s f a -> SourceUnpackedness
- selSourceStrictness :: forall k1 t (f :: k1 -> Type) (a :: k1). t s f a -> SourceStrictness
- selDecidedStrictness :: forall k1 t (f :: k1 -> Type) (a :: k1). t s f a -> DecidedStrictness
- data V1 (p :: k)
- data U1 (p :: k) = U1
- newtype K1 i c (p :: k) = K1 {
- unK1 :: c
- newtype M1 i (c :: Meta) (f :: k -> Type) (p :: k) = M1 {
- unM1 :: f p
- data ((f :: k -> Type) :+: (g :: k -> Type)) (p :: k)
- data ((f :: k -> Type) :*: (g :: k -> Type)) (p :: k) = (f p) :*: (g p)
- newtype ((f :: k2 -> Type) :.: (g :: k1 -> k2)) (p :: k1) = Comp1 {
- unComp1 :: f (g p)
- type Rec0 = K1 R :: Type -> k -> Type
- type D1 = M1 D :: Meta -> (k -> Type) -> k -> Type
- type C1 = M1 C :: Meta -> (k -> Type) -> k -> Type
- type S1 = M1 S :: Meta -> (k -> Type) -> k -> Type
- type family Rep a :: Type -> Type
- data family URec a (p :: k)
- data FixityI
- data Associativity
- data Meta
- data Fixity
- data ByteString
- type LByteString = ByteString
- writeFile :: FilePath -> Text -> IO ()
- getLine :: IO Text
- data Text
- lines :: Text -> [Text]
- unlines :: [Text] -> Text
- words :: Text -> [Text]
- unwords :: [Text] -> Text
- getContents :: IO Text
- interact :: (Text -> Text) -> IO ()
- readFile :: FilePath -> IO Text
- appendFile :: FilePath -> Text -> IO ()
- fromStrict :: StrictText -> LazyText
- toStrict :: LazyText -> StrictText
- encodeUtf8 :: Text -> ByteString
- decodeUtf8With :: OnDecodeError -> ByteString -> Text
- decodeUtf8 :: ByteString -> Text
- data UnicodeException
- type OnDecodeError = OnError Word8 Char
- type OnError a b = String -> Maybe a -> Maybe b
- strictDecode :: OnDecodeError
- lenientDecode :: OnDecodeError
- ignore :: OnError a b
- replace :: b -> OnError a b
- decodeUtf8' :: ByteString -> Either UnicodeException Text
- type LText = Text
- class Read a
- reads :: Read a => ReadS a
- readMaybe :: (Read b, StringConv a String) => a -> Maybe b
- readEither :: (Read a, StringConv String e, StringConv e String) => e -> Either e a
- data Handle
- openFile :: FilePath -> IOMode -> IO Handle
- stdout :: Handle
- stdin :: Handle
- stderr :: Handle
- getArgs :: IO [String]
- exitWith :: ExitCode -> IO a
- data IOMode
- type FilePath = String
- data ExitCode
- withFile :: FilePath -> IOMode -> (Handle -> IO r) -> IO r
- exitFailure :: IO a
- exitSuccess :: IO a
- die :: Text -> IO a
- module Control.Concurrent.Chan
- module Control.Concurrent.MVar
- module Control.Concurrent.QSem
- module Control.Concurrent.QSemN
- async :: IO a -> IO (Async a)
- newtype Concurrently a = Concurrently {
- runConcurrently :: IO a
- data Async a
- asyncBound :: IO a -> IO (Async a)
- asyncOn :: Int -> IO a -> IO (Async a)
- withAsync :: IO a -> (Async a -> IO b) -> IO b
- withAsyncBound :: IO a -> (Async a -> IO b) -> IO b
- withAsyncOn :: Int -> IO a -> (Async a -> IO b) -> IO b
- wait :: Async a -> IO a
- waitCatch :: Async a -> IO (Either SomeException a)
- poll :: Async a -> IO (Maybe (Either SomeException a))
- cancel :: Async a -> IO ()
- cancelWith :: Exception e => Async a -> e -> IO ()
- waitAnyCatch :: [Async a] -> IO (Async a, Either SomeException a)
- waitAnyCatchCancel :: [Async a] -> IO (Async a, Either SomeException a)
- waitAny :: [Async a] -> IO (Async a, a)
- waitAnyCancel :: [Async a] -> IO (Async a, a)
- waitEitherCatch :: Async a -> Async b -> IO (Either (Either SomeException a) (Either SomeException b))
- waitEitherCatchCancel :: Async a -> Async b -> IO (Either (Either SomeException a) (Either SomeException b))
- waitEither :: Async a -> Async b -> IO (Either a b)
- waitEither_ :: Async a -> Async b -> IO ()
- waitEitherCancel :: Async a -> Async b -> IO (Either a b)
- waitBoth :: Async a -> Async b -> IO (a, b)
- link :: Async a -> IO ()
- link2 :: Async a -> Async b -> IO ()
- race :: IO a -> IO b -> IO (Either a b)
- race_ :: IO a -> IO b -> IO ()
- concurrently :: IO a -> IO b -> IO (a, b)
- data ThreadId
- forkIO :: IO () -> IO ThreadId
- forkOS :: IO () -> IO ThreadId
- forkOn :: Int -> IO () -> IO ThreadId
- forkIOWithUnmask :: ((forall a. IO a -> IO a) -> IO ()) -> IO ThreadId
- forkOnWithUnmask :: Int -> ((forall a. IO a -> IO a) -> IO ()) -> IO ThreadId
- killThread :: ThreadId -> IO ()
- threadDelay :: Int -> IO ()
- forkFinally :: IO a -> (Either SomeException a -> IO ()) -> IO ThreadId
- myThreadId :: IO ThreadId
- getNumCapabilities :: IO Int
- setNumCapabilities :: Int -> IO ()
- yield :: IO ()
- threadCapability :: ThreadId -> IO (Int, Bool)
- mkWeakThreadId :: ThreadId -> IO (Weak ThreadId)
- threadWaitRead :: Fd -> IO ()
- threadWaitWrite :: Fd -> IO ()
- threadWaitReadSTM :: Fd -> IO (STM (), IO ())
- threadWaitWriteSTM :: Fd -> IO (STM (), IO ())
- rtsSupportsBoundThreads :: Bool
- forkOSWithUnmask :: ((forall a. IO a -> IO a) -> IO ()) -> IO ThreadId
- isCurrentThreadBound :: IO Bool
- runInBoundThread :: IO a -> IO a
- runInUnboundThread :: IO a -> IO a
- class Storable a
- data StablePtr a
- data IntPtr
- data WordPtr
Base functions
A fixed-precision integer type with at least the range [-2^29 .. 2^29-1]
.
The exact range for a given implementation can be determined by using
minBound
and maxBound
from the Bounded
class.
Instances
Data Int | Since: base-4.0.0.0 | ||||
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int -> c Int # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int # dataTypeOf :: Int -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int) # gmapT :: (forall b. Data b => b -> b) -> Int -> Int # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r # gmapQ :: (forall d. Data d => d -> u) -> Int -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int -> m Int # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int # | |||||
Storable Int | Since: base-2.1 | ||||
Defined in Foreign.Storable | |||||
Bits Int | Since: base-2.1 | ||||
Defined in GHC.Bits | |||||
FiniteBits Int | Since: base-4.6.0.0 | ||||
Defined in GHC.Bits Methods finiteBitSize :: Int -> Int # countLeadingZeros :: Int -> Int # countTrailingZeros :: Int -> Int # | |||||
Bounded Int | Since: base-2.1 | ||||
Enum Int | Since: base-2.1 | ||||
Ix Int | Since: base-2.1 | ||||
Num Int | Since: base-2.1 | ||||
Read Int | Since: base-2.1 | ||||
Integral Int | Since: base-2.0.1 | ||||
Real Int | Since: base-2.0.1 | ||||
Defined in GHC.Real Methods toRational :: Int -> Rational # | |||||
Show Int | Since: base-2.1 | ||||
PrintfArg Int | Since: base-2.1 | ||||
Defined in Text.Printf | |||||
NFData Int | |||||
Defined in Control.DeepSeq | |||||
Eq Int | |||||
Ord Int | |||||
Hashable Int | |||||
Defined in Data.Hashable.Class | |||||
IArray UArray Int | |||||
Defined in Data.Array.Base Methods bounds :: Ix i => UArray i Int -> (i, i) # numElements :: Ix i => UArray i Int -> Int # unsafeArray :: Ix i => (i, i) -> [(Int, Int)] -> UArray i Int # unsafeAt :: Ix i => UArray i Int -> Int -> Int # unsafeReplace :: Ix i => UArray i Int -> [(Int, Int)] -> UArray i Int # unsafeAccum :: Ix i => (Int -> e' -> Int) -> UArray i Int -> [(Int, e')] -> UArray i Int # unsafeAccumArray :: Ix i => (Int -> e' -> Int) -> Int -> (i, i) -> [(Int, e')] -> UArray i Int # | |||||
Lift Int | |||||
MArray IOUArray Int IO | |||||
Defined in Data.Array.IO.Internals Methods getBounds :: Ix i => IOUArray i Int -> IO (i, i) # getNumElements :: Ix i => IOUArray i Int -> IO Int # newArray :: Ix i => (i, i) -> Int -> IO (IOUArray i Int) # newArray_ :: Ix i => (i, i) -> IO (IOUArray i Int) # unsafeNewArray_ :: Ix i => (i, i) -> IO (IOUArray i Int) # unsafeRead :: Ix i => IOUArray i Int -> Int -> IO Int # unsafeWrite :: Ix i => IOUArray i Int -> Int -> Int -> IO () # | |||||
GEq1 v (UInt :: Type -> Type) | |||||
GOrd1 v (UInt :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
GShow1Con v (UInt :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
Generic1 (URec Int :: k -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
Foldable (UInt :: Type -> Type) | Since: base-4.9.0.0 | ||||
Defined in Data.Foldable Methods fold :: Monoid m => UInt m -> m # foldMap :: Monoid m => (a -> m) -> UInt a -> m # foldMap' :: Monoid m => (a -> m) -> UInt a -> m # foldr :: (a -> b -> b) -> b -> UInt a -> b # foldr' :: (a -> b -> b) -> b -> UInt a -> b # foldl :: (b -> a -> b) -> b -> UInt a -> b # foldl' :: (b -> a -> b) -> b -> UInt a -> b # foldr1 :: (a -> a -> a) -> UInt a -> a # foldl1 :: (a -> a -> a) -> UInt a -> a # elem :: Eq a => a -> UInt a -> Bool # maximum :: Ord a => UInt a -> a # | |||||
Traversable (UInt :: Type -> Type) | Since: base-4.9.0.0 | ||||
IsNullaryCon (UInt :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal Methods isNullaryCon :: UInt a -> Bool # | |||||
MArray (STUArray s) Int (ST s) | |||||
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Int -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Int -> ST s Int # newArray :: Ix i => (i, i) -> Int -> ST s (STUArray s i Int) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Int) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Int) # unsafeRead :: Ix i => STUArray s i Int -> Int -> ST s Int # unsafeWrite :: Ix i => STUArray s i Int -> Int -> Int -> ST s () # | |||||
Functor (URec Int :: Type -> Type) | Since: base-4.9.0.0 | ||||
GEq (UInt p) | |||||
GOrd (UInt p) | |||||
GShowCon (UInt p) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
Generic (URec Int p) | |||||
Defined in GHC.Generics Associated Types
| |||||
Show (URec Int p) | Since: base-4.9.0.0 | ||||
Eq (URec Int p) | Since: base-4.9.0.0 | ||||
Ord (URec Int p) | Since: base-4.9.0.0 | ||||
data URec Int (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 | ||||
type Rep1 (URec Int :: k -> Type) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
type Rep (URec Int p) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics |
Single-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE single-precision type.
Instances
Data Float | Since: base-4.0.0.0 | ||||
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Float -> c Float # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Float # dataTypeOf :: Float -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Float) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Float) # gmapT :: (forall b. Data b => b -> b) -> Float -> Float # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r # gmapQ :: (forall d. Data d => d -> u) -> Float -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Float -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Float -> m Float # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float # | |||||
Storable Float | Since: base-2.1 | ||||
Floating Float | Since: base-2.1 | ||||
RealFloat Float | Since: base-2.1 | ||||
Defined in GHC.Float Methods floatRadix :: Float -> Integer # floatDigits :: Float -> Int # floatRange :: Float -> (Int, Int) # decodeFloat :: Float -> (Integer, Int) # encodeFloat :: Integer -> Int -> Float # significand :: Float -> Float # scaleFloat :: Int -> Float -> Float # isInfinite :: Float -> Bool # isDenormalized :: Float -> Bool # isNegativeZero :: Float -> Bool # | |||||
Read Float | Since: base-2.1 | ||||
PrintfArg Float | Since: base-2.1 | ||||
Defined in Text.Printf | |||||
NFData Float | |||||
Defined in Control.DeepSeq | |||||
Eq Float | Note that due to the presence of
Also note that
| ||||
Ord Float | See | ||||
Hashable Float | Note: prior to The Since: hashable-1.3.0.0 | ||||
Defined in Data.Hashable.Class | |||||
IArray UArray Float | |||||
Defined in Data.Array.Base Methods bounds :: Ix i => UArray i Float -> (i, i) # numElements :: Ix i => UArray i Float -> Int # unsafeArray :: Ix i => (i, i) -> [(Int, Float)] -> UArray i Float # unsafeAt :: Ix i => UArray i Float -> Int -> Float # unsafeReplace :: Ix i => UArray i Float -> [(Int, Float)] -> UArray i Float # unsafeAccum :: Ix i => (Float -> e' -> Float) -> UArray i Float -> [(Int, e')] -> UArray i Float # unsafeAccumArray :: Ix i => (Float -> e' -> Float) -> Float -> (i, i) -> [(Int, e')] -> UArray i Float # | |||||
Lift Float | |||||
MArray IOUArray Float IO | |||||
Defined in Data.Array.IO.Internals Methods getBounds :: Ix i => IOUArray i Float -> IO (i, i) # getNumElements :: Ix i => IOUArray i Float -> IO Int # newArray :: Ix i => (i, i) -> Float -> IO (IOUArray i Float) # newArray_ :: Ix i => (i, i) -> IO (IOUArray i Float) # unsafeNewArray_ :: Ix i => (i, i) -> IO (IOUArray i Float) # unsafeRead :: Ix i => IOUArray i Float -> Int -> IO Float # unsafeWrite :: Ix i => IOUArray i Float -> Int -> Float -> IO () # | |||||
GEq1 v (UFloat :: Type -> Type) | |||||
GOrd1 v (UFloat :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
GShow1Con v (UFloat :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
Generic1 (URec Float :: k -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
Foldable (UFloat :: Type -> Type) | Since: base-4.9.0.0 | ||||
Defined in Data.Foldable Methods fold :: Monoid m => UFloat m -> m # foldMap :: Monoid m => (a -> m) -> UFloat a -> m # foldMap' :: Monoid m => (a -> m) -> UFloat a -> m # foldr :: (a -> b -> b) -> b -> UFloat a -> b # foldr' :: (a -> b -> b) -> b -> UFloat a -> b # foldl :: (b -> a -> b) -> b -> UFloat a -> b # foldl' :: (b -> a -> b) -> b -> UFloat a -> b # foldr1 :: (a -> a -> a) -> UFloat a -> a # foldl1 :: (a -> a -> a) -> UFloat a -> a # elem :: Eq a => a -> UFloat a -> Bool # maximum :: Ord a => UFloat a -> a # minimum :: Ord a => UFloat a -> a # | |||||
Traversable (UFloat :: Type -> Type) | Since: base-4.9.0.0 | ||||
IsNullaryCon (UFloat :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal Methods isNullaryCon :: UFloat a -> Bool # | |||||
MArray (STUArray s) Float (ST s) | |||||
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Float -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Float -> ST s Int # newArray :: Ix i => (i, i) -> Float -> ST s (STUArray s i Float) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Float) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Float) # unsafeRead :: Ix i => STUArray s i Float -> Int -> ST s Float # unsafeWrite :: Ix i => STUArray s i Float -> Int -> Float -> ST s () # | |||||
Functor (URec Float :: Type -> Type) | Since: base-4.9.0.0 | ||||
GEq (UFloat p) | |||||
GOrd (UFloat p) | |||||
GShowCon (UFloat p) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
Generic (URec Float p) | |||||
Defined in GHC.Generics Associated Types
| |||||
Show (URec Float p) | |||||
Eq (URec Float p) | |||||
Ord (URec Float p) | |||||
Defined in GHC.Generics | |||||
data URec Float (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 | ||||
type Rep1 (URec Float :: k -> Type) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
type Rep (URec Float p) | |||||
Defined in GHC.Generics |
The character type Char
represents Unicode codespace
and its elements are code points as in definitions
D9 and D10 of the Unicode Standard.
Character literals in Haskell are single-quoted: 'Q'
, 'Я'
or 'Ω'
.
To represent a single quote itself use '\''
, and to represent a backslash
use '\\'
. The full grammar can be found in the section 2.6 of the
Haskell 2010 Language Report.
To specify a character by its code point one can use decimal, hexadecimal
or octal notation: '\65'
, '\x41'
and '\o101'
are all alternative forms
of 'A'
. The largest code point is '\x10ffff'
.
There is a special escape syntax for ASCII control characters:
Escape | Alternatives | Meaning |
---|---|---|
'\NUL' | '\0' | null character |
'\SOH' | '\1' | start of heading |
'\STX' | '\2' | start of text |
'\ETX' | '\3' | end of text |
'\EOT' | '\4' | end of transmission |
'\ENQ' | '\5' | enquiry |
'\ACK' | '\6' | acknowledge |
'\BEL' | '\7' , '\a' | bell (alert) |
'\BS' | '\8' , '\b' | backspace |
'\HT' | '\9' , '\t' | horizontal tab |
'\LF' | '\10' , '\n' | line feed (new line) |
'\VT' | '\11' , '\v' | vertical tab |
'\FF' | '\12' , '\f' | form feed |
'\CR' | '\13' , '\r' | carriage return |
'\SO' | '\14' | shift out |
'\SI' | '\15' | shift in |
'\DLE' | '\16' | data link escape |
'\DC1' | '\17' | device control 1 |
'\DC2' | '\18' | device control 2 |
'\DC3' | '\19' | device control 3 |
'\DC4' | '\20' | device control 4 |
'\NAK' | '\21' | negative acknowledge |
'\SYN' | '\22' | synchronous idle |
'\ETB' | '\23' | end of transmission block |
'\CAN' | '\24' | cancel |
'\EM' | '\25' | end of medium |
'\SUB' | '\26' | substitute |
'\ESC' | '\27' | escape |
'\FS' | '\28' | file separator |
'\GS' | '\29' | group separator |
'\RS' | '\30' | record separator |
'\US' | '\31' | unit separator |
'\SP' | '\32' , ' ' | space |
'\DEL' | '\127' | delete |
Instances
Data Char | Since: base-4.0.0.0 | ||||
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Char -> c Char # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Char # dataTypeOf :: Char -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Char) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Char) # gmapT :: (forall b. Data b => b -> b) -> Char -> Char # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r # gmapQ :: (forall d. Data d => d -> u) -> Char -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Char -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Char -> m Char # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char # | |||||
Storable Char | Since: base-2.1 | ||||
Defined in Foreign.Storable | |||||
Bounded Char | Since: base-2.1 | ||||
Enum Char | Since: base-2.1 | ||||
Ix Char | Since: base-2.1 | ||||
Read Char | Since: base-2.1 | ||||
Show Char | Since: base-2.1 | ||||
IsChar Char | Since: base-2.1 | ||||
PrintfArg Char | Since: base-2.1 | ||||
Defined in Text.Printf | |||||
NFData Char | |||||
Defined in Control.DeepSeq | |||||
Eq Char | |||||
Ord Char | |||||
Hashable Char | |||||
Defined in Data.Hashable.Class | |||||
IArray UArray Char | |||||
Defined in Data.Array.Base Methods bounds :: Ix i => UArray i Char -> (i, i) # numElements :: Ix i => UArray i Char -> Int # unsafeArray :: Ix i => (i, i) -> [(Int, Char)] -> UArray i Char # unsafeAt :: Ix i => UArray i Char -> Int -> Char # unsafeReplace :: Ix i => UArray i Char -> [(Int, Char)] -> UArray i Char # unsafeAccum :: Ix i => (Char -> e' -> Char) -> UArray i Char -> [(Int, e')] -> UArray i Char # unsafeAccumArray :: Ix i => (Char -> e' -> Char) -> Char -> (i, i) -> [(Int, e')] -> UArray i Char # | |||||
TestCoercion SChar | Since: base-4.18.0.0 | ||||
Defined in GHC.TypeLits | |||||
TestEquality SChar | Since: base-4.18.0.0 | ||||
Defined in GHC.TypeLits | |||||
StringConv ByteString String Source # | |||||
Defined in Protolude.Conv | |||||
StringConv ByteString String Source # | |||||
Defined in Protolude.Conv | |||||
StringConv Text String Source # | |||||
StringConv Text String Source # | |||||
StringConv String ByteString Source # | |||||
Defined in Protolude.Conv | |||||
StringConv String ByteString Source # | |||||
Defined in Protolude.Conv | |||||
StringConv String Text Source # | |||||
StringConv String Text Source # | |||||
StringConv String String Source # | |||||
ConvertText Text String Source # | |||||
ConvertText Text String Source # | |||||
ConvertText String Text Source # | |||||
ConvertText String Text Source # | |||||
ConvertText String String Source # | |||||
Lift Char | |||||
MArray IOUArray Char IO | |||||
Defined in Data.Array.IO.Internals Methods getBounds :: Ix i => IOUArray i Char -> IO (i, i) # getNumElements :: Ix i => IOUArray i Char -> IO Int # newArray :: Ix i => (i, i) -> Char -> IO (IOUArray i Char) # newArray_ :: Ix i => (i, i) -> IO (IOUArray i Char) # unsafeNewArray_ :: Ix i => (i, i) -> IO (IOUArray i Char) # unsafeRead :: Ix i => IOUArray i Char -> Int -> IO Char # unsafeWrite :: Ix i => IOUArray i Char -> Int -> Char -> IO () # | |||||
GEq1 v (UChar :: Type -> Type) | |||||
GOrd1 v (UChar :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
GShow1Con v (UChar :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
Generic1 (URec Char :: k -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
Foldable (UChar :: Type -> Type) | Since: base-4.9.0.0 | ||||
Defined in Data.Foldable Methods fold :: Monoid m => UChar m -> m # foldMap :: Monoid m => (a -> m) -> UChar a -> m # foldMap' :: Monoid m => (a -> m) -> UChar a -> m # foldr :: (a -> b -> b) -> b -> UChar a -> b # foldr' :: (a -> b -> b) -> b -> UChar a -> b # foldl :: (b -> a -> b) -> b -> UChar a -> b # foldl' :: (b -> a -> b) -> b -> UChar a -> b # foldr1 :: (a -> a -> a) -> UChar a -> a # foldl1 :: (a -> a -> a) -> UChar a -> a # elem :: Eq a => a -> UChar a -> Bool # maximum :: Ord a => UChar a -> a # minimum :: Ord a => UChar a -> a # | |||||
Traversable (UChar :: Type -> Type) | Since: base-4.9.0.0 | ||||
Print [Char] Source # | |||||
IsNullaryCon (UChar :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal Methods isNullaryCon :: UChar a -> Bool # | |||||
MArray (STUArray s) Char (ST s) | |||||
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Char -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Char -> ST s Int # newArray :: Ix i => (i, i) -> Char -> ST s (STUArray s i Char) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Char) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Char) # unsafeRead :: Ix i => STUArray s i Char -> Int -> ST s Char # unsafeWrite :: Ix i => STUArray s i Char -> Int -> Char -> ST s () # | |||||
Functor (URec Char :: Type -> Type) | Since: base-4.9.0.0 | ||||
GEq (UChar p) | |||||
GOrd (UChar p) | |||||
GShowCon (UChar p) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
Generic (URec Char p) | |||||
Defined in GHC.Generics Associated Types
| |||||
Show (URec Char p) | Since: base-4.9.0.0 | ||||
Eq (URec Char p) | Since: base-4.9.0.0 | ||||
Ord (URec Char p) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
data URec Char (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 | ||||
type Compare (a :: Char) (b :: Char) | |||||
Defined in Data.Type.Ord | |||||
type Rep1 (URec Char :: k -> Type) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
type Rep (URec Char p) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics |
A value of type
is a computation which, when performed,
does some I/O before returning a value of type IO
aa
.
There is really only one way to "perform" an I/O action: bind it to
Main.main
in your program. When your program is run, the I/O will
be performed. It isn't possible to perform I/O from an arbitrary
function, unless that function is itself in the IO
monad and called
at some point, directly or indirectly, from Main.main
.
IO
is a monad, so IO
actions can be combined using either the do-notation
or the >>
and >>=
operations from the Monad
class.
Instances
Instances
Data Bool | Since: base-4.0.0.0 | ||||
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bool -> c Bool # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bool # dataTypeOf :: Bool -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Bool) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bool) # gmapT :: (forall b. Data b => b -> b) -> Bool -> Bool # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r # gmapQ :: (forall d. Data d => d -> u) -> Bool -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Bool -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bool -> m Bool # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool # | |||||
Storable Bool | Since: base-2.1 | ||||
Defined in Foreign.Storable | |||||
Bits Bool | Interpret Since: base-4.7.0.0 | ||||
Defined in GHC.Bits Methods (.&.) :: Bool -> Bool -> Bool # (.|.) :: Bool -> Bool -> Bool # complement :: Bool -> Bool # shift :: Bool -> Int -> Bool # rotate :: Bool -> Int -> Bool # setBit :: Bool -> Int -> Bool # clearBit :: Bool -> Int -> Bool # complementBit :: Bool -> Int -> Bool # testBit :: Bool -> Int -> Bool # bitSizeMaybe :: Bool -> Maybe Int # shiftL :: Bool -> Int -> Bool # unsafeShiftL :: Bool -> Int -> Bool # shiftR :: Bool -> Int -> Bool # unsafeShiftR :: Bool -> Int -> Bool # rotateL :: Bool -> Int -> Bool # | |||||
FiniteBits Bool | Since: base-4.7.0.0 | ||||
Defined in GHC.Bits Methods finiteBitSize :: Bool -> Int # countLeadingZeros :: Bool -> Int # countTrailingZeros :: Bool -> Int # | |||||
Bounded Bool | Since: base-2.1 | ||||
Enum Bool | Since: base-2.1 | ||||
Generic Bool | |||||
Defined in GHC.Generics | |||||
SingKind Bool | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics Associated Types
| |||||
Ix Bool | Since: base-2.1 | ||||
Read Bool | Since: base-2.1 | ||||
Show Bool | Since: base-2.1 | ||||
NFData Bool | |||||
Defined in Control.DeepSeq | |||||
Eq Bool | |||||
Ord Bool | |||||
Hashable Bool | |||||
Defined in Data.Hashable.Class | |||||
IArray UArray Bool | |||||
Defined in Data.Array.Base Methods bounds :: Ix i => UArray i Bool -> (i, i) # numElements :: Ix i => UArray i Bool -> Int # unsafeArray :: Ix i => (i, i) -> [(Int, Bool)] -> UArray i Bool # unsafeAt :: Ix i => UArray i Bool -> Int -> Bool # unsafeReplace :: Ix i => UArray i Bool -> [(Int, Bool)] -> UArray i Bool # unsafeAccum :: Ix i => (Bool -> e' -> Bool) -> UArray i Bool -> [(Int, e')] -> UArray i Bool # unsafeAccumArray :: Ix i => (Bool -> e' -> Bool) -> Bool -> (i, i) -> [(Int, e')] -> UArray i Bool # | |||||
SingI 'False | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
SingI 'True | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
Lift Bool | |||||
MArray IOUArray Bool IO | |||||
Defined in Data.Array.IO.Internals Methods getBounds :: Ix i => IOUArray i Bool -> IO (i, i) # getNumElements :: Ix i => IOUArray i Bool -> IO Int # newArray :: Ix i => (i, i) -> Bool -> IO (IOUArray i Bool) # newArray_ :: Ix i => (i, i) -> IO (IOUArray i Bool) # unsafeNewArray_ :: Ix i => (i, i) -> IO (IOUArray i Bool) # unsafeRead :: Ix i => IOUArray i Bool -> Int -> IO Bool # unsafeWrite :: Ix i => IOUArray i Bool -> Int -> Bool -> IO () # | |||||
MArray (STUArray s) Bool (ST s) | |||||
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Bool -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Bool -> ST s Int # newArray :: Ix i => (i, i) -> Bool -> ST s (STUArray s i Bool) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Bool) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Bool) # unsafeRead :: Ix i => STUArray s i Bool -> Int -> ST s Bool # unsafeWrite :: Ix i => STUArray s i Bool -> Int -> Bool -> ST s () # | |||||
type DemoteRep Bool | |||||
Defined in GHC.Generics | |||||
type Rep Bool | Since: base-4.6.0.0 | ||||
data Sing (a :: Bool) | |||||
Double-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE double-precision type.
Instances
Data Double | Since: base-4.0.0.0 | ||||
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Double -> c Double # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Double # toConstr :: Double -> Constr # dataTypeOf :: Double -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Double) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Double) # gmapT :: (forall b. Data b => b -> b) -> Double -> Double # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r # gmapQ :: (forall d. Data d => d -> u) -> Double -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Double -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Double -> m Double # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double # | |||||
Storable Double | Since: base-2.1 | ||||
Floating Double | Since: base-2.1 | ||||
RealFloat Double | Since: base-2.1 | ||||
Defined in GHC.Float Methods floatRadix :: Double -> Integer # floatDigits :: Double -> Int # floatRange :: Double -> (Int, Int) # decodeFloat :: Double -> (Integer, Int) # encodeFloat :: Integer -> Int -> Double # significand :: Double -> Double # scaleFloat :: Int -> Double -> Double # isInfinite :: Double -> Bool # isDenormalized :: Double -> Bool # isNegativeZero :: Double -> Bool # | |||||
Read Double | Since: base-2.1 | ||||
PrintfArg Double | Since: base-2.1 | ||||
Defined in Text.Printf | |||||
NFData Double | |||||
Defined in Control.DeepSeq | |||||
Eq Double | Note that due to the presence of
Also note that
| ||||
Ord Double | IEEE 754 IEEE 754-2008, section 5.11 requires that if at least one of arguments of
IEEE 754-2008, section 5.10 defines Thus, users must be extremely cautious when using Moving further, the behaviour of IEEE 754-2008 compliant | ||||
Hashable Double | Note: prior to The Since: hashable-1.3.0.0 | ||||
Defined in Data.Hashable.Class | |||||
IArray UArray Double | |||||
Defined in Data.Array.Base Methods bounds :: Ix i => UArray i Double -> (i, i) # numElements :: Ix i => UArray i Double -> Int # unsafeArray :: Ix i => (i, i) -> [(Int, Double)] -> UArray i Double # unsafeAt :: Ix i => UArray i Double -> Int -> Double # unsafeReplace :: Ix i => UArray i Double -> [(Int, Double)] -> UArray i Double # unsafeAccum :: Ix i => (Double -> e' -> Double) -> UArray i Double -> [(Int, e')] -> UArray i Double # unsafeAccumArray :: Ix i => (Double -> e' -> Double) -> Double -> (i, i) -> [(Int, e')] -> UArray i Double # | |||||
Lift Double | |||||
MArray IOUArray Double IO | |||||
Defined in Data.Array.IO.Internals Methods getBounds :: Ix i => IOUArray i Double -> IO (i, i) # getNumElements :: Ix i => IOUArray i Double -> IO Int # newArray :: Ix i => (i, i) -> Double -> IO (IOUArray i Double) # newArray_ :: Ix i => (i, i) -> IO (IOUArray i Double) # unsafeNewArray_ :: Ix i => (i, i) -> IO (IOUArray i Double) # unsafeRead :: Ix i => IOUArray i Double -> Int -> IO Double # unsafeWrite :: Ix i => IOUArray i Double -> Int -> Double -> IO () # | |||||
GEq1 v (UDouble :: Type -> Type) | |||||
GOrd1 v (UDouble :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
GShow1Con v (UDouble :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
Generic1 (URec Double :: k -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
Foldable (UDouble :: Type -> Type) | Since: base-4.9.0.0 | ||||
Defined in Data.Foldable Methods fold :: Monoid m => UDouble m -> m # foldMap :: Monoid m => (a -> m) -> UDouble a -> m # foldMap' :: Monoid m => (a -> m) -> UDouble a -> m # foldr :: (a -> b -> b) -> b -> UDouble a -> b # foldr' :: (a -> b -> b) -> b -> UDouble a -> b # foldl :: (b -> a -> b) -> b -> UDouble a -> b # foldl' :: (b -> a -> b) -> b -> UDouble a -> b # foldr1 :: (a -> a -> a) -> UDouble a -> a # foldl1 :: (a -> a -> a) -> UDouble a -> a # elem :: Eq a => a -> UDouble a -> Bool # maximum :: Ord a => UDouble a -> a # minimum :: Ord a => UDouble a -> a # | |||||
Traversable (UDouble :: Type -> Type) | Since: base-4.9.0.0 | ||||
IsNullaryCon (UDouble :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal Methods isNullaryCon :: UDouble a -> Bool # | |||||
MArray (STUArray s) Double (ST s) | |||||
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Double -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Double -> ST s Int # newArray :: Ix i => (i, i) -> Double -> ST s (STUArray s i Double) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Double) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Double) # unsafeRead :: Ix i => STUArray s i Double -> Int -> ST s Double # unsafeWrite :: Ix i => STUArray s i Double -> Int -> Double -> ST s () # | |||||
Functor (URec Double :: Type -> Type) | Since: base-4.9.0.0 | ||||
GEq (UDouble p) | |||||
GOrd (UDouble p) | |||||
GShowCon (UDouble p) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
Generic (URec Double p) | |||||
Defined in GHC.Generics Associated Types
| |||||
Show (URec Double p) | Since: base-4.9.0.0 | ||||
Eq (URec Double p) | Since: base-4.9.0.0 | ||||
Ord (URec Double p) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics Methods compare :: URec Double p -> URec Double p -> Ordering # (<) :: URec Double p -> URec Double p -> Bool # (<=) :: URec Double p -> URec Double p -> Bool # (>) :: URec Double p -> URec Double p -> Bool # (>=) :: URec Double p -> URec Double p -> Bool # | |||||
data URec Double (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 | ||||
type Rep1 (URec Double :: k -> Type) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
type Rep (URec Double p) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics |
Instances
Data Word | Since: base-4.0.0.0 | ||||
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word -> c Word # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word # dataTypeOf :: Word -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word) # gmapT :: (forall b. Data b => b -> b) -> Word -> Word # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r # gmapQ :: (forall d. Data d => d -> u) -> Word -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word -> m Word # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word # | |||||
Storable Word | Since: base-2.1 | ||||
Defined in Foreign.Storable | |||||
Bits Word | Since: base-2.1 | ||||
Defined in GHC.Bits Methods (.&.) :: Word -> Word -> Word # (.|.) :: Word -> Word -> Word # complement :: Word -> Word # shift :: Word -> Int -> Word # rotate :: Word -> Int -> Word # setBit :: Word -> Int -> Word # clearBit :: Word -> Int -> Word # complementBit :: Word -> Int -> Word # testBit :: Word -> Int -> Bool # bitSizeMaybe :: Word -> Maybe Int # shiftL :: Word -> Int -> Word # unsafeShiftL :: Word -> Int -> Word # shiftR :: Word -> Int -> Word # unsafeShiftR :: Word -> Int -> Word # rotateL :: Word -> Int -> Word # | |||||
FiniteBits Word | Since: base-4.6.0.0 | ||||
Defined in GHC.Bits Methods finiteBitSize :: Word -> Int # countLeadingZeros :: Word -> Int # countTrailingZeros :: Word -> Int # | |||||
Bounded Word | Since: base-2.1 | ||||
Enum Word | Since: base-2.1 | ||||
Ix Word | Since: base-4.6.0.0 | ||||
Num Word | Since: base-2.1 | ||||
Read Word | Since: base-4.5.0.0 | ||||
Integral Word | Since: base-2.1 | ||||
Real Word | Since: base-2.1 | ||||
Defined in GHC.Real Methods toRational :: Word -> Rational # | |||||
Show Word | Since: base-2.1 | ||||
PrintfArg Word | Since: base-2.1 | ||||
Defined in Text.Printf | |||||
NFData Word | |||||
Defined in Control.DeepSeq | |||||
Eq Word | |||||
Ord Word | |||||
Hashable Word | |||||
Defined in Data.Hashable.Class | |||||
IArray UArray Word | |||||
Defined in Data.Array.Base Methods bounds :: Ix i => UArray i Word -> (i, i) # numElements :: Ix i => UArray i Word -> Int # unsafeArray :: Ix i => (i, i) -> [(Int, Word)] -> UArray i Word # unsafeAt :: Ix i => UArray i Word -> Int -> Word # unsafeReplace :: Ix i => UArray i Word -> [(Int, Word)] -> UArray i Word # unsafeAccum :: Ix i => (Word -> e' -> Word) -> UArray i Word -> [(Int, e')] -> UArray i Word # unsafeAccumArray :: Ix i => (Word -> e' -> Word) -> Word -> (i, i) -> [(Int, e')] -> UArray i Word # | |||||
Lift Word | |||||
MArray IOUArray Word IO | |||||
Defined in Data.Array.IO.Internals Methods getBounds :: Ix i => IOUArray i Word -> IO (i, i) # getNumElements :: Ix i => IOUArray i Word -> IO Int # newArray :: Ix i => (i, i) -> Word -> IO (IOUArray i Word) # newArray_ :: Ix i => (i, i) -> IO (IOUArray i Word) # unsafeNewArray_ :: Ix i => (i, i) -> IO (IOUArray i Word) # unsafeRead :: Ix i => IOUArray i Word -> Int -> IO Word # unsafeWrite :: Ix i => IOUArray i Word -> Int -> Word -> IO () # | |||||
GEq1 v (UWord :: Type -> Type) | |||||
GOrd1 v (UWord :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
GShow1Con v (UWord :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
Generic1 (URec Word :: k -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
Foldable (UWord :: Type -> Type) | Since: base-4.9.0.0 | ||||
Defined in Data.Foldable Methods fold :: Monoid m => UWord m -> m # foldMap :: Monoid m => (a -> m) -> UWord a -> m # foldMap' :: Monoid m => (a -> m) -> UWord a -> m # foldr :: (a -> b -> b) -> b -> UWord a -> b # foldr' :: (a -> b -> b) -> b -> UWord a -> b # foldl :: (b -> a -> b) -> b -> UWord a -> b # foldl' :: (b -> a -> b) -> b -> UWord a -> b # foldr1 :: (a -> a -> a) -> UWord a -> a # foldl1 :: (a -> a -> a) -> UWord a -> a # elem :: Eq a => a -> UWord a -> Bool # maximum :: Ord a => UWord a -> a # minimum :: Ord a => UWord a -> a # | |||||
Traversable (UWord :: Type -> Type) | Since: base-4.9.0.0 | ||||
IsNullaryCon (UWord :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal Methods isNullaryCon :: UWord a -> Bool # | |||||
MArray (STUArray s) Word (ST s) | |||||
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Word -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Word -> ST s Int # newArray :: Ix i => (i, i) -> Word -> ST s (STUArray s i Word) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word) # unsafeRead :: Ix i => STUArray s i Word -> Int -> ST s Word # unsafeWrite :: Ix i => STUArray s i Word -> Int -> Word -> ST s () # | |||||
Functor (URec Word :: Type -> Type) | Since: base-4.9.0.0 | ||||
GEq (UWord p) | |||||
GOrd (UWord p) | |||||
GShowCon (UWord p) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
Generic (URec Word p) | |||||
Defined in GHC.Generics Associated Types
| |||||
Show (URec Word p) | Since: base-4.9.0.0 | ||||
Eq (URec Word p) | Since: base-4.9.0.0 | ||||
Ord (URec Word p) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
data URec Word (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 | ||||
type Rep1 (URec Word :: k -> Type) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
type Rep (URec Word p) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics |
Instances
Data Ordering | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ordering -> c Ordering # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Ordering # toConstr :: Ordering -> Constr # dataTypeOf :: Ordering -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Ordering) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Ordering) # gmapT :: (forall b. Data b => b -> b) -> Ordering -> Ordering # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r # gmapQ :: (forall d. Data d => d -> u) -> Ordering -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ordering -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # | |
Monoid Ordering | Since: base-2.1 |
Semigroup Ordering | Since: base-4.9.0.0 |
Bounded Ordering | Since: base-2.1 |
Enum Ordering | Since: base-2.1 |
Generic Ordering | |
Defined in GHC.Generics | |
Ix Ordering | Since: base-2.1 |
Defined in GHC.Ix Methods range :: (Ordering, Ordering) -> [Ordering] # index :: (Ordering, Ordering) -> Ordering -> Int # unsafeIndex :: (Ordering, Ordering) -> Ordering -> Int # inRange :: (Ordering, Ordering) -> Ordering -> Bool # rangeSize :: (Ordering, Ordering) -> Int # unsafeRangeSize :: (Ordering, Ordering) -> Int # | |
Read Ordering | Since: base-2.1 |
Show Ordering | Since: base-2.1 |
NFData Ordering | |
Defined in Control.DeepSeq | |
Eq Ordering | |
Ord Ordering | |
Defined in GHC.Classes | |
Hashable Ordering | |
Defined in Data.Hashable.Class | |
type Rep Ordering | Since: base-4.6.0.0 |
class a ~R# b => Coercible (a :: k) (b :: k) #
Coercible
is a two-parameter class that has instances for types a
and b
if
the compiler can infer that they have the same representation. This class
does not have regular instances; instead they are created on-the-fly during
type-checking. Trying to manually declare an instance of Coercible
is an error.
Nevertheless one can pretend that the following three kinds of instances exist. First, as a trivial base-case:
instance Coercible a a
Furthermore, for every type constructor there is
an instance that allows to coerce under the type constructor. For
example, let D
be a prototypical type constructor (data
or
newtype
) with three type arguments, which have roles nominal
,
representational
resp. phantom
. Then there is an instance of
the form
instance Coercible b b' => Coercible (D a b c) (D a b' c')
Note that the nominal
type arguments are equal, the
representational
type arguments can differ, but need to have a
Coercible
instance themself, and the phantom
type arguments can be
changed arbitrarily.
The third kind of instance exists for every newtype NT = MkNT T
and
comes in two variants, namely
instance Coercible a T => Coercible a NT
instance Coercible T b => Coercible NT b
This instance is only usable if the constructor MkNT
is in scope.
If, as a library author of a type constructor like Set a
, you
want to prevent a user of your module to write
coerce :: Set T -> Set NT
,
you need to set the role of Set
's type parameter to nominal
,
by writing
type role Set nominal
For more details about this feature, please refer to Safe Coercions by Joachim Breitner, Richard A. Eisenberg, Simon Peyton Jones and Stephanie Weirich.
Since: ghc-prim-0.4.0
(Kind) This is the kind of type-level symbols.
Instances
SingKind Symbol | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics Associated Types
| |||||
TestCoercion SSymbol | Since: base-4.18.0.0 | ||||
Defined in GHC.TypeLits | |||||
TestEquality SSymbol | Since: base-4.18.0.0 | ||||
Defined in GHC.TypeLits | |||||
KnownSymbol a => SingI (a :: Symbol) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics Methods sing :: Sing a | |||||
type DemoteRep Symbol | |||||
Defined in GHC.Generics | |||||
data Sing (s :: Symbol) | |||||
Defined in GHC.Generics | |||||
type Compare (a :: Symbol) (b :: Symbol) | |||||
Defined in Data.Type.Ord |
Arbitrary precision integers. In contrast with fixed-size integral types
such as Int
, the Integer
type represents the entire infinite range of
integers.
Integers are stored in a kind of sign-magnitude form, hence do not expect two's complement form when using bit operations.
If the value is small (fit into an Int
), IS
constructor is used.
Otherwise IP
and IN
constructors are used to store a BigNat
representing respectively the positive or the negative value magnitude.
Instances
Data Integer | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Integer -> c Integer # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Integer # toConstr :: Integer -> Constr # dataTypeOf :: Integer -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Integer) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Integer) # gmapT :: (forall b. Data b => b -> b) -> Integer -> Integer # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r # gmapQ :: (forall d. Data d => d -> u) -> Integer -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Integer -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Integer -> m Integer # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer # | |
Bits Integer | Since: base-2.1 |
Defined in GHC.Bits Methods (.&.) :: Integer -> Integer -> Integer # (.|.) :: Integer -> Integer -> Integer # xor :: Integer -> Integer -> Integer # complement :: Integer -> Integer # shift :: Integer -> Int -> Integer # rotate :: Integer -> Int -> Integer # setBit :: Integer -> Int -> Integer # clearBit :: Integer -> Int -> Integer # complementBit :: Integer -> Int -> Integer # testBit :: Integer -> Int -> Bool # bitSizeMaybe :: Integer -> Maybe Int # shiftL :: Integer -> Int -> Integer # unsafeShiftL :: Integer -> Int -> Integer # shiftR :: Integer -> Int -> Integer # unsafeShiftR :: Integer -> Int -> Integer # rotateL :: Integer -> Int -> Integer # | |
Enum Integer | Since: base-2.1 |
Ix Integer | Since: base-2.1 |
Defined in GHC.Ix | |
Num Integer | Since: base-2.1 |
Read Integer | Since: base-2.1 |
Integral Integer | Since: base-2.0.1 |
Defined in GHC.Real | |
Real Integer | Since: base-2.0.1 |
Defined in GHC.Real Methods toRational :: Integer -> Rational # | |
Show Integer | Since: base-2.1 |
PrintfArg Integer | Since: base-2.1 |
Defined in Text.Printf | |
NFData Integer | |
Defined in Control.DeepSeq | |
Eq Integer | |
Ord Integer | |
Hashable Integer | |
Defined in Data.Hashable.Class | |
Lift Integer | |
type Constraint = CONSTRAINT LiftedRep #
The kind of lifted constraints
callStack :: HasCallStack => CallStack #
Class Enum
defines operations on sequentially ordered types.
The enumFrom
... methods are used in Haskell's translation of
arithmetic sequences.
Instances of Enum
may be derived for any enumeration type (types
whose constructors have no fields). The nullary constructors are
assumed to be numbered left-to-right by fromEnum
from 0
through n-1
.
See Chapter 10 of the Haskell Report for more details.
For any type that is an instance of class Bounded
as well as Enum
,
the following should hold:
- The calls
andsucc
maxBound
should result in a runtime error.pred
minBound
fromEnum
andtoEnum
should give a runtime error if the result value is not representable in the result type. For example,
is an error.toEnum
7 ::Bool
enumFrom
andenumFromThen
should be defined with an implicit bound, thus:
enumFrom x = enumFromTo x maxBound enumFromThen x y = enumFromThenTo x y bound where bound | fromEnum y >= fromEnum x = maxBound | otherwise = minBound
Methods
the successor of a value. For numeric types, succ
adds 1.
the predecessor of a value. For numeric types, pred
subtracts 1.
Convert from an Int
.
Convert to an Int
.
It is implementation-dependent what fromEnum
returns when
applied to a value that is too large to fit in an Int
.
Used in Haskell's translation of [n..]
with [n..] = enumFrom n
,
a possible implementation being enumFrom n = n : enumFrom (succ n)
.
For example:
enumFrom 4 :: [Integer] = [4,5,6,7,...]
enumFrom 6 :: [Int] = [6,7,8,9,...,maxBound :: Int]
enumFromThen :: a -> a -> [a] #
Used in Haskell's translation of [n,n'..]
with [n,n'..] = enumFromThen n n'
, a possible implementation being
enumFromThen n n' = n : n' : worker (f x) (f x n')
,
worker s v = v : worker s (s v)
, x = fromEnum n' - fromEnum n
and
f n y
| n > 0 = f (n - 1) (succ y)
| n < 0 = f (n + 1) (pred y)
| otherwise = y
For example:
enumFromThen 4 6 :: [Integer] = [4,6,8,10...]
enumFromThen 6 2 :: [Int] = [6,2,-2,-6,...,minBound :: Int]
enumFromTo :: a -> a -> [a] #
Used in Haskell's translation of [n..m]
with
[n..m] = enumFromTo n m
, a possible implementation being
enumFromTo n m
| n <= m = n : enumFromTo (succ n) m
| otherwise = []
.
For example:
enumFromTo 6 10 :: [Int] = [6,7,8,9,10]
enumFromTo 42 1 :: [Integer] = []
enumFromThenTo :: a -> a -> a -> [a] #
Used in Haskell's translation of [n,n'..m]
with
[n,n'..m] = enumFromThenTo n n' m
, a possible implementation
being enumFromThenTo n n' m = worker (f x) (c x) n m
,
x = fromEnum n' - fromEnum n
, c x = bool (>=) ((x 0)
f n y
| n > 0 = f (n - 1) (succ y)
| n < 0 = f (n + 1) (pred y)
| otherwise = y
and
worker s c v m
| c v m = v : worker s c (s v) m
| otherwise = []
For example:
enumFromThenTo 4 2 -6 :: [Integer] = [4,2,0,-2,-4,-6]
enumFromThenTo 6 8 2 :: [Int] = []
Instances
class (Real a, Enum a) => Integral a where #
Integral numbers, supporting integer division.
The Haskell Report defines no laws for Integral
. However, Integral
instances are customarily expected to define a Euclidean domain and have the
following properties for the div
/mod
and quot
/rem
pairs, given
suitable Euclidean functions f
and g
:
x
=y * quot x y + rem x y
withrem x y
=fromInteger 0
org (rem x y)
<g y
x
=y * div x y + mod x y
withmod x y
=fromInteger 0
orf (mod x y)
<f y
An example of a suitable Euclidean function, for Integer
's instance, is
abs
.
In addition, toInteger
should be total, and fromInteger
should be a left
inverse for it, i.e. fromInteger (toInteger i) = i
.
Methods
quot :: a -> a -> a infixl 7 #
integer division truncated toward zero
WARNING: This function is partial (because it throws when 0 is passed as
the divisor) for all the integer types in base
.
integer remainder, satisfying
(x `quot` y)*y + (x `rem` y) == x
WARNING: This function is partial (because it throws when 0 is passed as
the divisor) for all the integer types in base
.
integer division truncated toward negative infinity
WARNING: This function is partial (because it throws when 0 is passed as
the divisor) for all the integer types in base
.
integer modulus, satisfying
(x `div` y)*y + (x `mod` y) == x
WARNING: This function is partial (because it throws when 0 is passed as
the divisor) for all the integer types in base
.
WARNING: This function is partial (because it throws when 0 is passed as
the divisor) for all the integer types in base
.
WARNING: This function is partial (because it throws when 0 is passed as
the divisor) for all the integer types in base
.
conversion to Integer
Instances
Conversion of values to readable String
s.
Derived instances of Show
have the following properties, which
are compatible with derived instances of Read
:
- The result of
show
is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used. - If the constructor is defined to be an infix operator, then
showsPrec
will produce infix applications of the constructor. - the representation will be enclosed in parentheses if the
precedence of the top-level constructor in
x
is less thand
(associativity is ignored). Thus, ifd
is0
then the result is never surrounded in parentheses; ifd
is11
it is always surrounded in parentheses, unless it is an atomic expression. - If the constructor is defined using record syntax, then
show
will produce the record-syntax form, with the fields given in the same order as the original declaration.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Show
is equivalent to
instance (Show a) => Show (Tree a) where showsPrec d (Leaf m) = showParen (d > app_prec) $ showString "Leaf " . showsPrec (app_prec+1) m where app_prec = 10 showsPrec d (u :^: v) = showParen (d > up_prec) $ showsPrec (up_prec+1) u . showString " :^: " . showsPrec (up_prec+1) v where up_prec = 5
Note that right-associativity of :^:
is ignored. For example,
produces the stringshow
(Leaf 1 :^: Leaf 2 :^: Leaf 3)"Leaf 1 :^: (Leaf 2 :^: Leaf 3)"
.
Instances
A value of type
represents a pointer to an object, or an
array of objects, which may be marshalled to or from Haskell values
of type Ptr
aa
.
The type a
will often be an instance of class
Storable
which provides the marshalling operations.
However this is not essential, and you can provide your own operations
to access the pointer. For example you might write small foreign
functions to get or set the fields of a C struct
.
Instances
NFData1 Ptr | Since: deepseq-1.4.3.0 | ||||
Defined in Control.DeepSeq | |||||
IArray UArray (Ptr a) | |||||
Defined in Data.Array.Base Methods bounds :: Ix i => UArray i (Ptr a) -> (i, i) # numElements :: Ix i => UArray i (Ptr a) -> Int # unsafeArray :: Ix i => (i, i) -> [(Int, Ptr a)] -> UArray i (Ptr a) # unsafeAt :: Ix i => UArray i (Ptr a) -> Int -> Ptr a # unsafeReplace :: Ix i => UArray i (Ptr a) -> [(Int, Ptr a)] -> UArray i (Ptr a) # unsafeAccum :: Ix i => (Ptr a -> e' -> Ptr a) -> UArray i (Ptr a) -> [(Int, e')] -> UArray i (Ptr a) # unsafeAccumArray :: Ix i => (Ptr a -> e' -> Ptr a) -> Ptr a -> (i, i) -> [(Int, e')] -> UArray i (Ptr a) # | |||||
GEq1 v (UAddr :: Type -> Type) | |||||
GOrd1 v (UAddr :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
MArray IOUArray (Ptr a) IO | |||||
Defined in Data.Array.IO.Internals Methods getBounds :: Ix i => IOUArray i (Ptr a) -> IO (i, i) # getNumElements :: Ix i => IOUArray i (Ptr a) -> IO Int # newArray :: Ix i => (i, i) -> Ptr a -> IO (IOUArray i (Ptr a)) # newArray_ :: Ix i => (i, i) -> IO (IOUArray i (Ptr a)) # unsafeNewArray_ :: Ix i => (i, i) -> IO (IOUArray i (Ptr a)) # unsafeRead :: Ix i => IOUArray i (Ptr a) -> Int -> IO (Ptr a) # unsafeWrite :: Ix i => IOUArray i (Ptr a) -> Int -> Ptr a -> IO () # | |||||
Generic1 (URec (Ptr ()) :: k -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
Data a => Data (Ptr a) | Since: base-4.8.0.0 | ||||
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ptr a -> c (Ptr a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ptr a) # dataTypeOf :: Ptr a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Ptr a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ptr a)) # gmapT :: (forall b. Data b => b -> b) -> Ptr a -> Ptr a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ptr a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ptr a -> r # gmapQ :: (forall d. Data d => d -> u) -> Ptr a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ptr a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) # | |||||
Foldable (UAddr :: Type -> Type) | Since: base-4.9.0.0 | ||||
Defined in Data.Foldable Methods fold :: Monoid m => UAddr m -> m # foldMap :: Monoid m => (a -> m) -> UAddr a -> m # foldMap' :: Monoid m => (a -> m) -> UAddr a -> m # foldr :: (a -> b -> b) -> b -> UAddr a -> b # foldr' :: (a -> b -> b) -> b -> UAddr a -> b # foldl :: (b -> a -> b) -> b -> UAddr a -> b # foldl' :: (b -> a -> b) -> b -> UAddr a -> b # foldr1 :: (a -> a -> a) -> UAddr a -> a # foldl1 :: (a -> a -> a) -> UAddr a -> a # elem :: Eq a => a -> UAddr a -> Bool # maximum :: Ord a => UAddr a -> a # minimum :: Ord a => UAddr a -> a # | |||||
Traversable (UAddr :: Type -> Type) | Since: base-4.9.0.0 | ||||
Storable (Ptr a) | Since: base-2.1 | ||||
Show (Ptr a) | Since: base-2.1 | ||||
NFData (Ptr a) | Since: deepseq-1.4.2.0 | ||||
Defined in Control.DeepSeq | |||||
Eq (Ptr a) | Since: base-2.1 | ||||
Ord (Ptr a) | Since: base-2.1 | ||||
Hashable (Ptr a) | |||||
Defined in Data.Hashable.Class | |||||
MArray (STUArray s) (Ptr a) (ST s) | |||||
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i (Ptr a) -> ST s (i, i) # getNumElements :: Ix i => STUArray s i (Ptr a) -> ST s Int # newArray :: Ix i => (i, i) -> Ptr a -> ST s (STUArray s i (Ptr a)) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i (Ptr a)) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i (Ptr a)) # unsafeRead :: Ix i => STUArray s i (Ptr a) -> Int -> ST s (Ptr a) # unsafeWrite :: Ix i => STUArray s i (Ptr a) -> Int -> Ptr a -> ST s () # | |||||
Functor (URec (Ptr ()) :: Type -> Type) | Since: base-4.9.0.0 | ||||
GEq (UAddr p) | |||||
GOrd (UAddr p) | |||||
Generic (URec (Ptr ()) p) | |||||
Defined in GHC.Generics Associated Types
| |||||
Eq (URec (Ptr ()) p) | Since: base-4.9.0.0 | ||||
Ord (URec (Ptr ()) p) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics Methods compare :: URec (Ptr ()) p -> URec (Ptr ()) p -> Ordering # (<) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (<=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (>) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (>=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # max :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p # min :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p # | |||||
data URec (Ptr ()) (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 | ||||
type Rep1 (URec (Ptr ()) :: k -> Type) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
type Rep (URec (Ptr ()) p) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics |
(++) :: [a] -> [a] -> [a] infixr 5 #
(++)
appends two lists, i.e.,
[x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn] [x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]
If the first list is not finite, the result is the first list.
Performance considerations
This function takes linear time in the number of elements of the
first list. Thus it is better to associate repeated
applications of (++)
to the right (which is the default behaviour):
xs ++ (ys ++ zs)
or simply xs ++ ys ++ zs
, but not (xs ++ ys) ++ zs
.
For the same reason concat
=
foldr
(++)
[]
has linear performance, while foldl
(++)
[]
is prone
to quadratic slowdown
Examples
>>>
[1, 2, 3] ++ [4, 5, 6]
[1,2,3,4,5,6]
>>>
[] ++ [1, 2, 3]
[1,2,3]
>>>
[3, 2, 1] ++ []
[3,2,1]
The value of
is bottom if seq
a ba
is bottom, and
otherwise equal to b
. In other words, it evaluates the first
argument a
to weak head normal form (WHNF). seq
is usually
introduced to improve performance by avoiding unneeded laziness.
A note on evaluation order: the expression
does
not guarantee that seq
a ba
will be evaluated before b
.
The only guarantee given by seq
is that the both a
and b
will be evaluated before seq
returns a value.
In particular, this means that b
may be evaluated before
a
. If you need to guarantee a specific order of evaluation,
you must use the function pseq
from the "parallel" package.
Basic numeric class.
The Haskell Report defines no laws for Num
. However, (
and +
)(
are
customarily expected to define a ring and have the following properties:*
)
- Associativity of
(
+
) (x + y) + z
=x + (y + z)
- Commutativity of
(
+
) x + y
=y + x
is the additive identityfromInteger
0x + fromInteger 0
=x
negate
gives the additive inversex + negate x
=fromInteger 0
- Associativity of
(
*
) (x * y) * z
=x * (y * z)
is the multiplicative identityfromInteger
1x * fromInteger 1
=x
andfromInteger 1 * x
=x
- Distributivity of
(
with respect to*
)(
+
) a * (b + c)
=(a * b) + (a * c)
and(b + c) * a
=(b * a) + (c * a)
- Coherence with
toInteger
- if the type also implements
Integral
, thenfromInteger
is a left inverse fortoInteger
, i.e.fromInteger (toInteger i) == i
Note that it isn't customarily expected that a type instance of both Num
and Ord
implement an ordered ring. Indeed, in base
only Integer
and
Rational
do.
Methods
Unary negation.
Absolute value.
Sign of a number.
The functions abs
and signum
should satisfy the law:
abs x * signum x == x
For real numbers, the signum
is either -1
(negative), 0
(zero)
or 1
(positive).
fromInteger :: Integer -> a #
Conversion from an Integer
.
An integer literal represents the application of the function
fromInteger
to the appropriate value of type Integer
,
so such literals have type (
.Num
a) => a
Instances
Num CBool | |
Num CChar | |
Num CClock | |
Num CDouble | |
Num CFloat | |
Num CInt | |
Num CIntMax | |
Num CIntPtr | |
Num CLLong | |
Num CLong | |
Num CPtrdiff | |
Num CSChar | |
Num CSUSeconds | |
Defined in Foreign.C.Types Methods (+) :: CSUSeconds -> CSUSeconds -> CSUSeconds # (-) :: CSUSeconds -> CSUSeconds -> CSUSeconds # (*) :: CSUSeconds -> CSUSeconds -> CSUSeconds # negate :: CSUSeconds -> CSUSeconds # abs :: CSUSeconds -> CSUSeconds # signum :: CSUSeconds -> CSUSeconds # fromInteger :: Integer -> CSUSeconds # | |
Num CShort | |
Num CSigAtomic | |
Defined in Foreign.C.Types Methods (+) :: CSigAtomic -> CSigAtomic -> CSigAtomic # (-) :: CSigAtomic -> CSigAtomic -> CSigAtomic # (*) :: CSigAtomic -> CSigAtomic -> CSigAtomic # negate :: CSigAtomic -> CSigAtomic # abs :: CSigAtomic -> CSigAtomic # signum :: CSigAtomic -> CSigAtomic # fromInteger :: Integer -> CSigAtomic # | |
Num CSize | |
Num CTime | |
Num CUChar | |
Num CUInt | |
Num CUIntMax | |
Num CUIntPtr | |
Num CULLong | |
Num CULong | |
Num CUSeconds | |
Defined in Foreign.C.Types | |
Num CUShort | |
Num CWchar | |
Num IntPtr | |
Num WordPtr | |
Num Int16 | Since: base-2.1 |
Num Int32 | Since: base-2.1 |
Num Int64 | Since: base-2.1 |
Num Int8 | Since: base-2.1 |
Num Word16 | Since: base-2.1 |
Num Word32 | Since: base-2.1 |
Num Word64 | Since: base-2.1 |
Num Word8 | Since: base-2.1 |
Num CBlkCnt | |
Num CBlkSize | |
Num CCc | |
Num CClockId | |
Num CDev | |
Num CFsBlkCnt | |
Defined in System.Posix.Types | |
Num CFsFilCnt | |
Defined in System.Posix.Types | |
Num CGid | |
Num CId | |
Num CIno | |
Num CKey | |
Num CMode | |
Num CNfds | |
Num CNlink | |
Num COff | |
Num CPid | |
Num CRLim | |
Num CSocklen | |
Num CSpeed | |
Num CSsize | |
Num CTcflag | |
Num CUid | |
Num Fd | |
Num I8 | |
Num Size | |
Num Integer | Since: base-2.1 |
Num Natural | Note that Since: base-4.8.0.0 |
Num Int | Since: base-2.1 |
Num Word | Since: base-2.1 |
RealFloat a => Num (Complex a) | Since: base-2.1 |
Num a => Num (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Identity | |
Num a => Num (Down a) | Since: base-4.11.0.0 |
Num a => Num (Max a) | Since: base-4.9.0.0 |
Num a => Num (Min a) | Since: base-4.9.0.0 |
Num a => Num (Product a) | Since: base-4.7.0.0 |
Defined in Data.Semigroup.Internal | |
Num a => Num (Sum a) | Since: base-4.7.0.0 |
Integral a => Num (Ratio a) | Since: base-2.0.1 |
HasResolution a => Num (Fixed a) | Multiplication is not associative or distributive:
Since: base-2.1 |
Num a => Num (Op a b) | |
Num a => Num (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
(Applicative f, Num a) => Num (Ap f a) | Note that even if the underlying Commutativity:
Additive inverse:
Distributivity:
Since: base-4.12.0.0 |
Num (f a) => Num (Alt f a) | Since: base-4.8.0.0 |
Num (f (g a)) => Num (Compose f g a) | Since: base-4.19.0.0 |
Defined in Data.Functor.Compose Methods (+) :: Compose f g a -> Compose f g a -> Compose f g a # (-) :: Compose f g a -> Compose f g a -> Compose f g a # (*) :: Compose f g a -> Compose f g a -> Compose f g a # negate :: Compose f g a -> Compose f g a # abs :: Compose f g a -> Compose f g a # signum :: Compose f g a -> Compose f g a # fromInteger :: Integer -> Compose f g a # |
class Num a => Fractional a where #
Fractional numbers, supporting real division.
The Haskell Report defines no laws for Fractional
. However, (
and
+
)(
are customarily expected to define a division ring and have the
following properties:*
)
recip
gives the multiplicative inversex * recip x
=recip x * x
=fromInteger 1
- Totality of
toRational
toRational
is total- Coherence with
toRational
- if the type also implements
Real
, thenfromRational
is a left inverse fortoRational
, i.e.fromRational (toRational i) = i
Note that it isn't customarily expected that a type instance of
Fractional
implement a field. However, all instances in base
do.
Minimal complete definition
fromRational, (recip | (/))
Methods
Fractional division.
Reciprocal fraction.
fromRational :: Rational -> a #
Conversion from a Rational
(that is
).
A floating literal stands for an application of Ratio
Integer
fromRational
to a value of type Rational
, so such literals have type
(
.Fractional
a) => a
Instances
Fractional CDouble | |
Fractional CFloat | |
RealFloat a => Fractional (Complex a) | Since: base-2.1 |
Fractional a => Fractional (Identity a) | Since: base-4.9.0.0 |
Fractional a => Fractional (Down a) | Since: base-4.14.0.0 |
Integral a => Fractional (Ratio a) | Since: base-2.0.1 |
HasResolution a => Fractional (Fixed a) | Since: base-2.1 |
Fractional a => Fractional (Op a b) | |
Fractional a => Fractional (Const a b) | Since: base-4.9.0.0 |
fromIntegral :: (Integral a, Num b) => a -> b #
General coercion from Integral
types.
WARNING: This function performs silent truncation if the result type is not at least as big as the argument's type.
realToFrac :: (Real a, Fractional b) => a -> b #
General coercion to Fractional
types.
WARNING: This function goes through the Rational
type, which does not have values for NaN
for example.
This means it does not round-trip.
For Double
it also behaves differently with or without -O0:
Prelude> realToFrac nan -- With -O0 -Infinity Prelude> realToFrac nan NaN
class (Num a, Ord a) => Real a where #
Real numbers.
The Haskell report defines no laws for Real
, however Real
instances
are customarily expected to adhere to the following law:
- Coherence with
fromRational
- if the type also implements
Fractional
, thenfromRational
is a left inverse fortoRational
, i.e.fromRational (toRational i) = i
The law does not hold for Float
, Double
, CFloat
,
CDouble
, etc., because these types contain non-finite values,
which cannot be roundtripped through Rational
.
Methods
toRational :: a -> Rational #
the rational equivalent of its real argument with full precision
Instances
class HasField (x :: k) r a | x r -> a where #
Constraint representing the fact that the field x
belongs to
the record type r
and has field type a
. This will be solved
automatically, but manual instances may be provided as well.
The Bounded
class is used to name the upper and lower limits of a
type. Ord
is not a superclass of Bounded
since types that are not
totally ordered may also have upper and lower bounds.
The Bounded
class may be derived for any enumeration type;
minBound
is the first constructor listed in the data
declaration
and maxBound
is the last.
Bounded
may also be derived for single-constructor datatypes whose
constituent types are in Bounded
.
Instances
Bounded All | Since: base-2.1 |
Bounded Any | Since: base-2.1 |
Bounded CBool | |
Bounded CChar | |
Bounded CInt | |
Bounded CIntMax | |
Bounded CIntPtr | |
Bounded CLLong | |
Bounded CLong | |
Bounded CPtrdiff | |
Bounded CSChar | |
Bounded CShort | |
Bounded CSigAtomic | |
Defined in Foreign.C.Types | |
Bounded CSize | |
Bounded CUChar | |
Bounded CUInt | |
Bounded CUIntMax | |
Bounded CUIntPtr | |
Bounded CULLong | |
Bounded CULong | |
Bounded CUShort | |
Bounded CWchar | |
Bounded IntPtr | |
Bounded WordPtr | |
Bounded ByteOrder | Since: base-4.11.0.0 |
Bounded Associativity | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Bounded DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Bounded SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Bounded SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Bounded Int16 | Since: base-2.1 |
Bounded Int32 | Since: base-2.1 |
Bounded Int64 | Since: base-2.1 |
Bounded Int8 | Since: base-2.1 |
Bounded GeneralCategory | Since: base-2.1 |
Defined in GHC.Unicode | |
Bounded Word16 | Since: base-2.1 |
Bounded Word32 | Since: base-2.1 |
Bounded Word64 | Since: base-2.1 |
Bounded Word8 | Since: base-2.1 |
Bounded CBlkCnt | |
Bounded CBlkSize | |
Bounded CClockId | |
Bounded CDev | |
Bounded CFsBlkCnt | |
Bounded CFsFilCnt | |
Bounded CGid | |
Bounded CId | |
Bounded CIno | |
Bounded CKey | |
Bounded CMode | |
Bounded CNfds | |
Bounded CNlink | |
Bounded COff | |
Bounded CPid | |
Bounded CRLim | |
Bounded CSocklen | |
Bounded CSsize | |
Bounded CTcflag | |
Bounded CUid | |
Bounded Fd | |
Bounded Extension | |
Bounded Ordering | Since: base-2.1 |
Bounded Leniency Source # | |
Bounded I8 | |
Bounded FPFormat | |
Bounded () | Since: base-2.1 |
Bounded Bool | Since: base-2.1 |
Bounded Char | Since: base-2.1 |
Bounded Int | Since: base-2.1 |
Bounded Levity | Since: base-4.16.0.0 |
Bounded VecCount | Since: base-4.10.0.0 |
Bounded VecElem | Since: base-4.10.0.0 |
Bounded Word | Since: base-2.1 |
Bounded a => Bounded (And a) | Since: base-4.16 |
Bounded a => Bounded (Iff a) | Since: base-4.16 |
Bounded a => Bounded (Ior a) | Since: base-4.16 |
Bounded a => Bounded (Xor a) | Since: base-4.16 |
Bounded a => Bounded (Identity a) | Since: base-4.9.0.0 |
Bounded a => Bounded (Down a) | Swaps Since: base-4.14.0.0 |
Bounded a => Bounded (First a) | Since: base-4.9.0.0 |
Bounded a => Bounded (Last a) | Since: base-4.9.0.0 |
Bounded a => Bounded (Max a) | Since: base-4.9.0.0 |
Bounded a => Bounded (Min a) | Since: base-4.9.0.0 |
Bounded m => Bounded (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup | |
Bounded a => Bounded (Dual a) | Since: base-2.1 |
Bounded a => Bounded (Product a) | Since: base-2.1 |
Bounded a => Bounded (Sum a) | Since: base-2.1 |
Bounded a => Bounded (Solo a) | |
Bounded (Proxy t) | Since: base-4.7.0.0 |
(Bounded a, Bounded b) => Bounded (a, b) | Since: base-2.1 |
Bounded a => Bounded (Const a b) | Since: base-4.9.0.0 |
(Applicative f, Bounded a) => Bounded (Ap f a) | Since: base-4.12.0.0 |
Coercible a b => Bounded (Coercion a b) | Since: base-4.7.0.0 |
a ~ b => Bounded (a :~: b) | Since: base-4.7.0.0 |
(Bounded a, Bounded b, Bounded c) => Bounded (a, b, c) | Since: base-2.1 |
a ~~ b => Bounded (a :~~: b) | Since: base-4.10.0.0 |
(Bounded a, Bounded b, Bounded c, Bounded d) => Bounded (a, b, c, d) | Since: base-2.1 |
Bounded (f (g a)) => Bounded (Compose f g a) | Since: base-4.19.0.0 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e) => Bounded (a, b, c, d, e) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f) => Bounded (a, b, c, d, e, f) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g) => Bounded (a, b, c, d, e, f, g) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h) => Bounded (a, b, c, d, e, f, g, h) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i) => Bounded (a, b, c, d, e, f, g, h, i) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j) => Bounded (a, b, c, d, e, f, g, h, i, j) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k) => Bounded (a, b, c, d, e, f, g, h, i, j, k) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n, Bounded o) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | Since: base-2.1 |
class Fractional a => Floating a where #
Trigonometric and hyperbolic functions and related functions.
The Haskell Report defines no laws for Floating
. However, (
, +
)(
and *
)exp
are customarily expected to define an exponential field and have
the following properties:
exp (a + b)
=exp a * exp b
exp (fromInteger 0)
=fromInteger 1
Minimal complete definition
pi, exp, log, sin, cos, asin, acos, atan, sinh, cosh, asinh, acosh, atanh
Methods
(**) :: a -> a -> a infixr 8 #
computes log1p
x
, but provides more precise
results for small (absolute) values of log
(1 + x)x
if possible.
Since: base-4.9.0.0
computes expm1
x
, but provides more precise
results for small (absolute) values of exp
x - 1x
if possible.
Since: base-4.9.0.0
Instances
class (RealFrac a, Floating a) => RealFloat a where #
Efficient, machine-independent access to the components of a floating-point number.
Minimal complete definition
floatRadix, floatDigits, floatRange, decodeFloat, encodeFloat, isNaN, isInfinite, isDenormalized, isNegativeZero, isIEEE
Methods
floatRadix :: a -> Integer #
a constant function, returning the radix of the representation
(often 2
)
floatDigits :: a -> Int #
a constant function, returning the number of digits of
floatRadix
in the significand
floatRange :: a -> (Int, Int) #
a constant function, returning the lowest and highest values the exponent may assume
decodeFloat :: a -> (Integer, Int) #
The function decodeFloat
applied to a real floating-point
number returns the significand expressed as an Integer
and an
appropriately scaled exponent (an Int
). If
yields decodeFloat
x(m,n)
, then x
is equal in value to m*b^^n
, where b
is the floating-point radix, and furthermore, either m
and n
are both zero or else b^(d-1) <=
, where abs
m < b^dd
is
the value of
.
In particular, floatDigits
x
. If the type
contains a negative zero, also decodeFloat
0 = (0,0)
.
The result of decodeFloat
(-0.0) = (0,0)
is unspecified if either of
decodeFloat
x
or isNaN
x
is isInfinite
xTrue
.
encodeFloat :: Integer -> Int -> a #
encodeFloat
performs the inverse of decodeFloat
in the
sense that for finite x
with the exception of -0.0
,
.
uncurry
encodeFloat
(decodeFloat
x) = x
is one of the two closest representable
floating-point numbers to encodeFloat
m nm*b^^n
(or ±Infinity
if overflow
occurs); usually the closer, but if m
contains too many bits,
the result may be rounded in the wrong direction.
exponent
corresponds to the second component of decodeFloat
.
and for finite nonzero exponent
0 = 0x
,
.
If exponent
x = snd (decodeFloat
x) + floatDigits
xx
is a finite floating-point number, it is equal in value to
, where significand
x * b ^^ exponent
xb
is the
floating-point radix.
The behaviour is unspecified on infinite or NaN
values.
significand :: a -> a #
The first component of decodeFloat
, scaled to lie in the open
interval (-1
,1
), either 0.0
or of absolute value >= 1/b
,
where b
is the floating-point radix.
The behaviour is unspecified on infinite or NaN
values.
scaleFloat :: Int -> a -> a #
multiplies a floating-point number by an integer power of the radix
True
if the argument is an IEEE "not-a-number" (NaN) value
isInfinite :: a -> Bool #
True
if the argument is an IEEE infinity or negative infinity
isDenormalized :: a -> Bool #
True
if the argument is too small to be represented in
normalized format
isNegativeZero :: a -> Bool #
True
if the argument is an IEEE negative zero
True
if the argument is an IEEE floating point number
a version of arctangent taking two real floating-point arguments.
For real floating x
and y
,
computes the angle
(from the positive x-axis) of the vector from the origin to the
point atan2
y x(x,y)
.
returns a value in the range [atan2
y x-pi
,
pi
]. It follows the Common Lisp semantics for the origin when
signed zeroes are supported.
, with atan2
y 1y
in a type
that is RealFloat
, should return the same value as
.
A default definition of atan
yatan2
is provided, but implementors
can provide a more accurate implementation.
Instances
class (Real a, Fractional a) => RealFrac a where #
Extracting components of fractions.
Minimal complete definition
Methods
properFraction :: Integral b => a -> (b, a) #
The function properFraction
takes a real fractional number x
and returns a pair (n,f)
such that x = n+f
, and:
n
is an integral number with the same sign asx
; andf
is a fraction with the same type and sign asx
, and with absolute value less than1
.
The default definitions of the ceiling
, floor
, truncate
and round
functions are in terms of properFraction
.
truncate :: Integral b => a -> b #
returns the integer nearest truncate
xx
between zero and x
round :: Integral b => a -> b #
returns the nearest integer to round
xx
;
the even integer if x
is equidistant between two integers
ceiling :: Integral b => a -> b #
returns the least integer not less than ceiling
xx
floor :: Integral b => a -> b #
returns the greatest integer not greater than floor
xx
Instances
This class gives the integer associated with a type-level natural. There are instances of the class for every concrete literal: 0, 1, 2, etc.
Since: base-4.7.0.0
Minimal complete definition
class KnownSymbol (n :: Symbol) #
This class gives the string associated with a type-level symbol. There are instances of the class for every concrete literal: "hello", etc.
Since: base-4.7.0.0
Minimal complete definition
Rational numbers, with numerator and denominator of some Integral
type.
Note that Ratio
's instances inherit the deficiencies from the type
parameter's. For example, Ratio Natural
's Num
instance has similar
problems to Natural
's.
Instances
NFData1 Ratio | Available on Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Integral a => Lift (Ratio a :: Type) | |
(Data a, Integral a) => Data (Ratio a) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ratio a -> c (Ratio a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ratio a) # toConstr :: Ratio a -> Constr # dataTypeOf :: Ratio a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Ratio a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ratio a)) # gmapT :: (forall b. Data b => b -> b) -> Ratio a -> Ratio a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ratio a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ratio a -> r # gmapQ :: (forall d. Data d => d -> u) -> Ratio a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ratio a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) # | |
(Storable a, Integral a) => Storable (Ratio a) | Since: base-4.8.0.0 |
Integral a => Enum (Ratio a) | Since: base-2.0.1 |
Integral a => Num (Ratio a) | Since: base-2.0.1 |
(Integral a, Read a) => Read (Ratio a) | Since: base-2.1 |
Integral a => Fractional (Ratio a) | Since: base-2.0.1 |
Integral a => Real (Ratio a) | Since: base-2.0.1 |
Defined in GHC.Real Methods toRational :: Ratio a -> Rational # | |
Integral a => RealFrac (Ratio a) | Since: base-2.0.1 |
Show a => Show (Ratio a) | Since: base-2.0.1 |
NFData a => NFData (Ratio a) | |
Defined in Control.DeepSeq | |
Eq a => Eq (Ratio a) | Since: base-2.1 |
Integral a => Ord (Ratio a) | Since: base-2.0.1 |
Hashable a => Hashable (Ratio a) | |
Defined in Data.Hashable.Class |
A value of type
is a pointer to a function callable
from foreign code. The type FunPtr
aa
will normally be a foreign type,
a function type with zero or more arguments where
- the argument types are marshallable foreign types,
i.e.
Char
,Int
,Double
,Float
,Bool
,Int8
,Int16
,Int32
,Int64
,Word8
,Word16
,Word32
,Word64
,
,Ptr
a
,FunPtr
a
or a renaming of any of these usingStablePtr
anewtype
. - the return type is either a marshallable foreign type or has the form
whereIO
tt
is a marshallable foreign type or()
.
A value of type
may be a pointer to a foreign function,
either returned by another foreign function or imported with a
a static address import likeFunPtr
a
foreign import ccall "stdlib.h &free" p_free :: FunPtr (Ptr a -> IO ())
or a pointer to a Haskell function created using a wrapper stub
declared to produce a FunPtr
of the correct type. For example:
type Compare = Int -> Int -> Bool foreign import ccall "wrapper" mkCompare :: Compare -> IO (FunPtr Compare)
Calls to wrapper stubs like mkCompare
allocate storage, which
should be released with freeHaskellFunPtr
when no
longer required.
To convert FunPtr
values to corresponding Haskell functions, one
can define a dynamic stub for the specific foreign type, e.g.
type IntFunction = CInt -> IO () foreign import ccall "dynamic" mkFun :: FunPtr IntFunction -> IntFunction
Instances
A reference to a value of type a
.
Instances
IsStatic StaticPtr | Since: base-4.9.0.0 |
Defined in GHC.StaticPtr Methods fromStaticPtr :: Typeable a => StaticPtr a -> StaticPtr a # |
CallStack
s are a lightweight method of obtaining a
partial call-stack at any point in the program.
A function can request its call-site with the HasCallStack
constraint.
For example, we can define
putStrLnWithCallStack :: HasCallStack => String -> IO ()
as a variant of putStrLn
that will get its call-site and print it,
along with the string given as argument. We can access the
call-stack inside putStrLnWithCallStack
with callStack
.
>>>
:{
putStrLnWithCallStack :: HasCallStack => String -> IO () putStrLnWithCallStack msg = do putStrLn msg putStrLn (prettyCallStack callStack) :}
Thus, if we call putStrLnWithCallStack
we will get a formatted call-stack
alongside our string.
>>>
putStrLnWithCallStack "hello"
hello CallStack (from HasCallStack): putStrLnWithCallStack, called at <interactive>:... in interactive:Ghci...
GHC solves HasCallStack
constraints in three steps:
- If there is a
CallStack
in scope -- i.e. the enclosing function has aHasCallStack
constraint -- GHC will append the new call-site to the existingCallStack
. - If there is no
CallStack
in scope -- e.g. in the GHCi session above -- and the enclosing definition does not have an explicit type signature, GHC will infer aHasCallStack
constraint for the enclosing definition (subject to the monomorphism restriction). - If there is no
CallStack
in scope and the enclosing definition has an explicit type signature, GHC will solve theHasCallStack
constraint for the singletonCallStack
containing just the current call-site.
CallStack
s do not interact with the RTS and do not require compilation
with -prof
. On the other hand, as they are built up explicitly via the
HasCallStack
constraints, they will generally not contain as much
information as the simulated call-stacks maintained by the RTS.
A CallStack
is a [(String, SrcLoc)]
. The String
is the name of
function that was called, the SrcLoc
is the call-site. The list is
ordered with the most recently called function at the head.
NOTE: The intrepid user may notice that HasCallStack
is just an
alias for an implicit parameter ?callStack :: CallStack
. This is an
implementation detail and should not be considered part of the
CallStack
API, we may decide to change the implementation in the
future.
Since: base-4.8.1.0
type family CmpNat (a :: Natural) (b :: Natural) :: Ordering where ... #
Comparison of type-level naturals, as a function.
Since: base-4.7.0.0
type HasCallStack = ?callStack :: CallStack #
Request a CallStack.
NOTE: The implicit parameter ?callStack :: CallStack
is an
implementation detail and should not be considered part of the
CallStack
API, we may decide to change the implementation in the
future.
Since: base-4.9.0.0
getCallStack :: CallStack -> [([Char], SrcLoc)] #
Extract a list of call-sites from the CallStack
.
The list is ordered by most recent call.
Since: base-4.8.1.0
until :: (a -> Bool) -> (a -> a) -> a -> a #
yields the result of applying until
p ff
until p
holds.
currentCallStack :: IO [String] #
Returns a [String]
representing the current call stack. This
can be useful for debugging.
The implementation uses the call-stack simulation maintained by the
profiler, so it only works if the program was compiled with -prof
and contains suitable SCC annotations (e.g. by using -fprof-auto
).
Otherwise, the list returned is likely to be empty or
uninformative.
Since: base-4.5.0.0
boundedEnumFrom :: (Enum a, Bounded a) => a -> [a] #
boundedEnumFromThen :: (Enum a, Bounded a) => a -> a -> [a] #
divZeroError :: a #
overflowError :: a #
underflowError :: a #
ratioPrec1 :: Int #
notANumber :: Rational #
reduce :: Integral a => a -> a -> Ratio a #
reduce
is a subsidiary function used only in this module.
It normalises a ratio by dividing both numerator and denominator by
their greatest common divisor.
Extract the numerator of the ratio in reduced form: the numerator and denominator have no common factor and the denominator is positive.
denominator :: Ratio a -> a #
Extract the denominator of the ratio in reduced form: the numerator and denominator have no common factor and the denominator is positive.
numericEnumFrom :: Fractional a => a -> [a] #
numericEnumFromThen :: Fractional a => a -> a -> [a] #
numericEnumFromTo :: (Ord a, Fractional a) => a -> a -> [a] #
numericEnumFromThenTo :: (Ord a, Fractional a) => a -> a -> a -> [a] #
(^^) :: (Fractional a, Integral b) => a -> b -> a infixr 8 #
raise a number to an integral power
gcd :: Integral a => a -> a -> a #
is the non-negative factor of both gcd
x yx
and y
of which
every common factor of x
and y
is also a factor; for example
, gcd
4 2 = 2
, gcd
(-4) 6 = 2
= gcd
0 44
.
= gcd
0 00
.
(That is, the common divisor that is "greatest" in the divisibility
preordering.)
Note: Since for signed fixed-width integer types,
,
the result may be negative if one of the arguments is abs
minBound
< 0
(and
necessarily is if the other is minBound
0
or
) for such types.minBound
lcm :: Integral a => a -> a -> a #
is the smallest positive integer that both lcm
x yx
and y
divide.
integralEnumFrom :: (Integral a, Bounded a) => a -> [a] #
integralEnumFromThen :: (Integral a, Bounded a) => a -> a -> [a] #
integralEnumFromTo :: Integral a => a -> a -> [a] #
integralEnumFromThenTo :: Integral a => a -> a -> a -> [a] #
This type represents unknown type-level natural numbers.
Since: base-4.10.0.0
A type synonym for Natural
.
Previously, this was an opaque data type, but it was changed to a type synonym.
Since: base-4.16.0.0
someNatVal :: Integer -> Maybe SomeNat #
Convert an integer into an unknown type-level natural.
Since: base-4.7.0.0
data SomeSymbol #
This type represents unknown type-level symbols.
Constructors
KnownSymbol n => SomeSymbol (Proxy n) | Since: base-4.7.0.0 |
Instances
Read SomeSymbol | Since: base-4.7.0.0 |
Defined in GHC.TypeLits Methods readsPrec :: Int -> ReadS SomeSymbol # readList :: ReadS [SomeSymbol] # readPrec :: ReadPrec SomeSymbol # readListPrec :: ReadPrec [SomeSymbol] # | |
Show SomeSymbol | Since: base-4.7.0.0 |
Defined in GHC.TypeLits Methods showsPrec :: Int -> SomeSymbol -> ShowS # show :: SomeSymbol -> String # showList :: [SomeSymbol] -> ShowS # | |
Eq SomeSymbol | Since: base-4.7.0.0 |
Defined in GHC.TypeLits | |
Ord SomeSymbol | Since: base-4.7.0.0 |
Defined in GHC.TypeLits Methods compare :: SomeSymbol -> SomeSymbol -> Ordering # (<) :: SomeSymbol -> SomeSymbol -> Bool # (<=) :: SomeSymbol -> SomeSymbol -> Bool # (>) :: SomeSymbol -> SomeSymbol -> Bool # (>=) :: SomeSymbol -> SomeSymbol -> Bool # max :: SomeSymbol -> SomeSymbol -> SomeSymbol # min :: SomeSymbol -> SomeSymbol -> SomeSymbol # |
symbolVal :: forall (n :: Symbol) proxy. KnownSymbol n => proxy n -> String #
Since: base-4.7.0.0
someSymbolVal :: String -> SomeSymbol #
Convert a string into an unknown type-level symbol.
Since: base-4.7.0.0
prettySrcLoc :: SrcLoc -> String #
Pretty print a SrcLoc
.
Since: base-4.9.0.0
prettyCallStack :: CallStack -> String #
Pretty print a CallStack
.
Since: base-4.9.0.0
withFrozenCallStack :: HasCallStack => (HasCallStack => a) -> a #
Perform some computation without adding new entries to the CallStack
.
Since: base-4.9.0.0
Location information about an address from a backtrace.
Constructors
Location | |
Fields
|
getStackTrace :: IO (Maybe [Location]) #
Get a trace of the current execution stack state.
Returns Nothing
if stack trace support isn't available on host machine.
showStackTrace :: IO (Maybe String) #
Get a string representation of the current execution stack state.
pass :: Applicative f => f () Source #
Do nothing returning unit inside applicative.
Function functions
($) :: (a -> b) -> a -> b infixr 0 #
is the function application operator.($)
Applying
to a function ($)
f
and an argument x
gives the same result as applying f
to x
directly. The definition is akin to this:
($) :: (a -> b) -> a -> b ($) f x = f x
This is
specialized from id
a -> a
to (a -> b) -> (a -> b)
which by the associativity of (->)
is the same as (a -> b) -> a -> b
.
On the face of it, this may appear pointless! But it's actually one of the most useful and important operators in Haskell.
The order of operations is very different between ($)
and normal function application. Normal function application has precedence 10 - higher than any operator - and associates to the left. So these two definitions are equivalent:
expr = min 5 1 + 5 expr = ((min 5) 1) + 5
($)
has precedence 0 (the lowest) and associates to the right, so these are equivalent:
expr = min 5 $ 1 + 5 expr = (min 5) (1 + 5)
Examples
A common use cases of ($)
is to avoid parentheses in complex expressions.
For example, instead of using nested parentheses in the following Haskell function:
-- | Sum numbers in a string: strSum "100 5 -7" == 98 strSum ::String
->Int
strSum s =sum
(mapMaybe
readMaybe
(words
s))
we can deploy the function application operator:
-- | Sum numbers in a string: strSum "100 5 -7" == 98 strSum ::String
->Int
strSum s =sum
$
mapMaybe
readMaybe
$
words
s
($)
is also used as a section (a partially applied operator), in order to indicate that we wish to apply some yet-unspecified function to a given value. For example, to apply the argument 5
to a list of functions:
applyFive :: [Int] applyFive = map ($ 5) [(+1), (2^)] >>> [6, 32]
Technical Remark (Representation Polymorphism)
($)
is fully representation-polymorphic. This allows it to also be used with arguments of unlifted and even unboxed kinds, such as unboxed integers:
fastMod :: Int -> Int -> Int fastMod (I# x) (I# m) = I# $ remInt# x m
const x y
always evaluates to x
, ignoring its second argument.
const x = \_ -> x
This function might seem useless at first glance, but it can be very useful in a higher order context.
