Safe Haskell | Trustworthy |
---|---|
Language | Haskell2010 |
Protolude
Contents
- Base functions
- Function functions
- List functions
- Data Structures
- Show functions
- Bool functions
- Monad functions
- Functor functions
- Either functions
- Applicative functions
- String conversion
- Debug functions
- Panic functions
- Exception functions
- Semiring functions
- String functions
- Safe functions
- Eq functions
- Ord functions
- Traversable functions
- Foldable functions
- Semigroup functions
- Monoid functions
- Bifunctor functions
- Bifunctor functions
- Deepseq functions
- Tuple functions
- Typelevel programming
- Monads
- Integers
- Complex functions
- Char functions
- Maybe functions
- Generics functions
- ByteString functions
- Text functions
- Read functions
- System functions
- Concurrency functions
- Foreign functions
Synopsis
- (++) :: [a] -> [a] -> [a]
- seq :: a -> b -> b
- fromIntegral :: (Integral a, Num b) => a -> b
- realToFrac :: (Real a, Fractional b) => a -> b
- class Bounded a where
- class Enum a where
- succ :: a -> a
- pred :: a -> a
- toEnum :: Int -> a
- fromEnum :: a -> Int
- enumFrom :: a -> [a]
- enumFromThen :: a -> a -> [a]
- enumFromTo :: a -> a -> [a]
- enumFromThenTo :: a -> a -> a -> [a]
- class Fractional a => Floating a where
- pi :: a
- exp :: a -> a
- log :: a -> a
- sqrt :: a -> a
- (**) :: a -> a -> a
- logBase :: a -> a -> a
- sin :: a -> a
- cos :: a -> a
- tan :: a -> a
- asin :: a -> a
- acos :: a -> a
- atan :: a -> a
- sinh :: a -> a
- cosh :: a -> a
- tanh :: a -> a
- asinh :: a -> a
- acosh :: a -> a
- atanh :: a -> a
- log1p :: a -> a
- expm1 :: a -> a
- log1pexp :: a -> a
- log1mexp :: a -> a
- class Num a => Fractional a where
- (/) :: a -> a -> a
- recip :: a -> a
- fromRational :: Rational -> a
- class (Real a, Enum a) => Integral a where
- class Num a where
- class (Num a, Ord a) => Real a where
- toRational :: a -> Rational
- class (RealFrac a, Floating a) => RealFloat a where
- floatRadix :: a -> Integer
- floatDigits :: a -> Int
- floatRange :: a -> (Int, Int)
- decodeFloat :: a -> (Integer, Int)
- encodeFloat :: Integer -> Int -> a
- exponent :: a -> Int
- significand :: a -> a
- scaleFloat :: Int -> a -> a
- isNaN :: a -> Bool
- isInfinite :: a -> Bool
- isDenormalized :: a -> Bool
- isNegativeZero :: a -> Bool
- isIEEE :: a -> Bool
- atan2 :: a -> a -> a
- class (Real a, Fractional a) => RealFrac a where
- class Show a
- class KnownNat (n :: Nat)
- class KnownSymbol (n :: Symbol)
- class IsLabel (x :: Symbol) a where
- fromLabel :: a
- class HasField (x :: k) r a | x r -> a where
- getField :: r -> a
- data Bool
- data Char
- data Double = D# Double#
- data Float = F# Float#
- data Int
- data Integer
- data Ordering
- data Ratio a
- type Rational = Ratio Integer
- data IO a
- data Word
- data Ptr a
- data FunPtr a
- type Type = Type
- data Constraint
- data Nat
- data Symbol
- type family CmpNat (a :: Nat) (b :: Nat) :: Ordering where ...
- class a ~R# b => Coercible (a :: k0) (b :: k0)
- data StaticPtr a
- data CallStack
- integralEnumFromThenTo :: Integral a => a -> a -> a -> [a]
- integralEnumFromTo :: Integral a => a -> a -> [a]
- integralEnumFromThen :: (Integral a, Bounded a) => a -> a -> [a]
- integralEnumFrom :: (Integral a, Bounded a) => a -> [a]
- gcdWord' :: Word -> Word -> Word
- gcdInt' :: Int -> Int -> Int
- (^^%^^) :: Integral a => Rational -> a -> Rational
- (^%^) :: Integral a => Rational -> a -> Rational
- numericEnumFromThenTo :: (Ord a, Fractional a) => a -> a -> a -> [a]
- numericEnumFromTo :: (Ord a, Fractional a) => a -> a -> [a]
- numericEnumFromThen :: Fractional a => a -> a -> [a]
- numericEnumFrom :: Fractional a => a -> [a]
- notANumber :: Rational
- infinity :: Rational
- ratioPrec1 :: Int
- ratioPrec :: Int
- underflowError :: a
- overflowError :: a
- ratioZeroDenominatorError :: a
- divZeroError :: a
- reduce :: Integral a => a -> a -> Ratio a
- boundedEnumFromThen :: (Enum a, Bounded a) => a -> a -> [a]
- boundedEnumFrom :: (Enum a, Bounded a) => a -> [a]
- maxInt :: Int
- minInt :: Int
- showStackTrace :: IO (Maybe String)
- getStackTrace :: IO (Maybe [Location])
- data SrcLoc = SrcLoc String Int Int
- data Location = Location {
- objectName :: String
- functionName :: String
- srcLoc :: Maybe SrcLoc
- withFrozenCallStack :: HasCallStack => (HasCallStack -> a) -> a
- callStack :: HasCallStack -> CallStack
- prettyCallStack :: CallStack -> String
- prettySrcLoc :: SrcLoc -> String
- someSymbolVal :: String -> SomeSymbol
- someNatVal :: Integer -> Maybe SomeNat
- symbolVal :: KnownSymbol n => proxy n -> String
- natVal :: KnownNat n => proxy n -> Integer
- data SomeSymbol where
- SomeSymbol :: forall (n :: Symbol). KnownSymbol n => Proxy n -> SomeSymbol
- data SomeNat where
- lcm :: Integral a => a -> a -> a
- gcd :: Integral a => a -> a -> a
- (^^) :: (Fractional a, Integral b) => a -> b -> a
- (^) :: (Num a, Integral b) => a -> b -> a
- odd :: Integral a => a -> Bool
- even :: Integral a => a -> Bool
- denominator :: Ratio a -> a
- numerator :: Ratio a -> a
- (%) :: Integral a => a -> a -> Ratio a
- subtract :: Num a => a -> a -> a
- currentCallStack :: IO [String]
- asTypeOf :: a -> a -> a
- until :: (a -> Bool) -> (a -> a) -> a -> a
- ord :: Char -> Int
- getCallStack :: CallStack -> [([Char], SrcLoc)]
- type HasCallStack = ?callStack :: CallStack
- ($!) :: (a -> b) -> a -> b
- identity :: a -> a
- pass :: Applicative f => f ()
- ($) :: (a -> b) -> a -> b
- (&) :: a -> (a -> b) -> b
- on :: (b -> b -> c) -> (a -> b) -> a -> a -> c
- fix :: (a -> a) -> a
- flip :: (a -> b -> c) -> b -> a -> c
- (.) :: (b -> c) -> (a -> b) -> a -> c
- const :: a -> b -> a
- applyN :: Int -> (a -> a) -> a -> a
- filter :: (a -> Bool) -> [a] -> [a]
- zip :: [a] -> [b] -> [(a, b)]
- nonEmpty :: [a] -> Maybe (NonEmpty a)
- unfoldr :: (b -> Maybe (a, b)) -> b -> [a]
- sortBy :: (a -> a -> Ordering) -> [a] -> [a]
- sort :: Ord a => [a] -> [a]
- permutations :: [a] -> [[a]]
- subsequences :: [a] -> [[a]]
- tails :: [a] -> [[a]]
- inits :: [a] -> [[a]]
- groupBy :: (a -> a -> Bool) -> [a] -> [[a]]
- group :: Eq a => [a] -> [[a]]
- genericReplicate :: Integral i => i -> a -> [a]
- genericSplitAt :: Integral i => i -> [a] -> ([a], [a])
- genericDrop :: Integral i => i -> [a] -> [a]
- genericTake :: Integral i => i -> [a] -> [a]
- genericLength :: Num i => [a] -> i
- transpose :: [[a]] -> [[a]]
- intercalate :: [a] -> [[a]] -> [a]
- intersperse :: a -> [a] -> [a]
- isPrefixOf :: Eq a => [a] -> [a] -> Bool
- unzip :: [(a, b)] -> ([a], [b])
- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
- reverse :: [a] -> [a]
- break :: (a -> Bool) -> [a] -> ([a], [a])
- splitAt :: Int -> [a] -> ([a], [a])
- drop :: Int -> [a] -> [a]
- take :: Int -> [a] -> [a]
- dropWhile :: (a -> Bool) -> [a] -> [a]
- takeWhile :: (a -> Bool) -> [a] -> [a]
- cycle :: [a] -> [a]
- replicate :: Int -> a -> [a]
- repeat :: a -> [a]
- iterate :: (a -> a) -> a -> [a]
- scanr :: (a -> b -> b) -> b -> [a] -> [b]
- scanl' :: (b -> a -> b) -> b -> [a] -> [b]
- scanl :: (b -> a -> b) -> b -> [a] -> [b]
- data NonEmpty a = a :| [a]
- head :: Foldable f => f a -> Maybe a
- sortOn :: Ord o => (a -> o) -> [a] -> [a]
- ordNub :: Ord a => [a] -> [a]
- list :: [b] -> (a -> b) -> [a] -> [b]
- product :: (Foldable f, Num a) => f a -> a
- sum :: (Foldable f, Num a) => f a -> a
- map :: Functor f => (a -> b) -> f a -> f b
- uncons :: [a] -> Maybe (a, [a])
- unsnoc :: [x] -> Maybe ([x], x)
- data IntMap a
- data IntSet
- data Map k a
- data Seq a
- data Set a
- module Protolude.Show
- show :: (Show a, ConvertText String b) => a -> b
- print :: (MonadIO m, Show a) => a -> m ()
- otherwise :: Bool
- data Bool
- (&&) :: Bool -> Bool -> Bool
- (||) :: Bool -> Bool -> Bool
- not :: Bool -> Bool
- bool :: a -> a -> Bool -> a
- whenM :: Monad m => m Bool -> m () -> m ()
- unlessM :: Monad m => m Bool -> m () -> m ()
- ifM :: Monad m => m Bool -> m a -> m a -> m a
- guardM :: MonadPlus m => m Bool -> m ()
- (||^) :: Monad m => m Bool -> m Bool -> m Bool
- (<||>) :: Applicative a => a Bool -> a Bool -> a Bool
- (&&^) :: Monad m => m Bool -> m Bool -> m Bool
- (<&&>) :: Applicative a => a Bool -> a Bool -> a Bool
- module Protolude.Monad
- liftIO1 :: MonadIO m => (a -> IO b) -> a -> m b
- liftIO2 :: MonadIO m => (a -> b -> IO c) -> a -> b -> m c
- class Functor (f :: Type -> Type) where
- newtype Identity a = Identity {
- runIdentity :: a
- void :: Functor f => f a -> f ()
- ($>) :: Functor f => f a -> b -> f b
- (<&>) :: Functor f => f a -> (a -> b) -> f b
- (<$>) :: Functor f => (a -> b) -> f a -> f b
- (<<$>>) :: (Functor f, Functor g) => (a -> b) -> f (g a) -> f (g b)
- foreach :: Functor f => f a -> (a -> b) -> f b
- data Either a b
- fromRight :: b -> Either a b -> b
- fromLeft :: a -> Either a b -> a
- isRight :: Either a b -> Bool
- isLeft :: Either a b -> Bool
- partitionEithers :: [Either a b] -> ([a], [b])
- rights :: [Either a b] -> [b]
- lefts :: [Either a b] -> [a]
- either :: (a -> c) -> (b -> c) -> Either a b -> c
- leftToMaybe :: Either l r -> Maybe l
- rightToMaybe :: Either l r -> Maybe r
- maybeToRight :: l -> Maybe r -> Either l r
- maybeToLeft :: r -> Maybe l -> Either l r
- maybeEmpty :: Monoid b => (a -> b) -> Maybe a -> b
- maybeToEither :: e -> Maybe a -> Either e a
- class Functor f => Applicative (f :: Type -> Type) where
- optional :: Alternative f => f a -> f (Maybe a)
- newtype ZipList a = ZipList {
- getZipList :: [a]
- newtype Const a (b :: k) :: forall k. Type -> k -> Type = Const {
- getConst :: a
- liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d
- liftA :: Applicative f => (a -> b) -> f a -> f b
- (<**>) :: Applicative f => f a -> f (a -> b) -> f b
- class Applicative f => Alternative (f :: Type -> Type) where
- orAlt :: (Alternative f, Monoid a) => f a -> f a
- orEmpty :: Alternative f => Bool -> a -> f a
- eitherA :: Alternative f => f a -> f b -> f (Either a b)
- purer :: (Applicative f, Applicative g) => a -> f (g a)
- liftAA2 :: (Applicative f, Applicative g) => (a -> b -> c) -> f (g a) -> f (g b) -> f (g c)
- (<<*>>) :: (Applicative f, Applicative g) => f (g (a -> b)) -> f (g a) -> f (g b)
- guarded :: Alternative f => (a -> Bool) -> a -> f a
- guardedA :: (Functor f, Alternative t) => (a -> f Bool) -> a -> f (t a)
- module Protolude.ConvertText
- module Protolude.Debug
- module Protolude.Panic
- allowInterrupt :: IO ()
- catches :: IO a -> [Handler a] -> IO a
- data Handler a where
- bracketOnError :: IO a -> (a -> IO b) -> (a -> IO c) -> IO c
- bracket_ :: IO a -> IO b -> IO c -> IO c
- finally :: IO a -> IO b -> IO a
- bracket :: IO a -> (a -> IO b) -> (a -> IO c) -> IO c
- onException :: IO a -> IO b -> IO a
- tryJust :: Exception e => (e -> Maybe b) -> IO a -> IO (Either b a)
- try :: Exception e => IO a -> IO (Either e a)
- mapException :: (Exception e1, Exception e2) => (e1 -> e2) -> a -> a
- handleJust :: Exception e => (e -> Maybe b) -> (b -> IO a) -> IO a -> IO a
- handle :: Exception e => (e -> IO a) -> IO a -> IO a
- catchJust :: Exception e => (e -> Maybe b) -> IO a -> (b -> IO a) -> IO a
- newtype PatternMatchFail = PatternMatchFail String
- newtype RecSelError = RecSelError String
- newtype RecConError = RecConError String
- newtype RecUpdError = RecUpdError String
- newtype NoMethodError = NoMethodError String
- newtype TypeError = TypeError String
- data NonTermination = NonTermination
- data NestedAtomically = NestedAtomically
- ioError :: IOError -> IO a
- asyncExceptionFromException :: Exception e => SomeException -> Maybe e
- asyncExceptionToException :: Exception e => e -> SomeException
- data BlockedIndefinitelyOnMVar = BlockedIndefinitelyOnMVar
- data BlockedIndefinitelyOnSTM = BlockedIndefinitelyOnSTM
- data Deadlock = Deadlock
- data AllocationLimitExceeded = AllocationLimitExceeded
- newtype CompactionFailed = CompactionFailed String
- newtype AssertionFailed = AssertionFailed String
- data SomeAsyncException where
- SomeAsyncException :: forall e. Exception e => e -> SomeAsyncException
- data AsyncException
- data ArrayException
- evaluate :: a -> IO a
- uninterruptibleMask :: ((forall a. IO a -> IO a) -> IO b) -> IO b
- uninterruptibleMask_ :: IO a -> IO a
- mask :: ((forall a. IO a -> IO a) -> IO b) -> IO b
- mask_ :: IO a -> IO a
- getMaskingState :: IO MaskingState
- interruptible :: IO a -> IO a
- catch :: Exception e => IO a -> (e -> IO a) -> IO a
- data MaskingState
- data IOException
- data ErrorCall where
- class (Typeable e, Show e) => Exception e where
- toException :: e -> SomeException
- fromException :: SomeException -> Maybe e
- displayException :: e -> String
- data ArithException
- data SomeException where
- SomeException :: forall e. Exception e => e -> SomeException
- hush :: Alternative m => Either e a -> m a
- note :: MonadError e m => e -> Maybe a -> m a
- tryIO :: MonadIO m => IO a -> ExceptT IOException m a
- throwIO :: (MonadIO m, Exception e) => e -> m a
- throwTo :: (MonadIO m, Exception e) => ThreadId -> e -> m ()
- module Protolude.Semiring
- class IsString a
- headMay :: [a] -> Maybe a
- headDef :: a -> [a] -> a
- initMay :: [a] -> Maybe [a]
- initDef :: [a] -> [a] -> [a]
- initSafe :: [a] -> [a]
- tailMay :: [a] -> Maybe [a]
- tailDef :: [a] -> [a] -> [a]
- tailSafe :: [a] -> [a]
- lastMay :: [a] -> Maybe a
- lastDef :: a -> [a] -> a
- minimumMay :: Ord a => [a] -> Maybe a
- maximumMay :: Ord a => [a] -> Maybe a
- minimumDef :: Ord a => a -> [a] -> a
- maximumDef :: Ord a => a -> [a] -> a
- foldr1May :: (a -> a -> a) -> [a] -> Maybe a
- foldl1May :: (a -> a -> a) -> [a] -> Maybe a
- foldl1May' :: (a -> a -> a) -> [a] -> Maybe a
- atMay :: [a] -> Int -> Maybe a
- atDef :: a -> [a] -> Int -> a
- class Eq a where
- class Eq a => Ord a where
- data Ordering
- comparing :: Ord a => (b -> a) -> b -> b -> Ordering
- newtype Down a = Down a
- module Data.Traversable
- class Foldable (t :: Type -> Type) where
- fold :: Monoid m => t m -> m
- foldMap :: Monoid m => (a -> m) -> t a -> m
- foldr :: (a -> b -> b) -> b -> t a -> b
- foldr' :: (a -> b -> b) -> b -> t a -> b
- foldl :: (b -> a -> b) -> b -> t a -> b
- foldl' :: (b -> a -> b) -> b -> t a -> b
- toList :: t a -> [a]
- null :: t a -> Bool
- length :: t a -> Int
- elem :: Eq a => a -> t a -> Bool
- maximum :: Ord a => t a -> a
- minimum :: Ord a => t a -> a
- find :: Foldable t => (a -> Bool) -> t a -> Maybe a
- notElem :: (Foldable t, Eq a) => a -> t a -> Bool
- minimumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a
- maximumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a
- all :: Foldable t => (a -> Bool) -> t a -> Bool
- any :: Foldable t => (a -> Bool) -> t a -> Bool
- or :: Foldable t => t Bool -> Bool
- and :: Foldable t => t Bool -> Bool
- concatMap :: Foldable t => (a -> [b]) -> t a -> [b]
- concat :: Foldable t => t [a] -> [a]
- msum :: (Foldable t, MonadPlus m) => t (m a) -> m a
- asum :: (Foldable t, Alternative f) => t (f a) -> f a
- sequence_ :: (Foldable t, Monad m) => t (m a) -> m ()
- sequenceA_ :: (Foldable t, Applicative f) => t (f a) -> f ()
- forM_ :: (Foldable t, Monad m) => t a -> (a -> m b) -> m ()
- mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m ()
- for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f ()
- traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f ()
- foldlM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b
- foldrM :: (Foldable t, Monad m) => (a -> b -> m b) -> b -> t a -> m b
- class Semigroup a where
- option :: b -> (a -> b) -> Option a -> b
- mtimesDefault :: (Integral b, Monoid a) => b -> a -> a
- diff :: Semigroup m => m -> Endo m
- cycle1 :: Semigroup m => m -> m
- data WrappedMonoid m
- newtype Option a = Option {}
- stimesMonoid :: (Integral b, Monoid a) => b -> a -> a
- stimesIdempotent :: Integral b => b -> a -> a
- stimesIdempotentMonoid :: (Integral b, Monoid a) => b -> a -> a
- module Data.Monoid
- class Bifunctor (p :: Type -> Type -> Type) where
- hashUsing :: Hashable b => (a -> b) -> Int -> a -> Int
- class Hashable a where
- hashWithSalt :: Int -> a -> Int
- hash :: a -> Int
- force :: NFData a => a -> a
- ($!!) :: NFData a => (a -> b) -> a -> b
- deepseq :: NFData a => a -> b -> b
- class NFData a where
- rnf :: a -> ()
- fst :: (a, b) -> a
- snd :: (a, b) -> b
- swap :: (a, b) -> (b, a)
- uncurry :: (a -> b -> c) -> (a, b) -> c
- curry :: ((a, b) -> c) -> a -> b -> c
- class Typeable (a :: k)
- gcast :: (Typeable a, Typeable b) => c a -> Maybe (c b)
- eqT :: (Typeable a, Typeable b) => Maybe (a :~: b)
- cast :: (Typeable a, Typeable b) => a -> Maybe b
- typeRep :: Typeable a => proxy a -> TypeRep
- typeOf :: Typeable a => a -> TypeRep
- type TypeRep = SomeTypeRep
- vacuous :: Functor f => f Void -> f a
- absurd :: Void -> a
- data Void
- data Proxy (t :: k) :: forall k. k -> Type = Proxy
- repr :: (a :~: b) -> Coercion a b
- coerceWith :: Coercion a b -> a -> b
- data Coercion (a :: k) (b :: k) :: forall k. k -> k -> Type where
- gcastWith :: (a :~: b) -> ((a ~ b) -> r) -> r
- castWith :: (a :~: b) -> a -> b
- trans :: (a :~: b) -> (b :~: c) -> a :~: c
- sym :: (a :~: b) -> b :~: a
- data (a :: k) :~: (b :: k) :: forall k. k -> k -> Type where
- type family (a :: k) == (b :: k) :: Bool where ...
- class Monad m => MonadFail (m :: Type -> Type)
- gets :: MonadState s m => (s -> a) -> m a
- modify :: MonadState s m => (s -> s) -> m ()
- class Monad m => MonadState s (m :: Type -> Type) | m -> s where
- newtype StateT s (m :: Type -> Type) a = StateT {
- runStateT :: s -> m (a, s)
- type State s = StateT s Identity
- runState :: State s a -> s -> (a, s)
- evalState :: State s a -> s -> a
- execState :: State s a -> s -> s
- withState :: (s -> s) -> State s a -> State s a
- evalStateT :: Monad m => StateT s m a -> s -> m a
- execStateT :: Monad m => StateT s m a -> s -> m s
- asks :: MonadReader r m => (r -> a) -> m a
- class Monad m => MonadReader r (m :: Type -> Type) | m -> r where
- newtype ReaderT r (m :: k -> Type) (a :: k) :: forall k. Type -> (k -> Type) -> k -> Type = ReaderT {
- runReaderT :: r -> m a
- type Reader r = ReaderT r Identity
- runReader :: Reader r a -> r -> a
- class Monad m => MonadError e (m :: Type -> Type) | m -> e where
- throwError :: e -> m a
- catchError :: m a -> (e -> m a) -> m a
- newtype ExceptT e (m :: Type -> Type) a = ExceptT (m (Either e a))
- type Except e = ExceptT e Identity
- runExcept :: Except e a -> Either e a
- mapExcept :: (Either e a -> Either e' b) -> Except e a -> Except e' b
- withExcept :: (e -> e') -> Except e a -> Except e' a
- runExceptT :: ExceptT e m a -> m (Either e a)
- mapExceptT :: (m (Either e a) -> n (Either e' b)) -> ExceptT e m a -> ExceptT e' n b
- withExceptT :: Functor m => (e -> e') -> ExceptT e m a -> ExceptT e' m a
- catchE :: Monad m => ExceptT e m a -> (e -> ExceptT e' m a) -> ExceptT e' m a
- throwE :: Monad m => e -> ExceptT e m a
- class Monad m => MonadIO (m :: Type -> Type) where
- lift :: (MonadTrans t, Monad m) => m a -> t m a
- data ST s a
- fixST :: (a -> ST s a) -> ST s a
- runST :: (forall s. ST s a) -> a
- catchSTM :: Exception e => STM a -> (e -> STM a) -> STM a
- throwSTM :: Exception e => e -> STM a
- orElse :: STM a -> STM a -> STM a
- retry :: STM a
- atomically :: STM a -> IO a
- data STM a
- check :: Bool -> STM ()
- data Int
- data Int8
- data Int16
- data Int32
- data Int64
- data Word
- data Word8
- data Word16
- data Word32
- data Word64
- byteSwap64 :: Word64 -> Word64
- byteSwap32 :: Word32 -> Word32
- byteSwap16 :: Word16 -> Word16
- toIntegralSized :: (Integral a, Integral b, Bits a, Bits b) => a -> Maybe b
- popCountDefault :: (Bits a, Num a) => a -> Int
- testBitDefault :: (Bits a, Num a) => a -> Int -> Bool
- bitDefault :: (Bits a, Num a) => Int -> a
- class Eq a => Bits a where
- (.&.) :: a -> a -> a
- (.|.) :: a -> a -> a
- xor :: a -> a -> a
- complement :: a -> a
- shift :: a -> Int -> a
- rotate :: a -> Int -> a
- zeroBits :: a
- bit :: Int -> a
- setBit :: a -> Int -> a
- clearBit :: a -> Int -> a
- complementBit :: a -> Int -> a
- testBit :: a -> Int -> Bool
- bitSizeMaybe :: a -> Maybe Int
- bitSize :: a -> Int
- isSigned :: a -> Bool
- shiftL :: a -> Int -> a
- shiftR :: a -> Int -> a
- rotateL :: a -> Int -> a
- rotateR :: a -> Int -> a
- popCount :: a -> Int
- class Bits b => FiniteBits b where
- finiteBitSize :: b -> Int
- countLeadingZeros :: b -> Int
- countTrailingZeros :: b -> Int
- phase :: RealFloat a => Complex a -> a
- magnitude :: RealFloat a => Complex a -> a
- polar :: RealFloat a => Complex a -> (a, a)
- cis :: Floating a => a -> Complex a
- mkPolar :: Floating a => a -> a -> Complex a
- conjugate :: Num a => Complex a -> Complex a
- imagPart :: Complex a -> a
- realPart :: Complex a -> a
- data Complex a = !a :+ !a
- data Char
- isLetter :: Char -> Bool
- digitToInt :: Char -> Int
- toTitle :: Char -> Char
- toUpper :: Char -> Char
- toLower :: Char -> Char
- isLower :: Char -> Bool
- isUpper :: Char -> Bool
- isPrint :: Char -> Bool
- isControl :: Char -> Bool
- isAlphaNum :: Char -> Bool
- isAlpha :: Char -> Bool
- isHexDigit :: Char -> Bool
- isDigit :: Char -> Bool
- isSpace :: Char -> Bool
- isAscii :: Char -> Bool
- chr :: Int -> Char
- intToDigit :: Int -> Char
- ord :: Char -> Int
- data Maybe a
- mapMaybe :: (a -> Maybe b) -> [a] -> [b]
- catMaybes :: [Maybe a] -> [a]
- listToMaybe :: [a] -> Maybe a
- maybeToList :: Maybe a -> [a]
- fromMaybe :: a -> Maybe a -> a
- isNothing :: Maybe a -> Bool
- isJust :: Maybe a -> Bool
- maybe :: b -> (a -> b) -> Maybe a -> b
- class Generic a where
- class Generic1 (f :: k -> Type)
- class Datatype (d :: k) where
- datatypeName :: t d f a -> [Char]
- moduleName :: t d f a -> [Char]
- packageName :: t d f a -> [Char]
- isNewtype :: t d f a -> Bool
- class Constructor (c :: k) where
- class Selector (s :: k) where
- selName :: t s f a -> [Char]
- selSourceUnpackedness :: t s f a -> SourceUnpackedness
- selSourceStrictness :: t s f a -> SourceStrictness
- selDecidedStrictness :: t s f a -> DecidedStrictness
- data V1 (p :: k) :: forall k. k -> Type
- data U1 (p :: k) :: forall k. k -> Type = U1
- newtype K1 i c (p :: k) :: forall k. Type -> Type -> k -> Type = K1 {
- unK1 :: c
- newtype M1 i (c :: Meta) (f :: k -> Type) (p :: k) :: forall k. Type -> Meta -> (k -> Type) -> k -> Type = M1 {
- unM1 :: f p
- data ((f :: k -> Type) :+: (g :: k -> Type)) (p :: k) :: forall k. (k -> Type) -> (k -> Type) -> k -> Type
- data ((f :: k -> Type) :*: (g :: k -> Type)) (p :: k) :: forall k. (k -> Type) -> (k -> Type) -> k -> Type = (f p) :*: (g p)
- newtype ((f :: k2 -> Type) :.: (g :: k1 -> k2)) (p :: k1) :: forall k2 k1. (k2 -> Type) -> (k1 -> k2) -> k1 -> Type = Comp1 {
- unComp1 :: f (g p)
- type Rec0 = (K1 R :: Type -> k -> Type)
- type D1 = (M1 D :: Meta -> (k -> Type) -> k -> Type)
- type C1 = (M1 C :: Meta -> (k -> Type) -> k -> Type)
- type S1 = (M1 S :: Meta -> (k -> Type) -> k -> Type)
- data family URec a (p :: k) :: Type
- data Fixity
- data FixityI
- data Associativity
- data Meta
- data ByteString
- type LByteString = ByteString
- getLine :: IO Text
- getContents :: IO Text
- interact :: (Text -> Text) -> IO ()
- appendFile :: FilePath -> Text -> IO ()
- writeFile :: FilePath -> Text -> IO ()
- readFile :: FilePath -> IO Text
- fromStrict :: Text -> Text
- toStrict :: Text -> Text
- unwords :: [Text] -> Text
- unlines :: [Text] -> Text
- lines :: Text -> [Text]
- words :: Text -> [Text]
- encodeUtf8 :: Text -> ByteString
- decodeUtf8' :: ByteString -> Either UnicodeException Text
- decodeUtf8 :: ByteString -> Text
- decodeUtf8With :: OnDecodeError -> ByteString -> Text
- data Text
- replace :: b -> OnError a b
- ignore :: OnError a b
- lenientDecode :: OnDecodeError
- strictDecode :: OnDecodeError
- type OnError a b = String -> Maybe a -> Maybe b
- type OnDecodeError = OnError Word8 Char
- data UnicodeException
- type LText = Text
- class Read a
- readMaybe :: Read a => String -> Maybe a
- readEither :: Read a => String -> Either String a
- reads :: Read a => ReadS a
- data Handle
- getArgs :: IO [String]
- exitSuccess :: IO a
- exitFailure :: IO a
- exitWith :: ExitCode -> IO a
- withFile :: FilePath -> IOMode -> (Handle -> IO r) -> IO r
- openFile :: FilePath -> IOMode -> IO Handle
- stderr :: Handle
- stdin :: Handle
- data ExitCode
- stdout :: Handle
- type FilePath = String
- data IOMode
- die :: Text -> IO a
- forkOnWithUnmask :: Int -> ((forall a. IO a -> IO a) -> IO ()) -> IO ThreadId
- forkIOWithUnmask :: ((forall a. IO a -> IO a) -> IO ()) -> IO ThreadId
- forkOn :: Int -> IO () -> IO ThreadId
- forkOS :: IO () -> IO ThreadId
- data ThreadId
- concurrently :: IO a -> IO b -> IO (a, b)
- race_ :: IO a -> IO b -> IO ()
- race :: IO a -> IO b -> IO (Either a b)
- link2 :: Async a -> Async b -> IO ()
- link :: Async a -> IO ()
- waitBoth :: Async a -> Async b -> IO (a, b)
- waitEitherCancel :: Async a -> Async b -> IO (Either a b)
- waitEither_ :: Async a -> Async b -> IO ()
- waitEither :: Async a -> Async b -> IO (Either a b)
- waitEitherCatchCancel :: Async a -> Async b -> IO (Either (Either SomeException a) (Either SomeException b))
- waitEitherCatch :: Async a -> Async b -> IO (Either (Either SomeException a) (Either SomeException b))
- waitAnyCancel :: [Async a] -> IO (Async a, a)
- waitAny :: [Async a] -> IO (Async a, a)
- waitAnyCatchCancel :: [Async a] -> IO (Async a, Either SomeException a)
- waitAnyCatch :: [Async a] -> IO (Async a, Either SomeException a)
- cancelWith :: Exception e => Async a -> e -> IO ()
- cancel :: Async a -> IO ()
- poll :: Async a -> IO (Maybe (Either SomeException a))
- waitCatch :: Async a -> IO (Either SomeException a)
- wait :: Async a -> IO a
- withAsyncOn :: Int -> IO a -> (Async a -> IO b) -> IO b
- withAsyncBound :: IO a -> (Async a -> IO b) -> IO b
- withAsync :: IO a -> (Async a -> IO b) -> IO b
- asyncOn :: Int -> IO a -> IO (Async a)
- asyncBound :: IO a -> IO (Async a)
- async :: IO a -> IO (Async a)
- data Async a
- newtype Concurrently a = Concurrently {
- runConcurrently :: IO a
- threadWaitWriteSTM :: Fd -> IO (STM (), IO ())
- threadWaitReadSTM :: Fd -> IO (STM (), IO ())
- threadWaitWrite :: Fd -> IO ()
- threadWaitRead :: Fd -> IO ()
- runInUnboundThread :: IO a -> IO a
- runInBoundThread :: IO a -> IO a
- isCurrentThreadBound :: IO Bool
- forkOSWithUnmask :: ((forall a. IO a -> IO a) -> IO ()) -> IO ThreadId
- forkFinally :: IO a -> (Either SomeException a -> IO ()) -> IO ThreadId
- rtsSupportsBoundThreads :: Bool
- writeList2Chan :: Chan a -> [a] -> IO ()
- getChanContents :: Chan a -> IO [a]
- dupChan :: Chan a -> IO (Chan a)
- readChan :: Chan a -> IO a
- writeChan :: Chan a -> a -> IO ()
- newChan :: IO (Chan a)
- data Chan a
- signalQSem :: QSem -> IO ()
- waitQSem :: QSem -> IO ()
- newQSem :: Int -> IO QSem
- data QSem
- signalQSemN :: QSemN -> Int -> IO ()
- waitQSemN :: QSemN -> Int -> IO ()
- newQSemN :: Int -> IO QSemN
- data QSemN
- threadDelay :: Int -> IO ()
- mkWeakMVar :: MVar a -> IO () -> IO (Weak (MVar a))
- addMVarFinalizer :: MVar a -> IO () -> IO ()
- modifyMVarMasked :: MVar a -> (a -> IO (a, b)) -> IO b
- modifyMVarMasked_ :: MVar a -> (a -> IO a) -> IO ()
- modifyMVar :: MVar a -> (a -> IO (a, b)) -> IO b
- modifyMVar_ :: MVar a -> (a -> IO a) -> IO ()
- withMVarMasked :: MVar a -> (a -> IO b) -> IO b
- withMVar :: MVar a -> (a -> IO b) -> IO b
- swapMVar :: MVar a -> a -> IO a
- mkWeakThreadId :: ThreadId -> IO (Weak ThreadId)
- threadCapability :: ThreadId -> IO (Int, Bool)
- yield :: IO ()
- myThreadId :: IO ThreadId
- killThread :: ThreadId -> IO ()
- setNumCapabilities :: Int -> IO ()
- getNumCapabilities :: IO Int
- forkIO :: IO () -> IO ThreadId
- isEmptyMVar :: MVar a -> IO Bool
- tryReadMVar :: MVar a -> IO (Maybe a)
- tryPutMVar :: MVar a -> a -> IO Bool
- tryTakeMVar :: MVar a -> IO (Maybe a)
- putMVar :: MVar a -> a -> IO ()
- readMVar :: MVar a -> IO a
- takeMVar :: MVar a -> IO a
- newMVar :: a -> IO (MVar a)
- newEmptyMVar :: IO (MVar a)
- data MVar a
- data StablePtr a
- data WordPtr
- data IntPtr
- class Storable a
Base functions
(++) :: [a] -> [a] -> [a] infixr 5 #
Append two lists, i.e.,
[x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn] [x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]
If the first list is not finite, the result is the first list.
The value of seq a b
is bottom if a
is bottom, and
otherwise equal to b
. In other words, it evaluates the first
argument a
to weak head normal form (WHNF). seq
is usually
introduced to improve performance by avoiding unneeded laziness.
A note on evaluation order: the expression seq a b
does
not guarantee that a
will be evaluated before b
.
The only guarantee given by seq
is that the both a
and b
will be evaluated before seq
returns a value.
In particular, this means that b
may be evaluated before
a
. If you need to guarantee a specific order of evaluation,
you must use the function pseq
from the "parallel" package.
fromIntegral :: (Integral a, Num b) => a -> b #
general coercion from integral types
realToFrac :: (Real a, Fractional b) => a -> b #
general coercion to fractional types
The Bounded
class is used to name the upper and lower limits of a
type. Ord
is not a superclass of Bounded
since types that are not
totally ordered may also have upper and lower bounds.
The Bounded
class may be derived for any enumeration type;
minBound
is the first constructor listed in the data
declaration
and maxBound
is the last.
Bounded
may also be derived for single-constructor datatypes whose
constituent types are in Bounded
.
Instances
Bounded Bool | Since: base-2.1 |
Bounded Char | Since: base-2.1 |
Bounded Int | Since: base-2.1 |
Bounded Int8 | Since: base-2.1 |
Bounded Int16 | Since: base-2.1 |
Bounded Int32 | Since: base-2.1 |
Bounded Int64 | Since: base-2.1 |
Bounded Ordering | Since: base-2.1 |
Bounded Word | Since: base-2.1 |
Bounded Word8 | Since: base-2.1 |
Bounded Word16 | Since: base-2.1 |
Bounded Word32 | Since: base-2.1 |
Bounded Word64 | Since: base-2.1 |
Bounded VecCount | Since: base-4.10.0.0 |
Bounded VecElem | Since: base-4.10.0.0 |
Bounded () | Since: base-2.1 |
Bounded CDev | |
Bounded CIno | |
Bounded CMode | |
Bounded COff | |
Bounded CPid | |
Bounded CSsize | |
Bounded CGid | |
Bounded CNlink | |
Bounded CUid | |
Bounded CTcflag | |
Bounded CRLim | |
Bounded CBlkSize | |
Bounded CBlkCnt | |
Bounded CClockId | |
Bounded CFsBlkCnt | |
Bounded CFsFilCnt | |
Bounded CId | |
Bounded CKey | |
Bounded Fd | |
Bounded All | Since: base-2.1 |
Bounded Any | Since: base-2.1 |
Bounded Associativity | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Bounded SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Bounded SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Bounded DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Bounded CChar | |
Bounded CSChar | |
Bounded CUChar | |
Bounded CShort | |
Bounded CUShort | |
Bounded CInt | |
Bounded CUInt | |
Bounded CLong | |
Bounded CULong | |
Bounded CLLong | |
Bounded CULLong | |
Bounded CBool | |
Bounded CPtrdiff | |
Bounded CSize | |
Bounded CWchar | |
Bounded CSigAtomic | |
Defined in Foreign.C.Types | |
Bounded CIntPtr | |
Bounded CUIntPtr | |
Bounded CIntMax | |
Bounded CUIntMax | |
Bounded WordPtr | |
Bounded IntPtr | |
Bounded GeneralCategory | Since: base-2.1 |
Defined in GHC.Unicode | |
Bounded Leniency Source # | |
Bounded a => Bounded (Min a) | Since: base-4.9.0.0 |
Bounded a => Bounded (Max a) | Since: base-4.9.0.0 |
Bounded a => Bounded (First a) | Since: base-4.9.0.0 |
Bounded a => Bounded (Last a) | Since: base-4.9.0.0 |
Bounded m => Bounded (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup | |
Bounded a => Bounded (Identity a) | Since: base-4.9.0.0 |
Bounded a => Bounded (Dual a) | Since: base-2.1 |
Bounded a => Bounded (Sum a) | Since: base-2.1 |
Bounded a => Bounded (Product a) | Since: base-2.1 |
(Bounded a, Bounded b) => Bounded (a, b) | Since: base-2.1 |
Bounded (Proxy t) | Since: base-4.7.0.0 |
(Bounded a, Bounded b, Bounded c) => Bounded (a, b, c) | Since: base-2.1 |
Bounded a => Bounded (Const a b) | Since: base-4.9.0.0 |
(Applicative f, Bounded a) => Bounded (Ap f a) | Since: base-4.12.0.0 |
Coercible a b => Bounded (Coercion a b) | Since: base-4.7.0.0 |
a ~ b => Bounded (a :~: b) | Since: base-4.7.0.0 |
(Bounded a, Bounded b, Bounded c, Bounded d) => Bounded (a, b, c, d) | Since: base-2.1 |
a ~~ b => Bounded (a :~~: b) | Since: base-4.10.0.0 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e) => Bounded (a, b, c, d, e) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f) => Bounded (a, b, c, d, e, f) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g) => Bounded (a, b, c, d, e, f, g) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h) => Bounded (a, b, c, d, e, f, g, h) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i) => Bounded (a, b, c, d, e, f, g, h, i) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j) => Bounded (a, b, c, d, e, f, g, h, i, j) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k) => Bounded (a, b, c, d, e, f, g, h, i, j, k) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n, Bounded o) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | Since: base-2.1 |
Class Enum
defines operations on sequentially ordered types.
The enumFrom
... methods are used in Haskell's translation of
arithmetic sequences.
Instances of Enum
may be derived for any enumeration type (types
whose constructors have no fields). The nullary constructors are
assumed to be numbered left-to-right by fromEnum
from 0
through n-1
.
See Chapter 10 of the Haskell Report for more details.
For any type that is an instance of class Bounded
as well as Enum
,
the following should hold:
- The calls
andsucc
maxBound
should result in a runtime error.pred
minBound
fromEnum
andtoEnum
should give a runtime error if the result value is not representable in the result type. For example,
is an error.toEnum
7 ::Bool
enumFrom
andenumFromThen
should be defined with an implicit bound, thus:
enumFrom x = enumFromTo x maxBound enumFromThen x y = enumFromThenTo x y bound where bound | fromEnum y >= fromEnum x = maxBound | otherwise = minBound
Methods
the successor of a value. For numeric types, succ
adds 1.
the predecessor of a value. For numeric types, pred
subtracts 1.
Convert from an Int
.
Convert to an Int
.
It is implementation-dependent what fromEnum
returns when
applied to a value that is too large to fit in an Int
.
Used in Haskell's translation of [n..]
with [n..] = enumFrom n
,
a possible implementation being enumFrom n = n : enumFrom (succ n)
.
For example:
enumFrom 4 :: [Integer] = [4,5,6,7,...]
enumFrom 6 :: [Int] = [6,7,8,9,...,maxBound :: Int]
enumFromThen :: a -> a -> [a] #
Used in Haskell's translation of [n,n'..]
with [n,n'..] = enumFromThen n n'
, a possible implementation being
enumFromThen n n' = n : n' : worker (f x) (f x n')
,
worker s v = v : worker s (s v)
, x = fromEnum n' - fromEnum n
and
f n y
| n > 0 = f (n - 1) (succ y)
| n < 0 = f (n + 1) (pred y)
| otherwise = y
For example:
enumFromThen 4 6 :: [Integer] = [4,6,8,10...]
enumFromThen 6 2 :: [Int] = [6,2,-2,-6,...,minBound :: Int]
enumFromTo :: a -> a -> [a] #
Used in Haskell's translation of [n..m]
with
[n..m] = enumFromTo n m
, a possible implementation being
enumFromTo n m
| n <= m = n : enumFromTo (succ n) m
| otherwise = []
.
For example:
enumFromTo 6 10 :: [Int] = [6,7,8,9,10]
enumFromTo 42 1 :: [Integer] = []
enumFromThenTo :: a -> a -> a -> [a] #
Used in Haskell's translation of [n,n'..m]
with
[n,n'..m] = enumFromThenTo n n' m
, a possible implementation
being enumFromThenTo n n' m = worker (f x) (c x) n m
,
x = fromEnum n' - fromEnum n
, c x = bool (>=) ((x 0)
f n y
| n > 0 = f (n - 1) (succ y)
| n < 0 = f (n + 1) (pred y)
| otherwise = y
and
worker s c v m
| c v m = v : worker s c (s v) m
| otherwise = []
For example:
enumFromThenTo 4 2 -6 :: [Integer] = [4,2,0,-2,-4,-6]
enumFromThenTo 6 8 2 :: [Int] = []
Instances
class Fractional a => Floating a where #
Trigonometric and hyperbolic functions and related functions.
The Haskell Report defines no laws for Floating
. However, '(+)', '(*)'
and exp
are customarily expected to define an exponential field and have
the following properties:
exp (a + b)
= @exp a * exp bexp (fromInteger 0)
=fromInteger 1
Minimal complete definition
pi, exp, log, sin, cos, asin, acos, atan, sinh, cosh, asinh, acosh, atanh
Methods
(**) :: a -> a -> a infixr 8 #
computes log1p
x
, but provides more precise
results for small (absolute) values of log
(1 + x)x
if possible.
Since: base-4.9.0.0
computes expm1
x
, but provides more precise
results for small (absolute) values of exp
x - 1x
if possible.
Since: base-4.9.0.0
Instances
class Num a => Fractional a where #
Fractional numbers, supporting real division.
The Haskell Report defines no laws for Fractional
. However, '(+)' and
'(*)' are customarily expected to define a division ring and have the
following properties:
recip
gives the multiplicative inversex * recip x
=recip x * x
=fromInteger 1
Note that it isn't customarily expected that a type instance of
Fractional
implement a field. However, all instances in base
do.
Minimal complete definition
fromRational, (recip | (/))
Methods
fractional division
reciprocal fraction
fromRational :: Rational -> a #
Conversion from a Rational
(that is
).
A floating literal stands for an application of Ratio
Integer
fromRational
to a value of type Rational
, so such literals have type
(
.Fractional
a) => a
Instances
Fractional CFloat | |
Fractional CDouble | |
Integral a => Fractional (Ratio a) | Since: base-2.0.1 |
RealFloat a => Fractional (Complex a) | Since: base-2.1 |
Fractional a => Fractional (Identity a) | Since: base-4.9.0.0 |
Fractional a => Fractional (Const a b) | Since: base-4.9.0.0 |
class (Real a, Enum a) => Integral a where #
Integral numbers, supporting integer division.
The Haskell Report defines no laws for Integral
. However, Integral
instances are customarily expected to define a Euclidean domain and have the
following properties for the 'div'/'mod' and 'quot'/'rem' pairs, given
suitable Euclidean functions f
and g
:
x
=y * quot x y + rem x y
withrem x y
=fromInteger 0
org (rem x y)
<g y
x
=y * div x y + mod x y
withmod x y
=fromInteger 0
orf (mod x y)
<f y
An example of a suitable Euclidean function, for Integer
's instance, is
abs
.
Methods
quot :: a -> a -> a infixl 7 #
integer division truncated toward zero
integer remainder, satisfying
(x `quot` y)*y + (x `rem` y) == x
integer division truncated toward negative infinity
integer modulus, satisfying
(x `div` y)*y + (x `mod` y) == x
conversion to Integer
Instances
Basic numeric class.
The Haskell Report defines no laws for Num
. However, '(+)' and '(*)' are
customarily expected to define a ring and have the following properties:
- Associativity of (+)
(x + y) + z
=x + (y + z)
- Commutativity of (+)
x + y
=y + x
fromInteger 0
is the additive identityx + fromInteger 0
=x
negate
gives the additive inversex + negate x
=fromInteger 0
- Associativity of (*)
(x * y) * z
=x * (y * z)
fromInteger 1
is the multiplicative identityx * fromInteger 1
=x
andfromInteger 1 * x
=x
- Distributivity of (*) with respect to (+)
a * (b + c)
=(a * b) + (a * c)
and(b + c) * a
=(b * a) + (c * a)
Note that it isn't customarily expected that a type instance of both Num
and Ord
implement an ordered ring. Indeed, in base
only Integer
and
Rational
do.
Methods
Unary negation.
Absolute value.
Sign of a number.
The functions abs
and signum
should satisfy the law:
abs x * signum x == x
For real numbers, the signum
is either -1
(negative), 0
(zero)
or 1
(positive).
fromInteger :: Integer -> a #
Conversion from an Integer
.
An integer literal represents the application of the function
fromInteger
to the appropriate value of type Integer
,
so such literals have type (
.Num
a) => a
Instances
Num Int | Since: base-2.1 |
Num Int8 | Since: base-2.1 |
Num Int16 | Since: base-2.1 |
Num Int32 | Since: base-2.1 |
Num Int64 | Since: base-2.1 |
Num Integer | Since: base-2.1 |
Num Natural | Note that Since: base-4.8.0.0 |
Num Word | Since: base-2.1 |
Num Word8 | Since: base-2.1 |
Num Word16 | Since: base-2.1 |
Num Word32 | Since: base-2.1 |
Num Word64 | Since: base-2.1 |
Num CDev | |
Num CIno | |
Num CMode | |
Num COff | |
Num CPid | |
Num CSsize | |
Num CGid | |
Num CNlink | |
Num CUid | |
Num CCc | |
Num CSpeed | |
Num CTcflag | |
Num CRLim | |
Num CBlkSize | |
Num CBlkCnt | |
Num CClockId | |
Num CFsBlkCnt | |
Defined in System.Posix.Types | |
Num CFsFilCnt | |
Defined in System.Posix.Types | |
Num CId | |
Num CKey | |
Num Fd | |
Num CChar | |
Num CSChar | |
Num CUChar | |
Num CShort | |
Num CUShort | |
Num CInt | |
Num CUInt | |
Num CLong | |
Num CULong | |
Num CLLong | |
Num CULLong | |
Num CBool | |
Num CFloat | |
Num CDouble | |
Num CPtrdiff | |
Num CSize | |
Num CWchar | |
Num CSigAtomic | |
Defined in Foreign.C.Types Methods (+) :: CSigAtomic -> CSigAtomic -> CSigAtomic # (-) :: CSigAtomic -> CSigAtomic -> CSigAtomic # (*) :: CSigAtomic -> CSigAtomic -> CSigAtomic # negate :: CSigAtomic -> CSigAtomic # abs :: CSigAtomic -> CSigAtomic # signum :: CSigAtomic -> CSigAtomic # fromInteger :: Integer -> CSigAtomic # | |
Num CClock | |
Num CTime | |
Num CUSeconds | |
Defined in Foreign.C.Types | |
Num CSUSeconds | |
Defined in Foreign.C.Types Methods (+) :: CSUSeconds -> CSUSeconds -> CSUSeconds # (-) :: CSUSeconds -> CSUSeconds -> CSUSeconds # (*) :: CSUSeconds -> CSUSeconds -> CSUSeconds # negate :: CSUSeconds -> CSUSeconds # abs :: CSUSeconds -> CSUSeconds # signum :: CSUSeconds -> CSUSeconds # fromInteger :: Integer -> CSUSeconds # | |
Num CIntPtr | |
Num CUIntPtr | |
Num CIntMax | |
Num CUIntMax | |
Num WordPtr | |
Num IntPtr | |
Num CodePoint | |
Defined in Data.Text.Encoding | |
Num DecoderState | |
Defined in Data.Text.Encoding Methods (+) :: DecoderState -> DecoderState -> DecoderState # (-) :: DecoderState -> DecoderState -> DecoderState # (*) :: DecoderState -> DecoderState -> DecoderState # negate :: DecoderState -> DecoderState # abs :: DecoderState -> DecoderState # signum :: DecoderState -> DecoderState # fromInteger :: Integer -> DecoderState # | |
Integral a => Num (Ratio a) | Since: base-2.0.1 |
RealFloat a => Num (Complex a) | Since: base-2.1 |
Num a => Num (Min a) | Since: base-4.9.0.0 |
Num a => Num (Max a) | Since: base-4.9.0.0 |
Num a => Num (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Identity | |
Num a => Num (Sum a) | Since: base-4.7.0.0 |
Num a => Num (Product a) | Since: base-4.7.0.0 |
Defined in Data.Semigroup.Internal | |
Num a => Num (Down a) | Since: base-4.11.0.0 |
Num a => Num (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
(Applicative f, Num a) => Num (Ap f a) | Since: base-4.12.0.0 |
Num (f a) => Num (Alt f a) | Since: base-4.8.0.0 |
class (Num a, Ord a) => Real a where #
Methods
toRational :: a -> Rational #
the rational equivalent of its real argument with full precision
Instances
class (RealFrac a, Floating a) => RealFloat a where #
Efficient, machine-independent access to the components of a floating-point number.
Minimal complete definition
floatRadix, floatDigits, floatRange, decodeFloat, encodeFloat, isNaN, isInfinite, isDenormalized, isNegativeZero, isIEEE
Methods
floatRadix :: a -> Integer #
a constant function, returning the radix of the representation
(often 2
)
floatDigits :: a -> Int #
a constant function, returning the number of digits of
floatRadix
in the significand
floatRange :: a -> (Int, Int) #
a constant function, returning the lowest and highest values the exponent may assume
decodeFloat :: a -> (Integer, Int) #
The function decodeFloat
applied to a real floating-point
number returns the significand expressed as an Integer
and an
appropriately scaled exponent (an Int
). If
yields decodeFloat
x(m,n)
, then x
is equal in value to m*b^^n
, where b
is the floating-point radix, and furthermore, either m
and n
are both zero or else b^(d-1) <=
, where abs
m < b^dd
is
the value of
.
In particular, floatDigits
x
. If the type
contains a negative zero, also decodeFloat
0 = (0,0)
.
The result of decodeFloat
(-0.0) = (0,0)
is unspecified if either of
decodeFloat
x
or isNaN
x
is isInfinite
xTrue
.
encodeFloat :: Integer -> Int -> a #
encodeFloat
performs the inverse of decodeFloat
in the
sense that for finite x
with the exception of -0.0
,
.
uncurry
encodeFloat
(decodeFloat
x) = x
is one of the two closest representable
floating-point numbers to encodeFloat
m nm*b^^n
(or ±Infinity
if overflow
occurs); usually the closer, but if m
contains too many bits,
the result may be rounded in the wrong direction.
exponent
corresponds to the second component of decodeFloat
.
and for finite nonzero exponent
0 = 0x
,
.
If exponent
x = snd (decodeFloat
x) + floatDigits
xx
is a finite floating-point number, it is equal in value to
, where significand
x * b ^^ exponent
xb
is the
floating-point radix.
The behaviour is unspecified on infinite or NaN
values.
significand :: a -> a #
The first component of decodeFloat
, scaled to lie in the open
interval (-1
,1
), either 0.0
or of absolute value >= 1/b
,
where b
is the floating-point radix.
The behaviour is unspecified on infinite or NaN
values.
scaleFloat :: Int -> a -> a #
multiplies a floating-point number by an integer power of the radix
True
if the argument is an IEEE "not-a-number" (NaN) value
isInfinite :: a -> Bool #
True
if the argument is an IEEE infinity or negative infinity
isDenormalized :: a -> Bool #
True
if the argument is too small to be represented in
normalized format
isNegativeZero :: a -> Bool #
True
if the argument is an IEEE negative zero
True
if the argument is an IEEE floating point number
a version of arctangent taking two real floating-point arguments.
For real floating x
and y
,
computes the angle
(from the positive x-axis) of the vector from the origin to the
point atan2
y x(x,y)
.
returns a value in the range [atan2
y x-pi
,
pi
]. It follows the Common Lisp semantics for the origin when
signed zeroes are supported.
, with atan2
y 1y
in a type
that is RealFloat
, should return the same value as
.
A default definition of atan
yatan2
is provided, but implementors
can provide a more accurate implementation.
Instances
class (Real a, Fractional a) => RealFrac a where #
Extracting components of fractions.
Minimal complete definition
Methods
properFraction :: Integral b => a -> (b, a) #
The function properFraction
takes a real fractional number x
and returns a pair (n,f)
such that x = n+f
, and:
n
is an integral number with the same sign asx
; andf
is a fraction with the same type and sign asx
, and with absolute value less than1
.
The default definitions of the ceiling
, floor
, truncate
and round
functions are in terms of properFraction
.
truncate :: Integral b => a -> b #
returns the integer nearest truncate
xx
between zero and x
round :: Integral b => a -> b #
returns the nearest integer to round
xx
;
the even integer if x
is equidistant between two integers
ceiling :: Integral b => a -> b #
returns the least integer not less than ceiling
xx
floor :: Integral b => a -> b #
returns the greatest integer not greater than floor
xx
Conversion of values to readable String
s.
Derived instances of Show
have the following properties, which
are compatible with derived instances of Read
:
- The result of
show
is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used. - If the constructor is defined to be an infix operator, then
showsPrec
will produce infix applications of the constructor. - the representation will be enclosed in parentheses if the
precedence of the top-level constructor in
x
is less thand
(associativity is ignored). Thus, ifd
is0
then the result is never surrounded in parentheses; ifd
is11
it is always surrounded in parentheses, unless it is an atomic expression. - If the constructor is defined using record syntax, then
show
will produce the record-syntax form, with the fields given in the same order as the original declaration.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Show
is equivalent to
instance (Show a) => Show (Tree a) where showsPrec d (Leaf m) = showParen (d > app_prec) $ showString "Leaf " . showsPrec (app_prec+1) m where app_prec = 10 showsPrec d (u :^: v) = showParen (d > up_prec) $ showsPrec (up_prec+1) u . showString " :^: " . showsPrec (up_prec+1) v where up_prec = 5
Note that right-associativity of :^:
is ignored. For example,
produces the stringshow
(Leaf 1 :^: Leaf 2 :^: Leaf 3)"Leaf 1 :^: (Leaf 2 :^: Leaf 3)"
.
Instances
This class gives the integer associated with a type-level natural. There are instances of the class for every concrete literal: 0, 1, 2, etc.
Since: base-4.7.0.0
Minimal complete definition
natSing
class KnownSymbol (n :: Symbol) #
This class gives the string associated with a type-level symbol. There are instances of the class for every concrete literal: "hello", etc.
Since: base-4.7.0.0
Minimal complete definition
symbolSing
class HasField (x :: k) r a | x r -> a where #
Constraint representing the fact that the field x
belongs to
the record type r
and has field type a
. This will be solved
automatically, but manual instances may be provided as well.
Instances
Bounded Bool | Since: base-2.1 |
Enum Bool | Since: base-2.1 |
Eq Bool | |
Ord Bool | |
Read Bool | Since: base-2.1 |
Show Bool | Since: base-2.1 |
Ix Bool | Since: base-2.1 |
Generic Bool | |
SingKind Bool | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Storable Bool | Since: base-2.1 |
Defined in Foreign.Storable | |
Bits Bool | Interpret Since: base-4.7.0.0 |
Defined in Data.Bits Methods (.&.) :: Bool -> Bool -> Bool # (.|.) :: Bool -> Bool -> Bool # complement :: Bool -> Bool # shift :: Bool -> Int -> Bool # rotate :: Bool -> Int -> Bool # setBit :: Bool -> Int -> Bool # clearBit :: Bool -> Int -> Bool # complementBit :: Bool -> Int -> Bool # testBit :: Bool -> Int -> Bool # bitSizeMaybe :: Bool -> Maybe Int # shiftL :: Bool -> Int -> Bool # unsafeShiftL :: Bool -> Int -> Bool # shiftR :: Bool -> Int -> Bool # unsafeShiftR :: Bool -> Int -> Bool # rotateL :: Bool -> Int -> Bool # | |
FiniteBits Bool | Since: base-4.7.0.0 |
Defined in Data.Bits Methods finiteBitSize :: Bool -> Int # countLeadingZeros :: Bool -> Int # countTrailingZeros :: Bool -> Int # | |
NFData Bool | |
Defined in Control.DeepSeq | |
Hashable Bool | |
Defined in Data.Hashable.Class | |
SingI False | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
SingI True | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep Bool | Since: base-4.6.0.0 |
data Sing (a :: Bool) | |
type DemoteRep Bool | |
Defined in GHC.Generics |
The character type Char
is an enumeration whose values represent
Unicode (or equivalently ISO/IEC 10646) code points (i.e. characters, see
http://www.unicode.org/ for details). This set extends the ISO 8859-1
(Latin-1) character set (the first 256 characters), which is itself an extension
of the ASCII character set (the first 128 characters). A character literal in
Haskell has type Char
.