Examples
>>>
const 42 "hello"
42
>>>
map (const 42) [0..3]
[42,42,42,42]
(.) :: (b -> c) -> (a -> b) -> a -> c infixr 9 #
Right to left function composition.
(f . g) x = f (g x)
f . id = f = id . f
Examples
>>>
map ((*2) . length) [[], [0, 1, 2], [0]]
[0,6,2]
>>>
foldr (.) id [(+1), (*3), (^3)] 2
25
>>>
let (...) = (.).(.) in ((*2)...(+)) 5 10
30
flip :: (a -> b -> c) -> b -> a -> c #
takes its (first) two arguments in the reverse order of flip
ff
.
flip f x y = f y x
flip . flip = id
Examples
>>>
flip (++) "hello" "world"
"worldhello"
>>>
let (.>) = flip (.) in (+1) .> show $ 5
"6"
is the least fixed point of the function fix
ff
,
i.e. the least defined x
such that f x = x
.
When f
is strict, this means that because, by the definition of strictness,
f ⊥ = ⊥
and such the least defined fixed point of any strict function is ⊥
.
Examples
We can write the factorial function using direct recursion as
>>>
let fac n = if n <= 1 then 1 else n * fac (n-1) in fac 5
120
This uses the fact that Haskell’s let
introduces recursive bindings. We can
rewrite this definition using fix
,
Instead of making a recursive call, we introduce a dummy parameter rec
;
when used within fix
, this parameter then refers to fix
’s argument, hence
the recursion is reintroduced.
>>>
fix (\rec n -> if n <= 1 then 1 else n * rec (n-1)) 5
120
Using fix
, we can implement versions of repeat
as
and fix
.
(:)
cycle
as fix
.
(++)
>>>
take 10 $ fix (0:)
[0,0,0,0,0,0,0,0,0,0]
>>>
map (fix (\rec n -> if n < 2 then n else rec (n - 1) + rec (n - 2))) [1..10]
[1,1,2,3,5,8,13,21,34,55]
Implementation Details
on :: (b -> b -> c) -> (a -> b) -> a -> a -> c infixl 0 #
runs the binary function on
b u x yb
on the results of applying
unary function u
to two arguments x
and y
. From the opposite
perspective, it transforms two inputs and combines the outputs.
(op `on
` f) x y = f x `op
` f y
Examples
>>>
sortBy (compare `on` length) [[0, 1, 2], [0, 1], [], [0]]
[[],[0],[0,1],[0,1,2]]
>>>
((+) `on` length) [1, 2, 3] [-1]
4
>>>
((,) `on` (*2)) 2 3
(4,6)
Algebraic properties
(&) :: a -> (a -> b) -> b infixl 1 #
&
is a reverse application operator. This provides notational
convenience. Its precedence is one higher than that of the forward
application operator $
, which allows &
to be nested in $
.
This is a version of
, where flip
id
id
is specialized from a -> a
to (a -> b) -> (a -> b)
which by the associativity of (->)
is (a -> b) -> a -> b
.
flipping this yields a -> (a -> b) -> b
which is the type signature of &
Examples
>>>
5 & (+1) & show
"6"
>>>
sqrt $ [1 / n^2 | n <- [1..1000]] & sum & (*6)
3.1406380562059946
Since: base-4.8.0.0
List functions
module Protolude.List
unzip :: [(a, b)] -> ([a], [b]) #
unzip
transforms a list of pairs into a list of first components
and a list of second components.
Examples
>>>
unzip []
([],[])
>>>
unzip [(1, 'a'), (2, 'b')]
([1,2],"ab")
repeat
x
is an infinite list, with x
the value of every element.
Examples
>>>
take 10 $ repeat 17
[17,17,17,17,17,17,17,17,17, 17]
>>>
repeat undefined
[*** Exception: Prelude.undefined
cycle :: HasCallStack => [a] -> [a] #
cycle
ties a finite list into a circular one, or equivalently,
the infinite repetition of the original list. It is the identity
on infinite lists.
Examples
>>>
cycle []
*** Exception: Prelude.cycle: empty list
>>>
take 10 (cycle [42])
[42,42,42,42,42,42,42,42,42,42]
>>>
take 10 (cycle [2, 5, 7])
[2,5,7,2,5,7,2,5,7,2]
>>>
take 1 (cycle (42 : undefined))
[42]
genericLength :: Num i => [a] -> i #
\(\mathcal{O}(n)\). The genericLength
function is an overloaded version
of length
. In particular, instead of returning an Int
, it returns any
type which is an instance of Num
. It is, however, less efficient than
length
.
Examples
>>>
genericLength [1, 2, 3] :: Int
3>>>
genericLength [1, 2, 3] :: Float
3.0
Users should take care to pick a return type that is wide enough to contain
the full length of the list. If the width is insufficient, the overflow
behaviour will depend on the (+)
implementation in the selected Num
instance. The following example overflows because the actual list length
of 200 lies outside of the Int8
range of -128..127
.
>>>
genericLength [1..200] :: Int8
-56
genericReplicate :: Integral i => i -> a -> [a] #
The genericReplicate
function is an overloaded version of replicate
,
which accepts any Integral
value as the number of repetitions to make.
genericTake :: Integral i => i -> [a] -> [a] #
The genericTake
function is an overloaded version of take
, which
accepts any Integral
value as the number of elements to take.
genericDrop :: Integral i => i -> [a] -> [a] #
The genericDrop
function is an overloaded version of drop
, which
accepts any Integral
value as the number of elements to drop.
genericSplitAt :: Integral i => i -> [a] -> ([a], [a]) #
The genericSplitAt
function is an overloaded version of splitAt
, which
accepts any Integral
value as the position at which to split.
group :: Eq a => [a] -> [[a]] #
The group
function takes a list and returns a list of lists such
that the concatenation of the result is equal to the argument. Moreover,
each sublist in the result is non-empty and all elements are equal
to the first one.
group
is a special case of groupBy
, which allows the programmer to supply
their own equality test.
It's often preferable to use Data.List.NonEmpty.
group
,
which provides type-level guarantees of non-emptiness of inner lists.
Examples
>>>
group "Mississippi"
["M","i","ss","i","ss","i","pp","i"]
>>>
group [1, 1, 1, 2, 2, 3, 4, 5, 5]
[[1,1,1],[2,2],[3],[4],[5,5]]
filter :: (a -> Bool) -> [a] -> [a] #
\(\mathcal{O}(n)\). filter
, applied to a predicate and a list, returns
the list of those elements that satisfy the predicate; i.e.,
filter p xs = [ x | x <- xs, p x]
Examples
>>>
filter odd [1, 2, 3]
[1,3]
>>>
filter (\l -> length l > 3) ["Hello", ", ", "World", "!"]
["Hello","World"]
>>>
filter (/= 3) [1, 2, 3, 4, 3, 2, 1]
[1,2,4,2,1]
unfoldr :: (b -> Maybe (a, b)) -> b -> [a] #
The unfoldr
function is a `dual' to foldr
: while foldr
reduces a list to a summary value, unfoldr
builds a list from
a seed value. The function takes the element and returns Nothing
if it is done producing the list or returns Just
(a,b)
, in which
case, a
is a prepended to the list and b
is used as the next
element in a recursive call. For example,
iterate f == unfoldr (\x -> Just (x, f x))
In some cases, unfoldr
can undo a foldr
operation:
unfoldr f' (foldr f z xs) == xs
if the following holds:
f' (f x y) = Just (x,y) f' z = Nothing
Laziness
>>>
take 1 (unfoldr (\x -> Just (x, undefined)) 'a')
"a"
Examples
>>>
unfoldr (\b -> if b == 0 then Nothing else Just (b, b-1)) 10
[10,9,8,7,6,5,4,3,2,1]
>>>
take 10 $ unfoldr (\(x, y) -> Just (x, (y, x + y))) (0, 1)
[0,1,1,2,3,5,8,13,21,54]
The transpose
function transposes the rows and columns of its argument.
Laziness
transpose
is lazy in its elements
>>>
take 1 (transpose ['a' : undefined, 'b' : undefined])
["ab"]
Examples
>>>
transpose [[1,2,3],[4,5,6]]
[[1,4],[2,5],[3,6]]
If some of the rows are shorter than the following rows, their elements are skipped:
>>>
transpose [[10,11],[20],[],[30,31,32]]
[[10,20,30],[11,31],[32]]
For this reason the outer list must be finite; otherwise transpose
hangs:
>>>
transpose (repeat [])
* Hangs forever *
sortBy :: (a -> a -> Ordering) -> [a] -> [a] #
The sortBy
function is the non-overloaded version of sort
.
The argument must be finite.
The supplied comparison relation is supposed to be reflexive and antisymmetric,
otherwise, e. g., for _ _ -> GT
, the ordered list simply does not exist.
The relation is also expected to be transitive: if it is not then sortBy
might fail to find an ordered permutation, even if it exists.
Examples
>>>
sortBy (\(a,_) (b,_) -> compare a b) [(2, "world"), (4, "!"), (1, "Hello")]
[(1,"Hello"),(2,"world"),(4,"!")]
zip :: [a] -> [b] -> [(a, b)] #
\(\mathcal{O}(\min(m,n))\). zip
takes two lists and returns a list of
corresponding pairs.
zip
is right-lazy:
>>>
zip [] undefined
[]>>>
zip undefined []
*** Exception: Prelude.undefined ...
zip
is capable of list fusion, but it is restricted to its
first list argument and its resulting list.
Examples
>>>
zip [1, 2, 3] ['a', 'b', 'c']
[(1,'a'),(2,'b'),(3,'c')]
If one input list is shorter than the other, excess elements of the longer list are discarded, even if one of the lists is infinite:
>>>
zip [1] ['a', 'b']
[(1,'a')]
>>>
zip [1, 2] ['a']
[(1,'a')]
>>>
zip [] [1..]
[]
>>>
zip [1..] []
[]
Non-empty (and non-strict) list type.
Since: base-4.9.0.0
Constructors
a :| [a] infixr 5 |
Instances
MonadFix NonEmpty | Since: base-4.9.0.0 | ||||
Defined in Control.Monad.Fix | |||||
MonadZip NonEmpty | Since: base-4.9.0.0 | ||||
Foldable NonEmpty | Since: base-4.9.0.0 | ||||
Defined in Data.Foldable Methods fold :: Monoid m => NonEmpty m -> m # foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m # foldMap' :: Monoid m => (a -> m) -> NonEmpty a -> m # foldr :: (a -> b -> b) -> b -> NonEmpty a -> b # foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b # foldl :: (b -> a -> b) -> b -> NonEmpty a -> b # foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b # foldr1 :: (a -> a -> a) -> NonEmpty a -> a # foldl1 :: (a -> a -> a) -> NonEmpty a -> a # elem :: Eq a => a -> NonEmpty a -> Bool # maximum :: Ord a => NonEmpty a -> a # minimum :: Ord a => NonEmpty a -> a # | |||||
Foldable1 NonEmpty | Since: base-4.18.0.0 | ||||
Defined in Data.Foldable1 Methods fold1 :: Semigroup m => NonEmpty m -> m # foldMap1 :: Semigroup m => (a -> m) -> NonEmpty a -> m # foldMap1' :: Semigroup m => (a -> m) -> NonEmpty a -> m # toNonEmpty :: NonEmpty a -> NonEmpty a # maximum :: Ord a => NonEmpty a -> a # minimum :: Ord a => NonEmpty a -> a # foldrMap1 :: (a -> b) -> (a -> b -> b) -> NonEmpty a -> b # foldlMap1' :: (a -> b) -> (b -> a -> b) -> NonEmpty a -> b # foldlMap1 :: (a -> b) -> (b -> a -> b) -> NonEmpty a -> b # foldrMap1' :: (a -> b) -> (a -> b -> b) -> NonEmpty a -> b # | |||||
Eq1 NonEmpty | Since: base-4.10.0.0 | ||||
Ord1 NonEmpty | Since: base-4.10.0.0 | ||||
Defined in Data.Functor.Classes | |||||
Read1 NonEmpty | Since: base-4.10.0.0 | ||||
Defined in Data.Functor.Classes | |||||
Show1 NonEmpty | Since: base-4.10.0.0 | ||||
Traversable NonEmpty | Since: base-4.9.0.0 | ||||
Applicative NonEmpty | Since: base-4.9.0.0 | ||||
Functor NonEmpty | Since: base-4.9.0.0 | ||||
Monad NonEmpty | Since: base-4.9.0.0 | ||||
NFData1 NonEmpty | Since: deepseq-1.4.3.0 | ||||
Defined in Control.DeepSeq | |||||
Hashable1 NonEmpty | Since: hashable-1.3.1.0 | ||||
Defined in Data.Hashable.Class | |||||
Generic1 NonEmpty | |||||
Defined in GHC.Generics Associated Types
| |||||
Lift a => Lift (NonEmpty a :: Type) | Since: template-haskell-2.15.0.0 | ||||
Data a => Data (NonEmpty a) | Since: base-4.9.0.0 | ||||
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NonEmpty a -> c (NonEmpty a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (NonEmpty a) # toConstr :: NonEmpty a -> Constr # dataTypeOf :: NonEmpty a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (NonEmpty a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (NonEmpty a)) # gmapT :: (forall b. Data b => b -> b) -> NonEmpty a -> NonEmpty a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NonEmpty a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NonEmpty a -> r # gmapQ :: (forall d. Data d => d -> u) -> NonEmpty a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> NonEmpty a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) # | |||||
Semigroup (NonEmpty a) | Since: base-4.9.0.0 | ||||
Generic (NonEmpty a) | |||||
Defined in GHC.Generics Associated Types
| |||||
IsList (NonEmpty a) | Since: base-4.9.0.0 | ||||
Read a => Read (NonEmpty a) | Since: base-4.11.0.0 | ||||
Show a => Show (NonEmpty a) | Since: base-4.11.0.0 | ||||
NFData a => NFData (NonEmpty a) | Since: deepseq-1.4.2.0 | ||||
Defined in Control.DeepSeq | |||||
Eq a => Eq (NonEmpty a) | Since: base-4.9.0.0 | ||||
Ord a => Ord (NonEmpty a) | Since: base-4.9.0.0 | ||||
Hashable a => Hashable (NonEmpty a) | |||||
Defined in Data.Hashable.Class | |||||
type Rep1 NonEmpty | Since: base-4.6.0.0 | ||||
Defined in GHC.Generics type Rep1 NonEmpty = D1 ('MetaData "NonEmpty" "GHC.Base" "base" 'False) (C1 ('MetaCons ":|" ('InfixI 'RightAssociative 5) 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1 :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 []))) | |||||
type Rep (NonEmpty a) | Since: base-4.6.0.0 | ||||
Defined in GHC.Generics type Rep (NonEmpty a) = D1 ('MetaData "NonEmpty" "GHC.Base" "base" 'False) (C1 ('MetaCons ":|" ('InfixI 'RightAssociative 5) 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [a]))) | |||||
type Item (NonEmpty a) | |||||
Defined in GHC.IsList |
scanl :: (b -> a -> b) -> b -> [a] -> [b] #
\(\mathcal{O}(n)\). scanl
is similar to foldl
, but returns a list of
successive reduced values from the left:
scanl f z [x1, x2, ...] == [z, z `f` x1, (z `f` x1) `f` x2, ...]
Note that
last (scanl f z xs) == foldl f z xs
Examples
>>>
scanl (+) 0 [1..4]
[0,1,3,6,10]
>>>
scanl (+) 42 []
[42]
>>>
scanl (-) 100 [1..4]
[100,99,97,94,90]
>>>
scanl (\reversedString nextChar -> nextChar : reversedString) "foo" ['a', 'b', 'c', 'd']
["foo","afoo","bafoo","cbafoo","dcbafoo"]
>>>
take 10 (scanl (+) 0 [1..])
[0,1,3,6,10,15,21,28,36,45]
>>>
take 1 (scanl undefined 'a' undefined)
"a"
scanr :: (a -> b -> b) -> b -> [a] -> [b] #
\(\mathcal{O}(n)\). scanr
is the right-to-left dual of scanl
. Note that the order of parameters on the accumulating function are reversed compared to scanl
.
Also note that
head (scanr f z xs) == foldr f z xs.
Examples
>>>
scanr (+) 0 [1..4]
[10,9,7,4,0]
>>>
scanr (+) 42 []
[42]
>>>
scanr (-) 100 [1..4]
[98,-97,99,-96,100]
>>>
scanr (\nextChar reversedString -> nextChar : reversedString) "foo" ['a', 'b', 'c', 'd']
["abcdfoo","bcdfoo","cdfoo","dfoo","foo"]
>>>
force $ scanr (+) 0 [1..]
*** Exception: stack overflow
iterate :: (a -> a) -> a -> [a] #
iterate
f x
returns an infinite list of repeated applications
of f
to x
:
iterate f x == [x, f x, f (f x), ...]
Laziness
Note that iterate
is lazy, potentially leading to thunk build-up if
the consumer doesn't force each iterate. See iterate'
for a strict
variant of this function.
>>>
take 1 $ iterate undefined 42
[42]
Examples
>>>
take 10 $ iterate not True
[True,False,True,False,True,False,True,False,True,False]
>>>
take 10 $ iterate (+3) 42
[42,45,48,51,54,57,60,63,66,69]
iterate id ==
:repeat
>>>
take 10 $ iterate id 1
[1,1,1,1,1,1,1,1,1,1]
replicate :: Int -> a -> [a] #
replicate
n x
is a list of length n
with x
the value of
every element.
It is an instance of the more general genericReplicate
,
in which n
may be of any integral type.
Examples
>>>
replicate 0 True
[]
>>>
replicate (-1) True
[]
>>>
replicate 4 True
[True,True,True,True]
takeWhile :: (a -> Bool) -> [a] -> [a] #
takeWhile
, applied to a predicate p
and a list xs
, returns the
longest prefix (possibly empty) of xs
of elements that satisfy p
.
Laziness
>>>
takeWhile (const False) undefined
*** Exception: Prelude.undefined
>>>
takeWhile (const False) (undefined : undefined)
[]
>>>
take 1 (takeWhile (const True) (1 : undefined))
[1]
Examples
>>>
takeWhile (< 3) [1,2,3,4,1,2,3,4]
[1,2]
>>>
takeWhile (< 9) [1,2,3]
[1,2,3]
>>>
takeWhile (< 0) [1,2,3]
[]
take
n
, applied to a list xs
, returns the prefix of xs
of length n
, or xs
itself if n >=
.length
xs
It is an instance of the more general genericTake
,
in which n
may be of any integral type.
Laziness
>>>
take 0 undefined
[]>>>
take 2 (1 : 2 : undefined)
[1,2]
Examples
>>>
take 5 "Hello World!"
"Hello"
>>>
take 3 [1,2,3,4,5]
[1,2,3]
>>>
take 3 [1,2]
[1,2]
>>>
take 3 []
[]
>>>
take (-1) [1,2]
[]
>>>
take 0 [1,2]
[]
drop
n xs
returns the suffix of xs
after the first n
elements, or []
if n >=
.length
xs
It is an instance of the more general genericDrop
,
in which n
may be of any integral type.
Examples
>>>
drop 6 "Hello World!"
"World!"
>>>
drop 3 [1,2,3,4,5]
[4,5]
>>>
drop 3 [1,2]
[]
>>>
drop 3 []
[]
>>>
drop (-1) [1,2]
[1,2]
>>>
drop 0 [1,2]
[1,2]
splitAt :: Int -> [a] -> ([a], [a]) #
splitAt
n xs
returns a tuple where first element is xs
prefix of
length n
and second element is the remainder of the list:
splitAt
is an instance of the more general genericSplitAt
,
in which n
may be of any integral type.
Laziness
It is equivalent to (
unless take
n xs, drop
n xs)n
is _|_
:
splitAt _|_ xs = _|_
, not (_|_, _|_)
).
The first component of the tuple is produced lazily:
>>>
fst (splitAt 0 undefined)
[]
>>>
take 1 (fst (splitAt 10 (1 : undefined)))
[1]
Examples
>>>
splitAt 6 "Hello World!"
("Hello ","World!")
>>>
splitAt 3 [1,2,3,4,5]
([1,2,3],[4,5])
>>>
splitAt 1 [1,2,3]
([1],[2,3])
>>>
splitAt 3 [1,2,3]
([1,2,3],[])
>>>
splitAt 4 [1,2,3]
([1,2,3],[])
>>>
splitAt 0 [1,2,3]
([],[1,2,3])
>>>
splitAt (-1) [1,2,3]
([],[1,2,3])
break :: (a -> Bool) -> [a] -> ([a], [a]) #
break
, applied to a predicate p
and a list xs
, returns a tuple where
first element is longest prefix (possibly empty) of xs
of elements that
do not satisfy p
and second element is the remainder of the list:
break
p
is equivalent to
and consequently to span
(not
. p)(
,
even if takeWhile
(not
. p) xs, dropWhile
(not
. p) xs)p
is _|_
.
Laziness
>>>
break undefined []
([],[])
>>>
fst (break (const True) undefined)
*** Exception: Prelude.undefined
>>>
fst (break (const True) (undefined : undefined))
[]
>>>
take 1 (fst (break (const False) (1 : undefined)))
[1]
break
produces the first component of the tuple lazily:
>>>
take 10 (fst (break (const False) [1..]))
[1,2,3,4,5,6,7,8,9,10]
Examples
>>>
break (> 3) [1,2,3,4,1,2,3,4]
([1,2,3],[4,1,2,3,4])
>>>
break (< 9) [1,2,3]
([],[1,2,3])
>>>
break (> 9) [1,2,3]
([1,2,3],[])
\(\mathcal{O}(n)\). reverse
xs
returns the elements of xs
in reverse order.
xs
must be finite.
Laziness
reverse
is lazy in its elements.
>>>
head (reverse [undefined, 1])
1
>>>
reverse (1 : 2 : undefined)
*** Exception: Prelude.undefined
Examples
>>>
reverse []
[]
>>>
reverse [42]
[42]
>>>
reverse [2,5,7]
[7,5,2]
>>>
reverse [1..]
* Hangs forever *
zipWith :: (a -> b -> c) -> [a] -> [b] -> [c] #
\(\mathcal{O}(\min(m,n))\). zipWith
generalises zip
by zipping with the
function given as the first argument, instead of a tupling function.
zipWith (,) xs ys == zip xs ys zipWith f [x1,x2,x3..] [y1,y2,y3..] == [f x1 y1, f x2 y2, f x3 y3..]
zipWith
is right-lazy:
>>>
let f = undefined
>>>
zipWith f [] undefined
[]
zipWith
is capable of list fusion, but it is restricted to its
first list argument and its resulting list.
Examples
isPrefixOf :: Eq a => [a] -> [a] -> Bool #
\(\mathcal{O}(\min(m,n))\). The isPrefixOf
function takes two lists and
returns True
iff the first list is a prefix of the second.
Examples
>>>
"Hello" `isPrefixOf` "Hello World!"
True
>>>
"Hello" `isPrefixOf` "Wello Horld!"
False
For the result to be True
, the first list must be finite;
False
, however, results from any mismatch:
>>>
[0..] `isPrefixOf` [1..]
False
>>>
[0..] `isPrefixOf` [0..99]
False
>>>
[0..99] `isPrefixOf` [0..]
True
>>>
[0..] `isPrefixOf` [0..]
* Hangs forever *
isPrefixOf
shortcuts when the first argument is empty:
>>>
isPrefixOf [] undefined
True
isSuffixOf :: Eq a => [a] -> [a] -> Bool #
The isSuffixOf
function takes two lists and returns True
iff
the first list is a suffix of the second.
Examples
>>>
"ld!" `isSuffixOf` "Hello World!"
True
>>>
"World" `isSuffixOf` "Hello World!"
False
The second list must be finite; however the first list may be infinite:
>>>
[0..] `isSuffixOf` [0..99]
False
>>>
[0..99] `isSuffixOf` [0..]
* Hangs forever *
isInfixOf :: Eq a => [a] -> [a] -> Bool #
The isInfixOf
function takes two lists and returns True
iff the first list is contained, wholly and intact,
anywhere within the second.
Examples
>>>
isInfixOf "Haskell" "I really like Haskell."
True
>>>
isInfixOf "Ial" "I really like Haskell."
False
For the result to be True
, the first list must be finite;
for the result to be False
, the second list must be finite:
>>>
[20..50] `isInfixOf` [0..]
True
>>>
[0..] `isInfixOf` [20..50]
False
>>>
[0..] `isInfixOf` [0..]
* Hangs forever *
intersperse :: a -> [a] -> [a] #
\(\mathcal{O}(n)\). The intersperse
function takes an element and a list
and `intersperses' that element between the elements of the list.
Laziness
intersperse
has the following properties
>>>
take 1 (intersperse undefined ('a' : undefined))
"a"
>>>
take 2 (intersperse ',' ('a' : undefined))
"a*** Exception: Prelude.undefined
Examples
>>>
intersperse ',' "abcde"
"a,b,c,d,e"
>>>
intersperse 1 [3, 4, 5]
[3,1,4,1,5]
intercalate :: [a] -> [[a]] -> [a] #
intercalate
xs xss
is equivalent to (
.
It inserts the list concat
(intersperse
xs xss))xs
in between the lists in xss
and concatenates the
result.
Laziness
intercalate
has the following properties:
>>>
take 5 (intercalate undefined ("Lorem" : undefined))
"Lorem"
>>>
take 6 (intercalate ", " ("Lorem" : undefined))
"Lorem*** Exception: Prelude.undefined
Examples
>>>
intercalate ", " ["Lorem", "ipsum", "dolor"]
"Lorem, ipsum, dolor"
>>>
intercalate [0, 1] [[2, 3], [4, 5, 6], []]
[2,3,0,1,4,5,6,0,1]
>>>
intercalate [1, 2, 3] [[], []]
[1,2,3]
The inits
function returns all initial segments of the argument,
shortest first.
inits
is semantically equivalent to
,
but under the hood uses a queue to amortize costs of map
reverse
. scanl
(flip
(:)) []reverse
.
Laziness
Note that inits
has the following strictness property:
inits (xs ++ _|_) = inits xs ++ _|_
In particular,
inits _|_ = [] : _|_
Examples
>>>
inits "abc"
["","a","ab","abc"]
>>>
inits []
[[]]
inits is productive on infinite lists:
>>>
take 5 $ inits [1..]
[[],[1],[1,2],[1,2,3],[1,2,3,4]]
\(\mathcal{O}(n)\). The tails
function returns all final segments of the
argument, longest first.
Laziness
Note that tails
has the following strictness property:
tails _|_ = _|_ : _|_
>>>
tails undefined
[*** Exception: Prelude.undefined
>>>
drop 1 (tails [undefined, 1, 2])
[[1, 2], [2], []]
Examples
>>>
tails "abc"
["abc","bc","c",""]
>>>
tails [1, 2, 3]
[[1,2,3],[2,3],[3],[]]
>>>
tails []
[[]]
subsequences :: [a] -> [[a]] #
The subsequences
function returns the list of all subsequences of the argument.
Laziness
subsequences
does not look ahead unless it must:
>>>
take 1 (subsequences undefined)
[[]]>>>
take 2 (subsequences ('a' : undefined))
["","a"]
Examples
>>>
subsequences "abc"
["","a","b","ab","c","ac","bc","abc"]
This function is productive on infinite inputs:
>>>
take 8 $ subsequences ['a'..]
["","a","b","ab","c","ac","bc","abc"]
permutations :: [a] -> [[a]] #
The permutations
function returns the list of all permutations of the argument.
Note that the order of permutations is not lexicographic. It satisfies the following property:
map (take n) (take (product [1..n]) (permutations ([1..n] ++ undefined))) == permutations [1..n]
Laziness
The permutations
function is maximally lazy:
for each n
, the value of
starts with those permutations
that permute permutations
xs
and keep take
n xs
.drop
n xs
Examples
>>>
permutations "abc"
["abc","bac","cba","bca","cab","acb"]
>>>
permutations [1, 2]
[[1,2],[2,1]]
>>>
permutations []
[[]]
This function is productive on infinite inputs:
>>>
take 6 $ map (take 3) $ permutations ['a'..]
["abc","bac","cba","bca","cab","acb"]
The sort
function implements a stable sorting algorithm.
It is a special case of sortBy
, which allows the programmer to supply
their own comparison function.
Elements are arranged from lowest to highest, keeping duplicates in the order they appeared in the input.
The argument must be finite.
Examples
>>>
sort [1,6,4,3,2,5]
[1,2,3,4,5,6]
>>>
sort "haskell"
"aehklls"
>>>
import Data.Semigroup(Arg(..))
>>>
sort [Arg ":)" 0, Arg ":D" 0, Arg ":)" 1, Arg ":3" 0, Arg ":D" 1]
[Arg ":)" 0,Arg ":)" 1,Arg ":3" 0,Arg ":D" 0,Arg ":D" 1]
Data Structures
A Map from keys k
to values a
.
The Semigroup
operation for Map
is union
, which prefers
values from the left operand. If m1
maps a key k
to a value
a1
, and m2
maps the same key to a different value a2
, then
their union m1 <> m2
maps k
to a1
.
Instances
Bifoldable Map | Since: containers-0.6.3.1 |
Eq2 Map | Since: containers-0.5.9 |
Ord2 Map | Since: containers-0.5.9 |
Defined in Data.Map.Internal | |
Show2 Map | Since: containers-0.5.9 |
Hashable2 Map | Since: hashable-1.3.4.0 |
Defined in Data.Hashable.Class | |
(Lift k, Lift a) => Lift (Map k a :: Type) | Since: containers-0.6.6 |
Foldable (Map k) | Folds in order of increasing key. |
Defined in Data.Map.Internal Methods fold :: Monoid m => Map k m -> m # foldMap :: Monoid m => (a -> m) -> Map k a -> m # foldMap' :: Monoid m => (a -> m) -> Map k a -> m # foldr :: (a -> b -> b) -> b -> Map k a -> b # foldr' :: (a -> b -> b) -> b -> Map k a -> b # foldl :: (b -> a -> b) -> b -> Map k a -> b # foldl' :: (b -> a -> b) -> b -> Map k a -> b # foldr1 :: (a -> a -> a) -> Map k a -> a # foldl1 :: (a -> a -> a) -> Map k a -> a # elem :: Eq a => a -> Map k a -> Bool # maximum :: Ord a => Map k a -> a # minimum :: Ord a => Map k a -> a # | |
Eq k => Eq1 (Map k) | Since: containers-0.5.9 |
Ord k => Ord1 (Map k) | Since: containers-0.5.9 |
Defined in Data.Map.Internal | |
(Ord k, Read k) => Read1 (Map k) | Since: containers-0.5.9 |
Defined in Data.Map.Internal | |
Show k => Show1 (Map k) | Since: containers-0.5.9 |
Traversable (Map k) | Traverses in order of increasing key. |
Functor (Map k) | |
Hashable k => Hashable1 (Map k) | Since: hashable-1.3.4.0 |
Defined in Data.Hashable.Class | |
(Data k, Data a, Ord k) => Data (Map k a) | |
Defined in Data.Map.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Map k a -> c (Map k a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Map k a) # toConstr :: Map k a -> Constr # dataTypeOf :: Map k a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Map k a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Map k a)) # gmapT :: (forall b. Data b => b -> b) -> Map k a -> Map k a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Map k a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Map k a -> r # gmapQ :: (forall d. Data d => d -> u) -> Map k a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Map k a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) # | |
Ord k => Monoid (Map k v) | |
Ord k => Semigroup (Map k v) | |
Ord k => IsList (Map k v) | Since: containers-0.5.6.2 |
(Ord k, Read k, Read e) => Read (Map k e) | |
(Show k, Show a) => Show (Map k a) | |
(NFData k, NFData a) => NFData (Map k a) | |
Defined in Data.Map.Internal | |
(Eq k, Eq a) => Eq (Map k a) | |
(Ord k, Ord v) => Ord (Map k v) | |
(Hashable k, Hashable v) => Hashable (Map k v) | Since: hashable-1.3.4.0 |
Defined in Data.Hashable.Class | |
type Item (Map k v) | |
Defined in Data.Map.Internal |
A set of values a
.
Instances
Foldable Set | Folds in order of increasing key. |
Defined in Data.Set.Internal Methods fold :: Monoid m => Set m -> m # foldMap :: Monoid m => (a -> m) -> Set a -> m # foldMap' :: Monoid m => (a -> m) -> Set a -> m # foldr :: (a -> b -> b) -> b -> Set a -> b # foldr' :: (a -> b -> b) -> b -> Set a -> b # foldl :: (b -> a -> b) -> b -> Set a -> b # foldl' :: (b -> a -> b) -> b -> Set a -> b # foldr1 :: (a -> a -> a) -> Set a -> a # foldl1 :: (a -> a -> a) -> Set a -> a # elem :: Eq a => a -> Set a -> Bool # maximum :: Ord a => Set a -> a # | |
Eq1 Set | Since: containers-0.5.9 |
Ord1 Set | Since: containers-0.5.9 |
Defined in Data.Set.Internal | |
Show1 Set | Since: containers-0.5.9 |
Hashable1 Set | Since: hashable-1.3.4.0 |
Defined in Data.Hashable.Class | |
Lift a => Lift (Set a :: Type) | Since: containers-0.6.6 |
(Data a, Ord a) => Data (Set a) | |
Defined in Data.Set.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Set a -> c (Set a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Set a) # dataTypeOf :: Set a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Set a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Set a)) # gmapT :: (forall b. Data b => b -> b) -> Set a -> Set a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Set a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Set a -> r # gmapQ :: (forall d. Data d => d -> u) -> Set a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Set a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # | |
Ord a => Monoid (Set a) | |
Ord a => Semigroup (Set a) | Since: containers-0.5.7 |
Ord a => IsList (Set a) | Since: containers-0.5.6.2 |
(Read a, Ord a) => Read (Set a) | |
Show a => Show (Set a) | |
NFData a => NFData (Set a) | |
Defined in Data.Set.Internal | |
Eq a => Eq (Set a) | |
Ord a => Ord (Set a) | |
Hashable v => Hashable (Set v) | Since: hashable-1.3.4.0 |
Defined in Data.Hashable.Class | |
type Item (Set a) | |
Defined in Data.Set.Internal |
A set of integers.
Instances
Data IntSet | |
Defined in Data.IntSet.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntSet -> c IntSet # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c IntSet # toConstr :: IntSet -> Constr # dataTypeOf :: IntSet -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c IntSet) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c IntSet) # gmapT :: (forall b. Data b => b -> b) -> IntSet -> IntSet # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntSet -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntSet -> r # gmapQ :: (forall d. Data d => d -> u) -> IntSet -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> IntSet -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet # | |
Monoid IntSet | |
Semigroup IntSet | Since: containers-0.5.7 |
IsList IntSet | Since: containers-0.5.6.2 |
Read IntSet | |
Show IntSet | |
NFData IntSet | |
Defined in Data.IntSet.Internal | |
Eq IntSet | |
Ord IntSet | |
Hashable IntSet | Since: hashable-1.3.4.0 |
Defined in Data.Hashable.Class | |
Lift IntSet | Since: containers-0.6.6 |
type Item IntSet | |
Defined in Data.IntSet.Internal |
General-purpose finite sequences.
Instances
MonadFix Seq | Since: containers-0.5.11 |
Defined in Data.Sequence.Internal | |
MonadZip Seq |
Since: containers-0.5.10.1 |
Foldable Seq | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Seq m -> m # foldMap :: Monoid m => (a -> m) -> Seq a -> m # foldMap' :: Monoid m => (a -> m) -> Seq a -> m # foldr :: (a -> b -> b) -> b -> Seq a -> b # foldr' :: (a -> b -> b) -> b -> Seq a -> b # foldl :: (b -> a -> b) -> b -> Seq a -> b # foldl' :: (b -> a -> b) -> b -> Seq a -> b # foldr1 :: (a -> a -> a) -> Seq a -> a # foldl1 :: (a -> a -> a) -> Seq a -> a # elem :: Eq a => a -> Seq a -> Bool # maximum :: Ord a => Seq a -> a # | |
Eq1 Seq | Since: containers-0.5.9 |
Ord1 Seq | Since: containers-0.5.9 |
Defined in Data.Sequence.Internal | |
Read1 Seq | Since: containers-0.5.9 |
Defined in Data.Sequence.Internal | |
Show1 Seq | Since: containers-0.5.9 |
Traversable Seq | |
Alternative Seq | Since: containers-0.5.4 |
Applicative Seq | Since: containers-0.5.4 |
Functor Seq | |
Monad Seq | |
MonadPlus Seq | |
UnzipWith Seq | |
Defined in Data.Sequence.Internal Methods unzipWith' :: (x -> (a, b)) -> Seq x -> (Seq a, Seq b) | |
Hashable1 Seq | Since: hashable-1.3.4.0 |
Defined in Data.Hashable.Class | |
Lift a => Lift (Seq a :: Type) | Since: containers-0.6.6 |
Data a => Data (Seq a) | |
Defined in Data.Sequence.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Seq a -> c (Seq a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Seq a) # dataTypeOf :: Seq a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Seq a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Seq a)) # gmapT :: (forall b. Data b => b -> b) -> Seq a -> Seq a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Seq a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Seq a -> r # gmapQ :: (forall d. Data d => d -> u) -> Seq a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Seq a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) # | |
a ~ Char => IsString (Seq a) | Since: containers-0.5.7 |
Defined in Data.Sequence.Internal Methods fromString :: String -> Seq a # | |
Monoid (Seq a) | |
Semigroup (Seq a) | Since: containers-0.5.7 |
IsList (Seq a) | |
Read a => Read (Seq a) | |
Show a => Show (Seq a) | |
NFData a => NFData (Seq a) | |
Defined in Data.Sequence.Internal | |
Eq a => Eq (Seq a) | |
Ord a => Ord (Seq a) | |
Hashable v => Hashable (Seq v) | Since: hashable-1.3.4.0 |
Defined in Data.Hashable.Class | |
type Item (Seq a) | |
Defined in Data.Sequence.Internal |
A map of integers to values a
.
Instances
Foldable IntMap | Folds in order of increasing key. |
Defined in Data.IntMap.Internal Methods fold :: Monoid m => IntMap m -> m # foldMap :: Monoid m => (a -> m) -> IntMap a -> m # foldMap' :: Monoid m => (a -> m) -> IntMap a -> m # foldr :: (a -> b -> b) -> b -> IntMap a -> b # foldr' :: (a -> b -> b) -> b -> IntMap a -> b # foldl :: (b -> a -> b) -> b -> IntMap a -> b # foldl' :: (b -> a -> b) -> b -> IntMap a -> b # foldr1 :: (a -> a -> a) -> IntMap a -> a # foldl1 :: (a -> a -> a) -> IntMap a -> a # elem :: Eq a => a -> IntMap a -> Bool # maximum :: Ord a => IntMap a -> a # minimum :: Ord a => IntMap a -> a # | |
Eq1 IntMap | Since: containers-0.5.9 |
Ord1 IntMap | Since: containers-0.5.9 |
Defined in Data.IntMap.Internal | |
Read1 IntMap | Since: containers-0.5.9 |
Defined in Data.IntMap.Internal | |
Show1 IntMap | Since: containers-0.5.9 |
Traversable IntMap | Traverses in order of increasing key. |
Functor IntMap | |
Hashable1 IntMap | Since: hashable-1.3.4.0 |
Defined in Data.Hashable.Class | |
Lift a => Lift (IntMap a :: Type) | Since: containers-0.6.6 |
Data a => Data (IntMap a) | |
Defined in Data.IntMap.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntMap a -> c (IntMap a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (IntMap a) # toConstr :: IntMap a -> Constr # dataTypeOf :: IntMap a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (IntMap a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (IntMap a)) # gmapT :: (forall b. Data b => b -> b) -> IntMap a -> IntMap a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntMap a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntMap a -> r # gmapQ :: (forall d. Data d => d -> u) -> IntMap a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> IntMap a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) # | |
Monoid (IntMap a) | |
Semigroup (IntMap a) | Since: containers-0.5.7 |
IsList (IntMap a) | Since: containers-0.5.6.2 |
Read e => Read (IntMap e) | |
Show a => Show (IntMap a) | |
NFData a => NFData (IntMap a) | |
Defined in Data.IntMap.Internal | |
Eq a => Eq (IntMap a) | |
Ord a => Ord (IntMap a) | |
Defined in Data.IntMap.Internal | |
Hashable v => Hashable (IntMap v) | Since: hashable-1.3.4.0 |
Defined in Data.Hashable.Class | |
type Item (IntMap a) | |
Defined in Data.IntMap.Internal |
Show functions
module Protolude.Show
print :: (MonadIO m, Show a) => a -> m () Source #
The print function outputs a value of any printable type to the standard output device. Printable types are those that are instances of class Show; print converts values to strings for output using the show operation and adds a newline.
Bool functions
module Protolude.Bool
Instances
Data Bool | Since: base-4.0.0.0 | ||||
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bool -> c Bool # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bool # dataTypeOf :: Bool -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Bool) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bool) # gmapT :: (forall b. Data b => b -> b) -> Bool -> Bool # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r # gmapQ :: (forall d. Data d => d -> u) -> Bool -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Bool -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bool -> m Bool # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool # | |||||
Storable Bool | Since: base-2.1 | ||||
Defined in Foreign.Storable | |||||
Bits Bool | Interpret Since: base-4.7.0.0 | ||||
Defined in GHC.Bits Methods (.&.) :: Bool -> Bool -> Bool # (.|.) :: Bool -> Bool -> Bool # complement :: Bool -> Bool # shift :: Bool -> Int -> Bool # rotate :: Bool -> Int -> Bool # setBit :: Bool -> Int -> Bool # clearBit :: Bool -> Int -> Bool # complementBit :: Bool -> Int -> Bool # testBit :: Bool -> Int -> Bool # bitSizeMaybe :: Bool -> Maybe Int # shiftL :: Bool -> Int -> Bool # unsafeShiftL :: Bool -> Int -> Bool # shiftR :: Bool -> Int -> Bool # unsafeShiftR :: Bool -> Int -> Bool # rotateL :: Bool -> Int -> Bool # | |||||
FiniteBits Bool | Since: base-4.7.0.0 | ||||
Defined in GHC.Bits Methods finiteBitSize :: Bool -> Int # countLeadingZeros :: Bool -> Int # countTrailingZeros :: Bool -> Int # | |||||
Bounded Bool | Since: base-2.1 | ||||
Enum Bool | Since: base-2.1 | ||||
Generic Bool | |||||
Defined in GHC.Generics | |||||
SingKind Bool | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics Associated Types
| |||||
Ix Bool | Since: base-2.1 | ||||
Read Bool | Since: base-2.1 | ||||
Show Bool | Since: base-2.1 | ||||
NFData Bool | |||||
Defined in Control.DeepSeq | |||||
Eq Bool | |||||
Ord Bool | |||||
Hashable Bool | |||||
Defined in Data.Hashable.Class | |||||
IArray UArray Bool | |||||
Defined in Data.Array.Base Methods bounds :: Ix i => UArray i Bool -> (i, i) # numElements :: Ix i => UArray i Bool -> Int # unsafeArray :: Ix i => (i, i) -> [(Int, Bool)] -> UArray i Bool # unsafeAt :: Ix i => UArray i Bool -> Int -> Bool # unsafeReplace :: Ix i => UArray i Bool -> [(Int, Bool)] -> UArray i Bool # unsafeAccum :: Ix i => (Bool -> e' -> Bool) -> UArray i Bool -> [(Int, e')] -> UArray i Bool # unsafeAccumArray :: Ix i => (Bool -> e' -> Bool) -> Bool -> (i, i) -> [(Int, e')] -> UArray i Bool # | |||||
SingI 'False | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
SingI 'True | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
Lift Bool | |||||
MArray IOUArray Bool IO | |||||
Defined in Data.Array.IO.Internals Methods getBounds :: Ix i => IOUArray i Bool -> IO (i, i) # getNumElements :: Ix i => IOUArray i Bool -> IO Int # newArray :: Ix i => (i, i) -> Bool -> IO (IOUArray i Bool) # newArray_ :: Ix i => (i, i) -> IO (IOUArray i Bool) # unsafeNewArray_ :: Ix i => (i, i) -> IO (IOUArray i Bool) # unsafeRead :: Ix i => IOUArray i Bool -> Int -> IO Bool # unsafeWrite :: Ix i => IOUArray i Bool -> Int -> Bool -> IO () # | |||||
MArray (STUArray s) Bool (ST s) | |||||
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Bool -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Bool -> ST s Int # newArray :: Ix i => (i, i) -> Bool -> ST s (STUArray s i Bool) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Bool) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Bool) # unsafeRead :: Ix i => STUArray s i Bool -> Int -> ST s Bool # unsafeWrite :: Ix i => STUArray s i Bool -> Int -> Bool -> ST s () # | |||||
type DemoteRep Bool | |||||
Defined in GHC.Generics | |||||
type Rep Bool | Since: base-4.6.0.0 | ||||
data Sing (a :: Bool) | |||||
Monad functions
module Protolude.Monad
liftIO1 :: MonadIO m => (a -> IO b) -> a -> m b Source #
Lift an IO
operation with 1 argument into another monad
liftIO2 :: MonadIO m => (a -> b -> IO c) -> a -> b -> m c Source #
Lift an IO
operation with 2 arguments into another monad
Functor functions
module Data.Functor.Identity
module Protolude.Functor
Either functions
module Data.Either
module Protolude.Either
Applicative functions
module Protolude.Applicative
class Applicative f => Alternative (f :: Type -> Type) where #
A monoid on applicative functors.
If defined, some
and many
should be the least solutions
of the equations:
Methods
The identity of <|>
(<|>) :: f a -> f a -> f a infixl 3 #
An associative binary operation
One or more.
Zero or more.
Instances
class Functor f => Applicative (f :: Type -> Type) where #
A functor with application, providing operations to
A minimal complete definition must include implementations of pure
and of either <*>
or liftA2
. If it defines both, then they must behave
the same as their default definitions:
(<*>
) =liftA2
id
liftA2
f x y = f<$>
x<*>
y
Further, any definition must satisfy the following:
- Identity
pure
id
<*>
v = v- Composition
pure
(.)<*>
u<*>
v<*>
w = u<*>
(v<*>
w)- Homomorphism
pure
f<*>
pure
x =pure
(f x)- Interchange
u
<*>
pure
y =pure
($
y)<*>
u
The other methods have the following default definitions, which may be overridden with equivalent specialized implementations:
As a consequence of these laws, the Functor
instance for f
will satisfy
It may be useful to note that supposing
forall x y. p (q x y) = f x . g y
it follows from the above that
liftA2
p (liftA2
q u v) =liftA2
f u .liftA2
g v
If f
is also a Monad
, it should satisfy
(which implies that pure
and <*>
satisfy the applicative functor laws).
Methods
Lift a value.
(<*>) :: f (a -> b) -> f a -> f b infixl 4 #
Sequential application.
A few functors support an implementation of <*>
that is more
efficient than the default one.
Example
Used in combination with (
, <$>
)(
can be used to build a record.<*>
)
>>>
data MyState = MyState {arg1 :: Foo, arg2 :: Bar, arg3 :: Baz}
>>>
produceFoo :: Applicative f => f Foo
>>>
produceBar :: Applicative f => f Bar
>>>
produceBaz :: Applicative f => f Baz
>>>
mkState :: Applicative f => f MyState
>>>
mkState = MyState <$> produceFoo <*> produceBar <*> produceBaz
liftA2 :: (a -> b -> c) -> f a -> f b -> f c #
Lift a binary function to actions.
Some functors support an implementation of liftA2
that is more
efficient than the default one. In particular, if fmap
is an
expensive operation, it is likely better to use liftA2
than to
fmap
over the structure and then use <*>
.
This became a typeclass method in 4.10.0.0. Prior to that, it was
a function defined in terms of <*>
and fmap
.
Example
>>>
liftA2 (,) (Just 3) (Just 5)
Just (3,5)
(*>) :: f a -> f b -> f b infixl 4 #
Sequence actions, discarding the value of the first argument.
Examples
If used in conjunction with the Applicative instance for Maybe
,
you can chain Maybe computations, with a possible "early return"
in case of Nothing
.
>>>
Just 2 *> Just 3
Just 3
>>>
Nothing *> Just 3
Nothing
Of course a more interesting use case would be to have effectful computations instead of just returning pure values.
>>>
import Data.Char
>>>
import Text.ParserCombinators.ReadP
>>>
let p = string "my name is " *> munch1 isAlpha <* eof
>>>
readP_to_S p "my name is Simon"
[("Simon","")]
(<*) :: f a -> f b -> f a infixl 4 #
Sequence actions, discarding the value of the second argument.
Instances
Applicative Concurrently | |
Defined in Control.Concurrent.Async.Internal Methods pure :: a -> Concurrently a # (<*>) :: Concurrently (a -> b) -> Concurrently a -> Concurrently b # liftA2 :: (a -> b -> c) -> Concurrently a -> Concurrently b -> Concurrently c # (*>) :: Concurrently a -> Concurrently b -> Concurrently b # (<*) :: Concurrently a -> Concurrently b -> Concurrently a # | |
Applicative ZipList | f <$> ZipList xs1 <*> ... <*> ZipList xsN = ZipList (zipWithN f xs1 ... xsN) where (\a b c -> stimes c [a, b]) <$> ZipList "abcd" <*> ZipList "567" <*> ZipList [1..] = ZipList (zipWith3 (\a b c -> stimes c [a, b]) "abcd" "567" [1..]) = ZipList {getZipList = ["a5","b6b6","c7c7c7"]} Since: base-2.1 |
Applicative Complex | Since: base-4.9.0.0 |
Applicative Identity | Since: base-4.8.0.0 |
Applicative First | Since: base-4.8.0.0 |
Applicative Last | Since: base-4.8.0.0 |
Applicative Down | Since: base-4.11.0.0 |
Applicative First | Since: base-4.9.0.0 |
Applicative Last | Since: base-4.9.0.0 |
Applicative Max | Since: base-4.9.0.0 |
Applicative Min | Since: base-4.9.0.0 |
Applicative Dual | Since: base-4.8.0.0 |
Applicative Product | Since: base-4.8.0.0 |
Applicative Sum | Since: base-4.8.0.0 |
Applicative NonEmpty | Since: base-4.9.0.0 |
Applicative STM | Since: base-4.8.0.0 |
Applicative NoIO | Since: base-4.8.0.0 |
Applicative Par1 | Since: base-4.9.0.0 |
Applicative P | Since: base-4.5.0.0 |
Applicative ReadP | Since: base-4.6.0.0 |
Applicative ReadPrec | Since: base-4.6.0.0 |
Applicative Put | |
Applicative Seq | Since: containers-0.5.4 |
Applicative Tree | |
Applicative IO | Since: base-2.1 |
Applicative Q | |
Applicative Maybe | Since: base-2.1 |
Applicative Solo | Since: base-4.15 |
Applicative [] | Since: base-2.1 |
Applicative (ConcurrentlyE e) | |
Defined in Control.Concurrent.Async.Internal Methods pure :: a -> ConcurrentlyE e a # (<*>) :: ConcurrentlyE e (a -> b) -> ConcurrentlyE e a -> ConcurrentlyE e b # liftA2 :: (a -> b -> c) -> ConcurrentlyE e a -> ConcurrentlyE e b -> ConcurrentlyE e c # (*>) :: ConcurrentlyE e a -> ConcurrentlyE e b -> ConcurrentlyE e b # (<*) :: ConcurrentlyE e a -> ConcurrentlyE e b -> ConcurrentlyE e a # | |
Monad m => Applicative (WrappedMonad m) | Since: base-2.1 |
Defined in Control.Applicative Methods pure :: a -> WrappedMonad m a # (<*>) :: WrappedMonad m (a -> b) -> WrappedMonad m a -> WrappedMonad m b # liftA2 :: (a -> b -> c) -> WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m c # (*>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b # (<*) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m a # | |
Arrow a => Applicative (ArrowMonad a) | Since: base-4.6.0.0 |
Defined in Control.Arrow Methods pure :: a0 -> ArrowMonad a a0 # (<*>) :: ArrowMonad a (a0 -> b) -> ArrowMonad a a0 -> ArrowMonad a b # liftA2 :: (a0 -> b -> c) -> ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a c # (*>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b # (<*) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a a0 # | |
Applicative (Either e) | Since: base-3.0 |
Applicative (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Applicative (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Applicative (ST s) | Since: base-4.4.0.0 |
Applicative (SetM s) | |
Applicative (IParser t) | |
Applicative f => Applicative (Lift f) | A combination is |
(Functor m, Monad m) => Applicative (MaybeT m) | |
Monoid a => Applicative ((,) a) | For tuples, the ("hello ", (+15)) <*> ("world!", 2002) ("hello world!",2017) Since: base-2.1 |
Arrow a => Applicative (WrappedArrow a b) | Since: base-2.1 |
Defined in Control.Applicative Methods pure :: a0 -> WrappedArrow a b a0 # (<*>) :: WrappedArrow a b (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 # liftA2 :: (a0 -> b0 -> c) -> WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b c # (*>) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b b0 # (<*) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 # | |
Applicative m => Applicative (Kleisli m a) | Since: base-4.14.0.0 |
Defined in Control.Arrow | |
Monoid m => Applicative (Const m :: Type -> Type) | Since: base-2.0.1 |
Applicative f => Applicative (Ap f) | Since: base-4.12.0.0 |
Applicative f => Applicative (Alt f) | Since: base-4.8.0.0 |
(Generic1 f, Applicative (Rep1 f)) => Applicative (Generically1 f) | Since: base-4.17.0.0 |
Defined in GHC.Generics Methods pure :: a -> Generically1 f a # (<*>) :: Generically1 f (a -> b) -> Generically1 f a -> Generically1 f b # liftA2 :: (a -> b -> c) -> Generically1 f a -> Generically1 f b -> Generically1 f c # (*>) :: Generically1 f a -> Generically1 f b -> Generically1 f b # (<*) :: Generically1 f a -> Generically1 f b -> Generically1 f a # | |
Applicative f => Applicative (Rec1 f) | Since: base-4.9.0.0 |
(Applicative f, Monad f) => Applicative (WhenMissing f x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods pure :: a -> WhenMissing f x a # (<*>) :: WhenMissing f x (a -> b) -> WhenMissing f x a -> WhenMissing f x b # liftA2 :: (a -> b -> c) -> WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x c # (*>) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x b # (<*) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x a # | |
Applicative (t m) => Applicative (LiftingAccum t m) | Since: mtl-2.3 |
Defined in Control.Monad.Accum Methods pure :: a -> LiftingAccum t m a # (<*>) :: LiftingAccum t m (a -> b) -> LiftingAccum t m a -> LiftingAccum t m b # liftA2 :: (a -> b -> c) -> LiftingAccum t m a -> LiftingAccum t m b -> LiftingAccum t m c # (*>) :: LiftingAccum t m a -> LiftingAccum t m b -> LiftingAccum t m b # (<*) :: LiftingAccum t m a -> LiftingAccum t m b -> LiftingAccum t m a # | |
Applicative (t m) => Applicative (LiftingSelect t m) | Since: mtl-2.3 |
Defined in Control.Monad.Select Methods pure :: a -> LiftingSelect t m a # (<*>) :: LiftingSelect t m (a -> b) -> LiftingSelect t m a -> LiftingSelect t m b # liftA2 :: (a -> b -> c) -> LiftingSelect t m a -> LiftingSelect t m b -> LiftingSelect t m c # (*>) :: LiftingSelect t m a -> LiftingSelect t m b -> LiftingSelect t m b # (<*) :: LiftingSelect t m a -> LiftingSelect t m b -> LiftingSelect t m a # | |
Applicative f => Applicative (Backwards f) | Apply |
Defined in Control.Applicative.Backwards | |
(Monoid w, Functor m, Monad m) => Applicative (AccumT w m) | |
Defined in Control.Monad.Trans.Accum | |
(Functor m, Monad m) => Applicative (ExceptT e m) | |
Defined in Control.Monad.Trans.Except | |
Applicative m => Applicative (IdentityT m) | |
Defined in Control.Monad.Trans.Identity | |
Applicative m => Applicative (ReaderT r m) | |
Defined in Control.Monad.Trans.Reader | |
(Functor m, Monad m) => Applicative (SelectT r m) | |
Defined in Control.Monad.Trans.Select | |
(Functor m, Monad m) => Applicative (StateT s m) | |
Defined in Control.Monad.Trans.State.Lazy | |
(Functor m, Monad m) => Applicative (StateT s m) | |
Defined in Control.Monad.Trans.State.Strict | |
(Functor m, Monad m) => Applicative (WriterT w m) | |
Defined in Control.Monad.Trans.Writer.CPS | |
(Monoid w, Applicative m) => Applicative (WriterT w m) | |
Defined in Control.Monad.Trans.Writer.Lazy | |
(Monoid w, Applicative m) => Applicative (WriterT w m) | |
Defined in Control.Monad.Trans.Writer.Strict | |
Monoid a => Applicative (Constant a :: Type -> Type) | |
Defined in Data.Functor.Constant | |
Applicative f => Applicative (Reverse f) | Derived instance. |
(Monoid a, Monoid b) => Applicative ((,,) a b) | Since: base-4.14.0.0 |
(Applicative f, Applicative g) => Applicative (Product f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product | |
(Applicative f, Applicative g) => Applicative (f :*: g) | Since: base-4.9.0.0 |
Monoid c => Applicative (K1 i c :: Type -> Type) | Since: base-4.12.0.0 |
(Monad f, Applicative f) => Applicative (WhenMatched f x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods pure :: a -> WhenMatched f x y a # (<*>) :: WhenMatched f x y (a -> b) -> WhenMatched f x y a -> WhenMatched f x y b # liftA2 :: (a -> b -> c) -> WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y c # (*>) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y b # (<*) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y a # | |
(Applicative f, Monad f) => Applicative (WhenMissing f k x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods pure :: a -> WhenMissing f k x a # (<*>) :: WhenMissing f k x (a -> b) -> WhenMissing f k x a -> WhenMissing f k x b # liftA2 :: (a -> b -> c) -> WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x c # (*>) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x b # (<*) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x a # | |
Applicative (ContT r m) | |
Defined in Control.Monad.Trans.Cont | |
(Monoid a, Monoid b, Monoid c) => Applicative ((,,,) a b c) | Since: base-4.14.0.0 |
Defined in GHC.Base | |
Applicative ((->) r) | Since: base-2.1 |
(Applicative f, Applicative g) => Applicative (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose | |
(Applicative f, Applicative g) => Applicative (f :.: g) | Since: base-4.9.0.0 |
Applicative f => Applicative (M1 i c f) | Since: base-4.9.0.0 |
(Monad f, Applicative f) => Applicative (WhenMatched f k x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods pure :: a -> WhenMatched f k x y a # (<*>) :: WhenMatched f k x y (a -> b) -> WhenMatched f k x y a -> WhenMatched f k x y b # liftA2 :: (a -> b -> c) -> WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y c # (*>) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y b # (<*) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y a # | |
(Functor m, Monad m) => Applicative (RWST r w s m) | |
Defined in Control.Monad.Trans.RWS.CPS | |
(Monoid w, Functor m, Monad m) => Applicative (RWST r w s m) | |
Defined in Control.Monad.Trans.RWS.Lazy | |
(Monoid w, Functor m, Monad m) => Applicative (RWST r w s m) | |
Defined in Control.Monad.Trans.RWS.Strict |
(<**>) :: Applicative f => f a -> f (a -> b) -> f b infixl 4 #
liftA :: Applicative f => (a -> b) -> f a -> f b #
Lift a function to actions.
Equivalent to Functor's fmap
but implemented using only Applicative
's methods:
liftA
f a = pure
f <*>
a
As such this function may be used to implement a Functor
instance from an Applicative
one.
Examples
Using the Applicative instance for Lists:
>>>
liftA (+1) [1, 2]
[2,3]
Or the Applicative instance for Maybe
>>>
liftA (+1) (Just 3)
Just 4
liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d #
Lift a ternary function to actions.
optional :: Alternative f => f a -> f (Maybe a) #
One or none.
It is useful for modelling any computation that is allowed to fail.
Examples
Using the Alternative
instance of Control.Monad.Except, the following functions:
>>>
import Control.Monad.Except
>>>
canFail = throwError "it failed" :: Except String Int
>>>
final = return 42 :: Except String Int
Can be combined by allowing the first function to fail:
>>>
runExcept $ canFail *> final
Left "it failed">>>
runExcept $ optional canFail *> final
Right 42
The Const
functor.
Instances
Generic1 (Const a :: k -> Type) | |||||
Defined in Data.Functor.Const Associated Types
| |||||
Bifoldable (Const :: Type -> Type -> Type) | Since: base-4.10.0.0 | ||||
Bifoldable1 (Const :: Type -> Type -> Type) | |||||
Defined in Data.Bifoldable1 | |||||
Bifunctor (Const :: Type -> Type -> Type) | Since: base-4.8.0.0 | ||||
Bitraversable (Const :: Type -> Type -> Type) | Since: base-4.10.0.0 | ||||
Defined in Data.Bitraversable Methods bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Const a b -> f (Const c d) # | |||||
Eq2 (Const :: Type -> Type -> Type) | Since: base-4.9.0.0 | ||||
Ord2 (Const :: Type -> Type -> Type) | Since: base-4.9.0.0 | ||||
Defined in Data.Functor.Classes | |||||
Read2 (Const :: Type -> Type -> Type) | Since: base-4.9.0.0 | ||||
Defined in Data.Functor.Classes Methods liftReadsPrec2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (Const a b) # liftReadList2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> ReadS [Const a b] # liftReadPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec (Const a b) # liftReadListPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec [Const a b] # | |||||
Show2 (Const :: Type -> Type -> Type) | Since: base-4.9.0.0 | ||||
NFData2 (Const :: Type -> Type -> Type) | Since: deepseq-1.4.3.0 | ||||
Defined in Control.DeepSeq | |||||
Hashable2 (Const :: Type -> Type -> Type) | |||||
Defined in Data.Hashable.Class | |||||
Bifunctor (Const :: Type -> Type -> Type) Source # | |||||
Foldable (Const m :: Type -> Type) | Since: base-4.7.0.0 | ||||
Defined in Data.Functor.Const Methods fold :: Monoid m0 => Const m m0 -> m0 # foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldMap' :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldr :: (a -> b -> b) -> b -> Const m a -> b # foldr' :: (a -> b -> b) -> b -> Const m a -> b # foldl :: (b -> a -> b) -> b -> Const m a -> b # foldl' :: (b -> a -> b) -> b -> Const m a -> b # foldr1 :: (a -> a -> a) -> Const m a -> a # foldl1 :: (a -> a -> a) -> Const m a -> a # elem :: Eq a => a -> Const m a -> Bool # maximum :: Ord a => Const m a -> a # minimum :: Ord a => Const m a -> a # | |||||
Eq a => Eq1 (Const a :: Type -> Type) | Since: base-4.9.0.0 | ||||
Ord a => Ord1 (Const a :: Type -> Type) | Since: base-4.9.0.0 | ||||
Defined in Data.Functor.Classes | |||||
Read a => Read1 (Const a :: Type -> Type) | Since: base-4.9.0.0 | ||||
Defined in Data.Functor.Classes Methods liftReadsPrec :: (Int -> ReadS a0) -> ReadS [a0] -> Int -> ReadS (Const a a0) # liftReadList :: (Int -> ReadS a0) -> ReadS [a0] -> ReadS [Const a a0] # liftReadPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec (Const a a0) # liftReadListPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec [Const a a0] # | |||||
Show a => Show1 (Const a :: Type -> Type) | Since: base-4.9.0.0 | ||||
Contravariant (Const a :: Type -> Type) | |||||
Traversable (Const m :: Type -> Type) | Since: base-4.7.0.0 | ||||
Monoid m => Applicative (Const m :: Type -> Type) | Since: base-2.0.1 | ||||
Functor (Const m :: Type -> Type) | Since: base-2.1 | ||||
NFData a => NFData1 (Const a :: Type -> Type) | Since: deepseq-1.4.3.0 | ||||
Defined in Control.DeepSeq | |||||
Hashable a => Hashable1 (Const a :: Type -> Type) | |||||
Defined in Data.Hashable.Class | |||||
(Typeable k, Data a, Typeable b) => Data (Const a b) | Since: base-4.10.0.0 | ||||
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Const a b -> c (Const a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Const a b) # toConstr :: Const a b -> Constr # dataTypeOf :: Const a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Const a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Const a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Const a b -> Const a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Const a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Const a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # | |||||
IsString a => IsString (Const a b) | Since: base-4.9.0.0 | ||||
Defined in Data.String Methods fromString :: String -> Const a b # | |||||
Storable a => Storable (Const a b) | Since: base-4.9.0.0 | ||||
Defined in Data.Functor.Const | |||||
Monoid a => Monoid (Const a b) | Since: base-4.9.0.0 | ||||
Semigroup a => Semigroup (Const a b) | Since: base-4.9.0.0 | ||||
Bits a => Bits (Const a b) | Since: base-4.9.0.0 | ||||
Defined in Data.Functor.Const Methods (.&.) :: Const a b -> Const a b -> Const a b # (.|.) :: Const a b -> Const a b -> Const a b # xor :: Const a b -> Const a b -> Const a b # complement :: Const a b -> Const a b # shift :: Const a b -> Int -> Const a b # rotate :: Const a b -> Int -> Const a b # setBit :: Const a b -> Int -> Const a b # clearBit :: Const a b -> Int -> Const a b # complementBit :: Const a b -> Int -> Const a b # testBit :: Const a b -> Int -> Bool # bitSizeMaybe :: Const a b -> Maybe Int # isSigned :: Const a b -> Bool # shiftL :: Const a b -> Int -> Const a b # unsafeShiftL :: Const a b -> Int -> Const a b # shiftR :: Const a b -> Int -> Const a b # unsafeShiftR :: Const a b -> Int -> Const a b # rotateL :: Const a b -> Int -> Const a b # | |||||
FiniteBits a => FiniteBits (Const a b) | Since: base-4.9.0.0 | ||||
Defined in Data.Functor.Const Methods finiteBitSize :: Const a b -> Int # countLeadingZeros :: Const a b -> Int # countTrailingZeros :: Const a b -> Int # | |||||
Bounded a => Bounded (Const a b) | Since: base-4.9.0.0 | ||||
Enum a => Enum (Const a b) | Since: base-4.9.0.0 | ||||
Defined in Data.Functor.Const Methods succ :: Const a b -> Const a b # pred :: Const a b -> Const a b # fromEnum :: Const a b -> Int # enumFrom :: Const a b -> [Const a b] # enumFromThen :: Const a b -> Const a b -> [Const a b] # enumFromTo :: Const a b -> Const a b -> [Const a b] # enumFromThenTo :: Const a b -> Const a b -> Const a b -> [Const a b] # | |||||
Floating a => Floating (Const a b) | Since: base-4.9.0.0 | ||||
Defined in Data.Functor.Const Methods exp :: Const a b -> Const a b # log :: Const a b -> Const a b # sqrt :: Const a b -> Const a b # (**) :: Const a b -> Const a b -> Const a b # logBase :: Const a b -> Const a b -> Const a b # sin :: Const a b -> Const a b # cos :: Const a b -> Const a b # tan :: Const a b -> Const a b # asin :: Const a b -> Const a b # acos :: Const a b -> Const a b # atan :: Const a b -> Const a b # sinh :: Const a b -> Const a b # cosh :: Const a b -> Const a b # tanh :: Const a b -> Const a b # asinh :: Const a b -> Const a b # acosh :: Const a b -> Const a b # atanh :: Const a b -> Const a b # log1p :: Const a b -> Const a b # expm1 :: Const a b -> Const a b # | |||||
RealFloat a => RealFloat (Const a b) | Since: base-4.9.0.0 | ||||
Defined in Data.Functor.Const Methods floatRadix :: Const a b -> Integer # floatDigits :: Const a b -> Int # floatRange :: Const a b -> (Int, Int) # decodeFloat :: Const a b -> (Integer, Int) # encodeFloat :: Integer -> Int -> Const a b # exponent :: Const a b -> Int # significand :: Const a b -> Const a b # scaleFloat :: Int -> Const a b -> Const a b # isInfinite :: Const a b -> Bool # isDenormalized :: Const a b -> Bool # isNegativeZero :: Const a b -> Bool # | |||||
Generic (Const a b) | |||||
Defined in Data.Functor.Const Associated Types
| |||||
Ix a => Ix (Const a b) | Since: base-4.9.0.0 | ||||
Defined in Data.Functor.Const Methods range :: (Const a b, Const a b) -> [Const a b] # index :: (Const a b, Const a b) -> Const a b -> Int # unsafeIndex :: (Const a b, Const a b) -> Const a b -> Int # inRange :: (Const a b, Const a b) -> Const a b -> Bool # rangeSize :: (Const a b, Const a b) -> Int # unsafeRangeSize :: (Const a b, Const a b) -> Int # | |||||
Num a => Num (Const a b) | Since: base-4.9.0.0 | ||||
Defined in Data.Functor.Const | |||||
Read a => Read (Const a b) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 | ||||
Fractional a => Fractional (Const a b) | Since: base-4.9.0.0 | ||||
Integral a => Integral (Const a b) | Since: base-4.9.0.0 | ||||
Defined in Data.Functor.Const Methods quot :: Const a b -> Const a b -> Const a b # rem :: Const a b -> Const a b -> Const a b # div :: Const a b -> Const a b -> Const a b # mod :: Const a b -> Const a b -> Const a b # quotRem :: Const a b -> Const a b -> (Const a b, Const a b) # divMod :: Const a b -> Const a b -> (Const a b, Const a b) # | |||||
Real a => Real (Const a b) | Since: base-4.9.0.0 | ||||
Defined in Data.Functor.Const Methods toRational :: Const a b -> Rational # | |||||
RealFrac a => RealFrac (Const a b) | Since: base-4.9.0.0 | ||||
Show a => Show (Const a b) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 | ||||
NFData a => NFData (Const a b) | Since: deepseq-1.4.0.0 | ||||
Defined in Control.DeepSeq | |||||
Eq a => Eq (Const a b) | Since: base-4.9.0.0 | ||||
Ord a => Ord (Const a b) | Since: base-4.9.0.0 | ||||
Hashable a => Hashable (Const a b) | |||||
Defined in Data.Hashable.Class | |||||
type Rep1 (Const a :: k -> Type) | Since: base-4.9.0.0 | ||||
Defined in Data.Functor.Const | |||||
type Rep (Const a b) | Since: base-4.9.0.0 | ||||
Defined in Data.Functor.Const |
Lists, but with an Applicative
functor based on zipping.
Constructors
ZipList | |
Fields
|
Instances
Foldable ZipList | Since: base-4.9.0.0 | ||||
Defined in Control.Applicative Methods fold :: Monoid m => ZipList m -> m # foldMap :: Monoid m => (a -> m) -> ZipList a -> m # foldMap' :: Monoid m => (a -> m) -> ZipList a -> m # foldr :: (a -> b -> b) -> b -> ZipList a -> b # foldr' :: (a -> b -> b) -> b -> ZipList a -> b # foldl :: (b -> a -> b) -> b -> ZipList a -> b # foldl' :: (b -> a -> b) -> b -> ZipList a -> b # foldr1 :: (a -> a -> a) -> ZipList a -> a # foldl1 :: (a -> a -> a) -> ZipList a -> a # elem :: Eq a => a -> ZipList a -> Bool # maximum :: Ord a => ZipList a -> a # minimum :: Ord a => ZipList a -> a # | |||||
Traversable ZipList | Since: base-4.9.0.0 | ||||
Alternative ZipList | Since: base-4.11.0.0 | ||||
Applicative ZipList | f <$> ZipList xs1 <*> ... <*> ZipList xsN = ZipList (zipWithN f xs1 ... xsN) where (\a b c -> stimes c [a, b]) <$> ZipList "abcd" <*> ZipList "567" <*> ZipList [1..] = ZipList (zipWith3 (\a b c -> stimes c [a, b]) "abcd" "567" [1..]) = ZipList {getZipList = ["a5","b6b6","c7c7c7"]} Since: base-2.1 | ||||
Functor ZipList | Since: base-2.1 | ||||
NFData1 ZipList | Since: deepseq-1.4.3.0 | ||||
Defined in Control.DeepSeq | |||||
Generic1 ZipList | |||||
Defined in Control.Applicative Associated Types
| |||||
Data a => Data (ZipList a) | Since: base-4.14.0.0 | ||||
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ZipList a -> c (ZipList a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ZipList a) # toConstr :: ZipList a -> Constr # dataTypeOf :: ZipList a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ZipList a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ZipList a)) # gmapT :: (forall b. Data b => b -> b) -> ZipList a -> ZipList a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ZipList a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ZipList a -> r # gmapQ :: (forall d. Data d => d -> u) -> ZipList a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ZipList a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ZipList a -> m (ZipList a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ZipList a -> m (ZipList a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ZipList a -> m (ZipList a) # | |||||
Generic (ZipList a) | |||||
Defined in Control.Applicative Associated Types
| |||||
IsList (ZipList a) | Since: base-4.15.0.0 | ||||
Read a => Read (ZipList a) | Since: base-4.7.0.0 | ||||
Show a => Show (ZipList a) | Since: base-4.7.0.0 | ||||
NFData a => NFData (ZipList a) | Since: deepseq-1.4.0.0 | ||||
Defined in Control.DeepSeq | |||||
Eq a => Eq (ZipList a) | Since: base-4.7.0.0 | ||||
Ord a => Ord (ZipList a) | Since: base-4.7.0.0 | ||||
type Rep1 ZipList | Since: base-4.7.0.0 | ||||
Defined in Control.Applicative | |||||
type Rep (ZipList a) | Since: base-4.7.0.0 | ||||
Defined in Control.Applicative | |||||
type Item (ZipList a) | |||||
Defined in GHC.IsList |
guarded :: Alternative f => (a -> Bool) -> a -> f a Source #
String conversion
module Protolude.ConvertText
Debug functions
module Protolude.Debug
Panic functions
module Protolude.Panic
Exception functions
module Protolude.Exceptions
data ArithException #
Arithmetic exceptions.
Constructors
Overflow | |
Underflow | |
LossOfPrecision | |
DivideByZero | |
Denormal | |
RatioZeroDenominator | Since: base-4.6.0.0 |
Instances
Exception ArithException | Since: base-4.0.0.0 |
Defined in GHC.Exception.Type Methods toException :: ArithException -> SomeException # | |
Show ArithException | Since: base-4.0.0.0 |
Defined in GHC.Exception.Type Methods showsPrec :: Int -> ArithException -> ShowS # show :: ArithException -> String # showList :: [ArithException] -> ShowS # | |
Eq ArithException | Since: base-3.0 |
Defined in GHC.Exception.Type Methods (==) :: ArithException -> ArithException -> Bool # (/=) :: ArithException -> ArithException -> Bool # | |
Ord ArithException | Since: base-3.0 |
Defined in GHC.Exception.Type Methods compare :: ArithException -> ArithException -> Ordering # (<) :: ArithException -> ArithException -> Bool # (<=) :: ArithException -> ArithException -> Bool # (>) :: ArithException -> ArithException -> Bool # (>=) :: ArithException -> ArithException -> Bool # max :: ArithException -> ArithException -> ArithException # min :: ArithException -> ArithException -> ArithException # |
newtype AssertionFailed #
Constructors
AssertionFailed String |
Instances
Exception AssertionFailed | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods toException :: AssertionFailed -> SomeException # | |
Show AssertionFailed | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods showsPrec :: Int -> AssertionFailed -> ShowS # show :: AssertionFailed -> String # showList :: [AssertionFailed] -> ShowS # |
Arguments
:: IO a | computation to run first ("acquire resource") |
-> (a -> IO b) | computation to run last ("release resource") |
-> (a -> IO c) | computation to run in-between |
-> IO c |
When you want to acquire a resource, do some work with it, and
then release the resource, it is a good idea to use bracket
,
because bracket
will install the necessary exception handler to
release the resource in the event that an exception is raised
during the computation. If an exception is raised, then bracket
will
re-raise the exception (after performing the release).
A common example is opening a file:
bracket (openFile "filename" ReadMode) (hClose) (\fileHandle -> do { ... })
The arguments to bracket
are in this order so that we can partially apply
it, e.g.:
withFile name mode = bracket (openFile name mode) hClose
Bracket wraps the release action with mask
, which is sufficient to ensure
that the release action executes to completion when it does not invoke any
interruptible actions, even in the presence of asynchronous exceptions. For
example, hClose
is uninterruptible when it is not racing other uses of the
handle. Similarly, closing a socket (from "network" package) is also
uninterruptible under similar conditions. An example of an interruptible
action is killThread
. Completion of interruptible release actions can be
ensured by wrapping them in uninterruptibleMask_
, but this risks making
the program non-responsive to Control-C
, or timeouts. Another option is to
run the release action asynchronously in its own thread:
void $ uninterruptibleMask_ $ forkIO $ do { ... }
The resource will be released as soon as possible, but the thread that invoked bracket will not block in an uninterruptible state.
class (Typeable e, Show e) => Exception e where #
Any type that you wish to throw or catch as an exception must be an
instance of the Exception
class. The simplest case is a new exception
type directly below the root:
data MyException = ThisException | ThatException deriving Show instance Exception MyException
The default method definitions in the Exception
class do what we need
in this case. You can now throw and catch ThisException
and
ThatException
as exceptions:
*Main> throw ThisException `catch` \e -> putStrLn ("Caught " ++ show (e :: MyException)) Caught ThisException
In more complicated examples, you may wish to define a whole hierarchy of exceptions:
--------------------------------------------------------------------- -- Make the root exception type for all the exceptions in a compiler data SomeCompilerException = forall e . Exception e => SomeCompilerException e instance Show SomeCompilerException where show (SomeCompilerException e) = show e instance Exception SomeCompilerException compilerExceptionToException :: Exception e => e -> SomeException compilerExceptionToException = toException . SomeCompilerException compilerExceptionFromException :: Exception e => SomeException -> Maybe e compilerExceptionFromException x = do SomeCompilerException a <- fromException x cast a --------------------------------------------------------------------- -- Make a subhierarchy for exceptions in the frontend of the compiler data SomeFrontendException = forall e . Exception e => SomeFrontendException e instance Show SomeFrontendException where show (SomeFrontendException e) = show e instance Exception SomeFrontendException where toException = compilerExceptionToException fromException = compilerExceptionFromException frontendExceptionToException :: Exception e => e -> SomeException frontendExceptionToException = toException . SomeFrontendException frontendExceptionFromException :: Exception e => SomeException -> Maybe e frontendExceptionFromException x = do SomeFrontendException a <- fromException x cast a --------------------------------------------------------------------- -- Make an exception type for a particular frontend compiler exception data MismatchedParentheses = MismatchedParentheses deriving Show instance Exception MismatchedParentheses where toException = frontendExceptionToException fromException = frontendExceptionFromException
We can now catch a MismatchedParentheses
exception as
MismatchedParentheses
, SomeFrontendException
or
SomeCompilerException
, but not other types, e.g. IOException
:
*Main> throw MismatchedParentheses `catch` \e -> putStrLn ("Caught " ++ show (e :: MismatchedParentheses)) Caught MismatchedParentheses *Main> throw MismatchedParentheses `catch` \e -> putStrLn ("Caught " ++ show (e :: SomeFrontendException)) Caught MismatchedParentheses *Main> throw MismatchedParentheses `catch` \e -> putStrLn ("Caught " ++ show (e :: SomeCompilerException)) Caught MismatchedParentheses *Main> throw MismatchedParentheses `catch` \e -> putStrLn ("Caught " ++ show (e :: IOException)) *** Exception: MismatchedParentheses
Minimal complete definition
Nothing
Methods
toException :: e -> SomeException #
fromException :: SomeException -> Maybe e #
displayException :: e -> String #
Render this exception value in a human-friendly manner.
Default implementation:
.show
Since: base-4.8.0.0
Instances
mask :: ((forall a. IO a -> IO a) -> IO b) -> IO b #
Executes an IO computation with asynchronous
exceptions masked. That is, any thread which attempts to raise
an exception in the current thread with throwTo
will be blocked until asynchronous exceptions are unmasked again.
The argument passed to mask
is a function that takes as its
argument another function, which can be used to restore the
prevailing masking state within the context of the masked
computation. For example, a common way to use mask
is to protect
the acquisition of a resource:
mask $ \restore -> do x <- acquire restore (do_something_with x) `onException` release release
This code guarantees that acquire
is paired with release
, by masking
asynchronous exceptions for the critical parts. (Rather than write
this code yourself, it would be better to use
bracket
which abstracts the general pattern).
Note that the restore
action passed to the argument to mask
does not necessarily unmask asynchronous exceptions, it just
restores the masking state to that of the enclosing context. Thus
if asynchronous exceptions are already masked, mask
cannot be used
to unmask exceptions again. This is so that if you call a library function
with exceptions masked, you can be sure that the library call will not be
able to unmask exceptions again. If you are writing library code and need
to use asynchronous exceptions, the only way is to create a new thread;
see forkIOWithUnmask
.
Asynchronous exceptions may still be received while in the masked state if the masked thread blocks in certain ways; see Control.Exception.
Threads created by forkIO
inherit the
MaskingState
from the parent; that is, to start a thread in the
MaskedInterruptible
state,
use mask_ $ forkIO ...
. This is particularly useful if you need
to establish an exception handler in the forked thread before any
asynchronous exceptions are received. To create a new thread in
an unmasked state use forkIOWithUnmask
.
try :: Exception e => IO a -> IO (Either e a) #
Similar to catch
, but returns an Either
result which is
(
if no exception of type Right
a)e
was raised, or (
if an exception of type Left
ex)e
was raised and its value is ex
.
If any other type of exception is raised then it will be propagated
up to the next enclosing exception handler.
try a = catch (Right `liftM` a) (return . Left)
Arguments
:: Exception e | |
=> IO a | The computation to run |
-> (e -> IO a) | Handler to invoke if an exception is raised |
-> IO a |
This is the simplest of the exception-catching functions. It takes a single argument, runs it, and if an exception is raised the "handler" is executed, with the value of the exception passed as an argument. Otherwise, the result is returned as normal. For example:
catch (readFile f) (\e -> do let err = show (e :: IOException) hPutStr stderr ("Warning: Couldn't open " ++ f ++ ": " ++ err) return "")
Note that we have to give a type signature to e
, or the program
will not typecheck as the type is ambiguous. While it is possible
to catch exceptions of any type, see the section "Catching all
exceptions" (in Control.Exception) for an explanation of the problems with doing so.
For catching exceptions in pure (non-IO
) expressions, see the
function evaluate
.
Note that due to Haskell's unspecified evaluation order, an
expression may throw one of several possible exceptions: consider
the expression (error "urk") + (1 `div` 0)
. Does
the expression throw
ErrorCall "urk"
, or DivideByZero
?
The answer is "it might throw either"; the choice is
non-deterministic. If you are catching any type of exception then you
might catch either. If you are calling catch
with type
IO Int -> (ArithException -> IO Int) -> IO Int
then the handler may
get run with DivideByZero
as an argument, or an ErrorCall "urk"
exception may be propagated further up. If you call it again, you
might get the opposite behaviour. This is ok, because catch
is an
IO
computation.
data IOException #
Exceptions that occur in the IO
monad.
An IOException
records a more specific error type, a descriptive
string and maybe the handle that was used when the error was
flagged.
Instances
Exception IOException | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods toException :: IOException -> SomeException # fromException :: SomeException -> Maybe IOException # displayException :: IOException -> String # | |
Show IOException | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods showsPrec :: Int -> IOException -> ShowS # show :: IOException -> String # showList :: [IOException] -> ShowS # | |
Eq IOException | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception | |
MonadError IOException IO | |
Defined in Control.Monad.Error.Class |
data BlockedIndefinitelyOnMVar #
The thread is blocked on an MVar
, but there are no other references
to the MVar
so it can't ever continue.
Constructors
BlockedIndefinitelyOnMVar |
Instances
Exception BlockedIndefinitelyOnMVar | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception | |
Show BlockedIndefinitelyOnMVar | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods showsPrec :: Int -> BlockedIndefinitelyOnMVar -> ShowS # show :: BlockedIndefinitelyOnMVar -> String # showList :: [BlockedIndefinitelyOnMVar] -> ShowS # |
An expression that didn't typecheck during compile time was called.
This is only possible with -fdefer-type-errors. The String
gives
details about the failed type check.
Since: base-4.9.0.0
Instances
Exception TypeError | Since: base-4.9.0.0 |
Defined in Control.Exception.Base Methods toException :: TypeError -> SomeException # fromException :: SomeException -> Maybe TypeError # displayException :: TypeError -> String # | |
Show TypeError | Since: base-4.9.0.0 |
data SomeException #
The SomeException
type is the root of the exception type hierarchy.
When an exception of type e
is thrown, behind the scenes it is
encapsulated in a SomeException
.
Constructors
Exception e => SomeException e |
Instances
Exception SomeException | Since: base-3.0 |
Defined in GHC.Exception.Type Methods toException :: SomeException -> SomeException # fromException :: SomeException -> Maybe SomeException # displayException :: SomeException -> String # | |
Show SomeException | Since: base-3.0 |
Defined in GHC.Exception.Type Methods showsPrec :: Int -> SomeException -> ShowS # show :: SomeException -> String # showList :: [SomeException] -> ShowS # |
This is thrown when the user calls error
. The first String
is the
argument given to error
, second String
is the location.
Constructors
ErrorCallWithLocation String String |
Instances
Exception ErrorCall | Since: base-4.0.0.0 |
Defined in GHC.Exception Methods toException :: ErrorCall -> SomeException # fromException :: SomeException -> Maybe ErrorCall # displayException :: ErrorCall -> String # | |
Show ErrorCall | Since: base-4.0.0.0 |
Eq ErrorCall | Since: base-4.7.0.0 |
Ord ErrorCall | Since: base-4.7.0.0 |
data MaskingState #
Describes the behaviour of a thread when an asynchronous exception is received.
Constructors
Unmasked | asynchronous exceptions are unmasked (the normal state) |
MaskedInterruptible | the state during |
MaskedUninterruptible | the state during |
Instances
Show MaskingState | Since: base-4.3.0.0 |
Defined in GHC.IO Methods showsPrec :: Int -> MaskingState -> ShowS # show :: MaskingState -> String # showList :: [MaskingState] -> ShowS # | |
NFData MaskingState | Since: deepseq-1.4.4.0 |
Defined in Control.DeepSeq Methods rnf :: MaskingState -> () # | |
Eq MaskingState | Since: base-4.3.0.0 |
Defined in GHC.IO |
interruptible :: IO a -> IO a #
Allow asynchronous exceptions to be raised even inside mask
, making
the operation interruptible (see the discussion of "Interruptible operations"
in Exception
).
When called outside mask
, or inside uninterruptibleMask
, this
function has no effect.
Since: base-4.9.0.0
getMaskingState :: IO MaskingState #
Returns the MaskingState
for the current thread.
onException :: IO a -> IO b -> IO a #
Like finally
, but only performs the final action if there was an
exception raised by the computation.
uninterruptibleMask_ :: IO a -> IO a #
Like uninterruptibleMask
, but does not pass a restore
action
to the argument.
uninterruptibleMask :: ((forall a. IO a -> IO a) -> IO b) -> IO b #
Like mask
, but the masked computation is not interruptible (see
Control.Exception). THIS SHOULD BE USED WITH
GREAT CARE, because if a thread executing in uninterruptibleMask
blocks for any reason, then the thread (and possibly the program,
if this is the main thread) will be unresponsive and unkillable.
This function should only be necessary if you need to mask
exceptions around an interruptible operation, and you can guarantee
that the interruptible operation will only block for a short period
of time.
Arguments
:: IO a | computation to run first |
-> IO b | computation to run afterward (even if an exception was raised) |
-> IO a |
A specialised variant of bracket
with just a computation to run
afterward.
Evaluate the argument to weak head normal form.
evaluate
is typically used to uncover any exceptions that a lazy value
may contain, and possibly handle them.
evaluate
only evaluates to weak head normal form. If deeper
evaluation is needed, the force
function from Control.DeepSeq
may be handy:
evaluate $ force x
There is a subtle difference between
and evaluate
x
,
analogous to the difference between return
$!
xthrowIO
and throw
. If the lazy
value x
throws an exception,
will fail to return an
return
$!
xIO
action and will throw an exception instead.
, on the
other hand, always produces an evaluate
xIO
action; that action will throw an
exception upon execution iff x
throws an exception upon evaluation.
The practical implication of this difference is that due to the imprecise exceptions semantics,
(return $! error "foo") >> error "bar"
may throw either "foo"
or "bar"
, depending on the optimizations
performed by the compiler. On the other hand,
evaluate (error "foo") >> error "bar"
is guaranteed to throw "foo"
.
The rule of thumb is to use evaluate
to force or handle exceptions in
lazy values. If, on the other hand, you are forcing a lazy value for
efficiency reasons only and do not care about exceptions, you may
use
.return
$!
x
data ArrayException #
Exceptions generated by array operations
Constructors
IndexOutOfBounds String | An attempt was made to index an array outside its declared bounds. |
UndefinedElement String | An attempt was made to evaluate an element of an array that had not been initialized. |
Instances
Exception ArrayException | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods toException :: ArrayException -> SomeException # | |
Show ArrayException | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods showsPrec :: Int -> ArrayException -> ShowS # show :: ArrayException -> String # showList :: [ArrayException] -> ShowS # | |
Eq ArrayException | Since: base-4.2.0.0 |
Defined in GHC.IO.Exception Methods (==) :: ArrayException -> ArrayException -> Bool # (/=) :: ArrayException -> ArrayException -> Bool # | |
Ord ArrayException | Since: base-4.2.0.0 |
Defined in GHC.IO.Exception Methods compare :: ArrayException -> ArrayException -> Ordering # (<) :: ArrayException -> ArrayException -> Bool # (<=) :: ArrayException -> ArrayException -> Bool # (>) :: ArrayException -> ArrayException -> Bool # (>=) :: ArrayException -> ArrayException -> Bool # max :: ArrayException -> ArrayException -> ArrayException # min :: ArrayException -> ArrayException -> ArrayException # |
data AsyncException #
Asynchronous exceptions.
Constructors
StackOverflow | The current thread's stack exceeded its limit. Since an exception has been raised, the thread's stack will certainly be below its limit again, but the programmer should take remedial action immediately. |
HeapOverflow | The program's heap is reaching its limit, and the program should take action to reduce the amount of live data it has. Notes:
|
ThreadKilled | This exception is raised by another thread
calling |
UserInterrupt | This exception is raised by default in the main thread of the program when the user requests to terminate the program via the usual mechanism(s) (e.g. Control-C in the console). |
Instances
Exception AsyncException | Since: base-4.7.0.0 |
Defined in GHC.IO.Exception Methods toException :: AsyncException -> SomeException # | |
Show AsyncException | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods showsPrec :: Int -> AsyncException -> ShowS # show :: AsyncException -> String # showList :: [AsyncException] -> ShowS # | |
Eq AsyncException | Since: base-4.2.0.0 |
Defined in GHC.IO.Exception Methods (==) :: AsyncException -> AsyncException -> Bool # (/=) :: AsyncException -> AsyncException -> Bool # | |
Ord AsyncException | Since: base-4.2.0.0 |
Defined in GHC.IO.Exception Methods compare :: AsyncException -> AsyncException -> Ordering # (<) :: AsyncException -> AsyncException -> Bool # (<=) :: AsyncException -> AsyncException -> Bool # (>) :: AsyncException -> AsyncException -> Bool # (>=) :: AsyncException -> AsyncException -> Bool # max :: AsyncException -> AsyncException -> AsyncException # min :: AsyncException -> AsyncException -> AsyncException # |
data SomeAsyncException #
Superclass for asynchronous exceptions.
Since: base-4.7.0.0
Constructors
Exception e => SomeAsyncException e |
Instances
Exception SomeAsyncException | Since: base-4.7.0.0 |
Defined in GHC.IO.Exception Methods toException :: SomeAsyncException -> SomeException # fromException :: SomeException -> Maybe SomeAsyncException # | |
Show SomeAsyncException | Since: base-4.7.0.0 |
Defined in GHC.IO.Exception Methods showsPrec :: Int -> SomeAsyncException -> ShowS # show :: SomeAsyncException -> String # showList :: [SomeAsyncException] -> ShowS # |
newtype CompactionFailed #
Compaction found an object that cannot be compacted. Functions
cannot be compacted, nor can mutable objects or pinned objects.
See compact
.
Since: base-4.10.0.0
Constructors
CompactionFailed String |
Instances
Exception CompactionFailed | Since: base-4.10.0.0 |
Defined in GHC.IO.Exception Methods toException :: CompactionFailed -> SomeException # | |
Show CompactionFailed | Since: base-4.10.0.0 |
Defined in GHC.IO.Exception Methods showsPrec :: Int -> CompactionFailed -> ShowS # show :: CompactionFailed -> String # showList :: [CompactionFailed] -> ShowS # |
data AllocationLimitExceeded #
This thread has exceeded its allocation limit. See
setAllocationCounter
and
enableAllocationLimit
.
Since: base-4.8.0.0
Constructors
AllocationLimitExceeded |
Instances
Exception AllocationLimitExceeded | Since: base-4.8.0.0 |
Defined in GHC.IO.Exception | |
Show AllocationLimitExceeded | Since: base-4.7.1.0 |
Defined in GHC.IO.Exception Methods showsPrec :: Int -> AllocationLimitExceeded -> ShowS # show :: AllocationLimitExceeded -> String # showList :: [AllocationLimitExceeded] -> ShowS # |
There are no runnable threads, so the program is deadlocked.
The Deadlock
exception is raised in the main thread only.
Constructors
Deadlock |
Instances
Exception Deadlock | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods toException :: Deadlock -> SomeException # fromException :: SomeException -> Maybe Deadlock # displayException :: Deadlock -> String # | |
Show Deadlock | Since: base-4.1.0.0 |
data BlockedIndefinitelyOnSTM #
The thread is waiting to retry an STM transaction, but there are no
other references to any TVar
s involved, so it can't ever continue.
Constructors
BlockedIndefinitelyOnSTM |
Instances
Exception BlockedIndefinitelyOnSTM | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception | |
Show BlockedIndefinitelyOnSTM | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods showsPrec :: Int -> BlockedIndefinitelyOnSTM -> ShowS # show :: BlockedIndefinitelyOnSTM -> String # showList :: [BlockedIndefinitelyOnSTM] -> ShowS # |
asyncExceptionToException :: Exception e => e -> SomeException #
Since: base-4.7.0.0
asyncExceptionFromException :: Exception e => SomeException -> Maybe e #
Since: base-4.7.0.0
data NestedAtomically #
Thrown when the program attempts to call atomically
, from the stm
package, inside another call to atomically
.
Constructors
NestedAtomically |
Instances
Exception NestedAtomically | Since: base-4.0 |
Defined in Control.Exception.Base Methods toException :: NestedAtomically -> SomeException # | |
Show NestedAtomically | Since: base-4.0 |
Defined in Control.Exception.Base Methods showsPrec :: Int -> NestedAtomically -> ShowS # show :: NestedAtomically -> String # showList :: [NestedAtomically] -> ShowS # |
data NonTermination #
Thrown when the runtime system detects that the computation is guaranteed not to terminate. Note that there is no guarantee that the runtime system will notice whether any given computation is guaranteed to terminate or not.
Constructors
NonTermination |
Instances
Exception NonTermination | Since: base-4.0 |
Defined in Control.Exception.Base Methods toException :: NonTermination -> SomeException # | |
Show NonTermination | Since: base-4.0 |
Defined in Control.Exception.Base Methods showsPrec :: Int -> NonTermination -> ShowS # show :: NonTermination -> String # showList :: [NonTermination] -> ShowS # |
newtype NoMethodError #
A class method without a definition (neither a default definition,
nor a definition in the appropriate instance) was called. The
String
gives information about which method it was.
Constructors
NoMethodError String |
Instances
Exception NoMethodError | Since: base-4.0 |
Defined in Control.Exception.Base Methods toException :: NoMethodError -> SomeException # fromException :: SomeException -> Maybe NoMethodError # displayException :: NoMethodError -> String # | |
Show NoMethodError | Since: base-4.0 |
Defined in Control.Exception.Base Methods showsPrec :: Int -> NoMethodError -> ShowS # show :: NoMethodError -> String # showList :: [NoMethodError] -> ShowS # |
newtype RecUpdError #
A record update was performed on a constructor without the
appropriate field. This can only happen with a datatype with
multiple constructors, where some fields are in one constructor
but not another. The String
gives information about the source
location of the record update.
Constructors
RecUpdError String |
Instances
Exception RecUpdError | Since: base-4.0 |
Defined in Control.Exception.Base Methods toException :: RecUpdError -> SomeException # fromException :: SomeException -> Maybe RecUpdError # displayException :: RecUpdError -> String # | |
Show RecUpdError | Since: base-4.0 |
Defined in Control.Exception.Base Methods showsPrec :: Int -> RecUpdError -> ShowS # show :: RecUpdError -> String # showList :: [RecUpdError] -> ShowS # |
newtype RecConError #
An uninitialised record field was used. The String
gives
information about the source location where the record was
constructed.
Constructors
RecConError String |
Instances
Exception RecConError | Since: base-4.0 |
Defined in Control.Exception.Base Methods toException :: RecConError -> SomeException # fromException :: SomeException -> Maybe RecConError # displayException :: RecConError -> String # | |
Show RecConError | Since: base-4.0 |
Defined in Control.Exception.Base Methods showsPrec :: Int -> RecConError -> ShowS # show :: RecConError -> String # showList :: [RecConError] -> ShowS # |
newtype RecSelError #
A record selector was applied to a constructor without the
appropriate field. This can only happen with a datatype with
multiple constructors, where some fields are in one constructor
but not another. The String
gives information about the source
location of the record selector.
Constructors
RecSelError String |
Instances
Exception RecSelError | Since: base-4.0 |
Defined in Control.Exception.Base Methods toException :: RecSelError -> SomeException # fromException :: SomeException -> Maybe RecSelError # displayException :: RecSelError -> String # | |
Show RecSelError | Since: base-4.0 |
Defined in Control.Exception.Base Methods showsPrec :: Int -> RecSelError -> ShowS # show :: RecSelError -> String # showList :: [RecSelError] -> ShowS # |
newtype PatternMatchFail #
A pattern match failed. The String
gives information about the
source location of the pattern.
Constructors
PatternMatchFail String |
Instances
Exception PatternMatchFail | Since: base-4.0 |
Defined in Control.Exception.Base Methods toException :: PatternMatchFail -> SomeException # | |
Show PatternMatchFail | Since: base-4.0 |
Defined in Control.Exception.Base Methods showsPrec :: Int -> PatternMatchFail -> ShowS # show :: PatternMatchFail -> String # showList :: [PatternMatchFail] -> ShowS # |
Arguments
:: Exception e | |
=> (e -> Maybe b) | Predicate to select exceptions |
-> IO a | Computation to run |
-> (b -> IO a) | Handler |
-> IO a |
The function catchJust
is like catch
, but it takes an extra
argument which is an exception predicate, a function which
selects which type of exceptions we're interested in.
catchJust (\e -> if isDoesNotExistErrorType (ioeGetErrorType e) then Just () else Nothing) (readFile f) (\_ -> do hPutStrLn stderr ("No such file: " ++ show f) return "")
Any other exceptions which are not matched by the predicate
are re-raised, and may be caught by an enclosing
catch
, catchJust
, etc.
handle :: Exception e => (e -> IO a) -> IO a -> IO a #
A version of catch
with the arguments swapped around; useful in
situations where the code for the handler is shorter. For example:
do handle (\NonTermination -> exitWith (ExitFailure 1)) $ ...
mapException :: (Exception e1, Exception e2) => (e1 -> e2) -> a -> a #
This function maps one exception into another as proposed in the paper "A semantics for imprecise exceptions".
bracket_ :: IO a -> IO b -> IO c -> IO c #
A variant of bracket
where the return value from the first computation
is not required.
Arguments
:: IO a | computation to run first ("acquire resource") |
-> (a -> IO b) | computation to run last ("release resource") |
-> (a -> IO c) | computation to run in-between |
-> IO c |
Like bracket
, but only performs the final action if there was an
exception raised by the in-between computation.
You need this when using catches
.
catches :: IO a -> [Handler a] -> IO a #
Sometimes you want to catch two different sorts of exception. You could do something like
f = expr `catch` \ (ex :: ArithException) -> handleArith ex `catch` \ (ex :: IOException) -> handleIO ex
However, there are a couple of problems with this approach. The first is
that having two exception handlers is inefficient. However, the more
serious issue is that the second exception handler will catch exceptions
in the first, e.g. in the example above, if handleArith
throws an
IOException
then the second exception handler will catch it.
Instead, we provide a function catches
, which would be used thus:
f = expr `catches` [Handler (\ (ex :: ArithException) -> handleArith ex), Handler (\ (ex :: IOException) -> handleIO ex)]
allowInterrupt :: IO () #
When invoked inside mask
, this function allows a masked
asynchronous exception to be raised, if one exists. It is
equivalent to performing an interruptible operation (see
#interruptible), but does not involve any actual blocking.
When called outside mask
, or inside uninterruptibleMask
, this
function has no effect.
Since: base-4.4.0.0
Semiring functions
module Protolude.Semiring
String functions
IsString
is used in combination with the -XOverloadedStrings
language extension to convert the literals to different string types.
For example, if you use the text package, you can say
{-# LANGUAGE OverloadedStrings #-} myText = "hello world" :: Text
Internally, the extension will convert this to the equivalent of
myText = fromString @Text ("hello world" :: String)
Note: You can use fromString
in normal code as well,
but the usual performance/memory efficiency problems with String
apply.
Minimal complete definition
Instances
IsString ByteString | Beware: |
Defined in Data.ByteString.Internal.Type Methods fromString :: String -> ByteString # | |
IsString ByteString | Beware: |
Defined in Data.ByteString.Lazy.Internal Methods fromString :: String -> ByteString # | |
IsString ShortByteString | Beware: |
Defined in Data.ByteString.Short.Internal Methods fromString :: String -> ShortByteString # | |
IsString Doc | |
Defined in Text.PrettyPrint.HughesPJ Methods fromString :: String -> Doc # | |
IsString Builder | Performs replacement on invalid scalar values:
|
Defined in Data.Text.Internal.Builder Methods fromString :: String -> Builder # | |
IsString a => IsString (Identity a) | Since: base-4.9.0.0 |
Defined in Data.String Methods fromString :: String -> Identity a # | |
a ~ Char => IsString (Seq a) | Since: containers-0.5.7 |
Defined in Data.Sequence.Internal Methods fromString :: String -> Seq a # | |
(IsString a, Hashable a) => IsString (Hashed a) | |
Defined in Data.Hashable.Class Methods fromString :: String -> Hashed a # | |
IsString (Doc a) | |
Defined in Text.PrettyPrint.Annotated.HughesPJ Methods fromString :: String -> Doc a # | |
a ~ Char => IsString [a] |
Since: base-2.1 |
Defined in Data.String Methods fromString :: String -> [a] # | |
IsString a => IsString (Const a b) | Since: base-4.9.0.0 |
Defined in Data.String Methods fromString :: String -> Const a b # |
Safe functions
module Protolude.Safe
Eq functions
module Data.Eq
Ord functions
Instances
Data Ordering | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ordering -> c Ordering # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Ordering # toConstr :: Ordering -> Constr # dataTypeOf :: Ordering -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Ordering) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Ordering) # gmapT :: (forall b. Data b => b -> b) -> Ordering -> Ordering # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r # gmapQ :: (forall d. Data d => d -> u) -> Ordering -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ordering -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # | |
Monoid Ordering | Since: base-2.1 |
Semigroup Ordering | Since: base-4.9.0.0 |
Bounded Ordering | Since: base-2.1 |
Enum Ordering | Since: base-2.1 |
Generic Ordering | |
Defined in GHC.Generics | |
Ix Ordering | Since: base-2.1 |
Defined in GHC.Ix Methods range :: (Ordering, Ordering) -> [Ordering] # index :: (Ordering, Ordering) -> Ordering -> Int # unsafeIndex :: (Ordering, Ordering) -> Ordering -> Int # inRange :: (Ordering, Ordering) -> Ordering -> Bool # rangeSize :: (Ordering, Ordering) -> Int # unsafeRangeSize :: (Ordering, Ordering) -> Int # | |
Read Ordering | Since: base-2.1 |
Show Ordering | Since: base-2.1 |
NFData Ordering | |
Defined in Control.DeepSeq | |
Eq Ordering | |
Ord Ordering | |
Defined in GHC.Classes | |
Hashable Ordering | |
Defined in Data.Hashable.Class | |
type Rep Ordering | Since: base-4.6.0.0 |
The Ord
class is used for totally ordered datatypes.
Instances of Ord
can be derived for any user-defined datatype whose
constituent types are in Ord
. The declared order of the constructors in
the data declaration determines the ordering in derived Ord
instances. The
Ordering
datatype allows a single comparison to determine the precise
ordering of two objects.
Ord
, as defined by the Haskell report, implements a total order and has the
following properties:
- Comparability
x <= y || y <= x
=True
- Transitivity
- if
x <= y && y <= z
=True
, thenx <= z
=True
- Reflexivity
x <= x
=True
- Antisymmetry
- if
x <= y && y <= x
=True
, thenx == y
=True
The following operator interactions are expected to hold:
x >= y
=y <= x
x < y
=x <= y && x /= y
x > y
=y < x
x < y
=compare x y == LT
x > y
=compare x y == GT
x == y
=compare x y == EQ
min x y == if x <= y then x else y
=True
max x y == if x >= y then x else y
=True
Note that (7.) and (8.) do not require min
and max
to return either of
their arguments. The result is merely required to equal one of the
arguments in terms of (==)
.
Minimal complete definition: either compare
or <=
.
Using compare
can be more efficient for complex types.
Methods
compare :: a -> a -> Ordering #
(<) :: a -> a -> Bool infix 4 #
(<=) :: a -> a -> Bool infix 4 #
(>) :: a -> a -> Bool infix 4 #
Instances
Ord ByteArray | Non-lexicographic ordering. This compares the lengths of the byte arrays first and uses a lexicographic ordering if the lengths are equal. Subject to change between major versions. Since: base-4.17.0.0 |
Ord All | Since: base-2.1 |
Ord Any | Since: base-2.1 |
Ord SomeTypeRep | |
Defined in Data.Typeable.Internal Methods compare :: SomeTypeRep -> SomeTypeRep -> Ordering # (<) :: SomeTypeRep -> SomeTypeRep -> Bool # (<=) :: SomeTypeRep -> SomeTypeRep -> Bool # (>) :: SomeTypeRep -> SomeTypeRep -> Bool # (>=) :: SomeTypeRep -> SomeTypeRep -> Bool # max :: SomeTypeRep -> SomeTypeRep -> SomeTypeRep # min :: SomeTypeRep -> SomeTypeRep -> SomeTypeRep # | |
Ord Unique | |
Ord Version | Since: base-2.1 |
Ord CBool | |
Ord CChar | |
Ord CClock | |
Ord CDouble | |
Ord CFloat | |
Ord CInt | |
Ord CIntMax | |
Ord CIntPtr | |
Ord CLLong | |
Ord CLong | |
Ord CPtrdiff | |
Defined in Foreign.C.Types | |
Ord CSChar | |
Ord CSUSeconds | |
Defined in Foreign.C.Types Methods compare :: CSUSeconds -> CSUSeconds -> Ordering # (<) :: CSUSeconds -> CSUSeconds -> Bool # (<=) :: CSUSeconds -> CSUSeconds -> Bool # (>) :: CSUSeconds -> CSUSeconds -> Bool # (>=) :: CSUSeconds -> CSUSeconds -> Bool # max :: CSUSeconds -> CSUSeconds -> CSUSeconds # min :: CSUSeconds -> CSUSeconds -> CSUSeconds # | |
Ord CShort | |
Ord CSigAtomic | |
Defined in Foreign.C.Types Methods compare :: CSigAtomic -> CSigAtomic -> Ordering # (<) :: CSigAtomic -> CSigAtomic -> Bool # (<=) :: CSigAtomic -> CSigAtomic -> Bool # (>) :: CSigAtomic -> CSigAtomic -> Bool # (>=) :: CSigAtomic -> CSigAtomic -> Bool # max :: CSigAtomic -> CSigAtomic -> CSigAtomic # min :: CSigAtomic -> CSigAtomic -> CSigAtomic # | |
Ord CSize | |
Ord CTime | |
Ord CUChar | |
Ord CUInt | |
Ord CUIntMax | |
Defined in Foreign.C.Types | |
Ord CUIntPtr | |
Defined in Foreign.C.Types | |
Ord CULLong | |
Ord CULong | |
Ord CUSeconds | |
Ord CUShort | |
Ord CWchar | |
Ord IntPtr | |
Ord WordPtr | |
Ord Void | Since: base-4.8.0.0 |
Ord ByteOrder | Since: base-4.11.0.0 |
Ord BlockReason | Since: base-4.3.0.0 |
Defined in GHC.Conc.Sync Methods compare :: BlockReason -> BlockReason -> Ordering # (<) :: BlockReason -> BlockReason -> Bool # (<=) :: BlockReason -> BlockReason -> Bool # (>) :: BlockReason -> BlockReason -> Bool # (>=) :: BlockReason -> BlockReason -> Bool # max :: BlockReason -> BlockReason -> BlockReason # min :: BlockReason -> BlockReason -> BlockReason # | |
Ord ThreadId | Since: base-4.2.0.0 |
Defined in GHC.Conc.Sync | |
Ord ThreadStatus | Since: base-4.3.0.0 |
Defined in GHC.Conc.Sync Methods compare :: ThreadStatus -> ThreadStatus -> Ordering # (<) :: ThreadStatus -> ThreadStatus -> Bool # (<=) :: ThreadStatus -> ThreadStatus -> Bool # (>) :: ThreadStatus -> ThreadStatus -> Bool # (>=) :: ThreadStatus -> ThreadStatus -> Bool # max :: ThreadStatus -> ThreadStatus -> ThreadStatus # min :: ThreadStatus -> ThreadStatus -> ThreadStatus # | |
Ord TimeoutKey | |
Defined in GHC.Event.TimeOut Methods compare :: TimeoutKey -> TimeoutKey -> Ordering # (<) :: TimeoutKey -> TimeoutKey -> Bool # (<=) :: TimeoutKey -> TimeoutKey -> Bool # (>) :: TimeoutKey -> TimeoutKey -> Bool # (>=) :: TimeoutKey -> TimeoutKey -> Bool # max :: TimeoutKey -> TimeoutKey -> TimeoutKey # min :: TimeoutKey -> TimeoutKey -> TimeoutKey # | |
Ord ErrorCall | Since: base-4.7.0.0 |
Ord ArithException | Since: base-3.0 |
Defined in GHC.Exception.Type Methods compare :: ArithException -> ArithException -> Ordering # (<) :: ArithException -> ArithException -> Bool # (<=) :: ArithException -> ArithException -> Bool # (>) :: ArithException -> ArithException -> Bool # (>=) :: ArithException -> ArithException -> Bool # max :: ArithException -> ArithException -> ArithException # min :: ArithException -> ArithException -> ArithException # | |
Ord Fingerprint | Since: base-4.4.0.0 |
Defined in GHC.Fingerprint.Type Methods compare :: Fingerprint -> Fingerprint -> Ordering # (<) :: Fingerprint -> Fingerprint -> Bool # (<=) :: Fingerprint -> Fingerprint -> Bool # (>) :: Fingerprint -> Fingerprint -> Bool # (>=) :: Fingerprint -> Fingerprint -> Bool # max :: Fingerprint -> Fingerprint -> Fingerprint # min :: Fingerprint -> Fingerprint -> Fingerprint # | |
Ord Associativity | Since: base-4.6.0.0 |
Defined in GHC.Generics Methods compare :: Associativity -> Associativity -> Ordering # (<) :: Associativity -> Associativity -> Bool # (<=) :: Associativity -> Associativity -> Bool # (>) :: Associativity -> Associativity -> Bool # (>=) :: Associativity -> Associativity -> Bool # max :: Associativity -> Associativity -> Associativity # min :: Associativity -> Associativity -> Associativity # | |
Ord DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: DecidedStrictness -> DecidedStrictness -> Ordering # (<) :: DecidedStrictness -> DecidedStrictness -> Bool # (<=) :: DecidedStrictness -> DecidedStrictness -> Bool # (>) :: DecidedStrictness -> DecidedStrictness -> Bool # (>=) :: DecidedStrictness -> DecidedStrictness -> Bool # max :: DecidedStrictness -> DecidedStrictness -> DecidedStrictness # min :: DecidedStrictness -> DecidedStrictness -> DecidedStrictness # | |
Ord Fixity | Since: base-4.6.0.0 |
Ord SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: SourceStrictness -> SourceStrictness -> Ordering # (<) :: SourceStrictness -> SourceStrictness -> Bool # (<=) :: SourceStrictness -> SourceStrictness -> Bool # (>) :: SourceStrictness -> SourceStrictness -> Bool # (>=) :: SourceStrictness -> SourceStrictness -> Bool # max :: SourceStrictness -> SourceStrictness -> SourceStrictness # min :: SourceStrictness -> SourceStrictness -> SourceStrictness # | |
Ord SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: SourceUnpackedness -> SourceUnpackedness -> Ordering # (<) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (<=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (>) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (>=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # max :: SourceUnpackedness -> SourceUnpackedness -> SourceUnpackedness # min :: SourceUnpackedness -> SourceUnpackedness -> SourceUnpackedness # | |
Ord SeekMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Device | |
Ord ArrayException | Since: base-4.2.0.0 |
Defined in GHC.IO.Exception Methods compare :: ArrayException -> ArrayException -> Ordering # (<) :: ArrayException -> ArrayException -> Bool # (<=) :: ArrayException -> ArrayException -> Bool # (>) :: ArrayException -> ArrayException -> Bool # (>=) :: ArrayException -> ArrayException -> Bool # max :: ArrayException -> ArrayException -> ArrayException # min :: ArrayException -> ArrayException -> ArrayException # | |
Ord AsyncException | Since: base-4.2.0.0 |
Defined in GHC.IO.Exception Methods compare :: AsyncException -> AsyncException -> Ordering # (<) :: AsyncException -> AsyncException -> Bool # (<=) :: AsyncException -> AsyncException -> Bool # (>) :: AsyncException -> AsyncException -> Bool # (>=) :: AsyncException -> AsyncException -> Bool # max :: AsyncException -> AsyncException -> AsyncException # min :: AsyncException -> AsyncException -> AsyncException # | |
Ord ExitCode | |
Defined in GHC.IO.Exception | |
Ord BufferMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types Methods compare :: BufferMode -> BufferMode -> Ordering # (<) :: BufferMode -> BufferMode -> Bool # (<=) :: BufferMode -> BufferMode -> Bool # (>) :: BufferMode -> BufferMode -> Bool # (>=) :: BufferMode -> BufferMode -> Bool # max :: BufferMode -> BufferMode -> BufferMode # min :: BufferMode -> BufferMode -> BufferMode # | |
Ord Newline | Since: base-4.3.0.0 |
Ord NewlineMode | Since: base-4.3.0.0 |
Defined in GHC.IO.Handle.Types Methods compare :: NewlineMode -> NewlineMode -> Ordering # (<) :: NewlineMode -> NewlineMode -> Bool # (<=) :: NewlineMode -> NewlineMode -> Bool # (>) :: NewlineMode -> NewlineMode -> Bool # (>=) :: NewlineMode -> NewlineMode -> Bool # max :: NewlineMode -> NewlineMode -> NewlineMode # min :: NewlineMode -> NewlineMode -> NewlineMode # | |
Ord IOMode | Since: base-4.2.0.0 |
Ord Int16 | Since: base-2.1 |
Ord Int32 | Since: base-2.1 |
Ord Int64 | Since: base-2.1 |
Ord Int8 | Since: base-2.1 |
Ord SomeChar | |
Defined in GHC.TypeLits | |
Ord SomeSymbol | Since: base-4.7.0.0 |
Defined in GHC.TypeLits Methods compare :: SomeSymbol -> SomeSymbol -> Ordering # (<) :: SomeSymbol -> SomeSymbol -> Bool # (<=) :: SomeSymbol -> SomeSymbol -> Bool # (>) :: SomeSymbol -> SomeSymbol -> Bool # (>=) :: SomeSymbol -> SomeSymbol -> Bool # max :: SomeSymbol -> SomeSymbol -> SomeSymbol # min :: SomeSymbol -> SomeSymbol -> SomeSymbol # | |
Ord SomeNat | Since: base-4.7.0.0 |
Ord GeneralCategory | Since: base-2.1 |
Defined in GHC.Unicode Methods compare :: GeneralCategory -> GeneralCategory -> Ordering # (<) :: GeneralCategory -> GeneralCategory -> Bool # (<=) :: GeneralCategory -> GeneralCategory -> Bool # (>) :: GeneralCategory -> GeneralCategory -> Bool # (>=) :: GeneralCategory -> GeneralCategory -> Bool # max :: GeneralCategory -> GeneralCategory -> GeneralCategory # min :: GeneralCategory -> GeneralCategory -> GeneralCategory # | |
Ord Word16 | Since: base-2.1 |
Ord Word32 | Since: base-2.1 |
Ord Word64 | Since: base-2.1 |
Ord Word8 | Since: base-2.1 |
Ord CBlkCnt | |
Ord CBlkSize | |
Defined in System.Posix.Types | |
Ord CCc | |
Ord CClockId | |
Defined in System.Posix.Types | |
Ord CDev | |
Ord CFsBlkCnt | |
Ord CFsFilCnt | |
Ord CGid | |
Ord CId | |
Ord CIno | |
Ord CKey | |
Ord CMode | |
Ord CNfds | |
Ord CNlink | |
Ord COff | |
Ord CPid | |
Ord CRLim | |
Ord CSocklen | |
Defined in System.Posix.Types | |
Ord CSpeed | |
Ord CSsize | |
Ord CTcflag | |
Ord CTimer | |
Ord CUid | |
Ord Fd | |
Ord ByteString | |
Defined in Data.ByteString.Internal.Type Methods compare :: ByteString -> ByteString -> Ordering # (<) :: ByteString -> ByteString -> Bool # (<=) :: ByteString -> ByteString -> Bool # (>) :: ByteString -> ByteString -> Bool # (>=) :: ByteString -> ByteString -> Bool # max :: ByteString -> ByteString -> ByteString # min :: ByteString -> ByteString -> ByteString # | |
Ord ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods compare :: ByteString -> ByteString -> Ordering # (<) :: ByteString -> ByteString -> Bool # (<=) :: ByteString -> ByteString -> Bool # (>) :: ByteString -> ByteString -> Bool # (>=) :: ByteString -> ByteString -> Bool # max :: ByteString -> ByteString -> ByteString # min :: ByteString -> ByteString -> ByteString # | |
Ord ShortByteString | Lexicographic order. |
Defined in Data.ByteString.Short.Internal Methods compare :: ShortByteString -> ShortByteString -> Ordering # (<) :: ShortByteString -> ShortByteString -> Bool # (<=) :: ShortByteString -> ShortByteString -> Bool # (>) :: ShortByteString -> ShortByteString -> Bool # (>=) :: ShortByteString -> ShortByteString -> Bool # max :: ShortByteString -> ShortByteString -> ShortByteString # min :: ShortByteString -> ShortByteString -> ShortByteString # | |
Ord IntSet | |
Ord OsChar | Byte ordering of the internal representation. |
Defined in System.OsString.Internal.Types.Hidden | |
Ord OsString | Byte ordering of the internal representation. |
Defined in System.OsString.Internal.Types.Hidden | |
Ord PosixChar | |
Defined in System.OsString.Internal.Types.Hidden | |
Ord PosixString | |
Defined in System.OsString.Internal.Types.Hidden Methods compare :: PosixString -> PosixString -> Ordering # (<) :: PosixString -> PosixString -> Bool # (<=) :: PosixString -> PosixString -> Bool # (>) :: PosixString -> PosixString -> Bool # (>=) :: PosixString -> PosixString -> Bool # max :: PosixString -> PosixString -> PosixString # min :: PosixString -> PosixString -> PosixString # | |
Ord WindowsChar | |
Defined in System.OsString.Internal.Types.Hidden Methods compare :: WindowsChar -> WindowsChar -> Ordering # (<) :: WindowsChar -> WindowsChar -> Bool # (<=) :: WindowsChar -> WindowsChar -> Bool # (>) :: WindowsChar -> WindowsChar -> Bool # (>=) :: WindowsChar -> WindowsChar -> Bool # max :: WindowsChar -> WindowsChar -> WindowsChar # min :: WindowsChar -> WindowsChar -> WindowsChar # | |
Ord WindowsString | |
Defined in System.OsString.Internal.Types.Hidden Methods compare :: WindowsString -> WindowsString -> Ordering # (<) :: WindowsString -> WindowsString -> Bool # (<=) :: WindowsString -> WindowsString -> Bool # (>) :: WindowsString -> WindowsString -> Bool # (>=) :: WindowsString -> WindowsString -> Bool # max :: WindowsString -> WindowsString -> WindowsString # min :: WindowsString -> WindowsString -> WindowsString # | |
Ord BigNat | |
Ord Extension | |
Ord Ordering | |
Defined in GHC.Classes | |
Ord TyCon | |
Ord OsChar | Byte ordering of the internal representation. |
Ord OsString | Byte ordering of the internal representation. |
Defined in System.OsString.Internal.Types | |
Ord PosixChar | |
Ord PosixString | |
Defined in System.OsString.Internal.Types Methods compare :: PosixString -> PosixString -> Ordering # (<) :: PosixString -> PosixString -> Bool # (<=) :: PosixString -> PosixString -> Bool # (>) :: PosixString -> PosixString -> Bool # (>=) :: PosixString -> PosixString -> Bool # max :: PosixString -> PosixString -> PosixString # min :: PosixString -> PosixString -> PosixString # | |
Ord WindowsChar | |
Defined in System.OsString.Internal.Types Methods compare :: WindowsChar -> WindowsChar -> Ordering # (<) :: WindowsChar -> WindowsChar -> Bool # (<=) :: WindowsChar -> WindowsChar -> Bool # (>) :: WindowsChar -> WindowsChar -> Bool # (>=) :: WindowsChar -> WindowsChar -> Bool # max :: WindowsChar -> WindowsChar -> WindowsChar # min :: WindowsChar -> WindowsChar -> WindowsChar # | |
Ord WindowsString | |
Defined in System.OsString.Internal.Types Methods compare :: WindowsString -> WindowsString -> Ordering # (<) :: WindowsString -> WindowsString -> Bool # (<=) :: WindowsString -> WindowsString -> Bool # (>) :: WindowsString -> WindowsString -> Bool # (>=) :: WindowsString -> WindowsString -> Bool # max :: WindowsString -> WindowsString -> WindowsString # min :: WindowsString -> WindowsString -> WindowsString # | |
Ord Leniency Source # | |
Defined in Protolude.Conv | |
Ord AnnLookup | |
Ord AnnTarget | |
Ord Bang | |
Ord BndrVis | |
Defined in Language.Haskell.TH.Syntax | |
Ord Body | |
Ord Bytes | |
Ord Callconv | |
Defined in Language.Haskell.TH.Syntax | |
Ord Clause | |
Ord Con | |
Ord Dec | |
Ord DecidedStrictness | |
Defined in Language.Haskell.TH.Syntax Methods compare :: DecidedStrictness -> DecidedStrictness -> Ordering # (<) :: DecidedStrictness -> DecidedStrictness -> Bool # (<=) :: DecidedStrictness -> DecidedStrictness -> Bool # (>) :: DecidedStrictness -> DecidedStrictness -> Bool # (>=) :: DecidedStrictness -> DecidedStrictness -> Bool # max :: DecidedStrictness -> DecidedStrictness -> DecidedStrictness # min :: DecidedStrictness -> DecidedStrictness -> DecidedStrictness # | |
Ord DerivClause | |
Defined in Language.Haskell.TH.Syntax Methods compare :: DerivClause -> DerivClause -> Ordering # (<) :: DerivClause -> DerivClause -> Bool # (<=) :: DerivClause -> DerivClause -> Bool # (>) :: DerivClause -> DerivClause -> Bool # (>=) :: DerivClause -> DerivClause -> Bool # max :: DerivClause -> DerivClause -> DerivClause # min :: DerivClause -> DerivClause -> DerivClause # | |
Ord DerivStrategy | |
Defined in Language.Haskell.TH.Syntax Methods compare :: DerivStrategy -> DerivStrategy -> Ordering # (<) :: DerivStrategy -> DerivStrategy -> Bool # (<=) :: DerivStrategy -> DerivStrategy -> Bool # (>) :: DerivStrategy -> DerivStrategy -> Bool # (>=) :: DerivStrategy -> DerivStrategy -> Bool # max :: DerivStrategy -> DerivStrategy -> DerivStrategy # min :: DerivStrategy -> DerivStrategy -> DerivStrategy # | |
Ord DocLoc | |
Ord Exp | |
Ord FamilyResultSig | |
Defined in Language.Haskell.TH.Syntax Methods compare :: FamilyResultSig -> FamilyResultSig -> Ordering # (<) :: FamilyResultSig -> FamilyResultSig -> Bool # (<=) :: FamilyResultSig -> FamilyResultSig -> Bool # (>) :: FamilyResultSig -> FamilyResultSig -> Bool # (>=) :: FamilyResultSig -> FamilyResultSig -> Bool # max :: FamilyResultSig -> FamilyResultSig -> FamilyResultSig # min :: FamilyResultSig -> FamilyResultSig -> FamilyResultSig # | |
Ord Fixity | |
Ord FixityDirection | |
Defined in Language.Haskell.TH.Syntax Methods compare :: FixityDirection -> FixityDirection -> Ordering # (<) :: FixityDirection -> FixityDirection -> Bool # (<=) :: FixityDirection -> FixityDirection -> Bool # (>) :: FixityDirection -> FixityDirection -> Bool # (>=) :: FixityDirection -> FixityDirection -> Bool # max :: FixityDirection -> FixityDirection -> FixityDirection # min :: FixityDirection -> FixityDirection -> FixityDirection # | |
Ord Foreign | |
Defined in Language.Haskell.TH.Syntax | |
Ord FunDep | |
Ord Guard | |
Ord Info | |
Ord InjectivityAnn | |
Defined in Language.Haskell.TH.Syntax Methods compare :: InjectivityAnn -> InjectivityAnn -> Ordering # (<) :: InjectivityAnn -> InjectivityAnn -> Bool # (<=) :: InjectivityAnn -> InjectivityAnn -> Bool # (>) :: InjectivityAnn -> InjectivityAnn -> Bool # (>=) :: InjectivityAnn -> InjectivityAnn -> Bool # max :: InjectivityAnn -> InjectivityAnn -> InjectivityAnn # min :: InjectivityAnn -> InjectivityAnn -> InjectivityAnn # | |
Ord Inline | |
Ord Lit | |
Ord Loc | |
Ord Match | |
Ord ModName | |
Defined in Language.Haskell.TH.Syntax | |
Ord Module | |
Ord ModuleInfo | |
Defined in Language.Haskell.TH.Syntax Methods compare :: ModuleInfo -> ModuleInfo -> Ordering # (<) :: ModuleInfo -> ModuleInfo -> Bool # (<=) :: ModuleInfo -> ModuleInfo -> Bool # (>) :: ModuleInfo -> ModuleInfo -> Bool # (>=) :: ModuleInfo -> ModuleInfo -> Bool # max :: ModuleInfo -> ModuleInfo -> ModuleInfo # min :: ModuleInfo -> ModuleInfo -> ModuleInfo # | |
Ord Name | |
Ord NameFlavour | |
Defined in Language.Haskell.TH.Syntax Methods compare :: NameFlavour -> NameFlavour -> Ordering # (<) :: NameFlavour -> NameFlavour -> Bool # (<=) :: NameFlavour -> NameFlavour -> Bool # (>) :: NameFlavour -> NameFlavour -> Bool # (>=) :: NameFlavour -> NameFlavour -> Bool # max :: NameFlavour -> NameFlavour -> NameFlavour # min :: NameFlavour -> NameFlavour -> NameFlavour # | |
Ord NameSpace | |
Ord OccName | |
Defined in Language.Haskell.TH.Syntax | |
Ord Overlap | |
Defined in Language.Haskell.TH.Syntax | |
Ord Pat | |
Ord PatSynArgs | |
Defined in Language.Haskell.TH.Syntax Methods compare :: PatSynArgs -> PatSynArgs -> Ordering # (<) :: PatSynArgs -> PatSynArgs -> Bool # (<=) :: PatSynArgs -> PatSynArgs -> Bool # (>) :: PatSynArgs -> PatSynArgs -> Bool # (>=) :: PatSynArgs -> PatSynArgs -> Bool # max :: PatSynArgs -> PatSynArgs -> PatSynArgs # min :: PatSynArgs -> PatSynArgs -> PatSynArgs # | |
Ord PatSynDir | |
Ord Phases | |
Ord PkgName | |
Defined in Language.Haskell.TH.Syntax | |
Ord Pragma | |
Ord Range | |
Ord Role | |
Ord RuleBndr | |
Defined in Language.Haskell.TH.Syntax | |
Ord RuleMatch | |
Ord Safety | |
Ord SourceStrictness | |
Defined in Language.Haskell.TH.Syntax Methods compare :: SourceStrictness -> SourceStrictness -> Ordering # (<) :: SourceStrictness -> SourceStrictness -> Bool # (<=) :: SourceStrictness -> SourceStrictness -> Bool # (>) :: SourceStrictness -> SourceStrictness -> Bool # (>=) :: SourceStrictness -> SourceStrictness -> Bool # max :: SourceStrictness -> SourceStrictness -> SourceStrictness # min :: SourceStrictness -> SourceStrictness -> SourceStrictness # | |
Ord SourceUnpackedness | |
Defined in Language.Haskell.TH.Syntax Methods compare :: SourceUnpackedness -> SourceUnpackedness -> Ordering # (<) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (<=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (>) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (>=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # max :: SourceUnpackedness -> SourceUnpackedness -> SourceUnpackedness # min :: SourceUnpackedness -> SourceUnpackedness -> SourceUnpackedness # | |
Ord Specificity | |
Defined in Language.Haskell.TH.Syntax Methods compare :: Specificity -> Specificity -> Ordering # (<) :: Specificity -> Specificity -> Bool # (<=) :: Specificity -> Specificity -> Bool # (>) :: Specificity -> Specificity -> Bool # (>=) :: Specificity -> Specificity -> Bool # max :: Specificity -> Specificity -> Specificity # min :: Specificity -> Specificity -> Specificity # | |
Ord Stmt | |
Ord TyLit | |
Ord TySynEqn | |
Defined in Language.Haskell.TH.Syntax | |
Ord Type | |
Ord TypeFamilyHead | |
Defined in Language.Haskell.TH.Syntax Methods compare :: TypeFamilyHead -> TypeFamilyHead -> Ordering # (<) :: TypeFamilyHead -> TypeFamilyHead -> Bool # (<=) :: TypeFamilyHead -> TypeFamilyHead -> Bool # (>) :: TypeFamilyHead -> TypeFamilyHead -> Bool # (>=) :: TypeFamilyHead -> TypeFamilyHead -> Bool # max :: TypeFamilyHead -> TypeFamilyHead -> TypeFamilyHead # min :: TypeFamilyHead -> TypeFamilyHead -> TypeFamilyHead # | |
Ord I8 | |
Ord Builder | |
Defined in Data.Text.Internal.Builder | |
Ord Integer | |
Ord Natural | |
Ord () | |
Ord Bool | |
Ord Char | |
Ord Double | IEEE 754 IEEE 754-2008, section 5.11 requires that if at least one of arguments of
IEEE 754-2008, section 5.10 defines Thus, users must be extremely cautious when using Moving further, the behaviour of IEEE 754-2008 compliant |
Ord Float | See |
Ord Int | |
Ord Word | |
Ord (Async a) | |
Defined in Control.Concurrent.Async.Internal | |
Ord a => Ord (ZipList a) | Since: base-4.7.0.0 |
Ord a => Ord (Identity a) | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity | |
Ord a => Ord (First a) | Since: base-2.1 |
Ord a => Ord (Last a) | Since: base-2.1 |
Ord a => Ord (Down a) | Since: base-4.6.0.0 |
Ord a => Ord (First a) | Since: base-4.9.0.0 |
Ord a => Ord (Last a) | Since: base-4.9.0.0 |
Ord a => Ord (Max a) | Since: base-4.9.0.0 |
Ord a => Ord (Min a) | Since: base-4.9.0.0 |
Ord m => Ord (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods compare :: WrappedMonoid m -> WrappedMonoid m -> Ordering # (<) :: WrappedMonoid m -> WrappedMonoid m -> Bool # (<=) :: WrappedMonoid m -> WrappedMonoid m -> Bool # (>) :: WrappedMonoid m -> WrappedMonoid m -> Bool # (>=) :: WrappedMonoid m -> WrappedMonoid m -> Bool # max :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # min :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # | |
Ord a => Ord (Dual a) | Since: base-2.1 |
Ord a => Ord (Product a) | Since: base-2.1 |
Ord a => Ord (Sum a) | Since: base-2.1 |
Ord (ConstPtr a) | |
Ord a => Ord (NonEmpty a) | Since: base-4.9.0.0 |
Ord (ForeignPtr a) | Since: base-2.1 |
Defined in GHC.ForeignPtr Methods compare :: ForeignPtr a -> ForeignPtr a -> Ordering # (<) :: ForeignPtr a -> ForeignPtr a -> Bool # (<=) :: ForeignPtr a -> ForeignPtr a -> Bool # (>) :: ForeignPtr a -> ForeignPtr a -> Bool # (>=) :: ForeignPtr a -> ForeignPtr a -> Bool # max :: ForeignPtr a -> ForeignPtr a -> ForeignPtr a # min :: ForeignPtr a -> ForeignPtr a -> ForeignPtr a # | |
Ord p => Ord (Par1 p) | Since: base-4.7.0.0 |
Ord (FunPtr a) | |
Defined in GHC.Ptr | |
Ord (Ptr a) | Since: base-2.1 |
Integral a => Ord (Ratio a) | Since: base-2.0.1 |
Ord (SChar c) | Since: base-4.19.0.0 |
Ord (SSymbol s) | Since: base-4.19.0.0 |
Ord (SNat n) | Since: base-4.19.0.0 |
Ord a => Ord (IntMap a) | |
Defined in Data.IntMap.Internal | |
Ord a => Ord (Seq a) | |
Ord a => Ord (ViewL a) | |
Defined in Data.Sequence.Internal | |
Ord a => Ord (ViewR a) | |
Defined in Data.Sequence.Internal | |
Ord a => Ord (Intersection a) | |
Defined in Data.Set.Internal Methods compare :: Intersection a -> Intersection a -> Ordering # (<) :: Intersection a -> Intersection a -> Bool # (<=) :: Intersection a -> Intersection a -> Bool # (>) :: Intersection a -> Intersection a -> Bool # (>=) :: Intersection a -> Intersection a -> Bool # max :: Intersection a -> Intersection a -> Intersection a # min :: Intersection a -> Intersection a -> Intersection a # | |
Ord a => Ord (Set a) | |
Ord a => Ord (Tree a) | Since: containers-0.6.5 |
Ord a => Ord (Hashed a) | |
Defined in Data.Hashable.Class | |
Ord flag => Ord (TyVarBndr flag) | |
Defined in Language.Haskell.TH.Syntax Methods compare :: TyVarBndr flag -> TyVarBndr flag -> Ordering # (<) :: TyVarBndr flag -> TyVarBndr flag -> Bool # (<=) :: TyVarBndr flag -> TyVarBndr flag -> Bool # (>) :: TyVarBndr flag -> TyVarBndr flag -> Bool # (>=) :: TyVarBndr flag -> TyVarBndr flag -> Bool # | |
Ord a => Ord (Stream a) | |
Defined in Data.Text.Internal.Fusion.Types | |
Ord a => Ord (Maybe a) | Since: base-2.1 |
Ord a => Ord (Solo a) | |
Ord a => Ord [a] | |
(Ix ix, Ord e, IArray UArray e) => Ord (UArray ix e) | |
Defined in Data.Array.Base | |
(Ord a, Ord b) => Ord (Either a b) | Since: base-2.1 |
Ord (Fixed a) | Since: base-2.1 |
Ord (Proxy s) | Since: base-4.7.0.0 |
Ord a => Ord (Arg a b) | Since: base-4.9.0.0 |
Ord (TypeRep a) | Since: base-4.4.0.0 |
(Ix i, Ord e) => Ord (Array i e) | Since: base-2.1 |
Ord (U1 p) | Since: base-4.7.0.0 |
Ord (V1 p) | Since: base-4.9.0.0 |
(Ord k, Ord v) => Ord (Map k v) | |
(Ord1 f, Ord a) => Ord (Lift f a) | |
Defined in Control.Applicative.Lift | |
(Ord1 m, Ord a) => Ord (MaybeT m a) | |
Defined in Control.Monad.Trans.Maybe | |
(GOrd (Rep1 f a), Generic1 f) => Ord (FunctorClassesDefault f a) | |
Defined in Data.Functor.Classes.Generic.Internal Methods compare :: FunctorClassesDefault f a -> FunctorClassesDefault f a -> Ordering # (<) :: FunctorClassesDefault f a -> FunctorClassesDefault f a -> Bool # (<=) :: FunctorClassesDefault f a -> FunctorClassesDefault f a -> Bool # (>) :: FunctorClassesDefault f a -> FunctorClassesDefault f a -> Bool # (>=) :: FunctorClassesDefault f a -> FunctorClassesDefault f a -> Bool # max :: FunctorClassesDefault f a -> FunctorClassesDefault f a -> FunctorClassesDefault f a # min :: FunctorClassesDefault f a -> FunctorClassesDefault f a -> FunctorClassesDefault f a # | |
(Ord a, Ord b) => Ord (a, b) | |
Ord a => Ord (Const a b) | Since: base-4.9.0.0 |
Ord (f a) => Ord (Ap f a) | Since: base-4.12.0.0 |
Ord (f a) => Ord (Alt f a) | Since: base-4.8.0.0 |
Defined in Data.Semigroup.Internal | |
Ord (Coercion a b) | Since: base-4.7.0.0 |
Defined in Data.Type.Coercion | |
Ord (a :~: b) | Since: base-4.7.0.0 |
Defined in Data.Type.Equality | |
(Generic1 f, Ord (Rep1 f a)) => Ord (Generically1 f a) | Since: base-4.18.0.0 |
Defined in GHC.Generics Methods compare :: Generically1 f a -> Generically1 f a -> Ordering # (<) :: Generically1 f a -> Generically1 f a -> Bool # (<=) :: Generically1 f a -> Generically1 f a -> Bool # (>) :: Generically1 f a -> Generically1 f a -> Bool # (>=) :: Generically1 f a -> Generically1 f a -> Bool # max :: Generically1 f a -> Generically1 f a -> Generically1 f a # min :: Generically1 f a -> Generically1 f a -> Generically1 f a # | |
Ord (f p) => Ord (Rec1 f p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
Ord (URec (Ptr ()) p) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: URec (Ptr ()) p -> URec (Ptr ()) p -> Ordering # (<) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (<=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (>) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (>=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # max :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p # min :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p # | |
Ord (URec Char p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Ord (URec Double p) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: URec Double p -> URec Double p -> Ordering # (<) :: URec Double p -> URec Double p -> Bool # (<=) :: URec Double p -> URec Double p -> Bool # (>) :: URec Double p -> URec Double p -> Bool # (>=) :: URec Double p -> URec Double p -> Bool # | |
Ord (URec Float p) | |
Defined in GHC.Generics | |
Ord (URec Int p) | Since: base-4.9.0.0 |
Ord (URec Word p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
(Ord1 f, Ord a) => Ord (Backwards f a) | |
Defined in Control.Applicative.Backwards Methods compare :: Backwards f a -> Backwards f a -> Ordering # (<) :: Backwards f a -> Backwards f a -> Bool # (<=) :: Backwards f a -> Backwards f a -> Bool # (>) :: Backwards f a -> Backwards f a -> Bool # (>=) :: Backwards f a -> Backwards f a -> Bool # | |
(Ord e, Ord1 m, Ord a) => Ord (ExceptT e m a) | |
Defined in Control.Monad.Trans.Except Methods compare :: ExceptT e m a -> ExceptT e m a -> Ordering # (<) :: ExceptT e m a -> ExceptT e m a -> Bool # (<=) :: ExceptT e m a -> ExceptT e m a -> Bool # (>) :: ExceptT e m a -> ExceptT e m a -> Bool # (>=) :: ExceptT e m a -> ExceptT e m a -> Bool # | |
(Ord1 f, Ord a) => Ord (IdentityT f a) | |
Defined in Control.Monad.Trans.Identity Methods compare :: IdentityT f a -> IdentityT f a -> Ordering # (<) :: IdentityT f a -> IdentityT f a -> Bool # (<=) :: IdentityT f a -> IdentityT f a -> Bool # (>) :: IdentityT f a -> IdentityT f a -> Bool # (>=) :: IdentityT f a -> IdentityT f a -> Bool # | |
(Ord w, Ord1 m, Ord a) => Ord (WriterT w m a) | |
Defined in Control.Monad.Trans.Writer.Lazy Methods compare :: WriterT w m a -> WriterT w m a -> Ordering # (<) :: WriterT w m a -> WriterT w m a -> Bool # (<=) :: WriterT w m a -> WriterT w m a -> Bool # (>) :: WriterT w m a -> WriterT w m a -> Bool # (>=) :: WriterT w m a -> WriterT w m a -> Bool # | |
(Ord w, Ord1 m, Ord a) => Ord (WriterT w m a) | |
Defined in Control.Monad.Trans.Writer.Strict Methods compare :: WriterT w m a -> WriterT w m a -> Ordering # (<) :: WriterT w m a -> WriterT w m a -> Bool # (<=) :: WriterT w m a -> WriterT w m a -> Bool # (>) :: WriterT w m a -> WriterT w m a -> Bool # (>=) :: WriterT w m a -> WriterT w m a -> Bool # | |
Ord a => Ord (Constant a b) | |
Defined in Data.Functor.Constant | |
(Ord1 f, Ord a) => Ord (Reverse f a) | |
Defined in Data.Functor.Reverse | |
(Ord a, Ord b, Ord c) => Ord (a, b, c) | |
(Ord (f a), Ord (g a)) => Ord (Product f g a) | Since: base-4.18.0.0 |
Defined in Data.Functor.Product Methods compare :: Product f g a -> Product f g a -> Ordering # (<) :: Product f g a -> Product f g a -> Bool # (<=) :: Product f g a -> Product f g a -> Bool # (>) :: Product f g a -> Product f g a -> Bool # (>=) :: Product f g a -> Product f g a -> Bool # | |
(Ord (f a), Ord (g a)) => Ord (Sum f g a) | Since: base-4.18.0.0 |
Ord (a :~~: b) | Since: base-4.10.0.0 |
(Ord (f p), Ord (g p)) => Ord ((f :*: g) p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
(Ord (f p), Ord (g p)) => Ord ((f :+: g) p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
Ord c => Ord (K1 i c p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
(Ord a, Ord b, Ord c, Ord d) => Ord (a, b, c, d) | |
Defined in GHC.Classes | |
Ord (f (g a)) => Ord (Compose f g a) | Since: base-4.18.0.0 |
Defined in Data.Functor.Compose Methods compare :: Compose f g a -> Compose f g a -> Ordering # (<) :: Compose f g a -> Compose f g a -> Bool # (<=) :: Compose f g a -> Compose f g a -> Bool # (>) :: Compose f g a -> Compose f g a -> Bool # (>=) :: Compose f g a -> Compose f g a -> Bool # | |
Ord (f (g p)) => Ord ((f :.: g) p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
Ord (f p) => Ord (M1 i c f p) | Since: base-4.7.0.0 |
(Ord a, Ord b, Ord c, Ord d, Ord e) => Ord (a, b, c, d, e) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e) -> (a, b, c, d, e) -> Ordering # (<) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # (<=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # (>) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # (>=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # max :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) # min :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f) => Ord (a, b, c, d, e, f) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Ordering # (<) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # (<=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # (>) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # (>=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # max :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) # min :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g) => Ord (a, b, c, d, e, f, g) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Ordering # (<) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # (<=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # (>) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # (>=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # max :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) # min :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h) => Ord (a, b, c, d, e, f, g, h) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Ordering # (<) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # (<=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # (>) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # (>=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # max :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) # min :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i) => Ord (a, b, c, d, e, f, g, h, i) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # max :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) # min :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j) => Ord (a, b, c, d, e, f, g, h, i, j) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) # min :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k) => Ord (a, b, c, d, e, f, g, h, i, j, k) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) # min :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l) => Ord (a, b, c, d, e, f, g, h, i, j, k, l) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) # min :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) # min :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) # min :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n, Ord o) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) # min :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) # |
The Down
type allows you to reverse sort order conveniently. A value of type
contains a value of type Down
aa
(represented as
).Down
a
If a
has an
instance associated with it then comparing two
values thus wrapped will give you the opposite of their normal sort order.
This is particularly useful when sorting in generalised list comprehensions,
as in: Ord
then sortWith by
.Down
x
>>>
compare True False
GT
>>>
compare (Down True) (Down False)
LT
If a
has a
instance then the wrapped instance also respects
the reversed ordering by exchanging the values of Bounded
and
minBound
.maxBound
>>>
minBound :: Int
-9223372036854775808
>>>
minBound :: Down Int
Down 9223372036854775807
All other instances of
behave as they do for Down
aa
.
Since: base-4.6.0.0
Constructors
Down a |
Instances
MonadFix Down | Since: base-4.12.0.0 | ||||
Defined in Control.Monad.Fix | |||||
MonadZip Down | Since: base-4.12.0.0 | ||||
Foldable Down | Since: base-4.12.0.0 | ||||
Defined in Data.Foldable Methods fold :: Monoid m => Down m -> m # foldMap :: Monoid m => (a -> m) -> Down a -> m # foldMap' :: Monoid m => (a -> m) -> Down a -> m # foldr :: (a -> b -> b) -> b -> Down a -> b # foldr' :: (a -> b -> b) -> b -> Down a -> b # foldl :: (b -> a -> b) -> b -> Down a -> b # foldl' :: (b -> a -> b) -> b -> Down a -> b # foldr1 :: (a -> a -> a) -> Down a -> a # foldl1 :: (a -> a -> a) -> Down a -> a # elem :: Eq a => a -> Down a -> Bool # maximum :: Ord a => Down a -> a # | |||||
Foldable1 Down | Since: base-4.18.0.0 | ||||
Defined in Data.Foldable1 Methods fold1 :: Semigroup m => Down m -> m # foldMap1 :: Semigroup m => (a -> m) -> Down a -> m # foldMap1' :: Semigroup m => (a -> m) -> Down a -> m # toNonEmpty :: Down a -> NonEmpty a # maximum :: Ord a => Down a -> a # minimum :: Ord a => Down a -> a # foldrMap1 :: (a -> b) -> (a -> b -> b) -> Down a -> b # foldlMap1' :: (a -> b) -> (b -> a -> b) -> Down a -> b # foldlMap1 :: (a -> b) -> (b -> a -> b) -> Down a -> b # foldrMap1' :: (a -> b) -> (a -> b -> b) -> Down a -> b # | |||||
Eq1 Down | Since: base-4.12.0.0 | ||||
Ord1 Down | Since: base-4.12.0.0 | ||||
Defined in Data.Functor.Classes | |||||
Read1 Down | Since: base-4.12.0.0 | ||||
Defined in Data.Functor.Classes | |||||
Show1 Down | Since: base-4.12.0.0 | ||||
Traversable Down | Since: base-4.12.0.0 | ||||
Applicative Down | Since: base-4.11.0.0 | ||||
Functor Down | Since: base-4.11.0.0 | ||||
Monad Down | Since: base-4.11.0.0 | ||||
NFData1 Down | Since: deepseq-1.4.3.0 | ||||
Defined in Control.DeepSeq | |||||
Generic1 Down | |||||
Defined in GHC.Generics Associated Types
| |||||
Data a => Data (Down a) | Since: base-4.12.0.0 | ||||
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Down a -> c (Down a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Down a) # toConstr :: Down a -> Constr # dataTypeOf :: Down a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Down a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Down a)) # gmapT :: (forall b. Data b => b -> b) -> Down a -> Down a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Down a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Down a -> r # gmapQ :: (forall d. Data d => d -> u) -> Down a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Down a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Down a -> m (Down a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Down a -> m (Down a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Down a -> m (Down a) # | |||||
Storable a => Storable (Down a) | Since: base-4.14.0.0 | ||||
Monoid a => Monoid (Down a) | Since: base-4.11.0.0 | ||||
Semigroup a => Semigroup (Down a) | Since: base-4.11.0.0 | ||||
Bits a => Bits (Down a) | Since: base-4.14.0.0 | ||||
Defined in Data.Ord Methods (.&.) :: Down a -> Down a -> Down a # (.|.) :: Down a -> Down a -> Down a # xor :: Down a -> Down a -> Down a # complement :: Down a -> Down a # shift :: Down a -> Int -> Down a # rotate :: Down a -> Int -> Down a # setBit :: Down a -> Int -> Down a # clearBit :: Down a -> Int -> Down a # complementBit :: Down a -> Int -> Down a # testBit :: Down a -> Int -> Bool # bitSizeMaybe :: Down a -> Maybe Int # shiftL :: Down a -> Int -> Down a # unsafeShiftL :: Down a -> Int -> Down a # shiftR :: Down a -> Int -> Down a # unsafeShiftR :: Down a -> Int -> Down a # rotateL :: Down a -> Int -> Down a # | |||||
FiniteBits a => FiniteBits (Down a) | Since: base-4.14.0.0 | ||||
Defined in Data.Ord Methods finiteBitSize :: Down a -> Int # countLeadingZeros :: Down a -> Int # countTrailingZeros :: Down a -> Int # | |||||
Bounded a => Bounded (Down a) | Swaps Since: base-4.14.0.0 | ||||
(Enum a, Bounded a, Eq a) => Enum (Down a) | Swaps Since: base-4.18.0.0 | ||||
Defined in Data.Ord | |||||
Floating a => Floating (Down a) | Since: base-4.14.0.0 | ||||
RealFloat a => RealFloat (Down a) | Since: base-4.14.0.0 | ||||
Defined in Data.Ord Methods floatRadix :: Down a -> Integer # floatDigits :: Down a -> Int # floatRange :: Down a -> (Int, Int) # decodeFloat :: Down a -> (Integer, Int) # encodeFloat :: Integer -> Int -> Down a # significand :: Down a -> Down a # scaleFloat :: Int -> Down a -> Down a # isInfinite :: Down a -> Bool # isDenormalized :: Down a -> Bool # isNegativeZero :: Down a -> Bool # | |||||
Generic (Down a) | |||||
Defined in GHC.Generics Associated Types
| |||||
Ix a => Ix (Down a) | Since: base-4.14.0.0 | ||||
Num a => Num (Down a) | Since: base-4.11.0.0 | ||||
Read a => Read (Down a) | This instance would be equivalent to the derived instances of the
Since: base-4.7.0.0 | ||||
Fractional a => Fractional (Down a) | Since: base-4.14.0.0 | ||||
Real a => Real (Down a) | Since: base-4.14.0.0 | ||||
Defined in Data.Ord Methods toRational :: Down a -> Rational # | |||||
RealFrac a => RealFrac (Down a) | Since: base-4.14.0.0 | ||||
Show a => Show (Down a) | This instance would be equivalent to the derived instances of the
Since: base-4.7.0.0 | ||||
NFData a => NFData (Down a) | Since: deepseq-1.4.0.0 | ||||
Defined in Control.DeepSeq | |||||
Eq a => Eq (Down a) | Since: base-4.6.0.0 | ||||
Ord a => Ord (Down a) | Since: base-4.6.0.0 | ||||
type Rep1 Down | Since: base-4.12.0.0 | ||||
Defined in GHC.Generics | |||||
type Rep (Down a) | Since: base-4.12.0.0 | ||||
Defined in GHC.Generics |
comparing :: Ord a => (b -> a) -> b -> b -> Ordering #
comparing p x y = compare (p x) (p y)
Useful combinator for use in conjunction with the xxxBy
family
of functions from Data.List, for example:
... sortBy (comparing fst) ...
Traversable functions
module Data.Traversable
Foldable functions
class Foldable (t :: Type -> Type) where #
The Foldable class represents data structures that can be reduced to a summary value one element at a time. Strict left-associative folds are a good fit for space-efficient reduction, while lazy right-associative folds are a good fit for corecursive iteration, or for folds that short-circuit after processing an initial subsequence of the structure's elements.
Instances can be derived automatically by enabling the DeriveFoldable
extension. For example, a derived instance for a binary tree might be:
{-# LANGUAGE DeriveFoldable #-} data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a) deriving Foldable
A more detailed description can be found in the Overview section of Data.Foldable.
For the class laws see the Laws section of Data.Foldable.
Methods
fold :: Monoid m => t m -> m #
Given a structure with elements whose type is a Monoid
, combine them
via the monoid's (
operator. This fold is right-associative and
lazy in the accumulator. When you need a strict left-associative fold,
use <>
)foldMap'
instead, with id
as the map.
Examples
Basic usage:
>>>
fold [[1, 2, 3], [4, 5], [6], []]
[1,2,3,4,5,6]
>>>
fold $ Node (Leaf (Sum 1)) (Sum 3) (Leaf (Sum 5))
Sum {getSum = 9}
Folds of unbounded structures do not terminate when the monoid's
(
operator is strict:<>
)
>>>
fold (repeat Nothing)
* Hangs forever *
Lazy corecursive folds of unbounded structures are fine:
>>>
take 12 $ fold $ map (\i -> [i..i+2]) [0..]
[0,1,2,1,2,3,2,3,4,3,4,5]>>>
sum $ take 4000000 $ fold $ map (\i -> [i..i+2]) [0..]
2666668666666
foldMap :: Monoid m => (a -> m) -> t a -> m #
Map each element of the structure into a monoid, and combine the
results with (
. This fold is right-associative and lazy in the
accumulator. For strict left-associative folds consider <>
)foldMap'
instead.
Examples
Basic usage:
>>>
foldMap Sum [1, 3, 5]
Sum {getSum = 9}
>>>
foldMap Product [1, 3, 5]
Product {getProduct = 15}
>>>
foldMap (replicate 3) [1, 2, 3]
[1,1,1,2,2,2,3,3,3]
When a Monoid's (
is lazy in its second argument, <>
)foldMap
can
return a result even from an unbounded structure. For example, lazy
accumulation enables Data.ByteString.Builder to efficiently serialise
large data structures and produce the output incrementally:
>>>
import qualified Data.ByteString.Lazy as L
>>>
import qualified Data.ByteString.Builder as B
>>>
let bld :: Int -> B.Builder; bld i = B.intDec i <> B.word8 0x20
>>>
let lbs = B.toLazyByteString $ foldMap bld [0..]
>>>
L.take 64 lbs
"0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24"
foldr :: (a -> b -> b) -> b -> t a -> b #
Right-associative fold of a structure, lazy in the accumulator.
In the case of lists, foldr
, when applied to a binary operator, a
starting value (typically the right-identity of the operator), and a
list, reduces the list using the binary operator, from right to left:
foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...)
Note that since the head of the resulting expression is produced by an
application of the operator to the first element of the list, given an
operator lazy in its right argument, foldr
can produce a terminating
expression from an unbounded list.
For a general Foldable
structure this should be semantically identical
to,
foldr f z =foldr
f z .toList
Examples
Basic usage:
>>>
foldr (||) False [False, True, False]
True
>>>
foldr (||) False []
False
>>>
foldr (\c acc -> acc ++ [c]) "foo" ['a', 'b', 'c', 'd']
"foodcba"
Infinite structures
⚠️ Applying foldr
to infinite structures usually doesn't terminate.
It may still terminate under one of the following conditions:
- the folding function is short-circuiting
- the folding function is lazy on its second argument
Short-circuiting
(
short-circuits on ||
)True
values, so the following terminates
because there is a True
value finitely far from the left side:
>>>
foldr (||) False (True : repeat False)
True
But the following doesn't terminate:
>>>
foldr (||) False (repeat False ++ [True])
* Hangs forever *
Laziness in the second argument
Applying foldr
to infinite structures terminates when the operator is
lazy in its second argument (the initial accumulator is never used in
this case, and so could be left undefined
, but []
is more clear):
>>>
take 5 $ foldr (\i acc -> i : fmap (+3) acc) [] (repeat 1)
[1,4,7,10,13]
foldr' :: (a -> b -> b) -> b -> t a -> b #
foldr'
is a variant of foldr
that performs strict reduction from
right to left, i.e. starting with the right-most element. The input
structure must be finite, otherwise foldr'
runs out of space
(diverges).
If you want a strict right fold in constant space, you need a structure
that supports faster than O(n) access to the right-most element, such
as Seq
from the containers
package.
This method does not run in constant space for structures such as lists
that don't support efficient right-to-left iteration and so require
O(n) space to perform right-to-left reduction. Use of this method
with such a structure is a hint that the chosen structure may be a poor
fit for the task at hand. If the order in which the elements are
combined is not important, use foldl'
instead.
Since: base-4.6.0.0
foldl :: (b -> a -> b) -> b -> t a -> b #
Left-associative fold of a structure, lazy in the accumulator. This is rarely what you want, but can work well for structures with efficient right-to-left sequencing and an operator that is lazy in its left argument.
In the case of lists, foldl
, when applied to a binary operator, a
starting value (typically the left-identity of the operator), and a
list, reduces the list using the binary operator, from left to right:
foldl f z [x1, x2, ..., xn] == (...((z `f` x1) `f` x2) `f`...) `f` xn
Note that to produce the outermost application of the operator the
entire input list must be traversed. Like all left-associative folds,
foldl
will diverge if given an infinite list.
If you want an efficient strict left-fold, you probably want to use
foldl'
instead of foldl
. The reason for this is that the latter
does not force the inner results (e.g. z `f` x1
in the above
example) before applying them to the operator (e.g. to (`f` x2)
).
This results in a thunk chain O(n) elements long, which then must be
evaluated from the outside-in.
For a general Foldable
structure this should be semantically identical
to:
foldl f z =foldl
f z .toList
Examples
The first example is a strict fold, which in practice is best performed
with foldl'
.
>>>
foldl (+) 42 [1,2,3,4]
52
Though the result below is lazy, the input is reversed before prepending it to the initial accumulator, so corecursion begins only after traversing the entire input string.
>>>
foldl (\acc c -> c : acc) "abcd" "efgh"
"hgfeabcd"
A left fold of a structure that is infinite on the right cannot terminate, even when for any finite input the fold just returns the initial accumulator:
>>>
foldl (\a _ -> a) 0 $ repeat 1
* Hangs forever *
WARNING: When it comes to lists, you always want to use either foldl'
or foldr
instead.
foldl' :: (b -> a -> b) -> b -> t a -> b #
Left-associative fold of a structure but with strict application of the operator.
This ensures that each step of the fold is forced to Weak Head Normal
Form before being applied, avoiding the collection of thunks that would
otherwise occur. This is often what you want to strictly reduce a
finite structure to a single strict result (e.g. sum
).
For a general Foldable
structure this should be semantically identical
to,
foldl' f z =foldl'
f z .toList
Since: base-4.6.0.0
List of elements of a structure, from left to right. If the entire list is intended to be reduced via a fold, just fold the structure directly bypassing the list.
Examples
Basic usage:
>>>
toList Nothing
[]
>>>
toList (Just 42)
[42]
>>>
toList (Left "foo")
[]
>>>
toList (Node (Leaf 5) 17 (Node Empty 12 (Leaf 8)))
[5,17,12,8]
For lists, toList
is the identity:
>>>
toList [1, 2, 3]
[1,2,3]
Since: base-4.8.0.0
Test whether the structure is empty. The default implementation is Left-associative and lazy in both the initial element and the accumulator. Thus optimised for structures where the first element can be accessed in constant time. Structures where this is not the case should have a non-default implementation.
Examples
Basic usage:
>>>
null []
True
>>>
null [1]
False
null
is expected to terminate even for infinite structures.
The default implementation terminates provided the structure
is bounded on the left (there is a leftmost element).
>>>
null [1..]
False
Since: base-4.8.0.0
Returns the size/length of a finite structure as an Int
. The
default implementation just counts elements starting with the leftmost.
Instances for structures that can compute the element count faster
than via element-by-element counting, should provide a specialised
implementation.
Examples
Basic usage:
>>>
length []
0
>>>
length ['a', 'b', 'c']
3>>>
length [1..]
* Hangs forever *
Since: base-4.8.0.0
elem :: Eq a => a -> t a -> Bool infix 4 #
Does the element occur in the structure?
Note: elem
is often used in infix form.
Examples
Basic usage:
>>>
3 `elem` []
False
>>>
3 `elem` [1,2]
False
>>>
3 `elem` [1,2,3,4,5]
True
For infinite structures, the default implementation of elem
terminates if the sought-after value exists at a finite distance
from the left side of the structure:
>>>
3 `elem` [1..]
True
>>>
3 `elem` ([4..] ++ [3])
* Hangs forever *
Since: base-4.8.0.0
maximum :: Ord a => t a -> a #
The largest element of a non-empty structure.
This function is non-total and will raise a runtime exception if the structure happens to be empty. A structure that supports random access and maintains its elements in order should provide a specialised implementation to return the maximum in faster than linear time.
Examples
Basic usage:
>>>
maximum [1..10]
10
>>>
maximum []
*** Exception: Prelude.maximum: empty list
>>>
maximum Nothing
*** Exception: maximum: empty structure
WARNING: This function is partial for possibly-empty structures like lists.
Since: base-4.8.0.0
minimum :: Ord a => t a -> a #
The least element of a non-empty structure.
This function is non-total and will raise a runtime exception if the structure happens to be empty. A structure that supports random access and maintains its elements in order should provide a specialised implementation to return the minimum in faster than linear time.
Examples
Basic usage:
>>>
minimum [1..10]
1
>>>
minimum []
*** Exception: Prelude.minimum: empty list
>>>
minimum Nothing
*** Exception: minimum: empty structure
WARNING: This function is partial for possibly-empty structures like lists.