To convert a Char
to or from the corresponding Int
value defined
by Unicode, use toEnum
and fromEnum
from the
Enum
class respectively (or equivalently ord
and chr
).
Instances
Double-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE double-precision type.
Instances
Eq Double | Note that due to the presence of
Also note that
|
Floating Double | Since: base-2.1 |
Ord Double | Note that due to the presence of
Also note that, due to the same,
|
Read Double | Since: base-2.1 |
RealFloat Double | Since: base-2.1 |
Defined in GHC.Float Methods floatRadix :: Double -> Integer # floatDigits :: Double -> Int # floatRange :: Double -> (Int, Int) # decodeFloat :: Double -> (Integer, Int) # encodeFloat :: Integer -> Int -> Double # significand :: Double -> Double # scaleFloat :: Int -> Double -> Double # isInfinite :: Double -> Bool # isDenormalized :: Double -> Bool # isNegativeZero :: Double -> Bool # | |
Storable Double | Since: base-2.1 |
NFData Double | |
Defined in Control.DeepSeq | |
Hashable Double | Note: prior to The Since: hashable-1.3.0.0 |
Defined in Data.Hashable.Class | |
Generic1 (URec Double :: k -> Type) | |
Functor (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
Foldable (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Double m -> m # foldMap :: Monoid m => (a -> m) -> URec Double a -> m # foldr :: (a -> b -> b) -> b -> URec Double a -> b # foldr' :: (a -> b -> b) -> b -> URec Double a -> b # foldl :: (b -> a -> b) -> b -> URec Double a -> b # foldl' :: (b -> a -> b) -> b -> URec Double a -> b # foldr1 :: (a -> a -> a) -> URec Double a -> a # foldl1 :: (a -> a -> a) -> URec Double a -> a # toList :: URec Double a -> [a] # null :: URec Double a -> Bool # length :: URec Double a -> Int # elem :: Eq a => a -> URec Double a -> Bool # maximum :: Ord a => URec Double a -> a # minimum :: Ord a => URec Double a -> a # | |
Traversable (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
Eq (URec Double p) | Since: base-4.9.0.0 |
Ord (URec Double p) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: URec Double p -> URec Double p -> Ordering # (<) :: URec Double p -> URec Double p -> Bool # (<=) :: URec Double p -> URec Double p -> Bool # (>) :: URec Double p -> URec Double p -> Bool # (>=) :: URec Double p -> URec Double p -> Bool # | |
Show (URec Double p) | Since: base-4.9.0.0 |
Generic (URec Double p) | |
data URec Double (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
type Rep1 (URec Double :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (URec Double p) | Since: base-4.9.0.0 |
Defined in GHC.Generics |
Single-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE single-precision type.
Instances
Eq Float | Note that due to the presence of
Also note that
|
Floating Float | Since: base-2.1 |
Ord Float | Note that due to the presence of
Also note that, due to the same,
|
Read Float | Since: base-2.1 |
RealFloat Float | Since: base-2.1 |
Defined in GHC.Float Methods floatRadix :: Float -> Integer # floatDigits :: Float -> Int # floatRange :: Float -> (Int, Int) # decodeFloat :: Float -> (Integer, Int) # encodeFloat :: Integer -> Int -> Float # significand :: Float -> Float # scaleFloat :: Int -> Float -> Float # isInfinite :: Float -> Bool # isDenormalized :: Float -> Bool # isNegativeZero :: Float -> Bool # | |
Storable Float | Since: base-2.1 |
NFData Float | |
Defined in Control.DeepSeq | |
Hashable Float | Note: prior to The Since: hashable-1.3.0.0 |
Defined in Data.Hashable.Class | |
Generic1 (URec Float :: k -> Type) | |
Functor (URec Float :: Type -> Type) | Since: base-4.9.0.0 |
Foldable (URec Float :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Float m -> m # foldMap :: Monoid m => (a -> m) -> URec Float a -> m # foldr :: (a -> b -> b) -> b -> URec Float a -> b # foldr' :: (a -> b -> b) -> b -> URec Float a -> b # foldl :: (b -> a -> b) -> b -> URec Float a -> b # foldl' :: (b -> a -> b) -> b -> URec Float a -> b # foldr1 :: (a -> a -> a) -> URec Float a -> a # foldl1 :: (a -> a -> a) -> URec Float a -> a # toList :: URec Float a -> [a] # null :: URec Float a -> Bool # length :: URec Float a -> Int # elem :: Eq a => a -> URec Float a -> Bool # maximum :: Ord a => URec Float a -> a # minimum :: Ord a => URec Float a -> a # | |
Traversable (URec Float :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
Eq (URec Float p) | |
Ord (URec Float p) | |
Defined in GHC.Generics | |
Show (URec Float p) | |
Generic (URec Float p) | |
data URec Float (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
type Rep1 (URec Float :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (URec Float p) | |
Defined in GHC.Generics |
A fixed-precision integer type with at least the range [-2^29 .. 2^29-1]
.
The exact range for a given implementation can be determined by using
minBound
and maxBound
from the Bounded
class.
Instances
Bounded Int | Since: base-2.1 |
Enum Int | Since: base-2.1 |
Eq Int | |
Integral Int | Since: base-2.0.1 |
Num Int | Since: base-2.1 |
Ord Int | |
Read Int | Since: base-2.1 |
Real Int | Since: base-2.0.1 |
Defined in GHC.Real Methods toRational :: Int -> Rational # | |
Show Int | Since: base-2.1 |
Ix Int | Since: base-2.1 |
Storable Int | Since: base-2.1 |
Defined in Foreign.Storable | |
Bits Int | Since: base-2.1 |
Defined in Data.Bits | |
FiniteBits Int | Since: base-4.6.0.0 |
Defined in Data.Bits Methods finiteBitSize :: Int -> Int # countLeadingZeros :: Int -> Int # countTrailingZeros :: Int -> Int # | |
NFData Int | |
Defined in Control.DeepSeq | |
Hashable Int | |
Defined in Data.Hashable.Class | |
Generic1 (URec Int :: k -> Type) | |
Functor (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
Foldable (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Int m -> m # foldMap :: Monoid m => (a -> m) -> URec Int a -> m # foldr :: (a -> b -> b) -> b -> URec Int a -> b # foldr' :: (a -> b -> b) -> b -> URec Int a -> b # foldl :: (b -> a -> b) -> b -> URec Int a -> b # foldl' :: (b -> a -> b) -> b -> URec Int a -> b # foldr1 :: (a -> a -> a) -> URec Int a -> a # foldl1 :: (a -> a -> a) -> URec Int a -> a # elem :: Eq a => a -> URec Int a -> Bool # maximum :: Ord a => URec Int a -> a # minimum :: Ord a => URec Int a -> a # | |
Traversable (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
Eq (URec Int p) | Since: base-4.9.0.0 |
Ord (URec Int p) | Since: base-4.9.0.0 |
Show (URec Int p) | Since: base-4.9.0.0 |
Generic (URec Int p) | |
data URec Int (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
type Rep1 (URec Int :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (URec Int p) | Since: base-4.9.0.0 |
Defined in GHC.Generics |
Invariant: Jn#
and Jp#
are used iff value doesn't fit in S#
Useful properties resulting from the invariants:
Instances
Instances
Bounded Ordering | Since: base-2.1 |
Enum Ordering | Since: base-2.1 |
Eq Ordering | |
Ord Ordering | |
Defined in GHC.Classes | |
Read Ordering | Since: base-2.1 |
Show Ordering | Since: base-2.1 |
Ix Ordering | Since: base-2.1 |
Defined in GHC.Arr | |
Generic Ordering | |
Semigroup Ordering | Since: base-4.9.0.0 |
Monoid Ordering | Since: base-2.1 |
NFData Ordering | |
Defined in Control.DeepSeq | |
Hashable Ordering | |
Defined in Data.Hashable.Class | |
type Rep Ordering | Since: base-4.6.0.0 |
Rational numbers, with numerator and denominator of some Integral
type.
Note that Ratio
's instances inherit the deficiencies from the type
parameter's. For example, Ratio Natural
's Num
instance has similar
problems to Natural
's.
Instances
NFData1 Ratio | Available on Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Integral a => Enum (Ratio a) | Since: base-2.0.1 |
Eq a => Eq (Ratio a) | Since: base-2.1 |
Integral a => Fractional (Ratio a) | Since: base-2.0.1 |
Integral a => Num (Ratio a) | Since: base-2.0.1 |
Integral a => Ord (Ratio a) | Since: base-2.0.1 |
(Integral a, Read a) => Read (Ratio a) | Since: base-2.1 |
Integral a => Real (Ratio a) | Since: base-2.0.1 |
Defined in GHC.Real Methods toRational :: Ratio a -> Rational # | |
Integral a => RealFrac (Ratio a) | Since: base-2.0.1 |
Show a => Show (Ratio a) | Since: base-2.0.1 |
(Storable a, Integral a) => Storable (Ratio a) | Since: base-4.8.0.0 |
NFData a => NFData (Ratio a) | |
Defined in Control.DeepSeq | |
Hashable a => Hashable (Ratio a) | |
Defined in Data.Hashable.Class |
A value of type
is a computation which, when performed,
does some I/O before returning a value of type IO
aa
.
There is really only one way to "perform" an I/O action: bind it to
Main.main
in your program. When your program is run, the I/O will
be performed. It isn't possible to perform I/O from an arbitrary
function, unless that function is itself in the IO
monad and called
at some point, directly or indirectly, from Main.main
.
IO
is a monad, so IO
actions can be combined using either the do-notation
or the >>
and >>=
operations from the Monad
class.
Instances
Monad IO | Since: base-2.1 |
Functor IO | Since: base-2.1 |
MonadFail IO | Since: base-4.9.0.0 |
Defined in Control.Monad.Fail | |
Applicative IO | Since: base-2.1 |
MonadIO IO | Since: base-4.9.0.0 |
Defined in Control.Monad.IO.Class | |
Alternative IO | Since: base-4.9.0.0 |
MonadPlus IO | Since: base-4.9.0.0 |
MonadError IOException IO | |
Defined in Control.Monad.Error.Class | |
Semigroup a => Semigroup (IO a) | Since: base-4.10.0.0 |
Monoid a => Monoid (IO a) | Since: base-4.9.0.0 |
Instances
Bounded Word | Since: base-2.1 |
Enum Word | Since: base-2.1 |
Eq Word | |
Integral Word | Since: base-2.1 |
Num Word | Since: base-2.1 |
Ord Word | |
Read Word | Since: base-4.5.0.0 |
Real Word | Since: base-2.1 |
Defined in GHC.Real Methods toRational :: Word -> Rational # | |
Show Word | Since: base-2.1 |
Ix Word | Since: base-4.6.0.0 |
Storable Word | Since: base-2.1 |
Defined in Foreign.Storable | |
Bits Word | Since: base-2.1 |
Defined in Data.Bits Methods (.&.) :: Word -> Word -> Word # (.|.) :: Word -> Word -> Word # complement :: Word -> Word # shift :: Word -> Int -> Word # rotate :: Word -> Int -> Word # setBit :: Word -> Int -> Word # clearBit :: Word -> Int -> Word # complementBit :: Word -> Int -> Word # testBit :: Word -> Int -> Bool # bitSizeMaybe :: Word -> Maybe Int # shiftL :: Word -> Int -> Word # unsafeShiftL :: Word -> Int -> Word # shiftR :: Word -> Int -> Word # unsafeShiftR :: Word -> Int -> Word # rotateL :: Word -> Int -> Word # | |
FiniteBits Word | Since: base-4.6.0.0 |
Defined in Data.Bits Methods finiteBitSize :: Word -> Int # countLeadingZeros :: Word -> Int # countTrailingZeros :: Word -> Int # | |
NFData Word | |
Defined in Control.DeepSeq | |
Hashable Word | |
Defined in Data.Hashable.Class | |
Generic1 (URec Word :: k -> Type) | |
Functor (URec Word :: Type -> Type) | Since: base-4.9.0.0 |
Foldable (URec Word :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Word m -> m # foldMap :: Monoid m => (a -> m) -> URec Word a -> m # foldr :: (a -> b -> b) -> b -> URec Word a -> b # foldr' :: (a -> b -> b) -> b -> URec Word a -> b # foldl :: (b -> a -> b) -> b -> URec Word a -> b # foldl' :: (b -> a -> b) -> b -> URec Word a -> b # foldr1 :: (a -> a -> a) -> URec Word a -> a # foldl1 :: (a -> a -> a) -> URec Word a -> a # toList :: URec Word a -> [a] # length :: URec Word a -> Int # elem :: Eq a => a -> URec Word a -> Bool # maximum :: Ord a => URec Word a -> a # minimum :: Ord a => URec Word a -> a # | |
Traversable (URec Word :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
Eq (URec Word p) | Since: base-4.9.0.0 |
Ord (URec Word p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Show (URec Word p) | Since: base-4.9.0.0 |
Generic (URec Word p) | |
data URec Word (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
type Rep1 (URec Word :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (URec Word p) | Since: base-4.9.0.0 |
Defined in GHC.Generics |
A value of type
represents a pointer to an object, or an
array of objects, which may be marshalled to or from Haskell values
of type Ptr
aa
.
The type a
will often be an instance of class
Storable
which provides the marshalling operations.
However this is not essential, and you can provide your own operations
to access the pointer. For example you might write small foreign
functions to get or set the fields of a C struct
.
Instances
NFData1 Ptr | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Generic1 (URec (Ptr ()) :: k -> Type) | |
Eq (Ptr a) | Since: base-2.1 |
Ord (Ptr a) | Since: base-2.1 |
Show (Ptr a) | Since: base-2.1 |
Storable (Ptr a) | Since: base-2.1 |
NFData (Ptr a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
Hashable (Ptr a) | |
Defined in Data.Hashable.Class | |
Functor (URec (Ptr ()) :: Type -> Type) | Since: base-4.9.0.0 |
Foldable (URec (Ptr ()) :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec (Ptr ()) m -> m # foldMap :: Monoid m => (a -> m) -> URec (Ptr ()) a -> m # foldr :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b # foldr' :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b # foldl :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b # foldl' :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b # foldr1 :: (a -> a -> a) -> URec (Ptr ()) a -> a # foldl1 :: (a -> a -> a) -> URec (Ptr ()) a -> a # toList :: URec (Ptr ()) a -> [a] # null :: URec (Ptr ()) a -> Bool # length :: URec (Ptr ()) a -> Int # elem :: Eq a => a -> URec (Ptr ()) a -> Bool # maximum :: Ord a => URec (Ptr ()) a -> a # minimum :: Ord a => URec (Ptr ()) a -> a # | |
Traversable (URec (Ptr ()) :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Traversable Methods traverse :: Applicative f => (a -> f b) -> URec (Ptr ()) a -> f (URec (Ptr ()) b) # sequenceA :: Applicative f => URec (Ptr ()) (f a) -> f (URec (Ptr ()) a) # mapM :: Monad m => (a -> m b) -> URec (Ptr ()) a -> m (URec (Ptr ()) b) # sequence :: Monad m => URec (Ptr ()) (m a) -> m (URec (Ptr ()) a) # | |
Eq (URec (Ptr ()) p) | Since: base-4.9.0.0 |
Ord (URec (Ptr ()) p) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: URec (Ptr ()) p -> URec (Ptr ()) p -> Ordering # (<) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (<=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (>) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (>=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # max :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p # min :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p # | |
Generic (URec (Ptr ()) p) | |
data URec (Ptr ()) (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
type Rep1 (URec (Ptr ()) :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (URec (Ptr ()) p) | Since: base-4.9.0.0 |
Defined in GHC.Generics |
A value of type
is a pointer to a function callable
from foreign code. The type FunPtr
aa
will normally be a foreign type,
a function type with zero or more arguments where
- the argument types are marshallable foreign types,
i.e.
Char
,Int
,Double
,Float
,Bool
,Int8
,Int16
,Int32
,Int64
,Word8
,Word16
,Word32
,Word64
,
,Ptr
a
,FunPtr
a
or a renaming of any of these usingStablePtr
anewtype
. - the return type is either a marshallable foreign type or has the form
whereIO
tt
is a marshallable foreign type or()
.
A value of type
may be a pointer to a foreign function,
either returned by another foreign function or imported with a
a static address import likeFunPtr
a
foreign import ccall "stdlib.h &free" p_free :: FunPtr (Ptr a -> IO ())
or a pointer to a Haskell function created using a wrapper stub
declared to produce a FunPtr
of the correct type. For example:
type Compare = Int -> Int -> Bool foreign import ccall "wrapper" mkCompare :: Compare -> IO (FunPtr Compare)
Calls to wrapper stubs like mkCompare
allocate storage, which
should be released with freeHaskellFunPtr
when no
longer required.
To convert FunPtr
values to corresponding Haskell functions, one
can define a dynamic stub for the specific foreign type, e.g.
type IntFunction = CInt -> IO () foreign import ccall "dynamic" mkFun :: FunPtr IntFunction -> IntFunction
Instances
NFData1 FunPtr | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Eq (FunPtr a) | |
Ord (FunPtr a) | |
Defined in GHC.Ptr | |
Show (FunPtr a) | Since: base-2.1 |
Storable (FunPtr a) | Since: base-2.1 |
Defined in Foreign.Storable | |
NFData (FunPtr a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
Hashable (FunPtr a) | |
Defined in Data.Hashable.Class |
data Constraint #
The kind of constraints, like Show a
(Kind) This is the kind of type-level symbols. Declared here because class IP needs it
Instances
SingKind Symbol | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
KnownSymbol a => SingI (a :: Symbol) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods sing :: Sing a | |
data Sing (s :: Symbol) | |
Defined in GHC.Generics | |
type DemoteRep Symbol | |
Defined in GHC.Generics |
type family CmpNat (a :: Nat) (b :: Nat) :: Ordering where ... #
Comparison of type-level naturals, as a function.
Since: base-4.7.0.0
class a ~R# b => Coercible (a :: k0) (b :: k0) #
Coercible
is a two-parameter class that has instances for types a
and b
if
the compiler can infer that they have the same representation. This class
does not have regular instances; instead they are created on-the-fly during
type-checking. Trying to manually declare an instance of Coercible
is an error.
Nevertheless one can pretend that the following three kinds of instances exist. First, as a trivial base-case:
instance Coercible a a
Furthermore, for every type constructor there is
an instance that allows to coerce under the type constructor. For
example, let D
be a prototypical type constructor (data
or
newtype
) with three type arguments, which have roles nominal
,
representational
resp. phantom
. Then there is an instance of
the form
instance Coercible b b' => Coercible (D a b c) (D a b' c')
Note that the nominal
type arguments are equal, the
representational
type arguments can differ, but need to have a
Coercible
instance themself, and the phantom
type arguments can be
changed arbitrarily.
The third kind of instance exists for every newtype NT = MkNT T
and
comes in two variants, namely
instance Coercible a T => Coercible a NT
instance Coercible T b => Coercible NT b
This instance is only usable if the constructor MkNT
is in scope.
If, as a library author of a type constructor like Set a
, you
want to prevent a user of your module to write
coerce :: Set T -> Set NT
,
you need to set the role of Set
's type parameter to nominal
,
by writing
type role Set nominal
For more details about this feature, please refer to Safe Coercions by Joachim Breitner, Richard A. Eisenberg, Simon Peyton Jones and Stephanie Weirich.
Since: ghc-prim-4.7.0.0
A reference to a value of type a
.
Instances
IsStatic StaticPtr | Since: base-4.9.0.0 |
Defined in GHC.StaticPtr Methods fromStaticPtr :: StaticPtr a -> StaticPtr a # |
CallStack
s are a lightweight method of obtaining a
partial call-stack at any point in the program.
A function can request its call-site with the HasCallStack
constraint.
For example, we can define
putStrLnWithCallStack :: HasCallStack => String -> IO ()
as a variant of putStrLn
that will get its call-site and print it,
along with the string given as argument. We can access the
call-stack inside putStrLnWithCallStack
with callStack
.
putStrLnWithCallStack :: HasCallStack => String -> IO () putStrLnWithCallStack msg = do putStrLn msg putStrLn (prettyCallStack callStack)
Thus, if we call putStrLnWithCallStack
we will get a formatted call-stack
alongside our string.
>>>
putStrLnWithCallStack "hello"
hello CallStack (from HasCallStack): putStrLnWithCallStack, called at <interactive>:2:1 in interactive:Ghci1
GHC solves HasCallStack
constraints in three steps:
- If there is a
CallStack
in scope -- i.e. the enclosing function has aHasCallStack
constraint -- GHC will append the new call-site to the existingCallStack
. - If there is no
CallStack
in scope -- e.g. in the GHCi session above -- and the enclosing definition does not have an explicit type signature, GHC will infer aHasCallStack
constraint for the enclosing definition (subject to the monomorphism restriction). - If there is no
CallStack
in scope and the enclosing definition has an explicit type signature, GHC will solve theHasCallStack
constraint for the singletonCallStack
containing just the current call-site.
CallStack
s do not interact with the RTS and do not require compilation
with -prof
. On the other hand, as they are built up explicitly via the
HasCallStack
constraints, they will generally not contain as much
information as the simulated call-stacks maintained by the RTS.
A CallStack
is a [(String, SrcLoc)]
. The String
is the name of
function that was called, the SrcLoc
is the call-site. The list is
ordered with the most recently called function at the head.
NOTE: The intrepid user may notice that HasCallStack
is just an
alias for an implicit parameter ?callStack :: CallStack
. This is an
implementation detail and should not be considered part of the
CallStack
API, we may decide to change the implementation in the
future.
Since: base-4.8.1.0
integralEnumFromThenTo :: Integral a => a -> a -> a -> [a] #
integralEnumFromTo :: Integral a => a -> a -> [a] #
integralEnumFromThen :: (Integral a, Bounded a) => a -> a -> [a] #
integralEnumFrom :: (Integral a, Bounded a) => a -> [a] #
numericEnumFromThenTo :: (Ord a, Fractional a) => a -> a -> a -> [a] #
numericEnumFromTo :: (Ord a, Fractional a) => a -> a -> [a] #
numericEnumFromThen :: Fractional a => a -> a -> [a] #
numericEnumFrom :: Fractional a => a -> [a] #
notANumber :: Rational #
ratioPrec1 :: Int #
underflowError :: a #
overflowError :: a #
divZeroError :: a #
reduce :: Integral a => a -> a -> Ratio a #
reduce
is a subsidiary function used only in this module.
It normalises a ratio by dividing both numerator and denominator by
their greatest common divisor.
boundedEnumFromThen :: (Enum a, Bounded a) => a -> a -> [a] #
boundedEnumFrom :: (Enum a, Bounded a) => a -> [a] #
showStackTrace :: IO (Maybe String) #
Get a string representation of the current execution stack state.
getStackTrace :: IO (Maybe [Location]) #
Get a trace of the current execution stack state.
Returns Nothing
if stack trace support isn't available on host machine.
Location information about an address from a backtrace.
Constructors
Location | |
Fields
|
withFrozenCallStack :: HasCallStack => (HasCallStack -> a) -> a #
Perform some computation without adding new entries to the CallStack
.
Since: base-4.9.0.0
callStack :: HasCallStack -> CallStack #
prettyCallStack :: CallStack -> String #
Pretty print a CallStack
.
Since: base-4.9.0.0
prettySrcLoc :: SrcLoc -> String #
Pretty print a SrcLoc
.
Since: base-4.9.0.0
someSymbolVal :: String -> SomeSymbol #
Convert a string into an unknown type-level symbol.
Since: base-4.7.0.0
someNatVal :: Integer -> Maybe SomeNat #
Convert an integer into an unknown type-level natural.
Since: base-4.7.0.0
symbolVal :: KnownSymbol n => proxy n -> String #
Since: base-4.7.0.0
data SomeSymbol where #
This type represents unknown type-level symbols.
Constructors
SomeSymbol :: forall (n :: Symbol). KnownSymbol n => Proxy n -> SomeSymbol | Since: base-4.7.0.0 |
Instances
Eq SomeSymbol | Since: base-4.7.0.0 |
Defined in GHC.TypeLits | |
Ord SomeSymbol | Since: base-4.7.0.0 |
Defined in GHC.TypeLits Methods compare :: SomeSymbol -> SomeSymbol -> Ordering # (<) :: SomeSymbol -> SomeSymbol -> Bool # (<=) :: SomeSymbol -> SomeSymbol -> Bool # (>) :: SomeSymbol -> SomeSymbol -> Bool # (>=) :: SomeSymbol -> SomeSymbol -> Bool # max :: SomeSymbol -> SomeSymbol -> SomeSymbol # min :: SomeSymbol -> SomeSymbol -> SomeSymbol # | |
Read SomeSymbol | Since: base-4.7.0.0 |
Defined in GHC.TypeLits Methods readsPrec :: Int -> ReadS SomeSymbol # readList :: ReadS [SomeSymbol] # readPrec :: ReadPrec SomeSymbol # readListPrec :: ReadPrec [SomeSymbol] # | |
Show SomeSymbol | Since: base-4.7.0.0 |
Defined in GHC.TypeLits Methods showsPrec :: Int -> SomeSymbol -> ShowS # show :: SomeSymbol -> String # showList :: [SomeSymbol] -> ShowS # |
This type represents unknown type-level natural numbers.
Since: base-4.10.0.0
lcm :: Integral a => a -> a -> a #
is the smallest positive integer that both lcm
x yx
and y
divide.
gcd :: Integral a => a -> a -> a #
is the non-negative factor of both gcd
x yx
and y
of which
every common factor of x
and y
is also a factor; for example
, gcd
4 2 = 2
, gcd
(-4) 6 = 2
= gcd
0 44
.
= gcd
0 00
.
(That is, the common divisor that is "greatest" in the divisibility
preordering.)
Note: Since for signed fixed-width integer types,
,
the result may be negative if one of the arguments is abs
minBound
< 0
(and
necessarily is if the other is minBound
0
or
) for such types.minBound
(^^) :: (Fractional a, Integral b) => a -> b -> a infixr 8 #
raise a number to an integral power
denominator :: Ratio a -> a #
Extract the denominator of the ratio in reduced form: the numerator and denominator have no common factor and the denominator is positive.
Extract the numerator of the ratio in reduced form: the numerator and denominator have no common factor and the denominator is positive.
currentCallStack :: IO [String] #
Returns a [String]
representing the current call stack. This
can be useful for debugging.
The implementation uses the call-stack simulation maintained by the
profiler, so it only works if the program was compiled with -prof
and contains suitable SCC annotations (e.g. by using -fprof-auto
).
Otherwise, the list returned is likely to be empty or
uninformative.
Since: base-4.5.0.0
until :: (a -> Bool) -> (a -> a) -> a -> a #
yields the result of applying until
p ff
until p
holds.
getCallStack :: CallStack -> [([Char], SrcLoc)] #
Extract a list of call-sites from the CallStack
.
The list is ordered by most recent call.
Since: base-4.8.1.0
type HasCallStack = ?callStack :: CallStack #
Request a CallStack.
NOTE: The implicit parameter ?callStack :: CallStack
is an
implementation detail and should not be considered part of the
CallStack
API, we may decide to change the implementation in the
future.
Since: base-4.9.0.0
pass :: Applicative f => f () Source #
Do nothing returning unit inside applicative.
Function functions
($) :: (a -> b) -> a -> b infixr 0 #
Application operator. This operator is redundant, since ordinary
application (f x)
means the same as (f
. However, $
x)$
has
low, right-associative binding precedence, so it sometimes allows
parentheses to be omitted; for example:
f $ g $ h x = f (g (h x))
It is also useful in higher-order situations, such as
,
or map
($
0) xs
.zipWith
($
) fs xs
Note that ($)
is levity-polymorphic in its result type, so that
foo $ True where foo :: Bool -> Int#
is well-typed
is the least fixed point of the function fix
ff
,
i.e. the least defined x
such that f x = x
.
For example, we can write the factorial function using direct recursion as
>>>
let fac n = if n <= 1 then 1 else n * fac (n-1) in fac 5
120
This uses the fact that Haskell’s let
introduces recursive bindings. We can
rewrite this definition using fix
,
>>>
fix (\rec n -> if n <= 1 then 1 else n * rec (n-1)) 5
120
Instead of making a recursive call, we introduce a dummy parameter rec
;
when used within fix
, this parameter then refers to fix'
argument, hence
the recursion is reintroduced.
flip :: (a -> b -> c) -> b -> a -> c #
takes its (first) two arguments in the reverse order of flip
ff
.
>>>
flip (++) "hello" "world"
"worldhello"
const x
is a unary function which evaluates to x
for all inputs.
>>>
const 42 "hello"
42
>>>
map (const 42) [0..3]
[42,42,42,42]
List functions
filter :: (a -> Bool) -> [a] -> [a] #
filter
, applied to a predicate and a list, returns the list of
those elements that satisfy the predicate; i.e.,
filter p xs = [ x | x <- xs, p x]
unfoldr :: (b -> Maybe (a, b)) -> b -> [a] #
The unfoldr
function is a `dual' to foldr
: while foldr
reduces a list to a summary value, unfoldr
builds a list from
a seed value. The function takes the element and returns Nothing
if it is done producing the list or returns Just
(a,b)
, in which
case, a
is a prepended to the list and b
is used as the next
element in a recursive call. For example,
iterate f == unfoldr (\x -> Just (x, f x))
In some cases, unfoldr
can undo a foldr
operation:
unfoldr f' (foldr f z xs) == xs
if the following holds:
f' (f x y) = Just (x,y) f' z = Nothing
A simple use of unfoldr:
>>>
unfoldr (\b -> if b == 0 then Nothing else Just (b, b-1)) 10
[10,9,8,7,6,5,4,3,2,1]
The sort
function implements a stable sorting algorithm.
It is a special case of sortBy
, which allows the programmer to supply
their own comparison function.
Elements are arranged from from lowest to highest, keeping duplicates in the order they appeared in the input.