Since: base-4.8.0.0
Instances
Foldable ZipList | Since: base-4.9.0.0 |
Defined in Control.Applicative Methods fold :: Monoid m => ZipList m -> m # foldMap :: Monoid m => (a -> m) -> ZipList a -> m # foldMap' :: Monoid m => (a -> m) -> ZipList a -> m # foldr :: (a -> b -> b) -> b -> ZipList a -> b # foldr' :: (a -> b -> b) -> b -> ZipList a -> b # foldl :: (b -> a -> b) -> b -> ZipList a -> b # foldl' :: (b -> a -> b) -> b -> ZipList a -> b # foldr1 :: (a -> a -> a) -> ZipList a -> a # foldl1 :: (a -> a -> a) -> ZipList a -> a # elem :: Eq a => a -> ZipList a -> Bool # maximum :: Ord a => ZipList a -> a # minimum :: Ord a => ZipList a -> a # | |
Foldable Complex | Since: base-4.9.0.0 |
Defined in Data.Complex Methods fold :: Monoid m => Complex m -> m # foldMap :: Monoid m => (a -> m) -> Complex a -> m # foldMap' :: Monoid m => (a -> m) -> Complex a -> m # foldr :: (a -> b -> b) -> b -> Complex a -> b # foldr' :: (a -> b -> b) -> b -> Complex a -> b # foldl :: (b -> a -> b) -> b -> Complex a -> b # foldl' :: (b -> a -> b) -> b -> Complex a -> b # foldr1 :: (a -> a -> a) -> Complex a -> a # foldl1 :: (a -> a -> a) -> Complex a -> a # elem :: Eq a => a -> Complex a -> Bool # maximum :: Ord a => Complex a -> a # minimum :: Ord a => Complex a -> a # | |
Foldable Identity | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity Methods fold :: Monoid m => Identity m -> m # foldMap :: Monoid m => (a -> m) -> Identity a -> m # foldMap' :: Monoid m => (a -> m) -> Identity a -> m # foldr :: (a -> b -> b) -> b -> Identity a -> b # foldr' :: (a -> b -> b) -> b -> Identity a -> b # foldl :: (b -> a -> b) -> b -> Identity a -> b # foldl' :: (b -> a -> b) -> b -> Identity a -> b # foldr1 :: (a -> a -> a) -> Identity a -> a # foldl1 :: (a -> a -> a) -> Identity a -> a # elem :: Eq a => a -> Identity a -> Bool # maximum :: Ord a => Identity a -> a # minimum :: Ord a => Identity a -> a # | |
Foldable First | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldMap' :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |
Foldable Last | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldMap' :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
Foldable Down | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Down m -> m # foldMap :: Monoid m => (a -> m) -> Down a -> m # foldMap' :: Monoid m => (a -> m) -> Down a -> m # foldr :: (a -> b -> b) -> b -> Down a -> b # foldr' :: (a -> b -> b) -> b -> Down a -> b # foldl :: (b -> a -> b) -> b -> Down a -> b # foldl' :: (b -> a -> b) -> b -> Down a -> b # foldr1 :: (a -> a -> a) -> Down a -> a # foldl1 :: (a -> a -> a) -> Down a -> a # elem :: Eq a => a -> Down a -> Bool # maximum :: Ord a => Down a -> a # | |
Foldable First | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldMap' :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |
Foldable Last | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldMap' :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
Foldable Max | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Max m -> m # foldMap :: Monoid m => (a -> m) -> Max a -> m # foldMap' :: Monoid m => (a -> m) -> Max a -> m # foldr :: (a -> b -> b) -> b -> Max a -> b # foldr' :: (a -> b -> b) -> b -> Max a -> b # foldl :: (b -> a -> b) -> b -> Max a -> b # foldl' :: (b -> a -> b) -> b -> Max a -> b # foldr1 :: (a -> a -> a) -> Max a -> a # foldl1 :: (a -> a -> a) -> Max a -> a # elem :: Eq a => a -> Max a -> Bool # maximum :: Ord a => Max a -> a # | |
Foldable Min | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Min m -> m # foldMap :: Monoid m => (a -> m) -> Min a -> m # foldMap' :: Monoid m => (a -> m) -> Min a -> m # foldr :: (a -> b -> b) -> b -> Min a -> b # foldr' :: (a -> b -> b) -> b -> Min a -> b # foldl :: (b -> a -> b) -> b -> Min a -> b # foldl' :: (b -> a -> b) -> b -> Min a -> b # foldr1 :: (a -> a -> a) -> Min a -> a # foldl1 :: (a -> a -> a) -> Min a -> a # elem :: Eq a => a -> Min a -> Bool # maximum :: Ord a => Min a -> a # | |
Foldable Dual | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Dual m -> m # foldMap :: Monoid m => (a -> m) -> Dual a -> m # foldMap' :: Monoid m => (a -> m) -> Dual a -> m # foldr :: (a -> b -> b) -> b -> Dual a -> b # foldr' :: (a -> b -> b) -> b -> Dual a -> b # foldl :: (b -> a -> b) -> b -> Dual a -> b # foldl' :: (b -> a -> b) -> b -> Dual a -> b # foldr1 :: (a -> a -> a) -> Dual a -> a # foldl1 :: (a -> a -> a) -> Dual a -> a # elem :: Eq a => a -> Dual a -> Bool # maximum :: Ord a => Dual a -> a # | |
Foldable Product | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Product m -> m # foldMap :: Monoid m => (a -> m) -> Product a -> m # foldMap' :: Monoid m => (a -> m) -> Product a -> m # foldr :: (a -> b -> b) -> b -> Product a -> b # foldr' :: (a -> b -> b) -> b -> Product a -> b # foldl :: (b -> a -> b) -> b -> Product a -> b # foldl' :: (b -> a -> b) -> b -> Product a -> b # foldr1 :: (a -> a -> a) -> Product a -> a # foldl1 :: (a -> a -> a) -> Product a -> a # elem :: Eq a => a -> Product a -> Bool # maximum :: Ord a => Product a -> a # minimum :: Ord a => Product a -> a # | |
Foldable Sum | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Sum m -> m # foldMap :: Monoid m => (a -> m) -> Sum a -> m # foldMap' :: Monoid m => (a -> m) -> Sum a -> m # foldr :: (a -> b -> b) -> b -> Sum a -> b # foldr' :: (a -> b -> b) -> b -> Sum a -> b # foldl :: (b -> a -> b) -> b -> Sum a -> b # foldl' :: (b -> a -> b) -> b -> Sum a -> b # foldr1 :: (a -> a -> a) -> Sum a -> a # foldl1 :: (a -> a -> a) -> Sum a -> a # elem :: Eq a => a -> Sum a -> Bool # maximum :: Ord a => Sum a -> a # | |
Foldable NonEmpty | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => NonEmpty m -> m # foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m # foldMap' :: Monoid m => (a -> m) -> NonEmpty a -> m # foldr :: (a -> b -> b) -> b -> NonEmpty a -> b # foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b # foldl :: (b -> a -> b) -> b -> NonEmpty a -> b # foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b # foldr1 :: (a -> a -> a) -> NonEmpty a -> a # foldl1 :: (a -> a -> a) -> NonEmpty a -> a # elem :: Eq a => a -> NonEmpty a -> Bool # maximum :: Ord a => NonEmpty a -> a # minimum :: Ord a => NonEmpty a -> a # | |
Foldable Par1 | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Par1 m -> m # foldMap :: Monoid m => (a -> m) -> Par1 a -> m # foldMap' :: Monoid m => (a -> m) -> Par1 a -> m # foldr :: (a -> b -> b) -> b -> Par1 a -> b # foldr' :: (a -> b -> b) -> b -> Par1 a -> b # foldl :: (b -> a -> b) -> b -> Par1 a -> b # foldl' :: (b -> a -> b) -> b -> Par1 a -> b # foldr1 :: (a -> a -> a) -> Par1 a -> a # foldl1 :: (a -> a -> a) -> Par1 a -> a # elem :: Eq a => a -> Par1 a -> Bool # maximum :: Ord a => Par1 a -> a # | |
Foldable SCC | Since: containers-0.5.9 |
Defined in Data.Graph Methods fold :: Monoid m => SCC m -> m # foldMap :: Monoid m => (a -> m) -> SCC a -> m # foldMap' :: Monoid m => (a -> m) -> SCC a -> m # foldr :: (a -> b -> b) -> b -> SCC a -> b # foldr' :: (a -> b -> b) -> b -> SCC a -> b # foldl :: (b -> a -> b) -> b -> SCC a -> b # foldl' :: (b -> a -> b) -> b -> SCC a -> b # foldr1 :: (a -> a -> a) -> SCC a -> a # foldl1 :: (a -> a -> a) -> SCC a -> a # elem :: Eq a => a -> SCC a -> Bool # maximum :: Ord a => SCC a -> a # | |
Foldable IntMap | Folds in order of increasing key. |
Defined in Data.IntMap.Internal Methods fold :: Monoid m => IntMap m -> m # foldMap :: Monoid m => (a -> m) -> IntMap a -> m # foldMap' :: Monoid m => (a -> m) -> IntMap a -> m # foldr :: (a -> b -> b) -> b -> IntMap a -> b # foldr' :: (a -> b -> b) -> b -> IntMap a -> b # foldl :: (b -> a -> b) -> b -> IntMap a -> b # foldl' :: (b -> a -> b) -> b -> IntMap a -> b # foldr1 :: (a -> a -> a) -> IntMap a -> a # foldl1 :: (a -> a -> a) -> IntMap a -> a # elem :: Eq a => a -> IntMap a -> Bool # maximum :: Ord a => IntMap a -> a # minimum :: Ord a => IntMap a -> a # | |
Foldable Digit | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Digit m -> m # foldMap :: Monoid m => (a -> m) -> Digit a -> m # foldMap' :: Monoid m => (a -> m) -> Digit a -> m # foldr :: (a -> b -> b) -> b -> Digit a -> b # foldr' :: (a -> b -> b) -> b -> Digit a -> b # foldl :: (b -> a -> b) -> b -> Digit a -> b # foldl' :: (b -> a -> b) -> b -> Digit a -> b # foldr1 :: (a -> a -> a) -> Digit a -> a # foldl1 :: (a -> a -> a) -> Digit a -> a # elem :: Eq a => a -> Digit a -> Bool # maximum :: Ord a => Digit a -> a # minimum :: Ord a => Digit a -> a # | |
Foldable Elem | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Elem m -> m # foldMap :: Monoid m => (a -> m) -> Elem a -> m # foldMap' :: Monoid m => (a -> m) -> Elem a -> m # foldr :: (a -> b -> b) -> b -> Elem a -> b # foldr' :: (a -> b -> b) -> b -> Elem a -> b # foldl :: (b -> a -> b) -> b -> Elem a -> b # foldl' :: (b -> a -> b) -> b -> Elem a -> b # foldr1 :: (a -> a -> a) -> Elem a -> a # foldl1 :: (a -> a -> a) -> Elem a -> a # elem :: Eq a => a -> Elem a -> Bool # maximum :: Ord a => Elem a -> a # | |
Foldable FingerTree | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => FingerTree m -> m # foldMap :: Monoid m => (a -> m) -> FingerTree a -> m # foldMap' :: Monoid m => (a -> m) -> FingerTree a -> m # foldr :: (a -> b -> b) -> b -> FingerTree a -> b # foldr' :: (a -> b -> b) -> b -> FingerTree a -> b # foldl :: (b -> a -> b) -> b -> FingerTree a -> b # foldl' :: (b -> a -> b) -> b -> FingerTree a -> b # foldr1 :: (a -> a -> a) -> FingerTree a -> a # foldl1 :: (a -> a -> a) -> FingerTree a -> a # toList :: FingerTree a -> [a] # null :: FingerTree a -> Bool # length :: FingerTree a -> Int # elem :: Eq a => a -> FingerTree a -> Bool # maximum :: Ord a => FingerTree a -> a # minimum :: Ord a => FingerTree a -> a # sum :: Num a => FingerTree a -> a # product :: Num a => FingerTree a -> a # | |
Foldable Node | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Node m -> m # foldMap :: Monoid m => (a -> m) -> Node a -> m # foldMap' :: Monoid m => (a -> m) -> Node a -> m # foldr :: (a -> b -> b) -> b -> Node a -> b # foldr' :: (a -> b -> b) -> b -> Node a -> b # foldl :: (b -> a -> b) -> b -> Node a -> b # foldl' :: (b -> a -> b) -> b -> Node a -> b # foldr1 :: (a -> a -> a) -> Node a -> a # foldl1 :: (a -> a -> a) -> Node a -> a # elem :: Eq a => a -> Node a -> Bool # maximum :: Ord a => Node a -> a # | |
Foldable Seq | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Seq m -> m # foldMap :: Monoid m => (a -> m) -> Seq a -> m # foldMap' :: Monoid m => (a -> m) -> Seq a -> m # foldr :: (a -> b -> b) -> b -> Seq a -> b # foldr' :: (a -> b -> b) -> b -> Seq a -> b # foldl :: (b -> a -> b) -> b -> Seq a -> b # foldl' :: (b -> a -> b) -> b -> Seq a -> b # foldr1 :: (a -> a -> a) -> Seq a -> a # foldl1 :: (a -> a -> a) -> Seq a -> a # elem :: Eq a => a -> Seq a -> Bool # maximum :: Ord a => Seq a -> a # | |
Foldable ViewL | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => ViewL m -> m # foldMap :: Monoid m => (a -> m) -> ViewL a -> m # foldMap' :: Monoid m => (a -> m) -> ViewL a -> m # foldr :: (a -> b -> b) -> b -> ViewL a -> b # foldr' :: (a -> b -> b) -> b -> ViewL a -> b # foldl :: (b -> a -> b) -> b -> ViewL a -> b # foldl' :: (b -> a -> b) -> b -> ViewL a -> b # foldr1 :: (a -> a -> a) -> ViewL a -> a # foldl1 :: (a -> a -> a) -> ViewL a -> a # elem :: Eq a => a -> ViewL a -> Bool # maximum :: Ord a => ViewL a -> a # minimum :: Ord a => ViewL a -> a # | |
Foldable ViewR | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => ViewR m -> m # foldMap :: Monoid m => (a -> m) -> ViewR a -> m # foldMap' :: Monoid m => (a -> m) -> ViewR a -> m # foldr :: (a -> b -> b) -> b -> ViewR a -> b # foldr' :: (a -> b -> b) -> b -> ViewR a -> b # foldl :: (b -> a -> b) -> b -> ViewR a -> b # foldl' :: (b -> a -> b) -> b -> ViewR a -> b # foldr1 :: (a -> a -> a) -> ViewR a -> a # foldl1 :: (a -> a -> a) -> ViewR a -> a # elem :: Eq a => a -> ViewR a -> Bool # maximum :: Ord a => ViewR a -> a # minimum :: Ord a => ViewR a -> a # | |
Foldable Set | Folds in order of increasing key. |
Defined in Data.Set.Internal Methods fold :: Monoid m => Set m -> m # foldMap :: Monoid m => (a -> m) -> Set a -> m # foldMap' :: Monoid m => (a -> m) -> Set a -> m # foldr :: (a -> b -> b) -> b -> Set a -> b # foldr' :: (a -> b -> b) -> b -> Set a -> b # foldl :: (b -> a -> b) -> b -> Set a -> b # foldl' :: (b -> a -> b) -> b -> Set a -> b # foldr1 :: (a -> a -> a) -> Set a -> a # foldl1 :: (a -> a -> a) -> Set a -> a # elem :: Eq a => a -> Set a -> Bool # maximum :: Ord a => Set a -> a # | |
Foldable Tree | Folds in preorder |
Defined in Data.Tree Methods fold :: Monoid m => Tree m -> m # foldMap :: Monoid m => (a -> m) -> Tree a -> m # foldMap' :: Monoid m => (a -> m) -> Tree a -> m # foldr :: (a -> b -> b) -> b -> Tree a -> b # foldr' :: (a -> b -> b) -> b -> Tree a -> b # foldl :: (b -> a -> b) -> b -> Tree a -> b # foldl' :: (b -> a -> b) -> b -> Tree a -> b # foldr1 :: (a -> a -> a) -> Tree a -> a # foldl1 :: (a -> a -> a) -> Tree a -> a # elem :: Eq a => a -> Tree a -> Bool # maximum :: Ord a => Tree a -> a # | |
Foldable Hashed | |
Defined in Data.Hashable.Class Methods fold :: Monoid m => Hashed m -> m # foldMap :: Monoid m => (a -> m) -> Hashed a -> m # foldMap' :: Monoid m => (a -> m) -> Hashed a -> m # foldr :: (a -> b -> b) -> b -> Hashed a -> b # foldr' :: (a -> b -> b) -> b -> Hashed a -> b # foldl :: (b -> a -> b) -> b -> Hashed a -> b # foldl' :: (b -> a -> b) -> b -> Hashed a -> b # foldr1 :: (a -> a -> a) -> Hashed a -> a # foldl1 :: (a -> a -> a) -> Hashed a -> a # elem :: Eq a => a -> Hashed a -> Bool # maximum :: Ord a => Hashed a -> a # minimum :: Ord a => Hashed a -> a # | |
Foldable TyVarBndr | |
Defined in Language.Haskell.TH.Syntax Methods fold :: Monoid m => TyVarBndr m -> m # foldMap :: Monoid m => (a -> m) -> TyVarBndr a -> m # foldMap' :: Monoid m => (a -> m) -> TyVarBndr a -> m # foldr :: (a -> b -> b) -> b -> TyVarBndr a -> b # foldr' :: (a -> b -> b) -> b -> TyVarBndr a -> b # foldl :: (b -> a -> b) -> b -> TyVarBndr a -> b # foldl' :: (b -> a -> b) -> b -> TyVarBndr a -> b # foldr1 :: (a -> a -> a) -> TyVarBndr a -> a # foldl1 :: (a -> a -> a) -> TyVarBndr a -> a # toList :: TyVarBndr a -> [a] # length :: TyVarBndr a -> Int # elem :: Eq a => a -> TyVarBndr a -> Bool # maximum :: Ord a => TyVarBndr a -> a # minimum :: Ord a => TyVarBndr a -> a # | |
Foldable Maybe | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldMap' :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |
Foldable Solo | Since: base-4.15 |
Defined in Data.Foldable Methods fold :: Monoid m => Solo m -> m # foldMap :: Monoid m => (a -> m) -> Solo a -> m # foldMap' :: Monoid m => (a -> m) -> Solo a -> m # foldr :: (a -> b -> b) -> b -> Solo a -> b # foldr' :: (a -> b -> b) -> b -> Solo a -> b # foldl :: (b -> a -> b) -> b -> Solo a -> b # foldl' :: (b -> a -> b) -> b -> Solo a -> b # foldr1 :: (a -> a -> a) -> Solo a -> a # foldl1 :: (a -> a -> a) -> Solo a -> a # elem :: Eq a => a -> Solo a -> Bool # maximum :: Ord a => Solo a -> a # | |
Foldable [] | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => [m] -> m # foldMap :: Monoid m => (a -> m) -> [a] -> m # foldMap' :: Monoid m => (a -> m) -> [a] -> m # foldr :: (a -> b -> b) -> b -> [a] -> b # foldr' :: (a -> b -> b) -> b -> [a] -> b # foldl :: (b -> a -> b) -> b -> [a] -> b # foldl' :: (b -> a -> b) -> b -> [a] -> b # foldr1 :: (a -> a -> a) -> [a] -> a # foldl1 :: (a -> a -> a) -> [a] -> a # elem :: Eq a => a -> [a] -> Bool # maximum :: Ord a => [a] -> a # | |
Foldable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Either a m -> m # foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # toList :: Either a a0 -> [a0] # length :: Either a a0 -> Int # elem :: Eq a0 => a0 -> Either a a0 -> Bool # maximum :: Ord a0 => Either a a0 -> a0 # minimum :: Ord a0 => Either a a0 -> a0 # | |
Foldable (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Proxy m -> m # foldMap :: Monoid m => (a -> m) -> Proxy a -> m # foldMap' :: Monoid m => (a -> m) -> Proxy a -> m # foldr :: (a -> b -> b) -> b -> Proxy a -> b # foldr' :: (a -> b -> b) -> b -> Proxy a -> b # foldl :: (b -> a -> b) -> b -> Proxy a -> b # foldl' :: (b -> a -> b) -> b -> Proxy a -> b # foldr1 :: (a -> a -> a) -> Proxy a -> a # foldl1 :: (a -> a -> a) -> Proxy a -> a # elem :: Eq a => a -> Proxy a -> Bool # maximum :: Ord a => Proxy a -> a # minimum :: Ord a => Proxy a -> a # | |
Foldable (Arg a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Arg a m -> m # foldMap :: Monoid m => (a0 -> m) -> Arg a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Arg a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Arg a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Arg a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Arg a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Arg a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 # elem :: Eq a0 => a0 -> Arg a a0 -> Bool # maximum :: Ord a0 => Arg a a0 -> a0 # minimum :: Ord a0 => Arg a a0 -> a0 # | |
Foldable (Array i) | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Array i m -> m # foldMap :: Monoid m => (a -> m) -> Array i a -> m # foldMap' :: Monoid m => (a -> m) -> Array i a -> m # foldr :: (a -> b -> b) -> b -> Array i a -> b # foldr' :: (a -> b -> b) -> b -> Array i a -> b # foldl :: (b -> a -> b) -> b -> Array i a -> b # foldl' :: (b -> a -> b) -> b -> Array i a -> b # foldr1 :: (a -> a -> a) -> Array i a -> a # foldl1 :: (a -> a -> a) -> Array i a -> a # elem :: Eq a => a -> Array i a -> Bool # maximum :: Ord a => Array i a -> a # minimum :: Ord a => Array i a -> a # | |
Foldable (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => U1 m -> m # foldMap :: Monoid m => (a -> m) -> U1 a -> m # foldMap' :: Monoid m => (a -> m) -> U1 a -> m # foldr :: (a -> b -> b) -> b -> U1 a -> b # foldr' :: (a -> b -> b) -> b -> U1 a -> b # foldl :: (b -> a -> b) -> b -> U1 a -> b # foldl' :: (b -> a -> b) -> b -> U1 a -> b # foldr1 :: (a -> a -> a) -> U1 a -> a # foldl1 :: (a -> a -> a) -> U1 a -> a # elem :: Eq a => a -> U1 a -> Bool # maximum :: Ord a => U1 a -> a # | |
Foldable (UAddr :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UAddr m -> m # foldMap :: Monoid m => (a -> m) -> UAddr a -> m # foldMap' :: Monoid m => (a -> m) -> UAddr a -> m # foldr :: (a -> b -> b) -> b -> UAddr a -> b # foldr' :: (a -> b -> b) -> b -> UAddr a -> b # foldl :: (b -> a -> b) -> b -> UAddr a -> b # foldl' :: (b -> a -> b) -> b -> UAddr a -> b # foldr1 :: (a -> a -> a) -> UAddr a -> a # foldl1 :: (a -> a -> a) -> UAddr a -> a # elem :: Eq a => a -> UAddr a -> Bool # maximum :: Ord a => UAddr a -> a # minimum :: Ord a => UAddr a -> a # | |
Foldable (UChar :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UChar m -> m # foldMap :: Monoid m => (a -> m) -> UChar a -> m # foldMap' :: Monoid m => (a -> m) -> UChar a -> m # foldr :: (a -> b -> b) -> b -> UChar a -> b # foldr' :: (a -> b -> b) -> b -> UChar a -> b # foldl :: (b -> a -> b) -> b -> UChar a -> b # foldl' :: (b -> a -> b) -> b -> UChar a -> b # foldr1 :: (a -> a -> a) -> UChar a -> a # foldl1 :: (a -> a -> a) -> UChar a -> a # elem :: Eq a => a -> UChar a -> Bool # maximum :: Ord a => UChar a -> a # minimum :: Ord a => UChar a -> a # | |
Foldable (UDouble :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UDouble m -> m # foldMap :: Monoid m => (a -> m) -> UDouble a -> m # foldMap' :: Monoid m => (a -> m) -> UDouble a -> m # foldr :: (a -> b -> b) -> b -> UDouble a -> b # foldr' :: (a -> b -> b) -> b -> UDouble a -> b # foldl :: (b -> a -> b) -> b -> UDouble a -> b # foldl' :: (b -> a -> b) -> b -> UDouble a -> b # foldr1 :: (a -> a -> a) -> UDouble a -> a # foldl1 :: (a -> a -> a) -> UDouble a -> a # elem :: Eq a => a -> UDouble a -> Bool # maximum :: Ord a => UDouble a -> a # minimum :: Ord a => UDouble a -> a # | |
Foldable (UFloat :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UFloat m -> m # foldMap :: Monoid m => (a -> m) -> UFloat a -> m # foldMap' :: Monoid m => (a -> m) -> UFloat a -> m # foldr :: (a -> b -> b) -> b -> UFloat a -> b # foldr' :: (a -> b -> b) -> b -> UFloat a -> b # foldl :: (b -> a -> b) -> b -> UFloat a -> b # foldl' :: (b -> a -> b) -> b -> UFloat a -> b # foldr1 :: (a -> a -> a) -> UFloat a -> a # foldl1 :: (a -> a -> a) -> UFloat a -> a # elem :: Eq a => a -> UFloat a -> Bool # maximum :: Ord a => UFloat a -> a # minimum :: Ord a => UFloat a -> a # | |
Foldable (UInt :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UInt m -> m # foldMap :: Monoid m => (a -> m) -> UInt a -> m # foldMap' :: Monoid m => (a -> m) -> UInt a -> m # foldr :: (a -> b -> b) -> b -> UInt a -> b # foldr' :: (a -> b -> b) -> b -> UInt a -> b # foldl :: (b -> a -> b) -> b -> UInt a -> b # foldl' :: (b -> a -> b) -> b -> UInt a -> b # foldr1 :: (a -> a -> a) -> UInt a -> a # foldl1 :: (a -> a -> a) -> UInt a -> a # elem :: Eq a => a -> UInt a -> Bool # maximum :: Ord a => UInt a -> a # | |
Foldable (UWord :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UWord m -> m # foldMap :: Monoid m => (a -> m) -> UWord a -> m # foldMap' :: Monoid m => (a -> m) -> UWord a -> m # foldr :: (a -> b -> b) -> b -> UWord a -> b # foldr' :: (a -> b -> b) -> b -> UWord a -> b # foldl :: (b -> a -> b) -> b -> UWord a -> b # foldl' :: (b -> a -> b) -> b -> UWord a -> b # foldr1 :: (a -> a -> a) -> UWord a -> a # foldl1 :: (a -> a -> a) -> UWord a -> a # elem :: Eq a => a -> UWord a -> Bool # maximum :: Ord a => UWord a -> a # minimum :: Ord a => UWord a -> a # | |
Foldable (V1 :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => V1 m -> m # foldMap :: Monoid m => (a -> m) -> V1 a -> m # foldMap' :: Monoid m => (a -> m) -> V1 a -> m # foldr :: (a -> b -> b) -> b -> V1 a -> b # foldr' :: (a -> b -> b) -> b -> V1 a -> b # foldl :: (b -> a -> b) -> b -> V1 a -> b # foldl' :: (b -> a -> b) -> b -> V1 a -> b # foldr1 :: (a -> a -> a) -> V1 a -> a # foldl1 :: (a -> a -> a) -> V1 a -> a # elem :: Eq a => a -> V1 a -> Bool # maximum :: Ord a => V1 a -> a # | |
Foldable (Map k) | Folds in order of increasing key. |
Defined in Data.Map.Internal Methods fold :: Monoid m => Map k m -> m # foldMap :: Monoid m => (a -> m) -> Map k a -> m # foldMap' :: Monoid m => (a -> m) -> Map k a -> m # foldr :: (a -> b -> b) -> b -> Map k a -> b # foldr' :: (a -> b -> b) -> b -> Map k a -> b # foldl :: (b -> a -> b) -> b -> Map k a -> b # foldl' :: (b -> a -> b) -> b -> Map k a -> b # foldr1 :: (a -> a -> a) -> Map k a -> a # foldl1 :: (a -> a -> a) -> Map k a -> a # elem :: Eq a => a -> Map k a -> Bool # maximum :: Ord a => Map k a -> a # minimum :: Ord a => Map k a -> a # | |
Foldable f => Foldable (Lift f) | |
Defined in Control.Applicative.Lift Methods fold :: Monoid m => Lift f m -> m # foldMap :: Monoid m => (a -> m) -> Lift f a -> m # foldMap' :: Monoid m => (a -> m) -> Lift f a -> m # foldr :: (a -> b -> b) -> b -> Lift f a -> b # foldr' :: (a -> b -> b) -> b -> Lift f a -> b # foldl :: (b -> a -> b) -> b -> Lift f a -> b # foldl' :: (b -> a -> b) -> b -> Lift f a -> b # foldr1 :: (a -> a -> a) -> Lift f a -> a # foldl1 :: (a -> a -> a) -> Lift f a -> a # elem :: Eq a => a -> Lift f a -> Bool # maximum :: Ord a => Lift f a -> a # minimum :: Ord a => Lift f a -> a # | |
Foldable f => Foldable (MaybeT f) | |
Defined in Control.Monad.Trans.Maybe Methods fold :: Monoid m => MaybeT f m -> m # foldMap :: Monoid m => (a -> m) -> MaybeT f a -> m # foldMap' :: Monoid m => (a -> m) -> MaybeT f a -> m # foldr :: (a -> b -> b) -> b -> MaybeT f a -> b # foldr' :: (a -> b -> b) -> b -> MaybeT f a -> b # foldl :: (b -> a -> b) -> b -> MaybeT f a -> b # foldl' :: (b -> a -> b) -> b -> MaybeT f a -> b # foldr1 :: (a -> a -> a) -> MaybeT f a -> a # foldl1 :: (a -> a -> a) -> MaybeT f a -> a # elem :: Eq a => a -> MaybeT f a -> Bool # maximum :: Ord a => MaybeT f a -> a # minimum :: Ord a => MaybeT f a -> a # | |
Foldable ((,) a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (a, m) -> m # foldMap :: Monoid m => (a0 -> m) -> (a, a0) -> m # foldMap' :: Monoid m => (a0 -> m) -> (a, a0) -> m # foldr :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldr' :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldl :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldl' :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldr1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # foldl1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # elem :: Eq a0 => a0 -> (a, a0) -> Bool # maximum :: Ord a0 => (a, a0) -> a0 # minimum :: Ord a0 => (a, a0) -> a0 # | |
Foldable (Const m :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Functor.Const Methods fold :: Monoid m0 => Const m m0 -> m0 # foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldMap' :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldr :: (a -> b -> b) -> b -> Const m a -> b # foldr' :: (a -> b -> b) -> b -> Const m a -> b # foldl :: (b -> a -> b) -> b -> Const m a -> b # foldl' :: (b -> a -> b) -> b -> Const m a -> b # foldr1 :: (a -> a -> a) -> Const m a -> a # foldl1 :: (a -> a -> a) -> Const m a -> a # elem :: Eq a => a -> Const m a -> Bool # maximum :: Ord a => Const m a -> a # minimum :: Ord a => Const m a -> a # | |
Foldable f => Foldable (Ap f) | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Ap f m -> m # foldMap :: Monoid m => (a -> m) -> Ap f a -> m # foldMap' :: Monoid m => (a -> m) -> Ap f a -> m # foldr :: (a -> b -> b) -> b -> Ap f a -> b # foldr' :: (a -> b -> b) -> b -> Ap f a -> b # foldl :: (b -> a -> b) -> b -> Ap f a -> b # foldl' :: (b -> a -> b) -> b -> Ap f a -> b # foldr1 :: (a -> a -> a) -> Ap f a -> a # foldl1 :: (a -> a -> a) -> Ap f a -> a # elem :: Eq a => a -> Ap f a -> Bool # maximum :: Ord a => Ap f a -> a # | |
Foldable f => Foldable (Alt f) | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Alt f m -> m # foldMap :: Monoid m => (a -> m) -> Alt f a -> m # foldMap' :: Monoid m => (a -> m) -> Alt f a -> m # foldr :: (a -> b -> b) -> b -> Alt f a -> b # foldr' :: (a -> b -> b) -> b -> Alt f a -> b # foldl :: (b -> a -> b) -> b -> Alt f a -> b # foldl' :: (b -> a -> b) -> b -> Alt f a -> b # foldr1 :: (a -> a -> a) -> Alt f a -> a # foldl1 :: (a -> a -> a) -> Alt f a -> a # elem :: Eq a => a -> Alt f a -> Bool # maximum :: Ord a => Alt f a -> a # minimum :: Ord a => Alt f a -> a # | |
Foldable f => Foldable (Rec1 f) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Rec1 f m -> m # foldMap :: Monoid m => (a -> m) -> Rec1 f a -> m # foldMap' :: Monoid m => (a -> m) -> Rec1 f a -> m # foldr :: (a -> b -> b) -> b -> Rec1 f a -> b # foldr' :: (a -> b -> b) -> b -> Rec1 f a -> b # foldl :: (b -> a -> b) -> b -> Rec1 f a -> b # foldl' :: (b -> a -> b) -> b -> Rec1 f a -> b # foldr1 :: (a -> a -> a) -> Rec1 f a -> a # foldl1 :: (a -> a -> a) -> Rec1 f a -> a # elem :: Eq a => a -> Rec1 f a -> Bool # maximum :: Ord a => Rec1 f a -> a # minimum :: Ord a => Rec1 f a -> a # | |
Foldable f => Foldable (Backwards f) | Derived instance. |
Defined in Control.Applicative.Backwards Methods fold :: Monoid m => Backwards f m -> m # foldMap :: Monoid m => (a -> m) -> Backwards f a -> m # foldMap' :: Monoid m => (a -> m) -> Backwards f a -> m # foldr :: (a -> b -> b) -> b -> Backwards f a -> b # foldr' :: (a -> b -> b) -> b -> Backwards f a -> b # foldl :: (b -> a -> b) -> b -> Backwards f a -> b # foldl' :: (b -> a -> b) -> b -> Backwards f a -> b # foldr1 :: (a -> a -> a) -> Backwards f a -> a # foldl1 :: (a -> a -> a) -> Backwards f a -> a # toList :: Backwards f a -> [a] # null :: Backwards f a -> Bool # length :: Backwards f a -> Int # elem :: Eq a => a -> Backwards f a -> Bool # maximum :: Ord a => Backwards f a -> a # minimum :: Ord a => Backwards f a -> a # | |
Foldable f => Foldable (ExceptT e f) | |
Defined in Control.Monad.Trans.Except Methods fold :: Monoid m => ExceptT e f m -> m # foldMap :: Monoid m => (a -> m) -> ExceptT e f a -> m # foldMap' :: Monoid m => (a -> m) -> ExceptT e f a -> m # foldr :: (a -> b -> b) -> b -> ExceptT e f a -> b # foldr' :: (a -> b -> b) -> b -> ExceptT e f a -> b # foldl :: (b -> a -> b) -> b -> ExceptT e f a -> b # foldl' :: (b -> a -> b) -> b -> ExceptT e f a -> b # foldr1 :: (a -> a -> a) -> ExceptT e f a -> a # foldl1 :: (a -> a -> a) -> ExceptT e f a -> a # toList :: ExceptT e f a -> [a] # null :: ExceptT e f a -> Bool # length :: ExceptT e f a -> Int # elem :: Eq a => a -> ExceptT e f a -> Bool # maximum :: Ord a => ExceptT e f a -> a # minimum :: Ord a => ExceptT e f a -> a # | |
Foldable f => Foldable (IdentityT f) | |
Defined in Control.Monad.Trans.Identity Methods fold :: Monoid m => IdentityT f m -> m # foldMap :: Monoid m => (a -> m) -> IdentityT f a -> m # foldMap' :: Monoid m => (a -> m) -> IdentityT f a -> m # foldr :: (a -> b -> b) -> b -> IdentityT f a -> b # foldr' :: (a -> b -> b) -> b -> IdentityT f a -> b # foldl :: (b -> a -> b) -> b -> IdentityT f a -> b # foldl' :: (b -> a -> b) -> b -> IdentityT f a -> b # foldr1 :: (a -> a -> a) -> IdentityT f a -> a # foldl1 :: (a -> a -> a) -> IdentityT f a -> a # toList :: IdentityT f a -> [a] # null :: IdentityT f a -> Bool # length :: IdentityT f a -> Int # elem :: Eq a => a -> IdentityT f a -> Bool # maximum :: Ord a => IdentityT f a -> a # minimum :: Ord a => IdentityT f a -> a # | |
Foldable f => Foldable (WriterT w f) | |
Defined in Control.Monad.Trans.Writer.Lazy Methods fold :: Monoid m => WriterT w f m -> m # foldMap :: Monoid m => (a -> m) -> WriterT w f a -> m # foldMap' :: Monoid m => (a -> m) -> WriterT w f a -> m # foldr :: (a -> b -> b) -> b -> WriterT w f a -> b # foldr' :: (a -> b -> b) -> b -> WriterT w f a -> b # foldl :: (b -> a -> b) -> b -> WriterT w f a -> b # foldl' :: (b -> a -> b) -> b -> WriterT w f a -> b # foldr1 :: (a -> a -> a) -> WriterT w f a -> a # foldl1 :: (a -> a -> a) -> WriterT w f a -> a # toList :: WriterT w f a -> [a] # null :: WriterT w f a -> Bool # length :: WriterT w f a -> Int # elem :: Eq a => a -> WriterT w f a -> Bool # maximum :: Ord a => WriterT w f a -> a # minimum :: Ord a => WriterT w f a -> a # | |
Foldable f => Foldable (WriterT w f) | |
Defined in Control.Monad.Trans.Writer.Strict Methods fold :: Monoid m => WriterT w f m -> m # foldMap :: Monoid m => (a -> m) -> WriterT w f a -> m # foldMap' :: Monoid m => (a -> m) -> WriterT w f a -> m # foldr :: (a -> b -> b) -> b -> WriterT w f a -> b # foldr' :: (a -> b -> b) -> b -> WriterT w f a -> b # foldl :: (b -> a -> b) -> b -> WriterT w f a -> b # foldl' :: (b -> a -> b) -> b -> WriterT w f a -> b # foldr1 :: (a -> a -> a) -> WriterT w f a -> a # foldl1 :: (a -> a -> a) -> WriterT w f a -> a # toList :: WriterT w f a -> [a] # null :: WriterT w f a -> Bool # length :: WriterT w f a -> Int # elem :: Eq a => a -> WriterT w f a -> Bool # maximum :: Ord a => WriterT w f a -> a # minimum :: Ord a => WriterT w f a -> a # | |
Foldable (Constant a :: Type -> Type) | |
Defined in Data.Functor.Constant Methods fold :: Monoid m => Constant a m -> m # foldMap :: Monoid m => (a0 -> m) -> Constant a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Constant a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Constant a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Constant a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Constant a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Constant a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Constant a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Constant a a0 -> a0 # toList :: Constant a a0 -> [a0] # null :: Constant a a0 -> Bool # length :: Constant a a0 -> Int # elem :: Eq a0 => a0 -> Constant a a0 -> Bool # maximum :: Ord a0 => Constant a a0 -> a0 # minimum :: Ord a0 => Constant a a0 -> a0 # | |
Foldable f => Foldable (Reverse f) | Fold from right to left. |
Defined in Data.Functor.Reverse Methods fold :: Monoid m => Reverse f m -> m # foldMap :: Monoid m => (a -> m) -> Reverse f a -> m # foldMap' :: Monoid m => (a -> m) -> Reverse f a -> m # foldr :: (a -> b -> b) -> b -> Reverse f a -> b # foldr' :: (a -> b -> b) -> b -> Reverse f a -> b # foldl :: (b -> a -> b) -> b -> Reverse f a -> b # foldl' :: (b -> a -> b) -> b -> Reverse f a -> b # foldr1 :: (a -> a -> a) -> Reverse f a -> a # foldl1 :: (a -> a -> a) -> Reverse f a -> a # toList :: Reverse f a -> [a] # length :: Reverse f a -> Int # elem :: Eq a => a -> Reverse f a -> Bool # maximum :: Ord a => Reverse f a -> a # minimum :: Ord a => Reverse f a -> a # | |
(Foldable f, Foldable g) => Foldable (Product f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product Methods fold :: Monoid m => Product f g m -> m # foldMap :: Monoid m => (a -> m) -> Product f g a -> m # foldMap' :: Monoid m => (a -> m) -> Product f g a -> m # foldr :: (a -> b -> b) -> b -> Product f g a -> b # foldr' :: (a -> b -> b) -> b -> Product f g a -> b # foldl :: (b -> a -> b) -> b -> Product f g a -> b # foldl' :: (b -> a -> b) -> b -> Product f g a -> b # foldr1 :: (a -> a -> a) -> Product f g a -> a # foldl1 :: (a -> a -> a) -> Product f g a -> a # toList :: Product f g a -> [a] # null :: Product f g a -> Bool # length :: Product f g a -> Int # elem :: Eq a => a -> Product f g a -> Bool # maximum :: Ord a => Product f g a -> a # minimum :: Ord a => Product f g a -> a # | |
(Foldable f, Foldable g) => Foldable (Sum f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Sum Methods fold :: Monoid m => Sum f g m -> m # foldMap :: Monoid m => (a -> m) -> Sum f g a -> m # foldMap' :: Monoid m => (a -> m) -> Sum f g a -> m # foldr :: (a -> b -> b) -> b -> Sum f g a -> b # foldr' :: (a -> b -> b) -> b -> Sum f g a -> b # foldl :: (b -> a -> b) -> b -> Sum f g a -> b # foldl' :: (b -> a -> b) -> b -> Sum f g a -> b # foldr1 :: (a -> a -> a) -> Sum f g a -> a # foldl1 :: (a -> a -> a) -> Sum f g a -> a # elem :: Eq a => a -> Sum f g a -> Bool # maximum :: Ord a => Sum f g a -> a # minimum :: Ord a => Sum f g a -> a # | |
(Foldable f, Foldable g) => Foldable (f :*: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :*: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :*: g) a -> m # foldMap' :: Monoid m => (a -> m) -> (f :*: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldr1 :: (a -> a -> a) -> (f :*: g) a -> a # foldl1 :: (a -> a -> a) -> (f :*: g) a -> a # toList :: (f :*: g) a -> [a] # length :: (f :*: g) a -> Int # elem :: Eq a => a -> (f :*: g) a -> Bool # maximum :: Ord a => (f :*: g) a -> a # minimum :: Ord a => (f :*: g) a -> a # | |
(Foldable f, Foldable g) => Foldable (f :+: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :+: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :+: g) a -> m # foldMap' :: Monoid m => (a -> m) -> (f :+: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldr1 :: (a -> a -> a) -> (f :+: g) a -> a # foldl1 :: (a -> a -> a) -> (f :+: g) a -> a # toList :: (f :+: g) a -> [a] # length :: (f :+: g) a -> Int # elem :: Eq a => a -> (f :+: g) a -> Bool # maximum :: Ord a => (f :+: g) a -> a # minimum :: Ord a => (f :+: g) a -> a # | |
Foldable (K1 i c :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => K1 i c m -> m # foldMap :: Monoid m => (a -> m) -> K1 i c a -> m # foldMap' :: Monoid m => (a -> m) -> K1 i c a -> m # foldr :: (a -> b -> b) -> b -> K1 i c a -> b # foldr' :: (a -> b -> b) -> b -> K1 i c a -> b # foldl :: (b -> a -> b) -> b -> K1 i c a -> b # foldl' :: (b -> a -> b) -> b -> K1 i c a -> b # foldr1 :: (a -> a -> a) -> K1 i c a -> a # foldl1 :: (a -> a -> a) -> K1 i c a -> a # elem :: Eq a => a -> K1 i c a -> Bool # maximum :: Ord a => K1 i c a -> a # minimum :: Ord a => K1 i c a -> a # | |
(Foldable f, Foldable g) => Foldable (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose Methods fold :: Monoid m => Compose f g m -> m # foldMap :: Monoid m => (a -> m) -> Compose f g a -> m # foldMap' :: Monoid m => (a -> m) -> Compose f g a -> m # foldr :: (a -> b -> b) -> b -> Compose f g a -> b # foldr' :: (a -> b -> b) -> b -> Compose f g a -> b # foldl :: (b -> a -> b) -> b -> Compose f g a -> b # foldl' :: (b -> a -> b) -> b -> Compose f g a -> b # foldr1 :: (a -> a -> a) -> Compose f g a -> a # foldl1 :: (a -> a -> a) -> Compose f g a -> a # toList :: Compose f g a -> [a] # null :: Compose f g a -> Bool # length :: Compose f g a -> Int # elem :: Eq a => a -> Compose f g a -> Bool # maximum :: Ord a => Compose f g a -> a # minimum :: Ord a => Compose f g a -> a # | |
(Foldable f, Foldable g) => Foldable (f :.: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :.: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :.: g) a -> m # foldMap' :: Monoid m => (a -> m) -> (f :.: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldr1 :: (a -> a -> a) -> (f :.: g) a -> a # foldl1 :: (a -> a -> a) -> (f :.: g) a -> a # toList :: (f :.: g) a -> [a] # length :: (f :.: g) a -> Int # elem :: Eq a => a -> (f :.: g) a -> Bool # maximum :: Ord a => (f :.: g) a -> a # minimum :: Ord a => (f :.: g) a -> a # | |
Foldable f => Foldable (M1 i c f) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => M1 i c f m -> m # foldMap :: Monoid m => (a -> m) -> M1 i c f a -> m # foldMap' :: Monoid m => (a -> m) -> M1 i c f a -> m # foldr :: (a -> b -> b) -> b -> M1 i c f a -> b # foldr' :: (a -> b -> b) -> b -> M1 i c f a -> b # foldl :: (b -> a -> b) -> b -> M1 i c f a -> b # foldl' :: (b -> a -> b) -> b -> M1 i c f a -> b # foldr1 :: (a -> a -> a) -> M1 i c f a -> a # foldl1 :: (a -> a -> a) -> M1 i c f a -> a # elem :: Eq a => a -> M1 i c f a -> Bool # maximum :: Ord a => M1 i c f a -> a # minimum :: Ord a => M1 i c f a -> a # |
concat :: Foldable t => t [a] -> [a] #
The concatenation of all the elements of a container of lists.
Examples
Basic usage:
>>>
concat (Just [1, 2, 3])
[1,2,3]
>>>
concat (Left 42)
[]
>>>
concat [[1, 2, 3], [4, 5], [6], []]
[1,2,3,4,5,6]
maximumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a #
The largest element of a non-empty structure with respect to the given comparison function.
Examples
Basic usage:
>>>
maximumBy (compare `on` length) ["Hello", "World", "!", "Longest", "bar"]
"Longest"
WARNING: This function is partial for possibly-empty structures like lists.
minimumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a #
The least element of a non-empty structure with respect to the given comparison function.
Examples
Basic usage:
>>>
minimumBy (compare `on` length) ["Hello", "World", "!", "Longest", "bar"]
"!"
WARNING: This function is partial for possibly-empty structures like lists.
traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f () #
Map each element of a structure to an Applicative
action, evaluate these
actions from left to right, and ignore the results. For a version that
doesn't ignore the results see traverse
.
traverse_
is just like mapM_
, but generalised to Applicative
actions.
Examples
Basic usage:
>>>
traverse_ print ["Hello", "world", "!"]
"Hello" "world" "!"
sequenceA_ :: (Foldable t, Applicative f) => t (f a) -> f () #
Evaluate each action in the structure from left to right, and
ignore the results. For a version that doesn't ignore the results
see sequenceA
.
sequenceA_
is just like sequence_
, but generalised to Applicative
actions.
Examples
Basic usage:
>>>
sequenceA_ [print "Hello", print "world", print "!"]
"Hello" "world" "!"
sequence_ :: (Foldable t, Monad m) => t (m a) -> m () #
Evaluate each monadic action in the structure from left to right,
and ignore the results. For a version that doesn't ignore the
results see sequence
.
sequence_
is just like sequenceA_
, but specialised to monadic
actions.
for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f () #
for_
is traverse_
with its arguments flipped. For a version
that doesn't ignore the results see for
. This
is forM_
generalised to Applicative
actions.
for_
is just like forM_
, but generalised to Applicative
actions.
Examples
Basic usage:
>>>
for_ [1..4] print
1 2 3 4
and :: Foldable t => t Bool -> Bool #
and
returns the conjunction of a container of Bools. For the
result to be True
, the container must be finite; False
, however,
results from a False
value finitely far from the left end.
Examples
Basic usage:
>>>
and []
True
>>>
and [True]
True
>>>
and [False]
False
>>>
and [True, True, False]
False
>>>
and (False : repeat True) -- Infinite list [False,True,True,True,...
False
>>>
and (repeat True)
* Hangs forever *
or :: Foldable t => t Bool -> Bool #
or
returns the disjunction of a container of Bools. For the
result to be False
, the container must be finite; True
, however,
results from a True
value finitely far from the left end.
Examples
Basic usage:
>>>
or []
False
>>>
or [True]
True
>>>
or [False]
False
>>>
or [True, True, False]
True
>>>
or (True : repeat False) -- Infinite list [True,False,False,False,...
True
>>>
or (repeat False)
* Hangs forever *
any :: Foldable t => (a -> Bool) -> t a -> Bool #
Determines whether any element of the structure satisfies the predicate.
Examples
Basic usage:
>>>
any (> 3) []
False
>>>
any (> 3) [1,2]
False
>>>
any (> 3) [1,2,3,4,5]
True
>>>
any (> 3) [1..]
True
>>>
any (> 3) [0, -1..]
* Hangs forever *
all :: Foldable t => (a -> Bool) -> t a -> Bool #
Determines whether all elements of the structure satisfy the predicate.
Examples
Basic usage:
>>>
all (> 3) []
True
>>>
all (> 3) [1,2]
False
>>>
all (> 3) [1,2,3,4,5]
False
>>>
all (> 3) [1..]
False
>>>
all (> 3) [4..]
* Hangs forever *
notElem :: (Foldable t, Eq a) => a -> t a -> Bool infix 4 #
notElem
is the negation of elem
.
Examples
Basic usage:
>>>
3 `notElem` []
True
>>>
3 `notElem` [1,2]
True
>>>
3 `notElem` [1,2,3,4,5]
False
For infinite structures, notElem
terminates if the value exists at a
finite distance from the left side of the structure:
>>>
3 `notElem` [1..]
False
>>>
3 `notElem` ([4..] ++ [3])
* Hangs forever *
concatMap :: Foldable t => (a -> [b]) -> t a -> [b] #
Map a function over all the elements of a container and concatenate the resulting lists.
Examples
Basic usage:
>>>
concatMap (take 3) [[1..], [10..], [100..], [1000..]]
[1,2,3,10,11,12,100,101,102,1000,1001,1002]
>>>
concatMap (take 3) (Just [1..])
[1,2,3]
foldrM :: (Foldable t, Monad m) => (a -> b -> m b) -> b -> t a -> m b #
Right-to-left monadic fold over the elements of a structure.
Given a structure t
with elements (a, b, c, ..., x, y)
, the result of
a fold with an operator function f
is equivalent to:
foldrM f z t = do yy <- f y z xx <- f x yy ... bb <- f b cc aa <- f a bb return aa -- Just @return z@ when the structure is empty
For a Monad m
, given two functions f1 :: a -> m b
and f2 :: b -> m c
,
their Kleisli composition (f1 >=> f2) :: a -> m c
is defined by:
(f1 >=> f2) a = f1 a >>= f2
Another way of thinking about foldrM
is that it amounts to an application
to z
of a Kleisli composition:
foldrM f z t = f y >=> f x >=> ... >=> f b >=> f a $ z
The monadic effects of foldrM
are sequenced from right to left, and e.g.
folds of infinite lists will diverge.
If at some step the bind operator (
short-circuits (as with, e.g.,
>>=
)mzero
in a MonadPlus
), the evaluated effects will be from a tail of the
element sequence. If you want to evaluate the monadic effects in
left-to-right order, or perhaps be able to short-circuit after an initial
sequence of elements, you'll need to use foldlM
instead.
If the monadic effects don't short-circuit, the outermost application of
f
is to the leftmost element a
, so that, ignoring effects, the result
looks like a right fold:
a `f` (b `f` (c `f` (... (x `f` (y `f` z))))).
Examples
Basic usage:
>>>
let f i acc = do { print i ; return $ i : acc }
>>>
foldrM f [] [0..3]
3 2 1 0 [0,1,2,3]
foldlM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b #
Left-to-right monadic fold over the elements of a structure.
Given a structure t
with elements (a, b, ..., w, x, y)
, the result of
a fold with an operator function f
is equivalent to:
foldlM f z t = do aa <- f z a bb <- f aa b ... xx <- f ww x yy <- f xx y return yy -- Just @return z@ when the structure is empty
For a Monad m
, given two functions f1 :: a -> m b
and f2 :: b -> m c
,
their Kleisli composition (f1 >=> f2) :: a -> m c
is defined by:
(f1 >=> f2) a = f1 a >>= f2
Another way of thinking about foldlM
is that it amounts to an application
to z
of a Kleisli composition:
foldlM f z t = flip f a >=> flip f b >=> ... >=> flip f x >=> flip f y $ z
The monadic effects of foldlM
are sequenced from left to right.
If at some step the bind operator (
short-circuits (as with, e.g.,
>>=
)mzero
in a MonadPlus
), the evaluated effects will be from an initial
segment of the element sequence. If you want to evaluate the monadic
effects in right-to-left order, or perhaps be able to short-circuit after
processing a tail of the sequence of elements, you'll need to use foldrM
instead.
If the monadic effects don't short-circuit, the outermost application of
f
is to the rightmost element y
, so that, ignoring effects, the result
looks like a left fold:
((((z `f` a) `f` b) ... `f` w) `f` x) `f` y
Examples
Basic usage:
>>>
let f a e = do { print e ; return $ e : a }
>>>
foldlM f [] [0..3]
0 1 2 3 [3,2,1,0]
asum :: (Foldable t, Alternative f) => t (f a) -> f a #
The sum of a collection of actions using (<|>)
, generalizing concat
.
asum
is just like msum
, but generalised to Alternative
.
Examples
Basic usage:
>>>
asum [Just "Hello", Nothing, Just "World"]
Just "Hello"
Semigroup functions
stimesIdempotent :: Integral b => b -> a -> a #
stimesIdempotentMonoid :: (Integral b, Monoid a) => b -> a -> a #
The class of semigroups (types with an associative binary operation).
Instances should satisfy the following:
You can alternatively define sconcat
instead of (<>
), in which case the
laws are:
Since: base-4.9.0.0
Methods
Reduce a non-empty list with <>
The default definition should be sufficient, but this can be overridden for efficiency.
Examples
For the following examples, we will assume that we have:
>>>
import Data.List.NonEmpty (NonEmpty (..))
>>>
sconcat $ "Hello" :| [" ", "Haskell", "!"]
"Hello Haskell!"
>>>
sconcat $ Just [1, 2, 3] :| [Nothing, Just [4, 5, 6]]
Just [1,2,3,4,5,6]
>>>
sconcat $ Left 1 :| [Right 2, Left 3, Right 4]
Right 2
stimes :: Integral b => b -> a -> a #
Repeat a value n
times.
The default definition will raise an exception for a multiplier that is <= 0
.
This may be overridden with an implementation that is total. For monoids
it is preferred to use stimesMonoid
.
By making this a member of the class, idempotent semigroups
and monoids can upgrade this to execute in \(\mathcal{O}(1)\) by
picking stimes =
or stimesIdempotent
stimes =
respectively.stimesIdempotentMonoid
Examples
>>>
stimes 4 [1]
[1,1,1,1]
>>>
stimes 5 (putStr "hi!")
hi!hi!hi!hi!hi!
>>>
stimes 3 (Right ":)")
Right ":)"
Instances
Semigroup ByteArray | Since: base-4.17.0.0 |
Semigroup All | Since: base-4.9.0.0 |
Semigroup Any | Since: base-4.9.0.0 |
Semigroup Void | Since: base-4.9.0.0 |
Semigroup Builder | |
Semigroup ByteString | |
Defined in Data.ByteString.Internal.Type Methods (<>) :: ByteString -> ByteString -> ByteString # sconcat :: NonEmpty ByteString -> ByteString # stimes :: Integral b => b -> ByteString -> ByteString # | |
Semigroup ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods (<>) :: ByteString -> ByteString -> ByteString # sconcat :: NonEmpty ByteString -> ByteString # stimes :: Integral b => b -> ByteString -> ByteString # | |
Semigroup ShortByteString | |
Defined in Data.ByteString.Short.Internal Methods (<>) :: ShortByteString -> ShortByteString -> ShortByteString # sconcat :: NonEmpty ShortByteString -> ShortByteString # stimes :: Integral b => b -> ShortByteString -> ShortByteString # | |
Semigroup IntSet | Since: containers-0.5.7 |
Semigroup Unit | |
Semigroup OsString | |
Semigroup PosixString | |
Defined in System.OsString.Internal.Types.Hidden Methods (<>) :: PosixString -> PosixString -> PosixString # sconcat :: NonEmpty PosixString -> PosixString # stimes :: Integral b => b -> PosixString -> PosixString # | |
Semigroup WindowsString | |
Defined in System.OsString.Internal.Types.Hidden Methods (<>) :: WindowsString -> WindowsString -> WindowsString # sconcat :: NonEmpty WindowsString -> WindowsString # stimes :: Integral b => b -> WindowsString -> WindowsString # | |
Semigroup Ordering | Since: base-4.9.0.0 |
Semigroup OsString | |
Semigroup PosixString | |
Defined in System.OsString.Internal.Types Methods (<>) :: PosixString -> PosixString -> PosixString # sconcat :: NonEmpty PosixString -> PosixString # stimes :: Integral b => b -> PosixString -> PosixString # | |
Semigroup WindowsString | |
Defined in System.OsString.Internal.Types Methods (<>) :: WindowsString -> WindowsString -> WindowsString # sconcat :: NonEmpty WindowsString -> WindowsString # stimes :: Integral b => b -> WindowsString -> WindowsString # | |
Semigroup Doc | |
Semigroup Builder | |
Semigroup StrictBuilder | Concatenation of |
Defined in Data.Text.Internal.StrictBuilder Methods (<>) :: StrictBuilder -> StrictBuilder -> StrictBuilder # sconcat :: NonEmpty StrictBuilder -> StrictBuilder # stimes :: Integral b => b -> StrictBuilder -> StrictBuilder # | |
Semigroup () | Since: base-4.9.0.0 |
Semigroup a => Semigroup (Concurrently a) | Only defined by Since: async-2.1.0 |
Defined in Control.Concurrent.Async.Internal Methods (<>) :: Concurrently a -> Concurrently a -> Concurrently a # sconcat :: NonEmpty (Concurrently a) -> Concurrently a # stimes :: Integral b => b -> Concurrently a -> Concurrently a # | |
Bits a => Semigroup (And a) | Since: base-4.16 |
FiniteBits a => Semigroup (Iff a) | This constraint is arguably
too strong. However, as some types (such as Since: base-4.16 |
Bits a => Semigroup (Ior a) | Since: base-4.16 |
Bits a => Semigroup (Xor a) | Since: base-4.16 |
Semigroup (FromMaybe b) | |
Semigroup a => Semigroup (JoinWith a) | |
Semigroup (NonEmptyDList a) | |
Semigroup (Comparison a) |
(<>) :: Comparison a -> Comparison a -> Comparison a Comparison cmp <> Comparison cmp' = Comparison a a' -> cmp a a' <> cmp a a' |
Defined in Data.Functor.Contravariant Methods (<>) :: Comparison a -> Comparison a -> Comparison a # sconcat :: NonEmpty (Comparison a) -> Comparison a # stimes :: Integral b => b -> Comparison a -> Comparison a # | |
Semigroup (Equivalence a) |
(<>) :: Equivalence a -> Equivalence a -> Equivalence a Equivalence equiv <> Equivalence equiv' = Equivalence a b -> equiv a b && equiv' a b |
Defined in Data.Functor.Contravariant Methods (<>) :: Equivalence a -> Equivalence a -> Equivalence a # sconcat :: NonEmpty (Equivalence a) -> Equivalence a # stimes :: Integral b => b -> Equivalence a -> Equivalence a # | |
Semigroup (Predicate a) |
(<>) :: Predicate a -> Predicate a -> Predicate a Predicate pred <> Predicate pred' = Predicate a -> pred a && pred' a |
Semigroup a => Semigroup (Identity a) | Since: base-4.9.0.0 |
Semigroup (First a) | Since: base-4.9.0.0 |
Semigroup (Last a) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (Down a) | Since: base-4.11.0.0 |
Semigroup (First a) | Since: base-4.9.0.0 |
Semigroup (Last a) | Since: base-4.9.0.0 |
Ord a => Semigroup (Max a) | Since: base-4.9.0.0 |
Ord a => Semigroup (Min a) | Since: base-4.9.0.0 |
Monoid m => Semigroup (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods (<>) :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # sconcat :: NonEmpty (WrappedMonoid m) -> WrappedMonoid m # stimes :: Integral b => b -> WrappedMonoid m -> WrappedMonoid m # | |
Semigroup a => Semigroup (Dual a) | Since: base-4.9.0.0 |
Semigroup (Endo a) | Since: base-4.9.0.0 |
Num a => Semigroup (Product a) | Since: base-4.9.0.0 |
Num a => Semigroup (Sum a) | Since: base-4.9.0.0 |
Semigroup (NonEmpty a) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (STM a) | Since: base-4.17.0.0 |
(Generic a, Semigroup (Rep a ())) => Semigroup (Generically a) | Since: base-4.17.0.0 |
Defined in GHC.Generics Methods (<>) :: Generically a -> Generically a -> Generically a # sconcat :: NonEmpty (Generically a) -> Generically a # stimes :: Integral b => b -> Generically a -> Generically a # | |
Semigroup p => Semigroup (Par1 p) | Since: base-4.12.0.0 |
Semigroup (IntMap a) | Since: containers-0.5.7 |
Semigroup (Seq a) | Since: containers-0.5.7 |
Ord a => Semigroup (Intersection a) | |
Defined in Data.Set.Internal Methods (<>) :: Intersection a -> Intersection a -> Intersection a # sconcat :: NonEmpty (Intersection a) -> Intersection a # stimes :: Integral b => b -> Intersection a -> Intersection a # | |
Semigroup (MergeSet a) | |
Ord a => Semigroup (Set a) | Since: containers-0.5.7 |
Semigroup a => Semigroup (IO a) | Since: base-4.10.0.0 |
Semigroup (Doc a) | |
Semigroup a => Semigroup (Q a) | Since: template-haskell-2.17.0.0 |
Semigroup a => Semigroup (Maybe a) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (Solo a) | Since: base-4.15 |
Semigroup [a] | Since: base-4.9.0.0 |
Semigroup a => Semigroup (ConcurrentlyE e a) | Either the combination of the successful results, or the first failure. |
Defined in Control.Concurrent.Async.Internal Methods (<>) :: ConcurrentlyE e a -> ConcurrentlyE e a -> ConcurrentlyE e a # sconcat :: NonEmpty (ConcurrentlyE e a) -> ConcurrentlyE e a # stimes :: Integral b => b -> ConcurrentlyE e a -> ConcurrentlyE e a # | |
Semigroup (Either a b) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (Op a b) |
(<>) :: Op a b -> Op a b -> Op a b Op f <> Op g = Op a -> f a <> g a |
Semigroup (Proxy s) | Since: base-4.9.0.0 |
Semigroup (U1 p) | Since: base-4.12.0.0 |
Semigroup (V1 p) | Since: base-4.12.0.0 |
Semigroup a => Semigroup (ST s a) | Since: base-4.11.0.0 |
Ord k => Semigroup (Map k v) | |
(Semigroup a, Semigroup b) => Semigroup (a, b) | Since: base-4.9.0.0 |
Semigroup b => Semigroup (a -> b) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (Const a b) | Since: base-4.9.0.0 |
(Applicative f, Semigroup a) => Semigroup (Ap f a) | Since: base-4.12.0.0 |
Alternative f => Semigroup (Alt f a) | Since: base-4.9.0.0 |
Semigroup (f p) => Semigroup (Rec1 f p) | Since: base-4.12.0.0 |
Semigroup a => Semigroup (Constant a b) | |
(Semigroup a, Semigroup b, Semigroup c) => Semigroup (a, b, c) | Since: base-4.9.0.0 |
(Semigroup (f a), Semigroup (g a)) => Semigroup (Product f g a) | Since: base-4.16.0.0 |
(Semigroup (f p), Semigroup (g p)) => Semigroup ((f :*: g) p) | Since: base-4.12.0.0 |
Semigroup c => Semigroup (K1 i c p) | Since: base-4.12.0.0 |
(Semigroup a, Semigroup b, Semigroup c, Semigroup d) => Semigroup (a, b, c, d) | Since: base-4.9.0.0 |
Semigroup (f (g a)) => Semigroup (Compose f g a) | Since: base-4.16.0.0 |
Semigroup (f (g p)) => Semigroup ((f :.: g) p) | Since: base-4.12.0.0 |
Semigroup (f p) => Semigroup (M1 i c f p) | Since: base-4.12.0.0 |
(Semigroup a, Semigroup b, Semigroup c, Semigroup d, Semigroup e) => Semigroup (a, b, c, d, e) | Since: base-4.9.0.0 |
stimesMonoid :: (Integral b, Monoid a) => b -> a -> a #
data WrappedMonoid m #
Provide a Semigroup for an arbitrary Monoid.
NOTE: This is not needed anymore since Semigroup
became a superclass of
Monoid
in base-4.11 and this newtype be deprecated at some point in the future.
Instances
diff :: Semigroup m => m -> Endo m #
This lets you use a difference list of a Semigroup
as a Monoid
.
Examples
let hello = diff "Hello, "
>>>
appEndo hello "World!"
"Hello, World!"
>>>
appEndo (hello <> mempty) "World!"
"Hello, World!"
>>>
appEndo (mempty <> hello) "World!"
"Hello, World!"
let world = diff "World" let excl = diff "!"
>>>
appEndo (hello <> (world <> excl)) mempty
"Hello, World!"
>>>
appEndo ((hello <> world) <> excl) mempty
"Hello, World!"
mtimesDefault :: (Integral b, Monoid a) => b -> a -> a #
Repeat a value n
times.
mtimesDefault n a = a <> a <> ... <> a -- using <> (n-1) times
In many cases,
for a stimes
0 aMonoid
will produce mempty
.
However, there are situations when it cannot do so. In particular,
the following situation is fairly common:
data T a = ... class Constraint1 a class Constraint1 a => Constraint2 a
instance Constraint1 a =>Semigroup
(T a) instance Constraint2 a =>Monoid
(T a)
Since Constraint1
is insufficient to implement mempty
,
stimes
for T a
cannot do so.
When working with such a type, or when working polymorphically with
Semigroup
instances, mtimesDefault
should be used when the
multiplier might be zero. It is implemented using stimes
when
the multiplier is nonzero and mempty
when it is zero.
Examples
>>>
mtimesDefault 0 "bark"
[]
>>>
mtimesDefault 3 "meow"
"meowmeowmeow"
Monoid functions
module Data.Monoid
Bifunctor functions
module Data.Bifunctor
Bifunctor functions
class Eq a => Hashable a where #
The class of types that can be converted to a hash value.
Minimal implementation: hashWithSalt
.
Hashable
is intended exclusively for use in in-memory data structures.
.
Hashable
does not have a fixed standard.
This allows it to improve over time.
.
Because it does not have a fixed standard, different computers or computers on different versions of the code will observe different hash values.
As such, Hashable
is not recommended for use other than in-memory datastructures.
Specifically, Hashable
is not intended for network use or in applications which persist hashed values.
For stable hashing use named hashes: sha256, crc32, xxhash etc.
If you are looking for Hashable
instance in time
package,
check time-compat
Minimal complete definition
Nothing
Methods
hashWithSalt :: Int -> a -> Int infixl 0 #
Return a hash value for the argument, using the given salt.
The general contract of hashWithSalt
is:
- If two values are equal according to the
==
method, then applying thehashWithSalt
method on each of the two values must produce the same integer result if the same salt is used in each case. - It is not required that if two values are unequal
according to the
==
method, then applying thehashWithSalt
method on each of the two values must produce distinct integer results. However, the programmer should be aware that producing distinct integer results for unequal values may improve the performance of hashing-based data structures. - This method can be used to compute different hash values for
the same input by providing a different salt in each
application of the method. This implies that any instance
that defines
hashWithSalt
must make use of the salt in its implementation. hashWithSalt
may return negativeInt
values.
Like hashWithSalt
, but no salt is used. The default
implementation uses hashWithSalt
with some default salt.
Instances might want to implement this method to provide a more
efficient implementation than the default implementation.
Instances
Hashable ByteArray | This instance was available since 1.4.1.0 only for GHC-9.4+ Since: hashable-1.4.2.0 |
Defined in Data.Hashable.Class | |
Hashable SomeTypeRep | |
Defined in Data.Hashable.Class | |
Hashable Unique | |
Defined in Data.Hashable.Class | |
Hashable Version | |
Defined in Data.Hashable.Class | |
Hashable IntPtr | |
Defined in Data.Hashable.Class | |
Hashable WordPtr | |
Defined in Data.Hashable.Class | |
Hashable Void | |
Defined in Data.Hashable.Class | |
Hashable ThreadId | |
Defined in Data.Hashable.Class | |
Hashable Fingerprint | Since: hashable-1.3.0.0 |
Defined in Data.Hashable.Class | |
Hashable Int16 | |
Defined in Data.Hashable.Class | |
Hashable Int32 | |
Defined in Data.Hashable.Class | |
Hashable Int64 | |
Defined in Data.Hashable.Class | |
Hashable Int8 | |
Defined in Data.Hashable.Class | |
Hashable Word16 | |
Defined in Data.Hashable.Class | |
Hashable Word32 | |
Defined in Data.Hashable.Class | |
Hashable Word64 | |
Defined in Data.Hashable.Class | |
Hashable Word8 | |
Defined in Data.Hashable.Class | |
Hashable ByteString | |
Defined in Data.Hashable.Class | |
Hashable ByteString | |
Defined in Data.Hashable.Class | |
Hashable ShortByteString | |
Defined in Data.Hashable.Class | |
Hashable IntSet | Since: hashable-1.3.4.0 |
Defined in Data.Hashable.Class | |
Hashable OsString | |
Defined in Data.Hashable.Class | |
Hashable PosixString | |
Defined in Data.Hashable.Class | |
Hashable WindowsString | |
Defined in Data.Hashable.Class | |
Hashable BigNat | |
Defined in Data.Hashable.Class | |
Hashable Ordering | |
Defined in Data.Hashable.Class | |
Hashable OsString | Since: hashable-1.4.2.0 |
Defined in Data.Hashable.Class | |
Hashable PosixString | Since: hashable-1.4.2.0 |
Defined in Data.Hashable.Class | |
Hashable WindowsString | Since: hashable-1.4.2.0 |
Defined in Data.Hashable.Class | |
Hashable Text | |
Defined in Data.Hashable.Class | |
Hashable Text | |
Defined in Data.Hashable.Class | |
Hashable Integer | |
Defined in Data.Hashable.Class | |
Hashable Natural | |
Defined in Data.Hashable.Class | |
Hashable () | |
Defined in Data.Hashable.Class | |
Hashable Bool | |
Defined in Data.Hashable.Class | |
Hashable Char | |
Defined in Data.Hashable.Class | |
Hashable Double | Note: prior to The Since: hashable-1.3.0.0 |
Defined in Data.Hashable.Class | |
Hashable Float | Note: prior to The Since: hashable-1.3.0.0 |
Defined in Data.Hashable.Class | |
Hashable Int | |
Defined in Data.Hashable.Class | |
Hashable Word | |
Defined in Data.Hashable.Class | |
Hashable (Async a) | |
Defined in Control.Concurrent.Async.Internal | |
Hashable a => Hashable (Complex a) | |
Defined in Data.Hashable.Class | |
Hashable a => Hashable (Identity a) | |
Defined in Data.Hashable.Class | |
Hashable a => Hashable (First a) | |
Defined in Data.Hashable.Class | |
Hashable a => Hashable (Last a) | |
Defined in Data.Hashable.Class | |
Hashable a => Hashable (Max a) | |
Defined in Data.Hashable.Class | |
Hashable a => Hashable (Min a) | |
Defined in Data.Hashable.Class | |
Hashable a => Hashable (WrappedMonoid a) | |
Defined in Data.Hashable.Class | |
Hashable a => Hashable (NonEmpty a) | |
Defined in Data.Hashable.Class | |
Hashable (FunPtr a) | |
Defined in Data.Hashable.Class | |
Hashable (Ptr a) | |
Defined in Data.Hashable.Class | |
Hashable a => Hashable (Ratio a) | |
Defined in Data.Hashable.Class | |
Hashable (StableName a) | |
Defined in Data.Hashable.Class | |
Hashable v => Hashable (IntMap v) | Since: hashable-1.3.4.0 |
Defined in Data.Hashable.Class | |
Hashable v => Hashable (Seq v) | Since: hashable-1.3.4.0 |
Defined in Data.Hashable.Class | |
Hashable v => Hashable (Set v) | Since: hashable-1.3.4.0 |
Defined in Data.Hashable.Class | |
Hashable v => Hashable (Tree v) | Since: hashable-1.3.4.0 |
Defined in Data.Hashable.Class | |
Eq a => Hashable (Hashed a) | |
Defined in Data.Hashable.Class | |
Hashable a => Hashable (Maybe a) | |
Defined in Data.Hashable.Class | |
Hashable a => Hashable (Solo a) | |
Defined in Data.Hashable.Class | |
Hashable a => Hashable [a] | |
Defined in Data.Hashable.Class | |
(Hashable a, Hashable b) => Hashable (Either a b) | |
Defined in Data.Hashable.Class | |
Hashable (Fixed a) | |
Defined in Data.Hashable.Class | |
Hashable (Proxy a) | |
Defined in Data.Hashable.Class | |
Hashable a => Hashable (Arg a b) | Note: Prior to Since Since: hashable-1.3.0.0 |
Defined in Data.Hashable.Class | |
Hashable (TypeRep a) | |
Defined in Data.Hashable.Class | |
(Hashable k, Hashable v) => Hashable (Map k v) | Since: hashable-1.3.4.0 |
Defined in Data.Hashable.Class | |
(Hashable a1, Hashable a2) => Hashable (a1, a2) | |
Defined in Data.Hashable.Class | |
Hashable a => Hashable (Const a b) | |
Defined in Data.Hashable.Class | |
(Hashable a1, Hashable a2, Hashable a3) => Hashable (a1, a2, a3) | |
Defined in Data.Hashable.Class | |
(Hashable (f a), Hashable (g a)) => Hashable (Product f g a) | |
Defined in Data.Hashable.Class | |
(Hashable (f a), Hashable (g a)) => Hashable (Sum f g a) | |
Defined in Data.Hashable.Class | |
(Hashable a1, Hashable a2, Hashable a3, Hashable a4) => Hashable (a1, a2, a3, a4) | |
Defined in Data.Hashable.Class | |
Hashable (f (g a)) => Hashable (Compose f g a) | |
Defined in Data.Hashable.Class | |
(Hashable a1, Hashable a2, Hashable a3, Hashable a4, Hashable a5) => Hashable (a1, a2, a3, a4, a5) | |
Defined in Data.Hashable.Class | |
(Hashable a1, Hashable a2, Hashable a3, Hashable a4, Hashable a5, Hashable a6) => Hashable (a1, a2, a3, a4, a5, a6) | |
Defined in Data.Hashable.Class | |
(Hashable a1, Hashable a2, Hashable a3, Hashable a4, Hashable a5, Hashable a6, Hashable a7) => Hashable (a1, a2, a3, a4, a5, a6, a7) | |
Defined in Data.Hashable.Class |
Transform a value into a Hashable
value, then hash the
transformed value using the given salt.
This is a useful shorthand in cases where a type can easily be
mapped to another type that is already an instance of Hashable
.
Example:
data Foo = Foo | Bar deriving (Enum) instance Hashable Foo where hashWithSalt = hashUsing fromEnum
Since: hashable-1.2.0.0
Deepseq functions
deepseq :: NFData a => a -> b -> b infixr 0 #
deepseq
: fully evaluates the first argument, before returning the
second.
The name deepseq
is used to illustrate the relationship to seq
:
where seq
is shallow in the sense that it only evaluates the top
level of its argument, deepseq
traverses the entire data structure
evaluating it completely.
deepseq
can be useful for forcing pending exceptions,
eradicating space leaks, or forcing lazy I/O to happen. It is
also useful in conjunction with parallel Strategies (see the
parallel
package).
There is no guarantee about the ordering of evaluation. The
implementation may evaluate the components of the structure in
any order or in parallel. To impose an actual order on
evaluation, use pseq
from Control.Parallel in the
parallel
package.
Since: deepseq-1.1.0.0
A class of types that can be fully evaluated.
Since: deepseq-1.1.0.0
Minimal complete definition
Nothing
Methods
rnf
should reduce its argument to normal form (that is, fully
evaluate all sub-components), and then return ()
.
Generic
NFData
deriving
Starting with GHC 7.2, you can automatically derive instances
for types possessing a Generic
instance.
Note: Generic1
can be auto-derived starting with GHC 7.4
{-# LANGUAGE DeriveGeneric #-} import GHC.Generics (Generic, Generic1) import Control.DeepSeq data Foo a = Foo a String deriving (Eq, Generic, Generic1) instance NFData a => NFData (Foo a) instance NFData1 Foo data Colour = Red | Green | Blue deriving Generic instance NFData Colour
Starting with GHC 7.10, the example above can be written more
concisely by enabling the new DeriveAnyClass
extension:
{-# LANGUAGE DeriveGeneric, DeriveAnyClass #-} import GHC.Generics (Generic) import Control.DeepSeq data Foo a = Foo a String deriving (Eq, Generic, Generic1, NFData, NFData1) data Colour = Red | Green | Blue deriving (Generic, NFData)
Compatibility with previous deepseq
versions
Prior to version 1.4.0.0, the default implementation of the rnf
method was defined as
rnf
a =seq
a ()
However, starting with deepseq-1.4.0.0
, the default
implementation is based on DefaultSignatures
allowing for
more accurate auto-derived NFData
instances. If you need the
previously used exact default rnf
method implementation
semantics, use
instance NFData Colour where rnf x = seq x ()
or alternatively
instance NFData Colour where rnf = rwhnf
or
{-# LANGUAGE BangPatterns #-} instance NFData Colour where rnf !_ = ()
Instances
NFData ByteArray | Since: deepseq-1.4.7.0 |
Defined in Control.DeepSeq | |
NFData All | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData Any | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData TypeRep | NOTE: Prior to Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData Unique | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData Version | Since: deepseq-1.3.0.0 |
Defined in Control.DeepSeq | |
NFData CBool | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
NFData CChar | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CClock | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CDouble | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CFile | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CFloat | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CFpos | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CInt | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CIntMax | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CIntPtr | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CJmpBuf | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CLLong | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CLong | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CPtrdiff | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CSChar | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CSUSeconds | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq Methods rnf :: CSUSeconds -> () # | |
NFData CShort | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CSigAtomic | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq Methods rnf :: CSigAtomic -> () # | |
NFData CSize | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CTime | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CUChar | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CUInt | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CUIntMax | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CUIntPtr | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CULLong | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CULong | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CUSeconds | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CUShort | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CWchar | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData Void | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData ThreadId | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData Fingerprint | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq Methods rnf :: Fingerprint -> () # | |
NFData MaskingState | Since: deepseq-1.4.4.0 |
Defined in Control.DeepSeq Methods rnf :: MaskingState -> () # | |
NFData ExitCode | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData Int16 | |
Defined in Control.DeepSeq | |
NFData Int32 | |
Defined in Control.DeepSeq | |
NFData Int64 | |
Defined in Control.DeepSeq | |
NFData Int8 | |
Defined in Control.DeepSeq | |
NFData CallStack | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData SrcLoc | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData Word16 | |
Defined in Control.DeepSeq | |
NFData Word32 | |
Defined in Control.DeepSeq | |
NFData Word64 | |
Defined in Control.DeepSeq | |
NFData Word8 | |
Defined in Control.DeepSeq | |
NFData ByteString | |
Defined in Data.ByteString.Internal.Type Methods rnf :: ByteString -> () # | |
NFData ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods rnf :: ByteString -> () # | |
NFData ShortByteString | |
Defined in Data.ByteString.Short.Internal Methods rnf :: ShortByteString -> () # | |
NFData IntSet | |
Defined in Data.IntSet.Internal | |
NFData OsChar | |
Defined in System.OsString.Internal.Types.Hidden | |
NFData OsString | |
Defined in System.OsString.Internal.Types.Hidden | |
NFData PosixChar | |
Defined in System.OsString.Internal.Types.Hidden | |
NFData PosixString | |
Defined in System.OsString.Internal.Types.Hidden Methods rnf :: PosixString -> () # | |
NFData WindowsChar | |
Defined in System.OsString.Internal.Types.Hidden Methods rnf :: WindowsChar -> () # | |
NFData WindowsString | |
Defined in System.OsString.Internal.Types.Hidden Methods rnf :: WindowsString -> () # | |
NFData Module | Since: deepseq-1.4.8.0 |
Defined in Control.DeepSeq | |
NFData Ordering | |
Defined in Control.DeepSeq | |
NFData TyCon | NOTE: Prior to Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData OsChar | |
Defined in System.OsString.Internal.Types | |
NFData OsString | |
Defined in System.OsString.Internal.Types | |
NFData PosixChar | |
Defined in System.OsString.Internal.Types | |
NFData PosixString | |
Defined in System.OsString.Internal.Types Methods rnf :: PosixString -> () # | |
NFData WindowsChar | |
Defined in System.OsString.Internal.Types Methods rnf :: WindowsChar -> () # | |
NFData WindowsString | |
Defined in System.OsString.Internal.Types Methods rnf :: WindowsString -> () # | |
NFData TextDetails | |
Defined in Text.PrettyPrint.Annotated.HughesPJ Methods rnf :: TextDetails -> () # | |
NFData Doc | |
Defined in Text.PrettyPrint.HughesPJ | |
NFData UnicodeException | |
Defined in Data.Text.Encoding.Error Methods rnf :: UnicodeException -> () # | |
NFData Integer | |
Defined in Control.DeepSeq | |
NFData Natural | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData () | |
Defined in Control.DeepSeq | |
NFData Bool | |
Defined in Control.DeepSeq | |
NFData Char | |
Defined in Control.DeepSeq | |
NFData Double | |
Defined in Control.DeepSeq | |
NFData Float | |
Defined in Control.DeepSeq | |
NFData Int | |
Defined in Control.DeepSeq | |
NFData Word | |
Defined in Control.DeepSeq | |
NFData a => NFData (ZipList a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData (MutableByteArray s) | Since: deepseq-1.4.8.0 |
Defined in Control.DeepSeq Methods rnf :: MutableByteArray s -> () # | |
NFData a => NFData (Complex a) | |
Defined in Control.DeepSeq | |
NFData a => NFData (Identity a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (First a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Last a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Down a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (First a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Last a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Max a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Min a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData m => NFData (WrappedMonoid m) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq Methods rnf :: WrappedMonoid m -> () # | |
NFData a => NFData (Dual a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Product a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Sum a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (NonEmpty a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData (IORef a) | NOTE: Only strict in the reference and not the referenced value. Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData (MVar a) | NOTE: Only strict in the reference and not the referenced value. Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData (FunPtr a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData (Ptr a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Ratio a) | |
Defined in Control.DeepSeq | |
NFData (StableName a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq Methods rnf :: StableName a -> () # | |
NFData a => NFData (SCC a) | |
Defined in Data.Graph | |
NFData a => NFData (IntMap a) | |
Defined in Data.IntMap.Internal | |
NFData a => NFData (Digit a) | |
Defined in Data.Sequence.Internal | |
NFData a => NFData (Elem a) | |
Defined in Data.Sequence.Internal | |
NFData a => NFData (FingerTree a) | |
Defined in Data.Sequence.Internal Methods rnf :: FingerTree a -> () # | |
NFData a => NFData (Node a) | |
Defined in Data.Sequence.Internal | |
NFData a => NFData (Seq a) | |
Defined in Data.Sequence.Internal | |
NFData a => NFData (Set a) | |
Defined in Data.Set.Internal | |
NFData a => NFData (Tree a) | |
NFData a => NFData (Hashed a) | |
Defined in Data.Hashable.Class | |
NFData a => NFData (AnnotDetails a) | |
Defined in Text.PrettyPrint.Annotated.HughesPJ Methods rnf :: AnnotDetails a -> () # | |
NFData a => NFData (Doc a) | |
Defined in Text.PrettyPrint.Annotated.HughesPJ | |
NFData a => NFData (Maybe a) | |
Defined in Control.DeepSeq | |
NFData a => NFData (Solo a) | Since: deepseq-1.4.6.0 |
Defined in Control.DeepSeq | |
NFData a => NFData [a] | |
Defined in Control.DeepSeq | |
(NFData a, NFData b) => NFData (Either a b) | |
Defined in Control.DeepSeq | |
NFData (Fixed a) | Since: deepseq-1.3.0.0 |
Defined in Control.DeepSeq | |
NFData (Proxy a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
(NFData a, NFData b) => NFData (Arg a b) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData (TypeRep a) | Since: deepseq-1.4.8.0 |
Defined in Control.DeepSeq | |
(NFData a, NFData b) => NFData (Array a b) | |
Defined in Control.DeepSeq | |
NFData (STRef s a) | NOTE: Only strict in the reference and not the referenced value. Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
(NFData k, NFData a) => NFData (Map k a) | |
Defined in Data.Map.Internal | |
(NFData a, NFData b) => NFData (a, b) | |
Defined in Control.DeepSeq | |
NFData (a -> b) | This instance is for convenience and consistency with Since: deepseq-1.3.0.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Const a b) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData (a :~: b) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
(NFData a1, NFData a2, NFData a3) => NFData (a1, a2, a3) | |
Defined in Control.DeepSeq | |
(NFData (f a), NFData (g a)) => NFData (Product f g a) | Note: in Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
(NFData (f a), NFData (g a)) => NFData (Sum f g a) | Note: in Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
NFData (a :~~: b) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
(NFData a1, NFData a2, NFData a3, NFData a4) => NFData (a1, a2, a3, a4) | |
Defined in Control.DeepSeq | |
NFData (f (g a)) => NFData (Compose f g a) | Note: in Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5) => NFData (a1, a2, a3, a4, a5) | |
Defined in Control.DeepSeq | |
(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6) => NFData (a1, a2, a3, a4, a5, a6) | |
Defined in Control.DeepSeq | |
(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6, NFData a7) => NFData (a1, a2, a3, a4, a5, a6, a7) | |
Defined in Control.DeepSeq | |
(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6, NFData a7, NFData a8) => NFData (a1, a2, a3, a4, a5, a6, a7, a8) | |
Defined in Control.DeepSeq | |
(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6, NFData a7, NFData a8, NFData a9) => NFData (a1, a2, a3, a4, a5, a6, a7, a8, a9) | |
Defined in Control.DeepSeq |
($!!) :: NFData a => (a -> b) -> a -> b infixr 0 #
The deep analogue of $!
. f $!! x
fully evaluates x
before returning f x
.
There is no guarantee about the ordering of evaluation.
f x
may be evaluated before x
is fully evaluated.
To impose an actual order on evaluation, use pseq
from
Control.Parallel in the parallel
package.
Since: deepseq-1.2.0.0
A variant of deepseq
that is useful in some circumstances:
force x = x `deepseq` x
force x
fully evaluates x
, and then returns it. Note that
force x
only performs evaluation when the value of force x
itself is demanded, so essentially it turns shallow evaluation into
deep evaluation.
force
can be conveniently used in combination with ViewPatterns
:
{-# LANGUAGE BangPatterns, ViewPatterns #-} import Control.DeepSeq someFun :: ComplexData -> SomeResult someFun (force -> !arg) = {- 'arg' will be fully evaluated -}
Another useful application is to combine force
with
evaluate
in order to force deep evaluation
relative to other IO
operations:
import Control.Exception (evaluate) import Control.DeepSeq main = do result <- evaluate $ force $ pureComputation {- 'result' will be fully evaluated at this point -} return ()
Finally, here's an exception safe variant of the readFile'
example:
readFile' :: FilePath -> IO String readFile' fn = bracket (openFile fn ReadMode) hClose $ \h -> evaluate . force =<< hGetContents h
Since: deepseq-1.2.0.0
Tuple functions
uncurry :: (a -> b -> c) -> (a, b) -> c #
uncurry
converts a curried function to a function on pairs.
Examples
>>>
uncurry (+) (1,2)
3
>>>
uncurry ($) (show, 1)
"1"
>>>
map (uncurry max) [(1,2), (3,4), (6,8)]
[2,4,8]
The class Typeable
allows a concrete representation of a type to
be calculated.
Minimal complete definition
typeRep#
type TypeRep = SomeTypeRep #
A quantified type representation.
typeRep :: forall {k} proxy (a :: k). Typeable a => proxy a -> TypeRep #
Takes a value of type a
and returns a concrete representation
of that type.
Since: base-4.7.0.0
eqT :: forall {k} (a :: k) (b :: k). (Typeable a, Typeable b) => Maybe (a :~: b) #
Extract a witness of equality of two types
Since: base-4.7.0.0
gcast :: forall {k} (a :: k) (b :: k) c. (Typeable a, Typeable b) => c a -> Maybe (c b) #
A flexible variation parameterised in a type constructor
Typelevel programming
module Data.Void
type family (a :: k) == (b :: k) :: Bool where ... infix 4 #
A type family to compute Boolean equality.
data (a :: k) :~: (b :: k) where infix 4 #
Propositional equality. If a :~: b
is inhabited by some terminating
value, then the type a
is the same as the type b
. To use this equality
in practice, pattern-match on the a :~: b
to get out the Refl
constructor;
in the body of the pattern-match, the compiler knows that a ~ b
.
Since: base-4.7.0.0
Instances
Category ((:~:) :: k -> k -> Type) | Since: base-4.7.0.0 |
TestCoercion ((:~:) a :: k -> Type) | Since: base-4.7.0.0 |
Defined in Data.Type.Coercion | |
TestEquality ((:~:) a :: k -> Type) | Since: base-4.7.0.0 |
Defined in Data.Type.Equality | |
NFData2 ((:~:) :: Type -> Type -> Type) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
NFData1 ((:~:) a) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
(a ~ b, Data a) => Data (a :~: b) | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> (a :~: b) -> c (a :~: b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a :~: b) # toConstr :: (a :~: b) -> Constr # dataTypeOf :: (a :~: b) -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (a :~: b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (a :~: b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a :~: b) -> a :~: b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a :~: b) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a :~: b) -> r # gmapQ :: (forall d. Data d => d -> u) -> (a :~: b) -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (a :~: b) -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) # | |
a ~ b => Bounded (a :~: b) | Since: base-4.7.0.0 |
a ~ b => Enum (a :~: b) | Since: base-4.7.0.0 |
Defined in Data.Type.Equality Methods succ :: (a :~: b) -> a :~: b # pred :: (a :~: b) -> a :~: b # fromEnum :: (a :~: b) -> Int # enumFrom :: (a :~: b) -> [a :~: b] # enumFromThen :: (a :~: b) -> (a :~: b) -> [a :~: b] # enumFromTo :: (a :~: b) -> (a :~: b) -> [a :~: b] # enumFromThenTo :: (a :~: b) -> (a :~: b) -> (a :~: b) -> [a :~: b] # | |
a ~ b => Read (a :~: b) | Since: base-4.7.0.0 |
Show (a :~: b) | Since: base-4.7.0.0 |
NFData (a :~: b) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Eq (a :~: b) | Since: base-4.7.0.0 |
Ord (a :~: b) | Since: base-4.7.0.0 |
Defined in Data.Type.Equality |
trans :: forall {k} (a :: k) (b :: k) (c :: k). (a :~: b) -> (b :~: c) -> a :~: c #
Transitivity of equality
gcastWith :: forall {k} (a :: k) (b :: k) r. (a :~: b) -> (a ~ b => r) -> r #
Generalized form of type-safe cast using propositional equality
data Coercion (a :: k) (b :: k) where #
Representational equality. If Coercion a b
is inhabited by some terminating
value, then the type a
has the same underlying representation as the type b
.
To use this equality in practice, pattern-match on the Coercion a b
to get out
the Coercible a b
instance, and then use coerce
to apply it.
Since: base-4.7.0.0
Instances
Category (Coercion :: k -> k -> Type) | Since: base-4.7.0.0 |
TestCoercion (Coercion a :: k -> Type) | Since: base-4.7.0.0 |
Defined in Data.Type.Coercion | |
(Coercible a b, Data a, Data b) => Data (Coercion a b) | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Coercion a b -> c (Coercion a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Coercion a b) # toConstr :: Coercion a b -> Constr # dataTypeOf :: Coercion a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Coercion a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Coercion a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Coercion a b -> Coercion a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Coercion a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Coercion a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Coercion a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Coercion a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Coercion a b -> m (Coercion a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Coercion a b -> m (Coercion a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Coercion a b -> m (Coercion a b) # | |
Coercible a b => Bounded (Coercion a b) | Since: base-4.7.0.0 |
Coercible a b => Enum (Coercion a b) | Since: base-4.7.0.0 |
Defined in Data.Type.Coercion Methods succ :: Coercion a b -> Coercion a b # pred :: Coercion a b -> Coercion a b # toEnum :: Int -> Coercion a b # fromEnum :: Coercion a b -> Int # enumFrom :: Coercion a b -> [Coercion a b] # enumFromThen :: Coercion a b -> Coercion a b -> [Coercion a b] # enumFromTo :: Coercion a b -> Coercion a b -> [Coercion a b] # enumFromThenTo :: Coercion a b -> Coercion a b -> Coercion a b -> [Coercion a b] # | |
Coercible a b => Read (Coercion a b) | Since: base-4.7.0.0 |
Show (Coercion a b) | Since: base-4.7.0.0 |
Eq (Coercion a b) | Since: base-4.7.0.0 |
Ord (Coercion a b) | Since: base-4.7.0.0 |
Defined in Data.Type.Coercion |
coerceWith :: Coercion a b -> a -> b #
Type-safe cast, using representational equality
repr :: forall {k} (a :: k) (b :: k). (a :~: b) -> Coercion a b #
Convert propositional (nominal) equality to representational equality
Proxy
is a type that holds no data, but has a phantom parameter of
arbitrary type (or even kind). Its use is to provide type information, even
though there is no value available of that type (or it may be too costly to
create one).
Historically,
is a safer alternative to the
Proxy
:: Proxy
a
idiom.undefined
:: a
>>>
Proxy :: Proxy (Void, Int -> Int)
Proxy
Proxy can even hold types of higher kinds,
>>>
Proxy :: Proxy Either
Proxy
>>>
Proxy :: Proxy Functor
Proxy
>>>
Proxy :: Proxy complicatedStructure
Proxy
Constructors
Proxy |
Instances
Generic1 (Proxy :: k -> Type) | |
Defined in GHC.Generics | |
MonadZip (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
Foldable (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Proxy m -> m # foldMap :: Monoid m => (a -> m) -> Proxy a -> m # foldMap' :: Monoid m => (a -> m) -> Proxy a -> m # foldr :: (a -> b -> b) -> b -> Proxy a -> b # foldr' :: (a -> b -> b) -> b -> Proxy a -> b # foldl :: (b -> a -> b) -> b -> Proxy a -> b # foldl' :: (b -> a -> b) -> b -> Proxy a -> b # foldr1 :: (a -> a -> a) -> Proxy a -> a # foldl1 :: (a -> a -> a) -> Proxy a -> a # elem :: Eq a => a -> Proxy a -> Bool # maximum :: Ord a => Proxy a -> a # minimum :: Ord a => Proxy a -> a # | |
Eq1 (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
Ord1 (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Read1 (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Show1 (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
Contravariant (Proxy :: Type -> Type) | |
Traversable (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Alternative (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
Applicative (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Functor (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Monad (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
MonadPlus (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
NFData1 (Proxy :: Type -> Type) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Hashable1 (Proxy :: Type -> Type) | |
Defined in Data.Hashable.Class | |
Data t => Data (Proxy t) | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Proxy t -> c (Proxy t) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Proxy t) # toConstr :: Proxy t -> Constr # dataTypeOf :: Proxy t -> DataType # dataCast1 :: Typeable t0 => (forall d. Data d => c (t0 d)) -> Maybe (c (Proxy t)) # dataCast2 :: Typeable t0 => (forall d e. (Data d, Data e) => c (t0 d e)) -> Maybe (c (Proxy t)) # gmapT :: (forall b. Data b => b -> b) -> Proxy t -> Proxy t # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Proxy t -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Proxy t -> r # gmapQ :: (forall d. Data d => d -> u) -> Proxy t -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Proxy t -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) # | |
Monoid (Proxy s) | Since: base-4.7.0.0 |
Semigroup (Proxy s) | Since: base-4.9.0.0 |
Bounded (Proxy t) | Since: base-4.7.0.0 |
Enum (Proxy s) | Since: base-4.7.0.0 |
Generic (Proxy t) | |
Defined in GHC.Generics | |
Ix (Proxy s) | Since: base-4.7.0.0 |
Defined in Data.Proxy | |
Read (Proxy t) | Since: base-4.7.0.0 |
Show (Proxy s) | Since: base-4.7.0.0 |
NFData (Proxy a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
Eq (Proxy s) | Since: base-4.7.0.0 |
Ord (Proxy s) | Since: base-4.7.0.0 |
Hashable (Proxy a) | |
Defined in Data.Hashable.Class | |
type Rep1 (Proxy :: k -> Type) | Since: base-4.6.0.0 |
type Rep (Proxy t) | Since: base-4.6.0.0 |
Monads
class Monad m => MonadFail (m :: Type -> Type) #
When a value is bound in do
-notation, the pattern on the left
hand side of <-
might not match. In this case, this class
provides a function to recover.
A Monad
without a MonadFail
instance may only be used in conjunction
with pattern that always match, such as newtypes, tuples, data types with
only a single data constructor, and irrefutable patterns (~pat
).
Instances of MonadFail
should satisfy the following law: fail s
should
be a left zero for >>=
,
fail s >>= f = fail s
If your Monad
is also MonadPlus
, a popular definition is
fail _ = mzero
fail s
should be an action that runs in the monad itself, not an
exception (except in instances of MonadIO
). In particular,
fail
should not be implemented in terms of error
.
Since: base-4.9.0.0
Minimal complete definition
Instances
MonadFail P | Since: base-4.9.0.0 |
Defined in Text.ParserCombinators.ReadP | |
MonadFail ReadP | Since: base-4.9.0.0 |
Defined in Text.ParserCombinators.ReadP | |
MonadFail ReadPrec | Since: base-4.9.0.0 |
Defined in Text.ParserCombinators.ReadPrec | |
MonadFail IO | Since: base-4.9.0.0 |
Defined in Control.Monad.Fail | |
MonadFail Q | |
Defined in Language.Haskell.TH.Syntax | |
MonadFail Maybe | Since: base-4.9.0.0 |
Defined in Control.Monad.Fail | |
MonadFail [] | Since: base-4.9.0.0 |
Defined in Control.Monad.Fail | |
Monad m => MonadFail (MaybeT m) | |
Defined in Control.Monad.Trans.Maybe | |
MonadFail f => MonadFail (Ap f) | Since: base-4.12.0.0 |
Defined in Data.Monoid | |
(Monoid w, MonadFail m) => MonadFail (AccumT w m) | |
Defined in Control.Monad.Trans.Accum | |
MonadFail m => MonadFail (ExceptT e m) | |
Defined in Control.Monad.Trans.Except | |
MonadFail m => MonadFail (IdentityT m) | |
Defined in Control.Monad.Trans.Identity | |
MonadFail m => MonadFail (ReaderT r m) | |
Defined in Control.Monad.Trans.Reader | |
MonadFail m => MonadFail (SelectT r m) | |
Defined in Control.Monad.Trans.Select | |
MonadFail m => MonadFail (StateT s m) | |
Defined in Control.Monad.Trans.State.Lazy | |
MonadFail m => MonadFail (StateT s m) | |
Defined in Control.Monad.Trans.State.Strict | |
MonadFail m => MonadFail (WriterT w m) | |
Defined in Control.Monad.Trans.Writer.CPS | |
(Monoid w, MonadFail m) => MonadFail (WriterT w m) | |
Defined in Control.Monad.Trans.Writer.Lazy | |
(Monoid w, MonadFail m) => MonadFail (WriterT w m) | |
Defined in Control.Monad.Trans.Writer.Strict | |
MonadFail m => MonadFail (Reverse m) | |
Defined in Data.Functor.Reverse | |
MonadFail m => MonadFail (ContT r m) | |
Defined in Control.Monad.Trans.Cont | |
MonadFail m => MonadFail (RWST r w s m) | |
Defined in Control.Monad.Trans.RWS.CPS | |
(Monoid w, MonadFail m) => MonadFail (RWST r w s m) | |
Defined in Control.Monad.Trans.RWS.Lazy | |
(Monoid w, MonadFail m) => MonadFail (RWST r w s m) | |
Defined in Control.Monad.Trans.RWS.Strict |
class Monad m => MonadState s (m :: Type -> Type) | m -> s where #
Minimal definition is either both of get
and put
or just state
Methods
Return the state from the internals of the monad.
Replace the state inside the monad.
state :: (s -> (a, s)) -> m a #
Embed a simple state action into the monad.
Instances
MonadState s m => MonadState s (MaybeT m) | |
(Monoid w, MonadState s m) => MonadState s (AccumT w m) | Since: mtl-2.3 |
MonadState s m => MonadState s (ExceptT e m) | Since: mtl-2.2 |
MonadState s m => MonadState s (IdentityT m) | |
MonadState s m => MonadState s (ReaderT r m) | |
MonadState s m => MonadState s (SelectT r m) | Since: mtl-2.3 |
Monad m => MonadState s (StateT s m) | |
Monad m => MonadState s (StateT s m) | |
(Monoid w, MonadState s m) => MonadState s (WriterT w m) | Since: mtl-2.3 |
(Monoid w, MonadState s m) => MonadState s (WriterT w m) | |
(Monoid w, MonadState s m) => MonadState s (WriterT w m) | |
MonadState s m => MonadState s (ContT r m) | |
(Monad m, Monoid w) => MonadState s (RWST r w s m) | Since: mtl-2.3 |
(Monad m, Monoid w) => MonadState s (RWST r w s m) | |
(Monad m, Monoid w) => MonadState s (RWST r w s m) | |
newtype StateT s (m :: Type -> Type) a #
A state transformer monad parameterized by:
s
- The state.m
- The inner monad.
The return
function leaves the state unchanged, while >>=
uses
the final state of the first computation as the initial state of
the second.
Instances
MonadAccum w m => MonadAccum w (StateT s m) | Since: mtl-2.3 | ||||
MonadError e m => MonadError e (StateT s m) | |||||
Defined in Control.Monad.Error.Class Methods throwError :: e -> StateT s m a # catchError :: StateT s m a -> (e -> StateT s m a) -> StateT s m a # | |||||
MonadReader r m => MonadReader r (StateT s m) | |||||
MonadSelect w m => MonadSelect w (StateT s m) | 'Readerizes' the state: the 'ranking' function can see a value of
type Since: mtl-2.3 | ||||
Defined in Control.Monad.Select | |||||
Monad m => MonadState s (StateT s m) | |||||
MonadWriter w m => MonadWriter w (StateT s m) | |||||
MonadTrans (StateT s) | |||||
Defined in Control.Monad.Trans.State.Lazy | |||||
MonadFail m => MonadFail (StateT s m) | |||||
Defined in Control.Monad.Trans.State.Lazy | |||||
MonadFix m => MonadFix (StateT s m) | |||||
Defined in Control.Monad.Trans.State.Lazy | |||||
MonadIO m => MonadIO (StateT s m) | |||||
Defined in Control.Monad.Trans.State.Lazy | |||||
Contravariant m => Contravariant (StateT s m) | |||||
(Functor m, MonadPlus m) => Alternative (StateT s m) | |||||
(Functor m, Monad m) => Applicative (StateT s m) | |||||
Defined in Control.Monad.Trans.State.Lazy | |||||
Functor m => Functor (StateT s m) | |||||
Monad m => Monad (StateT s m) | |||||
MonadPlus m => MonadPlus (StateT s m) | |||||
MonadCont m => MonadCont (StateT s m) | |||||
Generic (StateT s m a) | |||||
Defined in Control.Monad.Trans.State.Lazy Associated Types
| |||||
type Rep (StateT s m a) | |||||
Defined in Control.Monad.Trans.State.Lazy |
type State s = StateT s Identity #
A state monad parameterized by the type s
of the state to carry.
The return
function leaves the state unchanged, while >>=
uses
the final state of the first computation as the initial state of
the second.
Arguments
:: State s a | state-passing computation to execute |
-> s | initial state |
-> (a, s) | return value and final state |
Unwrap a state monad computation as a function.
(The inverse of state
.)
Arguments
:: State s a | state-passing computation to execute |
-> s | initial value |
-> s | final state |
Arguments
:: State s a | state-passing computation to execute |
-> s | initial value |
-> a | return value of the state computation |
evalStateT :: Monad m => StateT s m a -> s -> m a #
Evaluate a state computation with the given initial state and return the final value, discarding the final state.
evalStateT
m s =liftM
fst
(runStateT
m s)
execStateT :: Monad m => StateT s m a -> s -> m s #
Evaluate a state computation with the given initial state and return the final state, discarding the final value.
execStateT
m s =liftM
snd
(runStateT
m s)
modify :: MonadState s m => (s -> s) -> m () #
Monadic state transformer.
Maps an old state to a new state inside a state monad. The old state is thrown away.
Main> :t modify ((+1) :: Int -> Int) modify (...) :: (MonadState Int a) => a ()
This says that modify (+1)
acts over any
Monad that is a member of the MonadState
class,
with an Int
state.
gets :: MonadState s m => (s -> a) -> m a #
Gets specific component of the state, using a projection function supplied.
newtype ReaderT r (m :: Type -> Type) a #
The reader monad transformer, which adds a read-only environment to the given monad.
The return
function ignores the environment, while >>=
passes
the inherited environment to both subcomputations.
Constructors
ReaderT | |
Fields
|
Instances
Generic1 (ReaderT r m :: Type -> Type) | |||||
Defined in Control.Monad.Trans.Reader Associated Types
| |||||
MonadAccum w m => MonadAccum w (ReaderT r m) | Since: mtl-2.3 | ||||
MonadError e m => MonadError e (ReaderT r m) | |||||
Defined in Control.Monad.Error.Class Methods throwError :: e -> ReaderT r m a # catchError :: ReaderT r m a -> (e -> ReaderT r m a) -> ReaderT r m a # | |||||
Monad m => MonadReader r (ReaderT r m) | |||||
MonadSelect r' m => MonadSelect r' (ReaderT r m) | Provides a read-only environment of type Since: mtl-2.3 | ||||
Defined in Control.Monad.Select | |||||
MonadState s m => MonadState s (ReaderT r m) | |||||
MonadWriter w m => MonadWriter w (ReaderT r m) | |||||
MonadTrans (ReaderT r) | |||||
Defined in Control.Monad.Trans.Reader | |||||
MonadFail m => MonadFail (ReaderT r m) | |||||
Defined in Control.Monad.Trans.Reader | |||||
MonadFix m => MonadFix (ReaderT r m) | |||||
Defined in Control.Monad.Trans.Reader | |||||
MonadIO m => MonadIO (ReaderT r m) | |||||
Defined in Control.Monad.Trans.Reader | |||||
MonadZip m => MonadZip (ReaderT r m) | |||||
Contravariant m => Contravariant (ReaderT r m) | |||||
Alternative m => Alternative (ReaderT r m) | |||||
Applicative m => Applicative (ReaderT r m) | |||||
Defined in Control.Monad.Trans.Reader | |||||
Functor m => Functor (ReaderT r m) | |||||
Monad m => Monad (ReaderT r m) | |||||
MonadPlus m => MonadPlus (ReaderT r m) | |||||
MonadCont m => MonadCont (ReaderT r m) | |||||
Generic (ReaderT r m a) | |||||
Defined in Control.Monad.Trans.Reader Associated Types
| |||||
type Rep1 (ReaderT r m :: Type -> Type) | |||||
Defined in Control.Monad.Trans.Reader type Rep1 (ReaderT r m :: Type -> Type) = D1 ('MetaData "ReaderT" "Control.Monad.Trans.Reader" "transformers-0.6.1.0-inplace" 'True) (C1 ('MetaCons "ReaderT" 'PrefixI 'True) (S1 ('MetaSel ('Just "runReaderT") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) ((FUN 'Many r :: Type -> Type) :.: Rec1 m))) | |||||
type Rep (ReaderT r m a) | |||||
Defined in Control.Monad.Trans.Reader |
type Reader r = ReaderT r Identity #
The parameterizable reader monad.
Computations are functions of a shared environment.
The return
function ignores the environment, while >>=
passes
the inherited environment to both subcomputations.
Arguments
:: Reader r a | A |
-> r | An initial environment. |
-> a |
Runs a Reader
and extracts the final value from it.
(The inverse of reader
.)
class Monad m => MonadReader r (m :: Type -> Type) | m -> r where #
See examples in Control.Monad.Reader.
Note, the partially applied function type (->) r
is a simple reader monad.
See the instance
declaration below.
Methods
Retrieves the monad environment.
Arguments
:: (r -> r) | The function to modify the environment. |
-> m a |
|
-> m a |
Executes a computation in a modified environment.
Arguments
:: (r -> a) | The selector function to apply to the environment. |
-> m a |
Retrieves a function of the current environment.
Instances
MonadReader r m => MonadReader r (MaybeT m) | |
(Monoid w, MonadReader r m) => MonadReader r (AccumT w m) | Since: mtl-2.3 |
MonadReader r m => MonadReader r (ExceptT e m) | Since: mtl-2.2 |
MonadReader r m => MonadReader r (IdentityT m) | |
Monad m => MonadReader r (ReaderT r m) | |
MonadReader r m => MonadReader r (StateT s m) | |
MonadReader r m => MonadReader r (StateT s m) | |
(Monoid w, MonadReader r m) => MonadReader r (WriterT w m) | Since: mtl-2.3 |
(Monoid w, MonadReader r m) => MonadReader r (WriterT w m) | |
(Monoid w, MonadReader r m) => MonadReader r (WriterT w m) | |
MonadReader r' m => MonadReader r' (SelectT r m) | Since: mtl-2.3 |
MonadReader r ((->) r) | |
MonadReader r' m => MonadReader r' (ContT r m) | |
(Monad m, Monoid w) => MonadReader r (RWST r w s m) | Since: mtl-2.3 |
(Monad m, Monoid w) => MonadReader r (RWST r w s m) | |
(Monad m, Monoid w) => MonadReader r (RWST r w s m) | |
Arguments
:: MonadReader r m | |
=> (r -> a) | The selector function to apply to the environment. |
-> m a |
Retrieves a function of the current environment.
newtype ExceptT e (m :: Type -> Type) a #
A monad transformer that adds exceptions to other monads.
ExceptT
constructs a monad parameterized over two things:
- e - The exception type.
- m - The inner monad.
The return
function yields a computation that produces the given
value, while >>=
sequences two subcomputations, exiting on the
first exception.
Instances
MonadRWS r w s m => MonadRWS r w s (ExceptT e m) | Since: mtl-2.2 | ||||
Defined in Control.Monad.RWS.Class | |||||
Functor m => Generic1 (ExceptT e m :: Type -> Type) | |||||
Defined in Control.Monad.Trans.Except Associated Types
| |||||
MonadAccum w m => MonadAccum w (ExceptT e m) | The accumulated value 'survives' an exception: even if the computation fails to deliver a result, we still have an accumulated value. Since: mtl-2.3 | ||||
Monad m => MonadError e (ExceptT e m) | Since: mtl-2.2 | ||||
Defined in Control.Monad.Error.Class Methods throwError :: e -> ExceptT e m a # catchError :: ExceptT e m a -> (e -> ExceptT e m a) -> ExceptT e m a # | |||||
MonadReader r m => MonadReader r (ExceptT e m) | Since: mtl-2.2 | ||||
MonadSelect r m => MonadSelect r (ExceptT e m) | 'Extends' the possibilities considered by Since: mtl-2.3 | ||||
Defined in Control.Monad.Select | |||||
MonadState s m => MonadState s (ExceptT e m) | Since: mtl-2.2 | ||||
MonadWriter w m => MonadWriter w (ExceptT e m) | Since: mtl-2.2 | ||||
MonadTrans (ExceptT e) | |||||
Defined in Control.Monad.Trans.Except | |||||
MonadFail m => MonadFail (ExceptT e m) | |||||
Defined in Control.Monad.Trans.Except | |||||
MonadFix m => MonadFix (ExceptT e m) | |||||
Defined in Control.Monad.Trans.Except | |||||
MonadIO m => MonadIO (ExceptT e m) | |||||
Defined in Control.Monad.Trans.Except | |||||
MonadZip m => MonadZip (ExceptT e m) | |||||
Foldable f => Foldable (ExceptT e f) | |||||
Defined in Control.Monad.Trans.Except Methods fold :: Monoid m => ExceptT e f m -> m # foldMap :: Monoid m => (a -> m) -> ExceptT e f a -> m # foldMap' :: Monoid m => (a -> m) -> ExceptT e f a -> m # foldr :: (a -> b -> b) -> b -> ExceptT e f a -> b # foldr' :: (a -> b -> b) -> b -> ExceptT e f a -> b # foldl :: (b -> a -> b) -> b -> ExceptT e f a -> b # foldl' :: (b -> a -> b) -> b -> ExceptT e f a -> b # foldr1 :: (a -> a -> a) -> ExceptT e f a -> a # foldl1 :: (a -> a -> a) -> ExceptT e f a -> a # toList :: ExceptT e f a -> [a] # null :: ExceptT e f a -> Bool # length :: ExceptT e f a -> Int # elem :: Eq a => a -> ExceptT e f a -> Bool # maximum :: Ord a => ExceptT e f a -> a # minimum :: Ord a => ExceptT e f a -> a # | |||||
(Eq e, Eq1 m) => Eq1 (ExceptT e m) | |||||
(Ord e, Ord1 m) => Ord1 (ExceptT e m) | |||||
Defined in Control.Monad.Trans.Except | |||||
(Read e, Read1 m) => Read1 (ExceptT e m) | |||||
Defined in Control.Monad.Trans.Except Methods liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (ExceptT e m a) # liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [ExceptT e m a] # liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (ExceptT e m a) # liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [ExceptT e m a] # | |||||
(Show e, Show1 m) => Show1 (ExceptT e m) | |||||
Contravariant m => Contravariant (ExceptT e m) | |||||
Traversable f => Traversable (ExceptT e f) | |||||
Defined in Control.Monad.Trans.Except | |||||
(Functor m, Monad m, Monoid e) => Alternative (ExceptT e m) | |||||
(Functor m, Monad m) => Applicative (ExceptT e m) | |||||
Defined in Control.Monad.Trans.Except | |||||
Functor m => Functor (ExceptT e m) | |||||
Monad m => Monad (ExceptT e m) | |||||
(Monad m, Monoid e) => MonadPlus (ExceptT e m) | |||||
MonadCont m => MonadCont (ExceptT e m) | Since: mtl-2.2 | ||||
Generic (ExceptT e m a) | |||||
Defined in Control.Monad.Trans.Except Associated Types
| |||||
(Read e, Read1 m, Read a) => Read (ExceptT e m a) | |||||
(Show e, Show1 m, Show a) => Show (ExceptT e m a) | |||||
(Eq e, Eq1 m, Eq a) => Eq (ExceptT e m a) | |||||
(Ord e, Ord1 m, Ord a) => Ord (ExceptT e m a) | |||||
Defined in Control.Monad.Trans.Except Methods compare :: ExceptT e m a -> ExceptT e m a -> Ordering # (<) :: ExceptT e m a -> ExceptT e m a -> Bool # (<=) :: ExceptT e m a -> ExceptT e m a -> Bool # (>) :: ExceptT e m a -> ExceptT e m a -> Bool # (>=) :: ExceptT e m a -> ExceptT e m a -> Bool # | |||||
type Rep1 (ExceptT e m :: Type -> Type) | |||||
Defined in Control.Monad.Trans.Except | |||||
type Rep (ExceptT e m a) | |||||
Defined in Control.Monad.Trans.Except |
class Monad m => MonadError e (m :: Type -> Type) | m -> e where #
The strategy of combining computations that can throw exceptions by bypassing bound functions from the point an exception is thrown to the point that it is handled.
Is parameterized over the type of error information and
the monad type constructor.
It is common to use
as the monad type constructor
for an error monad in which error descriptions take the form of strings.
In that case and many other common cases the resulting monad is already defined
as an instance of the Either
StringMonadError
class.
You can also define your own error type and/or use a monad type constructor
other than
or Either
String
.
In these cases you will have to explicitly define instances of the Either
IOError
MonadError
class.
(If you are using the deprecated Control.Monad.Error or
Control.Monad.Trans.Error, you may also have to define an Error
instance.)
Methods
throwError :: e -> m a #
Is used within a monadic computation to begin exception processing.
catchError :: m a -> (e -> m a) -> m a #
A handler function to handle previous errors and return to normal execution. A common idiom is:
do { action1; action2; action3 } `catchError` handler
where the action
functions can call throwError
.
Note that handler
and the do-block must have the same return type.
Instances
MonadError IOException IO | |
Defined in Control.Monad.Error.Class | |
MonadError () Maybe | Since: mtl-2.2.2 |
Defined in Control.Monad.Error.Class | |
MonadError e (Either e) | |
Defined in Control.Monad.Error.Class | |
MonadError e m => MonadError e (MaybeT m) | |
Defined in Control.Monad.Error.Class | |
(Monoid w, MonadError e m) => MonadError e (AccumT w m) | Since: mtl-2.3 |
Defined in Control.Monad.Error.Class Methods throwError :: e -> AccumT w m a # catchError :: AccumT w m a -> (e -> AccumT w m a) -> AccumT w m a # | |
Monad m => MonadError e (ExceptT e m) | Since: mtl-2.2 |
Defined in Control.Monad.Error.Class Methods throwError :: e -> ExceptT e m a # catchError :: ExceptT e m a -> (e -> ExceptT e m a) -> ExceptT e m a # | |
MonadError e m => MonadError e (IdentityT m) | |
Defined in Control.Monad.Error.Class Methods throwError :: e -> IdentityT m a # catchError :: IdentityT m a -> (e -> IdentityT m a) -> IdentityT m a # | |
MonadError e m => MonadError e (ReaderT r m) | |
Defined in Control.Monad.Error.Class Methods throwError :: e -> ReaderT r m a # catchError :: ReaderT r m a -> (e -> ReaderT r m a) -> ReaderT r m a # | |
MonadError e m => MonadError e (StateT s m) | |
Defined in Control.Monad.Error.Class Methods throwError :: e -> StateT s m a # catchError :: StateT s m a -> (e -> StateT s m a) -> StateT s m a # | |
MonadError e m => MonadError e (StateT s m) | |
Defined in Control.Monad.Error.Class Methods throwError :: e -> StateT s m a # catchError :: StateT s m a -> (e -> StateT s m a) -> StateT s m a # | |
(Monoid w, MonadError e m) => MonadError e (WriterT w m) | Since: mtl-2.3 |
Defined in Control.Monad.Error.Class Methods throwError :: e -> WriterT w m a # catchError :: WriterT w m a -> (e -> WriterT w m a) -> WriterT w m a # | |
(Monoid w, MonadError e m) => MonadError e (WriterT w m) | |
Defined in Control.Monad.Error.Class Methods throwError :: e -> WriterT w m a # catchError :: WriterT w m a -> (e -> WriterT w m a) -> WriterT w m a # | |
(Monoid w, MonadError e m) => MonadError e (WriterT w m) | |
Defined in Control.Monad.Error.Class Methods throwError :: e -> WriterT w m a # catchError :: WriterT w m a -> (e -> WriterT w m a) -> WriterT w m a # | |
(Monoid w, MonadError e m) => MonadError e (RWST r w s m) | Since: mtl-2.3 |
Defined in Control.Monad.Error.Class Methods throwError :: e -> RWST r w s m a # catchError :: RWST r w s m a -> (e -> RWST r w s m a) -> RWST r w s m a # | |
(Monoid w, MonadError e m) => MonadError e (RWST r w s m) | |
Defined in Control.Monad.Error.Class Methods throwError :: e -> RWST r w s m a # catchError :: RWST r w s m a -> (e -> RWST r w s m a) -> RWST r w s m a # | |
(Monoid w, MonadError e m) => MonadError e (RWST r w s m) | |
Defined in Control.Monad.Error.Class Methods throwError :: e -> RWST r w s m a # catchError :: RWST r w s m a -> (e -> RWST r w s m a) -> RWST r w s m a # |
runExcept :: Except e a -> Either e a #
Extractor for computations in the exception monad.
(The inverse of except
).
withExcept :: (e -> e') -> Except e a -> Except e' a #
Transform any exceptions thrown by the computation using the given
function (a specialization of withExceptT
).
runExceptT :: ExceptT e m a -> m (Either e a) #
The inverse of ExceptT
.
mapExceptT :: (m (Either e a) -> n (Either e' b)) -> ExceptT e m a -> ExceptT e' n b #
Map the unwrapped computation using the given function.
runExceptT
(mapExceptT
f m) = f (runExceptT
m)
withExceptT :: forall (m :: Type -> Type) e e' a. Functor m => (e -> e') -> ExceptT e m a -> ExceptT e' m a #
Transform any exceptions thrown by the computation using the given function.
class Monad m => MonadIO (m :: Type -> Type) where #
Monads in which IO
computations may be embedded.
Any monad built by applying a sequence of monad transformers to the
IO
monad will be an instance of this class.
Instances should satisfy the following laws, which state that liftIO
is a transformer of monads:
Methods
Lift a computation from the IO
monad.
This allows us to run IO computations in any monadic stack, so long as it supports these kinds of operations
(i.e. IO
is the base monad for the stack).
Example
import Control.Monad.Trans.State -- from the "transformers" library printState :: Show s => StateT s IO () printState = do state <- get liftIO $ print state
Had we omitted
, we would have ended up with this error:liftIO
• Couldn't match type ‘IO’ with ‘StateT s IO’ Expected type: StateT s IO () Actual type: IO ()
The important part here is the mismatch between StateT s IO ()
and
.IO
()
Luckily, we know of a function that takes an
and returns an IO
a(m a)
:
,
enabling us to run the program and see the expected results:liftIO
> evalStateT printState "hello" "hello" > evalStateT printState 3 3
Instances
MonadIO IO | Since: base-4.9.0.0 |
Defined in Control.Monad.IO.Class | |
MonadIO Q | |
Defined in Language.Haskell.TH.Syntax | |
MonadIO m => MonadIO (MaybeT m) | |
Defined in Control.Monad.Trans.Maybe | |
(Monoid w, Functor m, MonadIO m) => MonadIO (AccumT w m) | |
Defined in Control.Monad.Trans.Accum | |
MonadIO m => MonadIO (ExceptT e m) | |
Defined in Control.Monad.Trans.Except | |
MonadIO m => MonadIO (IdentityT m) | |
Defined in Control.Monad.Trans.Identity | |
MonadIO m => MonadIO (ReaderT r m) | |
Defined in Control.Monad.Trans.Reader | |
MonadIO m => MonadIO (SelectT r m) | |
Defined in Control.Monad.Trans.Select | |
MonadIO m => MonadIO (StateT s m) | |
Defined in Control.Monad.Trans.State.Lazy | |
MonadIO m => MonadIO (StateT s m) | |
Defined in Control.Monad.Trans.State.Strict | |
MonadIO m => MonadIO (WriterT w m) | |
Defined in Control.Monad.Trans.Writer.CPS | |
(Monoid w, MonadIO m) => MonadIO (WriterT w m) | |
Defined in Control.Monad.Trans.Writer.Lazy | |
(Monoid w, MonadIO m) => MonadIO (WriterT w m) | |
Defined in Control.Monad.Trans.Writer.Strict | |
MonadIO m => MonadIO (ContT r m) | |
Defined in Control.Monad.Trans.Cont | |
MonadIO m => MonadIO (RWST r w s m) | |
Defined in Control.Monad.Trans.RWS.CPS | |
(Monoid w, MonadIO m) => MonadIO (RWST r w s m) | |
Defined in Control.Monad.Trans.RWS.Lazy | |
(Monoid w, MonadIO m) => MonadIO (RWST r w s m) | |
Defined in Control.Monad.Trans.RWS.Strict |
lift :: (MonadTrans t, Monad m) => m a -> t m a #
Lift a computation from the argument monad to the constructed monad.
The strict ST
monad.
The ST
monad allows for destructive updates, but is escapable (unlike IO).
A computation of type
returns a value of type ST
s aa
, and
execute in "thread" s
. The s
parameter is either
- an uninstantiated type variable (inside invocations of
runST
), or RealWorld
(inside invocations ofstToIO
).
It serves to keep the internal states of different invocations
of runST
separate from each other and from invocations of
stToIO
.
The >>=
and >>
operations are strict in the state (though not in
values stored in the state). For example,
runST
(writeSTRef _|_ v >>= f) = _|_
Instances
MonadFix (ST s) | Since: base-2.1 |
Defined in Control.Monad.Fix | |
Applicative (ST s) | Since: base-4.4.0.0 |
Functor (ST s) | Since: base-2.1 |
Monad (ST s) | Since: base-2.1 |
MArray (STUArray s) Int16 (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Int16 -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Int16 -> ST s Int # newArray :: Ix i => (i, i) -> Int16 -> ST s (STUArray s i Int16) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Int16) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Int16) # unsafeRead :: Ix i => STUArray s i Int16 -> Int -> ST s Int16 # unsafeWrite :: Ix i => STUArray s i Int16 -> Int -> Int16 -> ST s () # | |
MArray (STUArray s) Int32 (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Int32 -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Int32 -> ST s Int # newArray :: Ix i => (i, i) -> Int32 -> ST s (STUArray s i Int32) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Int32) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Int32) # unsafeRead :: Ix i => STUArray s i Int32 -> Int -> ST s Int32 # unsafeWrite :: Ix i => STUArray s i Int32 -> Int -> Int32 -> ST s () # | |
MArray (STUArray s) Int64 (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Int64 -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Int64 -> ST s Int # newArray :: Ix i => (i, i) -> Int64 -> ST s (STUArray s i Int64) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Int64) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Int64) # unsafeRead :: Ix i => STUArray s i Int64 -> Int -> ST s Int64 # unsafeWrite :: Ix i => STUArray s i Int64 -> Int -> Int64 -> ST s () # | |
MArray (STUArray s) Int8 (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Int8 -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Int8 -> ST s Int # newArray :: Ix i => (i, i) -> Int8 -> ST s (STUArray s i Int8) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Int8) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Int8) # unsafeRead :: Ix i => STUArray s i Int8 -> Int -> ST s Int8 # unsafeWrite :: Ix i => STUArray s i Int8 -> Int -> Int8 -> ST s () # | |
MArray (STUArray s) Word16 (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Word16 -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Word16 -> ST s Int # newArray :: Ix i => (i, i) -> Word16 -> ST s (STUArray s i Word16) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word16) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word16) # unsafeRead :: Ix i => STUArray s i Word16 -> Int -> ST s Word16 # unsafeWrite :: Ix i => STUArray s i Word16 -> Int -> Word16 -> ST s () # | |
MArray (STUArray s) Word32 (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Word32 -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Word32 -> ST s Int # newArray :: Ix i => (i, i) -> Word32 -> ST s (STUArray s i Word32) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word32) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word32) # unsafeRead :: Ix i => STUArray s i Word32 -> Int -> ST s Word32 # unsafeWrite :: Ix i => STUArray s i Word32 -> Int -> Word32 -> ST s () # | |
MArray (STUArray s) Word64 (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Word64 -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Word64 -> ST s Int # newArray :: Ix i => (i, i) -> Word64 -> ST s (STUArray s i Word64) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word64) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word64) # unsafeRead :: Ix i => STUArray s i Word64 -> Int -> ST s Word64 # unsafeWrite :: Ix i => STUArray s i Word64 -> Int -> Word64 -> ST s () # | |
MArray (STUArray s) Word8 (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Word8 -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Word8 -> ST s Int # newArray :: Ix i => (i, i) -> Word8 -> ST s (STUArray s i Word8) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word8) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word8) # unsafeRead :: Ix i => STUArray s i Word8 -> Int -> ST s Word8 # unsafeWrite :: Ix i => STUArray s i Word8 -> Int -> Word8 -> ST s () # | |
MArray (STUArray s) Bool (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Bool -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Bool -> ST s Int # newArray :: Ix i => (i, i) -> Bool -> ST s (STUArray s i Bool) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Bool) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Bool) # unsafeRead :: Ix i => STUArray s i Bool -> Int -> ST s Bool # unsafeWrite :: Ix i => STUArray s i Bool -> Int -> Bool -> ST s () # | |
MArray (STUArray s) Char (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Char -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Char -> ST s Int # newArray :: Ix i => (i, i) -> Char -> ST s (STUArray s i Char) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Char) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Char) # unsafeRead :: Ix i => STUArray s i Char -> Int -> ST s Char # unsafeWrite :: Ix i => STUArray s i Char -> Int -> Char -> ST s () # | |
MArray (STUArray s) Double (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Double -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Double -> ST s Int # newArray :: Ix i => (i, i) -> Double -> ST s (STUArray s i Double) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Double) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Double) # unsafeRead :: Ix i => STUArray s i Double -> Int -> ST s Double # unsafeWrite :: Ix i => STUArray s i Double -> Int -> Double -> ST s () # | |
MArray (STUArray s) Float (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Float -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Float -> ST s Int # newArray :: Ix i => (i, i) -> Float -> ST s (STUArray s i Float) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Float) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Float) # unsafeRead :: Ix i => STUArray s i Float -> Int -> ST s Float # unsafeWrite :: Ix i => STUArray s i Float -> Int -> Float -> ST s () # | |
MArray (STUArray s) Int (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Int -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Int -> ST s Int # newArray :: Ix i => (i, i) -> Int -> ST s (STUArray s i Int) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Int) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Int) # unsafeRead :: Ix i => STUArray s i Int -> Int -> ST s Int # unsafeWrite :: Ix i => STUArray s i Int -> Int -> Int -> ST s () # | |
MArray (STUArray s) Word (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Word -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Word -> ST s Int # newArray :: Ix i => (i, i) -> Word -> ST s (STUArray s i Word) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word) # unsafeRead :: Ix i => STUArray s i Word -> Int -> ST s Word # unsafeWrite :: Ix i => STUArray s i Word -> Int -> Word -> ST s () # | |
MArray (STArray s) e (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STArray s i e -> ST s (i, i) # getNumElements :: Ix i => STArray s i e -> ST s Int # newArray :: Ix i => (i, i) -> e -> ST s (STArray s i e) # newArray_ :: Ix i => (i, i) -> ST s (STArray s i e) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STArray s i e) # unsafeRead :: Ix i => STArray s i e -> Int -> ST s e # unsafeWrite :: Ix i => STArray s i e -> Int -> e -> ST s () # | |
MArray (STUArray s) (FunPtr a) (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i (FunPtr a) -> ST s (i, i) # getNumElements :: Ix i => STUArray s i (FunPtr a) -> ST s Int # newArray :: Ix i => (i, i) -> FunPtr a -> ST s (STUArray s i (FunPtr a)) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i (FunPtr a)) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i (FunPtr a)) # unsafeRead :: Ix i => STUArray s i (FunPtr a) -> Int -> ST s (FunPtr a) # unsafeWrite :: Ix i => STUArray s i (FunPtr a) -> Int -> FunPtr a -> ST s () # | |
MArray (STUArray s) (Ptr a) (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i (Ptr a) -> ST s (i, i) # getNumElements :: Ix i => STUArray s i (Ptr a) -> ST s Int # newArray :: Ix i => (i, i) -> Ptr a -> ST s (STUArray s i (Ptr a)) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i (Ptr a)) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i (Ptr a)) # unsafeRead :: Ix i => STUArray s i (Ptr a) -> Int -> ST s (Ptr a) # unsafeWrite :: Ix i => STUArray s i (Ptr a) -> Int -> Ptr a -> ST s () # | |
MArray (STUArray s) (StablePtr a) (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i (StablePtr a) -> ST s (i, i) # getNumElements :: Ix i => STUArray s i (StablePtr a) -> ST s Int # newArray :: Ix i => (i, i) -> StablePtr a -> ST s (STUArray s i (StablePtr a)) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i (StablePtr a)) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i (StablePtr a)) # unsafeRead :: Ix i => STUArray s i (StablePtr a) -> Int -> ST s (StablePtr a) # unsafeWrite :: Ix i => STUArray s i (StablePtr a) -> Int -> StablePtr a -> ST s () # | |
Monoid a => Monoid (ST s a) | Since: base-4.11.0.0 |
Semigroup a => Semigroup (ST s a) | Since: base-4.11.0.0 |
Show (ST s a) | Since: base-2.1 |
runST :: (forall s. ST s a) -> a #
Return the value computed by a state thread.
The forall
ensures that the internal state used by the ST
computation is inaccessible to the rest of the program.
module Control.Monad.STM
Integers
module Data.Int
8-bit unsigned integer type
Instances
Data Word8 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word8 -> c Word8 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word8 # dataTypeOf :: Word8 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word8) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word8) # gmapT :: (forall b. Data b => b -> b) -> Word8 -> Word8 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word8 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word8 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word8 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word8 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 # | |
Storable Word8 | Since: base-2.1 |
Bits Word8 | Since: base-2.1 |
Defined in GHC.Word Methods (.&.) :: Word8 -> Word8 -> Word8 # (.|.) :: Word8 -> Word8 -> Word8 # xor :: Word8 -> Word8 -> Word8 # complement :: Word8 -> Word8 # shift :: Word8 -> Int -> Word8 # rotate :: Word8 -> Int -> Word8 # setBit :: Word8 -> Int -> Word8 # clearBit :: Word8 -> Int -> Word8 # complementBit :: Word8 -> Int -> Word8 # testBit :: Word8 -> Int -> Bool # bitSizeMaybe :: Word8 -> Maybe Int # shiftL :: Word8 -> Int -> Word8 # unsafeShiftL :: Word8 -> Int -> Word8 # shiftR :: Word8 -> Int -> Word8 # unsafeShiftR :: Word8 -> Int -> Word8 # rotateL :: Word8 -> Int -> Word8 # | |
FiniteBits Word8 | Since: base-4.6.0.0 |
Defined in GHC.Word Methods finiteBitSize :: Word8 -> Int # countLeadingZeros :: Word8 -> Int # countTrailingZeros :: Word8 -> Int # | |
Bounded Word8 | Since: base-2.1 |
Enum Word8 | Since: base-2.1 |
Ix Word8 | Since: base-2.1 |
Num Word8 | Since: base-2.1 |
Read Word8 | Since: base-2.1 |
Integral Word8 | Since: base-2.1 |
Real Word8 | Since: base-2.1 |
Defined in GHC.Word Methods toRational :: Word8 -> Rational # | |
Show Word8 | Since: base-2.1 |
PrintfArg Word8 | Since: base-2.1 |
Defined in Text.Printf | |
NFData Word8 | |
Defined in Control.DeepSeq | |
Eq Word8 | Since: base-2.1 |
Ord Word8 | Since: base-2.1 |
Hashable Word8 | |
Defined in Data.Hashable.Class | |
IArray UArray Word8 | |
Defined in Data.Array.Base Methods bounds :: Ix i => UArray i Word8 -> (i, i) # numElements :: Ix i => UArray i Word8 -> Int # unsafeArray :: Ix i => (i, i) -> [(Int, Word8)] -> UArray i Word8 # unsafeAt :: Ix i => UArray i Word8 -> Int -> Word8 # unsafeReplace :: Ix i => UArray i Word8 -> [(Int, Word8)] -> UArray i Word8 # unsafeAccum :: Ix i => (Word8 -> e' -> Word8) -> UArray i Word8 -> [(Int, e')] -> UArray i Word8 # unsafeAccumArray :: Ix i => (Word8 -> e' -> Word8) -> Word8 -> (i, i) -> [(Int, e')] -> UArray i Word8 # | |
Lift Word8 | |
MArray IOUArray Word8 IO | |
Defined in Data.Array.IO.Internals Methods getBounds :: Ix i => IOUArray i Word8 -> IO (i, i) # getNumElements :: Ix i => IOUArray i Word8 -> IO Int # newArray :: Ix i => (i, i) -> Word8 -> IO (IOUArray i Word8) # newArray_ :: Ix i => (i, i) -> IO (IOUArray i Word8) # unsafeNewArray_ :: Ix i => (i, i) -> IO (IOUArray i Word8) # unsafeRead :: Ix i => IOUArray i Word8 -> Int -> IO Word8 # unsafeWrite :: Ix i => IOUArray i Word8 -> Int -> Word8 -> IO () # | |
MArray (STUArray s) Word8 (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Word8 -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Word8 -> ST s Int # newArray :: Ix i => (i, i) -> Word8 -> ST s (STUArray s i Word8) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word8) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word8) # unsafeRead :: Ix i => STUArray s i Word8 -> Int -> ST s Word8 # unsafeWrite :: Ix i => STUArray s i Word8 -> Int -> Word8 -> ST s () # |
Instances
Data Word | Since: base-4.0.0.0 | ||||
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word -> c Word # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word # dataTypeOf :: Word -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word) # gmapT :: (forall b. Data b => b -> b) -> Word -> Word # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r # gmapQ :: (forall d. Data d => d -> u) -> Word -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word -> m Word # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word # | |||||
Storable Word | Since: base-2.1 | ||||
Defined in Foreign.Storable | |||||
Bits Word | Since: base-2.1 | ||||
Defined in GHC.Bits Methods (.&.) :: Word -> Word -> Word # (.|.) :: Word -> Word -> Word # complement :: Word -> Word # shift :: Word -> Int -> Word # rotate :: Word -> Int -> Word # setBit :: Word -> Int -> Word # clearBit :: Word -> Int -> Word # complementBit :: Word -> Int -> Word # testBit :: Word -> Int -> Bool # bitSizeMaybe :: Word -> Maybe Int # shiftL :: Word -> Int -> Word # unsafeShiftL :: Word -> Int -> Word # shiftR :: Word -> Int -> Word # unsafeShiftR :: Word -> Int -> Word # rotateL :: Word -> Int -> Word # | |||||
FiniteBits Word | Since: base-4.6.0.0 | ||||
Defined in GHC.Bits Methods finiteBitSize :: Word -> Int # countLeadingZeros :: Word -> Int # countTrailingZeros :: Word -> Int # | |||||
Bounded Word | Since: base-2.1 | ||||
Enum Word | Since: base-2.1 | ||||
Ix Word | Since: base-4.6.0.0 | ||||
Num Word | Since: base-2.1 | ||||
Read Word | Since: base-4.5.0.0 | ||||
Integral Word | Since: base-2.1 | ||||
Real Word | Since: base-2.1 | ||||
Defined in GHC.Real Methods toRational :: Word -> Rational # | |||||
Show Word | Since: base-2.1 | ||||
PrintfArg Word | Since: base-2.1 | ||||
Defined in Text.Printf | |||||
NFData Word | |||||
Defined in Control.DeepSeq | |||||
Eq Word | |||||
Ord Word | |||||
Hashable Word | |||||
Defined in Data.Hashable.Class | |||||
IArray UArray Word | |||||
Defined in Data.Array.Base Methods bounds :: Ix i => UArray i Word -> (i, i) # numElements :: Ix i => UArray i Word -> Int # unsafeArray :: Ix i => (i, i) -> [(Int, Word)] -> UArray i Word # unsafeAt :: Ix i => UArray i Word -> Int -> Word # unsafeReplace :: Ix i => UArray i Word -> [(Int, Word)] -> UArray i Word # unsafeAccum :: Ix i => (Word -> e' -> Word) -> UArray i Word -> [(Int, e')] -> UArray i Word # unsafeAccumArray :: Ix i => (Word -> e' -> Word) -> Word -> (i, i) -> [(Int, e')] -> UArray i Word # | |||||
Lift Word | |||||
MArray IOUArray Word IO | |||||
Defined in Data.Array.IO.Internals Methods getBounds :: Ix i => IOUArray i Word -> IO (i, i) # getNumElements :: Ix i => IOUArray i Word -> IO Int # newArray :: Ix i => (i, i) -> Word -> IO (IOUArray i Word) # newArray_ :: Ix i => (i, i) -> IO (IOUArray i Word) # unsafeNewArray_ :: Ix i => (i, i) -> IO (IOUArray i Word) # unsafeRead :: Ix i => IOUArray i Word -> Int -> IO Word # unsafeWrite :: Ix i => IOUArray i Word -> Int -> Word -> IO () # | |||||
GEq1 v (UWord :: Type -> Type) | |||||
GOrd1 v (UWord :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
GShow1Con v (UWord :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
Generic1 (URec Word :: k -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
Foldable (UWord :: Type -> Type) | Since: base-4.9.0.0 | ||||
Defined in Data.Foldable Methods fold :: Monoid m => UWord m -> m # foldMap :: Monoid m => (a -> m) -> UWord a -> m # foldMap' :: Monoid m => (a -> m) -> UWord a -> m # foldr :: (a -> b -> b) -> b -> UWord a -> b # foldr' :: (a -> b -> b) -> b -> UWord a -> b # foldl :: (b -> a -> b) -> b -> UWord a -> b # foldl' :: (b -> a -> b) -> b -> UWord a -> b # foldr1 :: (a -> a -> a) -> UWord a -> a # foldl1 :: (a -> a -> a) -> UWord a -> a # elem :: Eq a => a -> UWord a -> Bool # maximum :: Ord a => UWord a -> a # minimum :: Ord a => UWord a -> a # | |||||
Traversable (UWord :: Type -> Type) | Since: base-4.9.0.0 | ||||
IsNullaryCon (UWord :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal Methods isNullaryCon :: UWord a -> Bool # | |||||
MArray (STUArray s) Word (ST s) | |||||
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Word -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Word -> ST s Int # newArray :: Ix i => (i, i) -> Word -> ST s (STUArray s i Word) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word) # unsafeRead :: Ix i => STUArray s i Word -> Int -> ST s Word # unsafeWrite :: Ix i => STUArray s i Word -> Int -> Word -> ST s () # | |||||
Functor (URec Word :: Type -> Type) | Since: base-4.9.0.0 | ||||
GEq (UWord p) | |||||
GOrd (UWord p) | |||||
GShowCon (UWord p) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
Generic (URec Word p) | |||||
Defined in GHC.Generics Associated Types
| |||||
Show (URec Word p) | Since: base-4.9.0.0 | ||||
Eq (URec Word p) | Since: base-4.9.0.0 | ||||
Ord (URec Word p) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
data URec Word (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 | ||||
type Rep1 (URec Word :: k -> Type) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
type Rep (URec Word p) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics |
64-bit unsigned integer type
Instances
Data Word64 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word64 -> c Word64 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word64 # toConstr :: Word64 -> Constr # dataTypeOf :: Word64 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word64) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word64) # gmapT :: (forall b. Data b => b -> b) -> Word64 -> Word64 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word64 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word64 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word64 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word64 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 # | |
Storable Word64 | Since: base-2.1 |
Bits Word64 | Since: base-2.1 |
Defined in GHC.Word Methods (.&.) :: Word64 -> Word64 -> Word64 # (.|.) :: Word64 -> Word64 -> Word64 # xor :: Word64 -> Word64 -> Word64 # complement :: Word64 -> Word64 # shift :: Word64 -> Int -> Word64 # rotate :: Word64 -> Int -> Word64 # setBit :: Word64 -> Int -> Word64 # clearBit :: Word64 -> Int -> Word64 # complementBit :: Word64 -> Int -> Word64 # testBit :: Word64 -> Int -> Bool # bitSizeMaybe :: Word64 -> Maybe Int # shiftL :: Word64 -> Int -> Word64 # unsafeShiftL :: Word64 -> Int -> Word64 # shiftR :: Word64 -> Int -> Word64 # unsafeShiftR :: Word64 -> Int -> Word64 # rotateL :: Word64 -> Int -> Word64 # | |
FiniteBits Word64 | Since: base-4.6.0.0 |
Defined in GHC.Word Methods finiteBitSize :: Word64 -> Int # countLeadingZeros :: Word64 -> Int # countTrailingZeros :: Word64 -> Int # | |
Bounded Word64 | Since: base-2.1 |
Enum Word64 | Since: base-2.1 |
Defined in GHC.Word | |
Ix Word64 | Since: base-2.1 |
Num Word64 | Since: base-2.1 |
Read Word64 | Since: base-2.1 |
Integral Word64 | Since: base-2.1 |
Real Word64 | Since: base-2.1 |
Defined in GHC.Word Methods toRational :: Word64 -> Rational # | |
Show Word64 | Since: base-2.1 |
PrintfArg Word64 | Since: base-2.1 |
Defined in Text.Printf | |
NFData Word64 | |
Defined in Control.DeepSeq | |
Eq Word64 | Since: base-2.1 |
Ord Word64 | Since: base-2.1 |
Hashable Word64 | |
Defined in Data.Hashable.Class | |
IArray UArray Word64 | |
Defined in Data.Array.Base Methods bounds :: Ix i => UArray i Word64 -> (i, i) # numElements :: Ix i => UArray i Word64 -> Int # unsafeArray :: Ix i => (i, i) -> [(Int, Word64)] -> UArray i Word64 # unsafeAt :: Ix i => UArray i Word64 -> Int -> Word64 # unsafeReplace :: Ix i => UArray i Word64 -> [(Int, Word64)] -> UArray i Word64 # unsafeAccum :: Ix i => (Word64 -> e' -> Word64) -> UArray i Word64 -> [(Int, e')] -> UArray i Word64 # unsafeAccumArray :: Ix i => (Word64 -> e' -> Word64) -> Word64 -> (i, i) -> [(Int, e')] -> UArray i Word64 # | |
Lift Word64 | |
MArray IOUArray Word64 IO | |
Defined in Data.Array.IO.Internals Methods getBounds :: Ix i => IOUArray i Word64 -> IO (i, i) # getNumElements :: Ix i => IOUArray i Word64 -> IO Int # newArray :: Ix i => (i, i) -> Word64 -> IO (IOUArray i Word64) # newArray_ :: Ix i => (i, i) -> IO (IOUArray i Word64) # unsafeNewArray_ :: Ix i => (i, i) -> IO (IOUArray i Word64) # unsafeRead :: Ix i => IOUArray i Word64 -> Int -> IO Word64 # unsafeWrite :: Ix i => IOUArray i Word64 -> Int -> Word64 -> IO () # | |
MArray (STUArray s) Word64 (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Word64 -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Word64 -> ST s Int # newArray :: Ix i => (i, i) -> Word64 -> ST s (STUArray s i Word64) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word64) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word64) # unsafeRead :: Ix i => STUArray s i Word64 -> Int -> ST s Word64 # unsafeWrite :: Ix i => STUArray s i Word64 -> Int -> Word64 -> ST s () # |
32-bit unsigned integer type
Instances
Data Word32 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word32 -> c Word32 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word32 # toConstr :: Word32 -> Constr # dataTypeOf :: Word32 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word32) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word32) # gmapT :: (forall b. Data b => b -> b) -> Word32 -> Word32 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word32 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word32 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word32 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word32 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 # | |
Storable Word32 | Since: base-2.1 |
Bits Word32 | Since: base-2.1 |
Defined in GHC.Word Methods (.&.) :: Word32 -> Word32 -> Word32 # (.|.) :: Word32 -> Word32 -> Word32 # xor :: Word32 -> Word32 -> Word32 # complement :: Word32 -> Word32 # shift :: Word32 -> Int -> Word32 # rotate :: Word32 -> Int -> Word32 # setBit :: Word32 -> Int -> Word32 # clearBit :: Word32 -> Int -> Word32 # complementBit :: Word32 -> Int -> Word32 # testBit :: Word32 -> Int -> Bool # bitSizeMaybe :: Word32 -> Maybe Int # shiftL :: Word32 -> Int -> Word32 # unsafeShiftL :: Word32 -> Int -> Word32 # shiftR :: Word32 -> Int -> Word32 # unsafeShiftR :: Word32 -> Int -> Word32 # rotateL :: Word32 -> Int -> Word32 # | |
FiniteBits Word32 | Since: base-4.6.0.0 |
Defined in GHC.Word Methods finiteBitSize :: Word32 -> Int # countLeadingZeros :: Word32 -> Int # countTrailingZeros :: Word32 -> Int # | |
Bounded Word32 | Since: base-2.1 |
Enum Word32 | Since: base-2.1 |
Defined in GHC.Word | |
Ix Word32 | Since: base-2.1 |
Num Word32 | Since: base-2.1 |
Read Word32 | Since: base-2.1 |
Integral Word32 | Since: base-2.1 |
Real Word32 | Since: base-2.1 |
Defined in GHC.Word Methods toRational :: Word32 -> Rational # | |
Show Word32 | Since: base-2.1 |
PrintfArg Word32 | Since: base-2.1 |
Defined in Text.Printf | |
NFData Word32 | |
Defined in Control.DeepSeq | |
Eq Word32 | Since: base-2.1 |
Ord Word32 | Since: base-2.1 |
Hashable Word32 | |
Defined in Data.Hashable.Class | |
IArray UArray Word32 | |
Defined in Data.Array.Base Methods bounds :: Ix i => UArray i Word32 -> (i, i) # numElements :: Ix i => UArray i Word32 -> Int # unsafeArray :: Ix i => (i, i) -> [(Int, Word32)] -> UArray i Word32 # unsafeAt :: Ix i => UArray i Word32 -> Int -> Word32 # unsafeReplace :: Ix i => UArray i Word32 -> [(Int, Word32)] -> UArray i Word32 # unsafeAccum :: Ix i => (Word32 -> e' -> Word32) -> UArray i Word32 -> [(Int, e')] -> UArray i Word32 # unsafeAccumArray :: Ix i => (Word32 -> e' -> Word32) -> Word32 -> (i, i) -> [(Int, e')] -> UArray i Word32 # | |
Lift Word32 | |
MArray IOUArray Word32 IO | |
Defined in Data.Array.IO.Internals Methods getBounds :: Ix i => IOUArray i Word32 -> IO (i, i) # getNumElements :: Ix i => IOUArray i Word32 -> IO Int # newArray :: Ix i => (i, i) -> Word32 -> IO (IOUArray i Word32) # newArray_ :: Ix i => (i, i) -> IO (IOUArray i Word32) # unsafeNewArray_ :: Ix i => (i, i) -> IO (IOUArray i Word32) # unsafeRead :: Ix i => IOUArray i Word32 -> Int -> IO Word32 # unsafeWrite :: Ix i => IOUArray i Word32 -> Int -> Word32 -> IO () # | |
MArray (STUArray s) Word32 (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Word32 -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Word32 -> ST s Int # newArray :: Ix i => (i, i) -> Word32 -> ST s (STUArray s i Word32) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word32) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word32) # unsafeRead :: Ix i => STUArray s i Word32 -> Int -> ST s Word32 # unsafeWrite :: Ix i => STUArray s i Word32 -> Int -> Word32 -> ST s () # |
16-bit unsigned integer type
Instances
Data Word16 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word16 -> c Word16 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word16 # toConstr :: Word16 -> Constr # dataTypeOf :: Word16 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word16) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word16) # gmapT :: (forall b. Data b => b -> b) -> Word16 -> Word16 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word16 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word16 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word16 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word16 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 # | |
Storable Word16 | Since: base-2.1 |
Bits Word16 | Since: base-2.1 |
Defined in GHC.Word Methods (.&.) :: Word16 -> Word16 -> Word16 # (.|.) :: Word16 -> Word16 -> Word16 # xor :: Word16 -> Word16 -> Word16 # complement :: Word16 -> Word16 # shift :: Word16 -> Int -> Word16 # rotate :: Word16 -> Int -> Word16 # setBit :: Word16 -> Int -> Word16 # clearBit :: Word16 -> Int -> Word16 # complementBit :: Word16 -> Int -> Word16 # testBit :: Word16 -> Int -> Bool # bitSizeMaybe :: Word16 -> Maybe Int # shiftL :: Word16 -> Int -> Word16 # unsafeShiftL :: Word16 -> Int -> Word16 # shiftR :: Word16 -> Int -> Word16 # unsafeShiftR :: Word16 -> Int -> Word16 # rotateL :: Word16 -> Int -> Word16 # | |
FiniteBits Word16 | Since: base-4.6.0.0 |
Defined in GHC.Word Methods finiteBitSize :: Word16 -> Int # countLeadingZeros :: Word16 -> Int # countTrailingZeros :: Word16 -> Int # | |
Bounded Word16 | Since: base-2.1 |
Enum Word16 | Since: base-2.1 |
Defined in GHC.Word | |
Ix Word16 | Since: base-2.1 |
Num Word16 | Since: base-2.1 |
Read Word16 | Since: base-2.1 |
Integral Word16 | Since: base-2.1 |
Real Word16 | Since: base-2.1 |
Defined in GHC.Word Methods toRational :: Word16 -> Rational # | |
Show Word16 | Since: base-2.1 |
PrintfArg Word16 | Since: base-2.1 |
Defined in Text.Printf | |
NFData Word16 | |
Defined in Control.DeepSeq | |
Eq Word16 | Since: base-2.1 |
Ord Word16 | Since: base-2.1 |
Hashable Word16 | |
Defined in Data.Hashable.Class | |
IArray UArray Word16 | |
Defined in Data.Array.Base Methods bounds :: Ix i => UArray i Word16 -> (i, i) # numElements :: Ix i => UArray i Word16 -> Int # unsafeArray :: Ix i => (i, i) -> [(Int, Word16)] -> UArray i Word16 # unsafeAt :: Ix i => UArray i Word16 -> Int -> Word16 # unsafeReplace :: Ix i => UArray i Word16 -> [(Int, Word16)] -> UArray i Word16 # unsafeAccum :: Ix i => (Word16 -> e' -> Word16) -> UArray i Word16 -> [(Int, e')] -> UArray i Word16 # unsafeAccumArray :: Ix i => (Word16 -> e' -> Word16) -> Word16 -> (i, i) -> [(Int, e')] -> UArray i Word16 # | |
Lift Word16 | |
MArray IOUArray Word16 IO | |
Defined in Data.Array.IO.Internals Methods getBounds :: Ix i => IOUArray i Word16 -> IO (i, i) # getNumElements :: Ix i => IOUArray i Word16 -> IO Int # newArray :: Ix i => (i, i) -> Word16 -> IO (IOUArray i Word16) # newArray_ :: Ix i => (i, i) -> IO (IOUArray i Word16) # unsafeNewArray_ :: Ix i => (i, i) -> IO (IOUArray i Word16) # unsafeRead :: Ix i => IOUArray i Word16 -> Int -> IO Word16 # unsafeWrite :: Ix i => IOUArray i Word16 -> Int -> Word16 -> IO () # | |
MArray (STUArray s) Word16 (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Word16 -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Word16 -> ST s Int # newArray :: Ix i => (i, i) -> Word16 -> ST s (STUArray s i Word16) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word16) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word16) # unsafeRead :: Ix i => STUArray s i Word16 -> Int -> ST s Word16 # unsafeWrite :: Ix i => STUArray s i Word16 -> Int -> Word16 -> ST s () # |
class Bits b => FiniteBits b where #
The FiniteBits
class denotes types with a finite, fixed number of bits.
Since: base-4.7.0.0
Minimal complete definition
Methods
finiteBitSize :: b -> Int #
Return the number of bits in the type of the argument.
The actual value of the argument is ignored. Moreover, finiteBitSize
is total, in contrast to the deprecated bitSize
function it replaces.
finiteBitSize
=bitSize
bitSizeMaybe
=Just
.finiteBitSize
Since: base-4.7.0.0
countLeadingZeros :: b -> Int #
Count number of zero bits preceding the most significant set bit.
countLeadingZeros
(zeroBits
:: a) = finiteBitSize (zeroBits
:: a)
countLeadingZeros
can be used to compute log base 2 via
logBase2 x =finiteBitSize
x - 1 -countLeadingZeros
x
Note: The default implementation for this method is intentionally naive. However, the instances provided for the primitive integral types are implemented using CPU specific machine instructions.
Since: base-4.8.0.0
countTrailingZeros :: b -> Int #
Count number of zero bits following the least significant set bit.
countTrailingZeros
(zeroBits
:: a) = finiteBitSize (zeroBits
:: a)countTrailingZeros
.negate
=countTrailingZeros
The related
find-first-set operation
can be expressed in terms of countTrailingZeros
as follows
findFirstSet x = 1 + countTrailingZeros
x
Note: The default implementation for this method is intentionally naive. However, the instances provided for the primitive integral types are implemented using CPU specific machine instructions.
Since: base-4.8.0.0
Instances
FiniteBits CBool | |
Defined in Foreign.C.Types Methods finiteBitSize :: CBool -> Int # countLeadingZeros :: CBool -> Int # countTrailingZeros :: CBool -> Int # | |
FiniteBits CChar | |
Defined in Foreign.C.Types Methods finiteBitSize :: CChar -> Int # countLeadingZeros :: CChar -> Int # countTrailingZeros :: CChar -> Int # | |
FiniteBits CInt | |
Defined in Foreign.C.Types Methods finiteBitSize :: CInt -> Int # countLeadingZeros :: CInt -> Int # countTrailingZeros :: CInt -> Int # | |
FiniteBits CIntMax | |
Defined in Foreign.C.Types Methods finiteBitSize :: CIntMax -> Int # countLeadingZeros :: CIntMax -> Int # countTrailingZeros :: CIntMax -> Int # | |
FiniteBits CIntPtr | |
Defined in Foreign.C.Types Methods finiteBitSize :: CIntPtr -> Int # countLeadingZeros :: CIntPtr -> Int # countTrailingZeros :: CIntPtr -> Int # | |
FiniteBits CLLong | |
Defined in Foreign.C.Types Methods finiteBitSize :: CLLong -> Int # countLeadingZeros :: CLLong -> Int # countTrailingZeros :: CLLong -> Int # | |
FiniteBits CLong | |
Defined in Foreign.C.Types Methods finiteBitSize :: CLong -> Int # countLeadingZeros :: CLong -> Int # countTrailingZeros :: CLong -> Int # | |
FiniteBits CPtrdiff | |
Defined in Foreign.C.Types Methods finiteBitSize :: CPtrdiff -> Int # countLeadingZeros :: CPtrdiff -> Int # countTrailingZeros :: CPtrdiff -> Int # | |
FiniteBits CSChar | |
Defined in Foreign.C.Types Methods finiteBitSize :: CSChar -> Int # countLeadingZeros :: CSChar -> Int # countTrailingZeros :: CSChar -> Int # | |
FiniteBits CShort | |
Defined in Foreign.C.Types Methods finiteBitSize :: CShort -> Int # countLeadingZeros :: CShort -> Int # countTrailingZeros :: CShort -> Int # | |
FiniteBits CSigAtomic | |
Defined in Foreign.C.Types Methods finiteBitSize :: CSigAtomic -> Int # countLeadingZeros :: CSigAtomic -> Int # countTrailingZeros :: CSigAtomic -> Int # | |
FiniteBits CSize | |
Defined in Foreign.C.Types Methods finiteBitSize :: CSize -> Int # countLeadingZeros :: CSize -> Int # countTrailingZeros :: CSize -> Int # | |
FiniteBits CUChar | |
Defined in Foreign.C.Types Methods finiteBitSize :: CUChar -> Int # countLeadingZeros :: CUChar -> Int # countTrailingZeros :: CUChar -> Int # | |
FiniteBits CUInt | |
Defined in Foreign.C.Types Methods finiteBitSize :: CUInt -> Int # countLeadingZeros :: CUInt -> Int # countTrailingZeros :: CUInt -> Int # | |
FiniteBits CUIntMax | |
Defined in Foreign.C.Types Methods finiteBitSize :: CUIntMax -> Int # countLeadingZeros :: CUIntMax -> Int # countTrailingZeros :: CUIntMax -> Int # | |
FiniteBits CUIntPtr | |
Defined in Foreign.C.Types Methods finiteBitSize :: CUIntPtr -> Int # countLeadingZeros :: CUIntPtr -> Int # countTrailingZeros :: CUIntPtr -> Int # | |
FiniteBits CULLong | |
Defined in Foreign.C.Types Methods finiteBitSize :: CULLong -> Int # countLeadingZeros :: CULLong -> Int # countTrailingZeros :: CULLong -> Int # | |
FiniteBits CULong | |
Defined in Foreign.C.Types Methods finiteBitSize :: CULong -> Int # countLeadingZeros :: CULong -> Int # countTrailingZeros :: CULong -> Int # | |
FiniteBits CUShort | |
Defined in Foreign.C.Types Methods finiteBitSize :: CUShort -> Int # countLeadingZeros :: CUShort -> Int # countTrailingZeros :: CUShort -> Int # | |
FiniteBits CWchar | |
Defined in Foreign.C.Types Methods finiteBitSize :: CWchar -> Int # countLeadingZeros :: CWchar -> Int # countTrailingZeros :: CWchar -> Int # | |
FiniteBits IntPtr | |
Defined in Foreign.Ptr Methods finiteBitSize :: IntPtr -> Int # countLeadingZeros :: IntPtr -> Int # countTrailingZeros :: IntPtr -> Int # | |
FiniteBits WordPtr | |
Defined in Foreign.Ptr Methods finiteBitSize :: WordPtr -> Int # countLeadingZeros :: WordPtr -> Int # countTrailingZeros :: WordPtr -> Int # | |
FiniteBits Int16 | Since: base-4.6.0.0 |
Defined in GHC.Int Methods finiteBitSize :: Int16 -> Int # countLeadingZeros :: Int16 -> Int # countTrailingZeros :: Int16 -> Int # | |
FiniteBits Int32 | Since: base-4.6.0.0 |
Defined in GHC.Int Methods finiteBitSize :: Int32 -> Int # countLeadingZeros :: Int32 -> Int # countTrailingZeros :: Int32 -> Int # | |
FiniteBits Int64 | Since: base-4.6.0.0 |
Defined in GHC.Int Methods finiteBitSize :: Int64 -> Int # countLeadingZeros :: Int64 -> Int # countTrailingZeros :: Int64 -> Int # | |
FiniteBits Int8 | Since: base-4.6.0.0 |
Defined in GHC.Int Methods finiteBitSize :: Int8 -> Int # countLeadingZeros :: Int8 -> Int # countTrailingZeros :: Int8 -> Int # | |
FiniteBits Word16 | Since: base-4.6.0.0 |
Defined in GHC.Word Methods finiteBitSize :: Word16 -> Int # countLeadingZeros :: Word16 -> Int # countTrailingZeros :: Word16 -> Int # | |
FiniteBits Word32 | Since: base-4.6.0.0 |
Defined in GHC.Word Methods finiteBitSize :: Word32 -> Int # countLeadingZeros :: Word32 -> Int # countTrailingZeros :: Word32 -> Int # | |
FiniteBits Word64 | Since: base-4.6.0.0 |
Defined in GHC.Word Methods finiteBitSize :: Word64 -> Int # countLeadingZeros :: Word64 -> Int # countTrailingZeros :: Word64 -> Int # | |
FiniteBits Word8 | Since: base-4.6.0.0 |
Defined in GHC.Word Methods finiteBitSize :: Word8 -> Int # countLeadingZeros :: Word8 -> Int # countTrailingZeros :: Word8 -> Int # | |
FiniteBits CBlkCnt | |
Defined in System.Posix.Types Methods finiteBitSize :: CBlkCnt -> Int # countLeadingZeros :: CBlkCnt -> Int # countTrailingZeros :: CBlkCnt -> Int # | |
FiniteBits CBlkSize | |
Defined in System.Posix.Types Methods finiteBitSize :: CBlkSize -> Int # countLeadingZeros :: CBlkSize -> Int # countTrailingZeros :: CBlkSize -> Int # | |
FiniteBits CClockId | |
Defined in System.Posix.Types Methods finiteBitSize :: CClockId -> Int # countLeadingZeros :: CClockId -> Int # countTrailingZeros :: CClockId -> Int # | |
FiniteBits CDev | |
Defined in System.Posix.Types Methods finiteBitSize :: CDev -> Int # countLeadingZeros :: CDev -> Int # countTrailingZeros :: CDev -> Int # | |
FiniteBits CFsBlkCnt | |
Defined in System.Posix.Types Methods finiteBitSize :: CFsBlkCnt -> Int # countLeadingZeros :: CFsBlkCnt -> Int # countTrailingZeros :: CFsBlkCnt -> Int # | |
FiniteBits CFsFilCnt | |
Defined in System.Posix.Types Methods finiteBitSize :: CFsFilCnt -> Int # countLeadingZeros :: CFsFilCnt -> Int # countTrailingZeros :: CFsFilCnt -> Int # | |
FiniteBits CGid | |
Defined in System.Posix.Types Methods finiteBitSize :: CGid -> Int # countLeadingZeros :: CGid -> Int # countTrailingZeros :: CGid -> Int # | |
FiniteBits CId | |
Defined in System.Posix.Types Methods finiteBitSize :: CId -> Int # countLeadingZeros :: CId -> Int # countTrailingZeros :: CId -> Int # | |
FiniteBits CIno | |
Defined in System.Posix.Types Methods finiteBitSize :: CIno -> Int # countLeadingZeros :: CIno -> Int # countTrailingZeros :: CIno -> Int # | |
FiniteBits CKey | |
Defined in System.Posix.Types Methods finiteBitSize :: CKey -> Int # countLeadingZeros :: CKey -> Int # countTrailingZeros :: CKey -> Int # | |
FiniteBits CMode | |
Defined in System.Posix.Types Methods finiteBitSize :: CMode -> Int # countLeadingZeros :: CMode -> Int # countTrailingZeros :: CMode -> Int # | |
FiniteBits CNfds | |
Defined in System.Posix.Types Methods finiteBitSize :: CNfds -> Int # countLeadingZeros :: CNfds -> Int # countTrailingZeros :: CNfds -> Int # | |
FiniteBits CNlink | |
Defined in System.Posix.Types Methods finiteBitSize :: CNlink -> Int # countLeadingZeros :: CNlink -> Int # countTrailingZeros :: CNlink -> Int # | |
FiniteBits COff | |
Defined in System.Posix.Types Methods finiteBitSize :: COff -> Int # countLeadingZeros :: COff -> Int # countTrailingZeros :: COff -> Int # | |
FiniteBits CPid | |
Defined in System.Posix.Types Methods finiteBitSize :: CPid -> Int # countLeadingZeros :: CPid -> Int # countTrailingZeros :: CPid -> Int # | |
FiniteBits CRLim | |
Defined in System.Posix.Types Methods finiteBitSize :: CRLim -> Int # countLeadingZeros :: CRLim -> Int # countTrailingZeros :: CRLim -> Int # | |
FiniteBits CSocklen | |
Defined in System.Posix.Types Methods finiteBitSize :: CSocklen -> Int # countLeadingZeros :: CSocklen -> Int # countTrailingZeros :: CSocklen -> Int # | |
FiniteBits CSsize | |
Defined in System.Posix.Types Methods finiteBitSize :: CSsize -> Int # countLeadingZeros :: CSsize -> Int # countTrailingZeros :: CSsize -> Int # | |
FiniteBits CTcflag | |
Defined in System.Posix.Types Methods finiteBitSize :: CTcflag -> Int # countLeadingZeros :: CTcflag -> Int # countTrailingZeros :: CTcflag -> Int # | |
FiniteBits CUid | |
Defined in System.Posix.Types Methods finiteBitSize :: CUid -> Int # countLeadingZeros :: CUid -> Int # countTrailingZeros :: CUid -> Int # | |
FiniteBits Fd | |
Defined in System.Posix.Types Methods finiteBitSize :: Fd -> Int # countLeadingZeros :: Fd -> Int # countTrailingZeros :: Fd -> Int # | |
FiniteBits Bool | Since: base-4.7.0.0 |
Defined in GHC.Bits Methods finiteBitSize :: Bool -> Int # countLeadingZeros :: Bool -> Int # countTrailingZeros :: Bool -> Int # | |
FiniteBits Int | Since: base-4.6.0.0 |
Defined in GHC.Bits Methods finiteBitSize :: Int -> Int # countLeadingZeros :: Int -> Int # countTrailingZeros :: Int -> Int # | |
FiniteBits Word | Since: base-4.6.0.0 |
Defined in GHC.Bits Methods finiteBitSize :: Word -> Int # countLeadingZeros :: Word -> Int # countTrailingZeros :: Word -> Int # | |
FiniteBits a => FiniteBits (And a) | Since: base-4.16 |
Defined in Data.Bits Methods finiteBitSize :: And a -> Int # countLeadingZeros :: And a -> Int # countTrailingZeros :: And a -> Int # | |
FiniteBits a => FiniteBits (Iff a) | Since: base-4.16 |
Defined in Data.Bits Methods finiteBitSize :: Iff a -> Int # countLeadingZeros :: Iff a -> Int # countTrailingZeros :: Iff a -> Int # | |
FiniteBits a => FiniteBits (Ior a) | Since: base-4.16 |
Defined in Data.Bits Methods finiteBitSize :: Ior a -> Int # countLeadingZeros :: Ior a -> Int # countTrailingZeros :: Ior a -> Int # | |
FiniteBits a => FiniteBits (Xor a) | Since: base-4.16 |
Defined in Data.Bits Methods finiteBitSize :: Xor a -> Int # countLeadingZeros :: Xor a -> Int # countTrailingZeros :: Xor a -> Int # | |
FiniteBits a => FiniteBits (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Identity Methods finiteBitSize :: Identity a -> Int # countLeadingZeros :: Identity a -> Int # countTrailingZeros :: Identity a -> Int # | |
FiniteBits a => FiniteBits (Down a) | Since: base-4.14.0.0 |
Defined in Data.Ord Methods finiteBitSize :: Down a -> Int # countLeadingZeros :: Down a -> Int # countTrailingZeros :: Down a -> Int # | |
FiniteBits a => FiniteBits (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods finiteBitSize :: Const a b -> Int # countLeadingZeros :: Const a b -> Int # countTrailingZeros :: Const a b -> Int # |
The Bits
class defines bitwise operations over integral types.
- Bits are numbered from 0 with bit 0 being the least significant bit.
Minimal complete definition
(.&.), (.|.), xor, complement, (shift | shiftL, shiftR), (rotate | rotateL, rotateR), bitSize, bitSizeMaybe, isSigned, testBit, bit, popCount
Methods
(.&.) :: a -> a -> a infixl 7 #
Bitwise "and"
(.|.) :: a -> a -> a infixl 5 #
Bitwise "or"
Bitwise "xor"
complement :: a -> a #
Reverse all the bits in the argument
shift :: a -> Int -> a infixl 8 #
shifts shift
x ix
left by i
bits if i
is positive,
or right by -i
bits otherwise.
Right shifts perform sign extension on signed number types;
i.e. they fill the top bits with 1 if the x
is negative
and with 0 otherwise.
An instance can define either this unified shift
or shiftL
and
shiftR
, depending on which is more convenient for the type in
question.
rotate :: a -> Int -> a infixl 8 #
rotates rotate
x ix
left by i
bits if i
is positive,
or right by -i
bits otherwise.
For unbounded types like Integer
, rotate
is equivalent to shift
.
An instance can define either this unified rotate
or rotateL
and
rotateR
, depending on which is more convenient for the type in
question.
zeroBits
is the value with all bits unset.
The following laws ought to hold (for all valid bit indices n
):
clearBit
zeroBits
n ==zeroBits
setBit
zeroBits
n ==bit
ntestBit
zeroBits
n == FalsepopCount
zeroBits
== 0
This method uses
as its default
implementation (which ought to be equivalent to clearBit
(bit
0) 0zeroBits
for
types which possess a 0th bit).
Since: base-4.7.0.0
bit i
is a value with the i
th bit set and all other bits clear.
Can be implemented using bitDefault
if a
is also an
instance of Num
.
See also zeroBits
.
x `setBit` i
is the same as x .|. bit i
x `clearBit` i
is the same as x .&. complement (bit i)
complementBit :: a -> Int -> a #
x `complementBit` i
is the same as x `xor` bit i
x `testBit` i
is the same as x .&. bit n /= 0
In other words it returns True if the bit at offset @n is set.
Can be implemented using testBitDefault
if a
is also an
instance of Num
.
bitSizeMaybe :: a -> Maybe Int #
Return the number of bits in the type of the argument. The actual
value of the argument is ignored. Returns Nothing
for types that do not have a fixed bitsize, like Integer
.
Since: base-4.7.0.0
Return the number of bits in the type of the argument. The actual
value of the argument is ignored. The function bitSize
is
undefined for types that do not have a fixed bitsize, like Integer
.
Default implementation based upon bitSizeMaybe
provided since
4.12.0.0.
Return True
if the argument is a signed type. The actual
value of the argument is ignored
shiftL :: a -> Int -> a infixl 8 #
Shift the argument left by the specified number of bits
(which must be non-negative). Some instances may throw an
Overflow
exception if given a negative input.
An instance can define either this and shiftR
or the unified
shift
, depending on which is more convenient for the type in
question.
shiftR :: a -> Int -> a infixl 8 #
Shift the first argument right by the specified number of bits. The
result is undefined for negative shift amounts and shift amounts
greater or equal to the bitSize
. Some instances may throw an
Overflow
exception if given a negative input.
Right shifts perform sign extension on signed number types;
i.e. they fill the top bits with 1 if the x
is negative
and with 0 otherwise.
An instance can define either this and shiftL
or the unified
shift
, depending on which is more convenient for the type in
question.
rotateL :: a -> Int -> a infixl 8 #
Rotate the argument left by the specified number of bits (which must be non-negative).
An instance can define either this and rotateR
or the unified
rotate
, depending on which is more convenient for the type in
question.
rotateR :: a -> Int -> a infixl 8 #
Rotate the argument right by the specified number of bits (which must be non-negative).
An instance can define either this and rotateL
or the unified
rotate
, depending on which is more convenient for the type in
question.
Return the number of set bits in the argument. This number is known as the population count or the Hamming weight.
Can be implemented using popCountDefault
if a
is also an
instance of Num
.