>>>
sort [1,6,4,3,2,5]
[1,2,3,4,5,6]
permutations :: [a] -> [[a]] #
The permutations
function returns the list of all permutations of the argument.
>>>
permutations "abc"
["abc","bac","cba","bca","cab","acb"]
subsequences :: [a] -> [[a]] #
The subsequences
function returns the list of all subsequences of the argument.
>>>
subsequences "abc"
["","a","b","ab","c","ac","bc","abc"]
group :: Eq a => [a] -> [[a]] #
The group
function takes a list and returns a list of lists such
that the concatenation of the result is equal to the argument. Moreover,
each sublist in the result contains only equal elements. For example,
>>>
group "Mississippi"
["M","i","ss","i","ss","i","pp","i"]
It is a special case of groupBy
, which allows the programmer to supply
their own equality test.
genericReplicate :: Integral i => i -> a -> [a] #
The genericReplicate
function is an overloaded version of replicate
,
which accepts any Integral
value as the number of repetitions to make.
genericSplitAt :: Integral i => i -> [a] -> ([a], [a]) #
The genericSplitAt
function is an overloaded version of splitAt
, which
accepts any Integral
value as the position at which to split.
genericDrop :: Integral i => i -> [a] -> [a] #
The genericDrop
function is an overloaded version of drop
, which
accepts any Integral
value as the number of elements to drop.
genericTake :: Integral i => i -> [a] -> [a] #
The genericTake
function is an overloaded version of take
, which
accepts any Integral
value as the number of elements to take.
genericLength :: Num i => [a] -> i #
The genericLength
function is an overloaded version of length
. In
particular, instead of returning an Int
, it returns any type which is
an instance of Num
. It is, however, less efficient than length
.
The transpose
function transposes the rows and columns of its argument.
For example,
>>>
transpose [[1,2,3],[4,5,6]]
[[1,4],[2,5],[3,6]]
If some of the rows are shorter than the following rows, their elements are skipped:
>>>
transpose [[10,11],[20],[],[30,31,32]]
[[10,20,30],[11,31],[32]]
intercalate :: [a] -> [[a]] -> [a] #
intercalate
xs xss
is equivalent to (
.
It inserts the list concat
(intersperse
xs xss))xs
in between the lists in xss
and concatenates the
result.
>>>
intercalate ", " ["Lorem", "ipsum", "dolor"]
"Lorem, ipsum, dolor"
intersperse :: a -> [a] -> [a] #
The intersperse
function takes an element and a list and
`intersperses' that element between the elements of the list.
For example,
>>>
intersperse ',' "abcde"
"a,b,c,d,e"
isPrefixOf :: Eq a => [a] -> [a] -> Bool #
The isPrefixOf
function takes two lists and returns True
iff the first list is a prefix of the second.
>>>
"Hello" `isPrefixOf` "Hello World!"
True
>>>
"Hello" `isPrefixOf` "Wello Horld!"
False
unzip :: [(a, b)] -> ([a], [b]) #
unzip
transforms a list of pairs into a list of first components
and a list of second components.
break :: (a -> Bool) -> [a] -> ([a], [a]) #
break
, applied to a predicate p
and a list xs
, returns a tuple where
first element is longest prefix (possibly empty) of xs
of elements that
do not satisfy p
and second element is the remainder of the list:
break (> 3) [1,2,3,4,1,2,3,4] == ([1,2,3],[4,1,2,3,4]) break (< 9) [1,2,3] == ([],[1,2,3]) break (> 9) [1,2,3] == ([1,2,3],[])
splitAt :: Int -> [a] -> ([a], [a]) #
splitAt
n xs
returns a tuple where first element is xs
prefix of
length n
and second element is the remainder of the list:
splitAt 6 "Hello World!" == ("Hello ","World!") splitAt 3 [1,2,3,4,5] == ([1,2,3],[4,5]) splitAt 1 [1,2,3] == ([1],[2,3]) splitAt 3 [1,2,3] == ([1,2,3],[]) splitAt 4 [1,2,3] == ([1,2,3],[]) splitAt 0 [1,2,3] == ([],[1,2,3]) splitAt (-1) [1,2,3] == ([],[1,2,3])
It is equivalent to (
when take
n xs, drop
n xs)n
is not _|_
(splitAt _|_ xs = _|_
).
splitAt
is an instance of the more general genericSplitAt
,
in which n
may be of any integral type.
drop
n xs
returns the suffix of xs
after the first n
elements, or []
if n >
:length
xs
drop 6 "Hello World!" == "World!" drop 3 [1,2,3,4,5] == [4,5] drop 3 [1,2] == [] drop 3 [] == [] drop (-1) [1,2] == [1,2] drop 0 [1,2] == [1,2]
It is an instance of the more general genericDrop
,
in which n
may be of any integral type.
take
n
, applied to a list xs
, returns the prefix of xs
of length n
, or xs
itself if n >
:length
xs
take 5 "Hello World!" == "Hello" take 3 [1,2,3,4,5] == [1,2,3] take 3 [1,2] == [1,2] take 3 [] == [] take (-1) [1,2] == [] take 0 [1,2] == []
It is an instance of the more general genericTake
,
in which n
may be of any integral type.
takeWhile :: (a -> Bool) -> [a] -> [a] #
takeWhile
, applied to a predicate p
and a list xs
, returns the
longest prefix (possibly empty) of xs
of elements that satisfy p
:
takeWhile (< 3) [1,2,3,4,1,2,3,4] == [1,2] takeWhile (< 9) [1,2,3] == [1,2,3] takeWhile (< 0) [1,2,3] == []
cycle
ties a finite list into a circular one, or equivalently,
the infinite repetition of the original list. It is the identity
on infinite lists.
replicate :: Int -> a -> [a] #
replicate
n x
is a list of length n
with x
the value of
every element.
It is an instance of the more general genericReplicate
,
in which n
may be of any integral type.
Non-empty (and non-strict) list type.
Since: base-4.9.0.0
Constructors
a :| [a] infixr 5 |
Instances
Monad NonEmpty | Since: base-4.9.0.0 |
Functor NonEmpty | Since: base-4.9.0.0 |
Applicative NonEmpty | Since: base-4.9.0.0 |
Foldable NonEmpty | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => NonEmpty m -> m # foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m # foldr :: (a -> b -> b) -> b -> NonEmpty a -> b # foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b # foldl :: (b -> a -> b) -> b -> NonEmpty a -> b # foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b # foldr1 :: (a -> a -> a) -> NonEmpty a -> a # foldl1 :: (a -> a -> a) -> NonEmpty a -> a # elem :: Eq a => a -> NonEmpty a -> Bool # maximum :: Ord a => NonEmpty a -> a # minimum :: Ord a => NonEmpty a -> a # | |
Traversable NonEmpty | Since: base-4.9.0.0 |
Eq1 NonEmpty | Since: base-4.10.0.0 |
Ord1 NonEmpty | Since: base-4.10.0.0 |
Defined in Data.Functor.Classes | |
Read1 NonEmpty | Since: base-4.10.0.0 |
Defined in Data.Functor.Classes | |
Show1 NonEmpty | Since: base-4.10.0.0 |
NFData1 NonEmpty | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
IsList (NonEmpty a) | Since: base-4.9.0.0 |
Eq a => Eq (NonEmpty a) | Since: base-4.9.0.0 |
Ord a => Ord (NonEmpty a) | Since: base-4.9.0.0 |
Read a => Read (NonEmpty a) | Since: base-4.11.0.0 |
Show a => Show (NonEmpty a) | Since: base-4.11.0.0 |
Generic (NonEmpty a) | |
Semigroup (NonEmpty a) | Since: base-4.9.0.0 |
NFData a => NFData (NonEmpty a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
Hashable a => Hashable (NonEmpty a) | |
Defined in Data.Hashable.Class | |
Generic1 NonEmpty | |
type Rep (NonEmpty a) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep (NonEmpty a) = D1 (MetaData "NonEmpty" "GHC.Base" "base" False) (C1 (MetaCons ":|" (InfixI LeftAssociative 9) False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 a) :*: S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 [a]))) | |
type Item (NonEmpty a) | |
type Rep1 NonEmpty | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep1 NonEmpty = D1 (MetaData "NonEmpty" "GHC.Base" "base" False) (C1 (MetaCons ":|" (InfixI LeftAssociative 9) False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) Par1 :*: S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec1 []))) |
Data Structures
A map of integers to values a
.
Instances
Functor IntMap | |
Foldable IntMap | |
Defined in Data.IntMap.Internal Methods fold :: Monoid m => IntMap m -> m # foldMap :: Monoid m => (a -> m) -> IntMap a -> m # foldr :: (a -> b -> b) -> b -> IntMap a -> b # foldr' :: (a -> b -> b) -> b -> IntMap a -> b # foldl :: (b -> a -> b) -> b -> IntMap a -> b # foldl' :: (b -> a -> b) -> b -> IntMap a -> b # foldr1 :: (a -> a -> a) -> IntMap a -> a # foldl1 :: (a -> a -> a) -> IntMap a -> a # elem :: Eq a => a -> IntMap a -> Bool # maximum :: Ord a => IntMap a -> a # minimum :: Ord a => IntMap a -> a # | |
Traversable IntMap | |
Eq1 IntMap | Since: containers-0.5.9 |
Ord1 IntMap | Since: containers-0.5.9 |
Defined in Data.IntMap.Internal | |
Read1 IntMap | Since: containers-0.5.9 |
Defined in Data.IntMap.Internal | |
Show1 IntMap | Since: containers-0.5.9 |
IsList (IntMap a) | Since: containers-0.5.6.2 |
Eq a => Eq (IntMap a) | |
Data a => Data (IntMap a) | |
Defined in Data.IntMap.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntMap a -> c (IntMap a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (IntMap a) # toConstr :: IntMap a -> Constr # dataTypeOf :: IntMap a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (IntMap a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (IntMap a)) # gmapT :: (forall b. Data b => b -> b) -> IntMap a -> IntMap a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntMap a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntMap a -> r # gmapQ :: (forall d. Data d => d -> u) -> IntMap a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> IntMap a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) # | |
Ord a => Ord (IntMap a) | |
Defined in Data.IntMap.Internal | |
Read e => Read (IntMap e) | |
Show a => Show (IntMap a) | |
Semigroup (IntMap a) | Since: containers-0.5.7 |
Monoid (IntMap a) | |
NFData a => NFData (IntMap a) | |
Defined in Data.IntMap.Internal | |
type Item (IntMap a) | |
Defined in Data.IntMap.Internal |
A set of integers.
Instances
IsList IntSet | Since: containers-0.5.6.2 |
Eq IntSet | |
Data IntSet | |
Defined in Data.IntSet.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntSet -> c IntSet # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c IntSet # toConstr :: IntSet -> Constr # dataTypeOf :: IntSet -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c IntSet) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c IntSet) # gmapT :: (forall b. Data b => b -> b) -> IntSet -> IntSet # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntSet -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntSet -> r # gmapQ :: (forall d. Data d => d -> u) -> IntSet -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> IntSet -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet # | |
Ord IntSet | |
Read IntSet | |
Show IntSet | |
Semigroup IntSet | Since: containers-0.5.7 |
Monoid IntSet | |
NFData IntSet | |
Defined in Data.IntSet.Internal | |
type Item IntSet | |
Defined in Data.IntSet.Internal |
A Map from keys k
to values a
.
Instances
Eq2 Map | Since: containers-0.5.9 |
Ord2 Map | Since: containers-0.5.9 |
Defined in Data.Map.Internal | |
Show2 Map | Since: containers-0.5.9 |
Functor (Map k) | |
Foldable (Map k) | |
Defined in Data.Map.Internal Methods fold :: Monoid m => Map k m -> m # foldMap :: Monoid m => (a -> m) -> Map k a -> m # foldr :: (a -> b -> b) -> b -> Map k a -> b # foldr' :: (a -> b -> b) -> b -> Map k a -> b # foldl :: (b -> a -> b) -> b -> Map k a -> b # foldl' :: (b -> a -> b) -> b -> Map k a -> b # foldr1 :: (a -> a -> a) -> Map k a -> a # foldl1 :: (a -> a -> a) -> Map k a -> a # elem :: Eq a => a -> Map k a -> Bool # maximum :: Ord a => Map k a -> a # minimum :: Ord a => Map k a -> a # | |
Traversable (Map k) | |
Eq k => Eq1 (Map k) | Since: containers-0.5.9 |
Ord k => Ord1 (Map k) | Since: containers-0.5.9 |
Defined in Data.Map.Internal | |
(Ord k, Read k) => Read1 (Map k) | Since: containers-0.5.9 |
Defined in Data.Map.Internal | |
Show k => Show1 (Map k) | Since: containers-0.5.9 |
Ord k => IsList (Map k v) | Since: containers-0.5.6.2 |
(Eq k, Eq a) => Eq (Map k a) | |
(Data k, Data a, Ord k) => Data (Map k a) | |
Defined in Data.Map.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Map k a -> c (Map k a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Map k a) # toConstr :: Map k a -> Constr # dataTypeOf :: Map k a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Map k a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Map k a)) # gmapT :: (forall b. Data b => b -> b) -> Map k a -> Map k a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Map k a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Map k a -> r # gmapQ :: (forall d. Data d => d -> u) -> Map k a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Map k a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) # | |
(Ord k, Ord v) => Ord (Map k v) | |
(Ord k, Read k, Read e) => Read (Map k e) | |
(Show k, Show a) => Show (Map k a) | |
Ord k => Semigroup (Map k v) | |
Ord k => Monoid (Map k v) | |
(NFData k, NFData a) => NFData (Map k a) | |
Defined in Data.Map.Internal | |
type Item (Map k v) | |
Defined in Data.Map.Internal |
General-purpose finite sequences.
Instances
Monad Seq | |
Functor Seq | |
MonadFix Seq | Since: containers-0.5.11 |
Defined in Data.Sequence.Internal | |
Applicative Seq | Since: containers-0.5.4 |
Foldable Seq | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Seq m -> m # foldMap :: Monoid m => (a -> m) -> Seq a -> m # foldr :: (a -> b -> b) -> b -> Seq a -> b # foldr' :: (a -> b -> b) -> b -> Seq a -> b # foldl :: (b -> a -> b) -> b -> Seq a -> b # foldl' :: (b -> a -> b) -> b -> Seq a -> b # foldr1 :: (a -> a -> a) -> Seq a -> a # foldl1 :: (a -> a -> a) -> Seq a -> a # elem :: Eq a => a -> Seq a -> Bool # maximum :: Ord a => Seq a -> a # | |
Traversable Seq | |
Eq1 Seq | Since: containers-0.5.9 |
Ord1 Seq | Since: containers-0.5.9 |
Defined in Data.Sequence.Internal | |
Read1 Seq | Since: containers-0.5.9 |
Defined in Data.Sequence.Internal | |
Show1 Seq | Since: containers-0.5.9 |
MonadZip Seq |
|
Alternative Seq | Since: containers-0.5.4 |
MonadPlus Seq | |
UnzipWith Seq | |
Defined in Data.Sequence.Internal Methods unzipWith' :: (x -> (a, b)) -> Seq x -> (Seq a, Seq b) | |
IsList (Seq a) | |
Eq a => Eq (Seq a) | |
Data a => Data (Seq a) | |
Defined in Data.Sequence.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Seq a -> c (Seq a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Seq a) # dataTypeOf :: Seq a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Seq a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Seq a)) # gmapT :: (forall b. Data b => b -> b) -> Seq a -> Seq a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Seq a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Seq a -> r # gmapQ :: (forall d. Data d => d -> u) -> Seq a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Seq a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) # | |
Ord a => Ord (Seq a) | |
Read a => Read (Seq a) | |
Show a => Show (Seq a) | |
a ~ Char => IsString (Seq a) | Since: containers-0.5.7 |
Defined in Data.Sequence.Internal Methods fromString :: String -> Seq a # | |
Semigroup (Seq a) | Since: containers-0.5.7 |
Monoid (Seq a) | |
NFData a => NFData (Seq a) | |
Defined in Data.Sequence.Internal | |
type Item (Seq a) | |
Defined in Data.Sequence.Internal |
A set of values a
.
Instances
Foldable Set | |
Defined in Data.Set.Internal Methods fold :: Monoid m => Set m -> m # foldMap :: Monoid m => (a -> m) -> Set a -> m # foldr :: (a -> b -> b) -> b -> Set a -> b # foldr' :: (a -> b -> b) -> b -> Set a -> b # foldl :: (b -> a -> b) -> b -> Set a -> b # foldl' :: (b -> a -> b) -> b -> Set a -> b # foldr1 :: (a -> a -> a) -> Set a -> a # foldl1 :: (a -> a -> a) -> Set a -> a # elem :: Eq a => a -> Set a -> Bool # maximum :: Ord a => Set a -> a # | |
Eq1 Set | Since: containers-0.5.9 |
Ord1 Set | Since: containers-0.5.9 |
Defined in Data.Set.Internal | |
Show1 Set | Since: containers-0.5.9 |
Ord a => IsList (Set a) | Since: containers-0.5.6.2 |
Eq a => Eq (Set a) | |
(Data a, Ord a) => Data (Set a) | |
Defined in Data.Set.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Set a -> c (Set a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Set a) # dataTypeOf :: Set a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Set a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Set a)) # gmapT :: (forall b. Data b => b -> b) -> Set a -> Set a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Set a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Set a -> r # gmapQ :: (forall d. Data d => d -> u) -> Set a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Set a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # | |
Ord a => Ord (Set a) | |
(Read a, Ord a) => Read (Set a) | |
Show a => Show (Set a) | |
Ord a => Semigroup (Set a) | Since: containers-0.5.7 |
Ord a => Monoid (Set a) | |
NFData a => NFData (Set a) | |
Defined in Data.Set.Internal | |
type Item (Set a) | |
Defined in Data.Set.Internal |
Show functions
module Protolude.Show
print :: (MonadIO m, Show a) => a -> m () Source #
The print function outputs a value of any printable type to the standard output device. Printable types are those that are instances of class Show; print converts values to strings for output using the show operation and adds a newline.
Bool functions
Instances
Bounded Bool | Since: base-2.1 |
Enum Bool | Since: base-2.1 |
Eq Bool | |
Ord Bool | |
Read Bool | Since: base-2.1 |
Show Bool | Since: base-2.1 |
Ix Bool | Since: base-2.1 |
Generic Bool | |
SingKind Bool | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Storable Bool | Since: base-2.1 |
Defined in Foreign.Storable | |
Bits Bool | Interpret Since: base-4.7.0.0 |
Defined in Data.Bits Methods (.&.) :: Bool -> Bool -> Bool # (.|.) :: Bool -> Bool -> Bool # complement :: Bool -> Bool # shift :: Bool -> Int -> Bool # rotate :: Bool -> Int -> Bool # setBit :: Bool -> Int -> Bool # clearBit :: Bool -> Int -> Bool # complementBit :: Bool -> Int -> Bool # testBit :: Bool -> Int -> Bool # bitSizeMaybe :: Bool -> Maybe Int # shiftL :: Bool -> Int -> Bool # unsafeShiftL :: Bool -> Int -> Bool # shiftR :: Bool -> Int -> Bool # unsafeShiftR :: Bool -> Int -> Bool # rotateL :: Bool -> Int -> Bool # | |
FiniteBits Bool | Since: base-4.7.0.0 |
Defined in Data.Bits Methods finiteBitSize :: Bool -> Int # countLeadingZeros :: Bool -> Int # countTrailingZeros :: Bool -> Int # | |
NFData Bool | |
Defined in Control.DeepSeq | |
Hashable Bool | |
Defined in Data.Hashable.Class | |
SingI False | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
SingI True | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep Bool | Since: base-4.6.0.0 |
data Sing (a :: Bool) | |
type DemoteRep Bool | |
Defined in GHC.Generics |
Monad functions
module Protolude.Monad
liftIO1 :: MonadIO m => (a -> IO b) -> a -> m b Source #
Lift an IO
operation with 1 argument into another monad
liftIO2 :: MonadIO m => (a -> b -> IO c) -> a -> b -> m c Source #
Lift an IO
operation with 2 arguments into another monad
Functor functions
class Functor (f :: Type -> Type) where #
The Functor
class is used for types that can be mapped over.
Instances of Functor
should satisfy the following laws:
fmap id == id fmap (f . g) == fmap f . fmap g
The instances of Functor
for lists, Maybe
and IO
satisfy these laws.
Minimal complete definition
Instances
Functor [] | Since: base-2.1 |
Functor Maybe | Since: base-2.1 |
Functor IO | Since: base-2.1 |
Functor Par1 | Since: base-4.9.0.0 |
Functor Async | |
Functor Concurrently | |
Defined in Control.Concurrent.Async Methods fmap :: (a -> b) -> Concurrently a -> Concurrently b # (<$) :: a -> Concurrently b -> Concurrently a # | |
Functor Complex | Since: base-4.9.0.0 |
Functor Min | Since: base-4.9.0.0 |
Functor Max | Since: base-4.9.0.0 |
Functor First | Since: base-4.9.0.0 |
Functor Last | Since: base-4.9.0.0 |
Functor Option | Since: base-4.9.0.0 |
Functor ZipList | Since: base-2.1 |
Functor Identity | Since: base-4.8.0.0 |
Functor Handler | Since: base-4.6.0.0 |
Functor STM | Since: base-4.3.0.0 |
Functor First | Since: base-4.8.0.0 |
Functor Last | Since: base-4.8.0.0 |
Functor Dual | Since: base-4.8.0.0 |
Functor Sum | Since: base-4.8.0.0 |
Functor Product | Since: base-4.8.0.0 |
Functor Down | Since: base-4.11.0.0 |
Functor ReadP | Since: base-2.1 |
Functor NonEmpty | Since: base-4.9.0.0 |
Functor IntMap | |
Functor Seq | |
Functor FingerTree | |
Defined in Data.Sequence.Internal Methods fmap :: (a -> b) -> FingerTree a -> FingerTree b # (<$) :: a -> FingerTree b -> FingerTree a # | |
Functor Digit | |
Functor Node | |
Functor Elem | |
Functor ViewL | |
Functor ViewR | |
Functor P | Since: base-4.8.0.0 |
Defined in Text.ParserCombinators.ReadP | |
Functor (Either a) | Since: base-3.0 |
Functor (V1 :: Type -> Type) | Since: base-4.9.0.0 |
Functor (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Functor ((,) a) | Since: base-2.1 |
Functor (ST s) | Since: base-2.1 |
Functor (Array i) | Since: base-2.1 |
Functor (Arg a) | Since: base-4.9.0.0 |
Monad m => Functor (WrappedMonad m) | Since: base-2.1 |
Defined in Control.Applicative Methods fmap :: (a -> b) -> WrappedMonad m a -> WrappedMonad m b # (<$) :: a -> WrappedMonad m b -> WrappedMonad m a # | |
Arrow a => Functor (ArrowMonad a) | Since: base-4.6.0.0 |
Defined in Control.Arrow Methods fmap :: (a0 -> b) -> ArrowMonad a a0 -> ArrowMonad a b # (<$) :: a0 -> ArrowMonad a b -> ArrowMonad a a0 # | |
Functor (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Functor (Map k) | |
Functor m => Functor (ListT m) | |
Functor m => Functor (MaybeT m) | |
Functor f => Functor (Rec1 f) | Since: base-4.9.0.0 |
Functor (URec Char :: Type -> Type) | Since: base-4.9.0.0 |
Functor (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
Functor (URec Float :: Type -> Type) | Since: base-4.9.0.0 |
Functor (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
Functor (URec Word :: Type -> Type) | Since: base-4.9.0.0 |
Functor (URec (Ptr ()) :: Type -> Type) | Since: base-4.9.0.0 |
Arrow a => Functor (WrappedArrow a b) | Since: base-2.1 |
Defined in Control.Applicative Methods fmap :: (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 # (<$) :: a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 # | |
Functor (Const m :: Type -> Type) | Since: base-2.1 |
Functor f => Functor (Ap f) | Since: base-4.12.0.0 |
Functor f => Functor (Alt f) | Since: base-4.8.0.0 |
(Applicative f, Monad f) => Functor (WhenMissing f x) | Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods fmap :: (a -> b) -> WhenMissing f x a -> WhenMissing f x b # (<$) :: a -> WhenMissing f x b -> WhenMissing f x a # | |
Functor m => Functor (IdentityT m) | |
Functor m => Functor (ErrorT e m) | |
Functor m => Functor (ExceptT e m) | |
Functor m => Functor (StateT s m) | |
Functor m => Functor (StateT s m) | |
Functor m => Functor (WriterT w m) | |
Functor m => Functor (WriterT w m) | |
Functor ((->) r :: Type -> Type) | Since: base-2.1 |
Functor (K1 i c :: Type -> Type) | Since: base-4.9.0.0 |
(Functor f, Functor g) => Functor (f :+: g) | Since: base-4.9.0.0 |
(Functor f, Functor g) => Functor (f :*: g) | Since: base-4.9.0.0 |
(Functor f, Functor g) => Functor (Product f g) | Since: base-4.9.0.0 |
(Functor f, Functor g) => Functor (Sum f g) | Since: base-4.9.0.0 |
Functor f => Functor (WhenMatched f x y) | Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods fmap :: (a -> b) -> WhenMatched f x y a -> WhenMatched f x y b # (<$) :: a -> WhenMatched f x y b -> WhenMatched f x y a # | |
(Applicative f, Monad f) => Functor (WhenMissing f k x) | Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods fmap :: (a -> b) -> WhenMissing f k x a -> WhenMissing f k x b # (<$) :: a -> WhenMissing f k x b -> WhenMissing f k x a # | |
Functor m => Functor (ReaderT r m) | |
Functor f => Functor (M1 i c f) | Since: base-4.9.0.0 |
(Functor f, Functor g) => Functor (f :.: g) | Since: base-4.9.0.0 |
(Functor f, Functor g) => Functor (Compose f g) | Since: base-4.9.0.0 |
Functor f => Functor (WhenMatched f k x y) | Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods fmap :: (a -> b) -> WhenMatched f k x y a -> WhenMatched f k x y b # (<$) :: a -> WhenMatched f k x y b -> WhenMatched f k x y a # | |
Functor m => Functor (RWST r w s m) | |
Functor m => Functor (RWST r w s m) | |
Identity functor and monad. (a non-strict monad)
Since: base-4.8.0.0
Constructors
Identity | |
Fields
|
Instances
void :: Functor f => f a -> f () #
discards or ignores the result of evaluation, such
as the return value of an void
valueIO
action.
Examples
Replace the contents of a
with unit:Maybe
Int
>>>
void Nothing
Nothing>>>
void (Just 3)
Just ()
Replace the contents of an
with unit,
resulting in an Either
Int
Int
:Either
Int
'()'
>>>
void (Left 8675309)
Left 8675309>>>
void (Right 8675309)
Right ()
Replace every element of a list with unit:
>>>
void [1,2,3]
[(),(),()]
Replace the second element of a pair with unit:
>>>
void (1,2)
(1,())
Discard the result of an IO
action:
>>>
mapM print [1,2]
1 2 [(),()]>>>
void $ mapM print [1,2]
1 2
($>) :: Functor f => f a -> b -> f b infixl 4 #
Flipped version of <$
.
Examples
Replace the contents of a
with a constant Maybe
Int
String
:
>>>
Nothing $> "foo"
Nothing>>>
Just 90210 $> "foo"
Just "foo"
Replace the contents of an
with a constant
Either
Int
Int
String
, resulting in an
:Either
Int
String
>>>
Left 8675309 $> "foo"
Left 8675309>>>
Right 8675309 $> "foo"
Right "foo"
Replace each element of a list with a constant String
:
>>>
[1,2,3] $> "foo"
["foo","foo","foo"]
Replace the second element of a pair with a constant String
:
>>>
(1,2) $> "foo"
(1,"foo")
Since: base-4.7.0.0
(<$>) :: Functor f => (a -> b) -> f a -> f b infixl 4 #
An infix synonym for fmap
.
The name of this operator is an allusion to $
.
Note the similarities between their types:
($) :: (a -> b) -> a -> b (<$>) :: Functor f => (a -> b) -> f a -> f b
Whereas $
is function application, <$>
is function
application lifted over a Functor
.
Examples
Convert from a
to a Maybe
Int
using Maybe
String
show
:
>>>
show <$> Nothing
Nothing>>>
show <$> Just 3
Just "3"
Convert from an
to an Either
Int
Int
Either
Int
String
using show
:
>>>
show <$> Left 17
Left 17>>>
show <$> Right 17
Right "17"
Double each element of a list:
>>>
(*2) <$> [1,2,3]
[2,4,6]
Apply even
to the second element of a pair:
>>>
even <$> (2,2)
(2,True)
Either functions
The Either
type represents values with two possibilities: a value of
type
is either Either
a b
or Left
a
.Right
b
The Either
type is sometimes used to represent a value which is
either correct or an error; by convention, the Left
constructor is
used to hold an error value and the Right
constructor is used to
hold a correct value (mnemonic: "right" also means "correct").
Examples
The type
is the type of values which can be either
a Either
String
Int
String
or an Int
. The Left
constructor can be used only on
String
s, and the Right
constructor can be used only on Int
s:
>>>
let s = Left "foo" :: Either String Int
>>>
s
Left "foo">>>
let n = Right 3 :: Either String Int
>>>
n
Right 3>>>
:type s
s :: Either String Int>>>
:type n
n :: Either String Int
The fmap
from our Functor
instance will ignore Left
values, but
will apply the supplied function to values contained in a Right
:
>>>
let s = Left "foo" :: Either String Int
>>>
let n = Right 3 :: Either String Int
>>>
fmap (*2) s
Left "foo">>>
fmap (*2) n
Right 6
The Monad
instance for Either
allows us to chain together multiple
actions which may fail, and fail overall if any of the individual
steps failed. First we'll write a function that can either parse an
Int
from a Char
, or fail.
>>>
import Data.Char ( digitToInt, isDigit )
>>>
:{
let parseEither :: Char -> Either String Int parseEither c | isDigit c = Right (digitToInt c) | otherwise = Left "parse error">>>
:}
The following should work, since both '1'
and '2'
can be
parsed as Int
s.
>>>
:{
let parseMultiple :: Either String Int parseMultiple = do x <- parseEither '1' y <- parseEither '2' return (x + y)>>>
:}
>>>
parseMultiple
Right 3
But the following should fail overall, since the first operation where
we attempt to parse 'm'
as an Int
will fail:
>>>
:{
let parseMultiple :: Either String Int parseMultiple = do x <- parseEither 'm' y <- parseEither '2' return (x + y)>>>
:}
>>>
parseMultiple
Left "parse error"
Instances
Bifunctor Either | Since: base-4.8.0.0 |
Eq2 Either | Since: base-4.9.0.0 |
Ord2 Either | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Read2 Either | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes Methods liftReadsPrec2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (Either a b) # liftReadList2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> ReadS [Either a b] # liftReadPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec (Either a b) # liftReadListPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec [Either a b] # | |
Show2 Either | Since: base-4.9.0.0 |
NFData2 Either | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Hashable2 Either | |
Defined in Data.Hashable.Class | |
Bifunctor Either Source # | |
MonadError e (Either e) | |
Defined in Control.Monad.Error.Class | |
Monad (Either e) | Since: base-4.4.0.0 |
Functor (Either a) | Since: base-3.0 |
Applicative (Either e) | Since: base-3.0 |
Foldable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Either a m -> m # foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # toList :: Either a a0 -> [a0] # length :: Either a a0 -> Int # elem :: Eq a0 => a0 -> Either a a0 -> Bool # maximum :: Ord a0 => Either a a0 -> a0 # minimum :: Ord a0 => Either a a0 -> a0 # | |
Traversable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Traversable | |
Eq a => Eq1 (Either a) | Since: base-4.9.0.0 |
Ord a => Ord1 (Either a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Read a => Read1 (Either a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes Methods liftReadsPrec :: (Int -> ReadS a0) -> ReadS [a0] -> Int -> ReadS (Either a a0) # liftReadList :: (Int -> ReadS a0) -> ReadS [a0] -> ReadS [Either a a0] # liftReadPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec (Either a a0) # liftReadListPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec [Either a a0] # | |
Show a => Show1 (Either a) | Since: base-4.9.0.0 |
NFData a => NFData1 (Either a) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Hashable a => Hashable1 (Either a) | |
Defined in Data.Hashable.Class | |
Generic1 (Either a :: Type -> Type) | |
(Eq a, Eq b) => Eq (Either a b) | Since: base-2.1 |
(Ord a, Ord b) => Ord (Either a b) | Since: base-2.1 |
(Read a, Read b) => Read (Either a b) | Since: base-3.0 |
(Show a, Show b) => Show (Either a b) | Since: base-3.0 |
Generic (Either a b) | |
Semigroup (Either a b) | Since: base-4.9.0.0 |
(NFData a, NFData b) => NFData (Either a b) | |
Defined in Control.DeepSeq | |
(Hashable a, Hashable b) => Hashable (Either a b) | |
Defined in Data.Hashable.Class | |
type Rep1 (Either a :: Type -> Type) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep1 (Either a :: Type -> Type) = D1 (MetaData "Either" "Data.Either" "base" False) (C1 (MetaCons "Left" PrefixI False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 a)) :+: C1 (MetaCons "Right" PrefixI False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) Par1)) | |
type Rep (Either a b) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep (Either a b) = D1 (MetaData "Either" "Data.Either" "base" False) (C1 (MetaCons "Left" PrefixI False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 a)) :+: C1 (MetaCons "Right" PrefixI False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 b))) |
fromRight :: b -> Either a b -> b #
Return the contents of a Right
-value or a default value otherwise.
Examples
Basic usage:
>>>
fromRight 1 (Right 3)
3>>>
fromRight 1 (Left "foo")
1
Since: base-4.10.0.0
fromLeft :: a -> Either a b -> a #
Return the contents of a Left
-value or a default value otherwise.
Examples
Basic usage:
>>>
fromLeft 1 (Left 3)
3>>>
fromLeft 1 (Right "foo")
1
Since: base-4.10.0.0
isRight :: Either a b -> Bool #
Return True
if the given value is a Right
-value, False
otherwise.
Examples
Basic usage:
>>>
isRight (Left "foo")
False>>>
isRight (Right 3)
True
Assuming a Left
value signifies some sort of error, we can use
isRight
to write a very simple reporting function that only
outputs "SUCCESS" when a computation has succeeded.
This example shows how isRight
might be used to avoid pattern
matching when one does not care about the value contained in the
constructor:
>>>
import Control.Monad ( when )
>>>
let report e = when (isRight e) $ putStrLn "SUCCESS"
>>>
report (Left "parse error")
>>>
report (Right 1)
SUCCESS
Since: base-4.7.0.0
isLeft :: Either a b -> Bool #
Return True
if the given value is a Left
-value, False
otherwise.
Examples
Basic usage:
>>>
isLeft (Left "foo")
True>>>
isLeft (Right 3)
False
Assuming a Left
value signifies some sort of error, we can use
isLeft
to write a very simple error-reporting function that does
absolutely nothing in the case of success, and outputs "ERROR" if
any error occurred.
This example shows how isLeft
might be used to avoid pattern
matching when one does not care about the value contained in the
constructor:
>>>
import Control.Monad ( when )
>>>
let report e = when (isLeft e) $ putStrLn "ERROR"
>>>
report (Right 1)
>>>
report (Left "parse error")
ERROR
Since: base-4.7.0.0
partitionEithers :: [Either a b] -> ([a], [b]) #
Partitions a list of Either
into two lists.
All the Left
elements are extracted, in order, to the first
component of the output. Similarly the Right
elements are extracted
to the second component of the output.
Examples
Basic usage:
>>>
let list = [ Left "foo", Right 3, Left "bar", Right 7, Left "baz" ]
>>>
partitionEithers list
(["foo","bar","baz"],[3,7])
The pair returned by
should be the same
pair as partitionEithers
x(
:lefts
x, rights
x)
>>>
let list = [ Left "foo", Right 3, Left "bar", Right 7, Left "baz" ]
>>>
partitionEithers list == (lefts list, rights list)
True
either :: (a -> c) -> (b -> c) -> Either a b -> c #
Case analysis for the Either
type.
If the value is
, apply the first function to Left
aa
;
if it is
, apply the second function to Right
bb
.
Examples
We create two values of type
, one using the
Either
String
Int
Left
constructor and another using the Right
constructor. Then
we apply "either" the length
function (if we have a String
)
or the "times-two" function (if we have an Int
):
>>>
let s = Left "foo" :: Either String Int
>>>
let n = Right 3 :: Either String Int
>>>
either length (*2) s
3>>>
either length (*2) n
6
leftToMaybe :: Either l r -> Maybe l Source #
rightToMaybe :: Either l r -> Maybe r Source #
maybeToRight :: l -> Maybe r -> Either l r Source #
maybeToLeft :: r -> Maybe l -> Either l r Source #
maybeEmpty :: Monoid b => (a -> b) -> Maybe a -> b Source #
maybeToEither :: e -> Maybe a -> Either e a Source #
Applicative functions
class Functor f => Applicative (f :: Type -> Type) where #
A functor with application, providing operations to
A minimal complete definition must include implementations of pure
and of either <*>
or liftA2
. If it defines both, then they must behave
the same as their default definitions:
(<*>
) =liftA2
id
liftA2
f x y = f<$>
x<*>
y
Further, any definition must satisfy the following:
- identity
pure
id
<*>
v = v- composition
pure
(.)<*>
u<*>
v<*>
w = u<*>
(v<*>
w)- homomorphism
pure
f<*>
pure
x =pure
(f x)- interchange
u
<*>
pure
y =pure
($
y)<*>
u
The other methods have the following default definitions, which may be overridden with equivalent specialized implementations:
As a consequence of these laws, the Functor
instance for f
will satisfy
It may be useful to note that supposing
forall x y. p (q x y) = f x . g y
it follows from the above that
liftA2
p (liftA2
q u v) =liftA2
f u .liftA2
g v
If f
is also a Monad
, it should satisfy
(which implies that pure
and <*>
satisfy the applicative functor laws).
Methods
Lift a value.
(<*>) :: f (a -> b) -> f a -> f b infixl 4 #
Sequential application.
A few functors support an implementation of <*>
that is more
efficient than the default one.
liftA2 :: (a -> b -> c) -> f a -> f b -> f c #
Lift a binary function to actions.
Some functors support an implementation of liftA2
that is more
efficient than the default one. In particular, if fmap
is an
expensive operation, it is likely better to use liftA2
than to
fmap
over the structure and then use <*>
.
(*>) :: f a -> f b -> f b infixl 4 #
Sequence actions, discarding the value of the first argument.
(<*) :: f a -> f b -> f a infixl 4 #
Sequence actions, discarding the value of the second argument.
Instances
Applicative [] | Since: base-2.1 |
Applicative Maybe | Since: base-2.1 |
Applicative IO | Since: base-2.1 |
Applicative Par1 | Since: base-4.9.0.0 |
Applicative Concurrently | |
Defined in Control.Concurrent.Async Methods pure :: a -> Concurrently a # (<*>) :: Concurrently (a -> b) -> Concurrently a -> Concurrently b # liftA2 :: (a -> b -> c) -> Concurrently a -> Concurrently b -> Concurrently c # (*>) :: Concurrently a -> Concurrently b -> Concurrently b # (<*) :: Concurrently a -> Concurrently b -> Concurrently a # | |
Applicative Complex | Since: base-4.9.0.0 |
Applicative Min | Since: base-4.9.0.0 |
Applicative Max | Since: base-4.9.0.0 |
Applicative First | Since: base-4.9.0.0 |
Applicative Last | Since: base-4.9.0.0 |
Applicative Option | Since: base-4.9.0.0 |
Applicative ZipList | f '<$>' 'ZipList' xs1 '<*>' ... '<*>' 'ZipList' xsN = 'ZipList' (zipWithN f xs1 ... xsN) where (\a b c -> stimes c [a, b]) <$> ZipList "abcd" <*> ZipList "567" <*> ZipList [1..] = ZipList (zipWith3 (\a b c -> stimes c [a, b]) "abcd" "567" [1..]) = ZipList {getZipList = ["a5","b6b6","c7c7c7"]} Since: base-2.1 |
Applicative Identity | Since: base-4.8.0.0 |
Applicative STM | Since: base-4.8.0.0 |
Applicative First | Since: base-4.8.0.0 |
Applicative Last | Since: base-4.8.0.0 |
Applicative Dual | Since: base-4.8.0.0 |
Applicative Sum | Since: base-4.8.0.0 |
Applicative Product | Since: base-4.8.0.0 |
Applicative Down | Since: base-4.11.0.0 |
Applicative ReadP | Since: base-4.6.0.0 |
Applicative NonEmpty | Since: base-4.9.0.0 |
Applicative Seq | Since: containers-0.5.4 |
Applicative P | Since: base-4.5.0.0 |
Applicative (Either e) | Since: base-3.0 |
Applicative (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Monoid a => Applicative ((,) a) | For tuples, the ("hello ", (+15)) <*> ("world!", 2002) ("hello world!",2017) Since: base-2.1 |
Applicative (ST s) | Since: base-4.4.0.0 |
Monad m => Applicative (WrappedMonad m) | Since: base-2.1 |
Defined in Control.Applicative Methods pure :: a -> WrappedMonad m a # (<*>) :: WrappedMonad m (a -> b) -> WrappedMonad m a -> WrappedMonad m b # liftA2 :: (a -> b -> c) -> WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m c # (*>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b # (<*) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m a # | |
Arrow a => Applicative (ArrowMonad a) | Since: base-4.6.0.0 |
Defined in Control.Arrow Methods pure :: a0 -> ArrowMonad a a0 # (<*>) :: ArrowMonad a (a0 -> b) -> ArrowMonad a a0 -> ArrowMonad a b # liftA2 :: (a0 -> b -> c) -> ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a c # (*>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b # (<*) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a a0 # | |
Applicative (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Applicative m => Applicative (ListT m) | |
(Functor m, Monad m) => Applicative (MaybeT m) | |
Applicative f => Applicative (Rec1 f) | Since: base-4.9.0.0 |
Arrow a => Applicative (WrappedArrow a b) | Since: base-2.1 |
Defined in Control.Applicative Methods pure :: a0 -> WrappedArrow a b a0 # (<*>) :: WrappedArrow a b (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 # liftA2 :: (a0 -> b0 -> c) -> WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b c # (*>) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b b0 # (<*) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 # | |
Monoid m => Applicative (Const m :: Type -> Type) | Since: base-2.0.1 |
Applicative f => Applicative (Ap f) | Since: base-4.12.0.0 |
Applicative f => Applicative (Alt f) | Since: base-4.8.0.0 |
(Applicative f, Monad f) => Applicative (WhenMissing f x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods pure :: a -> WhenMissing f x a # (<*>) :: WhenMissing f x (a -> b) -> WhenMissing f x a -> WhenMissing f x b # liftA2 :: (a -> b -> c) -> WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x c # (*>) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x b # (<*) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x a # | |
Applicative m => Applicative (IdentityT m) | |
Defined in Control.Monad.Trans.Identity | |
(Functor m, Monad m) => Applicative (ErrorT e m) | |
Defined in Control.Monad.Trans.Error | |
(Functor m, Monad m) => Applicative (ExceptT e m) | |
Defined in Control.Monad.Trans.Except | |
(Functor m, Monad m) => Applicative (StateT s m) | |
Defined in Control.Monad.Trans.State.Lazy | |
(Functor m, Monad m) => Applicative (StateT s m) | |
Defined in Control.Monad.Trans.State.Strict | |
(Monoid w, Applicative m) => Applicative (WriterT w m) | |
Defined in Control.Monad.Trans.Writer.Lazy | |
(Monoid w, Applicative m) => Applicative (WriterT w m) | |
Defined in Control.Monad.Trans.Writer.Strict | |
Applicative ((->) a :: Type -> Type) | Since: base-2.1 |
Monoid c => Applicative (K1 i c :: Type -> Type) | Since: base-4.12.0.0 |
(Applicative f, Applicative g) => Applicative (f :*: g) | Since: base-4.9.0.0 |
(Applicative f, Applicative g) => Applicative (Product f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product | |
(Monad f, Applicative f) => Applicative (WhenMatched f x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods pure :: a -> WhenMatched f x y a # (<*>) :: WhenMatched f x y (a -> b) -> WhenMatched f x y a -> WhenMatched f x y b # liftA2 :: (a -> b -> c) -> WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y c # (*>) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y b # (<*) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y a # | |
(Applicative f, Monad f) => Applicative (WhenMissing f k x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods pure :: a -> WhenMissing f k x a # (<*>) :: WhenMissing f k x (a -> b) -> WhenMissing f k x a -> WhenMissing f k x b # liftA2 :: (a -> b -> c) -> WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x c # (*>) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x b # (<*) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x a # | |
Applicative m => Applicative (ReaderT r m) | |
Defined in Control.Monad.Trans.Reader | |
Applicative f => Applicative (M1 i c f) | Since: base-4.9.0.0 |
(Applicative f, Applicative g) => Applicative (f :.: g) | Since: base-4.9.0.0 |
(Applicative f, Applicative g) => Applicative (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose | |
(Monad f, Applicative f) => Applicative (WhenMatched f k x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods pure :: a -> WhenMatched f k x y a # (<*>) :: WhenMatched f k x y (a -> b) -> WhenMatched f k x y a -> WhenMatched f k x y b # liftA2 :: (a -> b -> c) -> WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y c # (*>) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y b # (<*) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y a # | |
(Monoid w, Functor m, Monad m) => Applicative (RWST r w s m) | |
Defined in Control.Monad.Trans.RWS.Lazy | |
(Monoid w, Functor m, Monad m) => Applicative (RWST r w s m) | |
Defined in Control.Monad.Trans.RWS.Strict |
optional :: Alternative f => f a -> f (Maybe a) #
One or none.
Lists, but with an Applicative
functor based on zipping.
Constructors
ZipList | |
Fields
|
Instances
Functor ZipList | Since: base-2.1 |
Applicative ZipList | f '<$>' 'ZipList' xs1 '<*>' ... '<*>' 'ZipList' xsN = 'ZipList' (zipWithN f xs1 ... xsN) where (\a b c -> stimes c [a, b]) <$> ZipList "abcd" <*> ZipList "567" <*> ZipList [1..] = ZipList (zipWith3 (\a b c -> stimes c [a, b]) "abcd" "567" [1..]) = ZipList {getZipList = ["a5","b6b6","c7c7c7"]} Since: base-2.1 |
Foldable ZipList | Since: base-4.9.0.0 |
Defined in Control.Applicative Methods fold :: Monoid m => ZipList m -> m # foldMap :: Monoid m => (a -> m) -> ZipList a -> m # foldr :: (a -> b -> b) -> b -> ZipList a -> b # foldr' :: (a -> b -> b) -> b -> ZipList a -> b # foldl :: (b -> a -> b) -> b -> ZipList a -> b # foldl' :: (b -> a -> b) -> b -> ZipList a -> b # foldr1 :: (a -> a -> a) -> ZipList a -> a # foldl1 :: (a -> a -> a) -> ZipList a -> a # elem :: Eq a => a -> ZipList a -> Bool # maximum :: Ord a => ZipList a -> a # minimum :: Ord a => ZipList a -> a # | |
Traversable ZipList | Since: base-4.9.0.0 |
Alternative ZipList | Since: base-4.11.0.0 |
NFData1 ZipList | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Eq a => Eq (ZipList a) | Since: base-4.7.0.0 |
Ord a => Ord (ZipList a) | Since: base-4.7.0.0 |
Read a => Read (ZipList a) | Since: base-4.7.0.0 |
Show a => Show (ZipList a) | Since: base-4.7.0.0 |
Generic (ZipList a) | |
NFData a => NFData (ZipList a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
Generic1 ZipList | |
type Rep (ZipList a) | Since: base-4.7.0.0 |
Defined in Control.Applicative | |
type Rep1 ZipList | Since: base-4.7.0.0 |
Defined in Control.Applicative |
newtype Const a (b :: k) :: forall k. Type -> k -> Type #
The Const
functor.
Instances
Generic1 (Const a :: k -> Type) | |
Bifunctor (Const :: Type -> Type -> Type) | Since: base-4.8.0.0 |
Eq2 (Const :: Type -> Type -> Type) | Since: base-4.9.0.0 |
Ord2 (Const :: Type -> Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Read2 (Const :: Type -> Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes Methods liftReadsPrec2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (Const a b) # liftReadList2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> ReadS [Const a b] # liftReadPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec (Const a b) # liftReadListPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec [Const a b] # | |
Show2 (Const :: Type -> Type -> Type) | Since: base-4.9.0.0 |
NFData2 (Const :: Type -> Type -> Type) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Hashable2 (Const :: Type -> Type -> Type) | |
Defined in Data.Hashable.Class | |
Bifunctor (Const :: Type -> Type -> Type) Source # | |
Functor (Const m :: Type -> Type) | Since: base-2.1 |
Monoid m => Applicative (Const m :: Type -> Type) | Since: base-2.0.1 |
Foldable (Const m :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Functor.Const Methods fold :: Monoid m0 => Const m m0 -> m0 # foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldr :: (a -> b -> b) -> b -> Const m a -> b # foldr' :: (a -> b -> b) -> b -> Const m a -> b # foldl :: (b -> a -> b) -> b -> Const m a -> b # foldl' :: (b -> a -> b) -> b -> Const m a -> b # foldr1 :: (a -> a -> a) -> Const m a -> a # foldl1 :: (a -> a -> a) -> Const m a -> a # elem :: Eq a => a -> Const m a -> Bool # maximum :: Ord a => Const m a -> a # minimum :: Ord a => Const m a -> a # | |
Traversable (Const m :: Type -> Type) | Since: base-4.7.0.0 |
Eq a => Eq1 (Const a :: Type -> Type) | Since: base-4.9.0.0 |
Ord a => Ord1 (Const a :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Read a => Read1 (Const a :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes Methods liftReadsPrec :: (Int -> ReadS a0) -> ReadS [a0] -> Int -> ReadS (Const a a0) # liftReadList :: (Int -> ReadS a0) -> ReadS [a0] -> ReadS [Const a a0] # liftReadPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec (Const a a0) # liftReadListPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec [Const a a0] # | |
Show a => Show1 (Const a :: Type -> Type) | Since: base-4.9.0.0 |
NFData a => NFData1 (Const a :: Type -> Type) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Hashable a => Hashable1 (Const a :: Type -> Type) | |
Defined in Data.Hashable.Class | |
Bounded a => Bounded (Const a b) | Since: base-4.9.0.0 |
Enum a => Enum (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods succ :: Const a b -> Const a b # pred :: Const a b -> Const a b # fromEnum :: Const a b -> Int # enumFrom :: Const a b -> [Const a b] # enumFromThen :: Const a b -> Const a b -> [Const a b] # enumFromTo :: Const a b -> Const a b -> [Const a b] # enumFromThenTo :: Const a b -> Const a b -> Const a b -> [Const a b] # | |
Eq a => Eq (Const a b) | Since: base-4.9.0.0 |
Floating a => Floating (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods exp :: Const a b -> Const a b # log :: Const a b -> Const a b # sqrt :: Const a b -> Const a b # (**) :: Const a b -> Const a b -> Const a b # logBase :: Const a b -> Const a b -> Const a b # sin :: Const a b -> Const a b # cos :: Const a b -> Const a b # tan :: Const a b -> Const a b # asin :: Const a b -> Const a b # acos :: Const a b -> Const a b # atan :: Const a b -> Const a b # sinh :: Const a b -> Const a b # cosh :: Const a b -> Const a b # tanh :: Const a b -> Const a b # asinh :: Const a b -> Const a b # acosh :: Const a b -> Const a b # atanh :: Const a b -> Const a b # log1p :: Const a b -> Const a b # expm1 :: Const a b -> Const a b # | |
Fractional a => Fractional (Const a b) | Since: base-4.9.0.0 |
Integral a => Integral (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods quot :: Const a b -> Const a b -> Const a b # rem :: Const a b -> Const a b -> Const a b # div :: Const a b -> Const a b -> Const a b # mod :: Const a b -> Const a b -> Const a b # quotRem :: Const a b -> Const a b -> (Const a b, Const a b) # divMod :: Const a b -> Const a b -> (Const a b, Const a b) # | |
Num a => Num (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
Ord a => Ord (Const a b) | Since: base-4.9.0.0 |
Read a => Read (Const a b) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
Real a => Real (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods toRational :: Const a b -> Rational # | |
RealFloat a => RealFloat (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods floatRadix :: Const a b -> Integer # floatDigits :: Const a b -> Int # floatRange :: Const a b -> (Int, Int) # decodeFloat :: Const a b -> (Integer, Int) # encodeFloat :: Integer -> Int -> Const a b # exponent :: Const a b -> Int # significand :: Const a b -> Const a b # scaleFloat :: Int -> Const a b -> Const a b # isInfinite :: Const a b -> Bool # isDenormalized :: Const a b -> Bool # isNegativeZero :: Const a b -> Bool # | |
RealFrac a => RealFrac (Const a b) | Since: base-4.9.0.0 |
Show a => Show (Const a b) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
Ix a => Ix (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods range :: (Const a b, Const a b) -> [Const a b] # index :: (Const a b, Const a b) -> Const a b -> Int # unsafeIndex :: (Const a b, Const a b) -> Const a b -> Int inRange :: (Const a b, Const a b) -> Const a b -> Bool # rangeSize :: (Const a b, Const a b) -> Int # unsafeRangeSize :: (Const a b, Const a b) -> Int | |
IsString a => IsString (Const a b) | Since: base-4.9.0.0 |
Defined in Data.String Methods fromString :: String -> Const a b # | |
Generic (Const a b) | |
Semigroup a => Semigroup (Const a b) | Since: base-4.9.0.0 |
Monoid a => Monoid (Const a b) | Since: base-4.9.0.0 |
Storable a => Storable (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
Bits a => Bits (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods (.&.) :: Const a b -> Const a b -> Const a b # (.|.) :: Const a b -> Const a b -> Const a b # xor :: Const a b -> Const a b -> Const a b # complement :: Const a b -> Const a b # shift :: Const a b -> Int -> Const a b # rotate :: Const a b -> Int -> Const a b # setBit :: Const a b -> Int -> Const a b # clearBit :: Const a b -> Int -> Const a b # complementBit :: Const a b -> Int -> Const a b # testBit :: Const a b -> Int -> Bool # bitSizeMaybe :: Const a b -> Maybe Int # isSigned :: Const a b -> Bool # shiftL :: Const a b -> Int -> Const a b # unsafeShiftL :: Const a b -> Int -> Const a b # shiftR :: Const a b -> Int -> Const a b # unsafeShiftR :: Const a b -> Int -> Const a b # rotateL :: Const a b -> Int -> Const a b # | |
FiniteBits a => FiniteBits (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods finiteBitSize :: Const a b -> Int # countLeadingZeros :: Const a b -> Int # countTrailingZeros :: Const a b -> Int # | |
NFData a => NFData (Const a b) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
Hashable a => Hashable (Const a b) | |
Defined in Data.Hashable.Class | |
type Rep1 (Const a :: k -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
type Rep (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const |
liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d #
Lift a ternary function to actions.
liftA :: Applicative f => (a -> b) -> f a -> f b #
(<**>) :: Applicative f => f a -> f (a -> b) -> f b infixl 4 #
A variant of <*>
with the arguments reversed.
class Applicative f => Alternative (f :: Type -> Type) where #
A monoid on applicative functors.
If defined, some
and many
should be the least solutions
of the equations:
Methods
The identity of <|>
(<|>) :: f a -> f a -> f a infixl 3 #
An associative binary operation
One or more.
Zero or more.
Instances
orAlt :: (Alternative f, Monoid a) => f a -> f a Source #
orEmpty :: Alternative f => Bool -> a -> f a Source #
eitherA :: Alternative f => f a -> f b -> f (Either a b) Source #
purer :: (Applicative f, Applicative g) => a -> f (g a) Source #
liftAA2 :: (Applicative f, Applicative g) => (a -> b -> c) -> f (g a) -> f (g b) -> f (g c) Source #
(<<*>>) :: (Applicative f, Applicative g) => f (g (a -> b)) -> f (g a) -> f (g b) infixl 4 Source #
guarded :: Alternative f => (a -> Bool) -> a -> f a Source #
String conversion
module Protolude.ConvertText
Debug functions
module Protolude.Debug
Panic functions
module Protolude.Panic
Exception functions
allowInterrupt :: IO () #
When invoked inside mask
, this function allows a masked
asynchronous exception to be raised, if one exists. It is
equivalent to performing an interruptible operation (see
#interruptible), but does not involve any actual blocking.
When called outside mask
, or inside uninterruptibleMask
, this
function has no effect.
Since: base-4.4.0.0
catches :: IO a -> [Handler a] -> IO a #
Sometimes you want to catch two different sorts of exception. You could do something like
f = expr `catch` \ (ex :: ArithException) -> handleArith ex `catch` \ (ex :: IOException) -> handleIO ex
However, there are a couple of problems with this approach. The first is
that having two exception handlers is inefficient. However, the more
serious issue is that the second exception handler will catch exceptions
in the first, e.g. in the example above, if handleArith
throws an
IOException
then the second exception handler will catch it.
Instead, we provide a function catches
, which would be used thus:
f = expr `catches` [Handler (\ (ex :: ArithException) -> handleArith ex), Handler (\ (ex :: IOException) -> handleIO ex)]
You need this when using catches
.
Arguments
:: IO a | computation to run first ("acquire resource") |
-> (a -> IO b) | computation to run last ("release resource") |
-> (a -> IO c) | computation to run in-between |
-> IO c |
Like bracket
, but only performs the final action if there was an
exception raised by the in-between computation.
bracket_ :: IO a -> IO b -> IO c -> IO c #
A variant of bracket
where the return value from the first computation
is not required.
Arguments
:: IO a | computation to run first |
-> IO b | computation to run afterward (even if an exception was raised) |
-> IO a |
A specialised variant of bracket
with just a computation to run
afterward.
Arguments
:: IO a | computation to run first ("acquire resource") |
-> (a -> IO b) | computation to run last ("release resource") |
-> (a -> IO c) | computation to run in-between |
-> IO c |
When you want to acquire a resource, do some work with it, and
then release the resource, it is a good idea to use bracket
,
because bracket
will install the necessary exception handler to
release the resource in the event that an exception is raised
during the computation. If an exception is raised, then bracket
will
re-raise the exception (after performing the release).
A common example is opening a file:
bracket (openFile "filename" ReadMode) (hClose) (\fileHandle -> do { ... })
The arguments to bracket
are in this order so that we can partially apply
it, e.g.:
withFile name mode = bracket (openFile name mode) hClose
onException :: IO a -> IO b -> IO a #
Like finally
, but only performs the final action if there was an
exception raised by the computation.
try :: Exception e => IO a -> IO (Either e a) #
Similar to catch
, but returns an Either
result which is
(
if no exception of type Right
a)e
was raised, or (
if an exception of type Left
ex)e
was raised and its value is ex
.
If any other type of exception is raised than it will be propogated
up to the next enclosing exception handler.
try a = catch (Right `liftM` a) (return . Left)
mapException :: (Exception e1, Exception e2) => (e1 -> e2) -> a -> a #
This function maps one exception into another as proposed in the paper "A semantics for imprecise exceptions".
handle :: Exception e => (e -> IO a) -> IO a -> IO a #
A version of catch
with the arguments swapped around; useful in
situations where the code for the handler is shorter. For example:
do handle (\NonTermination -> exitWith (ExitFailure 1)) $ ...
Arguments
:: Exception e | |
=> (e -> Maybe b) | Predicate to select exceptions |
-> IO a | Computation to run |
-> (b -> IO a) | Handler |
-> IO a |
The function catchJust
is like catch
, but it takes an extra
argument which is an exception predicate, a function which
selects which type of exceptions we're interested in.
catchJust (\e -> if isDoesNotExistErrorType (ioeGetErrorType e) then Just () else Nothing) (readFile f) (\_ -> do hPutStrLn stderr ("No such file: " ++ show f) return "")
Any other exceptions which are not matched by the predicate
are re-raised, and may be caught by an enclosing
catch
, catchJust
, etc.
newtype PatternMatchFail #
A pattern match failed. The String
gives information about the
source location of the pattern.