Since: base-4.5.0.0
Instances
Bits CBool | |
Defined in Foreign.C.Types Methods (.&.) :: CBool -> CBool -> CBool # (.|.) :: CBool -> CBool -> CBool # xor :: CBool -> CBool -> CBool # complement :: CBool -> CBool # shift :: CBool -> Int -> CBool # rotate :: CBool -> Int -> CBool # setBit :: CBool -> Int -> CBool # clearBit :: CBool -> Int -> CBool # complementBit :: CBool -> Int -> CBool # testBit :: CBool -> Int -> Bool # bitSizeMaybe :: CBool -> Maybe Int # shiftL :: CBool -> Int -> CBool # unsafeShiftL :: CBool -> Int -> CBool # shiftR :: CBool -> Int -> CBool # unsafeShiftR :: CBool -> Int -> CBool # rotateL :: CBool -> Int -> CBool # | |
Bits CChar | |
Defined in Foreign.C.Types Methods (.&.) :: CChar -> CChar -> CChar # (.|.) :: CChar -> CChar -> CChar # xor :: CChar -> CChar -> CChar # complement :: CChar -> CChar # shift :: CChar -> Int -> CChar # rotate :: CChar -> Int -> CChar # setBit :: CChar -> Int -> CChar # clearBit :: CChar -> Int -> CChar # complementBit :: CChar -> Int -> CChar # testBit :: CChar -> Int -> Bool # bitSizeMaybe :: CChar -> Maybe Int # shiftL :: CChar -> Int -> CChar # unsafeShiftL :: CChar -> Int -> CChar # shiftR :: CChar -> Int -> CChar # unsafeShiftR :: CChar -> Int -> CChar # rotateL :: CChar -> Int -> CChar # | |
Bits CInt | |
Defined in Foreign.C.Types Methods (.&.) :: CInt -> CInt -> CInt # (.|.) :: CInt -> CInt -> CInt # complement :: CInt -> CInt # shift :: CInt -> Int -> CInt # rotate :: CInt -> Int -> CInt # setBit :: CInt -> Int -> CInt # clearBit :: CInt -> Int -> CInt # complementBit :: CInt -> Int -> CInt # testBit :: CInt -> Int -> Bool # bitSizeMaybe :: CInt -> Maybe Int # shiftL :: CInt -> Int -> CInt # unsafeShiftL :: CInt -> Int -> CInt # shiftR :: CInt -> Int -> CInt # unsafeShiftR :: CInt -> Int -> CInt # rotateL :: CInt -> Int -> CInt # | |
Bits CIntMax | |
Defined in Foreign.C.Types Methods (.&.) :: CIntMax -> CIntMax -> CIntMax # (.|.) :: CIntMax -> CIntMax -> CIntMax # xor :: CIntMax -> CIntMax -> CIntMax # complement :: CIntMax -> CIntMax # shift :: CIntMax -> Int -> CIntMax # rotate :: CIntMax -> Int -> CIntMax # setBit :: CIntMax -> Int -> CIntMax # clearBit :: CIntMax -> Int -> CIntMax # complementBit :: CIntMax -> Int -> CIntMax # testBit :: CIntMax -> Int -> Bool # bitSizeMaybe :: CIntMax -> Maybe Int # shiftL :: CIntMax -> Int -> CIntMax # unsafeShiftL :: CIntMax -> Int -> CIntMax # shiftR :: CIntMax -> Int -> CIntMax # unsafeShiftR :: CIntMax -> Int -> CIntMax # rotateL :: CIntMax -> Int -> CIntMax # | |
Bits CIntPtr | |
Defined in Foreign.C.Types Methods (.&.) :: CIntPtr -> CIntPtr -> CIntPtr # (.|.) :: CIntPtr -> CIntPtr -> CIntPtr # xor :: CIntPtr -> CIntPtr -> CIntPtr # complement :: CIntPtr -> CIntPtr # shift :: CIntPtr -> Int -> CIntPtr # rotate :: CIntPtr -> Int -> CIntPtr # setBit :: CIntPtr -> Int -> CIntPtr # clearBit :: CIntPtr -> Int -> CIntPtr # complementBit :: CIntPtr -> Int -> CIntPtr # testBit :: CIntPtr -> Int -> Bool # bitSizeMaybe :: CIntPtr -> Maybe Int # shiftL :: CIntPtr -> Int -> CIntPtr # unsafeShiftL :: CIntPtr -> Int -> CIntPtr # shiftR :: CIntPtr -> Int -> CIntPtr # unsafeShiftR :: CIntPtr -> Int -> CIntPtr # rotateL :: CIntPtr -> Int -> CIntPtr # | |
Bits CLLong | |
Defined in Foreign.C.Types Methods (.&.) :: CLLong -> CLLong -> CLLong # (.|.) :: CLLong -> CLLong -> CLLong # xor :: CLLong -> CLLong -> CLLong # complement :: CLLong -> CLLong # shift :: CLLong -> Int -> CLLong # rotate :: CLLong -> Int -> CLLong # setBit :: CLLong -> Int -> CLLong # clearBit :: CLLong -> Int -> CLLong # complementBit :: CLLong -> Int -> CLLong # testBit :: CLLong -> Int -> Bool # bitSizeMaybe :: CLLong -> Maybe Int # shiftL :: CLLong -> Int -> CLLong # unsafeShiftL :: CLLong -> Int -> CLLong # shiftR :: CLLong -> Int -> CLLong # unsafeShiftR :: CLLong -> Int -> CLLong # rotateL :: CLLong -> Int -> CLLong # | |
Bits CLong | |
Defined in Foreign.C.Types Methods (.&.) :: CLong -> CLong -> CLong # (.|.) :: CLong -> CLong -> CLong # xor :: CLong -> CLong -> CLong # complement :: CLong -> CLong # shift :: CLong -> Int -> CLong # rotate :: CLong -> Int -> CLong # setBit :: CLong -> Int -> CLong # clearBit :: CLong -> Int -> CLong # complementBit :: CLong -> Int -> CLong # testBit :: CLong -> Int -> Bool # bitSizeMaybe :: CLong -> Maybe Int # shiftL :: CLong -> Int -> CLong # unsafeShiftL :: CLong -> Int -> CLong # shiftR :: CLong -> Int -> CLong # unsafeShiftR :: CLong -> Int -> CLong # rotateL :: CLong -> Int -> CLong # | |
Bits CPtrdiff | |
Defined in Foreign.C.Types Methods (.&.) :: CPtrdiff -> CPtrdiff -> CPtrdiff # (.|.) :: CPtrdiff -> CPtrdiff -> CPtrdiff # xor :: CPtrdiff -> CPtrdiff -> CPtrdiff # complement :: CPtrdiff -> CPtrdiff # shift :: CPtrdiff -> Int -> CPtrdiff # rotate :: CPtrdiff -> Int -> CPtrdiff # setBit :: CPtrdiff -> Int -> CPtrdiff # clearBit :: CPtrdiff -> Int -> CPtrdiff # complementBit :: CPtrdiff -> Int -> CPtrdiff # testBit :: CPtrdiff -> Int -> Bool # bitSizeMaybe :: CPtrdiff -> Maybe Int # isSigned :: CPtrdiff -> Bool # shiftL :: CPtrdiff -> Int -> CPtrdiff # unsafeShiftL :: CPtrdiff -> Int -> CPtrdiff # shiftR :: CPtrdiff -> Int -> CPtrdiff # unsafeShiftR :: CPtrdiff -> Int -> CPtrdiff # rotateL :: CPtrdiff -> Int -> CPtrdiff # | |
Bits CSChar | |
Defined in Foreign.C.Types Methods (.&.) :: CSChar -> CSChar -> CSChar # (.|.) :: CSChar -> CSChar -> CSChar # xor :: CSChar -> CSChar -> CSChar # complement :: CSChar -> CSChar # shift :: CSChar -> Int -> CSChar # rotate :: CSChar -> Int -> CSChar # setBit :: CSChar -> Int -> CSChar # clearBit :: CSChar -> Int -> CSChar # complementBit :: CSChar -> Int -> CSChar # testBit :: CSChar -> Int -> Bool # bitSizeMaybe :: CSChar -> Maybe Int # shiftL :: CSChar -> Int -> CSChar # unsafeShiftL :: CSChar -> Int -> CSChar # shiftR :: CSChar -> Int -> CSChar # unsafeShiftR :: CSChar -> Int -> CSChar # rotateL :: CSChar -> Int -> CSChar # | |
Bits CShort | |
Defined in Foreign.C.Types Methods (.&.) :: CShort -> CShort -> CShort # (.|.) :: CShort -> CShort -> CShort # xor :: CShort -> CShort -> CShort # complement :: CShort -> CShort # shift :: CShort -> Int -> CShort # rotate :: CShort -> Int -> CShort # setBit :: CShort -> Int -> CShort # clearBit :: CShort -> Int -> CShort # complementBit :: CShort -> Int -> CShort # testBit :: CShort -> Int -> Bool # bitSizeMaybe :: CShort -> Maybe Int # shiftL :: CShort -> Int -> CShort # unsafeShiftL :: CShort -> Int -> CShort # shiftR :: CShort -> Int -> CShort # unsafeShiftR :: CShort -> Int -> CShort # rotateL :: CShort -> Int -> CShort # | |
Bits CSigAtomic | |
Defined in Foreign.C.Types Methods (.&.) :: CSigAtomic -> CSigAtomic -> CSigAtomic # (.|.) :: CSigAtomic -> CSigAtomic -> CSigAtomic # xor :: CSigAtomic -> CSigAtomic -> CSigAtomic # complement :: CSigAtomic -> CSigAtomic # shift :: CSigAtomic -> Int -> CSigAtomic # rotate :: CSigAtomic -> Int -> CSigAtomic # zeroBits :: CSigAtomic # bit :: Int -> CSigAtomic # setBit :: CSigAtomic -> Int -> CSigAtomic # clearBit :: CSigAtomic -> Int -> CSigAtomic # complementBit :: CSigAtomic -> Int -> CSigAtomic # testBit :: CSigAtomic -> Int -> Bool # bitSizeMaybe :: CSigAtomic -> Maybe Int # bitSize :: CSigAtomic -> Int # isSigned :: CSigAtomic -> Bool # shiftL :: CSigAtomic -> Int -> CSigAtomic # unsafeShiftL :: CSigAtomic -> Int -> CSigAtomic # shiftR :: CSigAtomic -> Int -> CSigAtomic # unsafeShiftR :: CSigAtomic -> Int -> CSigAtomic # rotateL :: CSigAtomic -> Int -> CSigAtomic # rotateR :: CSigAtomic -> Int -> CSigAtomic # popCount :: CSigAtomic -> Int # | |
Bits CSize | |
Defined in Foreign.C.Types Methods (.&.) :: CSize -> CSize -> CSize # (.|.) :: CSize -> CSize -> CSize # xor :: CSize -> CSize -> CSize # complement :: CSize -> CSize # shift :: CSize -> Int -> CSize # rotate :: CSize -> Int -> CSize # setBit :: CSize -> Int -> CSize # clearBit :: CSize -> Int -> CSize # complementBit :: CSize -> Int -> CSize # testBit :: CSize -> Int -> Bool # bitSizeMaybe :: CSize -> Maybe Int # shiftL :: CSize -> Int -> CSize # unsafeShiftL :: CSize -> Int -> CSize # shiftR :: CSize -> Int -> CSize # unsafeShiftR :: CSize -> Int -> CSize # rotateL :: CSize -> Int -> CSize # | |
Bits CUChar | |
Defined in Foreign.C.Types Methods (.&.) :: CUChar -> CUChar -> CUChar # (.|.) :: CUChar -> CUChar -> CUChar # xor :: CUChar -> CUChar -> CUChar # complement :: CUChar -> CUChar # shift :: CUChar -> Int -> CUChar # rotate :: CUChar -> Int -> CUChar # setBit :: CUChar -> Int -> CUChar # clearBit :: CUChar -> Int -> CUChar # complementBit :: CUChar -> Int -> CUChar # testBit :: CUChar -> Int -> Bool # bitSizeMaybe :: CUChar -> Maybe Int # shiftL :: CUChar -> Int -> CUChar # unsafeShiftL :: CUChar -> Int -> CUChar # shiftR :: CUChar -> Int -> CUChar # unsafeShiftR :: CUChar -> Int -> CUChar # rotateL :: CUChar -> Int -> CUChar # | |
Bits CUInt | |
Defined in Foreign.C.Types Methods (.&.) :: CUInt -> CUInt -> CUInt # (.|.) :: CUInt -> CUInt -> CUInt # xor :: CUInt -> CUInt -> CUInt # complement :: CUInt -> CUInt # shift :: CUInt -> Int -> CUInt # rotate :: CUInt -> Int -> CUInt # setBit :: CUInt -> Int -> CUInt # clearBit :: CUInt -> Int -> CUInt # complementBit :: CUInt -> Int -> CUInt # testBit :: CUInt -> Int -> Bool # bitSizeMaybe :: CUInt -> Maybe Int # shiftL :: CUInt -> Int -> CUInt # unsafeShiftL :: CUInt -> Int -> CUInt # shiftR :: CUInt -> Int -> CUInt # unsafeShiftR :: CUInt -> Int -> CUInt # rotateL :: CUInt -> Int -> CUInt # | |
Bits CUIntMax | |
Defined in Foreign.C.Types Methods (.&.) :: CUIntMax -> CUIntMax -> CUIntMax # (.|.) :: CUIntMax -> CUIntMax -> CUIntMax # xor :: CUIntMax -> CUIntMax -> CUIntMax # complement :: CUIntMax -> CUIntMax # shift :: CUIntMax -> Int -> CUIntMax # rotate :: CUIntMax -> Int -> CUIntMax # setBit :: CUIntMax -> Int -> CUIntMax # clearBit :: CUIntMax -> Int -> CUIntMax # complementBit :: CUIntMax -> Int -> CUIntMax # testBit :: CUIntMax -> Int -> Bool # bitSizeMaybe :: CUIntMax -> Maybe Int # isSigned :: CUIntMax -> Bool # shiftL :: CUIntMax -> Int -> CUIntMax # unsafeShiftL :: CUIntMax -> Int -> CUIntMax # shiftR :: CUIntMax -> Int -> CUIntMax # unsafeShiftR :: CUIntMax -> Int -> CUIntMax # rotateL :: CUIntMax -> Int -> CUIntMax # | |
Bits CUIntPtr | |
Defined in Foreign.C.Types Methods (.&.) :: CUIntPtr -> CUIntPtr -> CUIntPtr # (.|.) :: CUIntPtr -> CUIntPtr -> CUIntPtr # xor :: CUIntPtr -> CUIntPtr -> CUIntPtr # complement :: CUIntPtr -> CUIntPtr # shift :: CUIntPtr -> Int -> CUIntPtr # rotate :: CUIntPtr -> Int -> CUIntPtr # setBit :: CUIntPtr -> Int -> CUIntPtr # clearBit :: CUIntPtr -> Int -> CUIntPtr # complementBit :: CUIntPtr -> Int -> CUIntPtr # testBit :: CUIntPtr -> Int -> Bool # bitSizeMaybe :: CUIntPtr -> Maybe Int # isSigned :: CUIntPtr -> Bool # shiftL :: CUIntPtr -> Int -> CUIntPtr # unsafeShiftL :: CUIntPtr -> Int -> CUIntPtr # shiftR :: CUIntPtr -> Int -> CUIntPtr # unsafeShiftR :: CUIntPtr -> Int -> CUIntPtr # rotateL :: CUIntPtr -> Int -> CUIntPtr # | |
Bits CULLong | |
Defined in Foreign.C.Types Methods (.&.) :: CULLong -> CULLong -> CULLong # (.|.) :: CULLong -> CULLong -> CULLong # xor :: CULLong -> CULLong -> CULLong # complement :: CULLong -> CULLong # shift :: CULLong -> Int -> CULLong # rotate :: CULLong -> Int -> CULLong # setBit :: CULLong -> Int -> CULLong # clearBit :: CULLong -> Int -> CULLong # complementBit :: CULLong -> Int -> CULLong # testBit :: CULLong -> Int -> Bool # bitSizeMaybe :: CULLong -> Maybe Int # shiftL :: CULLong -> Int -> CULLong # unsafeShiftL :: CULLong -> Int -> CULLong # shiftR :: CULLong -> Int -> CULLong # unsafeShiftR :: CULLong -> Int -> CULLong # rotateL :: CULLong -> Int -> CULLong # | |
Bits CULong | |
Defined in Foreign.C.Types Methods (.&.) :: CULong -> CULong -> CULong # (.|.) :: CULong -> CULong -> CULong # xor :: CULong -> CULong -> CULong # complement :: CULong -> CULong # shift :: CULong -> Int -> CULong # rotate :: CULong -> Int -> CULong # setBit :: CULong -> Int -> CULong # clearBit :: CULong -> Int -> CULong # complementBit :: CULong -> Int -> CULong # testBit :: CULong -> Int -> Bool # bitSizeMaybe :: CULong -> Maybe Int # shiftL :: CULong -> Int -> CULong # unsafeShiftL :: CULong -> Int -> CULong # shiftR :: CULong -> Int -> CULong # unsafeShiftR :: CULong -> Int -> CULong # rotateL :: CULong -> Int -> CULong # | |
Bits CUShort | |
Defined in Foreign.C.Types Methods (.&.) :: CUShort -> CUShort -> CUShort # (.|.) :: CUShort -> CUShort -> CUShort # xor :: CUShort -> CUShort -> CUShort # complement :: CUShort -> CUShort # shift :: CUShort -> Int -> CUShort # rotate :: CUShort -> Int -> CUShort # setBit :: CUShort -> Int -> CUShort # clearBit :: CUShort -> Int -> CUShort # complementBit :: CUShort -> Int -> CUShort # testBit :: CUShort -> Int -> Bool # bitSizeMaybe :: CUShort -> Maybe Int # shiftL :: CUShort -> Int -> CUShort # unsafeShiftL :: CUShort -> Int -> CUShort # shiftR :: CUShort -> Int -> CUShort # unsafeShiftR :: CUShort -> Int -> CUShort # rotateL :: CUShort -> Int -> CUShort # | |
Bits CWchar | |
Defined in Foreign.C.Types Methods (.&.) :: CWchar -> CWchar -> CWchar # (.|.) :: CWchar -> CWchar -> CWchar # xor :: CWchar -> CWchar -> CWchar # complement :: CWchar -> CWchar # shift :: CWchar -> Int -> CWchar # rotate :: CWchar -> Int -> CWchar # setBit :: CWchar -> Int -> CWchar # clearBit :: CWchar -> Int -> CWchar # complementBit :: CWchar -> Int -> CWchar # testBit :: CWchar -> Int -> Bool # bitSizeMaybe :: CWchar -> Maybe Int # shiftL :: CWchar -> Int -> CWchar # unsafeShiftL :: CWchar -> Int -> CWchar # shiftR :: CWchar -> Int -> CWchar # unsafeShiftR :: CWchar -> Int -> CWchar # rotateL :: CWchar -> Int -> CWchar # | |
Bits IntPtr | |
Defined in Foreign.Ptr Methods (.&.) :: IntPtr -> IntPtr -> IntPtr # (.|.) :: IntPtr -> IntPtr -> IntPtr # xor :: IntPtr -> IntPtr -> IntPtr # complement :: IntPtr -> IntPtr # shift :: IntPtr -> Int -> IntPtr # rotate :: IntPtr -> Int -> IntPtr # setBit :: IntPtr -> Int -> IntPtr # clearBit :: IntPtr -> Int -> IntPtr # complementBit :: IntPtr -> Int -> IntPtr # testBit :: IntPtr -> Int -> Bool # bitSizeMaybe :: IntPtr -> Maybe Int # shiftL :: IntPtr -> Int -> IntPtr # unsafeShiftL :: IntPtr -> Int -> IntPtr # shiftR :: IntPtr -> Int -> IntPtr # unsafeShiftR :: IntPtr -> Int -> IntPtr # rotateL :: IntPtr -> Int -> IntPtr # | |
Bits WordPtr | |
Defined in Foreign.Ptr Methods (.&.) :: WordPtr -> WordPtr -> WordPtr # (.|.) :: WordPtr -> WordPtr -> WordPtr # xor :: WordPtr -> WordPtr -> WordPtr # complement :: WordPtr -> WordPtr # shift :: WordPtr -> Int -> WordPtr # rotate :: WordPtr -> Int -> WordPtr # setBit :: WordPtr -> Int -> WordPtr # clearBit :: WordPtr -> Int -> WordPtr # complementBit :: WordPtr -> Int -> WordPtr # testBit :: WordPtr -> Int -> Bool # bitSizeMaybe :: WordPtr -> Maybe Int # shiftL :: WordPtr -> Int -> WordPtr # unsafeShiftL :: WordPtr -> Int -> WordPtr # shiftR :: WordPtr -> Int -> WordPtr # unsafeShiftR :: WordPtr -> Int -> WordPtr # rotateL :: WordPtr -> Int -> WordPtr # | |
Bits Int16 | Since: base-2.1 |
Defined in GHC.Int Methods (.&.) :: Int16 -> Int16 -> Int16 # (.|.) :: Int16 -> Int16 -> Int16 # xor :: Int16 -> Int16 -> Int16 # complement :: Int16 -> Int16 # shift :: Int16 -> Int -> Int16 # rotate :: Int16 -> Int -> Int16 # setBit :: Int16 -> Int -> Int16 # clearBit :: Int16 -> Int -> Int16 # complementBit :: Int16 -> Int -> Int16 # testBit :: Int16 -> Int -> Bool # bitSizeMaybe :: Int16 -> Maybe Int # shiftL :: Int16 -> Int -> Int16 # unsafeShiftL :: Int16 -> Int -> Int16 # shiftR :: Int16 -> Int -> Int16 # unsafeShiftR :: Int16 -> Int -> Int16 # rotateL :: Int16 -> Int -> Int16 # | |
Bits Int32 | Since: base-2.1 |
Defined in GHC.Int Methods (.&.) :: Int32 -> Int32 -> Int32 # (.|.) :: Int32 -> Int32 -> Int32 # xor :: Int32 -> Int32 -> Int32 # complement :: Int32 -> Int32 # shift :: Int32 -> Int -> Int32 # rotate :: Int32 -> Int -> Int32 # setBit :: Int32 -> Int -> Int32 # clearBit :: Int32 -> Int -> Int32 # complementBit :: Int32 -> Int -> Int32 # testBit :: Int32 -> Int -> Bool # bitSizeMaybe :: Int32 -> Maybe Int # shiftL :: Int32 -> Int -> Int32 # unsafeShiftL :: Int32 -> Int -> Int32 # shiftR :: Int32 -> Int -> Int32 # unsafeShiftR :: Int32 -> Int -> Int32 # rotateL :: Int32 -> Int -> Int32 # | |
Bits Int64 | Since: base-2.1 |
Defined in GHC.Int Methods (.&.) :: Int64 -> Int64 -> Int64 # (.|.) :: Int64 -> Int64 -> Int64 # xor :: Int64 -> Int64 -> Int64 # complement :: Int64 -> Int64 # shift :: Int64 -> Int -> Int64 # rotate :: Int64 -> Int -> Int64 # setBit :: Int64 -> Int -> Int64 # clearBit :: Int64 -> Int -> Int64 # complementBit :: Int64 -> Int -> Int64 # testBit :: Int64 -> Int -> Bool # bitSizeMaybe :: Int64 -> Maybe Int # shiftL :: Int64 -> Int -> Int64 # unsafeShiftL :: Int64 -> Int -> Int64 # shiftR :: Int64 -> Int -> Int64 # unsafeShiftR :: Int64 -> Int -> Int64 # rotateL :: Int64 -> Int -> Int64 # | |
Bits Int8 | Since: base-2.1 |
Defined in GHC.Int Methods (.&.) :: Int8 -> Int8 -> Int8 # (.|.) :: Int8 -> Int8 -> Int8 # complement :: Int8 -> Int8 # shift :: Int8 -> Int -> Int8 # rotate :: Int8 -> Int -> Int8 # setBit :: Int8 -> Int -> Int8 # clearBit :: Int8 -> Int -> Int8 # complementBit :: Int8 -> Int -> Int8 # testBit :: Int8 -> Int -> Bool # bitSizeMaybe :: Int8 -> Maybe Int # shiftL :: Int8 -> Int -> Int8 # unsafeShiftL :: Int8 -> Int -> Int8 # shiftR :: Int8 -> Int -> Int8 # unsafeShiftR :: Int8 -> Int -> Int8 # rotateL :: Int8 -> Int -> Int8 # | |
Bits Word16 | Since: base-2.1 |
Defined in GHC.Word Methods (.&.) :: Word16 -> Word16 -> Word16 # (.|.) :: Word16 -> Word16 -> Word16 # xor :: Word16 -> Word16 -> Word16 # complement :: Word16 -> Word16 # shift :: Word16 -> Int -> Word16 # rotate :: Word16 -> Int -> Word16 # setBit :: Word16 -> Int -> Word16 # clearBit :: Word16 -> Int -> Word16 # complementBit :: Word16 -> Int -> Word16 # testBit :: Word16 -> Int -> Bool # bitSizeMaybe :: Word16 -> Maybe Int # shiftL :: Word16 -> Int -> Word16 # unsafeShiftL :: Word16 -> Int -> Word16 # shiftR :: Word16 -> Int -> Word16 # unsafeShiftR :: Word16 -> Int -> Word16 # rotateL :: Word16 -> Int -> Word16 # | |
Bits Word32 | Since: base-2.1 |
Defined in GHC.Word Methods (.&.) :: Word32 -> Word32 -> Word32 # (.|.) :: Word32 -> Word32 -> Word32 # xor :: Word32 -> Word32 -> Word32 # complement :: Word32 -> Word32 # shift :: Word32 -> Int -> Word32 # rotate :: Word32 -> Int -> Word32 # setBit :: Word32 -> Int -> Word32 # clearBit :: Word32 -> Int -> Word32 # complementBit :: Word32 -> Int -> Word32 # testBit :: Word32 -> Int -> Bool # bitSizeMaybe :: Word32 -> Maybe Int # shiftL :: Word32 -> Int -> Word32 # unsafeShiftL :: Word32 -> Int -> Word32 # shiftR :: Word32 -> Int -> Word32 # unsafeShiftR :: Word32 -> Int -> Word32 # rotateL :: Word32 -> Int -> Word32 # | |
Bits Word64 | Since: base-2.1 |
Defined in GHC.Word Methods (.&.) :: Word64 -> Word64 -> Word64 # (.|.) :: Word64 -> Word64 -> Word64 # xor :: Word64 -> Word64 -> Word64 # complement :: Word64 -> Word64 # shift :: Word64 -> Int -> Word64 # rotate :: Word64 -> Int -> Word64 # setBit :: Word64 -> Int -> Word64 # clearBit :: Word64 -> Int -> Word64 # complementBit :: Word64 -> Int -> Word64 # testBit :: Word64 -> Int -> Bool # bitSizeMaybe :: Word64 -> Maybe Int # shiftL :: Word64 -> Int -> Word64 # unsafeShiftL :: Word64 -> Int -> Word64 # shiftR :: Word64 -> Int -> Word64 # unsafeShiftR :: Word64 -> Int -> Word64 # rotateL :: Word64 -> Int -> Word64 # | |
Bits Word8 | Since: base-2.1 |
Defined in GHC.Word Methods (.&.) :: Word8 -> Word8 -> Word8 # (.|.) :: Word8 -> Word8 -> Word8 # xor :: Word8 -> Word8 -> Word8 # complement :: Word8 -> Word8 # shift :: Word8 -> Int -> Word8 # rotate :: Word8 -> Int -> Word8 # setBit :: Word8 -> Int -> Word8 # clearBit :: Word8 -> Int -> Word8 # complementBit :: Word8 -> Int -> Word8 # testBit :: Word8 -> Int -> Bool # bitSizeMaybe :: Word8 -> Maybe Int # shiftL :: Word8 -> Int -> Word8 # unsafeShiftL :: Word8 -> Int -> Word8 # shiftR :: Word8 -> Int -> Word8 # unsafeShiftR :: Word8 -> Int -> Word8 # rotateL :: Word8 -> Int -> Word8 # | |
Bits CBlkCnt | |
Defined in System.Posix.Types Methods (.&.) :: CBlkCnt -> CBlkCnt -> CBlkCnt # (.|.) :: CBlkCnt -> CBlkCnt -> CBlkCnt # xor :: CBlkCnt -> CBlkCnt -> CBlkCnt # complement :: CBlkCnt -> CBlkCnt # shift :: CBlkCnt -> Int -> CBlkCnt # rotate :: CBlkCnt -> Int -> CBlkCnt # setBit :: CBlkCnt -> Int -> CBlkCnt # clearBit :: CBlkCnt -> Int -> CBlkCnt # complementBit :: CBlkCnt -> Int -> CBlkCnt # testBit :: CBlkCnt -> Int -> Bool # bitSizeMaybe :: CBlkCnt -> Maybe Int # shiftL :: CBlkCnt -> Int -> CBlkCnt # unsafeShiftL :: CBlkCnt -> Int -> CBlkCnt # shiftR :: CBlkCnt -> Int -> CBlkCnt # unsafeShiftR :: CBlkCnt -> Int -> CBlkCnt # rotateL :: CBlkCnt -> Int -> CBlkCnt # | |
Bits CBlkSize | |
Defined in System.Posix.Types Methods (.&.) :: CBlkSize -> CBlkSize -> CBlkSize # (.|.) :: CBlkSize -> CBlkSize -> CBlkSize # xor :: CBlkSize -> CBlkSize -> CBlkSize # complement :: CBlkSize -> CBlkSize # shift :: CBlkSize -> Int -> CBlkSize # rotate :: CBlkSize -> Int -> CBlkSize # setBit :: CBlkSize -> Int -> CBlkSize # clearBit :: CBlkSize -> Int -> CBlkSize # complementBit :: CBlkSize -> Int -> CBlkSize # testBit :: CBlkSize -> Int -> Bool # bitSizeMaybe :: CBlkSize -> Maybe Int # isSigned :: CBlkSize -> Bool # shiftL :: CBlkSize -> Int -> CBlkSize # unsafeShiftL :: CBlkSize -> Int -> CBlkSize # shiftR :: CBlkSize -> Int -> CBlkSize # unsafeShiftR :: CBlkSize -> Int -> CBlkSize # rotateL :: CBlkSize -> Int -> CBlkSize # | |
Bits CClockId | |
Defined in System.Posix.Types Methods (.&.) :: CClockId -> CClockId -> CClockId # (.|.) :: CClockId -> CClockId -> CClockId # xor :: CClockId -> CClockId -> CClockId # complement :: CClockId -> CClockId # shift :: CClockId -> Int -> CClockId # rotate :: CClockId -> Int -> CClockId # setBit :: CClockId -> Int -> CClockId # clearBit :: CClockId -> Int -> CClockId # complementBit :: CClockId -> Int -> CClockId # testBit :: CClockId -> Int -> Bool # bitSizeMaybe :: CClockId -> Maybe Int # isSigned :: CClockId -> Bool # shiftL :: CClockId -> Int -> CClockId # unsafeShiftL :: CClockId -> Int -> CClockId # shiftR :: CClockId -> Int -> CClockId # unsafeShiftR :: CClockId -> Int -> CClockId # rotateL :: CClockId -> Int -> CClockId # | |
Bits CDev | |
Defined in System.Posix.Types Methods (.&.) :: CDev -> CDev -> CDev # (.|.) :: CDev -> CDev -> CDev # complement :: CDev -> CDev # shift :: CDev -> Int -> CDev # rotate :: CDev -> Int -> CDev # setBit :: CDev -> Int -> CDev # clearBit :: CDev -> Int -> CDev # complementBit :: CDev -> Int -> CDev # testBit :: CDev -> Int -> Bool # bitSizeMaybe :: CDev -> Maybe Int # shiftL :: CDev -> Int -> CDev # unsafeShiftL :: CDev -> Int -> CDev # shiftR :: CDev -> Int -> CDev # unsafeShiftR :: CDev -> Int -> CDev # rotateL :: CDev -> Int -> CDev # | |
Bits CFsBlkCnt | |
Defined in System.Posix.Types Methods (.&.) :: CFsBlkCnt -> CFsBlkCnt -> CFsBlkCnt # (.|.) :: CFsBlkCnt -> CFsBlkCnt -> CFsBlkCnt # xor :: CFsBlkCnt -> CFsBlkCnt -> CFsBlkCnt # complement :: CFsBlkCnt -> CFsBlkCnt # shift :: CFsBlkCnt -> Int -> CFsBlkCnt # rotate :: CFsBlkCnt -> Int -> CFsBlkCnt # setBit :: CFsBlkCnt -> Int -> CFsBlkCnt # clearBit :: CFsBlkCnt -> Int -> CFsBlkCnt # complementBit :: CFsBlkCnt -> Int -> CFsBlkCnt # testBit :: CFsBlkCnt -> Int -> Bool # bitSizeMaybe :: CFsBlkCnt -> Maybe Int # isSigned :: CFsBlkCnt -> Bool # shiftL :: CFsBlkCnt -> Int -> CFsBlkCnt # unsafeShiftL :: CFsBlkCnt -> Int -> CFsBlkCnt # shiftR :: CFsBlkCnt -> Int -> CFsBlkCnt # unsafeShiftR :: CFsBlkCnt -> Int -> CFsBlkCnt # rotateL :: CFsBlkCnt -> Int -> CFsBlkCnt # | |
Bits CFsFilCnt | |
Defined in System.Posix.Types Methods (.&.) :: CFsFilCnt -> CFsFilCnt -> CFsFilCnt # (.|.) :: CFsFilCnt -> CFsFilCnt -> CFsFilCnt # xor :: CFsFilCnt -> CFsFilCnt -> CFsFilCnt # complement :: CFsFilCnt -> CFsFilCnt # shift :: CFsFilCnt -> Int -> CFsFilCnt # rotate :: CFsFilCnt -> Int -> CFsFilCnt # setBit :: CFsFilCnt -> Int -> CFsFilCnt # clearBit :: CFsFilCnt -> Int -> CFsFilCnt # complementBit :: CFsFilCnt -> Int -> CFsFilCnt # testBit :: CFsFilCnt -> Int -> Bool # bitSizeMaybe :: CFsFilCnt -> Maybe Int # isSigned :: CFsFilCnt -> Bool # shiftL :: CFsFilCnt -> Int -> CFsFilCnt # unsafeShiftL :: CFsFilCnt -> Int -> CFsFilCnt # shiftR :: CFsFilCnt -> Int -> CFsFilCnt # unsafeShiftR :: CFsFilCnt -> Int -> CFsFilCnt # rotateL :: CFsFilCnt -> Int -> CFsFilCnt # | |
Bits CGid | |
Defined in System.Posix.Types Methods (.&.) :: CGid -> CGid -> CGid # (.|.) :: CGid -> CGid -> CGid # complement :: CGid -> CGid # shift :: CGid -> Int -> CGid # rotate :: CGid -> Int -> CGid # setBit :: CGid -> Int -> CGid # clearBit :: CGid -> Int -> CGid # complementBit :: CGid -> Int -> CGid # testBit :: CGid -> Int -> Bool # bitSizeMaybe :: CGid -> Maybe Int # shiftL :: CGid -> Int -> CGid # unsafeShiftL :: CGid -> Int -> CGid # shiftR :: CGid -> Int -> CGid # unsafeShiftR :: CGid -> Int -> CGid # rotateL :: CGid -> Int -> CGid # | |
Bits CId | |
Defined in System.Posix.Types | |
Bits CIno | |
Defined in System.Posix.Types Methods (.&.) :: CIno -> CIno -> CIno # (.|.) :: CIno -> CIno -> CIno # complement :: CIno -> CIno # shift :: CIno -> Int -> CIno # rotate :: CIno -> Int -> CIno # setBit :: CIno -> Int -> CIno # clearBit :: CIno -> Int -> CIno # complementBit :: CIno -> Int -> CIno # testBit :: CIno -> Int -> Bool # bitSizeMaybe :: CIno -> Maybe Int # shiftL :: CIno -> Int -> CIno # unsafeShiftL :: CIno -> Int -> CIno # shiftR :: CIno -> Int -> CIno # unsafeShiftR :: CIno -> Int -> CIno # rotateL :: CIno -> Int -> CIno # | |
Bits CKey | |
Defined in System.Posix.Types Methods (.&.) :: CKey -> CKey -> CKey # (.|.) :: CKey -> CKey -> CKey # complement :: CKey -> CKey # shift :: CKey -> Int -> CKey # rotate :: CKey -> Int -> CKey # setBit :: CKey -> Int -> CKey # clearBit :: CKey -> Int -> CKey # complementBit :: CKey -> Int -> CKey # testBit :: CKey -> Int -> Bool # bitSizeMaybe :: CKey -> Maybe Int # shiftL :: CKey -> Int -> CKey # unsafeShiftL :: CKey -> Int -> CKey # shiftR :: CKey -> Int -> CKey # unsafeShiftR :: CKey -> Int -> CKey # rotateL :: CKey -> Int -> CKey # | |
Bits CMode | |
Defined in System.Posix.Types Methods (.&.) :: CMode -> CMode -> CMode # (.|.) :: CMode -> CMode -> CMode # xor :: CMode -> CMode -> CMode # complement :: CMode -> CMode # shift :: CMode -> Int -> CMode # rotate :: CMode -> Int -> CMode # setBit :: CMode -> Int -> CMode # clearBit :: CMode -> Int -> CMode # complementBit :: CMode -> Int -> CMode # testBit :: CMode -> Int -> Bool # bitSizeMaybe :: CMode -> Maybe Int # shiftL :: CMode -> Int -> CMode # unsafeShiftL :: CMode -> Int -> CMode # shiftR :: CMode -> Int -> CMode # unsafeShiftR :: CMode -> Int -> CMode # rotateL :: CMode -> Int -> CMode # | |
Bits CNfds | |
Defined in System.Posix.Types Methods (.&.) :: CNfds -> CNfds -> CNfds # (.|.) :: CNfds -> CNfds -> CNfds # xor :: CNfds -> CNfds -> CNfds # complement :: CNfds -> CNfds # shift :: CNfds -> Int -> CNfds # rotate :: CNfds -> Int -> CNfds # setBit :: CNfds -> Int -> CNfds # clearBit :: CNfds -> Int -> CNfds # complementBit :: CNfds -> Int -> CNfds # testBit :: CNfds -> Int -> Bool # bitSizeMaybe :: CNfds -> Maybe Int # shiftL :: CNfds -> Int -> CNfds # unsafeShiftL :: CNfds -> Int -> CNfds # shiftR :: CNfds -> Int -> CNfds # unsafeShiftR :: CNfds -> Int -> CNfds # rotateL :: CNfds -> Int -> CNfds # | |
Bits CNlink | |
Defined in System.Posix.Types Methods (.&.) :: CNlink -> CNlink -> CNlink # (.|.) :: CNlink -> CNlink -> CNlink # xor :: CNlink -> CNlink -> CNlink # complement :: CNlink -> CNlink # shift :: CNlink -> Int -> CNlink # rotate :: CNlink -> Int -> CNlink # setBit :: CNlink -> Int -> CNlink # clearBit :: CNlink -> Int -> CNlink # complementBit :: CNlink -> Int -> CNlink # testBit :: CNlink -> Int -> Bool # bitSizeMaybe :: CNlink -> Maybe Int # shiftL :: CNlink -> Int -> CNlink # unsafeShiftL :: CNlink -> Int -> CNlink # shiftR :: CNlink -> Int -> CNlink # unsafeShiftR :: CNlink -> Int -> CNlink # rotateL :: CNlink -> Int -> CNlink # | |
Bits COff | |
Defined in System.Posix.Types Methods (.&.) :: COff -> COff -> COff # (.|.) :: COff -> COff -> COff # complement :: COff -> COff # shift :: COff -> Int -> COff # rotate :: COff -> Int -> COff # setBit :: COff -> Int -> COff # clearBit :: COff -> Int -> COff # complementBit :: COff -> Int -> COff # testBit :: COff -> Int -> Bool # bitSizeMaybe :: COff -> Maybe Int # shiftL :: COff -> Int -> COff # unsafeShiftL :: COff -> Int -> COff # shiftR :: COff -> Int -> COff # unsafeShiftR :: COff -> Int -> COff # rotateL :: COff -> Int -> COff # | |
Bits CPid | |
Defined in System.Posix.Types Methods (.&.) :: CPid -> CPid -> CPid # (.|.) :: CPid -> CPid -> CPid # complement :: CPid -> CPid # shift :: CPid -> Int -> CPid # rotate :: CPid -> Int -> CPid # setBit :: CPid -> Int -> CPid # clearBit :: CPid -> Int -> CPid # complementBit :: CPid -> Int -> CPid # testBit :: CPid -> Int -> Bool # bitSizeMaybe :: CPid -> Maybe Int # shiftL :: CPid -> Int -> CPid # unsafeShiftL :: CPid -> Int -> CPid # shiftR :: CPid -> Int -> CPid # unsafeShiftR :: CPid -> Int -> CPid # rotateL :: CPid -> Int -> CPid # | |
Bits CRLim | |
Defined in System.Posix.Types Methods (.&.) :: CRLim -> CRLim -> CRLim # (.|.) :: CRLim -> CRLim -> CRLim # xor :: CRLim -> CRLim -> CRLim # complement :: CRLim -> CRLim # shift :: CRLim -> Int -> CRLim # rotate :: CRLim -> Int -> CRLim # setBit :: CRLim -> Int -> CRLim # clearBit :: CRLim -> Int -> CRLim # complementBit :: CRLim -> Int -> CRLim # testBit :: CRLim -> Int -> Bool # bitSizeMaybe :: CRLim -> Maybe Int # shiftL :: CRLim -> Int -> CRLim # unsafeShiftL :: CRLim -> Int -> CRLim # shiftR :: CRLim -> Int -> CRLim # unsafeShiftR :: CRLim -> Int -> CRLim # rotateL :: CRLim -> Int -> CRLim # | |
Bits CSocklen | |
Defined in System.Posix.Types Methods (.&.) :: CSocklen -> CSocklen -> CSocklen # (.|.) :: CSocklen -> CSocklen -> CSocklen # xor :: CSocklen -> CSocklen -> CSocklen # complement :: CSocklen -> CSocklen # shift :: CSocklen -> Int -> CSocklen # rotate :: CSocklen -> Int -> CSocklen # setBit :: CSocklen -> Int -> CSocklen # clearBit :: CSocklen -> Int -> CSocklen # complementBit :: CSocklen -> Int -> CSocklen # testBit :: CSocklen -> Int -> Bool # bitSizeMaybe :: CSocklen -> Maybe Int # isSigned :: CSocklen -> Bool # shiftL :: CSocklen -> Int -> CSocklen # unsafeShiftL :: CSocklen -> Int -> CSocklen # shiftR :: CSocklen -> Int -> CSocklen # unsafeShiftR :: CSocklen -> Int -> CSocklen # rotateL :: CSocklen -> Int -> CSocklen # | |
Bits CSsize | |
Defined in System.Posix.Types Methods (.&.) :: CSsize -> CSsize -> CSsize # (.|.) :: CSsize -> CSsize -> CSsize # xor :: CSsize -> CSsize -> CSsize # complement :: CSsize -> CSsize # shift :: CSsize -> Int -> CSsize # rotate :: CSsize -> Int -> CSsize # setBit :: CSsize -> Int -> CSsize # clearBit :: CSsize -> Int -> CSsize # complementBit :: CSsize -> Int -> CSsize # testBit :: CSsize -> Int -> Bool # bitSizeMaybe :: CSsize -> Maybe Int # shiftL :: CSsize -> Int -> CSsize # unsafeShiftL :: CSsize -> Int -> CSsize # shiftR :: CSsize -> Int -> CSsize # unsafeShiftR :: CSsize -> Int -> CSsize # rotateL :: CSsize -> Int -> CSsize # | |
Bits CTcflag | |
Defined in System.Posix.Types Methods (.&.) :: CTcflag -> CTcflag -> CTcflag # (.|.) :: CTcflag -> CTcflag -> CTcflag # xor :: CTcflag -> CTcflag -> CTcflag # complement :: CTcflag -> CTcflag # shift :: CTcflag -> Int -> CTcflag # rotate :: CTcflag -> Int -> CTcflag # setBit :: CTcflag -> Int -> CTcflag # clearBit :: CTcflag -> Int -> CTcflag # complementBit :: CTcflag -> Int -> CTcflag # testBit :: CTcflag -> Int -> Bool # bitSizeMaybe :: CTcflag -> Maybe Int # shiftL :: CTcflag -> Int -> CTcflag # unsafeShiftL :: CTcflag -> Int -> CTcflag # shiftR :: CTcflag -> Int -> CTcflag # unsafeShiftR :: CTcflag -> Int -> CTcflag # rotateL :: CTcflag -> Int -> CTcflag # | |
Bits CUid | |
Defined in System.Posix.Types Methods (.&.) :: CUid -> CUid -> CUid # (.|.) :: CUid -> CUid -> CUid # complement :: CUid -> CUid # shift :: CUid -> Int -> CUid # rotate :: CUid -> Int -> CUid # setBit :: CUid -> Int -> CUid # clearBit :: CUid -> Int -> CUid # complementBit :: CUid -> Int -> CUid # testBit :: CUid -> Int -> Bool # bitSizeMaybe :: CUid -> Maybe Int # shiftL :: CUid -> Int -> CUid # unsafeShiftL :: CUid -> Int -> CUid # shiftR :: CUid -> Int -> CUid # unsafeShiftR :: CUid -> Int -> CUid # rotateL :: CUid -> Int -> CUid # | |
Bits Fd | |
Defined in System.Posix.Types | |
Bits Integer | Since: base-2.1 |
Defined in GHC.Bits Methods (.&.) :: Integer -> Integer -> Integer # (.|.) :: Integer -> Integer -> Integer # xor :: Integer -> Integer -> Integer # complement :: Integer -> Integer # shift :: Integer -> Int -> Integer # rotate :: Integer -> Int -> Integer # setBit :: Integer -> Int -> Integer # clearBit :: Integer -> Int -> Integer # complementBit :: Integer -> Int -> Integer # testBit :: Integer -> Int -> Bool # bitSizeMaybe :: Integer -> Maybe Int # shiftL :: Integer -> Int -> Integer # unsafeShiftL :: Integer -> Int -> Integer # shiftR :: Integer -> Int -> Integer # unsafeShiftR :: Integer -> Int -> Integer # rotateL :: Integer -> Int -> Integer # | |
Bits Natural | Since: base-4.8.0 |
Defined in GHC.Bits Methods (.&.) :: Natural -> Natural -> Natural # (.|.) :: Natural -> Natural -> Natural # xor :: Natural -> Natural -> Natural # complement :: Natural -> Natural # shift :: Natural -> Int -> Natural # rotate :: Natural -> Int -> Natural # setBit :: Natural -> Int -> Natural # clearBit :: Natural -> Int -> Natural # complementBit :: Natural -> Int -> Natural # testBit :: Natural -> Int -> Bool # bitSizeMaybe :: Natural -> Maybe Int # shiftL :: Natural -> Int -> Natural # unsafeShiftL :: Natural -> Int -> Natural # shiftR :: Natural -> Int -> Natural # unsafeShiftR :: Natural -> Int -> Natural # rotateL :: Natural -> Int -> Natural # | |
Bits Bool | Interpret Since: base-4.7.0.0 |
Defined in GHC.Bits Methods (.&.) :: Bool -> Bool -> Bool # (.|.) :: Bool -> Bool -> Bool # complement :: Bool -> Bool # shift :: Bool -> Int -> Bool # rotate :: Bool -> Int -> Bool # setBit :: Bool -> Int -> Bool # clearBit :: Bool -> Int -> Bool # complementBit :: Bool -> Int -> Bool # testBit :: Bool -> Int -> Bool # bitSizeMaybe :: Bool -> Maybe Int # shiftL :: Bool -> Int -> Bool # unsafeShiftL :: Bool -> Int -> Bool # shiftR :: Bool -> Int -> Bool # unsafeShiftR :: Bool -> Int -> Bool # rotateL :: Bool -> Int -> Bool # | |
Bits Int | Since: base-2.1 |
Defined in GHC.Bits | |
Bits Word | Since: base-2.1 |
Defined in GHC.Bits Methods (.&.) :: Word -> Word -> Word # (.|.) :: Word -> Word -> Word # complement :: Word -> Word # shift :: Word -> Int -> Word # rotate :: Word -> Int -> Word # setBit :: Word -> Int -> Word # clearBit :: Word -> Int -> Word # complementBit :: Word -> Int -> Word # testBit :: Word -> Int -> Bool # bitSizeMaybe :: Word -> Maybe Int # shiftL :: Word -> Int -> Word # unsafeShiftL :: Word -> Int -> Word # shiftR :: Word -> Int -> Word # unsafeShiftR :: Word -> Int -> Word # rotateL :: Word -> Int -> Word # | |
Bits a => Bits (And a) | Since: base-4.16 |
Defined in Data.Bits Methods (.&.) :: And a -> And a -> And a # (.|.) :: And a -> And a -> And a # xor :: And a -> And a -> And a # complement :: And a -> And a # shift :: And a -> Int -> And a # rotate :: And a -> Int -> And a # setBit :: And a -> Int -> And a # clearBit :: And a -> Int -> And a # complementBit :: And a -> Int -> And a # testBit :: And a -> Int -> Bool # bitSizeMaybe :: And a -> Maybe Int # shiftL :: And a -> Int -> And a # unsafeShiftL :: And a -> Int -> And a # shiftR :: And a -> Int -> And a # unsafeShiftR :: And a -> Int -> And a # rotateL :: And a -> Int -> And a # | |
Bits a => Bits (Iff a) | Since: base-4.16 |
Defined in Data.Bits Methods (.&.) :: Iff a -> Iff a -> Iff a # (.|.) :: Iff a -> Iff a -> Iff a # xor :: Iff a -> Iff a -> Iff a # complement :: Iff a -> Iff a # shift :: Iff a -> Int -> Iff a # rotate :: Iff a -> Int -> Iff a # setBit :: Iff a -> Int -> Iff a # clearBit :: Iff a -> Int -> Iff a # complementBit :: Iff a -> Int -> Iff a # testBit :: Iff a -> Int -> Bool # bitSizeMaybe :: Iff a -> Maybe Int # shiftL :: Iff a -> Int -> Iff a # unsafeShiftL :: Iff a -> Int -> Iff a # shiftR :: Iff a -> Int -> Iff a # unsafeShiftR :: Iff a -> Int -> Iff a # rotateL :: Iff a -> Int -> Iff a # | |
Bits a => Bits (Ior a) | Since: base-4.16 |
Defined in Data.Bits Methods (.&.) :: Ior a -> Ior a -> Ior a # (.|.) :: Ior a -> Ior a -> Ior a # xor :: Ior a -> Ior a -> Ior a # complement :: Ior a -> Ior a # shift :: Ior a -> Int -> Ior a # rotate :: Ior a -> Int -> Ior a # setBit :: Ior a -> Int -> Ior a # clearBit :: Ior a -> Int -> Ior a # complementBit :: Ior a -> Int -> Ior a # testBit :: Ior a -> Int -> Bool # bitSizeMaybe :: Ior a -> Maybe Int # shiftL :: Ior a -> Int -> Ior a # unsafeShiftL :: Ior a -> Int -> Ior a # shiftR :: Ior a -> Int -> Ior a # unsafeShiftR :: Ior a -> Int -> Ior a # rotateL :: Ior a -> Int -> Ior a # | |
Bits a => Bits (Xor a) | Since: base-4.16 |
Defined in Data.Bits Methods (.&.) :: Xor a -> Xor a -> Xor a # (.|.) :: Xor a -> Xor a -> Xor a # xor :: Xor a -> Xor a -> Xor a # complement :: Xor a -> Xor a # shift :: Xor a -> Int -> Xor a # rotate :: Xor a -> Int -> Xor a # setBit :: Xor a -> Int -> Xor a # clearBit :: Xor a -> Int -> Xor a # complementBit :: Xor a -> Int -> Xor a # testBit :: Xor a -> Int -> Bool # bitSizeMaybe :: Xor a -> Maybe Int # shiftL :: Xor a -> Int -> Xor a # unsafeShiftL :: Xor a -> Int -> Xor a # shiftR :: Xor a -> Int -> Xor a # unsafeShiftR :: Xor a -> Int -> Xor a # rotateL :: Xor a -> Int -> Xor a # | |
Bits a => Bits (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Identity Methods (.&.) :: Identity a -> Identity a -> Identity a # (.|.) :: Identity a -> Identity a -> Identity a # xor :: Identity a -> Identity a -> Identity a # complement :: Identity a -> Identity a # shift :: Identity a -> Int -> Identity a # rotate :: Identity a -> Int -> Identity a # setBit :: Identity a -> Int -> Identity a # clearBit :: Identity a -> Int -> Identity a # complementBit :: Identity a -> Int -> Identity a # testBit :: Identity a -> Int -> Bool # bitSizeMaybe :: Identity a -> Maybe Int # bitSize :: Identity a -> Int # isSigned :: Identity a -> Bool # shiftL :: Identity a -> Int -> Identity a # unsafeShiftL :: Identity a -> Int -> Identity a # shiftR :: Identity a -> Int -> Identity a # unsafeShiftR :: Identity a -> Int -> Identity a # rotateL :: Identity a -> Int -> Identity a # | |
Bits a => Bits (Down a) | Since: base-4.14.0.0 |
Defined in Data.Ord Methods (.&.) :: Down a -> Down a -> Down a # (.|.) :: Down a -> Down a -> Down a # xor :: Down a -> Down a -> Down a # complement :: Down a -> Down a # shift :: Down a -> Int -> Down a # rotate :: Down a -> Int -> Down a # setBit :: Down a -> Int -> Down a # clearBit :: Down a -> Int -> Down a # complementBit :: Down a -> Int -> Down a # testBit :: Down a -> Int -> Bool # bitSizeMaybe :: Down a -> Maybe Int # shiftL :: Down a -> Int -> Down a # unsafeShiftL :: Down a -> Int -> Down a # shiftR :: Down a -> Int -> Down a # unsafeShiftR :: Down a -> Int -> Down a # rotateL :: Down a -> Int -> Down a # | |
Bits a => Bits (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods (.&.) :: Const a b -> Const a b -> Const a b # (.|.) :: Const a b -> Const a b -> Const a b # xor :: Const a b -> Const a b -> Const a b # complement :: Const a b -> Const a b # shift :: Const a b -> Int -> Const a b # rotate :: Const a b -> Int -> Const a b # setBit :: Const a b -> Int -> Const a b # clearBit :: Const a b -> Int -> Const a b # complementBit :: Const a b -> Int -> Const a b # testBit :: Const a b -> Int -> Bool # bitSizeMaybe :: Const a b -> Maybe Int # isSigned :: Const a b -> Bool # shiftL :: Const a b -> Int -> Const a b # unsafeShiftL :: Const a b -> Int -> Const a b # shiftR :: Const a b -> Int -> Const a b # unsafeShiftR :: Const a b -> Int -> Const a b # rotateL :: Const a b -> Int -> Const a b # |
bitDefault :: (Bits a, Num a) => Int -> a #
testBitDefault :: (Bits a, Num a) => a -> Int -> Bool #
Default implementation for testBit
.
Note that: testBitDefault x i = (x .&. bit i) /= 0
Since: base-4.6.0.0
popCountDefault :: (Bits a, Num a) => a -> Int #
Default implementation for popCount
.
This implementation is intentionally naive. Instances are expected to provide an optimized implementation for their size.
Since: base-4.6.0.0
toIntegralSized :: (Integral a, Integral b, Bits a, Bits b) => a -> Maybe b #
Attempt to convert an Integral
type a
to an Integral
type b
using
the size of the types as measured by Bits
methods.
A simpler version of this function is:
toIntegral :: (Integral a, Integral b) => a -> Maybe b toIntegral x | toInteger x == toInteger y = Just y | otherwise = Nothing where y = fromIntegral x
This version requires going through Integer
, which can be inefficient.
However, toIntegralSized
is optimized to allow GHC to statically determine
the relative type sizes (as measured by bitSizeMaybe
and isSigned
) and
avoid going through Integer
for many types. (The implementation uses
fromIntegral
, which is itself optimized with rules for base
types but may
go through Integer
for some type pairs.)
Since: base-4.8.0.0
byteSwap16 :: Word16 -> Word16 #
Reverse order of bytes in Word16
.
Since: base-4.7.0.0
byteSwap32 :: Word32 -> Word32 #
Reverse order of bytes in Word32
.
Since: base-4.7.0.0
byteSwap64 :: Word64 -> Word64 #
Reverse order of bytes in Word64
.
Since: base-4.7.0.0
Complex functions
module Data.Complex
Char functions
The character type Char
represents Unicode codespace
and its elements are code points as in definitions
D9 and D10 of the Unicode Standard.
Character literals in Haskell are single-quoted: 'Q'
, 'Я'
or 'Ω'
.
To represent a single quote itself use '\''
, and to represent a backslash
use '\\'
. The full grammar can be found in the section 2.6 of the
Haskell 2010 Language Report.
To specify a character by its code point one can use decimal, hexadecimal
or octal notation: '\65'
, '\x41'
and '\o101'
are all alternative forms
of 'A'
. The largest code point is '\x10ffff'
.
There is a special escape syntax for ASCII control characters:
Escape | Alternatives | Meaning |
---|---|---|
'\NUL' | '\0' | null character |
'\SOH' | '\1' | start of heading |
'\STX' | '\2' | start of text |
'\ETX' | '\3' | end of text |
'\EOT' | '\4' | end of transmission |
'\ENQ' | '\5' | enquiry |
'\ACK' | '\6' | acknowledge |
'\BEL' | '\7' , '\a' | bell (alert) |
'\BS' | '\8' , '\b' | backspace |
'\HT' | '\9' , '\t' | horizontal tab |
'\LF' | '\10' , '\n' | line feed (new line) |
'\VT' | '\11' , '\v' | vertical tab |
'\FF' | '\12' , '\f' | form feed |
'\CR' | '\13' , '\r' | carriage return |
'\SO' | '\14' | shift out |
'\SI' | '\15' | shift in |
'\DLE' | '\16' | data link escape |
'\DC1' | '\17' | device control 1 |
'\DC2' | '\18' | device control 2 |
'\DC3' | '\19' | device control 3 |
'\DC4' | '\20' | device control 4 |
'\NAK' | '\21' | negative acknowledge |
'\SYN' | '\22' | synchronous idle |
'\ETB' | '\23' | end of transmission block |
'\CAN' | '\24' | cancel |
'\EM' | '\25' | end of medium |
'\SUB' | '\26' | substitute |
'\ESC' | '\27' | escape |
'\FS' | '\28' | file separator |
'\GS' | '\29' | group separator |
'\RS' | '\30' | record separator |
'\US' | '\31' | unit separator |
'\SP' | '\32' , ' ' | space |
'\DEL' | '\127' | delete |
Instances
Data Char | Since: base-4.0.0.0 | ||||
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Char -> c Char # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Char # dataTypeOf :: Char -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Char) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Char) # gmapT :: (forall b. Data b => b -> b) -> Char -> Char # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r # gmapQ :: (forall d. Data d => d -> u) -> Char -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Char -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Char -> m Char # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char # | |||||
Storable Char | Since: base-2.1 | ||||
Defined in Foreign.Storable | |||||
Bounded Char | Since: base-2.1 | ||||
Enum Char | Since: base-2.1 | ||||
Ix Char | Since: base-2.1 | ||||
Read Char | Since: base-2.1 | ||||
Show Char | Since: base-2.1 | ||||
IsChar Char | Since: base-2.1 | ||||
PrintfArg Char | Since: base-2.1 | ||||
Defined in Text.Printf | |||||
NFData Char | |||||
Defined in Control.DeepSeq | |||||
Eq Char | |||||
Ord Char | |||||
Hashable Char | |||||
Defined in Data.Hashable.Class | |||||
IArray UArray Char | |||||
Defined in Data.Array.Base Methods bounds :: Ix i => UArray i Char -> (i, i) # numElements :: Ix i => UArray i Char -> Int # unsafeArray :: Ix i => (i, i) -> [(Int, Char)] -> UArray i Char # unsafeAt :: Ix i => UArray i Char -> Int -> Char # unsafeReplace :: Ix i => UArray i Char -> [(Int, Char)] -> UArray i Char # unsafeAccum :: Ix i => (Char -> e' -> Char) -> UArray i Char -> [(Int, e')] -> UArray i Char # unsafeAccumArray :: Ix i => (Char -> e' -> Char) -> Char -> (i, i) -> [(Int, e')] -> UArray i Char # | |||||
TestCoercion SChar | Since: base-4.18.0.0 | ||||
Defined in GHC.TypeLits | |||||
TestEquality SChar | Since: base-4.18.0.0 | ||||
Defined in GHC.TypeLits | |||||
StringConv ByteString String Source # | |||||
Defined in Protolude.Conv | |||||
StringConv ByteString String Source # | |||||
Defined in Protolude.Conv | |||||
StringConv Text String Source # | |||||
StringConv Text String Source # | |||||
StringConv String ByteString Source # | |||||
Defined in Protolude.Conv | |||||
StringConv String ByteString Source # | |||||
Defined in Protolude.Conv | |||||
StringConv String Text Source # | |||||
StringConv String Text Source # | |||||
StringConv String String Source # | |||||
ConvertText Text String Source # | |||||
ConvertText Text String Source # | |||||
ConvertText String Text Source # | |||||
ConvertText String Text Source # | |||||
ConvertText String String Source # | |||||
Lift Char | |||||
MArray IOUArray Char IO | |||||
Defined in Data.Array.IO.Internals Methods getBounds :: Ix i => IOUArray i Char -> IO (i, i) # getNumElements :: Ix i => IOUArray i Char -> IO Int # newArray :: Ix i => (i, i) -> Char -> IO (IOUArray i Char) # newArray_ :: Ix i => (i, i) -> IO (IOUArray i Char) # unsafeNewArray_ :: Ix i => (i, i) -> IO (IOUArray i Char) # unsafeRead :: Ix i => IOUArray i Char -> Int -> IO Char # unsafeWrite :: Ix i => IOUArray i Char -> Int -> Char -> IO () # | |||||
GEq1 v (UChar :: Type -> Type) | |||||
GOrd1 v (UChar :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
GShow1Con v (UChar :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
Generic1 (URec Char :: k -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
Foldable (UChar :: Type -> Type) | Since: base-4.9.0.0 | ||||
Defined in Data.Foldable Methods fold :: Monoid m => UChar m -> m # foldMap :: Monoid m => (a -> m) -> UChar a -> m # foldMap' :: Monoid m => (a -> m) -> UChar a -> m # foldr :: (a -> b -> b) -> b -> UChar a -> b # foldr' :: (a -> b -> b) -> b -> UChar a -> b # foldl :: (b -> a -> b) -> b -> UChar a -> b # foldl' :: (b -> a -> b) -> b -> UChar a -> b # foldr1 :: (a -> a -> a) -> UChar a -> a # foldl1 :: (a -> a -> a) -> UChar a -> a # elem :: Eq a => a -> UChar a -> Bool # maximum :: Ord a => UChar a -> a # minimum :: Ord a => UChar a -> a # | |||||
Traversable (UChar :: Type -> Type) | Since: base-4.9.0.0 | ||||
Print [Char] Source # | |||||
IsNullaryCon (UChar :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal Methods isNullaryCon :: UChar a -> Bool # | |||||
MArray (STUArray s) Char (ST s) | |||||
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Char -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Char -> ST s Int # newArray :: Ix i => (i, i) -> Char -> ST s (STUArray s i Char) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Char) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Char) # unsafeRead :: Ix i => STUArray s i Char -> Int -> ST s Char # unsafeWrite :: Ix i => STUArray s i Char -> Int -> Char -> ST s () # | |||||
Functor (URec Char :: Type -> Type) | Since: base-4.9.0.0 | ||||
GEq (UChar p) | |||||
GOrd (UChar p) | |||||
GShowCon (UChar p) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
Generic (URec Char p) | |||||
Defined in GHC.Generics Associated Types
| |||||
Show (URec Char p) | Since: base-4.9.0.0 | ||||
Eq (URec Char p) | Since: base-4.9.0.0 | ||||
Ord (URec Char p) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
data URec Char (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 | ||||
type Compare (a :: Char) (b :: Char) | |||||
Defined in Data.Type.Ord | |||||
type Rep1 (URec Char :: k -> Type) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
type Rep (URec Char p) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics |
Selects alphabetic Unicode characters (lower-case, upper-case and
title-case letters, plus letters of caseless scripts and
modifiers letters). This function is equivalent to
isAlpha
.
This function returns True
if its argument has one of the
following GeneralCategory
s, or False
otherwise:
These classes are defined in the Unicode Character Database, part of the Unicode standard. The same document defines what is and is not a "Letter".
Examples
Basic usage:
>>>
isLetter 'a'
True>>>
isLetter 'A'
True>>>
isLetter 'λ'
True>>>
isLetter '0'
False>>>
isLetter '%'
False>>>
isLetter '♥'
False>>>
isLetter '\31'
False
Ensure that isLetter
and isAlpha
are equivalent.
>>>
let chars = [(chr 0)..]
>>>
let letters = map isLetter chars
>>>
let alphas = map isAlpha chars
>>>
letters == alphas
True
Selects alphabetic Unicode characters (lower-case, upper-case and
title-case letters, plus letters of caseless scripts and modifiers letters).
This function is equivalent to isLetter
.
intToDigit :: Int -> Char #
Selects the first 128 characters of the Unicode character set, corresponding to the ASCII character set.
Selects control characters, which are the non-printing characters of the Latin-1 subset of Unicode.
Selects printable Unicode characters (letters, numbers, marks, punctuation, symbols and spaces).
Returns True
for any Unicode space character, and the control
characters \t
, \n
, \r
, \f
, \v
.
Selects upper-case or title-case alphabetic Unicode characters (letters). Title case is used by a small number of letter ligatures like the single-character form of Lj.
Note: this predicate does not work for letter-like characters such as:
'Ⓐ'
(U+24B6
circled Latin capital letter A) and
'Ⅳ'
(U+2163
Roman numeral four). This is due to selecting only
characters with the GeneralCategory
UppercaseLetter
or TitlecaseLetter
.
See isUpperCase
for a more intuitive predicate. Note that
unlike isUpperCase
, isUpper
does select title-case characters such as
'Dž'
(U+01C5
Latin capital letter d with small letter z with caron) or
'ᾯ'
(U+1FAF
Greek capital letter omega with dasia and perispomeni and
prosgegrammeni).
Selects lower-case alphabetic Unicode characters (letters).
Note: this predicate does not work for letter-like characters such as:
'ⓐ'
(U+24D0
circled Latin small letter a) and
'ⅳ'
(U+2173
small Roman numeral four). This is due to selecting only
characters with the GeneralCategory
LowercaseLetter
.
See isLowerCase
for a more intuitive predicate.
isAlphaNum :: Char -> Bool #
Selects alphabetic or numeric Unicode characters.
Note that numeric digits outside the ASCII range, as well as numeric
characters which aren't digits, are selected by this function but not by
isDigit
. Such characters may be part of identifiers but are not used by
the printer and reader to represent numbers.
isHexDigit :: Char -> Bool #
Selects ASCII hexadecimal digits,
i.e. '0'
..'9'
, 'a'
..'f'
, 'A'
..'F'
.
Convert a letter to the corresponding upper-case letter, if any. Any other character is returned unchanged.
Convert a letter to the corresponding lower-case letter, if any. Any other character is returned unchanged.
Convert a letter to the corresponding title-case or upper-case letter, if any. (Title case differs from upper case only for a small number of ligature letters.) Any other character is returned unchanged.
digitToInt :: Char -> Int #
Convert a single digit Char
to the corresponding Int
. This
function fails unless its argument satisfies isHexDigit
, but
recognises both upper- and lower-case hexadecimal digits (that
is, '0'
..'9'
, 'a'
..'f'
, 'A'
..'F'
).
Examples
Characters '0'
through '9'
are converted properly to
0..9
:
>>>
map digitToInt ['0'..'9']
[0,1,2,3,4,5,6,7,8,9]
Both upper- and lower-case 'A'
through 'F'
are converted
as well, to 10..15
.
>>>
map digitToInt ['a'..'f']
[10,11,12,13,14,15]>>>
map digitToInt ['A'..'F']
[10,11,12,13,14,15]
Anything else throws an exception:
>>>
digitToInt 'G'
*** Exception: Char.digitToInt: not a digit 'G'>>>
digitToInt '♥'
*** Exception: Char.digitToInt: not a digit '\9829'
Maybe functions
The Maybe
type encapsulates an optional value. A value of type
either contains a value of type Maybe
aa
(represented as
),
or it is empty (represented as Just
aNothing
). Using Maybe
is a good way to
deal with errors or exceptional cases without resorting to drastic
measures such as error
.
The Maybe
type is also a monad. It is a simple kind of error
monad, where all errors are represented by Nothing
. A richer
error monad can be built using the Either
type.
Instances
MonadFail Maybe | Since: base-4.9.0.0 | ||||
Defined in Control.Monad.Fail | |||||
MonadFix Maybe | Since: base-2.1 | ||||
Defined in Control.Monad.Fix | |||||
MonadZip Maybe | Since: base-4.8.0.0 | ||||
Foldable Maybe | Since: base-2.1 | ||||
Defined in Data.Foldable Methods fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldMap' :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |||||
Eq1 Maybe | Since: base-4.9.0.0 | ||||
Ord1 Maybe | Since: base-4.9.0.0 | ||||
Defined in Data.Functor.Classes | |||||
Read1 Maybe | Since: base-4.9.0.0 | ||||
Defined in Data.Functor.Classes | |||||
Show1 Maybe | Since: base-4.9.0.0 | ||||
Traversable Maybe | Since: base-2.1 | ||||
Alternative Maybe | Picks the leftmost Since: base-2.1 | ||||
Applicative Maybe | Since: base-2.1 | ||||
Functor Maybe | Since: base-2.1 | ||||
Monad Maybe | Since: base-2.1 | ||||
MonadPlus Maybe | Picks the leftmost Since: base-2.1 | ||||
NFData1 Maybe | Since: deepseq-1.4.3.0 | ||||
Defined in Control.DeepSeq | |||||
Hashable1 Maybe | |||||
Defined in Data.Hashable.Class | |||||
Generic1 Maybe | |||||
Defined in GHC.Generics | |||||
MonadError () Maybe | Since: mtl-2.2.2 | ||||
Defined in Control.Monad.Error.Class | |||||
Lift a => Lift (Maybe a :: Type) | |||||
Data a => Data (Maybe a) | Since: base-4.0.0.0 | ||||
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Maybe a -> c (Maybe a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Maybe a) # toConstr :: Maybe a -> Constr # dataTypeOf :: Maybe a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Maybe a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Maybe a)) # gmapT :: (forall b. Data b => b -> b) -> Maybe a -> Maybe a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r # gmapQ :: (forall d. Data d => d -> u) -> Maybe a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Maybe a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # | |||||
Semigroup a => Monoid (Maybe a) | Lift a semigroup into Since 4.11.0: constraint on inner Since: base-2.1 | ||||
Semigroup a => Semigroup (Maybe a) | Since: base-4.9.0.0 | ||||
Generic (Maybe a) | |||||
Defined in GHC.Generics Associated Types
| |||||
SingKind a => SingKind (Maybe a) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics Associated Types
| |||||
Read a => Read (Maybe a) | Since: base-2.1 | ||||
Show a => Show (Maybe a) | Since: base-2.1 | ||||
NFData a => NFData (Maybe a) | |||||
Defined in Control.DeepSeq | |||||
Eq a => Eq (Maybe a) | Since: base-2.1 | ||||
Ord a => Ord (Maybe a) | Since: base-2.1 | ||||
Hashable a => Hashable (Maybe a) | |||||
Defined in Data.Hashable.Class | |||||
SingI ('Nothing :: Maybe a) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
SingI a2 => SingI ('Just a2 :: Maybe a1) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
type Rep1 Maybe | Since: base-4.6.0.0 | ||||
type DemoteRep (Maybe a) | |||||
Defined in GHC.Generics | |||||
type Rep (Maybe a) | Since: base-4.6.0.0 | ||||
Defined in GHC.Generics | |||||
data Sing (b :: Maybe a) | |||||
mapMaybe :: (a -> Maybe b) -> [a] -> [b] #
The mapMaybe
function is a version of map
which can throw
out elements. In particular, the functional argument returns
something of type
. If this is Maybe
bNothing
, no element
is added on to the result list. If it is
, then Just
bb
is
included in the result list.
Examples
Using
is a shortcut for mapMaybe
f x
in most cases:catMaybes
$ map
f x
>>>
import Text.Read ( readMaybe )
>>>
let readMaybeInt = readMaybe :: String -> Maybe Int
>>>
mapMaybe readMaybeInt ["1", "Foo", "3"]
[1,3]>>>
catMaybes $ map readMaybeInt ["1", "Foo", "3"]
[1,3]
If we map the Just
constructor, the entire list should be returned:
>>>
mapMaybe Just [1,2,3]
[1,2,3]
maybe :: b -> (a -> b) -> Maybe a -> b #
The maybe
function takes a default value, a function, and a Maybe
value. If the Maybe
value is Nothing
, the function returns the
default value. Otherwise, it applies the function to the value inside
the Just
and returns the result.
Examples
Basic usage:
>>>
maybe False odd (Just 3)
True
>>>
maybe False odd Nothing
False
Read an integer from a string using readMaybe
. If we succeed,
return twice the integer; that is, apply (*2)
to it. If instead
we fail to parse an integer, return 0
by default:
>>>
import Text.Read ( readMaybe )
>>>
maybe 0 (*2) (readMaybe "5")
10>>>
maybe 0 (*2) (readMaybe "")
0
Apply show
to a Maybe Int
. If we have Just n
, we want to show
the underlying Int
n
. But if we have Nothing
, we return the
empty string instead of (for example) "Nothing":
>>>
maybe "" show (Just 5)
"5">>>
maybe "" show Nothing
""
fromMaybe :: a -> Maybe a -> a #
The fromMaybe
function takes a default value and a Maybe
value. If the Maybe
is Nothing
, it returns the default value;
otherwise, it returns the value contained in the Maybe
.
Examples
Basic usage:
>>>
fromMaybe "" (Just "Hello, World!")
"Hello, World!"
>>>
fromMaybe "" Nothing
""
Read an integer from a string using readMaybe
. If we fail to
parse an integer, we want to return 0
by default:
>>>
import Text.Read ( readMaybe )
>>>
fromMaybe 0 (readMaybe "5")
5>>>
fromMaybe 0 (readMaybe "")
0
maybeToList :: Maybe a -> [a] #
The maybeToList
function returns an empty list when given
Nothing
or a singleton list when given Just
.
Examples
Basic usage:
>>>
maybeToList (Just 7)
[7]
>>>
maybeToList Nothing
[]
One can use maybeToList
to avoid pattern matching when combined
with a function that (safely) works on lists:
>>>
import Text.Read ( readMaybe )
>>>
sum $ maybeToList (readMaybe "3")
3>>>
sum $ maybeToList (readMaybe "")
0
listToMaybe :: [a] -> Maybe a #
The listToMaybe
function returns Nothing
on an empty list
or
where Just
aa
is the first element of the list.
Examples
Basic usage:
>>>
listToMaybe []
Nothing
>>>
listToMaybe [9]
Just 9
>>>
listToMaybe [1,2,3]
Just 1
Composing maybeToList
with listToMaybe
should be the identity
on singleton/empty lists:
>>>
maybeToList $ listToMaybe [5]
[5]>>>
maybeToList $ listToMaybe []
[]
But not on lists with more than one element:
>>>
maybeToList $ listToMaybe [1,2,3]
[1]
catMaybes :: [Maybe a] -> [a] #
The catMaybes
function takes a list of Maybe
s and returns
a list of all the Just
values.
Examples
Basic usage:
>>>
catMaybes [Just 1, Nothing, Just 3]
[1,3]
When constructing a list of Maybe
values, catMaybes
can be used
to return all of the "success" results (if the list is the result
of a map
, then mapMaybe
would be more appropriate):
>>>
import Text.Read ( readMaybe )
>>>
[readMaybe x :: Maybe Int | x <- ["1", "Foo", "3"] ]
[Just 1,Nothing,Just 3]>>>
catMaybes $ [readMaybe x :: Maybe Int | x <- ["1", "Foo", "3"] ]
[1,3]
Generics functions
Representable types of kind *
.
This class is derivable in GHC with the DeriveGeneric
flag on.
A Generic
instance must satisfy the following laws:
from
.to
≡id
to
.from
≡id
Methods
Convert from the datatype to its representation
Convert from the representation to the datatype
Instances
Generic All | |||||
Defined in Data.Semigroup.Internal Associated Types
| |||||
Generic Any | |||||
Defined in Data.Semigroup.Internal Associated Types
| |||||
Generic Version | |||||
Defined in Data.Version Associated Types
| |||||
Generic Void | |||||
Generic ByteOrder | |||||
Defined in GHC.ByteOrder | |||||
Generic Fingerprint | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic Associativity | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic DecidedStrictness | |||||
Defined in GHC.Generics Associated Types
Methods from :: DecidedStrictness -> Rep DecidedStrictness x # to :: Rep DecidedStrictness x -> DecidedStrictness # | |||||
Generic Fixity | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic SourceStrictness | |||||
Defined in GHC.Generics Associated Types
Methods from :: SourceStrictness -> Rep SourceStrictness x # to :: Rep SourceStrictness x -> SourceStrictness # | |||||
Generic SourceUnpackedness | |||||
Defined in GHC.Generics Associated Types
Methods from :: SourceUnpackedness -> Rep SourceUnpackedness x # to :: Rep SourceUnpackedness x -> SourceUnpackedness # | |||||
Generic ExitCode | |||||
Defined in GHC.IO.Exception Associated Types
| |||||
Generic CCFlags | |||||
Defined in GHC.RTS.Flags Associated Types
| |||||
Generic ConcFlags | |||||
Defined in GHC.RTS.Flags Associated Types
| |||||
Generic DebugFlags | |||||
Defined in GHC.RTS.Flags Associated Types
| |||||
Generic DoCostCentres | |||||
Defined in GHC.RTS.Flags Associated Types
| |||||
Generic DoHeapProfile | |||||
Defined in GHC.RTS.Flags Associated Types
| |||||
Generic DoTrace | |||||
Defined in GHC.RTS.Flags Associated Types
| |||||
Generic GCFlags | |||||
Defined in GHC.RTS.Flags Associated Types
| |||||
Generic GiveGCStats | |||||
Defined in GHC.RTS.Flags Associated Types
| |||||
Generic MiscFlags | |||||
Defined in GHC.RTS.Flags Associated Types
| |||||
Generic ParFlags | |||||
Defined in GHC.RTS.Flags Associated Types
| |||||
Generic ProfFlags | |||||
Defined in GHC.RTS.Flags Associated Types
| |||||
Generic RTSFlags | |||||
Defined in GHC.RTS.Flags Associated Types
| |||||
Generic TickyFlags | |||||
Defined in GHC.RTS.Flags Associated Types
| |||||
Generic TraceFlags | |||||
Defined in GHC.RTS.Flags Associated Types
| |||||
Generic SrcLoc | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic GCDetails | |||||
Defined in GHC.Stats Associated Types
| |||||
Generic RTSStats | |||||
Defined in GHC.Stats Associated Types
| |||||
Generic GeneralCategory | |||||
Defined in GHC.Generics Associated Types
Methods from :: GeneralCategory -> Rep GeneralCategory x # to :: Rep GeneralCategory x -> GeneralCategory # | |||||
Generic ShortByteString | |||||
Defined in Data.ByteString.Short.Internal Associated Types
Methods from :: ShortByteString -> Rep ShortByteString x # to :: Rep ShortByteString x -> ShortByteString # | |||||
Generic OsChar | |||||
Defined in System.OsString.Internal.Types.Hidden Associated Types
| |||||
Generic OsString | |||||
Defined in System.OsString.Internal.Types.Hidden Associated Types
| |||||
Generic PosixChar | |||||
Defined in System.OsString.Internal.Types.Hidden Associated Types
| |||||
Generic PosixString | |||||
Defined in System.OsString.Internal.Types.Hidden Associated Types
| |||||
Generic WindowsChar | |||||
Defined in System.OsString.Internal.Types.Hidden Associated Types
| |||||
Generic WindowsString | |||||
Defined in System.OsString.Internal.Types.Hidden Associated Types
| |||||
Generic ForeignSrcLang | |||||
Defined in GHC.ForeignSrcLang.Type Associated Types
Methods from :: ForeignSrcLang -> Rep ForeignSrcLang x # to :: Rep ForeignSrcLang x -> ForeignSrcLang # | |||||
Generic Extension | |||||
Defined in GHC.LanguageExtensions.Type Associated Types
| |||||
Generic Ordering | |||||
Defined in GHC.Generics | |||||
Generic OsChar | |||||
Defined in System.OsString.Internal.Types Associated Types
| |||||
Generic OsString | |||||
Defined in System.OsString.Internal.Types Associated Types
| |||||
Generic PosixChar | |||||
Defined in System.OsString.Internal.Types Associated Types
| |||||
Generic PosixString | |||||
Defined in System.OsString.Internal.Types Associated Types
| |||||
Generic WindowsChar | |||||
Defined in System.OsString.Internal.Types Associated Types
| |||||
Generic WindowsString | |||||
Defined in System.OsString.Internal.Types Associated Types
| |||||
Generic Mode | |||||
Defined in Text.PrettyPrint.Annotated.HughesPJ Associated Types
| |||||
Generic Style | |||||
Defined in Text.PrettyPrint.Annotated.HughesPJ Associated Types
| |||||
Generic TextDetails | |||||
Defined in Text.PrettyPrint.Annotated.HughesPJ Associated Types
| |||||
Generic Doc | |||||
Defined in Text.PrettyPrint.HughesPJ Associated Types
| |||||
Generic AnnLookup | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic AnnTarget | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic Bang | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic BndrVis | |||||
Defined in Language.Haskell.TH.Syntax | |||||
Generic Body | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic Bytes | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic Callconv | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic Clause | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic Con | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic Dec | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic DecidedStrictness | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
Methods from :: DecidedStrictness -> Rep DecidedStrictness x # to :: Rep DecidedStrictness x -> DecidedStrictness # | |||||
Generic DerivClause | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic DerivStrategy | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic DocLoc | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic Exp | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic FamilyResultSig | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
Methods from :: FamilyResultSig -> Rep FamilyResultSig x # to :: Rep FamilyResultSig x -> FamilyResultSig # | |||||
Generic Fixity | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic FixityDirection | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
Methods from :: FixityDirection -> Rep FixityDirection x # to :: Rep FixityDirection x -> FixityDirection # | |||||
Generic Foreign | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic FunDep | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic Guard | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic Info | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic InjectivityAnn | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
Methods from :: InjectivityAnn -> Rep InjectivityAnn x # to :: Rep InjectivityAnn x -> InjectivityAnn # | |||||
Generic Inline | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic Lit | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic Loc | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic Match | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic ModName | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic Module | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic ModuleInfo | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic Name | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic NameFlavour | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic NameSpace | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic OccName | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic Overlap | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic Pat | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic PatSynArgs | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic PatSynDir | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic Phases | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic PkgName | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic Pragma | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic Range | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic Role | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic RuleBndr | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic RuleMatch | |||||
Defined in Language.Haskell.TH.Syntax | |||||
Generic Safety | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic SourceStrictness | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
Methods from :: SourceStrictness -> Rep SourceStrictness x # to :: Rep SourceStrictness x -> SourceStrictness # | |||||
Generic SourceUnpackedness | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
Methods from :: SourceUnpackedness -> Rep SourceUnpackedness x # to :: Rep SourceUnpackedness x -> SourceUnpackedness # | |||||
Generic Specificity | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic Stmt | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic TyLit | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic TySynEqn | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic Type | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic TypeFamilyHead | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
Methods from :: TypeFamilyHead -> Rep TypeFamilyHead x # to :: Rep TypeFamilyHead x -> TypeFamilyHead # | |||||
Generic () | |||||
Generic Bool | |||||
Defined in GHC.Generics | |||||
Generic (ZipList a) | |||||
Defined in Control.Applicative Associated Types
| |||||
Generic (Complex a) | |||||
Defined in Data.Complex Associated Types
| |||||
Generic (Identity a) | |||||
Defined in Data.Functor.Identity Associated Types
| |||||
Generic (First a) | |||||
Defined in Data.Monoid Associated Types
| |||||
Generic (Last a) | |||||
Defined in Data.Monoid Associated Types
| |||||
Generic (Down a) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic (First a) | |||||
Defined in Data.Semigroup Associated Types
| |||||
Generic (Last a) | |||||
Defined in Data.Semigroup Associated Types
| |||||
Generic (Max a) | |||||
Defined in Data.Semigroup Associated Types
| |||||
Generic (Min a) | |||||
Defined in Data.Semigroup Associated Types
| |||||
Generic (WrappedMonoid m) | |||||
Defined in Data.Semigroup Associated Types
Methods from :: WrappedMonoid m -> Rep (WrappedMonoid m) x # to :: Rep (WrappedMonoid m) x -> WrappedMonoid m # | |||||
Generic (Dual a) | |||||
Defined in Data.Semigroup.Internal Associated Types
| |||||
Generic (Endo a) | |||||
Defined in Data.Semigroup.Internal Associated Types
| |||||
Generic (Product a) | |||||
Defined in Data.Semigroup.Internal Associated Types
| |||||
Generic (Sum a) | |||||
Defined in Data.Semigroup.Internal Associated Types
| |||||
Generic (NonEmpty a) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic (Par1 p) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic (SCC vertex) | |||||
Defined in Data.Graph Associated Types
| |||||
Generic (Digit a) | |||||
Defined in Data.Sequence.Internal Associated Types
| |||||
Generic (Elem a) | |||||
Defined in Data.Sequence.Internal Associated Types
| |||||
Generic (FingerTree a) | |||||
Defined in Data.Sequence.Internal Associated Types
| |||||
Generic (Node a) | |||||
Defined in Data.Sequence.Internal Associated Types
| |||||
Generic (ViewL a) | |||||
Defined in Data.Sequence.Internal Associated Types
| |||||
Generic (ViewR a) | |||||
Defined in Data.Sequence.Internal Associated Types
| |||||
Generic (Tree a) | |||||
Defined in Data.Tree Associated Types
| |||||
Generic (Doc a) | |||||
Defined in Text.PrettyPrint.Annotated.HughesPJ Associated Types
| |||||
Generic (TyVarBndr flag) | |||||
Defined in Language.Haskell.TH.Syntax Associated Types
| |||||
Generic (Maybe a) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic (Solo a) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic [a] | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic (WrappedMonad m a) | |||||
Defined in Control.Applicative Associated Types
Methods from :: WrappedMonad m a -> Rep (WrappedMonad m a) x # to :: Rep (WrappedMonad m a) x -> WrappedMonad m a # | |||||
Generic (Either a b) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic (Proxy t) | |||||
Defined in GHC.Generics | |||||
Generic (Arg a b) | |||||
Defined in Data.Semigroup Associated Types
| |||||
Generic (U1 p) | |||||
Generic (V1 p) | |||||
Generic (Lift f a) | |||||
Defined in Control.Applicative.Lift Associated Types
| |||||
Generic (MaybeT m a) | |||||
Defined in Control.Monad.Trans.Maybe Associated Types
| |||||
Generic (a, b) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic (WrappedArrow a b c) | |||||
Defined in Control.Applicative Associated Types
Methods from :: WrappedArrow a b c -> Rep (WrappedArrow a b c) x # to :: Rep (WrappedArrow a b c) x -> WrappedArrow a b c # | |||||
Generic (Kleisli m a b) | |||||
Defined in Control.Arrow Associated Types
| |||||
Generic (Const a b) | |||||
Defined in Data.Functor.Const Associated Types
| |||||
Generic (Ap f a) | |||||
Defined in Data.Monoid Associated Types
| |||||
Generic (Alt f a) | |||||
Defined in Data.Semigroup.Internal Associated Types
| |||||
Generic (Rec1 f p) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic (URec (Ptr ()) p) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic (URec Char p) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic (URec Double p) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic (URec Float p) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic (URec Int p) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic (URec Word p) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic (Backwards f a) | |||||
Defined in Control.Applicative.Backwards Associated Types
| |||||
Generic (AccumT w m a) | |||||
Defined in Control.Monad.Trans.Accum Associated Types
| |||||
Generic (ExceptT e m a) | |||||
Defined in Control.Monad.Trans.Except Associated Types
| |||||
Generic (IdentityT f a) | |||||
Defined in Control.Monad.Trans.Identity Associated Types
| |||||
Generic (ReaderT r m a) | |||||
Defined in Control.Monad.Trans.Reader Associated Types
| |||||
Generic (SelectT r m a) | |||||
Defined in Control.Monad.Trans.Select Associated Types
| |||||
Generic (StateT s m a) | |||||
Defined in Control.Monad.Trans.State.Lazy Associated Types
| |||||
Generic (StateT s m a) | |||||
Defined in Control.Monad.Trans.State.Strict Associated Types
| |||||
Generic (WriterT w m a) | |||||
Defined in Control.Monad.Trans.Writer.CPS Associated Types
| |||||
Generic (WriterT w m a) | |||||
Defined in Control.Monad.Trans.Writer.Lazy Associated Types
| |||||
Generic (WriterT w m a) | |||||
Defined in Control.Monad.Trans.Writer.Strict Associated Types
| |||||
Generic (Constant a b) | |||||
Defined in Data.Functor.Constant Associated Types
| |||||
Generic (Reverse f a) | |||||
Defined in Data.Functor.Reverse Associated Types
| |||||
Generic (a, b, c) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic (Product f g a) | |||||
Defined in Data.Functor.Product Associated Types
| |||||
Generic (Sum f g a) | |||||
Defined in Data.Functor.Sum Associated Types
| |||||
Generic ((f :*: g) p) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic ((f :+: g) p) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic (K1 i c p) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic (ContT r m a) | |||||
Defined in Control.Monad.Trans.Cont Associated Types
| |||||
Generic (a, b, c, d) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic (Compose f g a) | |||||
Defined in Data.Functor.Compose Associated Types
| |||||
Generic ((f :.: g) p) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic (M1 i c f p) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic (RWST r w s m a) | |||||
Defined in Control.Monad.Trans.RWS.CPS Associated Types
| |||||
Generic (RWST r w s m a) | |||||
Defined in Control.Monad.Trans.RWS.Lazy Associated Types
| |||||
Generic (RWST r w s m a) | |||||
Defined in Control.Monad.Trans.RWS.Strict Associated Types
| |||||
Generic (a, b, c, d, e) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic (a, b, c, d, e, f) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic (a, b, c, d, e, f, g) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic (a, b, c, d, e, f, g, h) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic (a, b, c, d, e, f, g, h, i) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic (a, b, c, d, e, f, g, h, i, j) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic (a, b, c, d, e, f, g, h, i, j, k) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic (a, b, c, d, e, f, g, h, i, j, k, l) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic (a, b, c, d, e, f, g, h, i, j, k, l, m) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | |||||
Defined in GHC.Generics Associated Types
|
class Generic1 (f :: k -> Type) #
Representable types of kind * -> *
(or kind k -> *
, when PolyKinds
is enabled).
This class is derivable in GHC with the DeriveGeneric
flag on.
A Generic1
instance must satisfy the following laws:
from1
.to1
≡id
to1
.from1
≡id
Instances
Generic1 ZipList | |||||
Defined in Control.Applicative Associated Types
| |||||
Generic1 Complex | |||||
Defined in Data.Complex Associated Types
| |||||
Generic1 Identity | |||||
Defined in Data.Functor.Identity Associated Types
| |||||
Generic1 First | |||||
Defined in Data.Monoid Associated Types
| |||||
Generic1 Last | |||||
Defined in Data.Monoid Associated Types
| |||||
Generic1 Down | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic1 First | |||||
Defined in Data.Semigroup Associated Types
| |||||
Generic1 Last | |||||
Defined in Data.Semigroup Associated Types
| |||||
Generic1 Max | |||||
Defined in Data.Semigroup Associated Types
| |||||
Generic1 Min | |||||
Defined in Data.Semigroup Associated Types
| |||||
Generic1 WrappedMonoid | |||||
Defined in Data.Semigroup Associated Types
Methods from1 :: WrappedMonoid a -> Rep1 WrappedMonoid a # to1 :: Rep1 WrappedMonoid a -> WrappedMonoid a # | |||||
Generic1 Dual | |||||
Defined in Data.Semigroup.Internal Associated Types
| |||||
Generic1 Product | |||||
Defined in Data.Semigroup.Internal Associated Types
| |||||
Generic1 Sum | |||||
Defined in Data.Semigroup.Internal Associated Types
| |||||
Generic1 NonEmpty | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic1 Par1 | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic1 SCC | |||||
Defined in Data.Graph Associated Types
| |||||
Generic1 Digit | |||||
Defined in Data.Sequence.Internal Associated Types
| |||||
Generic1 Elem | |||||
Defined in Data.Sequence.Internal Associated Types
| |||||
Generic1 FingerTree | |||||
Defined in Data.Sequence.Internal Associated Types
| |||||
Generic1 Node | |||||
Defined in Data.Sequence.Internal Associated Types
| |||||
Generic1 ViewL | |||||
Defined in Data.Sequence.Internal Associated Types
| |||||
Generic1 ViewR | |||||
Defined in Data.Sequence.Internal Associated Types
| |||||
Generic1 Tree | |||||
Defined in Data.Tree Associated Types
| |||||
Generic1 Maybe | |||||
Defined in GHC.Generics | |||||
Generic1 Solo | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic1 [] | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic1 (WrappedMonad m :: Type -> Type) | |||||
Defined in Control.Applicative Associated Types
Methods from1 :: WrappedMonad m a -> Rep1 (WrappedMonad m) a # to1 :: Rep1 (WrappedMonad m) a -> WrappedMonad m a # | |||||
Generic1 (Either a :: Type -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic1 (Arg a :: Type -> Type) | |||||
Defined in Data.Semigroup Associated Types
| |||||
Generic1 (Lift f :: Type -> Type) | |||||
Defined in Control.Applicative.Lift Associated Types
| |||||
Functor m => Generic1 (MaybeT m :: Type -> Type) | |||||
Defined in Control.Monad.Trans.Maybe Associated Types
| |||||
Generic1 ((,) a :: Type -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic1 (Proxy :: k -> Type) | |||||
Defined in GHC.Generics | |||||
Generic1 (U1 :: k -> Type) | |||||
Defined in GHC.Generics | |||||
Generic1 (V1 :: k -> Type) | |||||
Defined in GHC.Generics | |||||
Generic1 (WrappedArrow a b :: Type -> Type) | |||||
Defined in Control.Applicative Associated Types
Methods from1 :: WrappedArrow a b a0 -> Rep1 (WrappedArrow a b) a0 # to1 :: Rep1 (WrappedArrow a b) a0 -> WrappedArrow a b a0 # | |||||
Generic1 (Kleisli m a :: Type -> Type) | |||||
Defined in Control.Arrow | |||||
Functor m => Generic1 (ExceptT e m :: Type -> Type) | |||||
Defined in Control.Monad.Trans.Except Associated Types
| |||||
Generic1 (ReaderT r m :: Type -> Type) | |||||
Defined in Control.Monad.Trans.Reader Associated Types
| |||||
Generic1 ((,,) a b :: Type -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic1 (Const a :: k -> Type) | |||||
Defined in Data.Functor.Const Associated Types
| |||||
Generic1 (Ap f :: k -> Type) | |||||
Defined in Data.Monoid Associated Types
| |||||
Generic1 (Alt f :: k -> Type) | |||||
Defined in Data.Semigroup.Internal Associated Types
| |||||
Generic1 (Rec1 f :: k -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic1 (URec (Ptr ()) :: k -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic1 (URec Char :: k -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic1 (URec Double :: k -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic1 (URec Float :: k -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic1 (URec Int :: k -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic1 (URec Word :: k -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic1 (Backwards f :: k -> Type) | |||||
Defined in Control.Applicative.Backwards Associated Types
| |||||
Generic1 (IdentityT f :: k -> Type) | |||||
Defined in Control.Monad.Trans.Identity Associated Types
| |||||
Generic1 (Constant a :: k -> Type) | |||||
Defined in Data.Functor.Constant Associated Types
| |||||
Generic1 (Reverse f :: k -> Type) | |||||
Defined in Data.Functor.Reverse Associated Types
| |||||
Generic1 ((,,,) a b c :: Type -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic1 (Product f g :: k -> Type) | |||||
Defined in Data.Functor.Product Associated Types
| |||||
Generic1 (Sum f g :: k -> Type) | |||||
Defined in Data.Functor.Sum Associated Types
| |||||
Generic1 (f :*: g :: k -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic1 (f :+: g :: k -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic1 (K1 i c :: k -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic1 ((,,,,) a b c d :: Type -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
Functor f => Generic1 (Compose f g :: k -> Type) | |||||
Defined in Data.Functor.Compose Associated Types
| |||||
Functor f => Generic1 (f :.: g :: k -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic1 (M1 i c f :: k -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic1 ((,,,,,) a b c d e :: Type -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic1 ((,,,,,,) a b c d e f :: Type -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic1 ((,,,,,,,) a b c d e f g :: Type -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic1 ((,,,,,,,,) a b c d e f g h :: Type -> Type) | |||||
Defined in GHC.Generics Associated Types
Methods from1 :: (a, b, c, d, e, f, g, h, a0) -> Rep1 ((,,,,,,,,) a b c d e f g h) a0 # to1 :: Rep1 ((,,,,,,,,) a b c d e f g h) a0 -> (a, b, c, d, e, f, g, h, a0) # | |||||
Generic1 ((,,,,,,,,,) a b c d e f g h i :: Type -> Type) | |||||
Defined in GHC.Generics Associated Types
Methods from1 :: (a, b, c, d, e, f, g, h, i, a0) -> Rep1 ((,,,,,,,,,) a b c d e f g h i) a0 # to1 :: Rep1 ((,,,,,,,,,) a b c d e f g h i) a0 -> (a, b, c, d, e, f, g, h, i, a0) # | |||||
Generic1 ((,,,,,,,,,,) a b c d e f g h i j :: Type -> Type) | |||||
Defined in GHC.Generics Associated Types
Methods from1 :: (a, b, c, d, e, f, g, h, i, j, a0) -> Rep1 ((,,,,,,,,,,) a b c d e f g h i j) a0 # to1 :: Rep1 ((,,,,,,,,,,) a b c d e f g h i j) a0 -> (a, b, c, d, e, f, g, h, i, j, a0) # | |||||
Generic1 ((,,,,,,,,,,,) a b c d e f g h i j k :: Type -> Type) | |||||
Defined in GHC.Generics Associated Types
Methods from1 :: (a, b, c, d, e, f, g, h, i, j, k, a0) -> Rep1 ((,,,,,,,,,,,) a b c d e f g h i j k) a0 # to1 :: Rep1 ((,,,,,,,,,,,) a b c d e f g h i j k) a0 -> (a, b, c, d, e, f, g, h, i, j, k, a0) # | |||||
Generic1 ((,,,,,,,,,,,,) a b c d e f g h i j k l :: Type -> Type) | |||||
Defined in GHC.Generics Associated Types
Methods from1 :: (a, b, c, d, e, f, g, h, i, j, k, l, a0) -> Rep1 ((,,,,,,,,,,,,) a b c d e f g h i j k l) a0 # to1 :: Rep1 ((,,,,,,,,,,,,) a b c d e f g h i j k l) a0 -> (a, b, c, d, e, f, g, h, i, j, k, l, a0) # | |||||
Generic1 ((,,,,,,,,,,,,,) a b c d e f g h i j k l m :: Type -> Type) | |||||
Defined in GHC.Generics Associated Types
Methods from1 :: (a, b, c, d, e, f, g, h, i, j, k, l, m, a0) -> Rep1 ((,,,,,,,,,,,,,) a b c d e f g h i j k l m) a0 # to1 :: Rep1 ((,,,,,,,,,,,,,) a b c d e f g h i j k l m) a0 -> (a, b, c, d, e, f, g, h, i, j, k, l, m, a0) # | |||||
Generic1 ((,,,,,,,,,,,,,,) a b c d e f g h i j k l m n :: Type -> Type) | |||||
Defined in GHC.Generics Associated Types
Methods from1 :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, a0) -> Rep1 ((,,,,,,,,,,,,,,) a b c d e f g h i j k l m n) a0 # to1 :: Rep1 ((,,,,,,,,,,,,,,) a b c d e f g h i j k l m n) a0 -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, a0) # |
class Datatype (d :: k) where #
Class for datatypes that represent datatypes
Minimal complete definition
Methods
datatypeName :: forall k1 t (f :: k1 -> Type) (a :: k1). t d f a -> [Char] #
The name of the datatype (unqualified)
moduleName :: forall k1 t (f :: k1 -> Type) (a :: k1). t d f a -> [Char] #
The fully-qualified name of the module where the type is declared
packageName :: forall k1 t (f :: k1 -> Type) (a :: k1). t d f a -> [Char] #
The package name of the module where the type is declared
Since: base-4.9.0.0
isNewtype :: forall k1 t (f :: k1 -> Type) (a :: k1). t d f a -> Bool #
Marks if the datatype is actually a newtype
Since: base-4.7.0.0
Instances
(KnownSymbol n, KnownSymbol m, KnownSymbol p, SingI nt) => Datatype ('MetaData n m p nt :: Meta) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods datatypeName :: forall k1 t (f :: k1 -> Type) (a :: k1). t ('MetaData n m p nt) f a -> [Char] # moduleName :: forall k1 t (f :: k1 -> Type) (a :: k1). t ('MetaData n m p nt) f a -> [Char] # packageName :: forall k1 t (f :: k1 -> Type) (a :: k1). t ('MetaData n m p nt) f a -> [Char] # isNewtype :: forall k1 t (f :: k1 -> Type) (a :: k1). t ('MetaData n m p nt) f a -> Bool # |
class Constructor (c :: k) where #
Class for datatypes that represent data constructors
Minimal complete definition
Methods
conName :: forall k1 t (f :: k1 -> Type) (a :: k1). t c f a -> [Char] #
The name of the constructor
conFixity :: forall k1 t (f :: k1 -> Type) (a :: k1). t c f a -> Fixity #
The fixity of the constructor
conIsRecord :: forall k1 t (f :: k1 -> Type) (a :: k1). t c f a -> Bool #
Marks if this constructor is a record
Instances
(KnownSymbol n, SingI f, SingI r) => Constructor ('MetaCons n f r :: Meta) | Since: base-4.9.0.0 |
Defined in GHC.Generics |
class Selector (s :: k) where #
Class for datatypes that represent records
Methods
selName :: forall k1 t (f :: k1 -> Type) (a :: k1). t s f a -> [Char] #
The name of the selector
selSourceUnpackedness :: forall k1 t (f :: k1 -> Type) (a :: k1). t s f a -> SourceUnpackedness #
The selector's unpackedness annotation (if any)
Since: base-4.9.0.0
selSourceStrictness :: forall k1 t (f :: k1 -> Type) (a :: k1). t s f a -> SourceStrictness #
The selector's strictness annotation (if any)
Since: base-4.9.0.0
selDecidedStrictness :: forall k1 t (f :: k1 -> Type) (a :: k1). t s f a -> DecidedStrictness #
The strictness that the compiler inferred for the selector
Since: base-4.9.0.0
Instances
(SingI mn, SingI su, SingI ss, SingI ds) => Selector ('MetaSel mn su ss ds :: Meta) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods selName :: forall k1 t (f :: k1 -> Type) (a :: k1). t ('MetaSel mn su ss ds) f a -> [Char] # selSourceUnpackedness :: forall k1 t (f :: k1 -> Type) (a :: k1). t ('MetaSel mn su ss ds) f a -> SourceUnpackedness # selSourceStrictness :: forall k1 t (f :: k1 -> Type) (a :: k1). t ('MetaSel mn su ss ds) f a -> SourceStrictness # selDecidedStrictness :: forall k1 t (f :: k1 -> Type) (a :: k1). t ('MetaSel mn su ss ds) f a -> DecidedStrictness # |
Void: used for datatypes without constructors
Instances
Generic1 (V1 :: k -> Type) | |
Defined in GHC.Generics | |
GNFData arity (V1 :: Type -> Type) | |
Defined in Control.DeepSeq | |
GEq1 v (V1 :: Type -> Type) | |
GOrd1 v (V1 :: Type -> Type) | |
Defined in Data.Functor.Classes.Generic.Internal | |
GRead1 v (V1 :: Type -> Type) | |
Defined in Data.Functor.Classes.Generic.Internal Methods gliftReadPrec :: Read1Args v a -> ReadPrec (V1 a) # | |
GShow1 v (V1 :: Type -> Type) | |
Defined in Data.Functor.Classes.Generic.Internal | |
Foldable (V1 :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => V1 m -> m # foldMap :: Monoid m => (a -> m) -> V1 a -> m # foldMap' :: Monoid m => (a -> m) -> V1 a -> m # foldr :: (a -> b -> b) -> b -> V1 a -> b # foldr' :: (a -> b -> b) -> b -> V1 a -> b # foldl :: (b -> a -> b) -> b -> V1 a -> b # foldl' :: (b -> a -> b) -> b -> V1 a -> b # foldr1 :: (a -> a -> a) -> V1 a -> a # foldl1 :: (a -> a -> a) -> V1 a -> a # elem :: Eq a => a -> V1 a -> Bool # maximum :: Ord a => V1 a -> a # | |
Foldable1 (V1 :: Type -> Type) | Since: base-4.18.0.0 |
Defined in Data.Foldable1 Methods fold1 :: Semigroup m => V1 m -> m # foldMap1 :: Semigroup m => (a -> m) -> V1 a -> m # foldMap1' :: Semigroup m => (a -> m) -> V1 a -> m # toNonEmpty :: V1 a -> NonEmpty a # maximum :: Ord a => V1 a -> a # minimum :: Ord a => V1 a -> a # foldrMap1 :: (a -> b) -> (a -> b -> b) -> V1 a -> b # foldlMap1' :: (a -> b) -> (b -> a -> b) -> V1 a -> b # foldlMap1 :: (a -> b) -> (b -> a -> b) -> V1 a -> b # foldrMap1' :: (a -> b) -> (a -> b -> b) -> V1 a -> b # | |
Contravariant (V1 :: Type -> Type) | |
Traversable (V1 :: Type -> Type) | Since: base-4.9.0.0 |
Functor (V1 :: Type -> Type) | Since: base-4.9.0.0 |
IsNullaryDataType (V1 :: Type -> Type) | |
Defined in Data.Functor.Classes.Generic.Internal Methods isNullaryDataType :: V1 a -> Bool # | |
Data p => Data (V1 p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> V1 p -> c (V1 p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (V1 p) # dataTypeOf :: V1 p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (V1 p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (V1 p)) # gmapT :: (forall b. Data b => b -> b) -> V1 p -> V1 p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> V1 p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> V1 p -> r # gmapQ :: (forall d. Data d => d -> u) -> V1 p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> V1 p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) # | |
Semigroup (V1 p) | Since: base-4.12.0.0 |
Generic (V1 p) | |
Read (V1 p) | Since: base-4.9.0.0 |
Show (V1 p) | Since: base-4.9.0.0 |
Eq (V1 p) | Since: base-4.9.0.0 |
Ord (V1 p) | Since: base-4.9.0.0 |
GEq (V1 p) | |
GOrd (V1 p) | |
GRead (V1 p) | |
Defined in Data.Functor.Classes.Generic.Internal | |
GShow (V1 p) | |
Defined in Data.Functor.Classes.Generic.Internal | |
type Rep1 (V1 :: k -> Type) | Since: base-4.9.0.0 |
type Rep (V1 p) | Since: base-4.9.0.0 |
Unit: used for constructors without arguments
Constructors
U1 |
Instances
Generic1 (U1 :: k -> Type) | |
Defined in GHC.Generics | |
GNFData arity (U1 :: Type -> Type) | |
Defined in Control.DeepSeq | |
GEq1 v (U1 :: Type -> Type) | |
GOrd1 v (U1 :: Type -> Type) | |
Defined in Data.Functor.Classes.Generic.Internal | |
GRead1Con v (U1 :: Type -> Type) | |
Defined in Data.Functor.Classes.Generic.Internal | |
GShow1Con v (U1 :: Type -> Type) | |
Defined in Data.Functor.Classes.Generic.Internal | |
MonadZip (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Foldable (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => U1 m -> m # foldMap :: Monoid m => (a -> m) -> U1 a -> m # foldMap' :: Monoid m => (a -> m) -> U1 a -> m # foldr :: (a -> b -> b) -> b -> U1 a -> b # foldr' :: (a -> b -> b) -> b -> U1 a -> b # foldl :: (b -> a -> b) -> b -> U1 a -> b # foldl' :: (b -> a -> b) -> b -> U1 a -> b # foldr1 :: (a -> a -> a) -> U1 a -> a # foldl1 :: (a -> a -> a) -> U1 a -> a # elem :: Eq a => a -> U1 a -> Bool # maximum :: Ord a => U1 a -> a # | |
Contravariant (U1 :: Type -> Type) | |
Traversable (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Alternative (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Applicative (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Functor (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Monad (U1 :: Type -> Type) | Since: base-4.9.0.0 |
MonadPlus (U1 :: Type -> Type) | Since: base-4.9.0.0 |
IsNullaryCon (U1 :: Type -> Type) | |
Defined in Data.Functor.Classes.Generic.Internal Methods isNullaryCon :: U1 a -> Bool # | |
Data p => Data (U1 p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> U1 p -> c (U1 p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (U1 p) # dataTypeOf :: U1 p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (U1 p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (U1 p)) # gmapT :: (forall b. Data b => b -> b) -> U1 p -> U1 p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> U1 p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> U1 p -> r # gmapQ :: (forall d. Data d => d -> u) -> U1 p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> U1 p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> U1 p -> m (U1 p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> U1 p -> m (U1 p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> U1 p -> m (U1 p) # | |
Monoid (U1 p) | Since: base-4.12.0.0 |
Semigroup (U1 p) | Since: base-4.12.0.0 |
Generic (U1 p) | |
Read (U1 p) | Since: base-4.9.0.0 |
Show (U1 p) | Since: base-4.9.0.0 |
Eq (U1 p) | Since: base-4.9.0.0 |
Ord (U1 p) | Since: base-4.7.0.0 |
GEq (U1 p) | |
GOrd (U1 p) | |
GReadCon (U1 p) | |
Defined in Data.Functor.Classes.Generic.Internal Methods greadPrecCon :: ConType -> ReadPrec (U1 p) | |
GShowCon (U1 p) | |
Defined in Data.Functor.Classes.Generic.Internal | |
type Rep1 (U1 :: k -> Type) | Since: base-4.9.0.0 |
type Rep (U1 p) | Since: base-4.7.0.0 |
Constants, additional parameters and recursion of kind *
Instances
Generic1 (K1 i c :: k -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
NFData a => GNFData arity (K1 i a :: Type -> Type) | |||||
Defined in Control.DeepSeq | |||||
Eq c => GEq1 v (K1 i c :: Type -> Type) | |||||
Ord c => GOrd1 v (K1 i c :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
Read c => GRead1Con v (K1 i c :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
Show c => GShow1Con v (K1 i c :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
Bifoldable (K1 i :: Type -> Type -> Type) | Since: base-4.10.0.0 | ||||
Bifunctor (K1 i :: Type -> Type -> Type) | Since: base-4.9.0.0 | ||||
Bitraversable (K1 i :: Type -> Type -> Type) | Since: base-4.10.0.0 | ||||
Defined in Data.Bitraversable Methods bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> K1 i a b -> f (K1 i c d) # | |||||
Foldable (K1 i c :: Type -> Type) | Since: base-4.9.0.0 | ||||
Defined in Data.Foldable Methods fold :: Monoid m => K1 i c m -> m # foldMap :: Monoid m => (a -> m) -> K1 i c a -> m # foldMap' :: Monoid m => (a -> m) -> K1 i c a -> m # foldr :: (a -> b -> b) -> b -> K1 i c a -> b # foldr' :: (a -> b -> b) -> b -> K1 i c a -> b # foldl :: (b -> a -> b) -> b -> K1 i c a -> b # foldl' :: (b -> a -> b) -> b -> K1 i c a -> b # foldr1 :: (a -> a -> a) -> K1 i c a -> a # foldl1 :: (a -> a -> a) -> K1 i c a -> a # elem :: Eq a => a -> K1 i c a -> Bool # maximum :: Ord a => K1 i c a -> a # minimum :: Ord a => K1 i c a -> a # | |||||
Contravariant (K1 i c :: Type -> Type) | |||||
Traversable (K1 i c :: Type -> Type) | Since: base-4.9.0.0 | ||||
Monoid c => Applicative (K1 i c :: Type -> Type) | Since: base-4.12.0.0 | ||||
Functor (K1 i c :: Type -> Type) | Since: base-4.9.0.0 | ||||
IsNullaryCon (K1 i c :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal Methods isNullaryCon :: K1 i c a -> Bool # | |||||
(Typeable i, Data p, Data c) => Data (K1 i c p) | Since: base-4.9.0.0 | ||||
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c0 (d -> b) -> d -> c0 b) -> (forall g. g -> c0 g) -> K1 i c p -> c0 (K1 i c p) # gunfold :: (forall b r. Data b => c0 (b -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (K1 i c p) # toConstr :: K1 i c p -> Constr # dataTypeOf :: K1 i c p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (K1 i c p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (K1 i c p)) # gmapT :: (forall b. Data b => b -> b) -> K1 i c p -> K1 i c p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> K1 i c p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> K1 i c p -> r # gmapQ :: (forall d. Data d => d -> u) -> K1 i c p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> K1 i c p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> K1 i c p -> m (K1 i c p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> K1 i c p -> m (K1 i c p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> K1 i c p -> m (K1 i c p) # | |||||
Monoid c => Monoid (K1 i c p) | Since: base-4.12.0.0 | ||||
Semigroup c => Semigroup (K1 i c p) | Since: base-4.12.0.0 | ||||
Generic (K1 i c p) | |||||
Defined in GHC.Generics Associated Types
| |||||
Read c => Read (K1 i c p) | Since: base-4.7.0.0 | ||||
Show c => Show (K1 i c p) | Since: base-4.7.0.0 | ||||
Eq c => Eq (K1 i c p) | Since: base-4.7.0.0 | ||||
Ord c => Ord (K1 i c p) | Since: base-4.7.0.0 | ||||
Defined in GHC.Generics | |||||
Eq c => GEq (K1 i c p) | |||||
Ord c => GOrd (K1 i c p) | |||||
Read c => GReadCon (K1 i c p) | |||||
Defined in Data.Functor.Classes.Generic.Internal Methods greadPrecCon :: ConType -> ReadPrec (K1 i c p) | |||||
Show c => GShowCon (K1 i c p) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
type Rep1 (K1 i c :: k -> Type) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
type Rep (K1 i c p) | Since: base-4.7.0.0 | ||||
Defined in GHC.Generics |
newtype M1 i (c :: Meta) (f :: k -> Type) (p :: k) #
Meta-information (constructor names, etc.)