Constructors
PatternMatchFail String |
Instances
Show PatternMatchFail | Since: base-4.0 |
Defined in Control.Exception.Base Methods showsPrec :: Int -> PatternMatchFail -> ShowS # show :: PatternMatchFail -> String # showList :: [PatternMatchFail] -> ShowS # | |
Exception PatternMatchFail | Since: base-4.0 |
Defined in Control.Exception.Base Methods toException :: PatternMatchFail -> SomeException # |
newtype RecSelError #
A record selector was applied to a constructor without the
appropriate field. This can only happen with a datatype with
multiple constructors, where some fields are in one constructor
but not another. The String
gives information about the source
location of the record selector.
Constructors
RecSelError String |
Instances
Show RecSelError | Since: base-4.0 |
Defined in Control.Exception.Base Methods showsPrec :: Int -> RecSelError -> ShowS # show :: RecSelError -> String # showList :: [RecSelError] -> ShowS # | |
Exception RecSelError | Since: base-4.0 |
Defined in Control.Exception.Base Methods toException :: RecSelError -> SomeException # fromException :: SomeException -> Maybe RecSelError # displayException :: RecSelError -> String # |
newtype RecConError #
An uninitialised record field was used. The String
gives
information about the source location where the record was
constructed.
Constructors
RecConError String |
Instances
Show RecConError | Since: base-4.0 |
Defined in Control.Exception.Base Methods showsPrec :: Int -> RecConError -> ShowS # show :: RecConError -> String # showList :: [RecConError] -> ShowS # | |
Exception RecConError | Since: base-4.0 |
Defined in Control.Exception.Base Methods toException :: RecConError -> SomeException # fromException :: SomeException -> Maybe RecConError # displayException :: RecConError -> String # |
newtype RecUpdError #
A record update was performed on a constructor without the
appropriate field. This can only happen with a datatype with
multiple constructors, where some fields are in one constructor
but not another. The String
gives information about the source
location of the record update.
Constructors
RecUpdError String |
Instances
Show RecUpdError | Since: base-4.0 |
Defined in Control.Exception.Base Methods showsPrec :: Int -> RecUpdError -> ShowS # show :: RecUpdError -> String # showList :: [RecUpdError] -> ShowS # | |
Exception RecUpdError | Since: base-4.0 |
Defined in Control.Exception.Base Methods toException :: RecUpdError -> SomeException # fromException :: SomeException -> Maybe RecUpdError # displayException :: RecUpdError -> String # |
newtype NoMethodError #
A class method without a definition (neither a default definition,
nor a definition in the appropriate instance) was called. The
String
gives information about which method it was.
Constructors
NoMethodError String |
Instances
Show NoMethodError | Since: base-4.0 |
Defined in Control.Exception.Base Methods showsPrec :: Int -> NoMethodError -> ShowS # show :: NoMethodError -> String # showList :: [NoMethodError] -> ShowS # | |
Exception NoMethodError | Since: base-4.0 |
Defined in Control.Exception.Base Methods toException :: NoMethodError -> SomeException # fromException :: SomeException -> Maybe NoMethodError # displayException :: NoMethodError -> String # |
An expression that didn't typecheck during compile time was called.
This is only possible with -fdefer-type-errors. The String
gives
details about the failed type check.
Since: base-4.9.0.0
Instances
Show TypeError | Since: base-4.9.0.0 |
Exception TypeError | Since: base-4.9.0.0 |
Defined in Control.Exception.Base Methods toException :: TypeError -> SomeException # fromException :: SomeException -> Maybe TypeError # displayException :: TypeError -> String # |
data NonTermination #
Thrown when the runtime system detects that the computation is guaranteed not to terminate. Note that there is no guarantee that the runtime system will notice whether any given computation is guaranteed to terminate or not.
Constructors
NonTermination |
Instances
Show NonTermination | Since: base-4.0 |
Defined in Control.Exception.Base Methods showsPrec :: Int -> NonTermination -> ShowS # show :: NonTermination -> String # showList :: [NonTermination] -> ShowS # | |
Exception NonTermination | Since: base-4.0 |
Defined in Control.Exception.Base Methods toException :: NonTermination -> SomeException # |
data NestedAtomically #
Thrown when the program attempts to call atomically
, from the stm
package, inside another call to atomically
.
Constructors
NestedAtomically |
Instances
Show NestedAtomically | Since: base-4.0 |
Defined in Control.Exception.Base Methods showsPrec :: Int -> NestedAtomically -> ShowS # show :: NestedAtomically -> String # showList :: [NestedAtomically] -> ShowS # | |
Exception NestedAtomically | Since: base-4.0 |
Defined in Control.Exception.Base Methods toException :: NestedAtomically -> SomeException # |
asyncExceptionFromException :: Exception e => SomeException -> Maybe e #
Since: base-4.7.0.0
asyncExceptionToException :: Exception e => e -> SomeException #
Since: base-4.7.0.0
data BlockedIndefinitelyOnMVar #
The thread is blocked on an MVar
, but there are no other references
to the MVar
so it can't ever continue.
Constructors
BlockedIndefinitelyOnMVar |
Instances
Show BlockedIndefinitelyOnMVar | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods showsPrec :: Int -> BlockedIndefinitelyOnMVar -> ShowS # show :: BlockedIndefinitelyOnMVar -> String # showList :: [BlockedIndefinitelyOnMVar] -> ShowS # | |
Exception BlockedIndefinitelyOnMVar | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception |
data BlockedIndefinitelyOnSTM #
The thread is waiting to retry an STM transaction, but there are no
other references to any TVar
s involved, so it can't ever continue.
Constructors
BlockedIndefinitelyOnSTM |
Instances
Show BlockedIndefinitelyOnSTM | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods showsPrec :: Int -> BlockedIndefinitelyOnSTM -> ShowS # show :: BlockedIndefinitelyOnSTM -> String # showList :: [BlockedIndefinitelyOnSTM] -> ShowS # | |
Exception BlockedIndefinitelyOnSTM | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception |
There are no runnable threads, so the program is deadlocked.
The Deadlock
exception is raised in the main thread only.
Constructors
Deadlock |
Instances
Show Deadlock | Since: base-4.1.0.0 |
Exception Deadlock | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods toException :: Deadlock -> SomeException # fromException :: SomeException -> Maybe Deadlock # displayException :: Deadlock -> String # |
data AllocationLimitExceeded #
This thread has exceeded its allocation limit. See
setAllocationCounter
and
enableAllocationLimit
.
Since: base-4.8.0.0
Constructors
AllocationLimitExceeded |
Instances
Show AllocationLimitExceeded | Since: base-4.7.1.0 |
Defined in GHC.IO.Exception Methods showsPrec :: Int -> AllocationLimitExceeded -> ShowS # show :: AllocationLimitExceeded -> String # showList :: [AllocationLimitExceeded] -> ShowS # | |
Exception AllocationLimitExceeded | Since: base-4.8.0.0 |
Defined in GHC.IO.Exception |
newtype CompactionFailed #
Compaction found an object that cannot be compacted. Functions
cannot be compacted, nor can mutable objects or pinned objects.
See compact
.
Since: base-4.10.0.0
Constructors
CompactionFailed String |
Instances
Show CompactionFailed | Since: base-4.10.0.0 |
Defined in GHC.IO.Exception Methods showsPrec :: Int -> CompactionFailed -> ShowS # show :: CompactionFailed -> String # showList :: [CompactionFailed] -> ShowS # | |
Exception CompactionFailed | Since: base-4.10.0.0 |
Defined in GHC.IO.Exception Methods toException :: CompactionFailed -> SomeException # |
newtype AssertionFailed #
Constructors
AssertionFailed String |
Instances
Show AssertionFailed | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods showsPrec :: Int -> AssertionFailed -> ShowS # show :: AssertionFailed -> String # showList :: [AssertionFailed] -> ShowS # | |
Exception AssertionFailed | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods toException :: AssertionFailed -> SomeException # |
data SomeAsyncException where #
Superclass for asynchronous exceptions.
Since: base-4.7.0.0
Constructors
SomeAsyncException :: forall e. Exception e => e -> SomeAsyncException |
Instances
Show SomeAsyncException | Since: base-4.7.0.0 |
Defined in GHC.IO.Exception Methods showsPrec :: Int -> SomeAsyncException -> ShowS # show :: SomeAsyncException -> String # showList :: [SomeAsyncException] -> ShowS # | |
Exception SomeAsyncException | Since: base-4.7.0.0 |
Defined in GHC.IO.Exception Methods toException :: SomeAsyncException -> SomeException # fromException :: SomeException -> Maybe SomeAsyncException # |
data AsyncException #
Asynchronous exceptions.
Constructors
StackOverflow | The current thread's stack exceeded its limit. Since an exception has been raised, the thread's stack will certainly be below its limit again, but the programmer should take remedial action immediately. |
HeapOverflow | The program's heap is reaching its limit, and the program should take action to reduce the amount of live data it has. Notes:
|
ThreadKilled | This exception is raised by another thread
calling |
UserInterrupt | This exception is raised by default in the main thread of the program when the user requests to terminate the program via the usual mechanism(s) (e.g. Control-C in the console). |
Instances
Eq AsyncException | Since: base-4.2.0.0 |
Defined in GHC.IO.Exception Methods (==) :: AsyncException -> AsyncException -> Bool # (/=) :: AsyncException -> AsyncException -> Bool # | |
Ord AsyncException | Since: base-4.2.0.0 |
Defined in GHC.IO.Exception Methods compare :: AsyncException -> AsyncException -> Ordering # (<) :: AsyncException -> AsyncException -> Bool # (<=) :: AsyncException -> AsyncException -> Bool # (>) :: AsyncException -> AsyncException -> Bool # (>=) :: AsyncException -> AsyncException -> Bool # max :: AsyncException -> AsyncException -> AsyncException # min :: AsyncException -> AsyncException -> AsyncException # | |
Show AsyncException | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods showsPrec :: Int -> AsyncException -> ShowS # show :: AsyncException -> String # showList :: [AsyncException] -> ShowS # | |
Exception AsyncException | Since: base-4.7.0.0 |
Defined in GHC.IO.Exception Methods toException :: AsyncException -> SomeException # |
data ArrayException #
Exceptions generated by array operations
Constructors
IndexOutOfBounds String | An attempt was made to index an array outside its declared bounds. |
UndefinedElement String | An attempt was made to evaluate an element of an array that had not been initialized. |
Instances
Eq ArrayException | Since: base-4.2.0.0 |
Defined in GHC.IO.Exception Methods (==) :: ArrayException -> ArrayException -> Bool # (/=) :: ArrayException -> ArrayException -> Bool # | |
Ord ArrayException | Since: base-4.2.0.0 |
Defined in GHC.IO.Exception Methods compare :: ArrayException -> ArrayException -> Ordering # (<) :: ArrayException -> ArrayException -> Bool # (<=) :: ArrayException -> ArrayException -> Bool # (>) :: ArrayException -> ArrayException -> Bool # (>=) :: ArrayException -> ArrayException -> Bool # max :: ArrayException -> ArrayException -> ArrayException # min :: ArrayException -> ArrayException -> ArrayException # | |
Show ArrayException | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods showsPrec :: Int -> ArrayException -> ShowS # show :: ArrayException -> String # showList :: [ArrayException] -> ShowS # | |
Exception ArrayException | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods toException :: ArrayException -> SomeException # |
Evaluate the argument to weak head normal form.
evaluate
is typically used to uncover any exceptions that a lazy value
may contain, and possibly handle them.
evaluate
only evaluates to weak head normal form. If deeper
evaluation is needed, the force
function from Control.DeepSeq
may be handy:
evaluate $ force x
There is a subtle difference between
and evaluate
x
,
analogous to the difference between return
$!
xthrowIO
and throw
. If the lazy
value x
throws an exception,
will fail to return an
return
$!
xIO
action and will throw an exception instead.
, on the
other hand, always produces an evaluate
xIO
action; that action will throw an
exception upon execution iff x
throws an exception upon evaluation.
The practical implication of this difference is that due to the imprecise exceptions semantics,
(return $! error "foo") >> error "bar"
may throw either "foo"
or "bar"
, depending on the optimizations
performed by the compiler. On the other hand,
evaluate (error "foo") >> error "bar"
is guaranteed to throw "foo"
.
The rule of thumb is to use evaluate
to force or handle exceptions in
lazy values. If, on the other hand, you are forcing a lazy value for
efficiency reasons only and do not care about exceptions, you may
use
.return
$!
x
uninterruptibleMask :: ((forall a. IO a -> IO a) -> IO b) -> IO b #
Like mask
, but the masked computation is not interruptible (see
Control.Exception). THIS SHOULD BE USED WITH
GREAT CARE, because if a thread executing in uninterruptibleMask
blocks for any reason, then the thread (and possibly the program,
if this is the main thread) will be unresponsive and unkillable.
This function should only be necessary if you need to mask
exceptions around an interruptible operation, and you can guarantee
that the interruptible operation will only block for a short period
of time.
uninterruptibleMask_ :: IO a -> IO a #
Like uninterruptibleMask
, but does not pass a restore
action
to the argument.
mask :: ((forall a. IO a -> IO a) -> IO b) -> IO b #
Executes an IO computation with asynchronous
exceptions masked. That is, any thread which attempts to raise
an exception in the current thread with throwTo
will be blocked until asynchronous exceptions are unmasked again.
The argument passed to mask
is a function that takes as its
argument another function, which can be used to restore the
prevailing masking state within the context of the masked
computation. For example, a common way to use mask
is to protect
the acquisition of a resource:
mask $ \restore -> do x <- acquire restore (do_something_with x) `onException` release release
This code guarantees that acquire
is paired with release
, by masking
asynchronous exceptions for the critical parts. (Rather than write
this code yourself, it would be better to use
bracket
which abstracts the general pattern).
Note that the restore
action passed to the argument to mask
does not necessarily unmask asynchronous exceptions, it just
restores the masking state to that of the enclosing context. Thus
if asynchronous exceptions are already masked, mask
cannot be used
to unmask exceptions again. This is so that if you call a library function
with exceptions masked, you can be sure that the library call will not be
able to unmask exceptions again. If you are writing library code and need
to use asynchronous exceptions, the only way is to create a new thread;
see forkIOWithUnmask
.
Asynchronous exceptions may still be received while in the masked state if the masked thread blocks in certain ways; see Control.Exception.
Threads created by forkIO
inherit the
MaskingState
from the parent; that is, to start a thread in the
MaskedInterruptible
state,
use mask_ $ forkIO ...
. This is particularly useful if you need
to establish an exception handler in the forked thread before any
asynchronous exceptions are received. To create a new thread in
an unmasked state use forkIOWithUnmask
.
getMaskingState :: IO MaskingState #
Returns the MaskingState
for the current thread.
interruptible :: IO a -> IO a #
Allow asynchronous exceptions to be raised even inside mask
, making
the operation interruptible (see the discussion of "Interruptible operations"
in Exception
).
When called outside mask
, or inside uninterruptibleMask
, this
function has no effect.
Since: base-4.9.0.0
Arguments
:: Exception e | |
=> IO a | The computation to run |
-> (e -> IO a) | Handler to invoke if an exception is raised |
-> IO a |
This is the simplest of the exception-catching functions. It takes a single argument, runs it, and if an exception is raised the "handler" is executed, with the value of the exception passed as an argument. Otherwise, the result is returned as normal. For example:
catch (readFile f) (\e -> do let err = show (e :: IOException) hPutStr stderr ("Warning: Couldn't open " ++ f ++ ": " ++ err) return "")
Note that we have to give a type signature to e
, or the program
will not typecheck as the type is ambiguous. While it is possible
to catch exceptions of any type, see the section "Catching all
exceptions" (in Control.Exception) for an explanation of the problems with doing so.
For catching exceptions in pure (non-IO
) expressions, see the
function evaluate
.
Note that due to Haskell's unspecified evaluation order, an
expression may throw one of several possible exceptions: consider
the expression (error "urk") + (1 `div` 0)
. Does
the expression throw
ErrorCall "urk"
, or DivideByZero
?
The answer is "it might throw either"; the choice is
non-deterministic. If you are catching any type of exception then you
might catch either. If you are calling catch
with type
IO Int -> (ArithException -> IO Int) -> IO Int
then the handler may
get run with DivideByZero
as an argument, or an ErrorCall "urk"
exception may be propogated further up. If you call it again, you
might get a the opposite behaviour. This is ok, because catch
is an
IO
computation.
data MaskingState #
Describes the behaviour of a thread when an asynchronous exception is received.
Constructors
Unmasked | asynchronous exceptions are unmasked (the normal state) |
MaskedInterruptible | the state during |
MaskedUninterruptible | the state during |
Instances
Eq MaskingState | Since: base-4.3.0.0 |
Defined in GHC.IO | |
Show MaskingState | Since: base-4.3.0.0 |
Defined in GHC.IO Methods showsPrec :: Int -> MaskingState -> ShowS # show :: MaskingState -> String # showList :: [MaskingState] -> ShowS # | |
NFData MaskingState | Since: deepseq-1.4.4.0 |
Defined in Control.DeepSeq Methods rnf :: MaskingState -> () # |
data IOException #
Exceptions that occur in the IO
monad.
An IOException
records a more specific error type, a descriptive
string and maybe the handle that was used when the error was
flagged.
Instances
Eq IOException | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception | |
Show IOException | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods showsPrec :: Int -> IOException -> ShowS # show :: IOException -> String # showList :: [IOException] -> ShowS # | |
Exception IOException | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods toException :: IOException -> SomeException # fromException :: SomeException -> Maybe IOException # displayException :: IOException -> String # | |
Error IOException | |
Defined in Control.Monad.Trans.Error | |
MonadError IOException IO | |
Defined in Control.Monad.Error.Class |
This is thrown when the user calls error
. The first String
is the
argument given to error
, second String
is the location.
Constructors
ErrorCallWithLocation String String |
Instances
Eq ErrorCall | Since: base-4.7.0.0 |
Ord ErrorCall | Since: base-4.7.0.0 |
Show ErrorCall | Since: base-4.0.0.0 |
Exception ErrorCall | Since: base-4.0.0.0 |
Defined in GHC.Exception Methods toException :: ErrorCall -> SomeException # fromException :: SomeException -> Maybe ErrorCall # displayException :: ErrorCall -> String # |
class (Typeable e, Show e) => Exception e where #
Any type that you wish to throw or catch as an exception must be an
instance of the Exception
class. The simplest case is a new exception
type directly below the root:
data MyException = ThisException | ThatException deriving Show instance Exception MyException
The default method definitions in the Exception
class do what we need
in this case. You can now throw and catch ThisException
and
ThatException
as exceptions:
*Main> throw ThisException `catch` \e -> putStrLn ("Caught " ++ show (e :: MyException)) Caught ThisException
In more complicated examples, you may wish to define a whole hierarchy of exceptions:
--------------------------------------------------------------------- -- Make the root exception type for all the exceptions in a compiler data SomeCompilerException = forall e . Exception e => SomeCompilerException e instance Show SomeCompilerException where show (SomeCompilerException e) = show e instance Exception SomeCompilerException compilerExceptionToException :: Exception e => e -> SomeException compilerExceptionToException = toException . SomeCompilerException compilerExceptionFromException :: Exception e => SomeException -> Maybe e compilerExceptionFromException x = do SomeCompilerException a <- fromException x cast a --------------------------------------------------------------------- -- Make a subhierarchy for exceptions in the frontend of the compiler data SomeFrontendException = forall e . Exception e => SomeFrontendException e instance Show SomeFrontendException where show (SomeFrontendException e) = show e instance Exception SomeFrontendException where toException = compilerExceptionToException fromException = compilerExceptionFromException frontendExceptionToException :: Exception e => e -> SomeException frontendExceptionToException = toException . SomeFrontendException frontendExceptionFromException :: Exception e => SomeException -> Maybe e frontendExceptionFromException x = do SomeFrontendException a <- fromException x cast a --------------------------------------------------------------------- -- Make an exception type for a particular frontend compiler exception data MismatchedParentheses = MismatchedParentheses deriving Show instance Exception MismatchedParentheses where toException = frontendExceptionToException fromException = frontendExceptionFromException
We can now catch a MismatchedParentheses
exception as
MismatchedParentheses
, SomeFrontendException
or
SomeCompilerException
, but not other types, e.g. IOException
:
*Main> throw MismatchedParentheses `catch` \e -> putStrLn ("Caught " ++ show (e :: MismatchedParentheses)) Caught MismatchedParentheses *Main> throw MismatchedParentheses `catch` \e -> putStrLn ("Caught " ++ show (e :: SomeFrontendException)) Caught MismatchedParentheses *Main> throw MismatchedParentheses `catch` \e -> putStrLn ("Caught " ++ show (e :: SomeCompilerException)) Caught MismatchedParentheses *Main> throw MismatchedParentheses `catch` \e -> putStrLn ("Caught " ++ show (e :: IOException)) *** Exception: MismatchedParentheses
Minimal complete definition
Nothing
Methods
toException :: e -> SomeException #
fromException :: SomeException -> Maybe e #
displayException :: e -> String #
Render this exception value in a human-friendly manner.
Default implementation:
.show
Since: base-4.8.0.0
Instances
data ArithException #
Arithmetic exceptions.
Constructors
Overflow | |
Underflow | |
LossOfPrecision | |
DivideByZero | |
Denormal | |
RatioZeroDenominator | Since: base-4.6.0.0 |
Instances
Eq ArithException | Since: base-3.0 |
Defined in GHC.Exception.Type Methods (==) :: ArithException -> ArithException -> Bool # (/=) :: ArithException -> ArithException -> Bool # | |
Ord ArithException | Since: base-3.0 |
Defined in GHC.Exception.Type Methods compare :: ArithException -> ArithException -> Ordering # (<) :: ArithException -> ArithException -> Bool # (<=) :: ArithException -> ArithException -> Bool # (>) :: ArithException -> ArithException -> Bool # (>=) :: ArithException -> ArithException -> Bool # max :: ArithException -> ArithException -> ArithException # min :: ArithException -> ArithException -> ArithException # | |
Show ArithException | Since: base-4.0.0.0 |
Defined in GHC.Exception.Type Methods showsPrec :: Int -> ArithException -> ShowS # show :: ArithException -> String # showList :: [ArithException] -> ShowS # | |
Exception ArithException | Since: base-4.0.0.0 |
Defined in GHC.Exception.Type Methods toException :: ArithException -> SomeException # |
data SomeException where #
The SomeException
type is the root of the exception type hierarchy.
When an exception of type e
is thrown, behind the scenes it is
encapsulated in a SomeException
.
Constructors
SomeException :: forall e. Exception e => e -> SomeException |
Instances
Show SomeException | Since: base-3.0 |
Defined in GHC.Exception.Type Methods showsPrec :: Int -> SomeException -> ShowS # show :: SomeException -> String # showList :: [SomeException] -> ShowS # | |
Exception SomeException | Since: base-3.0 |
Defined in GHC.Exception.Type Methods toException :: SomeException -> SomeException # fromException :: SomeException -> Maybe SomeException # displayException :: SomeException -> String # |
hush :: Alternative m => Either e a -> m a Source #
note :: MonadError e m => e -> Maybe a -> m a Source #
Semiring functions
module Protolude.Semiring
String functions
Class for string-like datastructures; used by the overloaded string extension (-XOverloadedStrings in GHC).
Minimal complete definition
Instances
IsString ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods fromString :: String -> ByteString # | |
IsString ByteString | |
Defined in Data.ByteString.Internal Methods fromString :: String -> ByteString # | |
a ~ Char => IsString [a] |
Since: base-2.1 |
Defined in Data.String Methods fromString :: String -> [a] # | |
IsString a => IsString (Identity a) | Since: base-4.9.0.0 |
Defined in Data.String Methods fromString :: String -> Identity a # | |
a ~ Char => IsString (Seq a) | Since: containers-0.5.7 |
Defined in Data.Sequence.Internal Methods fromString :: String -> Seq a # | |
(IsString a, Hashable a) => IsString (Hashed a) | |
Defined in Data.Hashable.Class Methods fromString :: String -> Hashed a # | |
IsString a => IsString (Const a b) | Since: base-4.9.0.0 |
Defined in Data.String Methods fromString :: String -> Const a b # |
Safe functions
minimumMay :: Ord a => [a] -> Maybe a Source #
maximumMay :: Ord a => [a] -> Maybe a Source #
minimumDef :: Ord a => a -> [a] -> a Source #
maximumDef :: Ord a => a -> [a] -> a Source #
foldl1May' :: (a -> a -> a) -> [a] -> Maybe a Source #
Eq functions
The Eq
class defines equality (==
) and inequality (/=
).
All the basic datatypes exported by the Prelude are instances of Eq
,
and Eq
may be derived for any datatype whose constituents are also
instances of Eq
.
The Haskell Report defines no laws for Eq
. However, ==
is customarily
expected to implement an equivalence relationship where two values comparing
equal are indistinguishable by "public" functions, with a "public" function
being one not allowing to see implementation details. For example, for a
type representing non-normalised natural numbers modulo 100, a "public"
function doesn't make the difference between 1 and 201. It is expected to
have the following properties:
Instances
Eq Bool | |
Eq Char | |
Eq Double | Note that due to the presence of
Also note that
|
Eq Float | Note that due to the presence of
Also note that
|
Eq Int | |
Eq Int8 | Since: base-2.1 |
Eq Int16 | Since: base-2.1 |
Eq Int32 | Since: base-2.1 |
Eq Int64 | Since: base-2.1 |
Eq Integer | |
Eq Natural | Since: base-4.8.0.0 |
Eq Ordering | |
Eq Word | |
Eq Word8 | Since: base-2.1 |
Eq Word16 | Since: base-2.1 |
Eq Word32 | Since: base-2.1 |
Eq Word64 | Since: base-2.1 |
Eq SomeTypeRep | |
Defined in Data.Typeable.Internal | |
Eq () | |
Eq TyCon | |
Eq Module | |
Eq TrName | |
Eq Handle | Since: base-4.1.0.0 |
Eq ThreadId | Since: base-4.2.0.0 |
Eq AsyncCancelled | |
Defined in Control.Concurrent.Async Methods (==) :: AsyncCancelled -> AsyncCancelled -> Bool # (/=) :: AsyncCancelled -> AsyncCancelled -> Bool # | |
Eq BigNat | |
Eq Void | Since: base-4.8.0.0 |
Eq SpecConstrAnnotation | Since: base-4.3.0.0 |
Defined in GHC.Exts Methods (==) :: SpecConstrAnnotation -> SpecConstrAnnotation -> Bool # (/=) :: SpecConstrAnnotation -> SpecConstrAnnotation -> Bool # | |
Eq BlockReason | Since: base-4.3.0.0 |
Defined in GHC.Conc.Sync | |
Eq ThreadStatus | Since: base-4.3.0.0 |
Defined in GHC.Conc.Sync | |
Eq CDev | |
Eq CIno | |
Eq CMode | |
Eq COff | |
Eq CPid | |
Eq CSsize | |
Eq CGid | |
Eq CNlink | |
Eq CUid | |
Eq CCc | |
Eq CSpeed | |
Eq CTcflag | |
Eq CRLim | |
Eq CBlkSize | |
Eq CBlkCnt | |
Eq CClockId | |
Eq CFsBlkCnt | |
Eq CFsFilCnt | |
Eq CId | |
Eq CKey | |
Eq CTimer | |
Eq Fd | |
Eq AsyncException | Since: base-4.2.0.0 |
Defined in GHC.IO.Exception Methods (==) :: AsyncException -> AsyncException -> Bool # (/=) :: AsyncException -> AsyncException -> Bool # | |
Eq ArrayException | Since: base-4.2.0.0 |
Defined in GHC.IO.Exception Methods (==) :: ArrayException -> ArrayException -> Bool # (/=) :: ArrayException -> ArrayException -> Bool # | |
Eq ExitCode | |
Eq IOErrorType | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception | |
Eq BufferMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types | |
Eq Newline | Since: base-4.2.0.0 |
Eq NewlineMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types | |
Eq MaskingState | Since: base-4.3.0.0 |
Defined in GHC.IO | |
Eq IOException | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception | |
Eq ErrorCall | Since: base-4.7.0.0 |
Eq ArithException | Since: base-3.0 |
Defined in GHC.Exception.Type Methods (==) :: ArithException -> ArithException -> Bool # (/=) :: ArithException -> ArithException -> Bool # | |
Eq All | Since: base-2.1 |
Eq Any | Since: base-2.1 |
Eq Fixity | Since: base-4.6.0.0 |
Eq Associativity | Since: base-4.6.0.0 |
Defined in GHC.Generics Methods (==) :: Associativity -> Associativity -> Bool # (/=) :: Associativity -> Associativity -> Bool # | |
Eq SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods (==) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (/=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # | |
Eq SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods (==) :: SourceStrictness -> SourceStrictness -> Bool # (/=) :: SourceStrictness -> SourceStrictness -> Bool # | |
Eq DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods (==) :: DecidedStrictness -> DecidedStrictness -> Bool # (/=) :: DecidedStrictness -> DecidedStrictness -> Bool # | |
Eq SomeSymbol | Since: base-4.7.0.0 |
Defined in GHC.TypeLits | |
Eq SomeNat | Since: base-4.7.0.0 |
Eq CChar | |
Eq CSChar | |
Eq CUChar | |
Eq CShort | |
Eq CUShort | |
Eq CInt | |
Eq CUInt | |
Eq CLong | |
Eq CULong | |
Eq CLLong | |
Eq CULLong | |
Eq CBool | |
Eq CFloat | |
Eq CDouble | |
Eq CPtrdiff | |
Eq CSize | |
Eq CWchar | |
Eq CSigAtomic | |
Defined in Foreign.C.Types | |
Eq CClock | |
Eq CTime | |
Eq CUSeconds | |
Eq CSUSeconds | |
Defined in Foreign.C.Types | |
Eq CIntPtr | |
Eq CUIntPtr | |
Eq CIntMax | |
Eq CUIntMax | |
Eq WordPtr | |
Eq IntPtr | |
Eq IOMode | Since: base-4.2.0.0 |
Eq Lexeme | Since: base-2.1 |
Eq Number | Since: base-4.6.0.0 |
Eq GeneralCategory | Since: base-2.1 |
Defined in GHC.Unicode Methods (==) :: GeneralCategory -> GeneralCategory -> Bool # (/=) :: GeneralCategory -> GeneralCategory -> Bool # | |
Eq SrcLoc | Since: base-4.9.0.0 |
Eq ByteString | |
Defined in Data.ByteString.Lazy.Internal | |
Eq ByteString | |
Defined in Data.ByteString.Internal | |
Eq IntSet | |
Eq UnicodeException | |
Defined in Data.Text.Encoding.Error Methods (==) :: UnicodeException -> UnicodeException -> Bool # (/=) :: UnicodeException -> UnicodeException -> Bool # | |
Eq CodePoint | |
Eq DecoderState | |
Eq Leniency Source # | |
Eq a => Eq [a] | |
Eq a => Eq (Maybe a) | Since: base-2.1 |
Eq a => Eq (Ratio a) | Since: base-2.1 |
Eq (StablePtr a) | Since: base-2.1 |
Eq (Ptr a) | Since: base-2.1 |
Eq (FunPtr a) | |
Eq p => Eq (Par1 p) | Since: base-4.7.0.0 |
Eq (Async a) | |
Eq a => Eq (Complex a) | Since: base-2.1 |
Eq a => Eq (Min a) | Since: base-4.9.0.0 |
Eq a => Eq (Max a) | Since: base-4.9.0.0 |
Eq a => Eq (First a) | Since: base-4.9.0.0 |
Eq a => Eq (Last a) | Since: base-4.9.0.0 |
Eq m => Eq (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods (==) :: WrappedMonoid m -> WrappedMonoid m -> Bool # (/=) :: WrappedMonoid m -> WrappedMonoid m -> Bool # | |
Eq a => Eq (Option a) | Since: base-4.9.0.0 |
Eq (Chan a) | Since: base-4.4.0.0 |
Eq a => Eq (ZipList a) | Since: base-4.7.0.0 |
Eq a => Eq (Identity a) | Since: base-4.8.0.0 |
Eq (TVar a) | Since: base-4.8.0.0 |
Eq a => Eq (First a) | Since: base-2.1 |
Eq a => Eq (Last a) | Since: base-2.1 |
Eq a => Eq (Dual a) | Since: base-2.1 |
Eq a => Eq (Sum a) | Since: base-2.1 |
Eq a => Eq (Product a) | Since: base-2.1 |
Eq a => Eq (Down a) | Since: base-4.6.0.0 |
Eq (MVar a) | Since: base-4.1.0.0 |
Eq a => Eq (NonEmpty a) | Since: base-4.9.0.0 |
Eq a => Eq (IntMap a) | |
Eq a => Eq (Seq a) | |
Eq a => Eq (ViewL a) | |
Eq a => Eq (ViewR a) | |
Eq a => Eq (Set a) | |
Eq a => Eq (Hashed a) | Uses precomputed hash to detect inequality faster |
(Eq a, Eq b) => Eq (Either a b) | Since: base-2.1 |
Eq (V1 p) | Since: base-4.9.0.0 |
Eq (U1 p) | Since: base-4.9.0.0 |
Eq (TypeRep a) | Since: base-2.1 |
(Eq a, Eq b) => Eq (a, b) | |
(Ix i, Eq e) => Eq (Array i e) | Since: base-2.1 |
Eq a => Eq (Arg a b) | Since: base-4.9.0.0 |
Eq (Proxy s) | Since: base-4.7.0.0 |
(Eq k, Eq a) => Eq (Map k a) | |
(Eq1 m, Eq a) => Eq (ListT m a) | |
(Eq1 m, Eq a) => Eq (MaybeT m a) | |
Eq (f p) => Eq (Rec1 f p) | Since: base-4.7.0.0 |
Eq (URec (Ptr ()) p) | Since: base-4.9.0.0 |
Eq (URec Char p) | Since: base-4.9.0.0 |
Eq (URec Double p) | Since: base-4.9.0.0 |
Eq (URec Float p) | |
Eq (URec Int p) | Since: base-4.9.0.0 |
Eq (URec Word p) | Since: base-4.9.0.0 |
(Eq a, Eq b, Eq c) => Eq (a, b, c) | |
Eq (STArray s i e) | Since: base-2.1 |
Eq a => Eq (Const a b) | Since: base-4.9.0.0 |
Eq (f a) => Eq (Ap f a) | Since: base-4.12.0.0 |
Eq (f a) => Eq (Alt f a) | Since: base-4.8.0.0 |
Eq (Coercion a b) | Since: base-4.7.0.0 |
Eq (a :~: b) | Since: base-4.7.0.0 |
(Eq1 f, Eq a) => Eq (IdentityT f a) | |
(Eq e, Eq1 m, Eq a) => Eq (ErrorT e m a) | |
(Eq e, Eq1 m, Eq a) => Eq (ExceptT e m a) | |
(Eq w, Eq1 m, Eq a) => Eq (WriterT w m a) | |
(Eq w, Eq1 m, Eq a) => Eq (WriterT w m a) | |
Eq c => Eq (K1 i c p) | Since: base-4.7.0.0 |
(Eq (f p), Eq (g p)) => Eq ((f :+: g) p) | Since: base-4.7.0.0 |
(Eq (f p), Eq (g p)) => Eq ((f :*: g) p) | Since: base-4.7.0.0 |
(Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d) | |
(Eq1 f, Eq1 g, Eq a) => Eq (Product f g a) | Since: base-4.9.0.0 |
(Eq1 f, Eq1 g, Eq a) => Eq (Sum f g a) | Since: base-4.9.0.0 |
Eq (a :~~: b) | Since: base-4.10.0.0 |
Eq (f p) => Eq (M1 i c f p) | Since: base-4.7.0.0 |
Eq (f (g p)) => Eq ((f :.: g) p) | Since: base-4.7.0.0 |
(Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e) | |
(Eq1 f, Eq1 g, Eq a) => Eq (Compose f g a) | Since: base-4.9.0.0 |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f) => Eq (a, b, c, d, e, f) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g) => Eq (a, b, c, d, e, f, g) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h) => Eq (a, b, c, d, e, f, g, h) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i) => Eq (a, b, c, d, e, f, g, h, i) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j) => Eq (a, b, c, d, e, f, g, h, i, j) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k) => Eq (a, b, c, d, e, f, g, h, i, j, k) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l) => Eq (a, b, c, d, e, f, g, h, i, j, k, l) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n, Eq o) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | |
Ord functions
The Ord
class is used for totally ordered datatypes.
Instances of Ord
can be derived for any user-defined datatype whose
constituent types are in Ord
. The declared order of the constructors in
the data declaration determines the ordering in derived Ord
instances. The
Ordering
datatype allows a single comparison to determine the precise
ordering of two objects.
The Haskell Report defines no laws for Ord
. However, <=
is customarily
expected to implement a non-strict partial order and have the following
properties:
- Transitivity
- if
x <= y && y <= z
=True
, thenx <= z
=True
- Reflexivity
x <= x
=True
- Antisymmetry
- if
x <= y && y <= x
=True
, thenx == y
=True
Note that the following operator interactions are expected to hold:
x >= y
=y <= x
x < y
=x <= y && x /= y
x > y
=y < x
x < y
=compare x y == LT
x > y
=compare x y == GT
x == y
=compare x y == EQ
min x y == if x <= y then x else y
=True
max x y == if x >= y then x else y
=True
Minimal complete definition: either compare
or <=
.
Using compare
can be more efficient for complex types.
Methods
compare :: a -> a -> Ordering #
(<) :: a -> a -> Bool infix 4 #
(<=) :: a -> a -> Bool infix 4 #
(>) :: a -> a -> Bool infix 4 #
Instances
Ord Bool | |
Ord Char | |
Ord Double | Note that due to the presence of
Also note that, due to the same,
|
Ord Float | Note that due to the presence of
Also note that, due to the same,
|
Ord Int | |
Ord Int8 | Since: base-2.1 |
Ord Int16 | Since: base-2.1 |
Ord Int32 | Since: base-2.1 |
Ord Int64 | Since: base-2.1 |
Ord Integer | |
Ord Natural | Since: base-4.8.0.0 |
Ord Ordering | |
Defined in GHC.Classes | |
Ord Word | |
Ord Word8 | Since: base-2.1 |
Ord Word16 | Since: base-2.1 |
Ord Word32 | Since: base-2.1 |
Ord Word64 | Since: base-2.1 |
Ord SomeTypeRep | |
Defined in Data.Typeable.Internal Methods compare :: SomeTypeRep -> SomeTypeRep -> Ordering # (<) :: SomeTypeRep -> SomeTypeRep -> Bool # (<=) :: SomeTypeRep -> SomeTypeRep -> Bool # (>) :: SomeTypeRep -> SomeTypeRep -> Bool # (>=) :: SomeTypeRep -> SomeTypeRep -> Bool # max :: SomeTypeRep -> SomeTypeRep -> SomeTypeRep # min :: SomeTypeRep -> SomeTypeRep -> SomeTypeRep # | |
Ord () | |
Ord TyCon | |
Ord ThreadId | Since: base-4.2.0.0 |
Defined in GHC.Conc.Sync | |
Ord BigNat | |
Ord Void | Since: base-4.8.0.0 |
Ord BlockReason | Since: base-4.3.0.0 |
Defined in GHC.Conc.Sync Methods compare :: BlockReason -> BlockReason -> Ordering # (<) :: BlockReason -> BlockReason -> Bool # (<=) :: BlockReason -> BlockReason -> Bool # (>) :: BlockReason -> BlockReason -> Bool # (>=) :: BlockReason -> BlockReason -> Bool # max :: BlockReason -> BlockReason -> BlockReason # min :: BlockReason -> BlockReason -> BlockReason # | |
Ord ThreadStatus | Since: base-4.3.0.0 |
Defined in GHC.Conc.Sync Methods compare :: ThreadStatus -> ThreadStatus -> Ordering # (<) :: ThreadStatus -> ThreadStatus -> Bool # (<=) :: ThreadStatus -> ThreadStatus -> Bool # (>) :: ThreadStatus -> ThreadStatus -> Bool # (>=) :: ThreadStatus -> ThreadStatus -> Bool # max :: ThreadStatus -> ThreadStatus -> ThreadStatus # min :: ThreadStatus -> ThreadStatus -> ThreadStatus # | |
Ord CDev | |
Ord CIno | |
Ord CMode | |
Ord COff | |
Ord CPid | |
Ord CSsize | |
Ord CGid | |
Ord CNlink | |
Ord CUid | |
Ord CCc | |
Ord CSpeed | |
Ord CTcflag | |
Ord CRLim | |
Ord CBlkSize | |
Defined in System.Posix.Types | |
Ord CBlkCnt | |
Ord CClockId | |
Defined in System.Posix.Types | |
Ord CFsBlkCnt | |
Ord CFsFilCnt | |
Ord CId | |
Ord CKey | |
Ord CTimer | |
Ord Fd | |
Ord AsyncException | Since: base-4.2.0.0 |
Defined in GHC.IO.Exception Methods compare :: AsyncException -> AsyncException -> Ordering # (<) :: AsyncException -> AsyncException -> Bool # (<=) :: AsyncException -> AsyncException -> Bool # (>) :: AsyncException -> AsyncException -> Bool # (>=) :: AsyncException -> AsyncException -> Bool # max :: AsyncException -> AsyncException -> AsyncException # min :: AsyncException -> AsyncException -> AsyncException # | |
Ord ArrayException | Since: base-4.2.0.0 |
Defined in GHC.IO.Exception Methods compare :: ArrayException -> ArrayException -> Ordering # (<) :: ArrayException -> ArrayException -> Bool # (<=) :: ArrayException -> ArrayException -> Bool # (>) :: ArrayException -> ArrayException -> Bool # (>=) :: ArrayException -> ArrayException -> Bool # max :: ArrayException -> ArrayException -> ArrayException # min :: ArrayException -> ArrayException -> ArrayException # | |
Ord ExitCode | |
Defined in GHC.IO.Exception | |
Ord BufferMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types Methods compare :: BufferMode -> BufferMode -> Ordering # (<) :: BufferMode -> BufferMode -> Bool # (<=) :: BufferMode -> BufferMode -> Bool # (>) :: BufferMode -> BufferMode -> Bool # (>=) :: BufferMode -> BufferMode -> Bool # max :: BufferMode -> BufferMode -> BufferMode # min :: BufferMode -> BufferMode -> BufferMode # | |
Ord Newline | Since: base-4.3.0.0 |
Ord NewlineMode | Since: base-4.3.0.0 |
Defined in GHC.IO.Handle.Types Methods compare :: NewlineMode -> NewlineMode -> Ordering # (<) :: NewlineMode -> NewlineMode -> Bool # (<=) :: NewlineMode -> NewlineMode -> Bool # (>) :: NewlineMode -> NewlineMode -> Bool # (>=) :: NewlineMode -> NewlineMode -> Bool # max :: NewlineMode -> NewlineMode -> NewlineMode # min :: NewlineMode -> NewlineMode -> NewlineMode # | |
Ord ErrorCall | Since: base-4.7.0.0 |
Ord ArithException | Since: base-3.0 |
Defined in GHC.Exception.Type Methods compare :: ArithException -> ArithException -> Ordering # (<) :: ArithException -> ArithException -> Bool # (<=) :: ArithException -> ArithException -> Bool # (>) :: ArithException -> ArithException -> Bool # (>=) :: ArithException -> ArithException -> Bool # max :: ArithException -> ArithException -> ArithException # min :: ArithException -> ArithException -> ArithException # | |
Ord All | Since: base-2.1 |
Ord Any | Since: base-2.1 |
Ord Fixity | Since: base-4.6.0.0 |
Ord Associativity | Since: base-4.6.0.0 |
Defined in GHC.Generics Methods compare :: Associativity -> Associativity -> Ordering # (<) :: Associativity -> Associativity -> Bool # (<=) :: Associativity -> Associativity -> Bool # (>) :: Associativity -> Associativity -> Bool # (>=) :: Associativity -> Associativity -> Bool # max :: Associativity -> Associativity -> Associativity # min :: Associativity -> Associativity -> Associativity # | |
Ord SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: SourceUnpackedness -> SourceUnpackedness -> Ordering # (<) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (<=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (>) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (>=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # max :: SourceUnpackedness -> SourceUnpackedness -> SourceUnpackedness # min :: SourceUnpackedness -> SourceUnpackedness -> SourceUnpackedness # | |
Ord SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: SourceStrictness -> SourceStrictness -> Ordering # (<) :: SourceStrictness -> SourceStrictness -> Bool # (<=) :: SourceStrictness -> SourceStrictness -> Bool # (>) :: SourceStrictness -> SourceStrictness -> Bool # (>=) :: SourceStrictness -> SourceStrictness -> Bool # max :: SourceStrictness -> SourceStrictness -> SourceStrictness # min :: SourceStrictness -> SourceStrictness -> SourceStrictness # | |
Ord DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: DecidedStrictness -> DecidedStrictness -> Ordering # (<) :: DecidedStrictness -> DecidedStrictness -> Bool # (<=) :: DecidedStrictness -> DecidedStrictness -> Bool # (>) :: DecidedStrictness -> DecidedStrictness -> Bool # (>=) :: DecidedStrictness -> DecidedStrictness -> Bool # max :: DecidedStrictness -> DecidedStrictness -> DecidedStrictness # min :: DecidedStrictness -> DecidedStrictness -> DecidedStrictness # | |
Ord SomeSymbol | Since: base-4.7.0.0 |
Defined in GHC.TypeLits Methods compare :: SomeSymbol -> SomeSymbol -> Ordering # (<) :: SomeSymbol -> SomeSymbol -> Bool # (<=) :: SomeSymbol -> SomeSymbol -> Bool # (>) :: SomeSymbol -> SomeSymbol -> Bool # (>=) :: SomeSymbol -> SomeSymbol -> Bool # max :: SomeSymbol -> SomeSymbol -> SomeSymbol # min :: SomeSymbol -> SomeSymbol -> SomeSymbol # | |
Ord SomeNat | Since: base-4.7.0.0 |
Ord CChar | |
Ord CSChar | |
Ord CUChar | |
Ord CShort | |
Ord CUShort | |
Ord CInt | |
Ord CUInt | |
Ord CLong | |
Ord CULong | |
Ord CLLong | |
Ord CULLong | |
Ord CBool | |
Ord CFloat | |
Ord CDouble | |
Ord CPtrdiff | |
Defined in Foreign.C.Types | |
Ord CSize | |
Ord CWchar | |
Ord CSigAtomic | |
Defined in Foreign.C.Types Methods compare :: CSigAtomic -> CSigAtomic -> Ordering # (<) :: CSigAtomic -> CSigAtomic -> Bool # (<=) :: CSigAtomic -> CSigAtomic -> Bool # (>) :: CSigAtomic -> CSigAtomic -> Bool # (>=) :: CSigAtomic -> CSigAtomic -> Bool # max :: CSigAtomic -> CSigAtomic -> CSigAtomic # min :: CSigAtomic -> CSigAtomic -> CSigAtomic # | |
Ord CClock | |
Ord CTime | |
Ord CUSeconds | |
Ord CSUSeconds | |
Defined in Foreign.C.Types Methods compare :: CSUSeconds -> CSUSeconds -> Ordering # (<) :: CSUSeconds -> CSUSeconds -> Bool # (<=) :: CSUSeconds -> CSUSeconds -> Bool # (>) :: CSUSeconds -> CSUSeconds -> Bool # (>=) :: CSUSeconds -> CSUSeconds -> Bool # max :: CSUSeconds -> CSUSeconds -> CSUSeconds # min :: CSUSeconds -> CSUSeconds -> CSUSeconds # | |
Ord CIntPtr | |
Ord CUIntPtr | |
Defined in Foreign.C.Types | |
Ord CIntMax | |
Ord CUIntMax | |
Defined in Foreign.C.Types | |
Ord WordPtr | |
Ord IntPtr | |
Ord IOMode | Since: base-4.2.0.0 |
Ord GeneralCategory | Since: base-2.1 |
Defined in GHC.Unicode Methods compare :: GeneralCategory -> GeneralCategory -> Ordering # (<) :: GeneralCategory -> GeneralCategory -> Bool # (<=) :: GeneralCategory -> GeneralCategory -> Bool # (>) :: GeneralCategory -> GeneralCategory -> Bool # (>=) :: GeneralCategory -> GeneralCategory -> Bool # max :: GeneralCategory -> GeneralCategory -> GeneralCategory # min :: GeneralCategory -> GeneralCategory -> GeneralCategory # | |
Ord ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods compare :: ByteString -> ByteString -> Ordering # (<) :: ByteString -> ByteString -> Bool # (<=) :: ByteString -> ByteString -> Bool # (>) :: ByteString -> ByteString -> Bool # (>=) :: ByteString -> ByteString -> Bool # max :: ByteString -> ByteString -> ByteString # min :: ByteString -> ByteString -> ByteString # | |
Ord ByteString | |
Defined in Data.ByteString.Internal Methods compare :: ByteString -> ByteString -> Ordering # (<) :: ByteString -> ByteString -> Bool # (<=) :: ByteString -> ByteString -> Bool # (>) :: ByteString -> ByteString -> Bool # (>=) :: ByteString -> ByteString -> Bool # max :: ByteString -> ByteString -> ByteString # min :: ByteString -> ByteString -> ByteString # | |
Ord IntSet | |
Ord Leniency Source # | |
Defined in Protolude.Conv | |
Ord a => Ord [a] | |
Ord a => Ord (Maybe a) | Since: base-2.1 |
Integral a => Ord (Ratio a) | Since: base-2.0.1 |
Ord (Ptr a) | Since: base-2.1 |
Ord (FunPtr a) | |
Defined in GHC.Ptr | |
Ord p => Ord (Par1 p) | Since: base-4.7.0.0 |
Ord (Async a) | |
Defined in Control.Concurrent.Async | |
Ord a => Ord (Min a) | Since: base-4.9.0.0 |
Ord a => Ord (Max a) | Since: base-4.9.0.0 |
Ord a => Ord (First a) | Since: base-4.9.0.0 |
Ord a => Ord (Last a) | Since: base-4.9.0.0 |
Ord m => Ord (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods compare :: WrappedMonoid m -> WrappedMonoid m -> Ordering # (<) :: WrappedMonoid m -> WrappedMonoid m -> Bool # (<=) :: WrappedMonoid m -> WrappedMonoid m -> Bool # (>) :: WrappedMonoid m -> WrappedMonoid m -> Bool # (>=) :: WrappedMonoid m -> WrappedMonoid m -> Bool # max :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # min :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # | |
Ord a => Ord (Option a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup | |
Ord a => Ord (ZipList a) | Since: base-4.7.0.0 |
Ord a => Ord (Identity a) | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity | |
Ord a => Ord (First a) | Since: base-2.1 |
Ord a => Ord (Last a) | Since: base-2.1 |
Ord a => Ord (Dual a) | Since: base-2.1 |
Ord a => Ord (Sum a) | Since: base-2.1 |
Ord a => Ord (Product a) | Since: base-2.1 |
Ord a => Ord (Down a) | Since: base-4.6.0.0 |
Ord a => Ord (NonEmpty a) | Since: base-4.9.0.0 |
Ord a => Ord (IntMap a) | |
Defined in Data.IntMap.Internal | |
Ord a => Ord (Seq a) | |
Ord a => Ord (ViewL a) | |
Defined in Data.Sequence.Internal | |
Ord a => Ord (ViewR a) | |
Defined in Data.Sequence.Internal | |
Ord a => Ord (Set a) | |
Ord a => Ord (Hashed a) | |
Defined in Data.Hashable.Class | |
(Ord a, Ord b) => Ord (Either a b) | Since: base-2.1 |
Ord (V1 p) | Since: base-4.9.0.0 |
Ord (U1 p) | Since: base-4.7.0.0 |
Ord (TypeRep a) | Since: base-4.4.0.0 |
(Ord a, Ord b) => Ord (a, b) | |
(Ix i, Ord e) => Ord (Array i e) | Since: base-2.1 |
Ord a => Ord (Arg a b) | Since: base-4.9.0.0 |
Ord (Proxy s) | Since: base-4.7.0.0 |
(Ord k, Ord v) => Ord (Map k v) | |
(Ord1 m, Ord a) => Ord (ListT m a) | |
(Ord1 m, Ord a) => Ord (MaybeT m a) | |
Defined in Control.Monad.Trans.Maybe | |
Ord (f p) => Ord (Rec1 f p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
Ord (URec (Ptr ()) p) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: URec (Ptr ()) p -> URec (Ptr ()) p -> Ordering # (<) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (<=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (>) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (>=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # max :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p # min :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p # | |
Ord (URec Char p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Ord (URec Double p) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: URec Double p -> URec Double p -> Ordering # (<) :: URec Double p -> URec Double p -> Bool # (<=) :: URec Double p -> URec Double p -> Bool # (>) :: URec Double p -> URec Double p -> Bool # (>=) :: URec Double p -> URec Double p -> Bool # | |
Ord (URec Float p) | |
Defined in GHC.Generics | |
Ord (URec Int p) | Since: base-4.9.0.0 |
Ord (URec Word p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
(Ord a, Ord b, Ord c) => Ord (a, b, c) | |
Ord a => Ord (Const a b) | Since: base-4.9.0.0 |
Ord (f a) => Ord (Ap f a) | Since: base-4.12.0.0 |
Ord (f a) => Ord (Alt f a) | Since: base-4.8.0.0 |
Defined in Data.Semigroup.Internal | |
Ord (Coercion a b) | Since: base-4.7.0.0 |
Defined in Data.Type.Coercion | |
Ord (a :~: b) | Since: base-4.7.0.0 |
Defined in Data.Type.Equality | |
(Ord1 f, Ord a) => Ord (IdentityT f a) | |
Defined in Control.Monad.Trans.Identity Methods compare :: IdentityT f a -> IdentityT f a -> Ordering # (<) :: IdentityT f a -> IdentityT f a -> Bool # (<=) :: IdentityT f a -> IdentityT f a -> Bool # (>) :: IdentityT f a -> IdentityT f a -> Bool # (>=) :: IdentityT f a -> IdentityT f a -> Bool # | |
(Ord e, Ord1 m, Ord a) => Ord (ErrorT e m a) | |
Defined in Control.Monad.Trans.Error | |
(Ord e, Ord1 m, Ord a) => Ord (ExceptT e m a) | |
Defined in Control.Monad.Trans.Except Methods compare :: ExceptT e m a -> ExceptT e m a -> Ordering # (<) :: ExceptT e m a -> ExceptT e m a -> Bool # (<=) :: ExceptT e m a -> ExceptT e m a -> Bool # (>) :: ExceptT e m a -> ExceptT e m a -> Bool # (>=) :: ExceptT e m a -> ExceptT e m a -> Bool # | |
(Ord w, Ord1 m, Ord a) => Ord (WriterT w m a) | |
Defined in Control.Monad.Trans.Writer.Lazy Methods compare :: WriterT w m a -> WriterT w m a -> Ordering # (<) :: WriterT w m a -> WriterT w m a -> Bool # (<=) :: WriterT w m a -> WriterT w m a -> Bool # (>) :: WriterT w m a -> WriterT w m a -> Bool # (>=) :: WriterT w m a -> WriterT w m a -> Bool # | |
(Ord w, Ord1 m, Ord a) => Ord (WriterT w m a) | |
Defined in Control.Monad.Trans.Writer.Strict Methods compare :: WriterT w m a -> WriterT w m a -> Ordering # (<) :: WriterT w m a -> WriterT w m a -> Bool # (<=) :: WriterT w m a -> WriterT w m a -> Bool # (>) :: WriterT w m a -> WriterT w m a -> Bool # (>=) :: WriterT w m a -> WriterT w m a -> Bool # | |
Ord c => Ord (K1 i c p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
(Ord (f p), Ord (g p)) => Ord ((f :+: g) p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
(Ord (f p), Ord (g p)) => Ord ((f :*: g) p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
(Ord a, Ord b, Ord c, Ord d) => Ord (a, b, c, d) | |
Defined in GHC.Classes | |
(Ord1 f, Ord1 g, Ord a) => Ord (Product f g a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product Methods compare :: Product f g a -> Product f g a -> Ordering # (<) :: Product f g a -> Product f g a -> Bool # (<=) :: Product f g a -> Product f g a -> Bool # (>) :: Product f g a -> Product f g a -> Bool # (>=) :: Product f g a -> Product f g a -> Bool # | |
(Ord1 f, Ord1 g, Ord a) => Ord (Sum f g a) | Since: base-4.9.0.0 |
Ord (a :~~: b) | Since: base-4.10.0.0 |
Ord (f p) => Ord (M1 i c f p) | Since: base-4.7.0.0 |
Ord (f (g p)) => Ord ((f :.: g) p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
(Ord a, Ord b, Ord c, Ord d, Ord e) => Ord (a, b, c, d, e) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e) -> (a, b, c, d, e) -> Ordering # (<) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # (<=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # (>) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # (>=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # max :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) # min :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) # | |
(Ord1 f, Ord1 g, Ord a) => Ord (Compose f g a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose Methods compare :: Compose f g a -> Compose f g a -> Ordering # (<) :: Compose f g a -> Compose f g a -> Bool # (<=) :: Compose f g a -> Compose f g a -> Bool # (>) :: Compose f g a -> Compose f g a -> Bool # (>=) :: Compose f g a -> Compose f g a -> Bool # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f) => Ord (a, b, c, d, e, f) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Ordering # (<) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # (<=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # (>) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # (>=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # max :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) # min :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g) => Ord (a, b, c, d, e, f, g) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Ordering # (<) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # (<=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # (>) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # (>=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # max :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) # min :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h) => Ord (a, b, c, d, e, f, g, h) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Ordering # (<) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # (<=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # (>) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # (>=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # max :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) # min :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i) => Ord (a, b, c, d, e, f, g, h, i) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # max :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) # min :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j) => Ord (a, b, c, d, e, f, g, h, i, j) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) # min :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k) => Ord (a, b, c, d, e, f, g, h, i, j, k) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) # min :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l) => Ord (a, b, c, d, e, f, g, h, i, j, k, l) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) # min :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) # min :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) # min :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n, Ord o) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) # min :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) # |
Instances
Bounded Ordering | Since: base-2.1 |
Enum Ordering | Since: base-2.1 |
Eq Ordering | |
Ord Ordering | |
Defined in GHC.Classes | |
Read Ordering | Since: base-2.1 |
Show Ordering | Since: base-2.1 |
Ix Ordering | Since: base-2.1 |
Defined in GHC.Arr | |
Generic Ordering | |
Semigroup Ordering | Since: base-4.9.0.0 |
Monoid Ordering | Since: base-2.1 |
NFData Ordering | |
Defined in Control.DeepSeq | |
Hashable Ordering | |
Defined in Data.Hashable.Class | |
type Rep Ordering | Since: base-4.6.0.0 |
comparing :: Ord a => (b -> a) -> b -> b -> Ordering #
comparing p x y = compare (p x) (p y)
Useful combinator for use in conjunction with the xxxBy
family
of functions from Data.List, for example:
... sortBy (comparing fst) ...
The Down
type allows you to reverse sort order conveniently. A value of type
contains a value of type Down
aa
(represented as
).
If Down
aa
has an
instance associated with it then comparing two
values thus wrapped will give you the opposite of their normal sort order.