Instances
GHashable arity a => GSum arity (C1 c a) | |||||
(Constructor c, GRead1Con v f, IsNullaryCon f) => GRead1 v (C1 c f) | |||||
Defined in Data.Functor.Classes.Generic.Internal Methods gliftReadPrec :: Read1Args v a -> ReadPrec (C1 c f a) # | |||||
(GRead1 v f, IsNullaryDataType f) => GRead1 v (D1 d f) | |||||
Defined in Data.Functor.Classes.Generic.Internal Methods gliftReadPrec :: Read1Args v a -> ReadPrec (D1 d f a) # | |||||
(Selector s, GRead1Con v f) => GRead1Con v (S1 s f) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
(Constructor c, GShow1Con v f, IsNullaryCon f) => GShow1 v (C1 c f) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
GShow1 v f => GShow1 v (D1 d f) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
(Selector s, GShow1Con v f) => GShow1Con v (S1 s f) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
Generic1 (M1 i c f :: k -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
GNFData arity a => GNFData arity (M1 i c a) | |||||
Defined in Control.DeepSeq | |||||
GEq1 v f => GEq1 v (M1 i c f) | |||||
GOrd1 v f => GOrd1 v (M1 i c f) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
GBinaryGet a => GSumGet (C1 c a) | |||||
GBinaryPut a => GSumPut (C1 c a) | |||||
SumSize (C1 c a) | |||||
Defined in Data.Binary.Generic | |||||
SumSize (C1 c a) | |||||
Defined in Data.Hashable.Generic.Instances | |||||
IsNullaryCon f => IsNullaryCon (S1 s f) | |||||
Defined in Data.Functor.Classes.Generic.Internal Methods isNullaryCon :: S1 s f a -> Bool # | |||||
IsNullaryDataType (C1 c f) | |||||
Defined in Data.Functor.Classes.Generic.Internal Methods isNullaryDataType :: C1 c f a -> Bool # | |||||
MonadFix f => MonadFix (M1 i c f) | Since: base-4.9.0.0 | ||||
Defined in Control.Monad.Fix | |||||
MonadZip f => MonadZip (M1 i c f) | Since: base-4.9.0.0 | ||||
Foldable f => Foldable (M1 i c f) | Since: base-4.9.0.0 | ||||
Defined in Data.Foldable Methods fold :: Monoid m => M1 i c f m -> m # foldMap :: Monoid m => (a -> m) -> M1 i c f a -> m # foldMap' :: Monoid m => (a -> m) -> M1 i c f a -> m # foldr :: (a -> b -> b) -> b -> M1 i c f a -> b # foldr' :: (a -> b -> b) -> b -> M1 i c f a -> b # foldl :: (b -> a -> b) -> b -> M1 i c f a -> b # foldl' :: (b -> a -> b) -> b -> M1 i c f a -> b # foldr1 :: (a -> a -> a) -> M1 i c f a -> a # foldl1 :: (a -> a -> a) -> M1 i c f a -> a # elem :: Eq a => a -> M1 i c f a -> Bool # maximum :: Ord a => M1 i c f a -> a # minimum :: Ord a => M1 i c f a -> a # | |||||
Foldable1 f => Foldable1 (M1 i c f) | Since: base-4.18.0.0 | ||||
Defined in Data.Foldable1 Methods fold1 :: Semigroup m => M1 i c f m -> m # foldMap1 :: Semigroup m => (a -> m) -> M1 i c f a -> m # foldMap1' :: Semigroup m => (a -> m) -> M1 i c f a -> m # toNonEmpty :: M1 i c f a -> NonEmpty a # maximum :: Ord a => M1 i c f a -> a # minimum :: Ord a => M1 i c f a -> a # foldrMap1 :: (a -> b) -> (a -> b -> b) -> M1 i c f a -> b # foldlMap1' :: (a -> b) -> (b -> a -> b) -> M1 i c f a -> b # foldlMap1 :: (a -> b) -> (b -> a -> b) -> M1 i c f a -> b # foldrMap1' :: (a -> b) -> (a -> b -> b) -> M1 i c f a -> b # | |||||
Contravariant f => Contravariant (M1 i c f) | |||||
Traversable f => Traversable (M1 i c f) | Since: base-4.9.0.0 | ||||
Alternative f => Alternative (M1 i c f) | Since: base-4.9.0.0 | ||||
Applicative f => Applicative (M1 i c f) | Since: base-4.9.0.0 | ||||
Functor f => Functor (M1 i c f) | Since: base-4.9.0.0 | ||||
Monad f => Monad (M1 i c f) | Since: base-4.9.0.0 | ||||
MonadPlus f => MonadPlus (M1 i c f) | Since: base-4.9.0.0 | ||||
(Constructor c, GReadCon (f p), IsNullaryCon f) => GRead (C1 c f p) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
(GRead (f p), IsNullaryDataType f) => GRead (D1 d f p) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
(Selector s, GReadCon (f p)) => GReadCon (S1 s f p) | |||||
Defined in Data.Functor.Classes.Generic.Internal Methods greadPrecCon :: ConType -> ReadPrec (S1 s f p) | |||||
(Constructor c, GShowCon (f p), IsNullaryCon f) => GShow (C1 c f p) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
GShow (f p) => GShow (D1 d f p) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
(Selector s, GShowCon (f p)) => GShowCon (S1 s f p) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
(Data p, Data (f p), Typeable c, Typeable i, Typeable f) => Data (M1 i c f p) | Since: base-4.9.0.0 | ||||
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c0 (d -> b) -> d -> c0 b) -> (forall g. g -> c0 g) -> M1 i c f p -> c0 (M1 i c f p) # gunfold :: (forall b r. Data b => c0 (b -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (M1 i c f p) # toConstr :: M1 i c f p -> Constr # dataTypeOf :: M1 i c f p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (M1 i c f p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (M1 i c f p)) # gmapT :: (forall b. Data b => b -> b) -> M1 i c f p -> M1 i c f p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> M1 i c f p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> M1 i c f p -> r # gmapQ :: (forall d. Data d => d -> u) -> M1 i c f p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> M1 i c f p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> M1 i c f p -> m (M1 i c f p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> M1 i c f p -> m (M1 i c f p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> M1 i c f p -> m (M1 i c f p) # | |||||
Monoid (f p) => Monoid (M1 i c f p) | Since: base-4.12.0.0 | ||||
Semigroup (f p) => Semigroup (M1 i c f p) | Since: base-4.12.0.0 | ||||
Generic (M1 i c f p) | |||||
Defined in GHC.Generics Associated Types
| |||||
Read (f p) => Read (M1 i c f p) | Since: base-4.7.0.0 | ||||
Show (f p) => Show (M1 i c f p) | Since: base-4.7.0.0 | ||||
Eq (f p) => Eq (M1 i c f p) | Since: base-4.7.0.0 | ||||
Ord (f p) => Ord (M1 i c f p) | Since: base-4.7.0.0 | ||||
GEq (f p) => GEq (M1 i c f p) | |||||
GOrd (f p) => GOrd (M1 i c f p) | |||||
type Rep1 (M1 i c f :: k -> Type) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
type Rep (M1 i c f p) | Since: base-4.7.0.0 | ||||
Defined in GHC.Generics |
data ((f :: k -> Type) :+: (g :: k -> Type)) (p :: k) infixr 5 #
Sums: encode choice between constructors
Instances
Generic1 (f :+: g :: k -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
(GNFData arity a, GNFData arity b) => GNFData arity (a :+: b) | |||||
Defined in Control.DeepSeq | |||||
(GSum arity a, GSum arity b) => GSum arity (a :+: b) | |||||
(GEq1 v f, GEq1 v g) => GEq1 v (f :+: g) | |||||
(GOrd1 v f, GOrd1 v g) => GOrd1 v (f :+: g) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
(GRead1 v f, GRead1 v g) => GRead1 v (f :+: g) | |||||
Defined in Data.Functor.Classes.Generic.Internal Methods gliftReadPrec :: Read1Args v a -> ReadPrec ((f :+: g) a) # | |||||
(GShow1 v f, GShow1 v g) => GShow1 v (f :+: g) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
(Foldable f, Foldable g) => Foldable (f :+: g) | Since: base-4.9.0.0 | ||||
Defined in Data.Foldable Methods fold :: Monoid m => (f :+: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :+: g) a -> m # foldMap' :: Monoid m => (a -> m) -> (f :+: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldr1 :: (a -> a -> a) -> (f :+: g) a -> a # foldl1 :: (a -> a -> a) -> (f :+: g) a -> a # toList :: (f :+: g) a -> [a] # length :: (f :+: g) a -> Int # elem :: Eq a => a -> (f :+: g) a -> Bool # maximum :: Ord a => (f :+: g) a -> a # minimum :: Ord a => (f :+: g) a -> a # | |||||
(Foldable1 f, Foldable1 g) => Foldable1 (f :+: g) | Since: base-4.18.0.0 | ||||
Defined in Data.Foldable1 Methods fold1 :: Semigroup m => (f :+: g) m -> m # foldMap1 :: Semigroup m => (a -> m) -> (f :+: g) a -> m # foldMap1' :: Semigroup m => (a -> m) -> (f :+: g) a -> m # toNonEmpty :: (f :+: g) a -> NonEmpty a # maximum :: Ord a => (f :+: g) a -> a # minimum :: Ord a => (f :+: g) a -> a # foldrMap1 :: (a -> b) -> (a -> b -> b) -> (f :+: g) a -> b # foldlMap1' :: (a -> b) -> (b -> a -> b) -> (f :+: g) a -> b # foldlMap1 :: (a -> b) -> (b -> a -> b) -> (f :+: g) a -> b # foldrMap1' :: (a -> b) -> (a -> b -> b) -> (f :+: g) a -> b # | |||||
(Contravariant f, Contravariant g) => Contravariant (f :+: g) | |||||
(Traversable f, Traversable g) => Traversable (f :+: g) | Since: base-4.9.0.0 | ||||
Defined in Data.Traversable | |||||
(Functor f, Functor g) => Functor (f :+: g) | Since: base-4.9.0.0 | ||||
(GSumGet a, GSumGet b) => GSumGet (a :+: b) | |||||
(GSumPut a, GSumPut b) => GSumPut (a :+: b) | |||||
(SumSize a, SumSize b) => SumSize (a :+: b) | |||||
Defined in Data.Binary.Generic | |||||
(SumSize a, SumSize b) => SumSize (a :+: b) | |||||
Defined in Data.Hashable.Generic.Instances | |||||
IsNullaryDataType (f :+: g) | |||||
Defined in Data.Functor.Classes.Generic.Internal Methods isNullaryDataType :: (f :+: g) a -> Bool # | |||||
(Typeable f, Typeable g, Data p, Data (f p), Data (g p)) => Data ((f :+: g) p) | Since: base-4.9.0.0 | ||||
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (f :+: g) p -> c ((f :+: g) p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :+: g) p) # toConstr :: (f :+: g) p -> Constr # dataTypeOf :: (f :+: g) p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ((f :+: g) p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :+: g) p)) # gmapT :: (forall b. Data b => b -> b) -> (f :+: g) p -> (f :+: g) p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :+: g) p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :+: g) p -> r # gmapQ :: (forall d. Data d => d -> u) -> (f :+: g) p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :+: g) p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) # | |||||
Generic ((f :+: g) p) | |||||
Defined in GHC.Generics Associated Types
| |||||
(Read (f p), Read (g p)) => Read ((f :+: g) p) | Since: base-4.7.0.0 | ||||
(Show (f p), Show (g p)) => Show ((f :+: g) p) | Since: base-4.7.0.0 | ||||
(Eq (f p), Eq (g p)) => Eq ((f :+: g) p) | Since: base-4.7.0.0 | ||||
(Ord (f p), Ord (g p)) => Ord ((f :+: g) p) | Since: base-4.7.0.0 | ||||
Defined in GHC.Generics | |||||
(GEq (f p), GEq (g p)) => GEq ((f :+: g) p) | |||||
(GOrd (f p), GOrd (g p)) => GOrd ((f :+: g) p) | |||||
(GRead (f p), GRead (g p)) => GRead ((f :+: g) p) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
(GShow (f p), GShow (g p)) => GShow ((f :+: g) p) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
type Rep1 (f :+: g :: k -> Type) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics type Rep1 (f :+: g :: k -> Type) = D1 ('MetaData ":+:" "GHC.Generics" "base" 'False) (C1 ('MetaCons "L1" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 f)) :+: C1 ('MetaCons "R1" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 g))) | |||||
type Rep ((f :+: g) p) | Since: base-4.7.0.0 | ||||
Defined in GHC.Generics type Rep ((f :+: g) p) = D1 ('MetaData ":+:" "GHC.Generics" "base" 'False) (C1 ('MetaCons "L1" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (f p))) :+: C1 ('MetaCons "R1" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (g p)))) |
data ((f :: k -> Type) :*: (g :: k -> Type)) (p :: k) infixr 6 #
Products: encode multiple arguments to constructors
Constructors
(f p) :*: (g p) infixr 6 |
Instances
Generic1 (f :*: g :: k -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
(GNFData arity a, GNFData arity b) => GNFData arity (a :*: b) | |||||
Defined in Control.DeepSeq | |||||
(GEq1 v f, GEq1 v g) => GEq1 v (f :*: g) | |||||
(GOrd1 v f, GOrd1 v g) => GOrd1 v (f :*: g) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
(GRead1Con v f, GRead1Con v g) => GRead1Con v (f :*: g) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
(GShow1Con v f, GShow1Con v g) => GShow1Con v (f :*: g) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
(MonadFix f, MonadFix g) => MonadFix (f :*: g) | Since: base-4.9.0.0 | ||||
Defined in Control.Monad.Fix | |||||
(MonadZip f, MonadZip g) => MonadZip (f :*: g) | Since: base-4.9.0.0 | ||||
(Foldable f, Foldable g) => Foldable (f :*: g) | Since: base-4.9.0.0 | ||||
Defined in Data.Foldable Methods fold :: Monoid m => (f :*: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :*: g) a -> m # foldMap' :: Monoid m => (a -> m) -> (f :*: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldr1 :: (a -> a -> a) -> (f :*: g) a -> a # foldl1 :: (a -> a -> a) -> (f :*: g) a -> a # toList :: (f :*: g) a -> [a] # length :: (f :*: g) a -> Int # elem :: Eq a => a -> (f :*: g) a -> Bool # maximum :: Ord a => (f :*: g) a -> a # minimum :: Ord a => (f :*: g) a -> a # | |||||
(Foldable1 f, Foldable1 g) => Foldable1 (f :*: g) | Since: base-4.18.0.0 | ||||
Defined in Data.Foldable1 Methods fold1 :: Semigroup m => (f :*: g) m -> m # foldMap1 :: Semigroup m => (a -> m) -> (f :*: g) a -> m # foldMap1' :: Semigroup m => (a -> m) -> (f :*: g) a -> m # toNonEmpty :: (f :*: g) a -> NonEmpty a # maximum :: Ord a => (f :*: g) a -> a # minimum :: Ord a => (f :*: g) a -> a # foldrMap1 :: (a -> b) -> (a -> b -> b) -> (f :*: g) a -> b # foldlMap1' :: (a -> b) -> (b -> a -> b) -> (f :*: g) a -> b # foldlMap1 :: (a -> b) -> (b -> a -> b) -> (f :*: g) a -> b # foldrMap1' :: (a -> b) -> (a -> b -> b) -> (f :*: g) a -> b # | |||||
(Contravariant f, Contravariant g) => Contravariant (f :*: g) | |||||
(Traversable f, Traversable g) => Traversable (f :*: g) | Since: base-4.9.0.0 | ||||
Defined in Data.Traversable | |||||
(Alternative f, Alternative g) => Alternative (f :*: g) | Since: base-4.9.0.0 | ||||
(Applicative f, Applicative g) => Applicative (f :*: g) | Since: base-4.9.0.0 | ||||
(Functor f, Functor g) => Functor (f :*: g) | Since: base-4.9.0.0 | ||||
(Monad f, Monad g) => Monad (f :*: g) | Since: base-4.9.0.0 | ||||
(MonadPlus f, MonadPlus g) => MonadPlus (f :*: g) | Since: base-4.9.0.0 | ||||
IsNullaryCon (f :*: g) | |||||
Defined in Data.Functor.Classes.Generic.Internal Methods isNullaryCon :: (f :*: g) a -> Bool # | |||||
(Typeable f, Typeable g, Data p, Data (f p), Data (g p)) => Data ((f :*: g) p) | Since: base-4.9.0.0 | ||||
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (f :*: g) p -> c ((f :*: g) p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :*: g) p) # toConstr :: (f :*: g) p -> Constr # dataTypeOf :: (f :*: g) p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ((f :*: g) p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :*: g) p)) # gmapT :: (forall b. Data b => b -> b) -> (f :*: g) p -> (f :*: g) p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :*: g) p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :*: g) p -> r # gmapQ :: (forall d. Data d => d -> u) -> (f :*: g) p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :*: g) p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) # | |||||
(Monoid (f p), Monoid (g p)) => Monoid ((f :*: g) p) | Since: base-4.12.0.0 | ||||
(Semigroup (f p), Semigroup (g p)) => Semigroup ((f :*: g) p) | Since: base-4.12.0.0 | ||||
Generic ((f :*: g) p) | |||||
Defined in GHC.Generics Associated Types
| |||||
(Read (f p), Read (g p)) => Read ((f :*: g) p) | Since: base-4.7.0.0 | ||||
(Show (f p), Show (g p)) => Show ((f :*: g) p) | Since: base-4.7.0.0 | ||||
(Eq (f p), Eq (g p)) => Eq ((f :*: g) p) | Since: base-4.7.0.0 | ||||
(Ord (f p), Ord (g p)) => Ord ((f :*: g) p) | Since: base-4.7.0.0 | ||||
Defined in GHC.Generics | |||||
(GEq (f p), GEq (g p)) => GEq ((f :*: g) p) | |||||
(GOrd (f p), GOrd (g p)) => GOrd ((f :*: g) p) | |||||
(GReadCon (f p), GReadCon (g p)) => GReadCon ((f :*: g) p) | |||||
Defined in Data.Functor.Classes.Generic.Internal Methods greadPrecCon :: ConType -> ReadPrec ((f :*: g) p) | |||||
(GShowCon (f p), GShowCon (g p)) => GShowCon ((f :*: g) p) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
type Rep1 (f :*: g :: k -> Type) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics type Rep1 (f :*: g :: k -> Type) = D1 ('MetaData ":*:" "GHC.Generics" "base" 'False) (C1 ('MetaCons ":*:" ('InfixI 'RightAssociative 6) 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 f) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 g))) | |||||
type Rep ((f :*: g) p) | Since: base-4.7.0.0 | ||||
Defined in GHC.Generics type Rep ((f :*: g) p) = D1 ('MetaData ":*:" "GHC.Generics" "base" 'False) (C1 ('MetaCons ":*:" ('InfixI 'RightAssociative 6) 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (f p)) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (g p)))) |
newtype ((f :: k2 -> Type) :.: (g :: k1 -> k2)) (p :: k1) infixr 7 #
Composition of functors
Instances
Functor f => Generic1 (f :.: g :: k -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
(NFData1 f, GNFData One g) => GNFData One (f :.: g) | |||||
Defined in Control.DeepSeq | |||||
(Eq1 f, GEq1 NonV4 g) => GEq1 NonV4 (f :.: g) | |||||
(Ord1 f, GOrd1 NonV4 g) => GOrd1 NonV4 (f :.: g) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
(Read1 f, GRead1Con NonV4 g) => GRead1Con NonV4 (f :.: g) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
(Show1 f, GShow1Con NonV4 g) => GShow1Con NonV4 (f :.: g) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
(Foldable f, Foldable g) => Foldable (f :.: g) | Since: base-4.9.0.0 | ||||
Defined in Data.Foldable Methods fold :: Monoid m => (f :.: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :.: g) a -> m # foldMap' :: Monoid m => (a -> m) -> (f :.: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldr1 :: (a -> a -> a) -> (f :.: g) a -> a # foldl1 :: (a -> a -> a) -> (f :.: g) a -> a # toList :: (f :.: g) a -> [a] # length :: (f :.: g) a -> Int # elem :: Eq a => a -> (f :.: g) a -> Bool # maximum :: Ord a => (f :.: g) a -> a # minimum :: Ord a => (f :.: g) a -> a # | |||||
(Foldable1 f, Foldable1 g) => Foldable1 (f :.: g) | Since: base-4.18.0.0 | ||||
Defined in Data.Foldable1 Methods fold1 :: Semigroup m => (f :.: g) m -> m # foldMap1 :: Semigroup m => (a -> m) -> (f :.: g) a -> m # foldMap1' :: Semigroup m => (a -> m) -> (f :.: g) a -> m # toNonEmpty :: (f :.: g) a -> NonEmpty a # maximum :: Ord a => (f :.: g) a -> a # minimum :: Ord a => (f :.: g) a -> a # foldrMap1 :: (a -> b) -> (a -> b -> b) -> (f :.: g) a -> b # foldlMap1' :: (a -> b) -> (b -> a -> b) -> (f :.: g) a -> b # foldlMap1 :: (a -> b) -> (b -> a -> b) -> (f :.: g) a -> b # foldrMap1' :: (a -> b) -> (a -> b -> b) -> (f :.: g) a -> b # | |||||
(Functor f, Contravariant g) => Contravariant (f :.: g) | |||||
(Traversable f, Traversable g) => Traversable (f :.: g) | Since: base-4.9.0.0 | ||||
Defined in Data.Traversable | |||||
(Alternative f, Applicative g) => Alternative (f :.: g) | Since: base-4.9.0.0 | ||||
(Applicative f, Applicative g) => Applicative (f :.: g) | Since: base-4.9.0.0 | ||||
(Functor f, Functor g) => Functor (f :.: g) | Since: base-4.9.0.0 | ||||
IsNullaryCon (f :.: g) | |||||
Defined in Data.Functor.Classes.Generic.Internal Methods isNullaryCon :: (f :.: g) a -> Bool # | |||||
(Typeable f, Typeable g, Data p, Data (f (g p))) => Data ((f :.: g) p) | Since: base-4.9.0.0 | ||||
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (f :.: g) p -> c ((f :.: g) p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :.: g) p) # toConstr :: (f :.: g) p -> Constr # dataTypeOf :: (f :.: g) p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ((f :.: g) p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :.: g) p)) # gmapT :: (forall b. Data b => b -> b) -> (f :.: g) p -> (f :.: g) p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :.: g) p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :.: g) p -> r # gmapQ :: (forall d. Data d => d -> u) -> (f :.: g) p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :.: g) p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :.: g) p -> m ((f :.: g) p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :.: g) p -> m ((f :.: g) p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :.: g) p -> m ((f :.: g) p) # | |||||
Monoid (f (g p)) => Monoid ((f :.: g) p) | Since: base-4.12.0.0 | ||||
Semigroup (f (g p)) => Semigroup ((f :.: g) p) | Since: base-4.12.0.0 | ||||
Generic ((f :.: g) p) | |||||
Defined in GHC.Generics Associated Types
| |||||
Read (f (g p)) => Read ((f :.: g) p) | Since: base-4.7.0.0 | ||||
Show (f (g p)) => Show ((f :.: g) p) | Since: base-4.7.0.0 | ||||
Eq (f (g p)) => Eq ((f :.: g) p) | Since: base-4.7.0.0 | ||||
Ord (f (g p)) => Ord ((f :.: g) p) | Since: base-4.7.0.0 | ||||
Defined in GHC.Generics | |||||
(Eq1 f, GEq (g p)) => GEq ((f :.: g) p) | |||||
(Ord1 f, GOrd (g p)) => GOrd ((f :.: g) p) | |||||
(Read1 f, GReadCon (g p)) => GReadCon ((f :.: g) p) | |||||
Defined in Data.Functor.Classes.Generic.Internal Methods greadPrecCon :: ConType -> ReadPrec ((f :.: g) p) | |||||
(Show1 f, GShowCon (g p)) => GShowCon ((f :.: g) p) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
type Rep1 (f :.: g :: k -> Type) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
type Rep ((f :.: g) p) | Since: base-4.7.0.0 | ||||
Defined in GHC.Generics |
type D1 = M1 D :: Meta -> (k -> Type) -> k -> Type #
Type synonym for encoding meta-information for datatypes
type C1 = M1 C :: Meta -> (k -> Type) -> k -> Type #
Type synonym for encoding meta-information for constructors
type S1 = M1 S :: Meta -> (k -> Type) -> k -> Type #
Type synonym for encoding meta-information for record selectors
type family Rep a :: Type -> Type #
Generic representation type
Instances
type Rep All | Since: base-4.7.0.0 |
Defined in Data.Semigroup.Internal | |
type Rep Any | Since: base-4.7.0.0 |
Defined in Data.Semigroup.Internal | |
type Rep Version | Since: base-4.9.0.0 |
Defined in Data.Version type Rep Version = D1 ('MetaData "Version" "Data.Version" "base" 'False) (C1 ('MetaCons "Version" 'PrefixI 'True) (S1 ('MetaSel ('Just "versionBranch") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Int]) :*: S1 ('MetaSel ('Just "versionTags") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [String]))) | |
type Rep Void | Since: base-4.8.0.0 |
type Rep ByteOrder | Since: base-4.15.0.0 |
type Rep Fingerprint | Since: base-4.15.0.0 |
Defined in GHC.Generics type Rep Fingerprint = D1 ('MetaData "Fingerprint" "GHC.Fingerprint.Type" "base" 'False) (C1 ('MetaCons "Fingerprint" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'SourceUnpack 'SourceStrict 'DecidedUnpack) (Rec0 Word64) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'SourceUnpack 'SourceStrict 'DecidedUnpack) (Rec0 Word64))) | |
type Rep Associativity | Since: base-4.7.0.0 |
Defined in GHC.Generics type Rep Associativity = D1 ('MetaData "Associativity" "GHC.Generics" "base" 'False) (C1 ('MetaCons "LeftAssociative" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "RightAssociative" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "NotAssociative" 'PrefixI 'False) (U1 :: Type -> Type))) | |
type Rep DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics type Rep DecidedStrictness = D1 ('MetaData "DecidedStrictness" "GHC.Generics" "base" 'False) (C1 ('MetaCons "DecidedLazy" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "DecidedStrict" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "DecidedUnpack" 'PrefixI 'False) (U1 :: Type -> Type))) | |
type Rep Fixity | Since: base-4.7.0.0 |
Defined in GHC.Generics type Rep Fixity = D1 ('MetaData "Fixity" "GHC.Generics" "base" 'False) (C1 ('MetaCons "Prefix" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "Infix" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Associativity) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int))) | |
type Rep SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics type Rep SourceStrictness = D1 ('MetaData "SourceStrictness" "GHC.Generics" "base" 'False) (C1 ('MetaCons "NoSourceStrictness" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "SourceLazy" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "SourceStrict" 'PrefixI 'False) (U1 :: Type -> Type))) | |
type Rep SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics type Rep SourceUnpackedness = D1 ('MetaData "SourceUnpackedness" "GHC.Generics" "base" 'False) (C1 ('MetaCons "NoSourceUnpackedness" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "SourceNoUnpack" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "SourceUnpack" 'PrefixI 'False) (U1 :: Type -> Type))) | |
type Rep ExitCode | |
Defined in GHC.IO.Exception type Rep ExitCode = D1 ('MetaData "ExitCode" "GHC.IO.Exception" "base" 'False) (C1 ('MetaCons "ExitSuccess" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ExitFailure" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int))) | |
type Rep CCFlags | Since: base-4.15.0.0 |
Defined in GHC.RTS.Flags type Rep CCFlags = D1 ('MetaData "CCFlags" "GHC.RTS.Flags" "base" 'False) (C1 ('MetaCons "CCFlags" 'PrefixI 'True) (S1 ('MetaSel ('Just "doCostCentres") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 DoCostCentres) :*: (S1 ('MetaSel ('Just "profilerTicks") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int) :*: S1 ('MetaSel ('Just "msecsPerTick") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int)))) | |
type Rep ConcFlags | Since: base-4.15.0.0 |
Defined in GHC.RTS.Flags type Rep ConcFlags = D1 ('MetaData "ConcFlags" "GHC.RTS.Flags" "base" 'False) (C1 ('MetaCons "ConcFlags" 'PrefixI 'True) (S1 ('MetaSel ('Just "ctxtSwitchTime") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 RtsTime) :*: S1 ('MetaSel ('Just "ctxtSwitchTicks") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int))) | |
type Rep DebugFlags | Since: base-4.15.0.0 |
Defined in GHC.RTS.Flags type Rep DebugFlags = D1 ('MetaData "DebugFlags" "GHC.RTS.Flags" "base" 'False) (C1 ('MetaCons "DebugFlags" 'PrefixI 'True) ((((S1 ('MetaSel ('Just "scheduler") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool) :*: S1 ('MetaSel ('Just "interpreter") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool)) :*: (S1 ('MetaSel ('Just "weak") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool) :*: S1 ('MetaSel ('Just "gccafs") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool))) :*: ((S1 ('MetaSel ('Just "gc") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool) :*: S1 ('MetaSel ('Just "nonmoving_gc") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool)) :*: (S1 ('MetaSel ('Just "block_alloc") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool) :*: S1 ('MetaSel ('Just "sanity") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool)))) :*: (((S1 ('MetaSel ('Just "stable") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool) :*: S1 ('MetaSel ('Just "prof") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool)) :*: (S1 ('MetaSel ('Just "linker") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool) :*: S1 ('MetaSel ('Just "apply") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool))) :*: ((S1 ('MetaSel ('Just "stm") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool) :*: S1 ('MetaSel ('Just "squeeze") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool)) :*: (S1 ('MetaSel ('Just "hpc") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool) :*: S1 ('MetaSel ('Just "sparks") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool)))))) | |
type Rep DoCostCentres | Since: base-4.15.0.0 |
Defined in GHC.RTS.Flags type Rep DoCostCentres = D1 ('MetaData "DoCostCentres" "GHC.RTS.Flags" "base" 'False) ((C1 ('MetaCons "CostCentresNone" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "CostCentresSummary" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "CostCentresVerbose" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "CostCentresAll" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "CostCentresJSON" 'PrefixI 'False) (U1 :: Type -> Type)))) | |
type Rep DoHeapProfile | Since: base-4.15.0.0 |
Defined in GHC.RTS.Flags type Rep DoHeapProfile = D1 ('MetaData "DoHeapProfile" "GHC.RTS.Flags" "base" 'False) (((C1 ('MetaCons "NoHeapProfiling" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "HeapByCCS" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "HeapByMod" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "HeapByDescr" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "HeapByType" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "HeapByRetainer" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "HeapByLDV" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "HeapByClosureType" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "HeapByInfoTable" 'PrefixI 'False) (U1 :: Type -> Type))))) | |
type Rep DoTrace | Since: base-4.15.0.0 |
Defined in GHC.RTS.Flags | |
type Rep GCFlags | Since: base-4.15.0.0 |
Defined in GHC.RTS.Flags type Rep GCFlags = D1 ('MetaData "GCFlags" "GHC.RTS.Flags" "base" 'False) (C1 ('MetaCons "GCFlags" 'PrefixI 'True) ((((S1 ('MetaSel ('Just "statsFile") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe FilePath)) :*: (S1 ('MetaSel ('Just "giveStats") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 GiveGCStats) :*: S1 ('MetaSel ('Just "maxStkSize") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word32))) :*: ((S1 ('MetaSel ('Just "initialStkSize") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word32) :*: S1 ('MetaSel ('Just "stkChunkSize") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word32)) :*: (S1 ('MetaSel ('Just "stkChunkBufferSize") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word32) :*: S1 ('MetaSel ('Just "maxHeapSize") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word32)))) :*: ((S1 ('MetaSel ('Just "minAllocAreaSize") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word32) :*: (S1 ('MetaSel ('Just "largeAllocLim") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word32) :*: S1 ('MetaSel ('Just "nurseryChunkSize") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word32))) :*: ((S1 ('MetaSel ('Just "minOldGenSize") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word32) :*: S1 ('MetaSel ('Just "heapSizeSuggestion") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word32)) :*: (S1 ('MetaSel ('Just "heapSizeSuggestionAuto") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool) :*: S1 ('MetaSel ('Just "oldGenFactor") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Double))))) :*: (((S1 ('MetaSel ('Just "returnDecayFactor") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Double) :*: (S1 ('MetaSel ('Just "pcFreeHeap") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Double) :*: S1 ('MetaSel ('Just "generations") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word32))) :*: ((S1 ('MetaSel ('Just "squeezeUpdFrames") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool) :*: S1 ('MetaSel ('Just "compact") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool)) :*: (S1 ('MetaSel ('Just "compactThreshold") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Double) :*: S1 ('MetaSel ('Just "sweep") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool)))) :*: ((S1 ('MetaSel ('Just "ringBell") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool) :*: (S1 ('MetaSel ('Just "idleGCDelayTime") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 RtsTime) :*: S1 ('MetaSel ('Just "doIdleGC") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool))) :*: ((S1 ('MetaSel ('Just "heapBase") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word) :*: S1 ('MetaSel ('Just "allocLimitGrace") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word)) :*: (S1 ('MetaSel ('Just "numa") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool) :*: S1 ('MetaSel ('Just "numaMask") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word))))))) | |
type Rep GiveGCStats | Since: base-4.15.0.0 |
Defined in GHC.RTS.Flags type Rep GiveGCStats = D1 ('MetaData "GiveGCStats" "GHC.RTS.Flags" "base" 'False) ((C1 ('MetaCons "NoGCStats" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "CollectGCStats" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "OneLineGCStats" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "SummaryGCStats" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "VerboseGCStats" 'PrefixI 'False) (U1 :: Type -> Type)))) | |
type Rep MiscFlags | Since: base-4.15.0.0 |
Defined in GHC.RTS.Flags type Rep MiscFlags = D1 ('MetaData "MiscFlags" "GHC.RTS.Flags" "base" 'False) (C1 ('MetaCons "MiscFlags" 'PrefixI 'True) (((S1 ('MetaSel ('Just "tickInterval") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 RtsTime) :*: (S1 ('MetaSel ('Just "installSignalHandlers") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool) :*: S1 ('MetaSel ('Just "installSEHHandlers") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool))) :*: (S1 ('MetaSel ('Just "generateCrashDumpFile") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool) :*: (S1 ('MetaSel ('Just "generateStackTrace") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool) :*: S1 ('MetaSel ('Just "machineReadable") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool)))) :*: ((S1 ('MetaSel ('Just "disableDelayedOsMemoryReturn") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool) :*: (S1 ('MetaSel ('Just "internalCounters") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool) :*: S1 ('MetaSel ('Just "linkerAlwaysPic") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool))) :*: (S1 ('MetaSel ('Just "linkerMemBase") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word) :*: (S1 ('MetaSel ('Just "ioManager") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 IoSubSystem) :*: S1 ('MetaSel ('Just "numIoWorkerThreads") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word32)))))) | |
type Rep ParFlags | Since: base-4.15.0.0 |
Defined in GHC.RTS.Flags type Rep ParFlags = D1 ('MetaData "ParFlags" "GHC.RTS.Flags" "base" 'False) (C1 ('MetaCons "ParFlags" 'PrefixI 'True) (((S1 ('MetaSel ('Just "nCapabilities") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word32) :*: S1 ('MetaSel ('Just "migrate") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool)) :*: (S1 ('MetaSel ('Just "maxLocalSparks") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word32) :*: (S1 ('MetaSel ('Just "parGcEnabled") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool) :*: S1 ('MetaSel ('Just "parGcGen") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word32)))) :*: ((S1 ('MetaSel ('Just "parGcLoadBalancingEnabled") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool) :*: S1 ('MetaSel ('Just "parGcLoadBalancingGen") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word32)) :*: (S1 ('MetaSel ('Just "parGcNoSyncWithIdle") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word32) :*: (S1 ('MetaSel ('Just "parGcThreads") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word32) :*: S1 ('MetaSel ('Just "setAffinity") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool)))))) | |
type Rep ProfFlags | Since: base-4.15.0.0 |
Defined in GHC.RTS.Flags type Rep ProfFlags = D1 ('MetaData "ProfFlags" "GHC.RTS.Flags" "base" 'False) (C1 ('MetaCons "ProfFlags" 'PrefixI 'True) (((S1 ('MetaSel ('Just "doHeapProfile") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 DoHeapProfile) :*: (S1 ('MetaSel ('Just "heapProfileInterval") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 RtsTime) :*: S1 ('MetaSel ('Just "heapProfileIntervalTicks") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word))) :*: ((S1 ('MetaSel ('Just "startHeapProfileAtStartup") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool) :*: S1 ('MetaSel ('Just "showCCSOnException") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool)) :*: (S1 ('MetaSel ('Just "maxRetainerSetSize") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word) :*: S1 ('MetaSel ('Just "ccsLength") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word)))) :*: ((S1 ('MetaSel ('Just "modSelector") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe String)) :*: (S1 ('MetaSel ('Just "descrSelector") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe String)) :*: S1 ('MetaSel ('Just "typeSelector") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe String)))) :*: ((S1 ('MetaSel ('Just "ccSelector") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe String)) :*: S1 ('MetaSel ('Just "ccsSelector") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe String))) :*: (S1 ('MetaSel ('Just "retainerSelector") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe String)) :*: S1 ('MetaSel ('Just "bioSelector") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe String))))))) | |
type Rep RTSFlags | Since: base-4.15.0.0 |
Defined in GHC.RTS.Flags type Rep RTSFlags = D1 ('MetaData "RTSFlags" "GHC.RTS.Flags" "base" 'False) (C1 ('MetaCons "RTSFlags" 'PrefixI 'True) (((S1 ('MetaSel ('Just "gcFlags") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 GCFlags) :*: S1 ('MetaSel ('Just "concurrentFlags") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 ConcFlags)) :*: (S1 ('MetaSel ('Just "miscFlags") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 MiscFlags) :*: S1 ('MetaSel ('Just "debugFlags") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 DebugFlags))) :*: ((S1 ('MetaSel ('Just "costCentreFlags") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 CCFlags) :*: S1 ('MetaSel ('Just "profilingFlags") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 ProfFlags)) :*: (S1 ('MetaSel ('Just "traceFlags") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 TraceFlags) :*: (S1 ('MetaSel ('Just "tickyFlags") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 TickyFlags) :*: S1 ('MetaSel ('Just "parFlags") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 ParFlags)))))) | |
type Rep TickyFlags | Since: base-4.15.0.0 |
Defined in GHC.RTS.Flags type Rep TickyFlags = D1 ('MetaData "TickyFlags" "GHC.RTS.Flags" "base" 'False) (C1 ('MetaCons "TickyFlags" 'PrefixI 'True) (S1 ('MetaSel ('Just "showTickyStats") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool) :*: S1 ('MetaSel ('Just "tickyFile") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe FilePath)))) | |
type Rep TraceFlags | Since: base-4.15.0.0 |
Defined in GHC.RTS.Flags type Rep TraceFlags = D1 ('MetaData "TraceFlags" "GHC.RTS.Flags" "base" 'False) (C1 ('MetaCons "TraceFlags" 'PrefixI 'True) (((S1 ('MetaSel ('Just "tracing") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 DoTrace) :*: S1 ('MetaSel ('Just "timestamp") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool)) :*: (S1 ('MetaSel ('Just "traceScheduler") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool) :*: S1 ('MetaSel ('Just "traceGc") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool))) :*: ((S1 ('MetaSel ('Just "traceNonmovingGc") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool) :*: S1 ('MetaSel ('Just "sparksSampled") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool)) :*: (S1 ('MetaSel ('Just "sparksFull") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool) :*: S1 ('MetaSel ('Just "user") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool))))) | |
type Rep SrcLoc | Since: base-4.15.0.0 |
Defined in GHC.Generics type Rep SrcLoc = D1 ('MetaData "SrcLoc" "GHC.Stack.Types" "base" 'False) (C1 ('MetaCons "SrcLoc" 'PrefixI 'True) ((S1 ('MetaSel ('Just "srcLocPackage") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Char]) :*: (S1 ('MetaSel ('Just "srcLocModule") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Char]) :*: S1 ('MetaSel ('Just "srcLocFile") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Char]))) :*: ((S1 ('MetaSel ('Just "srcLocStartLine") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int) :*: S1 ('MetaSel ('Just "srcLocStartCol") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int)) :*: (S1 ('MetaSel ('Just "srcLocEndLine") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int) :*: S1 ('MetaSel ('Just "srcLocEndCol") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int))))) | |
type Rep GCDetails | Since: base-4.15.0.0 |
Defined in GHC.Stats type Rep GCDetails = D1 ('MetaData "GCDetails" "GHC.Stats" "base" 'False) (C1 ('MetaCons "GCDetails" 'PrefixI 'True) ((((S1 ('MetaSel ('Just "gcdetails_gen") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word32) :*: S1 ('MetaSel ('Just "gcdetails_threads") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word32)) :*: (S1 ('MetaSel ('Just "gcdetails_allocated_bytes") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word64) :*: S1 ('MetaSel ('Just "gcdetails_live_bytes") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word64))) :*: ((S1 ('MetaSel ('Just "gcdetails_large_objects_bytes") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word64) :*: S1 ('MetaSel ('Just "gcdetails_compact_bytes") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word64)) :*: (S1 ('MetaSel ('Just "gcdetails_slop_bytes") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word64) :*: S1 ('MetaSel ('Just "gcdetails_mem_in_use_bytes") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word64)))) :*: (((S1 ('MetaSel ('Just "gcdetails_copied_bytes") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word64) :*: S1 ('MetaSel ('Just "gcdetails_par_max_copied_bytes") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word64)) :*: (S1 ('MetaSel ('Just "gcdetails_par_balanced_copied_bytes") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word64) :*: S1 ('MetaSel ('Just "gcdetails_block_fragmentation_bytes") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word64))) :*: ((S1 ('MetaSel ('Just "gcdetails_sync_elapsed_ns") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 RtsTime) :*: S1 ('MetaSel ('Just "gcdetails_cpu_ns") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 RtsTime)) :*: (S1 ('MetaSel ('Just "gcdetails_elapsed_ns") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 RtsTime) :*: (S1 ('MetaSel ('Just "gcdetails_nonmoving_gc_sync_cpu_ns") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 RtsTime) :*: S1 ('MetaSel ('Just "gcdetails_nonmoving_gc_sync_elapsed_ns") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 RtsTime))))))) | |
type Rep RTSStats | Since: base-4.15.0.0 |
Defined in GHC.Stats type Rep RTSStats = D1 ('MetaData "RTSStats" "GHC.Stats" "base" 'False) (C1 ('MetaCons "RTSStats" 'PrefixI 'True) ((((S1 ('MetaSel ('Just "gcs") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word32) :*: (S1 ('MetaSel ('Just "major_gcs") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word32) :*: S1 ('MetaSel ('Just "allocated_bytes") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word64))) :*: ((S1 ('MetaSel ('Just "max_live_bytes") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word64) :*: S1 ('MetaSel ('Just "max_large_objects_bytes") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word64)) :*: (S1 ('MetaSel ('Just "max_compact_bytes") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word64) :*: S1 ('MetaSel ('Just "max_slop_bytes") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word64)))) :*: ((S1 ('MetaSel ('Just "max_mem_in_use_bytes") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word64) :*: (S1 ('MetaSel ('Just "cumulative_live_bytes") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word64) :*: S1 ('MetaSel ('Just "copied_bytes") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word64))) :*: ((S1 ('MetaSel ('Just "par_copied_bytes") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word64) :*: S1 ('MetaSel ('Just "cumulative_par_max_copied_bytes") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word64)) :*: (S1 ('MetaSel ('Just "cumulative_par_balanced_copied_bytes") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word64) :*: S1 ('MetaSel ('Just "init_cpu_ns") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 RtsTime))))) :*: (((S1 ('MetaSel ('Just "init_elapsed_ns") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 RtsTime) :*: (S1 ('MetaSel ('Just "mutator_cpu_ns") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 RtsTime) :*: S1 ('MetaSel ('Just "mutator_elapsed_ns") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 RtsTime))) :*: ((S1 ('MetaSel ('Just "gc_cpu_ns") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 RtsTime) :*: S1 ('MetaSel ('Just "gc_elapsed_ns") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 RtsTime)) :*: (S1 ('MetaSel ('Just "cpu_ns") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 RtsTime) :*: S1 ('MetaSel ('Just "elapsed_ns") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 RtsTime)))) :*: ((S1 ('MetaSel ('Just "nonmoving_gc_sync_cpu_ns") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 RtsTime) :*: (S1 ('MetaSel ('Just "nonmoving_gc_sync_elapsed_ns") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 RtsTime) :*: S1 ('MetaSel ('Just "nonmoving_gc_sync_max_elapsed_ns") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 RtsTime))) :*: ((S1 ('MetaSel ('Just "nonmoving_gc_cpu_ns") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 RtsTime) :*: S1 ('MetaSel ('Just "nonmoving_gc_elapsed_ns") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 RtsTime)) :*: (S1 ('MetaSel ('Just "nonmoving_gc_max_elapsed_ns") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 RtsTime) :*: S1 ('MetaSel ('Just "gc") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 GCDetails))))))) | |
type Rep GeneralCategory | Since: base-4.15.0.0 |
Defined in GHC.Generics type Rep GeneralCategory = D1 ('MetaData "GeneralCategory" "GHC.Unicode" "base" 'False) ((((C1 ('MetaCons "UppercaseLetter" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "LowercaseLetter" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "TitlecaseLetter" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "ModifierLetter" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "OtherLetter" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "NonSpacingMark" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "SpacingCombiningMark" 'PrefixI 'False) (U1 :: Type -> Type)))) :+: (((C1 ('MetaCons "EnclosingMark" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "DecimalNumber" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "LetterNumber" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "OtherNumber" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "ConnectorPunctuation" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "DashPunctuation" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "OpenPunctuation" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ClosePunctuation" 'PrefixI 'False) (U1 :: Type -> Type))))) :+: (((C1 ('MetaCons "InitialQuote" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "FinalQuote" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "OtherPunctuation" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "MathSymbol" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "CurrencySymbol" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "ModifierSymbol" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "OtherSymbol" 'PrefixI 'False) (U1 :: Type -> Type)))) :+: (((C1 ('MetaCons "Space" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "LineSeparator" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "ParagraphSeparator" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "Control" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "Format" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "Surrogate" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "PrivateUse" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "NotAssigned" 'PrefixI 'False) (U1 :: Type -> Type)))))) | |
type Rep ShortByteString | |
Defined in Data.ByteString.Short.Internal type Rep ShortByteString = D1 ('MetaData "ShortByteString" "Data.ByteString.Short.Internal" "bytestring-0.12.1.0-inplace" 'True) (C1 ('MetaCons "ShortByteString" 'PrefixI 'True) (S1 ('MetaSel ('Just "unShortByteString") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 ByteArray))) | |
type Rep OsChar | |
Defined in System.OsString.Internal.Types.Hidden type Rep OsChar = D1 ('MetaData "OsChar" "System.OsString.Internal.Types.Hidden" "filepath-1.4.301.0-inplace" 'True) (C1 ('MetaCons "OsChar" 'PrefixI 'True) (S1 ('MetaSel ('Just "getOsChar") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 PlatformChar))) | |
type Rep OsString | |
Defined in System.OsString.Internal.Types.Hidden type Rep OsString = D1 ('MetaData "OsString" "System.OsString.Internal.Types.Hidden" "filepath-1.4.301.0-inplace" 'True) (C1 ('MetaCons "OsString" 'PrefixI 'True) (S1 ('MetaSel ('Just "getOsString") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 PlatformString))) | |
type Rep PosixChar | |
Defined in System.OsString.Internal.Types.Hidden | |
type Rep PosixString | |
Defined in System.OsString.Internal.Types.Hidden type Rep PosixString = D1 ('MetaData "PosixString" "System.OsString.Internal.Types.Hidden" "filepath-1.4.301.0-inplace" 'True) (C1 ('MetaCons "PosixString" 'PrefixI 'True) (S1 ('MetaSel ('Just "getPosixString") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 ShortByteString))) | |
type Rep WindowsChar | |
Defined in System.OsString.Internal.Types.Hidden type Rep WindowsChar = D1 ('MetaData "WindowsChar" "System.OsString.Internal.Types.Hidden" "filepath-1.4.301.0-inplace" 'True) (C1 ('MetaCons "WindowsChar" 'PrefixI 'True) (S1 ('MetaSel ('Just "getWindowsChar") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word16))) | |
type Rep WindowsString | |
Defined in System.OsString.Internal.Types.Hidden type Rep WindowsString = D1 ('MetaData "WindowsString" "System.OsString.Internal.Types.Hidden" "filepath-1.4.301.0-inplace" 'True) (C1 ('MetaCons "WindowsString" 'PrefixI 'True) (S1 ('MetaSel ('Just "getWindowsString") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 ShortByteString))) | |
type Rep ForeignSrcLang | |
Defined in GHC.ForeignSrcLang.Type type Rep ForeignSrcLang = D1 ('MetaData "ForeignSrcLang" "GHC.ForeignSrcLang.Type" "ghc-boot-th-9.8.4-inplace" 'False) ((C1 ('MetaCons "LangC" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "LangCxx" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "LangObjc" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "LangObjcxx" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "LangAsm" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "LangJs" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "RawObject" 'PrefixI 'False) (U1 :: Type -> Type)))) | |
type Rep Extension | |
Defined in GHC.LanguageExtensions.Type type Rep Extension = D1 ('MetaData "Extension" "GHC.LanguageExtensions.Type" "ghc-boot-th-9.8.4-inplace" 'False) (((((((C1 ('MetaCons "Cpp" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "OverlappingInstances" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "UndecidableInstances" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "IncoherentInstances" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "UndecidableSuperClasses" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "MonomorphismRestriction" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "MonoLocalBinds" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "DeepSubsumption" 'PrefixI 'False) (U1 :: Type -> Type)))) :+: (((C1 ('MetaCons "RelaxedPolyRec" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ExtendedDefaultRules" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "ForeignFunctionInterface" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "UnliftedFFITypes" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "InterruptibleFFI" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "CApiFFI" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "GHCForeignImportPrim" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "JavaScriptFFI" 'PrefixI 'False) (U1 :: Type -> Type))))) :+: ((((C1 ('MetaCons "ParallelArrays" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "Arrows" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "TemplateHaskell" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "TemplateHaskellQuotes" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "QualifiedDo" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "QuasiQuotes" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "ImplicitParams" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ImplicitPrelude" 'PrefixI 'False) (U1 :: Type -> Type)))) :+: (((C1 ('MetaCons "ScopedTypeVariables" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "AllowAmbiguousTypes" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "UnboxedTuples" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "UnboxedSums" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "UnliftedNewtypes" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "UnliftedDatatypes" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "BangPatterns" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "TypeFamilies" 'PrefixI 'False) (U1 :: Type -> Type)))))) :+: (((((C1 ('MetaCons "TypeFamilyDependencies" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "TypeInType" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "OverloadedStrings" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "OverloadedLists" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "NumDecimals" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "DisambiguateRecordFields" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "RecordWildCards" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "NamedFieldPuns" 'PrefixI 'False) (U1 :: Type -> Type)))) :+: (((C1 ('MetaCons "ViewPatterns" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "GADTs" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "GADTSyntax" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "NPlusKPatterns" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "DoAndIfThenElse" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "BlockArguments" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "RebindableSyntax" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ConstraintKinds" 'PrefixI 'False) (U1 :: Type -> Type))))) :+: ((((C1 ('MetaCons "PolyKinds" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "DataKinds" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "TypeData" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "InstanceSigs" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "ApplicativeDo" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "LinearTypes" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "StandaloneDeriving" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "DeriveDataTypeable" 'PrefixI 'False) (U1 :: Type -> Type)))) :+: (((C1 ('MetaCons "AutoDeriveTypeable" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "DeriveFunctor" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "DeriveTraversable" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "DeriveFoldable" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "DeriveGeneric" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "DefaultSignatures" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "DeriveAnyClass" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "DeriveLift" 'PrefixI 'False) (U1 :: Type -> Type))))))) :+: ((((((C1 ('MetaCons "DerivingStrategies" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "DerivingVia" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "TypeSynonymInstances" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "FlexibleContexts" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "FlexibleInstances" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ConstrainedClassMethods" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "MultiParamTypeClasses" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "NullaryTypeClasses" 'PrefixI 'False) (U1 :: Type -> Type)))) :+: (((C1 ('MetaCons "FunctionalDependencies" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "UnicodeSyntax" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "ExistentialQuantification" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "MagicHash" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "EmptyDataDecls" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "KindSignatures" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "RoleAnnotations" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ParallelListComp" 'PrefixI 'False) (U1 :: Type -> Type))))) :+: ((((C1 ('MetaCons "TransformListComp" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "MonadComprehensions" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "GeneralizedNewtypeDeriving" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "RecursiveDo" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "PostfixOperators" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "TupleSections" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "PatternGuards" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "LiberalTypeSynonyms" 'PrefixI 'False) (U1 :: Type -> Type)))) :+: (((C1 ('MetaCons "RankNTypes" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ImpredicativeTypes" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "TypeOperators" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ExplicitNamespaces" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "PackageImports" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ExplicitForAll" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "AlternativeLayoutRule" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "AlternativeLayoutRuleTransitional" 'PrefixI 'False) (U1 :: Type -> Type)))))) :+: (((((C1 ('MetaCons "DatatypeContexts" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "NondecreasingIndentation" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "RelaxedLayout" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "TraditionalRecordSyntax" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "LambdaCase" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "MultiWayIf" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "BinaryLiterals" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "NegativeLiterals" 'PrefixI 'False) (U1 :: Type -> Type)))) :+: (((C1 ('MetaCons "HexFloatLiterals" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "DuplicateRecordFields" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "OverloadedLabels" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "EmptyCase" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "PatternSynonyms" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "PartialTypeSignatures" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "NamedWildCards" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "StaticPointers" 'PrefixI 'False) (U1 :: Type -> Type))))) :+: ((((C1 ('MetaCons "TypeApplications" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "Strict" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "StrictData" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "EmptyDataDeriving" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "NumericUnderscores" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "QuantifiedConstraints" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "StarIsType" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ImportQualifiedPost" 'PrefixI 'False) (U1 :: Type -> Type)))) :+: (((C1 ('MetaCons "CUSKs" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "StandaloneKindSignatures" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "LexicalNegation" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "FieldSelectors" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "OverloadedRecordDot" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "OverloadedRecordUpdate" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "TypeAbstractions" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ExtendedLiterals" 'PrefixI 'False) (U1 :: Type -> Type)))))))) | |
type Rep Ordering | Since: base-4.6.0.0 |
type Rep OsChar | |
Defined in System.OsString.Internal.Types type Rep OsChar = D1 ('MetaData "OsChar" "System.OsString.Internal.Types" "os-string-2.0.7-5BBZgm2IGGO8ifbVrttmLE" 'True) (C1 ('MetaCons "OsChar" 'PrefixI 'True) (S1 ('MetaSel ('Just "getOsChar") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 PlatformChar))) | |
type Rep OsString | |
Defined in System.OsString.Internal.Types type Rep OsString = D1 ('MetaData "OsString" "System.OsString.Internal.Types" "os-string-2.0.7-5BBZgm2IGGO8ifbVrttmLE" 'True) (C1 ('MetaCons "OsString" 'PrefixI 'True) (S1 ('MetaSel ('Just "getOsString") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 PlatformString))) | |
type Rep PosixChar | |
Defined in System.OsString.Internal.Types | |
type Rep PosixString | |
Defined in System.OsString.Internal.Types type Rep PosixString = D1 ('MetaData "PosixString" "System.OsString.Internal.Types" "os-string-2.0.7-5BBZgm2IGGO8ifbVrttmLE" 'True) (C1 ('MetaCons "PosixString" 'PrefixI 'True) (S1 ('MetaSel ('Just "getPosixString") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 ShortByteString))) | |
type Rep WindowsChar | |
Defined in System.OsString.Internal.Types type Rep WindowsChar = D1 ('MetaData "WindowsChar" "System.OsString.Internal.Types" "os-string-2.0.7-5BBZgm2IGGO8ifbVrttmLE" 'True) (C1 ('MetaCons "WindowsChar" 'PrefixI 'True) (S1 ('MetaSel ('Just "getWindowsChar") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word16))) | |
type Rep WindowsString | |
Defined in System.OsString.Internal.Types type Rep WindowsString = D1 ('MetaData "WindowsString" "System.OsString.Internal.Types" "os-string-2.0.7-5BBZgm2IGGO8ifbVrttmLE" 'True) (C1 ('MetaCons "WindowsString" 'PrefixI 'True) (S1 ('MetaSel ('Just "getWindowsString") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 ShortByteString))) | |
type Rep Mode | |
Defined in Text.PrettyPrint.Annotated.HughesPJ type Rep Mode = D1 ('MetaData "Mode" "Text.PrettyPrint.Annotated.HughesPJ" "pretty-1.1.3.6-inplace" 'False) ((C1 ('MetaCons "PageMode" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ZigZagMode" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "LeftMode" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "OneLineMode" 'PrefixI 'False) (U1 :: Type -> Type))) | |
type Rep Style | |
Defined in Text.PrettyPrint.Annotated.HughesPJ type Rep Style = D1 ('MetaData "Style" "Text.PrettyPrint.Annotated.HughesPJ" "pretty-1.1.3.6-inplace" 'False) (C1 ('MetaCons "Style" 'PrefixI 'True) (S1 ('MetaSel ('Just "mode") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Mode) :*: (S1 ('MetaSel ('Just "lineLength") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int) :*: S1 ('MetaSel ('Just "ribbonsPerLine") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Float)))) | |
type Rep TextDetails | |
Defined in Text.PrettyPrint.Annotated.HughesPJ type Rep TextDetails = D1 ('MetaData "TextDetails" "Text.PrettyPrint.Annotated.HughesPJ" "pretty-1.1.3.6-inplace" 'False) (C1 ('MetaCons "Chr" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'SourceUnpack 'SourceStrict 'DecidedUnpack) (Rec0 Char)) :+: (C1 ('MetaCons "Str" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 String)) :+: C1 ('MetaCons "PStr" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 String)))) | |
type Rep Doc | |
Defined in Text.PrettyPrint.HughesPJ | |
type Rep AnnLookup | |
Defined in Language.Haskell.TH.Syntax type Rep AnnLookup = D1 ('MetaData "AnnLookup" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "AnnLookupModule" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Module)) :+: C1 ('MetaCons "AnnLookupName" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name))) | |
type Rep AnnTarget | |
Defined in Language.Haskell.TH.Syntax type Rep AnnTarget = D1 ('MetaData "AnnTarget" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "ModuleAnnotation" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "TypeAnnotation" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name)) :+: C1 ('MetaCons "ValueAnnotation" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name)))) | |
type Rep Bang | |
Defined in Language.Haskell.TH.Syntax type Rep Bang = D1 ('MetaData "Bang" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "Bang" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 SourceUnpackedness) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 SourceStrictness))) | |
type Rep BndrVis | |
type Rep Body | |
Defined in Language.Haskell.TH.Syntax type Rep Body = D1 ('MetaData "Body" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "GuardedB" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [(Guard, Exp)])) :+: C1 ('MetaCons "NormalB" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp))) | |
type Rep Bytes | |
Defined in Language.Haskell.TH.Syntax type Rep Bytes = D1 ('MetaData "Bytes" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "Bytes" 'PrefixI 'True) (S1 ('MetaSel ('Just "bytesPtr") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (ForeignPtr Word8)) :*: (S1 ('MetaSel ('Just "bytesOffset") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word) :*: S1 ('MetaSel ('Just "bytesSize") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word)))) | |
type Rep Callconv | |
Defined in Language.Haskell.TH.Syntax type Rep Callconv = D1 ('MetaData "Callconv" "Language.Haskell.TH.Syntax" "template-haskell" 'False) ((C1 ('MetaCons "CCall" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "StdCall" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "CApi" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "Prim" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "JavaScript" 'PrefixI 'False) (U1 :: Type -> Type)))) | |
type Rep Clause | |
Defined in Language.Haskell.TH.Syntax type Rep Clause = D1 ('MetaData "Clause" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "Clause" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Pat]) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Body) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Dec])))) | |
type Rep Con | |
Defined in Language.Haskell.TH.Syntax type Rep Con = D1 ('MetaData "Con" "Language.Haskell.TH.Syntax" "template-haskell" 'False) ((C1 ('MetaCons "NormalC" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [BangType])) :+: (C1 ('MetaCons "RecC" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [VarBangType])) :+: C1 ('MetaCons "InfixC" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 BangType) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 BangType))))) :+: (C1 ('MetaCons "ForallC" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [TyVarBndr Specificity]) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Cxt) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Con))) :+: (C1 ('MetaCons "GadtC" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Name]) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [BangType]) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type))) :+: C1 ('MetaCons "RecGadtC" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Name]) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [VarBangType]) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type)))))) | |
type Rep Dec | |
Defined in Language.Haskell.TH.Syntax type Rep Dec = D1 ('MetaData "Dec" "Language.Haskell.TH.Syntax" "template-haskell" 'False) ((((C1 ('MetaCons "FunD" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Clause])) :+: (C1 ('MetaCons "ValD" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Pat) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Body) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Dec]))) :+: C1 ('MetaCons "DataD" 'PrefixI 'False) ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Cxt) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [TyVarBndr BndrVis]))) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe Kind)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Con]) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [DerivClause])))))) :+: (C1 ('MetaCons "NewtypeD" 'PrefixI 'False) ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Cxt) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [TyVarBndr BndrVis]))) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe Kind)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Con) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [DerivClause])))) :+: (C1 ('MetaCons "TypeDataD" 'PrefixI 'False) ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [TyVarBndr BndrVis])) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe Kind)) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Con]))) :+: C1 ('MetaCons "TySynD" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [TyVarBndr BndrVis]) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type)))))) :+: ((C1 ('MetaCons "ClassD" 'PrefixI 'False) ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Cxt) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [TyVarBndr BndrVis]) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [FunDep]) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Dec])))) :+: (C1 ('MetaCons "InstanceD" 'PrefixI 'False) ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe Overlap)) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Cxt)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Dec]))) :+: C1 ('MetaCons "SigD" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type)))) :+: ((C1 ('MetaCons "KiSigD" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Kind)) :+: C1 ('MetaCons "ForeignD" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Foreign))) :+: (C1 ('MetaCons "InfixD" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Fixity) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name)) :+: C1 ('MetaCons "DefaultD" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Type])))))) :+: (((C1 ('MetaCons "PragmaD" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Pragma)) :+: (C1 ('MetaCons "DataFamilyD" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [TyVarBndr BndrVis]) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe Kind)))) :+: C1 ('MetaCons "DataInstD" 'PrefixI 'False) ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Cxt) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe [TyVarBndr ()])) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type))) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe Kind)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Con]) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [DerivClause])))))) :+: (C1 ('MetaCons "NewtypeInstD" 'PrefixI 'False) ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Cxt) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe [TyVarBndr ()])) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type))) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe Kind)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Con) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [DerivClause])))) :+: (C1 ('MetaCons "TySynInstD" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 TySynEqn)) :+: C1 ('MetaCons "OpenTypeFamilyD" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 TypeFamilyHead))))) :+: ((C1 ('MetaCons "ClosedTypeFamilyD" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 TypeFamilyHead) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [TySynEqn])) :+: (C1 ('MetaCons "RoleAnnotD" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Role])) :+: C1 ('MetaCons "StandaloneDerivD" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe DerivStrategy)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Cxt) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type))))) :+: ((C1 ('MetaCons "DefaultSigD" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type)) :+: C1 ('MetaCons "PatSynD" 'PrefixI 'False) ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 PatSynArgs)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 PatSynDir) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Pat)))) :+: (C1 ('MetaCons "PatSynSigD" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 PatSynType)) :+: C1 ('MetaCons "ImplicitParamBindD" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 String) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp))))))) | |
type Rep DecidedStrictness | |
Defined in Language.Haskell.TH.Syntax type Rep DecidedStrictness = D1 ('MetaData "DecidedStrictness" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "DecidedLazy" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "DecidedStrict" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "DecidedUnpack" 'PrefixI 'False) (U1 :: Type -> Type))) | |
type Rep DerivClause | |
Defined in Language.Haskell.TH.Syntax type Rep DerivClause = D1 ('MetaData "DerivClause" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "DerivClause" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe DerivStrategy)) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Cxt))) | |
type Rep DerivStrategy | |
Defined in Language.Haskell.TH.Syntax type Rep DerivStrategy = D1 ('MetaData "DerivStrategy" "Language.Haskell.TH.Syntax" "template-haskell" 'False) ((C1 ('MetaCons "StockStrategy" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "AnyclassStrategy" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "NewtypeStrategy" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ViaStrategy" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type)))) | |
type Rep DocLoc | |
Defined in Language.Haskell.TH.Syntax type Rep DocLoc = D1 ('MetaData "DocLoc" "Language.Haskell.TH.Syntax" "template-haskell" 'False) ((C1 ('MetaCons "ModuleDoc" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "DeclDoc" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name))) :+: (C1 ('MetaCons "ArgDoc" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int)) :+: C1 ('MetaCons "InstDoc" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type)))) | |
type Rep Exp | |
Defined in Language.Haskell.TH.Syntax type Rep Exp = D1 ('MetaData "Exp" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (((((C1 ('MetaCons "VarE" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name)) :+: C1 ('MetaCons "ConE" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name))) :+: (C1 ('MetaCons "LitE" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Lit)) :+: C1 ('MetaCons "AppE" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp)))) :+: ((C1 ('MetaCons "AppTypeE" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type)) :+: C1 ('MetaCons "InfixE" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe Exp)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe Exp))))) :+: (C1 ('MetaCons "UInfixE" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp))) :+: C1 ('MetaCons "ParensE" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp))))) :+: (((C1 ('MetaCons "LamE" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Pat]) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp)) :+: C1 ('MetaCons "LamCaseE" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Match]))) :+: (C1 ('MetaCons "LamCasesE" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Clause])) :+: C1 ('MetaCons "TupE" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Maybe Exp])))) :+: ((C1 ('MetaCons "UnboxedTupE" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Maybe Exp])) :+: C1 ('MetaCons "UnboxedSumE" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 SumAlt) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 SumArity)))) :+: (C1 ('MetaCons "CondE" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp))) :+: (C1 ('MetaCons "MultiIfE" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [(Guard, Exp)])) :+: C1 ('MetaCons "LetE" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Dec]) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp))))))) :+: ((((C1 ('MetaCons "CaseE" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Match])) :+: C1 ('MetaCons "DoE" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe ModName)) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Stmt]))) :+: (C1 ('MetaCons "MDoE" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe ModName)) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Stmt])) :+: C1 ('MetaCons "CompE" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Stmt])))) :+: ((C1 ('MetaCons "ArithSeqE" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Range)) :+: C1 ('MetaCons "ListE" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Exp]))) :+: (C1 ('MetaCons "SigE" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type)) :+: C1 ('MetaCons "RecConE" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [FieldExp]))))) :+: (((C1 ('MetaCons "RecUpdE" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [FieldExp])) :+: C1 ('MetaCons "StaticE" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp))) :+: (C1 ('MetaCons "UnboundVarE" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name)) :+: C1 ('MetaCons "LabelE" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 String)))) :+: ((C1 ('MetaCons "ImplicitParamVarE" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 String)) :+: C1 ('MetaCons "GetFieldE" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 String))) :+: (C1 ('MetaCons "ProjectionE" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (NonEmpty String))) :+: (C1 ('MetaCons "TypedBracketE" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp)) :+: C1 ('MetaCons "TypedSpliceE" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp)))))))) | |
type Rep FamilyResultSig | |
Defined in Language.Haskell.TH.Syntax type Rep FamilyResultSig = D1 ('MetaData "FamilyResultSig" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "NoSig" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "KindSig" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Kind)) :+: C1 ('MetaCons "TyVarSig" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (TyVarBndr ()))))) | |
type Rep Fixity | |
Defined in Language.Haskell.TH.Syntax type Rep Fixity = D1 ('MetaData "Fixity" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "Fixity" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 FixityDirection))) | |
type Rep FixityDirection | |
Defined in Language.Haskell.TH.Syntax type Rep FixityDirection = D1 ('MetaData "FixityDirection" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "InfixL" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "InfixR" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "InfixN" 'PrefixI 'False) (U1 :: Type -> Type))) | |
type Rep Foreign | |
Defined in Language.Haskell.TH.Syntax type Rep Foreign = D1 ('MetaData "Foreign" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "ImportF" 'PrefixI 'False) ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Callconv) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Safety)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 String) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type)))) :+: C1 ('MetaCons "ExportF" 'PrefixI 'False) ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Callconv) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 String)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type)))) | |
type Rep FunDep | |
Defined in Language.Haskell.TH.Syntax type Rep FunDep = D1 ('MetaData "FunDep" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "FunDep" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Name]) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Name]))) | |
type Rep Guard | |
Defined in Language.Haskell.TH.Syntax type Rep Guard = D1 ('MetaData "Guard" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "NormalG" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp)) :+: C1 ('MetaCons "PatG" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Stmt]))) | |
type Rep Info | |
Defined in Language.Haskell.TH.Syntax type Rep Info = D1 ('MetaData "Info" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (((C1 ('MetaCons "ClassI" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Dec) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [InstanceDec])) :+: C1 ('MetaCons "ClassOpI" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 ParentName)))) :+: (C1 ('MetaCons "TyConI" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Dec)) :+: C1 ('MetaCons "FamilyI" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Dec) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [InstanceDec])))) :+: ((C1 ('MetaCons "PrimTyConI" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Arity) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Unlifted))) :+: C1 ('MetaCons "DataConI" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 ParentName)))) :+: (C1 ('MetaCons "PatSynI" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 PatSynType)) :+: (C1 ('MetaCons "VarI" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe Dec)))) :+: C1 ('MetaCons "TyVarI" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type)))))) | |
type Rep InjectivityAnn | |
Defined in Language.Haskell.TH.Syntax type Rep InjectivityAnn = D1 ('MetaData "InjectivityAnn" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "InjectivityAnn" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Name]))) | |
type Rep Inline | |
Defined in Language.Haskell.TH.Syntax | |
type Rep Lit | |
Defined in Language.Haskell.TH.Syntax type Rep Lit = D1 ('MetaData "Lit" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (((C1 ('MetaCons "CharL" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Char)) :+: C1 ('MetaCons "StringL" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 String))) :+: (C1 ('MetaCons "IntegerL" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Integer)) :+: (C1 ('MetaCons "RationalL" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Rational)) :+: C1 ('MetaCons "IntPrimL" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Integer))))) :+: ((C1 ('MetaCons "WordPrimL" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Integer)) :+: (C1 ('MetaCons "FloatPrimL" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Rational)) :+: C1 ('MetaCons "DoublePrimL" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Rational)))) :+: (C1 ('MetaCons "StringPrimL" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Word8])) :+: (C1 ('MetaCons "BytesPrimL" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bytes)) :+: C1 ('MetaCons "CharPrimL" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Char)))))) | |
type Rep Loc | |
Defined in Language.Haskell.TH.Syntax type Rep Loc = D1 ('MetaData "Loc" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "Loc" 'PrefixI 'True) ((S1 ('MetaSel ('Just "loc_filename") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 String) :*: S1 ('MetaSel ('Just "loc_package") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 String)) :*: (S1 ('MetaSel ('Just "loc_module") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 String) :*: (S1 ('MetaSel ('Just "loc_start") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 CharPos) :*: S1 ('MetaSel ('Just "loc_end") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 CharPos))))) | |
type Rep Match | |
Defined in Language.Haskell.TH.Syntax type Rep Match = D1 ('MetaData "Match" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "Match" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Pat) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Body) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Dec])))) | |
type Rep ModName | |
Defined in Language.Haskell.TH.Syntax | |
type Rep Module | |
Defined in Language.Haskell.TH.Syntax type Rep Module = D1 ('MetaData "Module" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "Module" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 PkgName) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 ModName))) | |
type Rep ModuleInfo | |
Defined in Language.Haskell.TH.Syntax type Rep ModuleInfo = D1 ('MetaData "ModuleInfo" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "ModuleInfo" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Module]))) | |
type Rep Name | |
Defined in Language.Haskell.TH.Syntax type Rep Name = D1 ('MetaData "Name" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "Name" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 OccName) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 NameFlavour))) | |
type Rep NameFlavour | |
Defined in Language.Haskell.TH.Syntax type Rep NameFlavour = D1 ('MetaData "NameFlavour" "Language.Haskell.TH.Syntax" "template-haskell" 'False) ((C1 ('MetaCons "NameS" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "NameQ" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 ModName))) :+: (C1 ('MetaCons "NameU" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'SourceStrict 'DecidedStrict) (Rec0 Uniq)) :+: (C1 ('MetaCons "NameL" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'SourceStrict 'DecidedStrict) (Rec0 Uniq)) :+: C1 ('MetaCons "NameG" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 NameSpace) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 PkgName) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 ModName)))))) | |
type Rep NameSpace | |
Defined in Language.Haskell.TH.Syntax type Rep NameSpace = D1 ('MetaData "NameSpace" "Language.Haskell.TH.Syntax" "template-haskell" 'False) ((C1 ('MetaCons "VarName" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "DataName" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "TcClsName" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "FldName" 'PrefixI 'True) (S1 ('MetaSel ('Just "fldParent") 'NoSourceUnpackedness 'SourceStrict 'DecidedStrict) (Rec0 String)))) | |
type Rep OccName | |
Defined in Language.Haskell.TH.Syntax | |
type Rep Overlap | |
Defined in Language.Haskell.TH.Syntax type Rep Overlap = D1 ('MetaData "Overlap" "Language.Haskell.TH.Syntax" "template-haskell" 'False) ((C1 ('MetaCons "Overlappable" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "Overlapping" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "Overlaps" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "Incoherent" 'PrefixI 'False) (U1 :: Type -> Type))) | |
type Rep Pat | |
Defined in Language.Haskell.TH.Syntax type Rep Pat = D1 ('MetaData "Pat" "Language.Haskell.TH.Syntax" "template-haskell" 'False) ((((C1 ('MetaCons "LitP" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Lit)) :+: C1 ('MetaCons "VarP" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name))) :+: (C1 ('MetaCons "TupP" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Pat])) :+: C1 ('MetaCons "UnboxedTupP" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Pat])))) :+: ((C1 ('MetaCons "UnboxedSumP" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Pat) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 SumAlt) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 SumArity))) :+: C1 ('MetaCons "ConP" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Type]) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Pat])))) :+: (C1 ('MetaCons "InfixP" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Pat) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Pat))) :+: C1 ('MetaCons "UInfixP" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Pat) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Pat)))))) :+: (((C1 ('MetaCons "ParensP" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Pat)) :+: C1 ('MetaCons "TildeP" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Pat))) :+: (C1 ('MetaCons "BangP" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Pat)) :+: C1 ('MetaCons "AsP" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Pat)))) :+: ((C1 ('MetaCons "WildP" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "RecP" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [FieldPat]))) :+: (C1 ('MetaCons "ListP" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Pat])) :+: (C1 ('MetaCons "SigP" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Pat) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type)) :+: C1 ('MetaCons "ViewP" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Pat))))))) | |
type Rep PatSynArgs | |
Defined in Language.Haskell.TH.Syntax type Rep PatSynArgs = D1 ('MetaData "PatSynArgs" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "PrefixPatSyn" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Name])) :+: (C1 ('MetaCons "InfixPatSyn" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name)) :+: C1 ('MetaCons "RecordPatSyn" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Name])))) | |
type Rep PatSynDir | |
Defined in Language.Haskell.TH.Syntax type Rep PatSynDir = D1 ('MetaData "PatSynDir" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "Unidir" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "ImplBidir" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ExplBidir" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Clause])))) | |
type Rep Phases | |
Defined in Language.Haskell.TH.Syntax type Rep Phases = D1 ('MetaData "Phases" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "AllPhases" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "FromPhase" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int)) :+: C1 ('MetaCons "BeforePhase" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int)))) | |
type Rep PkgName | |
Defined in Language.Haskell.TH.Syntax | |
type Rep Pragma | |
Defined in Language.Haskell.TH.Syntax type Rep Pragma = D1 ('MetaData "Pragma" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (((C1 ('MetaCons "InlineP" 'PrefixI 'False) ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Inline)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 RuleMatch) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Phases))) :+: C1 ('MetaCons "OpaqueP" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name))) :+: (C1 ('MetaCons "SpecialiseP" 'PrefixI 'False) ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe Inline)) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Phases))) :+: C1 ('MetaCons "SpecialiseInstP" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type)))) :+: ((C1 ('MetaCons "RuleP" 'PrefixI 'False) ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 String) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe [TyVarBndr ()])) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [RuleBndr]))) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Phases)))) :+: C1 ('MetaCons "AnnP" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 AnnTarget) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp))) :+: (C1 ('MetaCons "LineP" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 String)) :+: C1 ('MetaCons "CompleteP" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Name]) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe Name)))))) | |
type Rep Range | |
Defined in Language.Haskell.TH.Syntax type Rep Range = D1 ('MetaData "Range" "Language.Haskell.TH.Syntax" "template-haskell" 'False) ((C1 ('MetaCons "FromR" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp)) :+: C1 ('MetaCons "FromThenR" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp))) :+: (C1 ('MetaCons "FromToR" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp)) :+: C1 ('MetaCons "FromThenToR" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp))))) | |
type Rep Role | |
Defined in Language.Haskell.TH.Syntax type Rep Role = D1 ('MetaData "Role" "Language.Haskell.TH.Syntax" "template-haskell" 'False) ((C1 ('MetaCons "NominalR" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "RepresentationalR" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "PhantomR" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "InferR" 'PrefixI 'False) (U1 :: Type -> Type))) | |
type Rep RuleBndr | |
Defined in Language.Haskell.TH.Syntax type Rep RuleBndr = D1 ('MetaData "RuleBndr" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "RuleVar" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name)) :+: C1 ('MetaCons "TypedRuleVar" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type))) | |
type Rep RuleMatch | |
type Rep Safety | |
Defined in Language.Haskell.TH.Syntax | |
type Rep SourceStrictness | |
Defined in Language.Haskell.TH.Syntax type Rep SourceStrictness = D1 ('MetaData "SourceStrictness" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "NoSourceStrictness" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "SourceLazy" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "SourceStrict" 'PrefixI 'False) (U1 :: Type -> Type))) | |
type Rep SourceUnpackedness | |
Defined in Language.Haskell.TH.Syntax type Rep SourceUnpackedness = D1 ('MetaData "SourceUnpackedness" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "NoSourceUnpackedness" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "SourceNoUnpack" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "SourceUnpack" 'PrefixI 'False) (U1 :: Type -> Type))) | |
type Rep Specificity | |
type Rep Stmt | |
Defined in Language.Haskell.TH.Syntax type Rep Stmt = D1 ('MetaData "Stmt" "Language.Haskell.TH.Syntax" "template-haskell" 'False) ((C1 ('MetaCons "BindS" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Pat) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp)) :+: C1 ('MetaCons "LetS" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Dec]))) :+: (C1 ('MetaCons "NoBindS" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp)) :+: (C1 ('MetaCons "ParS" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [[Stmt]])) :+: C1 ('MetaCons "RecS" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Stmt]))))) | |
type Rep TyLit | |
Defined in Language.Haskell.TH.Syntax type Rep TyLit = D1 ('MetaData "TyLit" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "NumTyLit" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Integer)) :+: (C1 ('MetaCons "StrTyLit" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 String)) :+: C1 ('MetaCons "CharTyLit" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Char)))) | |
type Rep TySynEqn | |
Defined in Language.Haskell.TH.Syntax type Rep TySynEqn = D1 ('MetaData "TySynEqn" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "TySynEqn" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe [TyVarBndr ()])) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type)))) | |
type Rep Type | |
Defined in Language.Haskell.TH.Syntax type Rep Type = D1 ('MetaData "Type" "Language.Haskell.TH.Syntax" "template-haskell" 'False) ((((C1 ('MetaCons "ForallT" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [TyVarBndr Specificity]) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Cxt) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type))) :+: (C1 ('MetaCons "ForallVisT" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [TyVarBndr ()]) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type)) :+: C1 ('MetaCons "AppT" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type)))) :+: ((C1 ('MetaCons "AppKindT" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Kind)) :+: C1 ('MetaCons "SigT" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Kind))) :+: (C1 ('MetaCons "VarT" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name)) :+: C1 ('MetaCons "ConT" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name))))) :+: ((C1 ('MetaCons "PromotedT" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name)) :+: (C1 ('MetaCons "InfixT" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type))) :+: C1 ('MetaCons "UInfixT" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type))))) :+: ((C1 ('MetaCons "PromotedInfixT" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type))) :+: C1 ('MetaCons "PromotedUInfixT" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type)))) :+: (C1 ('MetaCons "ParensT" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type)) :+: C1 ('MetaCons "TupleT" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int)))))) :+: (((C1 ('MetaCons "UnboxedTupleT" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int)) :+: (C1 ('MetaCons "UnboxedSumT" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 SumArity)) :+: C1 ('MetaCons "ArrowT" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "MulArrowT" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "EqualityT" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "ListT" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "PromotedTupleT" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int))))) :+: ((C1 ('MetaCons "PromotedNilT" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "PromotedConsT" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "StarT" 'PrefixI 'False) (U1 :: Type -> Type))) :+: ((C1 ('MetaCons "ConstraintT" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "LitT" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 TyLit))) :+: (C1 ('MetaCons "WildCardT" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ImplicitParamT" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 String) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Type))))))) | |
type Rep TypeFamilyHead | |
Defined in Language.Haskell.TH.Syntax type Rep TypeFamilyHead = D1 ('MetaData "TypeFamilyHead" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "TypeFamilyHead" 'PrefixI 'False) ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [TyVarBndr BndrVis])) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 FamilyResultSig) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe InjectivityAnn))))) | |
type Rep () | Since: base-4.6.0.0 |
type Rep Bool | Since: base-4.6.0.0 |
type Rep (ZipList a) | Since: base-4.7.0.0 |
Defined in Control.Applicative | |
type Rep (Complex a) | Since: base-4.9.0.0 |
Defined in Data.Complex type Rep (Complex a) = D1 ('MetaData "Complex" "Data.Complex" "base" 'False) (C1 ('MetaCons ":+" ('InfixI 'NotAssociative 6) 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'SourceStrict 'DecidedStrict) (Rec0 a) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'SourceStrict 'DecidedStrict) (Rec0 a))) | |
type Rep (Identity a) | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity | |
type Rep (First a) | Since: base-4.7.0.0 |
Defined in Data.Monoid | |
type Rep (Last a) | Since: base-4.7.0.0 |
Defined in Data.Monoid | |
type Rep (Down a) | Since: base-4.12.0.0 |
Defined in GHC.Generics | |
type Rep (First a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup | |
type Rep (Last a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup | |
type Rep (Max a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup | |
type Rep (Min a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup | |
type Rep (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup type Rep (WrappedMonoid m) = D1 ('MetaData "WrappedMonoid" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "WrapMonoid" 'PrefixI 'True) (S1 ('MetaSel ('Just "unwrapMonoid") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 m))) | |
type Rep (Dual a) | Since: base-4.7.0.0 |
Defined in Data.Semigroup.Internal | |
type Rep (Endo a) | Since: base-4.7.0.0 |
Defined in Data.Semigroup.Internal | |
type Rep (Product a) | Since: base-4.7.0.0 |
Defined in Data.Semigroup.Internal | |
type Rep (Sum a) | Since: base-4.7.0.0 |
Defined in Data.Semigroup.Internal | |
type Rep (NonEmpty a) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep (NonEmpty a) = D1 ('MetaData "NonEmpty" "GHC.Base" "base" 'False) (C1 ('MetaCons ":|" ('InfixI 'RightAssociative 5) 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [a]))) | |
type Rep (Par1 p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
type Rep (SCC vertex) | Since: containers-0.5.9 |
Defined in Data.Graph type Rep (SCC vertex) = D1 ('MetaData "SCC" "Data.Graph" "containers-0.6.8-inplace" 'False) (C1 ('MetaCons "AcyclicSCC" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 vertex)) :+: C1 ('MetaCons "CyclicSCC" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [vertex]))) | |
type Rep (Digit a) | Since: containers-0.6.1 |
Defined in Data.Sequence.Internal type Rep (Digit a) = D1 ('MetaData "Digit" "Data.Sequence.Internal" "containers-0.6.8-inplace" 'False) ((C1 ('MetaCons "One" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :+: C1 ('MetaCons "Two" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a))) :+: (C1 ('MetaCons "Three" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a))) :+: C1 ('MetaCons "Four" 'PrefixI 'False) ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a))))) | |
type Rep (Elem a) | Since: containers-0.6.1 |
Defined in Data.Sequence.Internal | |
type Rep (FingerTree a) | Since: containers-0.6.1 |
Defined in Data.Sequence.Internal type Rep (FingerTree a) = D1 ('MetaData "FingerTree" "Data.Sequence.Internal" "containers-0.6.8-inplace" 'False) (C1 ('MetaCons "EmptyT" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "Single" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :+: C1 ('MetaCons "Deep" 'PrefixI 'False) ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'SourceUnpack 'SourceStrict 'DecidedUnpack) (Rec0 Int) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'SourceStrict 'DecidedStrict) (Rec0 (Digit a))) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (FingerTree (Node a))) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'SourceStrict 'DecidedStrict) (Rec0 (Digit a)))))) | |
type Rep (Node a) | Since: containers-0.6.1 |
Defined in Data.Sequence.Internal type Rep (Node a) = D1 ('MetaData "Node" "Data.Sequence.Internal" "containers-0.6.8-inplace" 'False) (C1 ('MetaCons "Node2" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'SourceUnpack 'SourceStrict 'DecidedUnpack) (Rec0 Int) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a))) :+: C1 ('MetaCons "Node3" 'PrefixI 'False) ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'SourceUnpack 'SourceStrict 'DecidedUnpack) (Rec0 Int) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))) | |
type Rep (ViewL a) | Since: containers-0.5.8 |
Defined in Data.Sequence.Internal type Rep (ViewL a) = D1 ('MetaData "ViewL" "Data.Sequence.Internal" "containers-0.6.8-inplace" 'False) (C1 ('MetaCons "EmptyL" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons ":<" ('InfixI 'RightAssociative 5) 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Seq a)))) | |
type Rep (ViewR a) | Since: containers-0.5.8 |
Defined in Data.Sequence.Internal type Rep (ViewR a) = D1 ('MetaData "ViewR" "Data.Sequence.Internal" "containers-0.6.8-inplace" 'False) (C1 ('MetaCons "EmptyR" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons ":>" ('InfixI 'LeftAssociative 5) 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Seq a)) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a))) | |
type Rep (Tree a) | Since: containers-0.5.8 |
Defined in Data.Tree type Rep (Tree a) = D1 ('MetaData "Tree" "Data.Tree" "containers-0.6.8-inplace" 'False) (C1 ('MetaCons "Node" 'PrefixI 'True) (S1 ('MetaSel ('Just "rootLabel") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: S1 ('MetaSel ('Just "subForest") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Tree a]))) | |
type Rep (Doc a) | |
Defined in Text.PrettyPrint.Annotated.HughesPJ type Rep (Doc a) = D1 ('MetaData "Doc" "Text.PrettyPrint.Annotated.HughesPJ" "pretty-1.1.3.6-inplace" 'False) (((C1 ('MetaCons "Empty" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "NilAbove" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Doc a)))) :+: (C1 ('MetaCons "TextBeside" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'SourceStrict 'DecidedStrict) (Rec0 (AnnotDetails a)) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Doc a))) :+: C1 ('MetaCons "Nest" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'SourceUnpack 'SourceStrict 'DecidedUnpack) (Rec0 Int) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Doc a))))) :+: ((C1 ('MetaCons "Union" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Doc a)) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Doc a))) :+: C1 ('MetaCons "NoDoc" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "Beside" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Doc a)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Doc a)))) :+: C1 ('MetaCons "Above" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Doc a)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Doc a))))))) | |
type Rep (TyVarBndr flag) | |
Defined in Language.Haskell.TH.Syntax type Rep (TyVarBndr flag) = D1 ('MetaData "TyVarBndr" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "PlainTV" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 flag)) :+: C1 ('MetaCons "KindedTV" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 flag) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Kind)))) | |
type Rep (Maybe a) | Since: base-4.6.0.0 |
Defined in GHC.Generics | |
type Rep (Solo a) | Since: base-4.15 |
Defined in GHC.Generics | |
type Rep [a] | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep [a] = D1 ('MetaData "List" "GHC.Types" "ghc-prim" 'False) (C1 ('MetaCons "[]" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons ":" ('InfixI 'RightAssociative 5) 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [a]))) | |
type Rep (WrappedMonad m a) | Since: base-4.7.0.0 |
Defined in Control.Applicative type Rep (WrappedMonad m a) = D1 ('MetaData "WrappedMonad" "Control.Applicative" "base" 'True) (C1 ('MetaCons "WrapMonad" 'PrefixI 'True) (S1 ('MetaSel ('Just "unwrapMonad") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (m a)))) | |
type Rep (Either a b) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep (Either a b) = D1 ('MetaData "Either" "Data.Either" "base" 'False) (C1 ('MetaCons "Left" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :+: C1 ('MetaCons "Right" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b))) | |
type Rep (Proxy t) | Since: base-4.6.0.0 |
type Rep (Arg a b) | Since: base-4.9.0.0 |
Defined in Data.Semigroup type Rep (Arg a b) = D1 ('MetaData "Arg" "Data.Semigroup" "base" 'False) (C1 ('MetaCons "Arg" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b))) | |
type Rep (U1 p) | Since: base-4.7.0.0 |
type Rep (V1 p) | Since: base-4.9.0.0 |
type Rep (Lift f a) | |
Defined in Control.Applicative.Lift type Rep (Lift f a) = D1 ('MetaData "Lift" "Control.Applicative.Lift" "transformers-0.6.1.0-inplace" 'False) (C1 ('MetaCons "Pure" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :+: C1 ('MetaCons "Other" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (f a)))) | |
type Rep (MaybeT m a) | |
Defined in Control.Monad.Trans.Maybe | |
type Rep (a, b) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep (a, b) = D1 ('MetaData "Tuple2" "GHC.Tuple.Prim" "ghc-prim" 'False) (C1 ('MetaCons "(,)" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b))) | |
type Rep (WrappedArrow a b c) | Since: base-4.7.0.0 |
Defined in Control.Applicative type Rep (WrappedArrow a b c) = D1 ('MetaData "WrappedArrow" "Control.Applicative" "base" 'True) (C1 ('MetaCons "WrapArrow" 'PrefixI 'True) (S1 ('MetaSel ('Just "unwrapArrow") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (a b c)))) | |
type Rep (Kleisli m a b) | Since: base-4.14.0.0 |
Defined in Control.Arrow | |
type Rep (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
type Rep (Ap f a) | Since: base-4.12.0.0 |
Defined in Data.Monoid | |
type Rep (Alt f a) | Since: base-4.8.0.0 |
Defined in Data.Semigroup.Internal | |
type Rep (Rec1 f p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
type Rep (URec (Ptr ()) p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (URec Char p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (URec Double p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (URec Float p) | |
Defined in GHC.Generics | |
type Rep (URec Int p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (URec Word p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (Backwards f a) | |
Defined in Control.Applicative.Backwards | |
type Rep (AccumT w m a) | |
Defined in Control.Monad.Trans.Accum | |
type Rep (ExceptT e m a) | |
Defined in Control.Monad.Trans.Except | |
type Rep (IdentityT f a) | |
Defined in Control.Monad.Trans.Identity | |
type Rep (ReaderT r m a) | |
Defined in Control.Monad.Trans.Reader | |
type Rep (SelectT r m a) | |
Defined in Control.Monad.Trans.Select | |
type Rep (StateT s m a) | |
Defined in Control.Monad.Trans.State.Lazy | |
type Rep (StateT s m a) | |
Defined in Control.Monad.Trans.State.Strict | |
type Rep (WriterT w m a) | |
Defined in Control.Monad.Trans.Writer.CPS | |
type Rep (WriterT w m a) | |
Defined in Control.Monad.Trans.Writer.Lazy | |
type Rep (WriterT w m a) | |
Defined in Control.Monad.Trans.Writer.Strict | |
type Rep (Constant a b) | |
Defined in Data.Functor.Constant | |
type Rep (Reverse f a) | |
Defined in Data.Functor.Reverse | |
type Rep (a, b, c) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep (a, b, c) = D1 ('MetaData "Tuple3" "GHC.Tuple.Prim" "ghc-prim" 'False) (C1 ('MetaCons "(,,)" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 c)))) | |
type Rep (Product f g a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product type Rep (Product f g a) = D1 ('MetaData "Product" "Data.Functor.Product" "base" 'False) (C1 ('MetaCons "Pair" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (f a)) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (g a)))) | |
type Rep (Sum f g a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Sum type Rep (Sum f g a) = D1 ('MetaData "Sum" "Data.Functor.Sum" "base" 'False) (C1 ('MetaCons "InL" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (f a))) :+: C1 ('MetaCons "InR" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (g a)))) | |
type Rep ((f :*: g) p) | Since: base-4.7.0.0 |
Defined in GHC.Generics type Rep ((f :*: g) p) = D1 ('MetaData ":*:" "GHC.Generics" "base" 'False) (C1 ('MetaCons ":*:" ('InfixI 'RightAssociative 6) 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (f p)) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (g p)))) | |
type Rep ((f :+: g) p) | Since: base-4.7.0.0 |
Defined in GHC.Generics type Rep ((f :+: g) p) = D1 ('MetaData ":+:" "GHC.Generics" "base" 'False) (C1 ('MetaCons "L1" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (f p))) :+: C1 ('MetaCons "R1" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (g p)))) | |
type Rep (K1 i c p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
type Rep (ContT r m a) | |
Defined in Control.Monad.Trans.Cont | |
type Rep (a, b, c, d) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep (a, b, c, d) = D1 ('MetaData "Tuple4" "GHC.Tuple.Prim" "ghc-prim" 'False) (C1 ('MetaCons "(,,,)" 'PrefixI 'False) ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 c) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 d)))) | |
type Rep (Compose f g a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose | |
type Rep ((f :.: g) p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
type Rep (M1 i c f p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
type Rep (RWST r w s m a) | |
Defined in Control.Monad.Trans.RWS.CPS | |
type Rep (RWST r w s m a) | |
Defined in Control.Monad.Trans.RWS.Lazy | |
type Rep (RWST r w s m a) | |
Defined in Control.Monad.Trans.RWS.Strict | |
type Rep (a, b, c, d, e) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep (a, b, c, d, e) = D1 ('MetaData "Tuple5" "GHC.Tuple.Prim" "ghc-prim" 'False) (C1 ('MetaCons "(,,,,)" 'PrefixI 'False) ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 c) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 d) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 e))))) | |
type Rep (a, b, c, d, e, f) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep (a, b, c, d, e, f) = D1 ('MetaData "Tuple6" "GHC.Tuple.Prim" "ghc-prim" 'False) (C1 ('MetaCons "(,,,,,)" 'PrefixI 'False) ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 c))) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 d) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 e) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 f))))) | |
type Rep (a, b, c, d, e, f, g) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep (a, b, c, d, e, f, g) = D1 ('MetaData "Tuple7" "GHC.Tuple.Prim" "ghc-prim" 'False) (C1 ('MetaCons "(,,,,,,)" 'PrefixI 'False) ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 c))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 d) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 e)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 f) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 g))))) | |
type Rep (a, b, c, d, e, f, g, h) | Since: base-4.16.0.0 |
Defined in GHC.Generics type Rep (a, b, c, d, e, f, g, h) = D1 ('MetaData "Tuple8" "GHC.Tuple.Prim" "ghc-prim" 'False) (C1 ('MetaCons "(,,,,,,,)" 'PrefixI 'False) (((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 c) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 d))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 e) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 f)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 g) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 h))))) | |
type Rep (a, b, c, d, e, f, g, h, i) | Since: base-4.16.0.0 |
Defined in GHC.Generics type Rep (a, b, c, d, e, f, g, h, i) = D1 ('MetaData "Tuple9" "GHC.Tuple.Prim" "ghc-prim" 'False) (C1 ('MetaCons "(,,,,,,,,)" 'PrefixI 'False) (((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 c) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 d))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 e) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 f)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 g) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 h) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 i)))))) | |
type Rep (a, b, c, d, e, f, g, h, i, j) | Since: base-4.16.0.0 |
Defined in GHC.Generics type Rep (a, b, c, d, e, f, g, h, i, j) = D1 ('MetaData "Tuple10" "GHC.Tuple.Prim" "ghc-prim" 'False) (C1 ('MetaCons "(,,,,,,,,,)" 'PrefixI 'False) (((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 c) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 d) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 e)))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 f) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 g)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 h) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 i) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 j)))))) | |
type Rep (a, b, c, d, e, f, g, h, i, j, k) | Since: base-4.16.0.0 |
Defined in GHC.Generics type Rep (a, b, c, d, e, f, g, h, i, j, k) = D1 ('MetaData "Tuple11" "GHC.Tuple.Prim" "ghc-prim" 'False) (C1 ('MetaCons "(,,,,,,,,,,)" 'PrefixI 'False) (((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 c) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 d) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 e)))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 f) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 g) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 h))) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 i) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 j) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 k)))))) | |
type Rep (a, b, c, d, e, f, g, h, i, j, k, l) | Since: base-4.16.0.0 |
Defined in GHC.Generics type Rep (a, b, c, d, e, f, g, h, i, j, k, l) = D1 ('MetaData "Tuple12" "GHC.Tuple.Prim" "ghc-prim" 'False) (C1 ('MetaCons "(,,,,,,,,,,,)" 'PrefixI 'False) (((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 c))) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 d) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 e) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 f)))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 g) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 h) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 i))) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 j) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 k) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 l)))))) | |
type Rep (a, b, c, d, e, f, g, h, i, j, k, l, m) | Since: base-4.16.0.0 |
Defined in GHC.Generics type Rep (a, b, c, d, e, f, g, h, i, j, k, l, m) = D1 ('MetaData "Tuple13" "GHC.Tuple.Prim" "ghc-prim" 'False) (C1 ('MetaCons "(,,,,,,,,,,,,)" 'PrefixI 'False) (((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 c))) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 d) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 e) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 f)))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 g) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 h) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 i))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 j) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 k)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 l) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 m)))))) | |
type Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | Since: base-4.16.0.0 |
Defined in GHC.Generics type Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n) = D1 ('MetaData "Tuple14" "GHC.Tuple.Prim" "ghc-prim" 'False) (C1 ('MetaCons "(,,,,,,,,,,,,,)" 'PrefixI 'False) (((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 c))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 d) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 e)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 f) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 g)))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 h) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 i) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 j))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 k) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 l)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 m) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 n)))))) | |
type Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | Since: base-4.16.0.0 |
Defined in GHC.Generics type Rep (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) = D1 ('MetaData "Tuple15" "GHC.Tuple.Prim" "ghc-prim" 'False) (C1 ('MetaCons "(,,,,,,,,,,,,,,)" 'PrefixI 'False) (((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 c))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 d) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 e)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 f) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 g)))) :*: (((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 h) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 i)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 j) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 k))) :*: ((S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 l) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 m)) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 n) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 o)))))) |
Constants of unlifted kinds
Since: base-4.9.0.0
Instances
GEq1 v (UAddr :: Type -> Type) | |||||
GEq1 v (UChar :: Type -> Type) | |||||
GEq1 v (UDouble :: Type -> Type) | |||||
GEq1 v (UFloat :: Type -> Type) | |||||
GEq1 v (UInt :: Type -> Type) | |||||
GEq1 v (UWord :: Type -> Type) | |||||
GOrd1 v (UAddr :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
GOrd1 v (UChar :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
GOrd1 v (UDouble :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
GOrd1 v (UFloat :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
GOrd1 v (UInt :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
GOrd1 v (UWord :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
GShow1Con v (UChar :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
GShow1Con v (UDouble :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
GShow1Con v (UFloat :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
GShow1Con v (UInt :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
GShow1Con v (UWord :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
Generic1 (URec (Ptr ()) :: k -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic1 (URec Char :: k -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic1 (URec Double :: k -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic1 (URec Float :: k -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic1 (URec Int :: k -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic1 (URec Word :: k -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
GNFData arity (URec a :: Type -> Type) | |||||
Defined in Control.DeepSeq | |||||
Foldable (UAddr :: Type -> Type) | Since: base-4.9.0.0 | ||||
Defined in Data.Foldable Methods fold :: Monoid m => UAddr m -> m # foldMap :: Monoid m => (a -> m) -> UAddr a -> m # foldMap' :: Monoid m => (a -> m) -> UAddr a -> m # foldr :: (a -> b -> b) -> b -> UAddr a -> b # foldr' :: (a -> b -> b) -> b -> UAddr a -> b # foldl :: (b -> a -> b) -> b -> UAddr a -> b # foldl' :: (b -> a -> b) -> b -> UAddr a -> b # foldr1 :: (a -> a -> a) -> UAddr a -> a # foldl1 :: (a -> a -> a) -> UAddr a -> a # elem :: Eq a => a -> UAddr a -> Bool # maximum :: Ord a => UAddr a -> a # minimum :: Ord a => UAddr a -> a # | |||||
Foldable (UChar :: Type -> Type) | Since: base-4.9.0.0 | ||||
Defined in Data.Foldable Methods fold :: Monoid m => UChar m -> m # foldMap :: Monoid m => (a -> m) -> UChar a -> m # foldMap' :: Monoid m => (a -> m) -> UChar a -> m # foldr :: (a -> b -> b) -> b -> UChar a -> b # foldr' :: (a -> b -> b) -> b -> UChar a -> b # foldl :: (b -> a -> b) -> b -> UChar a -> b # foldl' :: (b -> a -> b) -> b -> UChar a -> b # foldr1 :: (a -> a -> a) -> UChar a -> a # foldl1 :: (a -> a -> a) -> UChar a -> a # elem :: Eq a => a -> UChar a -> Bool # maximum :: Ord a => UChar a -> a # minimum :: Ord a => UChar a -> a # | |||||
Foldable (UDouble :: Type -> Type) | Since: base-4.9.0.0 | ||||
Defined in Data.Foldable Methods fold :: Monoid m => UDouble m -> m # foldMap :: Monoid m => (a -> m) -> UDouble a -> m # foldMap' :: Monoid m => (a -> m) -> UDouble a -> m # foldr :: (a -> b -> b) -> b -> UDouble a -> b # foldr' :: (a -> b -> b) -> b -> UDouble a -> b # foldl :: (b -> a -> b) -> b -> UDouble a -> b # foldl' :: (b -> a -> b) -> b -> UDouble a -> b # foldr1 :: (a -> a -> a) -> UDouble a -> a # foldl1 :: (a -> a -> a) -> UDouble a -> a # elem :: Eq a => a -> UDouble a -> Bool # maximum :: Ord a => UDouble a -> a # minimum :: Ord a => UDouble a -> a # | |||||
Foldable (UFloat :: Type -> Type) | Since: base-4.9.0.0 | ||||
Defined in Data.Foldable Methods fold :: Monoid m => UFloat m -> m # foldMap :: Monoid m => (a -> m) -> UFloat a -> m # foldMap' :: Monoid m => (a -> m) -> UFloat a -> m # foldr :: (a -> b -> b) -> b -> UFloat a -> b # foldr' :: (a -> b -> b) -> b -> UFloat a -> b # foldl :: (b -> a -> b) -> b -> UFloat a -> b # foldl' :: (b -> a -> b) -> b -> UFloat a -> b # foldr1 :: (a -> a -> a) -> UFloat a -> a # foldl1 :: (a -> a -> a) -> UFloat a -> a # elem :: Eq a => a -> UFloat a -> Bool # maximum :: Ord a => UFloat a -> a # minimum :: Ord a => UFloat a -> a # | |||||
Foldable (UInt :: Type -> Type) | Since: base-4.9.0.0 | ||||
Defined in Data.Foldable Methods fold :: Monoid m => UInt m -> m # foldMap :: Monoid m => (a -> m) -> UInt a -> m # foldMap' :: Monoid m => (a -> m) -> UInt a -> m # foldr :: (a -> b -> b) -> b -> UInt a -> b # foldr' :: (a -> b -> b) -> b -> UInt a -> b # foldl :: (b -> a -> b) -> b -> UInt a -> b # foldl' :: (b -> a -> b) -> b -> UInt a -> b # foldr1 :: (a -> a -> a) -> UInt a -> a # foldl1 :: (a -> a -> a) -> UInt a -> a # elem :: Eq a => a -> UInt a -> Bool # maximum :: Ord a => UInt a -> a # | |||||
Foldable (UWord :: Type -> Type) | Since: base-4.9.0.0 | ||||
Defined in Data.Foldable Methods fold :: Monoid m => UWord m -> m # foldMap :: Monoid m => (a -> m) -> UWord a -> m # foldMap' :: Monoid m => (a -> m) -> UWord a -> m # foldr :: (a -> b -> b) -> b -> UWord a -> b # foldr' :: (a -> b -> b) -> b -> UWord a -> b # foldl :: (b -> a -> b) -> b -> UWord a -> b # foldl' :: (b -> a -> b) -> b -> UWord a -> b # foldr1 :: (a -> a -> a) -> UWord a -> a # foldl1 :: (a -> a -> a) -> UWord a -> a # elem :: Eq a => a -> UWord a -> Bool # maximum :: Ord a => UWord a -> a # minimum :: Ord a => UWord a -> a # | |||||
Traversable (UAddr :: Type -> Type) | Since: base-4.9.0.0 | ||||
Traversable (UChar :: Type -> Type) | Since: base-4.9.0.0 | ||||
Traversable (UDouble :: Type -> Type) | Since: base-4.9.0.0 | ||||
Traversable (UFloat :: Type -> Type) | Since: base-4.9.0.0 | ||||
Traversable (UInt :: Type -> Type) | Since: base-4.9.0.0 | ||||
Traversable (UWord :: Type -> Type) | Since: base-4.9.0.0 | ||||
IsNullaryCon (UChar :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal Methods isNullaryCon :: UChar a -> Bool # | |||||
IsNullaryCon (UDouble :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal Methods isNullaryCon :: UDouble a -> Bool # | |||||
IsNullaryCon (UFloat :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal Methods isNullaryCon :: UFloat a -> Bool # | |||||
IsNullaryCon (UInt :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal Methods isNullaryCon :: UInt a -> Bool # | |||||
IsNullaryCon (UWord :: Type -> Type) | |||||
Defined in Data.Functor.Classes.Generic.Internal Methods isNullaryCon :: UWord a -> Bool # | |||||
Functor (URec (Ptr ()) :: Type -> Type) | Since: base-4.9.0.0 | ||||
Functor (URec Char :: Type -> Type) | Since: base-4.9.0.0 | ||||
Functor (URec Double :: Type -> Type) | Since: base-4.9.0.0 | ||||
Functor (URec Float :: Type -> Type) | Since: base-4.9.0.0 | ||||
Functor (URec Int :: Type -> Type) | Since: base-4.9.0.0 | ||||
Functor (URec Word :: Type -> Type) | Since: base-4.9.0.0 | ||||
GEq (UAddr p) | |||||
GEq (UChar p) | |||||
GEq (UDouble p) | |||||
GEq (UFloat p) | |||||
GEq (UInt p) | |||||
GEq (UWord p) | |||||
GOrd (UAddr p) | |||||
GOrd (UChar p) | |||||
GOrd (UDouble p) | |||||
GOrd (UFloat p) | |||||
GOrd (UInt p) | |||||
GOrd (UWord p) | |||||
GShowCon (UChar p) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
GShowCon (UDouble p) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
GShowCon (UFloat p) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
GShowCon (UInt p) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
GShowCon (UWord p) | |||||
Defined in Data.Functor.Classes.Generic.Internal | |||||
Generic (URec (Ptr ()) p) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic (URec Char p) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic (URec Double p) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic (URec Float p) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic (URec Int p) | |||||
Defined in GHC.Generics Associated Types
| |||||
Generic (URec Word p) | |||||
Defined in GHC.Generics Associated Types
| |||||
Show (URec Char p) | Since: base-4.9.0.0 | ||||
Show (URec Double p) | Since: base-4.9.0.0 | ||||
Show (URec Float p) | |||||
Show (URec Int p) | Since: base-4.9.0.0 | ||||
Show (URec Word p) | Since: base-4.9.0.0 | ||||
Eq (URec (Ptr ()) p) | Since: base-4.9.0.0 | ||||
Eq (URec Char p) | Since: base-4.9.0.0 | ||||
Eq (URec Double p) | Since: base-4.9.0.0 | ||||
Eq (URec Float p) | |||||
Eq (URec Int p) | Since: base-4.9.0.0 | ||||
Eq (URec Word p) | Since: base-4.9.0.0 | ||||
Ord (URec (Ptr ()) p) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics Methods compare :: URec (Ptr ()) p -> URec (Ptr ()) p -> Ordering # (<) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (<=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (>) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (>=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # max :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p # min :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p # | |||||
Ord (URec Char p) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
Ord (URec Double p) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics Methods compare :: URec Double p -> URec Double p -> Ordering # (<) :: URec Double p -> URec Double p -> Bool # (<=) :: URec Double p -> URec Double p -> Bool # (>) :: URec Double p -> URec Double p -> Bool # (>=) :: URec Double p -> URec Double p -> Bool # | |||||
Ord (URec Float p) | |||||
Defined in GHC.Generics | |||||
Ord (URec Int p) | Since: base-4.9.0.0 | ||||
Ord (URec Word p) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
data URec Char (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 | ||||
data URec Double (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 | ||||
data URec Float (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 | ||||
data URec Int (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 | ||||
data URec Word (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 | ||||
data URec (Ptr ()) (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 | ||||
type Rep1 (URec (Ptr ()) :: k -> Type) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
type Rep1 (URec Char :: k -> Type) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
type Rep1 (URec Double :: k -> Type) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
type Rep1 (URec Float :: k -> Type) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
type Rep1 (URec Int :: k -> Type) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
type Rep1 (URec Word :: k -> Type) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
type Rep (URec (Ptr ()) p) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
type Rep (URec Char p) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
type Rep (URec Double p) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
type Rep (URec Float p) | |||||
Defined in GHC.Generics | |||||
type Rep (URec Int p) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
type Rep (URec Word p) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics |
This variant of Fixity
appears at the type level.
Since: base-4.9.0.0
Constructors
PrefixI | |
InfixI Associativity Nat |
Instances
SingKind FixityI | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics Associated Types
| |||||
SingI 'PrefixI | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
(SingI a, KnownNat n) => SingI ('InfixI a n :: FixityI) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
type DemoteRep FixityI | |||||
Defined in GHC.Generics | |||||
data Sing (a :: FixityI) | |||||
Defined in GHC.Generics |
data Associativity #
Datatype to represent the associativity of a constructor
Constructors
LeftAssociative | |
RightAssociative | |
NotAssociative |
Instances
Data Associativity | Since: base-4.9.0.0 | ||||
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Associativity -> c Associativity # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Associativity # toConstr :: Associativity -> Constr # dataTypeOf :: Associativity -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Associativity) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Associativity) # gmapT :: (forall b. Data b => b -> b) -> Associativity -> Associativity # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Associativity -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Associativity -> r # gmapQ :: (forall d. Data d => d -> u) -> Associativity -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Associativity -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Associativity -> m Associativity # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Associativity -> m Associativity # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Associativity -> m Associativity # | |||||
Bounded Associativity | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
Enum Associativity | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics Methods succ :: Associativity -> Associativity # pred :: Associativity -> Associativity # toEnum :: Int -> Associativity # fromEnum :: Associativity -> Int # enumFrom :: Associativity -> [Associativity] # enumFromThen :: Associativity -> Associativity -> [Associativity] # enumFromTo :: Associativity -> Associativity -> [Associativity] # enumFromThenTo :: Associativity -> Associativity -> Associativity -> [Associativity] # | |||||
Generic Associativity | |||||
Defined in GHC.Generics Associated Types
| |||||
SingKind Associativity | Since: base-4.0.0.0 | ||||
Defined in GHC.Generics Associated Types
Methods fromSing :: forall (a :: Associativity). Sing a -> DemoteRep Associativity | |||||
Ix Associativity | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics Methods range :: (Associativity, Associativity) -> [Associativity] # index :: (Associativity, Associativity) -> Associativity -> Int # unsafeIndex :: (Associativity, Associativity) -> Associativity -> Int # inRange :: (Associativity, Associativity) -> Associativity -> Bool # rangeSize :: (Associativity, Associativity) -> Int # unsafeRangeSize :: (Associativity, Associativity) -> Int # | |||||
Read Associativity | Since: base-4.6.0.0 | ||||
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS Associativity # readList :: ReadS [Associativity] # | |||||
Show Associativity | Since: base-4.6.0.0 | ||||
Defined in GHC.Generics Methods showsPrec :: Int -> Associativity -> ShowS # show :: Associativity -> String # showList :: [Associativity] -> ShowS # | |||||
Eq Associativity | Since: base-4.6.0.0 | ||||
Defined in GHC.Generics Methods (==) :: Associativity -> Associativity -> Bool # (/=) :: Associativity -> Associativity -> Bool # | |||||
Ord Associativity | Since: base-4.6.0.0 | ||||
Defined in GHC.Generics Methods compare :: Associativity -> Associativity -> Ordering # (<) :: Associativity -> Associativity -> Bool # (<=) :: Associativity -> Associativity -> Bool # (>) :: Associativity -> Associativity -> Bool # (>=) :: Associativity -> Associativity -> Bool # max :: Associativity -> Associativity -> Associativity # min :: Associativity -> Associativity -> Associativity # | |||||
SingI 'LeftAssociative | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics Methods sing :: Sing 'LeftAssociative | |||||
SingI 'NotAssociative | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics Methods sing :: Sing 'NotAssociative | |||||
SingI 'RightAssociative | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics Methods sing :: Sing 'RightAssociative | |||||
type DemoteRep Associativity | |||||
Defined in GHC.Generics | |||||
type Rep Associativity | Since: base-4.7.0.0 | ||||
Defined in GHC.Generics type Rep Associativity = D1 ('MetaData "Associativity" "GHC.Generics" "base" 'False) (C1 ('MetaCons "LeftAssociative" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "RightAssociative" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "NotAssociative" 'PrefixI 'False) (U1 :: Type -> Type))) | |||||
data Sing (a :: Associativity) | |||||
Defined in GHC.Generics data Sing (a :: Associativity) where
|
Datatype to represent metadata associated with a datatype (MetaData
),
constructor (MetaCons
), or field selector (MetaSel
).
- In
MetaData n m p nt
,n
is the datatype's name,m
is the module in which the datatype is defined,p
is the package in which the datatype is defined, andnt
is'True
if the datatype is anewtype
. - In
MetaCons n f s
,n
is the constructor's name,f
is its fixity, ands
is'True
if the constructor contains record selectors. - In
MetaSel mn su ss ds
, if the field uses record syntax, thenmn
isJust
the record name. Otherwise,mn
isNothing
.su
andss
are the field's unpackedness and strictness annotations, andds
is the strictness that GHC infers for the field.
Since: base-4.9.0.0
Constructors
MetaData Symbol Symbol Symbol Bool | |
MetaCons Symbol FixityI Bool | |
MetaSel (Maybe Symbol) SourceUnpackedness SourceStrictness DecidedStrictness |
Instances
(KnownSymbol n, SingI f, SingI r) => Constructor ('MetaCons n f r :: Meta) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
(KnownSymbol n, KnownSymbol m, KnownSymbol p, SingI nt) => Datatype ('MetaData n m p nt :: Meta) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods datatypeName :: forall k1 t (f :: k1 -> Type) (a :: k1). t ('MetaData n m p nt) f a -> [Char] # moduleName :: forall k1 t (f :: k1 -> Type) (a :: k1). t ('MetaData n m p nt) f a -> [Char] # packageName :: forall k1 t (f :: k1 -> Type) (a :: k1). t ('MetaData n m p nt) f a -> [Char] # isNewtype :: forall k1 t (f :: k1 -> Type) (a :: k1). t ('MetaData n m p nt) f a -> Bool # | |
(SingI mn, SingI su, SingI ss, SingI ds) => Selector ('MetaSel mn su ss ds :: Meta) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods selName :: forall k1 t (f :: k1 -> Type) (a :: k1). t ('MetaSel mn su ss ds) f a -> [Char] # selSourceUnpackedness :: forall k1 t (f :: k1 -> Type) (a :: k1). t ('MetaSel mn su ss ds) f a -> SourceUnpackedness # selSourceStrictness :: forall k1 t (f :: k1 -> Type) (a :: k1). t ('MetaSel mn su ss ds) f a -> SourceStrictness # selDecidedStrictness :: forall k1 t (f :: k1 -> Type) (a :: k1). t ('MetaSel mn su ss ds) f a -> DecidedStrictness # |
Datatype to represent the fixity of a constructor. An infix
| declaration directly corresponds to an application of Infix
.
Constructors
Prefix | |
Infix Associativity Int |
Instances
Data Fixity | Since: base-4.9.0.0 | ||||
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Fixity -> c Fixity # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Fixity # toConstr :: Fixity -> Constr # dataTypeOf :: Fixity -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Fixity) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Fixity) # gmapT :: (forall b. Data b => b -> b) -> Fixity -> Fixity # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r # gmapQ :: (forall d. Data d => d -> u) -> Fixity -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Fixity -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # | |||||
Generic Fixity | |||||
Defined in GHC.Generics Associated Types
| |||||
Read Fixity | Since: base-4.6.0.0 | ||||
Show Fixity | Since: base-4.6.0.0 | ||||
Eq Fixity | Since: base-4.6.0.0 | ||||
Ord Fixity | Since: base-4.6.0.0 | ||||
type Rep Fixity | Since: base-4.7.0.0 | ||||
Defined in GHC.Generics type Rep Fixity = D1 ('MetaData "Fixity" "GHC.Generics" "base" 'False) (C1 ('MetaCons "Prefix" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "Infix" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Associativity) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int))) |
ByteString functions
data ByteString #
A space-efficient representation of a Word8
vector, supporting many
efficient operations.
A ByteString
contains 8-bit bytes, or by using the operations from
Data.ByteString.Char8 it can be interpreted as containing 8-bit
characters.
Instances
Data ByteString | |||||
Defined in Data.ByteString.Internal.Type Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ByteString -> c ByteString # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ByteString # toConstr :: ByteString -> Constr # dataTypeOf :: ByteString -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ByteString) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ByteString) # gmapT :: (forall b. Data b => b -> b) -> ByteString -> ByteString # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r # gmapQ :: (forall d. Data d => d -> u) -> ByteString -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ByteString -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # | |||||
IsString ByteString | Beware: | ||||
Defined in Data.ByteString.Internal.Type Methods fromString :: String -> ByteString # | |||||
Monoid ByteString | |||||
Defined in Data.ByteString.Internal.Type Methods mempty :: ByteString # mappend :: ByteString -> ByteString -> ByteString # mconcat :: [ByteString] -> ByteString # | |||||
Semigroup ByteString | |||||
Defined in Data.ByteString.Internal.Type Methods (<>) :: ByteString -> ByteString -> ByteString # sconcat :: NonEmpty ByteString -> ByteString # stimes :: Integral b => b -> ByteString -> ByteString # | |||||
IsList ByteString | Since: bytestring-0.10.12.0 | ||||
Defined in Data.ByteString.Internal.Type Associated Types
Methods fromList :: [Item ByteString] -> ByteString # fromListN :: Int -> [Item ByteString] -> ByteString # toList :: ByteString -> [Item ByteString] # | |||||
Read ByteString | |||||
Defined in Data.ByteString.Internal.Type Methods readsPrec :: Int -> ReadS ByteString # readList :: ReadS [ByteString] # readPrec :: ReadPrec ByteString # readListPrec :: ReadPrec [ByteString] # | |||||
Show ByteString | |||||
Defined in Data.ByteString.Internal.Type Methods showsPrec :: Int -> ByteString -> ShowS # show :: ByteString -> String # showList :: [ByteString] -> ShowS # | |||||
NFData ByteString | |||||
Defined in Data.ByteString.Internal.Type Methods rnf :: ByteString -> () # | |||||
Eq ByteString | |||||
Defined in Data.ByteString.Internal.Type | |||||
Ord ByteString | |||||
Defined in Data.ByteString.Internal.Type Methods compare :: ByteString -> ByteString -> Ordering # (<) :: ByteString -> ByteString -> Bool # (<=) :: ByteString -> ByteString -> Bool # (>) :: ByteString -> ByteString -> Bool # (>=) :: ByteString -> ByteString -> Bool # max :: ByteString -> ByteString -> ByteString # min :: ByteString -> ByteString -> ByteString # | |||||
Hashable ByteString | |||||
Defined in Data.Hashable.Class | |||||
Print ByteString Source # | |||||
Defined in Protolude.Show | |||||
StringConv ByteString ByteString Source # | |||||
Defined in Protolude.Conv Methods strConv :: Leniency -> ByteString -> ByteString Source # | |||||
StringConv ByteString ByteString Source # | |||||
Defined in Protolude.Conv Methods strConv :: Leniency -> ByteString -> ByteString Source # | |||||
StringConv ByteString Text Source # | |||||
Defined in Protolude.Conv | |||||
StringConv ByteString Text Source # | |||||
Defined in Protolude.Conv | |||||
StringConv ByteString String Source # | |||||
Defined in Protolude.Conv | |||||
StringConv ByteString ByteString Source # | |||||
Defined in Protolude.Conv Methods strConv :: Leniency -> ByteString -> ByteString Source # | |||||
StringConv Text ByteString Source # | |||||
Defined in Protolude.Conv | |||||
StringConv Text ByteString Source # | |||||
Defined in Protolude.Conv | |||||
StringConv String ByteString Source # | |||||
Defined in Protolude.Conv | |||||
ConvertText ByteString ByteString Source # | |||||
Defined in Protolude.ConvertText Methods toS :: ByteString -> ByteString Source # | |||||
ConvertText ByteString ByteString Source # | |||||
Defined in Protolude.ConvertText Methods toS :: ByteString -> ByteString Source # | |||||
ConvertText ByteString ByteString Source # | |||||
Defined in Protolude.ConvertText Methods toS :: ByteString -> ByteString Source # | |||||
Lift ByteString | Since: bytestring-0.11.2.0 | ||||
Defined in Data.ByteString.Internal.Type Methods lift :: Quote m => ByteString -> m Exp # liftTyped :: forall (m :: Type -> Type). Quote m => ByteString -> Code m ByteString # | |||||
type Item ByteString | |||||
Defined in Data.ByteString.Internal.Type |
type LByteString = ByteString Source #
Text functions
writeFile :: FilePath -> Text -> IO () #
Write a string to a file. The file is truncated to zero length before writing begins.
A space efficient, packed, unboxed Unicode text type.
Instances
Hashable Text | |
Defined in Data.Hashable.Class | |
Print Text Source # | |
StringConv ByteString Text Source # | |
Defined in Protolude.Conv | |
StringConv ByteString Text Source # | |
Defined in Protolude.Conv | |
StringConv Text ByteString Source # | |
Defined in Protolude.Conv | |
StringConv Text ByteString Source # | |
Defined in Protolude.Conv | |
StringConv Text Text Source # | |
StringConv Text Text Source # | |
StringConv Text String Source # | |
StringConv Text Text Source # | |
StringConv String Text Source # | |
ConvertText Text Text Source # | |
ConvertText Text Text Source # | |
ConvertText Text String Source # | |
ConvertText Text Text Source # | |
ConvertText String Text Source # | |
type Item Text | |
getContents :: IO Text #
Read all user input on stdin
as a single string.
interact :: (Text -> Text) -> IO () #
The interact
function takes a function of type Text -> Text
as its argument. The entire input from the standard input device is
passed to this function as its argument, and the resulting string
is output on the standard output device.
readFile :: FilePath -> IO Text #
The readFile
function reads a file and returns the contents of
the file as a string. The entire file is read strictly, as with
getContents
.
Beware that this function (similarly to readFile
) is locale-dependent.
Unexpected system locale may cause your application to read corrupted data or
throw runtime exceptions about "invalid argument (invalid byte sequence)"
or "invalid argument (invalid character)". This is also slow, because GHC
first converts an entire input to UTF-32, which is afterwards converted to UTF-8.
If your data is UTF-8,
using decodeUtf8
.
readFile
is a much faster and safer alternative.
appendFile :: FilePath -> Text -> IO () #
Write a string to the end of a file.
fromStrict :: StrictText -> LazyText #
encodeUtf8 :: Text -> ByteString #
Encode text using UTF-8 encoding.
decodeUtf8With :: OnDecodeError -> ByteString -> Text #
Decode a ByteString
containing UTF-8 encoded text.
Surrogate code points in replacement character returned by OnDecodeError
will be automatically remapped to the replacement char U+FFFD
.
decodeUtf8 :: ByteString -> Text #
Decode a ByteString
containing UTF-8 encoded text that is known
to be valid.
If the input contains any invalid UTF-8 data, an exception will be
thrown that cannot be caught in pure code. For more control over
the handling of invalid data, use decodeUtf8'
or
decodeUtf8With
.
This is a partial function: it checks that input is a well-formed UTF-8 sequence and copies buffer or throws an error otherwise.
data UnicodeException #
An exception type for representing Unicode encoding errors.
Instances
Exception UnicodeException | |
Defined in Data.Text.Encoding.Error Methods toException :: UnicodeException -> SomeException # | |
Show UnicodeException | |
Defined in Data.Text.Encoding.Error Methods showsPrec :: Int -> UnicodeException -> ShowS # show :: UnicodeException -> String # showList :: [UnicodeException] -> ShowS # | |
NFData UnicodeException | |
Defined in Data.Text.Encoding.Error Methods rnf :: UnicodeException -> () # | |
Eq UnicodeException | |
Defined in Data.Text.Encoding.Error Methods (==) :: UnicodeException -> UnicodeException -> Bool # (/=) :: UnicodeException -> UnicodeException -> Bool # |
type OnDecodeError = OnError Word8 Char #
A handler for a decoding error.
type OnError a b = String -> Maybe a -> Maybe b #
Function type for handling a coding error. It is supplied with two inputs:
- A
String
that describes the error. - The input value that caused the error. If the error arose
because the end of input was reached or could not be identified
precisely, this value will be
Nothing
.
If the handler returns a value wrapped with Just
, that value will
be used in the output as the replacement for the invalid input. If
it returns Nothing
, no value will be used in the output.
Should the handler need to abort processing, it should use error
or throw
an exception (preferably a UnicodeException
). It may
use the description provided to construct a more helpful error
report.
strictDecode :: OnDecodeError #
Throw a UnicodeException
if decoding fails.
lenientDecode :: OnDecodeError #
Replace an invalid input byte with the Unicode replacement character U+FFFD.
decodeUtf8' :: ByteString -> Either UnicodeException Text #
Decode a ByteString
containing UTF-8 encoded text.
If the input contains any invalid UTF-8 data, the relevant exception will be returned, otherwise the decoded text.
Read functions
Parsing of String
s, producing values.
Derived instances of Read
make the following assumptions, which
derived instances of Show
obey:
- If the constructor is defined to be an infix operator, then the
derived
Read
instance will parse only infix applications of the constructor (not the prefix form). - Associativity is not used to reduce the occurrence of parentheses, although precedence may be.
- If the constructor is defined using record syntax, the derived
Read
will parse only the record-syntax form, and furthermore, the fields must be given in the same order as the original declaration. - The derived
Read
instance allows arbitrary Haskell whitespace between tokens of the input string. Extra parentheses are also allowed.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Read
in Haskell 2010 is equivalent to
instance (Read a) => Read (Tree a) where readsPrec d r = readParen (d > app_prec) (\r -> [(Leaf m,t) | ("Leaf",s) <- lex r, (m,t) <- readsPrec (app_prec+1) s]) r ++ readParen (d > up_prec) (\r -> [(u:^:v,w) | (u,s) <- readsPrec (up_prec+1) r, (":^:",t) <- lex s, (v,w) <- readsPrec (up_prec+1) t]) r where app_prec = 10 up_prec = 5
Note that right-associativity of :^:
is unused.
The derived instance in GHC is equivalent to
instance (Read a) => Read (Tree a) where readPrec = parens $ (prec app_prec $ do Ident "Leaf" <- lexP m <- step readPrec return (Leaf m)) +++ (prec up_prec $ do u <- step readPrec Symbol ":^:" <- lexP v <- step readPrec return (u :^: v)) where app_prec = 10 up_prec = 5 readListPrec = readListPrecDefault
Why do both readsPrec
and readPrec
exist, and why does GHC opt to
implement readPrec
in derived Read
instances instead of readsPrec
?
The reason is that readsPrec
is based on the ReadS
type, and although
ReadS
is mentioned in the Haskell 2010 Report, it is not a very efficient
parser data structure.
readPrec
, on the other hand, is based on a much more efficient ReadPrec
datatype (a.k.a "new-style parsers"), but its definition relies on the use
of the RankNTypes
language extension. Therefore, readPrec
(and its
cousin, readListPrec
) are marked as GHC-only. Nevertheless, it is
recommended to use readPrec
instead of readsPrec
whenever possible
for the efficiency improvements it brings.
As mentioned above, derived Read
instances in GHC will implement
readPrec
instead of readsPrec
. The default implementations of
readsPrec
(and its cousin, readList
) will simply use readPrec
under
the hood. If you are writing a Read
instance by hand, it is recommended
to write it like so:
instanceRead
T wherereadPrec
= ...readListPrec
=readListPrecDefault
Instances
Read All | Since: base-2.1 |
Read Any | Since: base-2.1 |
Read Version | Since: base-2.1 |
Read CBool | |
Read CChar | |
Read CClock | |
Read CDouble | |
Read CFloat | |
Read CInt | |
Read CIntMax | |
Read CIntPtr | |
Read CLLong | |
Read CLong | |
Read CPtrdiff | |
Read CSChar | |
Read CSUSeconds | |
Defined in Foreign.C.Types Methods readsPrec :: Int -> ReadS CSUSeconds # readList :: ReadS [CSUSeconds] # readPrec :: ReadPrec CSUSeconds # readListPrec :: ReadPrec [CSUSeconds] # | |
Read CShort | |
Read CSigAtomic | |
Defined in Foreign.C.Types Methods readsPrec :: Int -> ReadS CSigAtomic # readList :: ReadS [CSigAtomic] # readPrec :: ReadPrec CSigAtomic # readListPrec :: ReadPrec [CSigAtomic] # | |
Read CSize | |
Read CTime | |
Read CUChar | |
Read CUInt | |
Read CUIntMax | |
Read CUIntPtr | |
Read CULLong | |
Read CULong | |
Read CUSeconds | |
Read CUShort | |
Read CWchar | |
Read IntPtr | |
Read WordPtr | |
Read Void | Reading a Since: base-4.8.0.0 |
Read ByteOrder | Since: base-4.11.0.0 |
Read Associativity | Since: base-4.6.0.0 |
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS Associativity # readList :: ReadS [Associativity] # | |
Read DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS DecidedStrictness # readList :: ReadS [DecidedStrictness] # | |
Read Fixity | Since: base-4.6.0.0 |
Read SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS SourceStrictness # readList :: ReadS [SourceStrictness] # | |
Read SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS SourceUnpackedness # readList :: ReadS [SourceUnpackedness] # | |
Read SeekMode | Since: base-4.2.0.0 |
Read ExitCode | |
Read BufferMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types Methods readsPrec :: Int -> ReadS BufferMode # readList :: ReadS [BufferMode] # readPrec :: ReadPrec BufferMode # readListPrec :: ReadPrec [BufferMode] # | |
Read Newline | Since: base-4.3.0.0 |
Read NewlineMode | Since: base-4.3.0.0 |
Defined in GHC.IO.Handle.Types Methods readsPrec :: Int -> ReadS NewlineMode # readList :: ReadS [NewlineMode] # readPrec :: ReadPrec NewlineMode # readListPrec :: ReadPrec [NewlineMode] # | |
Read IOMode | Since: base-4.2.0.0 |
Read Int16 | Since: base-2.1 |
Read Int32 | Since: base-2.1 |
Read Int64 | Since: base-2.1 |
Read Int8 | Since: base-2.1 |
Read GCDetails | Since: base-4.10.0.0 |
Read RTSStats | Since: base-4.10.0.0 |
Read SomeChar | |
Read SomeSymbol | Since: base-4.7.0.0 |
Defined in GHC.TypeLits Methods readsPrec :: Int -> ReadS SomeSymbol # readList :: ReadS [SomeSymbol] # readPrec :: ReadPrec SomeSymbol # readListPrec :: ReadPrec [SomeSymbol] # | |
Read SomeNat | Since: base-4.7.0.0 |
Read GeneralCategory | Since: base-2.1 |
Defined in GHC.Read Methods readsPrec :: Int -> ReadS GeneralCategory # readList :: ReadS [GeneralCategory] # | |
Read Word16 | Since: base-2.1 |
Read Word32 | Since: base-2.1 |
Read Word64 | Since: base-2.1 |
Read Word8 | Since: base-2.1 |
Read CBlkCnt | |
Read CBlkSize | |
Read CCc | |
Read CClockId | |
Read CDev | |
Read CFsBlkCnt | |
Read CFsFilCnt | |
Read CGid | |
Read CId | |
Read CIno | |
Read CKey | |
Read CMode | |
Read CNfds | |
Read CNlink | |
Read COff | |
Read CPid | |
Read CRLim | |
Read CSocklen | |
Read CSpeed | |
Read CSsize | |
Read CTcflag | |
Read CUid | |
Read Fd | |
Read Lexeme | Since: base-2.1 |
Read ByteString | |
Defined in Data.ByteString.Internal.Type Methods readsPrec :: Int -> ReadS ByteString # readList :: ReadS [ByteString] # readPrec :: ReadPrec ByteString # readListPrec :: ReadPrec [ByteString] # | |
Read ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods readsPrec :: Int -> ReadS ByteString # readList :: ReadS [ByteString] # readPrec :: ReadPrec ByteString # readListPrec :: ReadPrec [ByteString] # | |
Read ShortByteString | |
Defined in Data.ByteString.Short.Internal Methods readsPrec :: Int -> ReadS ShortByteString # readList :: ReadS [ShortByteString] # | |
Read IntSet | |
Read Ordering | Since: base-2.1 |
Read I8 | |
Read FPFormat | |
Read Integer | Since: base-2.1 |
Read Natural | Since: base-4.8.0.0 |
Read () | Since: base-2.1 |
Read Bool | Since: base-2.1 |
Read Char | Since: base-2.1 |
Read Double | Since: base-2.1 |
Read Float | Since: base-2.1 |
Read Int | Since: base-2.1 |
Read Word | Since: base-4.5.0.0 |
Read a => Read (ZipList a) | Since: base-4.7.0.0 |
Read a => Read (And a) | Since: base-4.16 |
Read a => Read (Iff a) | Since: base-4.16 |
Read a => Read (Ior a) | Since: base-4.16 |
Read a => Read (Xor a) | Since: base-4.16 |
Read a => Read (Complex a) | Since: base-2.1 |
Read a => Read (Identity a) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
Read a => Read (First a) | Since: base-2.1 |
Read a => Read (Last a) | Since: base-2.1 |
Read a => Read (Down a) | This instance would be equivalent to the derived instances of the
Since: base-4.7.0.0 |
Read a => Read (First a) | Since: base-4.9.0.0 |
Read a => Read (Last a) | Since: base-4.9.0.0 |
Read a => Read (Max a) | Since: base-4.9.0.0 |
Read a => Read (Min a) | Since: base-4.9.0.0 |
Read m => Read (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods readsPrec :: Int -> ReadS (WrappedMonoid m) # readList :: ReadS [WrappedMonoid m] # readPrec :: ReadPrec (WrappedMonoid m) # readListPrec :: ReadPrec [WrappedMonoid m] # | |
Read a => Read (Dual a) | Since: base-2.1 |
Read a => Read (Product a) | Since: base-2.1 |
Read a => Read (Sum a) | Since: base-2.1 |
Read a => Read (NonEmpty a) | Since: base-4.11.0.0 |
Read p => Read (Par1 p) | Since: base-4.7.0.0 |
(Integral a, Read a) => Read (Ratio a) | Since: base-2.1 |
Read vertex => Read (SCC vertex) | Since: containers-0.5.9 |
Read e => Read (IntMap e) | |
Read a => Read (Seq a) | |
Read a => Read (ViewL a) | |
Read a => Read (ViewR a) | |
(Read a, Ord a) => Read (Set a) | |
Read a => Read (Tree a) | |
Read a => Read (Maybe a) | Since: base-2.1 |
Read a => Read (Solo a) | Since: base-4.15 |
Read a => Read [a] | Since: base-2.1 |
(Ix ix, Read ix, Read e, IArray UArray e) => Read (UArray ix e) | |
(Read a, Read b) => Read (Either a b) | Since: base-3.0 |
HasResolution a => Read (Fixed a) | Since: base-4.3.0.0 |
Read (Proxy t) | Since: base-4.7.0.0 |
(Read a, Read b) => Read (Arg a b) | Since: base-4.9.0.0 |
(Ix a, Read a, Read b) => Read (Array a b) | Since: base-2.1 |
Read (U1 p) | Since: base-4.9.0.0 |
Read (V1 p) | Since: base-4.9.0.0 |
(Ord k, Read k, Read e) => Read (Map k e) | |
(Read1 f, Read a) => Read (Lift f a) | |
(Read1 m, Read a) => Read (MaybeT m a) | |
(GRead (Rep1 f a), Generic1 f) => Read (FunctorClassesDefault f a) | |
Defined in Data.Functor.Classes.Generic.Internal Methods readsPrec :: Int -> ReadS (FunctorClassesDefault f a) # readList :: ReadS [FunctorClassesDefault f a] # readPrec :: ReadPrec (FunctorClassesDefault f a) # readListPrec :: ReadPrec [FunctorClassesDefault f a] # | |
(Read a, Read b) => Read (a, b) | Since: base-2.1 |
Read a => Read (Const a b) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
Read (f a) => Read (Ap f a) | Since: base-4.12.0.0 |
Read (f a) => Read (Alt f a) | Since: base-4.8.0.0 |
Coercible a b => Read (Coercion a b) | Since: base-4.7.0.0 |
a ~ b => Read (a :~: b) | Since: base-4.7.0.0 |
Read (f p) => Read (Rec1 f p) | Since: base-4.7.0.0 |
(Read1 f, Read a) => Read (Backwards f a) | |
(Read e, Read1 m, Read a) => Read (ExceptT e m a) | |
(Read1 f, Read a) => Read (IdentityT f a) | |
(Read w, Read1 m, Read a) => Read (WriterT w m a) | |
(Read w, Read1 m, Read a) => Read (WriterT w m a) | |
Read a => Read (Constant a b) | |
(Read1 f, Read a) => Read (Reverse f a) | |
(Read a, Read b, Read c) => Read (a, b, c) | Since: base-2.1 |
(Read (f a), Read (g a)) => Read (Product f g a) | Since: base-4.18.0.0 |
(Read (f a), Read (g a)) => Read (Sum f g a) | Since: base-4.18.0.0 |
a ~~ b => Read (a :~~: b) | Since: base-4.10.0.0 |
(Read (f p), Read (g p)) => Read ((f :*: g) p) | Since: base-4.7.0.0 |
(Read (f p), Read (g p)) => Read ((f :+: g) p) | Since: base-4.7.0.0 |
Read c => Read (K1 i c p) | Since: base-4.7.0.0 |
(Read a, Read b, Read c, Read d) => Read (a, b, c, d) | Since: base-2.1 |
Read (f (g a)) => Read (Compose f g a) | Since: base-4.18.0.0 |
Read (f (g p)) => Read ((f :.: g) p) | Since: base-4.7.0.0 |
Read (f p) => Read (M1 i c f p) | Since: base-4.7.0.0 |
(Read a, Read b, Read c, Read d, Read e) => Read (a, b, c, d, e) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f) => Read (a, b, c, d, e, f) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g) => Read (a, b, c, d, e, f, g) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h) => Read (a, b, c, d, e, f, g, h) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i) => Read (a, b, c, d, e, f, g, h, i) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j) => Read (a, b, c, d, e, f, g, h, i, j) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k) => Read (a, b, c, d, e, f, g, h, i, j, k) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l) => Read (a, b, c, d, e, f, g, h, i, j, k, l) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n, Read o) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | Since: base-2.1 |
Defined in GHC.Read |
readMaybe :: (Read b, StringConv a String) => a -> Maybe b Source #
Parse a string using the Read
instance.
Succeeds if there is exactly one valid result.
>>>
readMaybe ("123" :: Text) :: Maybe Int
Just 123
>>>
readMaybe ("hello" :: Text) :: Maybe Int
Nothing
readEither :: (Read a, StringConv String e, StringConv e String) => e -> Either e a Source #
System functions
Haskell defines operations to read and write characters from and to files,
represented by values of type Handle
. Each value of this type is a
handle: a record used by the Haskell run-time system to manage I/O
with file system objects. A handle has at least the following properties:
- whether it manages input or output or both;
- whether it is open, closed or semi-closed;
- whether the object is seekable;
- whether buffering is disabled, or enabled on a line or block basis;
- a buffer (whose length may be zero).
Most handles will also have a current I/O position indicating where the next
input or output operation will occur. A handle is readable if it
manages only input or both input and output; likewise, it is writable if
it manages only output or both input and output. A handle is open when
first allocated.
Once it is closed it can no longer be used for either input or output,
though an implementation cannot re-use its storage while references
remain to it. Handles are in the Show
and Eq
classes. The string
produced by showing a handle is system dependent; it should include
enough information to identify the handle for debugging. A handle is
equal according to ==
only to itself; no attempt
is made to compare the internal state of different handles for equality.
Instances
Computation getArgs
returns a list of the program's command
line arguments (not including the program name).
exitWith :: ExitCode -> IO a #
Computation exitWith
code
throws ExitCode
code
.
Normally this terminates the program, returning code
to the
program's caller.
On program termination, the standard Handle
s stdout
and
stderr
are flushed automatically; any other buffered Handle
s
need to be flushed manually, otherwise the buffered data will be
discarded.
A program that fails in any other way is treated as if it had
called exitFailure
.
A program that terminates successfully without calling exitWith
explicitly is treated as if it had called exitWith
ExitSuccess
.
As an ExitCode
is an Exception
, it can be
caught using the functions of Control.Exception. This means that
cleanup computations added with bracket
(from
Control.Exception) are also executed properly on exitWith
.
Note: in GHC, exitWith
should be called from the main program
thread in order to exit the process. When called from another
thread, exitWith
will throw an ExitCode
as normal, but the
exception will not cause the process itself to exit.
See openFile
Constructors
ReadMode | |
WriteMode | |
AppendMode | |
ReadWriteMode |
File and directory names are values of type String
, whose precise
meaning is operating system dependent. Files can be opened, yielding a
handle which can then be used to operate on the contents of that file.
Defines the exit codes that a program can return.
Constructors
ExitSuccess | indicates successful termination; |
ExitFailure Int | indicates program failure with an exit code. The exact interpretation of the code is operating-system dependent. In particular, some values may be prohibited (e.g. 0 on a POSIX-compliant system). |
Instances
Exception ExitCode | Since: base-4.1.0.0 | ||||
Defined in GHC.IO.Exception Methods toException :: ExitCode -> SomeException # fromException :: SomeException -> Maybe ExitCode # displayException :: ExitCode -> String # | |||||
Generic ExitCode | |||||
Defined in GHC.IO.Exception Associated Types
| |||||
Read ExitCode | |||||
Show ExitCode | |||||
NFData ExitCode | Since: deepseq-1.4.2.0 | ||||
Defined in Control.DeepSeq | |||||
Eq ExitCode | |||||
Ord ExitCode | |||||
Defined in GHC.IO.Exception | |||||
type Rep ExitCode | |||||
Defined in GHC.IO.Exception type Rep ExitCode = D1 ('MetaData "ExitCode" "GHC.IO.Exception" "base" 'False) (C1 ('MetaCons "ExitSuccess" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ExitFailure" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int))) |
exitFailure :: IO a #
The computation exitFailure
is equivalent to
exitWith
(
ExitFailure
exitfail)
,
where exitfail is implementation-dependent.
exitSuccess :: IO a #
The computation exitSuccess
is equivalent to
exitWith
ExitSuccess
, It terminates the program
successfully.
Concurrency functions
module Control.Concurrent.Chan
module Control.Concurrent.MVar
module Control.Concurrent.QSem
module Control.Concurrent.QSemN
newtype Concurrently a #
A value of type Concurrently a
is an IO
operation that can be
composed with other Concurrently
values, using the Applicative
and Alternative
instances.
Calling runConcurrently
on a value of type Concurrently a
will
execute the IO
operations it contains concurrently, before
delivering the result of type a
.
For example
(page1, page2, page3) <- runConcurrently $ (,,) <$> Concurrently (getURL "url1") <*> Concurrently (getURL "url2") <*> Concurrently (getURL "url3")
Constructors
Concurrently | |
Fields
|
Instances
Alternative Concurrently |
|
Defined in Control.Concurrent.Async.Internal Methods empty :: Concurrently a # (<|>) :: Concurrently a -> Concurrently a -> Concurrently a # some :: Concurrently a -> Concurrently [a] # many :: Concurrently a -> Concurrently [a] # | |
Applicative Concurrently | |
Defined in Control.Concurrent.Async.Internal Methods pure :: a -> Concurrently a # (<*>) :: Concurrently (a -> b) -> Concurrently a -> Concurrently b # liftA2 :: (a -> b -> c) -> Concurrently a -> Concurrently b -> Concurrently c # (*>) :: Concurrently a -> Concurrently b -> Concurrently b # (<*) :: Concurrently a -> Concurrently b -> Concurrently a # | |
Functor Concurrently | |
Defined in Control.Concurrent.Async.Internal Methods fmap :: (a -> b) -> Concurrently a -> Concurrently b # (<$) :: a -> Concurrently b -> Concurrently a # | |
(Semigroup a, Monoid a) => Monoid (Concurrently a) | Since: async-2.1.0 |
Defined in Control.Concurrent.Async.Internal Methods mempty :: Concurrently a # mappend :: Concurrently a -> Concurrently a -> Concurrently a # mconcat :: [Concurrently a] -> Concurrently a # | |
Semigroup a => Semigroup (Concurrently a) | Only defined by Since: async-2.1.0 |
Defined in Control.Concurrent.Async.Internal Methods (<>) :: Concurrently a -> Concurrently a -> Concurrently a # sconcat :: NonEmpty (Concurrently a) -> Concurrently a # stimes :: Integral b => b -> Concurrently a -> Concurrently a # |
An asynchronous action spawned by async
or withAsync
.
Asynchronous actions are executed in a separate thread, and
operations are provided for waiting for asynchronous actions to
complete and obtaining their results (see e.g. wait
).
Instances
Functor Async | |
Eq (Async a) | |
Ord (Async a) | |
Defined in Control.Concurrent.Async.Internal | |
Hashable (Async a) | |
Defined in Control.Concurrent.Async.Internal |
withAsync :: IO a -> (Async a -> IO b) -> IO b #
Spawn an asynchronous action in a separate thread, and pass its
Async
handle to the supplied function. When the function returns
or throws an exception, uninterruptibleCancel
is called on the Async
.
withAsync action inner = mask $ \restore -> do a <- async (restore action) restore (inner a) `finally` uninterruptibleCancel a
This is a useful variant of async
that ensures an Async
is
never left running unintentionally.
Note: a reference to the child thread is kept alive until the call
to withAsync
returns, so nesting many withAsync
calls requires
linear memory.
Wait for an asynchronous action to complete, and return its
value. If the asynchronous action threw an exception, then the
exception is re-thrown by wait
.
wait = atomically . waitSTM
waitCatch :: Async a -> IO (Either SomeException a) #
Wait for an asynchronous action to complete, and return either
Left e
if the action raised an exception e
, or Right a
if it
returned a value a
.
waitCatch = atomically . waitCatchSTM
poll :: Async a -> IO (Maybe (Either SomeException a)) #
Check whether an Async
has completed yet. If it has not
completed yet, then the result is Nothing
, otherwise the result
is Just e
where e
is Left x
if the Async
raised an
exception x
, or Right a
if it returned a value a
.
poll = atomically . pollSTM
Cancel an asynchronous action by throwing the AsyncCancelled
exception to it, and waiting for the Async
thread to quit.
Has no effect if the Async
has already completed.
cancel a = throwTo (asyncThreadId a) AsyncCancelled <* waitCatch a
Note that cancel
will not terminate until the thread the Async
refers to has terminated. This means that cancel
will block for
as long said thread blocks when receiving an asynchronous exception.
For example, it could block if:
- It's executing a foreign call, and thus cannot receive the asynchronous exception;
- It's executing some cleanup handler after having received the exception, and the handler is blocking.
cancelWith :: Exception e => Async a -> e -> IO () #
Cancel an asynchronous action by throwing the supplied exception to it.
cancelWith a x = throwTo (asyncThreadId a) x
The notes about the synchronous nature of cancel
also apply to
cancelWith
.
waitAnyCatch :: [Async a] -> IO (Async a, Either SomeException a) #
Wait for any of the supplied asynchronous operations to complete.
The value returned is a pair of the Async
that completed, and the
result that would be returned by wait
on that Async
.
The input list must be non-empty.
If multiple Async
s complete or have completed, then the value
returned corresponds to the first completed Async
in the list.
waitAnyCatchCancel :: [Async a] -> IO (Async a, Either SomeException a) #
Like waitAnyCatch
, but also cancels the other asynchronous
operations as soon as one has completed.
waitAnyCancel :: [Async a] -> IO (Async a, a) #
Like waitAny
, but also cancels the other asynchronous
operations as soon as one has completed.
waitEitherCatch :: Async a -> Async b -> IO (Either (Either SomeException a) (Either SomeException b)) #
Wait for the first of two Async
s to finish.
waitEitherCatchCancel :: Async a -> Async b -> IO (Either (Either SomeException a) (Either SomeException b)) #
Like waitEitherCatch
, but also cancel
s both Async
s before
returning.
waitEither :: Async a -> Async b -> IO (Either a b) #
Wait for the first of two Async
s to finish. If the Async
that finished first raised an exception, then the exception is
re-thrown by waitEither
.
waitEither_ :: Async a -> Async b -> IO () #
Like waitEither
, but the result is ignored.
waitEitherCancel :: Async a -> Async b -> IO (Either a b) #
Like waitEither
, but also cancel
s both Async
s before
returning.
waitBoth :: Async a -> Async b -> IO (a, b) #
Waits for both Async
s to finish, but if either of them throws
an exception before they have both finished, then the exception is
re-thrown by waitBoth
.
Link the given Async
to the current thread, such that if the
Async
raises an exception, that exception will be re-thrown in
the current thread, wrapped in ExceptionInLinkedThread
.
link
ignores AsyncCancelled
exceptions thrown in the other thread,
so that it's safe to cancel
a thread you're linked to. If you want
different behaviour, use linkOnly
.
link2 :: Async a -> Async b -> IO () #
Link two Async
s together, such that if either raises an
exception, the same exception is re-thrown in the other Async
,
wrapped in ExceptionInLinkedThread
.
link2
ignores AsyncCancelled
exceptions, so that it's possible
to cancel
either thread without cancelling the other. If you
want different behaviour, use link2Only
.
race :: IO a -> IO b -> IO (Either a b) #
Run two IO
actions concurrently, and return the first to
finish. The loser of the race is cancel
led.
race left right = withAsync left $ \a -> withAsync right $ \b -> waitEither a b
concurrently :: IO a -> IO b -> IO (a, b) #
Run two IO
actions concurrently, and return both results. If
either action throws an exception at any time, then the other
action is cancel
led, and the exception is re-thrown by
concurrently
.
concurrently left right = withAsync left $ \a -> withAsync right $ \b -> waitBoth a b
A ThreadId
is an abstract type representing a handle to a thread.
ThreadId
is an instance of Eq
, Ord
and Show
, where
the Ord
instance implements an arbitrary total ordering over
ThreadId
s. The Show
instance lets you convert an arbitrary-valued
ThreadId
to string form; showing a ThreadId
value is occasionally
useful when debugging or diagnosing the behaviour of a concurrent
program.
Note: in GHC, if you have a ThreadId
, you essentially have
a pointer to the thread itself. This means the thread itself can't be
garbage collected until you drop the ThreadId
. This misfeature would
be difficult to correct while continuing to support threadStatus
.
Instances
Show ThreadId | Since: base-4.2.0.0 |
NFData ThreadId | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
Eq ThreadId | Since: base-4.2.0.0 |
Ord ThreadId | Since: base-4.2.0.0 |
Defined in GHC.Conc.Sync | |
Hashable ThreadId | |
Defined in Data.Hashable.Class |
forkIO :: IO () -> IO ThreadId #
Creates a new thread to run the IO
computation passed as the
first argument, and returns the ThreadId
of the newly created
thread.
The new thread will be a lightweight, unbound thread. Foreign calls
made by this thread are not guaranteed to be made by any particular OS
thread; if you need foreign calls to be made by a particular OS
thread, then use forkOS
instead.
The new thread inherits the masked state of the parent (see
mask
).
The newly created thread has an exception handler that discards the
exceptions BlockedIndefinitelyOnMVar
, BlockedIndefinitelyOnSTM
, and
ThreadKilled
, and passes all other exceptions to the uncaught
exception handler.
WARNING: Exceptions in the new thread will not be rethrown in the thread that created it. This means that you might be completely unaware of the problem if/when this happens. You may want to use the async library instead.
forkOS :: IO () -> IO ThreadId #
Like forkIO
, this sparks off a new thread to run the IO
computation passed as the first argument, and returns the ThreadId
of the newly created thread.
However, forkOS
creates a bound thread, which is necessary if you
need to call foreign (non-Haskell) libraries that make use of
thread-local state, such as OpenGL (see Control.Concurrent).
Using forkOS
instead of forkIO
makes no difference at all to the
scheduling behaviour of the Haskell runtime system. It is a common
misconception that you need to use forkOS
instead of forkIO
to
avoid blocking all the Haskell threads when making a foreign call;
this isn't the case. To allow foreign calls to be made without
blocking all the Haskell threads (with GHC), it is only necessary to
use the -threaded
option when linking your program, and to make sure
the foreign import is not marked unsafe
.
forkOn :: Int -> IO () -> IO ThreadId #
Like forkIO
, but lets you specify on which capability the thread
should run. Unlike a forkIO
thread, a thread created by forkOn
will stay on the same capability for its entire lifetime (forkIO
threads can migrate between capabilities according to the scheduling
policy). forkOn
is useful for overriding the scheduling policy when
you know in advance how best to distribute the threads.
The Int
argument specifies a capability number (see
getNumCapabilities
). Typically capabilities correspond to physical
processors, but the exact behaviour is implementation-dependent. The
value passed to forkOn
is interpreted modulo the total number of
capabilities as returned by getNumCapabilities
.
GHC note: the number of capabilities is specified by the +RTS -N
option when the program is started. Capabilities can be fixed to
actual processor cores with +RTS -qa
if the underlying operating
system supports that, although in practice this is usually unnecessary
(and may actually degrade performance in some cases - experimentation
is recommended).
Since: base-4.4.0.0
forkIOWithUnmask :: ((forall a. IO a -> IO a) -> IO ()) -> IO ThreadId #
Like forkIO
, but the child thread is passed a function that can
be used to unmask asynchronous exceptions. This function is
typically used in the following way
... mask_ $ forkIOWithUnmask $ \unmask -> catch (unmask ...) handler
so that the exception handler in the child thread is established with asynchronous exceptions masked, meanwhile the main body of the child thread is executed in the unmasked state.
Note that the unmask function passed to the child thread should only be used in that thread; the behaviour is undefined if it is invoked in a different thread.
Since: base-4.4.0.0
forkOnWithUnmask :: Int -> ((forall a. IO a -> IO a) -> IO ()) -> IO ThreadId #
Like forkIOWithUnmask
, but the child thread is pinned to the
given CPU, as with forkOn
.
Since: base-4.4.0.0
killThread :: ThreadId -> IO () #
killThread
raises the ThreadKilled
exception in the given
thread (GHC only).
killThread tid = throwTo tid ThreadKilled
threadDelay :: Int -> IO () #
Suspends the current thread for a given number of microseconds (GHC only).
There is no guarantee that the thread will be rescheduled promptly when the delay has expired, but the thread will never continue to run earlier than specified.
Be careful not to exceed maxBound :: Int
, which on 32-bit machines is only
2147483647 μs, less than 36 minutes.
Consider using Control.Concurrent.Thread.Delay.delay
from unbounded-delays
package.
forkFinally :: IO a -> (Either SomeException a -> IO ()) -> IO ThreadId #
Fork a thread and call the supplied function when the thread is about to terminate, with an exception or a returned value. The function is called with asynchronous exceptions masked.
forkFinally action and_then = mask $ \restore -> forkIO $ try (restore action) >>= and_then
This function is useful for informing the parent when a child terminates, for example.
Since: base-4.6.0.0
myThreadId :: IO ThreadId #
Returns the ThreadId
of the calling thread (GHC only).
getNumCapabilities :: IO Int #
Returns the number of Haskell threads that can run truly
simultaneously (on separate physical processors) at any given time. To change
this value, use setNumCapabilities
.
Since: base-4.4.0.0
setNumCapabilities :: Int -> IO () #
Set the number of Haskell threads that can run truly simultaneously
(on separate physical processors) at any given time. The number
passed to forkOn
is interpreted modulo this value. The initial
value is given by the +RTS -N
runtime flag.
This is also the number of threads that will participate in parallel garbage collection. It is strongly recommended that the number of capabilities is not set larger than the number of physical processor cores, and it may often be beneficial to leave one or more cores free to avoid contention with other processes in the machine.
Since: base-4.5.0.0
The yield
action allows (forces, in a co-operative multitasking
implementation) a context-switch to any other currently runnable
threads (if any), and is occasionally useful when implementing
concurrency abstractions.
threadCapability :: ThreadId -> IO (Int, Bool) #
Returns the number of the capability on which the thread is currently
running, and a boolean indicating whether the thread is locked to
that capability or not. A thread is locked to a capability if it
was created with forkOn
.
Since: base-4.4.0.0
mkWeakThreadId :: ThreadId -> IO (Weak ThreadId) #
Make a weak pointer to a ThreadId
. It can be important to do
this if you want to hold a reference to a ThreadId
while still
allowing the thread to receive the BlockedIndefinitely
family of
exceptions (e.g. BlockedIndefinitelyOnMVar
). Holding a normal
ThreadId
reference will prevent the delivery of
BlockedIndefinitely
exceptions because the reference could be
used as the target of throwTo
at any time, which would unblock
the thread.
Holding a Weak ThreadId
, on the other hand, will not prevent the
thread from receiving BlockedIndefinitely
exceptions. It is
still possible to throw an exception to a Weak ThreadId
, but the
caller must use deRefWeak
first to determine whether the thread
still exists.
Since: base-4.6.0.0
threadWaitRead :: Fd -> IO () #
Block the current thread until data is available to read on the given file descriptor (GHC only).
This will throw an IOError
if the file descriptor was closed
while this thread was blocked. To safely close a file descriptor
that has been used with threadWaitRead
, use
closeFdWith
.
threadWaitWrite :: Fd -> IO () #
Block the current thread until data can be written to the given file descriptor (GHC only).
This will throw an IOError
if the file descriptor was closed
while this thread was blocked. To safely close a file descriptor
that has been used with threadWaitWrite
, use
closeFdWith
.
threadWaitReadSTM :: Fd -> IO (STM (), IO ()) #
Returns an STM action that can be used to wait for data to read from a file descriptor. The second returned value is an IO action that can be used to deregister interest in the file descriptor.
Since: base-4.7.0.0
threadWaitWriteSTM :: Fd -> IO (STM (), IO ()) #
Returns an STM action that can be used to wait until data can be written to a file descriptor. The second returned value is an IO action that can be used to deregister interest in the file descriptor.
Since: base-4.7.0.0
rtsSupportsBoundThreads :: Bool #
True
if bound threads are supported.
If rtsSupportsBoundThreads
is False
, isCurrentThreadBound
will always return False
and both forkOS
and runInBoundThread
will
fail.
forkOSWithUnmask :: ((forall a. IO a -> IO a) -> IO ()) -> IO ThreadId #
Like forkIOWithUnmask
, but the child thread is a bound thread,
as with forkOS
.
isCurrentThreadBound :: IO Bool #
Returns True
if the calling thread is bound, that is, if it is
safe to use foreign libraries that rely on thread-local state from the
calling thread.
runInBoundThread :: IO a -> IO a #
Run the IO
computation passed as the first argument. If the calling thread
is not bound, a bound thread is created temporarily. runInBoundThread
doesn't finish until the IO
computation finishes.
You can wrap a series of foreign function calls that rely on thread-local state
with runInBoundThread
so that you can use them without knowing whether the
current thread is bound.
runInUnboundThread :: IO a -> IO a #
Run the IO
computation passed as the first argument. If the calling thread
is bound, an unbound thread is created temporarily using forkIO
.
runInBoundThread
doesn't finish until the IO
computation finishes.
Use this function only in the rare case that you have actually observed a
performance loss due to the use of bound threads. A program that
doesn't need its main thread to be bound and makes heavy use of concurrency
(e.g. a web server), might want to wrap its main
action in
runInUnboundThread
.
Note that exceptions which are thrown to the current thread are thrown in turn to the thread that is executing the given computation. This ensures there's always a way of killing the forked thread.
Foreign functions
The member functions of this class facilitate writing values of primitive types to raw memory (which may have been allocated with the above mentioned routines) and reading values from blocks of raw memory. The class, furthermore, includes support for computing the storage requirements and alignment restrictions of storable types.
Memory addresses are represented as values of type
, for some
Ptr
aa
which is an instance of class Storable
. The type argument to
Ptr
helps provide some valuable type safety in FFI code (you can't
mix pointers of different types without an explicit cast), while
helping the Haskell type system figure out which marshalling method is
needed for a given pointer.
All marshalling between Haskell and a foreign language ultimately
boils down to translating Haskell data structures into the binary
representation of a corresponding data structure of the foreign
language and vice versa. To code this marshalling in Haskell, it is
necessary to manipulate primitive data types stored in unstructured
memory blocks. The class Storable
facilitates this manipulation on
all types for which it is instantiated, which are the standard basic
types of Haskell, the fixed size Int
types (Int8
, Int16
,
Int32
, Int64
), the fixed size Word
types (Word8
, Word16
,
Word32
, Word64
), StablePtr
, all types from Foreign.C.Types,
as well as Ptr
.
Minimal complete definition
sizeOf, alignment, (peek | peekElemOff | peekByteOff), (poke | pokeElemOff | pokeByteOff)
Instances
Storable CBool | |
Storable CChar | |
Storable CClock | |
Storable CDouble | |
Storable CFloat | |
Storable CInt | |
Defined in Foreign.C.Types | |
Storable CIntMax | |
Storable CIntPtr | |
Storable CLLong | |
Storable CLong | |
Storable CPtrdiff | |
Defined in Foreign.C.Types | |
Storable CSChar | |
Storable CSUSeconds | |
Defined in Foreign.C.Types Methods sizeOf :: CSUSeconds -> Int # alignment :: CSUSeconds -> Int # peekElemOff :: Ptr CSUSeconds -> Int -> IO CSUSeconds # pokeElemOff :: Ptr CSUSeconds -> Int -> CSUSeconds -> IO () # peekByteOff :: Ptr b -> Int -> IO CSUSeconds # pokeByteOff :: Ptr b -> Int -> CSUSeconds -> IO () # peek :: Ptr CSUSeconds -> IO CSUSeconds # poke :: Ptr CSUSeconds -> CSUSeconds -> IO () # | |
Storable CShort | |
Storable CSigAtomic | |
Defined in Foreign.C.Types Methods sizeOf :: CSigAtomic -> Int # alignment :: CSigAtomic -> Int # peekElemOff :: Ptr CSigAtomic -> Int -> IO CSigAtomic # pokeElemOff :: Ptr CSigAtomic -> Int -> CSigAtomic -> IO () # peekByteOff :: Ptr b -> Int -> IO CSigAtomic # pokeByteOff :: Ptr b -> Int -> CSigAtomic -> IO () # peek :: Ptr CSigAtomic -> IO CSigAtomic # poke :: Ptr CSigAtomic -> CSigAtomic -> IO () # | |
Storable CSize | |
Storable CTime | |
Storable CUChar | |
Storable CUInt | |
Storable CUIntMax | |
Defined in Foreign.C.Types | |
Storable CUIntPtr | |
Defined in Foreign.C.Types | |
Storable CULLong | |
Storable CULong | |
Storable CUSeconds | |
Defined in Foreign.C.Types | |
Storable CUShort | |
Storable CWchar | |
Storable IntPtr | |
Storable WordPtr | |
Storable Fingerprint | Since: base-4.4.0.0 |
Defined in Foreign.Storable Methods sizeOf :: Fingerprint -> Int # alignment :: Fingerprint -> Int # peekElemOff :: Ptr Fingerprint -> Int -> IO Fingerprint # pokeElemOff :: Ptr Fingerprint -> Int -> Fingerprint -> IO () # peekByteOff :: Ptr b -> Int -> IO Fingerprint # pokeByteOff :: Ptr b -> Int -> Fingerprint -> IO () # peek :: Ptr Fingerprint -> IO Fingerprint # poke :: Ptr Fingerprint -> Fingerprint -> IO () # | |
Storable Int16 | Since: base-2.1 |
Storable Int32 | Since: base-2.1 |
Storable Int64 | Since: base-2.1 |
Storable Int8 | Since: base-2.1 |
Defined in Foreign.Storable | |
Storable IoSubSystem | Since: base-4.9.0.0 |
Defined in GHC.RTS.Flags Methods sizeOf :: IoSubSystem -> Int # alignment :: IoSubSystem -> Int # peekElemOff :: Ptr IoSubSystem -> Int -> IO IoSubSystem # pokeElemOff :: Ptr IoSubSystem -> Int -> IoSubSystem -> IO () # peekByteOff :: Ptr b -> Int -> IO IoSubSystem # pokeByteOff :: Ptr b -> Int -> IoSubSystem -> IO () # peek :: Ptr IoSubSystem -> IO IoSubSystem # poke :: Ptr IoSubSystem -> IoSubSystem -> IO () # | |
Storable Word16 | Since: base-2.1 |
Storable Word32 | Since: base-2.1 |
Storable Word64 | Since: base-2.1 |
Storable Word8 | Since: base-2.1 |
Storable CBlkCnt | |
Storable CBlkSize | |
Defined in System.Posix.Types | |
Storable CCc | |
Defined in System.Posix.Types | |
Storable CClockId | |
Defined in System.Posix.Types | |
Storable CDev | |
Defined in System.Posix.Types | |
Storable CFsBlkCnt | |
Defined in System.Posix.Types | |
Storable CFsFilCnt | |
Defined in System.Posix.Types | |
Storable CGid | |
Defined in System.Posix.Types | |
Storable CId | |
Defined in System.Posix.Types | |
Storable CIno | |
Defined in System.Posix.Types | |
Storable CKey | |
Defined in System.Posix.Types | |
Storable CMode | |
Storable CNfds | |
Storable CNlink | |
Storable COff | |
Defined in System.Posix.Types | |
Storable CPid | |
Defined in System.Posix.Types | |
Storable CRLim | |
Storable CSocklen | |
Defined in System.Posix.Types | |
Storable CSpeed | |
Storable CSsize | |
Storable CTcflag | |
Storable CTimer | |
Storable CUid | |
Defined in System.Posix.Types | |
Storable Fd | |
Defined in System.Posix.Types | |
Storable () | Since: base-4.9.0.0 |
Defined in Foreign.Storable | |
Storable Bool | Since: base-2.1 |
Defined in Foreign.Storable | |
Storable Char | Since: base-2.1 |
Defined in Foreign.Storable | |
Storable Double | Since: base-2.1 |
Storable Float | Since: base-2.1 |
Storable Int | Since: base-2.1 |
Defined in Foreign.Storable | |
Storable Word | Since: base-2.1 |
Defined in Foreign.Storable | |
Storable a => Storable (Complex a) | Since: base-4.8.0.0 |
Defined in Data.Complex | |
Storable a => Storable (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Identity Methods alignment :: Identity a -> Int # peekElemOff :: Ptr (Identity a) -> Int -> IO (Identity a) # pokeElemOff :: Ptr (Identity a) -> Int -> Identity a -> IO () # peekByteOff :: Ptr b -> Int -> IO (Identity a) # pokeByteOff :: Ptr b -> Int -> Identity a -> IO () # | |
Storable a => Storable (Down a) | Since: base-4.14.0.0 |
Storable (ConstPtr a) | |
Defined in Foreign.Storable Methods alignment :: ConstPtr a -> Int # peekElemOff :: Ptr (ConstPtr a) -> Int -> IO (ConstPtr a) # pokeElemOff :: Ptr (ConstPtr a) -> Int -> ConstPtr a -> IO () # peekByteOff :: Ptr b -> Int -> IO (ConstPtr a) # pokeByteOff :: Ptr b -> Int -> ConstPtr a -> IO () # | |
Storable (FunPtr a) | Since: base-2.1 |
Defined in Foreign.Storable | |
Storable (Ptr a) | Since: base-2.1 |
(Storable a, Integral a) => Storable (Ratio a) | Since: base-4.8.0.0 |
Storable (StablePtr a) | Since: base-2.1 |
Defined in Foreign.Storable Methods sizeOf :: StablePtr a -> Int # alignment :: StablePtr a -> Int # peekElemOff :: Ptr (StablePtr a) -> Int -> IO (StablePtr a) # pokeElemOff :: Ptr (StablePtr a) -> Int -> StablePtr a -> IO () # peekByteOff :: Ptr b -> Int -> IO (StablePtr a) # pokeByteOff :: Ptr b -> Int -> StablePtr a -> IO () # | |
Storable a => Storable (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const |
A stable pointer is a reference to a Haskell expression that is guaranteed not to be affected by garbage collection, i.e., it will neither be deallocated nor will the value of the stable pointer itself change during garbage collection (ordinary references may be relocated during garbage collection). Consequently, stable pointers can be passed to foreign code, which can treat it as an opaque reference to a Haskell value.
The StablePtr
0 is reserved for representing NULL in foreign code.
A value of type StablePtr a
is a stable pointer to a Haskell
expression of type a
.
Instances
IArray UArray (StablePtr a) | |
Defined in Data.Array.Base Methods bounds :: Ix i => UArray i (StablePtr a) -> (i, i) # numElements :: Ix i => UArray i (StablePtr a) -> Int # unsafeArray :: Ix i => (i, i) -> [(Int, StablePtr a)] -> UArray i (StablePtr a) # unsafeAt :: Ix i => UArray i (StablePtr a) -> Int -> StablePtr a # unsafeReplace :: Ix i => UArray i (StablePtr a) -> [(Int, StablePtr a)] -> UArray i (StablePtr a) # unsafeAccum :: Ix i => (StablePtr a -> e' -> StablePtr a) -> UArray i (StablePtr a) -> [(Int, e')] -> UArray i (StablePtr a) # unsafeAccumArray :: Ix i => (StablePtr a -> e' -> StablePtr a) -> StablePtr a -> (i, i) -> [(Int, e')] -> UArray i (StablePtr a) # | |
MArray IOUArray (StablePtr a) IO | |
Defined in Data.Array.IO.Internals Methods getBounds :: Ix i => IOUArray i (StablePtr a) -> IO (i, i) # getNumElements :: Ix i => IOUArray i (StablePtr a) -> IO Int # newArray :: Ix i => (i, i) -> StablePtr a -> IO (IOUArray i (StablePtr a)) # newArray_ :: Ix i => (i, i) -> IO (IOUArray i (StablePtr a)) # unsafeNewArray_ :: Ix i => (i, i) -> IO (IOUArray i (StablePtr a)) # unsafeRead :: Ix i => IOUArray i (StablePtr a) -> Int -> IO (StablePtr a) # unsafeWrite :: Ix i => IOUArray i (StablePtr a) -> Int -> StablePtr a -> IO () # | |
Storable (StablePtr a) | Since: base-2.1 |
Defined in Foreign.Storable Methods sizeOf :: StablePtr a -> Int # alignment :: StablePtr a -> Int # peekElemOff :: Ptr (StablePtr a) -> Int -> IO (StablePtr a) # pokeElemOff :: Ptr (StablePtr a) -> Int -> StablePtr a -> IO () # peekByteOff :: Ptr b -> Int -> IO (StablePtr a) # pokeByteOff :: Ptr b -> Int -> StablePtr a -> IO () # | |
Eq (StablePtr a) | Since: base-2.1 |
MArray (STUArray s) (StablePtr a) (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i (StablePtr a) -> ST s (i, i) # getNumElements :: Ix i => STUArray s i (StablePtr a) -> ST s Int # newArray :: Ix i => (i, i) -> StablePtr a -> ST s (STUArray s i (StablePtr a)) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i (StablePtr a)) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i (StablePtr a)) # unsafeRead :: Ix i => STUArray s i (StablePtr a) -> Int -> ST s (StablePtr a) # unsafeWrite :: Ix i => STUArray s i (StablePtr a) -> Int -> StablePtr a -> ST s () # |
A signed integral type that can be losslessly converted to and from
Ptr
. This type is also compatible with the C99 type intptr_t
, and
can be marshalled to and from that type safely.
Instances
Data IntPtr | Since: base-4.11.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntPtr -> c IntPtr # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c IntPtr # toConstr :: IntPtr -> Constr # dataTypeOf :: IntPtr -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c IntPtr) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c IntPtr) # gmapT :: (forall b. Data b => b -> b) -> IntPtr -> IntPtr # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntPtr -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntPtr -> r # gmapQ :: (forall d. Data d => d -> u) -> IntPtr -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> IntPtr -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntPtr -> m IntPtr # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntPtr -> m IntPtr # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntPtr -> m IntPtr # | |
Storable IntPtr | |
Bits IntPtr | |
Defined in Foreign.Ptr Methods (.&.) :: IntPtr -> IntPtr -> IntPtr # (.|.) :: IntPtr -> IntPtr -> IntPtr # xor :: IntPtr -> IntPtr -> IntPtr # complement :: IntPtr -> IntPtr # shift :: IntPtr -> Int -> IntPtr # rotate :: IntPtr -> Int -> IntPtr # setBit :: IntPtr -> Int -> IntPtr # clearBit :: IntPtr -> Int -> IntPtr # complementBit :: IntPtr -> Int -> IntPtr # testBit :: IntPtr -> Int -> Bool # bitSizeMaybe :: IntPtr -> Maybe Int # shiftL :: IntPtr -> Int -> IntPtr # unsafeShiftL :: IntPtr -> Int -> IntPtr # shiftR :: IntPtr -> Int -> IntPtr # unsafeShiftR :: IntPtr -> Int -> IntPtr # rotateL :: IntPtr -> Int -> IntPtr # | |
FiniteBits IntPtr | |
Defined in Foreign.Ptr Methods finiteBitSize :: IntPtr -> Int # countLeadingZeros :: IntPtr -> Int # countTrailingZeros :: IntPtr -> Int # | |
Bounded IntPtr | |
Enum IntPtr | |
Defined in Foreign.Ptr | |
Ix IntPtr | |
Num IntPtr | |
Read IntPtr | |
Integral IntPtr | |
Defined in Foreign.Ptr | |
Real IntPtr | |
Defined in Foreign.Ptr Methods toRational :: IntPtr -> Rational # | |
Show IntPtr | |
Eq IntPtr | |
Ord IntPtr | |
Hashable IntPtr | |
Defined in Data.Hashable.Class |
An unsigned integral type that can be losslessly converted to and from
Ptr
. This type is also compatible with the C99 type uintptr_t
, and
can be marshalled to and from that type safely.
Instances
Data WordPtr | Since: base-4.11.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> WordPtr -> c WordPtr # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c WordPtr # toConstr :: WordPtr -> Constr # dataTypeOf :: WordPtr -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c WordPtr) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c WordPtr) # gmapT :: (forall b. Data b => b -> b) -> WordPtr -> WordPtr # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WordPtr -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WordPtr -> r # gmapQ :: (forall d. Data d => d -> u) -> WordPtr -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> WordPtr -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> WordPtr -> m WordPtr # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> WordPtr -> m WordPtr # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> WordPtr -> m WordPtr # | |
Storable WordPtr | |
Bits WordPtr | |
Defined in Foreign.Ptr Methods (.&.) :: WordPtr -> WordPtr -> WordPtr # (.|.) :: WordPtr -> WordPtr -> WordPtr # xor :: WordPtr -> WordPtr -> WordPtr # complement :: WordPtr -> WordPtr # shift :: WordPtr -> Int -> WordPtr # rotate :: WordPtr -> Int -> WordPtr # setBit :: WordPtr -> Int -> WordPtr # clearBit :: WordPtr -> Int -> WordPtr # complementBit :: WordPtr -> Int -> WordPtr # testBit :: WordPtr -> Int -> Bool # bitSizeMaybe :: WordPtr -> Maybe Int # shiftL :: WordPtr -> Int -> WordPtr # unsafeShiftL :: WordPtr -> Int -> WordPtr # shiftR :: WordPtr -> Int -> WordPtr # unsafeShiftR :: WordPtr -> Int -> WordPtr # rotateL :: WordPtr -> Int -> WordPtr # | |
FiniteBits WordPtr | |
Defined in Foreign.Ptr Methods finiteBitSize :: WordPtr -> Int # countLeadingZeros :: WordPtr -> Int # countTrailingZeros :: WordPtr -> Int # | |
Bounded WordPtr | |
Enum WordPtr | |
Ix WordPtr | |
Defined in Foreign.Ptr | |
Num WordPtr | |
Read WordPtr | |
Integral WordPtr | |
Defined in Foreign.Ptr | |
Real WordPtr | |
Defined in Foreign.Ptr Methods toRational :: WordPtr -> Rational # | |
Show WordPtr | |
Eq WordPtr | |
Ord WordPtr | |
Hashable WordPtr | |
Defined in Data.Hashable.Class |