This is particularly useful when sorting in generalised list comprehensions,
as in: Ord
then sortWith by
Down
x
Since: base-4.6.0.0
Constructors
Down a |
Instances
Monad Down | Since: base-4.11.0.0 |
Functor Down | Since: base-4.11.0.0 |
Applicative Down | Since: base-4.11.0.0 |
Foldable Down | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Down m -> m # foldMap :: Monoid m => (a -> m) -> Down a -> m # foldr :: (a -> b -> b) -> b -> Down a -> b # foldr' :: (a -> b -> b) -> b -> Down a -> b # foldl :: (b -> a -> b) -> b -> Down a -> b # foldl' :: (b -> a -> b) -> b -> Down a -> b # foldr1 :: (a -> a -> a) -> Down a -> a # foldl1 :: (a -> a -> a) -> Down a -> a # elem :: Eq a => a -> Down a -> Bool # maximum :: Ord a => Down a -> a # | |
Traversable Down | Since: base-4.12.0.0 |
Eq1 Down | Since: base-4.12.0.0 |
Ord1 Down | Since: base-4.12.0.0 |
Defined in Data.Functor.Classes | |
Read1 Down | Since: base-4.12.0.0 |
Defined in Data.Functor.Classes | |
Show1 Down | Since: base-4.12.0.0 |
NFData1 Down | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Eq a => Eq (Down a) | Since: base-4.6.0.0 |
Num a => Num (Down a) | Since: base-4.11.0.0 |
Ord a => Ord (Down a) | Since: base-4.6.0.0 |
Read a => Read (Down a) | Since: base-4.7.0.0 |
Show a => Show (Down a) | Since: base-4.7.0.0 |
Generic (Down a) | |
Semigroup a => Semigroup (Down a) | Since: base-4.11.0.0 |
Monoid a => Monoid (Down a) | Since: base-4.11.0.0 |
NFData a => NFData (Down a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
Generic1 Down | |
type Rep (Down a) | Since: base-4.12.0.0 |
Defined in GHC.Generics | |
type Rep1 Down | Since: base-4.12.0.0 |
Defined in GHC.Generics |
Traversable functions
module Data.Traversable
Foldable functions
class Foldable (t :: Type -> Type) where #
Data structures that can be folded.
For example, given a data type
data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)
a suitable instance would be
instance Foldable Tree where foldMap f Empty = mempty foldMap f (Leaf x) = f x foldMap f (Node l k r) = foldMap f l `mappend` f k `mappend` foldMap f r
This is suitable even for abstract types, as the monoid is assumed
to satisfy the monoid laws. Alternatively, one could define foldr
:
instance Foldable Tree where foldr f z Empty = z foldr f z (Leaf x) = f x z foldr f z (Node l k r) = foldr f (f k (foldr f z r)) l
Foldable
instances are expected to satisfy the following laws:
foldr f z t = appEndo (foldMap (Endo . f) t ) z
foldl f z t = appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z
fold = foldMap id
length = getSum . foldMap (Sum . const 1)
sum
, product
, maximum
, and minimum
should all be essentially
equivalent to foldMap
forms, such as
sum = getSum . foldMap Sum
but may be less defined.
If the type is also a Functor
instance, it should satisfy
foldMap f = fold . fmap f
which implies that
foldMap f . fmap g = foldMap (f . g)
Methods
fold :: Monoid m => t m -> m #
Combine the elements of a structure using a monoid.
foldMap :: Monoid m => (a -> m) -> t a -> m #
Map each element of the structure to a monoid, and combine the results.
foldr :: (a -> b -> b) -> b -> t a -> b #
Right-associative fold of a structure.
In the case of lists, foldr
, when applied to a binary operator, a
starting value (typically the right-identity of the operator), and a
list, reduces the list using the binary operator, from right to left:
foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...)
Note that, since the head of the resulting expression is produced by
an application of the operator to the first element of the list,
foldr
can produce a terminating expression from an infinite list.
For a general Foldable
structure this should be semantically identical
to,
foldr f z =foldr
f z .toList
foldr' :: (a -> b -> b) -> b -> t a -> b #
Right-associative fold of a structure, but with strict application of the operator.
foldl :: (b -> a -> b) -> b -> t a -> b #
Left-associative fold of a structure.
In the case of lists, foldl
, when applied to a binary
operator, a starting value (typically the left-identity of the operator),
and a list, reduces the list using the binary operator, from left to
right:
foldl f z [x1, x2, ..., xn] == (...((z `f` x1) `f` x2) `f`...) `f` xn
Note that to produce the outermost application of the operator the
entire input list must be traversed. This means that foldl'
will
diverge if given an infinite list.
Also note that if you want an efficient left-fold, you probably want to
use foldl'
instead of foldl
. The reason for this is that latter does
not force the "inner" results (e.g. z
in the above example)
before applying them to the operator (e.g. to f
x1(
). This results
in a thunk chain f
x2)O(n)
elements long, which then must be evaluated from
the outside-in.
For a general Foldable
structure this should be semantically identical
to,
foldl f z =foldl
f z .toList
foldl' :: (b -> a -> b) -> b -> t a -> b #
Left-associative fold of a structure but with strict application of the operator.
This ensures that each step of the fold is forced to weak head normal
form before being applied, avoiding the collection of thunks that would
otherwise occur. This is often what you want to strictly reduce a finite
list to a single, monolithic result (e.g. length
).
For a general Foldable
structure this should be semantically identical
to,
foldl f z =foldl'
f z .toList
List of elements of a structure, from left to right.
Test whether the structure is empty. The default implementation is optimized for structures that are similar to cons-lists, because there is no general way to do better.
Returns the size/length of a finite structure as an Int
. The
default implementation is optimized for structures that are similar to
cons-lists, because there is no general way to do better.
elem :: Eq a => a -> t a -> Bool infix 4 #
Does the element occur in the structure?
maximum :: Ord a => t a -> a #
The largest element of a non-empty structure.
minimum :: Ord a => t a -> a #
The least element of a non-empty structure.
Instances
Foldable [] | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => [m] -> m # foldMap :: Monoid m => (a -> m) -> [a] -> m # foldr :: (a -> b -> b) -> b -> [a] -> b # foldr' :: (a -> b -> b) -> b -> [a] -> b # foldl :: (b -> a -> b) -> b -> [a] -> b # foldl' :: (b -> a -> b) -> b -> [a] -> b # foldr1 :: (a -> a -> a) -> [a] -> a # foldl1 :: (a -> a -> a) -> [a] -> a # elem :: Eq a => a -> [a] -> Bool # maximum :: Ord a => [a] -> a # | |
Foldable Maybe | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |
Foldable Par1 | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Par1 m -> m # foldMap :: Monoid m => (a -> m) -> Par1 a -> m # foldr :: (a -> b -> b) -> b -> Par1 a -> b # foldr' :: (a -> b -> b) -> b -> Par1 a -> b # foldl :: (b -> a -> b) -> b -> Par1 a -> b # foldl' :: (b -> a -> b) -> b -> Par1 a -> b # foldr1 :: (a -> a -> a) -> Par1 a -> a # foldl1 :: (a -> a -> a) -> Par1 a -> a # elem :: Eq a => a -> Par1 a -> Bool # maximum :: Ord a => Par1 a -> a # | |
Foldable Complex | Since: base-4.9.0.0 |
Defined in Data.Complex Methods fold :: Monoid m => Complex m -> m # foldMap :: Monoid m => (a -> m) -> Complex a -> m # foldr :: (a -> b -> b) -> b -> Complex a -> b # foldr' :: (a -> b -> b) -> b -> Complex a -> b # foldl :: (b -> a -> b) -> b -> Complex a -> b # foldl' :: (b -> a -> b) -> b -> Complex a -> b # foldr1 :: (a -> a -> a) -> Complex a -> a # foldl1 :: (a -> a -> a) -> Complex a -> a # elem :: Eq a => a -> Complex a -> Bool # maximum :: Ord a => Complex a -> a # minimum :: Ord a => Complex a -> a # | |
Foldable Min | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Min m -> m # foldMap :: Monoid m => (a -> m) -> Min a -> m # foldr :: (a -> b -> b) -> b -> Min a -> b # foldr' :: (a -> b -> b) -> b -> Min a -> b # foldl :: (b -> a -> b) -> b -> Min a -> b # foldl' :: (b -> a -> b) -> b -> Min a -> b # foldr1 :: (a -> a -> a) -> Min a -> a # foldl1 :: (a -> a -> a) -> Min a -> a # elem :: Eq a => a -> Min a -> Bool # maximum :: Ord a => Min a -> a # | |
Foldable Max | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Max m -> m # foldMap :: Monoid m => (a -> m) -> Max a -> m # foldr :: (a -> b -> b) -> b -> Max a -> b # foldr' :: (a -> b -> b) -> b -> Max a -> b # foldl :: (b -> a -> b) -> b -> Max a -> b # foldl' :: (b -> a -> b) -> b -> Max a -> b # foldr1 :: (a -> a -> a) -> Max a -> a # foldl1 :: (a -> a -> a) -> Max a -> a # elem :: Eq a => a -> Max a -> Bool # maximum :: Ord a => Max a -> a # | |
Foldable First | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |
Foldable Last | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
Foldable Option | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Option m -> m # foldMap :: Monoid m => (a -> m) -> Option a -> m # foldr :: (a -> b -> b) -> b -> Option a -> b # foldr' :: (a -> b -> b) -> b -> Option a -> b # foldl :: (b -> a -> b) -> b -> Option a -> b # foldl' :: (b -> a -> b) -> b -> Option a -> b # foldr1 :: (a -> a -> a) -> Option a -> a # foldl1 :: (a -> a -> a) -> Option a -> a # elem :: Eq a => a -> Option a -> Bool # maximum :: Ord a => Option a -> a # minimum :: Ord a => Option a -> a # | |
Foldable ZipList | Since: base-4.9.0.0 |
Defined in Control.Applicative Methods fold :: Monoid m => ZipList m -> m # foldMap :: Monoid m => (a -> m) -> ZipList a -> m # foldr :: (a -> b -> b) -> b -> ZipList a -> b # foldr' :: (a -> b -> b) -> b -> ZipList a -> b # foldl :: (b -> a -> b) -> b -> ZipList a -> b # foldl' :: (b -> a -> b) -> b -> ZipList a -> b # foldr1 :: (a -> a -> a) -> ZipList a -> a # foldl1 :: (a -> a -> a) -> ZipList a -> a # elem :: Eq a => a -> ZipList a -> Bool # maximum :: Ord a => ZipList a -> a # minimum :: Ord a => ZipList a -> a # | |
Foldable Identity | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity Methods fold :: Monoid m => Identity m -> m # foldMap :: Monoid m => (a -> m) -> Identity a -> m # foldr :: (a -> b -> b) -> b -> Identity a -> b # foldr' :: (a -> b -> b) -> b -> Identity a -> b # foldl :: (b -> a -> b) -> b -> Identity a -> b # foldl' :: (b -> a -> b) -> b -> Identity a -> b # foldr1 :: (a -> a -> a) -> Identity a -> a # foldl1 :: (a -> a -> a) -> Identity a -> a # elem :: Eq a => a -> Identity a -> Bool # maximum :: Ord a => Identity a -> a # minimum :: Ord a => Identity a -> a # | |
Foldable First | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |
Foldable Last | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
Foldable Dual | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Dual m -> m # foldMap :: Monoid m => (a -> m) -> Dual a -> m # foldr :: (a -> b -> b) -> b -> Dual a -> b # foldr' :: (a -> b -> b) -> b -> Dual a -> b # foldl :: (b -> a -> b) -> b -> Dual a -> b # foldl' :: (b -> a -> b) -> b -> Dual a -> b # foldr1 :: (a -> a -> a) -> Dual a -> a # foldl1 :: (a -> a -> a) -> Dual a -> a # elem :: Eq a => a -> Dual a -> Bool # maximum :: Ord a => Dual a -> a # | |
Foldable Sum | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Sum m -> m # foldMap :: Monoid m => (a -> m) -> Sum a -> m # foldr :: (a -> b -> b) -> b -> Sum a -> b # foldr' :: (a -> b -> b) -> b -> Sum a -> b # foldl :: (b -> a -> b) -> b -> Sum a -> b # foldl' :: (b -> a -> b) -> b -> Sum a -> b # foldr1 :: (a -> a -> a) -> Sum a -> a # foldl1 :: (a -> a -> a) -> Sum a -> a # elem :: Eq a => a -> Sum a -> Bool # maximum :: Ord a => Sum a -> a # | |
Foldable Product | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Product m -> m # foldMap :: Monoid m => (a -> m) -> Product a -> m # foldr :: (a -> b -> b) -> b -> Product a -> b # foldr' :: (a -> b -> b) -> b -> Product a -> b # foldl :: (b -> a -> b) -> b -> Product a -> b # foldl' :: (b -> a -> b) -> b -> Product a -> b # foldr1 :: (a -> a -> a) -> Product a -> a # foldl1 :: (a -> a -> a) -> Product a -> a # elem :: Eq a => a -> Product a -> Bool # maximum :: Ord a => Product a -> a # minimum :: Ord a => Product a -> a # | |
Foldable Down | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Down m -> m # foldMap :: Monoid m => (a -> m) -> Down a -> m # foldr :: (a -> b -> b) -> b -> Down a -> b # foldr' :: (a -> b -> b) -> b -> Down a -> b # foldl :: (b -> a -> b) -> b -> Down a -> b # foldl' :: (b -> a -> b) -> b -> Down a -> b # foldr1 :: (a -> a -> a) -> Down a -> a # foldl1 :: (a -> a -> a) -> Down a -> a # elem :: Eq a => a -> Down a -> Bool # maximum :: Ord a => Down a -> a # | |
Foldable NonEmpty | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => NonEmpty m -> m # foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m # foldr :: (a -> b -> b) -> b -> NonEmpty a -> b # foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b # foldl :: (b -> a -> b) -> b -> NonEmpty a -> b # foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b # foldr1 :: (a -> a -> a) -> NonEmpty a -> a # foldl1 :: (a -> a -> a) -> NonEmpty a -> a # elem :: Eq a => a -> NonEmpty a -> Bool # maximum :: Ord a => NonEmpty a -> a # minimum :: Ord a => NonEmpty a -> a # | |
Foldable IntMap | |
Defined in Data.IntMap.Internal Methods fold :: Monoid m => IntMap m -> m # foldMap :: Monoid m => (a -> m) -> IntMap a -> m # foldr :: (a -> b -> b) -> b -> IntMap a -> b # foldr' :: (a -> b -> b) -> b -> IntMap a -> b # foldl :: (b -> a -> b) -> b -> IntMap a -> b # foldl' :: (b -> a -> b) -> b -> IntMap a -> b # foldr1 :: (a -> a -> a) -> IntMap a -> a # foldl1 :: (a -> a -> a) -> IntMap a -> a # elem :: Eq a => a -> IntMap a -> Bool # maximum :: Ord a => IntMap a -> a # minimum :: Ord a => IntMap a -> a # | |
Foldable Seq | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Seq m -> m # foldMap :: Monoid m => (a -> m) -> Seq a -> m # foldr :: (a -> b -> b) -> b -> Seq a -> b # foldr' :: (a -> b -> b) -> b -> Seq a -> b # foldl :: (b -> a -> b) -> b -> Seq a -> b # foldl' :: (b -> a -> b) -> b -> Seq a -> b # foldr1 :: (a -> a -> a) -> Seq a -> a # foldl1 :: (a -> a -> a) -> Seq a -> a # elem :: Eq a => a -> Seq a -> Bool # maximum :: Ord a => Seq a -> a # | |
Foldable FingerTree | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => FingerTree m -> m # foldMap :: Monoid m => (a -> m) -> FingerTree a -> m # foldr :: (a -> b -> b) -> b -> FingerTree a -> b # foldr' :: (a -> b -> b) -> b -> FingerTree a -> b # foldl :: (b -> a -> b) -> b -> FingerTree a -> b # foldl' :: (b -> a -> b) -> b -> FingerTree a -> b # foldr1 :: (a -> a -> a) -> FingerTree a -> a # foldl1 :: (a -> a -> a) -> FingerTree a -> a # toList :: FingerTree a -> [a] # null :: FingerTree a -> Bool # length :: FingerTree a -> Int # elem :: Eq a => a -> FingerTree a -> Bool # maximum :: Ord a => FingerTree a -> a # minimum :: Ord a => FingerTree a -> a # sum :: Num a => FingerTree a -> a # product :: Num a => FingerTree a -> a # | |
Foldable Digit | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Digit m -> m # foldMap :: Monoid m => (a -> m) -> Digit a -> m # foldr :: (a -> b -> b) -> b -> Digit a -> b # foldr' :: (a -> b -> b) -> b -> Digit a -> b # foldl :: (b -> a -> b) -> b -> Digit a -> b # foldl' :: (b -> a -> b) -> b -> Digit a -> b # foldr1 :: (a -> a -> a) -> Digit a -> a # foldl1 :: (a -> a -> a) -> Digit a -> a # elem :: Eq a => a -> Digit a -> Bool # maximum :: Ord a => Digit a -> a # minimum :: Ord a => Digit a -> a # | |
Foldable Node | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Node m -> m # foldMap :: Monoid m => (a -> m) -> Node a -> m # foldr :: (a -> b -> b) -> b -> Node a -> b # foldr' :: (a -> b -> b) -> b -> Node a -> b # foldl :: (b -> a -> b) -> b -> Node a -> b # foldl' :: (b -> a -> b) -> b -> Node a -> b # foldr1 :: (a -> a -> a) -> Node a -> a # foldl1 :: (a -> a -> a) -> Node a -> a # elem :: Eq a => a -> Node a -> Bool # maximum :: Ord a => Node a -> a # | |
Foldable Elem | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Elem m -> m # foldMap :: Monoid m => (a -> m) -> Elem a -> m # foldr :: (a -> b -> b) -> b -> Elem a -> b # foldr' :: (a -> b -> b) -> b -> Elem a -> b # foldl :: (b -> a -> b) -> b -> Elem a -> b # foldl' :: (b -> a -> b) -> b -> Elem a -> b # foldr1 :: (a -> a -> a) -> Elem a -> a # foldl1 :: (a -> a -> a) -> Elem a -> a # elem :: Eq a => a -> Elem a -> Bool # maximum :: Ord a => Elem a -> a # | |
Foldable ViewL | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => ViewL m -> m # foldMap :: Monoid m => (a -> m) -> ViewL a -> m # foldr :: (a -> b -> b) -> b -> ViewL a -> b # foldr' :: (a -> b -> b) -> b -> ViewL a -> b # foldl :: (b -> a -> b) -> b -> ViewL a -> b # foldl' :: (b -> a -> b) -> b -> ViewL a -> b # foldr1 :: (a -> a -> a) -> ViewL a -> a # foldl1 :: (a -> a -> a) -> ViewL a -> a # elem :: Eq a => a -> ViewL a -> Bool # maximum :: Ord a => ViewL a -> a # minimum :: Ord a => ViewL a -> a # | |
Foldable ViewR | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => ViewR m -> m # foldMap :: Monoid m => (a -> m) -> ViewR a -> m # foldr :: (a -> b -> b) -> b -> ViewR a -> b # foldr' :: (a -> b -> b) -> b -> ViewR a -> b # foldl :: (b -> a -> b) -> b -> ViewR a -> b # foldl' :: (b -> a -> b) -> b -> ViewR a -> b # foldr1 :: (a -> a -> a) -> ViewR a -> a # foldl1 :: (a -> a -> a) -> ViewR a -> a # elem :: Eq a => a -> ViewR a -> Bool # maximum :: Ord a => ViewR a -> a # minimum :: Ord a => ViewR a -> a # | |
Foldable Set | |
Defined in Data.Set.Internal Methods fold :: Monoid m => Set m -> m # foldMap :: Monoid m => (a -> m) -> Set a -> m # foldr :: (a -> b -> b) -> b -> Set a -> b # foldr' :: (a -> b -> b) -> b -> Set a -> b # foldl :: (b -> a -> b) -> b -> Set a -> b # foldl' :: (b -> a -> b) -> b -> Set a -> b # foldr1 :: (a -> a -> a) -> Set a -> a # foldl1 :: (a -> a -> a) -> Set a -> a # elem :: Eq a => a -> Set a -> Bool # maximum :: Ord a => Set a -> a # | |
Foldable Hashed | |
Defined in Data.Hashable.Class Methods fold :: Monoid m => Hashed m -> m # foldMap :: Monoid m => (a -> m) -> Hashed a -> m # foldr :: (a -> b -> b) -> b -> Hashed a -> b # foldr' :: (a -> b -> b) -> b -> Hashed a -> b # foldl :: (b -> a -> b) -> b -> Hashed a -> b # foldl' :: (b -> a -> b) -> b -> Hashed a -> b # foldr1 :: (a -> a -> a) -> Hashed a -> a # foldl1 :: (a -> a -> a) -> Hashed a -> a # elem :: Eq a => a -> Hashed a -> Bool # maximum :: Ord a => Hashed a -> a # minimum :: Ord a => Hashed a -> a # | |
Foldable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Either a m -> m # foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # toList :: Either a a0 -> [a0] # length :: Either a a0 -> Int # elem :: Eq a0 => a0 -> Either a a0 -> Bool # maximum :: Ord a0 => Either a a0 -> a0 # minimum :: Ord a0 => Either a a0 -> a0 # | |
Foldable (V1 :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => V1 m -> m # foldMap :: Monoid m => (a -> m) -> V1 a -> m # foldr :: (a -> b -> b) -> b -> V1 a -> b # foldr' :: (a -> b -> b) -> b -> V1 a -> b # foldl :: (b -> a -> b) -> b -> V1 a -> b # foldl' :: (b -> a -> b) -> b -> V1 a -> b # foldr1 :: (a -> a -> a) -> V1 a -> a # foldl1 :: (a -> a -> a) -> V1 a -> a # elem :: Eq a => a -> V1 a -> Bool # maximum :: Ord a => V1 a -> a # | |
Foldable (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => U1 m -> m # foldMap :: Monoid m => (a -> m) -> U1 a -> m # foldr :: (a -> b -> b) -> b -> U1 a -> b # foldr' :: (a -> b -> b) -> b -> U1 a -> b # foldl :: (b -> a -> b) -> b -> U1 a -> b # foldl' :: (b -> a -> b) -> b -> U1 a -> b # foldr1 :: (a -> a -> a) -> U1 a -> a # foldl1 :: (a -> a -> a) -> U1 a -> a # elem :: Eq a => a -> U1 a -> Bool # maximum :: Ord a => U1 a -> a # | |
Foldable ((,) a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (a, m) -> m # foldMap :: Monoid m => (a0 -> m) -> (a, a0) -> m # foldr :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldr' :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldl :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldl' :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldr1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # foldl1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # elem :: Eq a0 => a0 -> (a, a0) -> Bool # maximum :: Ord a0 => (a, a0) -> a0 # minimum :: Ord a0 => (a, a0) -> a0 # | |
Foldable (Array i) | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Array i m -> m # foldMap :: Monoid m => (a -> m) -> Array i a -> m # foldr :: (a -> b -> b) -> b -> Array i a -> b # foldr' :: (a -> b -> b) -> b -> Array i a -> b # foldl :: (b -> a -> b) -> b -> Array i a -> b # foldl' :: (b -> a -> b) -> b -> Array i a -> b # foldr1 :: (a -> a -> a) -> Array i a -> a # foldl1 :: (a -> a -> a) -> Array i a -> a # elem :: Eq a => a -> Array i a -> Bool # maximum :: Ord a => Array i a -> a # minimum :: Ord a => Array i a -> a # | |
Foldable (Arg a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Arg a m -> m # foldMap :: Monoid m => (a0 -> m) -> Arg a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Arg a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Arg a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Arg a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Arg a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 # elem :: Eq a0 => a0 -> Arg a a0 -> Bool # maximum :: Ord a0 => Arg a a0 -> a0 # minimum :: Ord a0 => Arg a a0 -> a0 # | |
Foldable (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Proxy m -> m # foldMap :: Monoid m => (a -> m) -> Proxy a -> m # foldr :: (a -> b -> b) -> b -> Proxy a -> b # foldr' :: (a -> b -> b) -> b -> Proxy a -> b # foldl :: (b -> a -> b) -> b -> Proxy a -> b # foldl' :: (b -> a -> b) -> b -> Proxy a -> b # foldr1 :: (a -> a -> a) -> Proxy a -> a # foldl1 :: (a -> a -> a) -> Proxy a -> a # elem :: Eq a => a -> Proxy a -> Bool # maximum :: Ord a => Proxy a -> a # minimum :: Ord a => Proxy a -> a # | |
Foldable (Map k) | |
Defined in Data.Map.Internal Methods fold :: Monoid m => Map k m -> m # foldMap :: Monoid m => (a -> m) -> Map k a -> m # foldr :: (a -> b -> b) -> b -> Map k a -> b # foldr' :: (a -> b -> b) -> b -> Map k a -> b # foldl :: (b -> a -> b) -> b -> Map k a -> b # foldl' :: (b -> a -> b) -> b -> Map k a -> b # foldr1 :: (a -> a -> a) -> Map k a -> a # foldl1 :: (a -> a -> a) -> Map k a -> a # elem :: Eq a => a -> Map k a -> Bool # maximum :: Ord a => Map k a -> a # minimum :: Ord a => Map k a -> a # | |
Foldable f => Foldable (ListT f) | |
Defined in Control.Monad.Trans.List Methods fold :: Monoid m => ListT f m -> m # foldMap :: Monoid m => (a -> m) -> ListT f a -> m # foldr :: (a -> b -> b) -> b -> ListT f a -> b # foldr' :: (a -> b -> b) -> b -> ListT f a -> b # foldl :: (b -> a -> b) -> b -> ListT f a -> b # foldl' :: (b -> a -> b) -> b -> ListT f a -> b # foldr1 :: (a -> a -> a) -> ListT f a -> a # foldl1 :: (a -> a -> a) -> ListT f a -> a # elem :: Eq a => a -> ListT f a -> Bool # maximum :: Ord a => ListT f a -> a # minimum :: Ord a => ListT f a -> a # | |
Foldable f => Foldable (MaybeT f) | |
Defined in Control.Monad.Trans.Maybe Methods fold :: Monoid m => MaybeT f m -> m # foldMap :: Monoid m => (a -> m) -> MaybeT f a -> m # foldr :: (a -> b -> b) -> b -> MaybeT f a -> b # foldr' :: (a -> b -> b) -> b -> MaybeT f a -> b # foldl :: (b -> a -> b) -> b -> MaybeT f a -> b # foldl' :: (b -> a -> b) -> b -> MaybeT f a -> b # foldr1 :: (a -> a -> a) -> MaybeT f a -> a # foldl1 :: (a -> a -> a) -> MaybeT f a -> a # elem :: Eq a => a -> MaybeT f a -> Bool # maximum :: Ord a => MaybeT f a -> a # minimum :: Ord a => MaybeT f a -> a # | |
Foldable f => Foldable (Rec1 f) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Rec1 f m -> m # foldMap :: Monoid m => (a -> m) -> Rec1 f a -> m # foldr :: (a -> b -> b) -> b -> Rec1 f a -> b # foldr' :: (a -> b -> b) -> b -> Rec1 f a -> b # foldl :: (b -> a -> b) -> b -> Rec1 f a -> b # foldl' :: (b -> a -> b) -> b -> Rec1 f a -> b # foldr1 :: (a -> a -> a) -> Rec1 f a -> a # foldl1 :: (a -> a -> a) -> Rec1 f a -> a # elem :: Eq a => a -> Rec1 f a -> Bool # maximum :: Ord a => Rec1 f a -> a # minimum :: Ord a => Rec1 f a -> a # | |
Foldable (URec Char :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Char m -> m # foldMap :: Monoid m => (a -> m) -> URec Char a -> m # foldr :: (a -> b -> b) -> b -> URec Char a -> b # foldr' :: (a -> b -> b) -> b -> URec Char a -> b # foldl :: (b -> a -> b) -> b -> URec Char a -> b # foldl' :: (b -> a -> b) -> b -> URec Char a -> b # foldr1 :: (a -> a -> a) -> URec Char a -> a # foldl1 :: (a -> a -> a) -> URec Char a -> a # toList :: URec Char a -> [a] # length :: URec Char a -> Int # elem :: Eq a => a -> URec Char a -> Bool # maximum :: Ord a => URec Char a -> a # minimum :: Ord a => URec Char a -> a # | |
Foldable (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Double m -> m # foldMap :: Monoid m => (a -> m) -> URec Double a -> m # foldr :: (a -> b -> b) -> b -> URec Double a -> b # foldr' :: (a -> b -> b) -> b -> URec Double a -> b # foldl :: (b -> a -> b) -> b -> URec Double a -> b # foldl' :: (b -> a -> b) -> b -> URec Double a -> b # foldr1 :: (a -> a -> a) -> URec Double a -> a # foldl1 :: (a -> a -> a) -> URec Double a -> a # toList :: URec Double a -> [a] # null :: URec Double a -> Bool # length :: URec Double a -> Int # elem :: Eq a => a -> URec Double a -> Bool # maximum :: Ord a => URec Double a -> a # minimum :: Ord a => URec Double a -> a # | |
Foldable (URec Float :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Float m -> m # foldMap :: Monoid m => (a -> m) -> URec Float a -> m # foldr :: (a -> b -> b) -> b -> URec Float a -> b # foldr' :: (a -> b -> b) -> b -> URec Float a -> b # foldl :: (b -> a -> b) -> b -> URec Float a -> b # foldl' :: (b -> a -> b) -> b -> URec Float a -> b # foldr1 :: (a -> a -> a) -> URec Float a -> a # foldl1 :: (a -> a -> a) -> URec Float a -> a # toList :: URec Float a -> [a] # null :: URec Float a -> Bool # length :: URec Float a -> Int # elem :: Eq a => a -> URec Float a -> Bool # maximum :: Ord a => URec Float a -> a # minimum :: Ord a => URec Float a -> a # | |
Foldable (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Int m -> m # foldMap :: Monoid m => (a -> m) -> URec Int a -> m # foldr :: (a -> b -> b) -> b -> URec Int a -> b # foldr' :: (a -> b -> b) -> b -> URec Int a -> b # foldl :: (b -> a -> b) -> b -> URec Int a -> b # foldl' :: (b -> a -> b) -> b -> URec Int a -> b # foldr1 :: (a -> a -> a) -> URec Int a -> a # foldl1 :: (a -> a -> a) -> URec Int a -> a # elem :: Eq a => a -> URec Int a -> Bool # maximum :: Ord a => URec Int a -> a # minimum :: Ord a => URec Int a -> a # | |
Foldable (URec Word :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Word m -> m # foldMap :: Monoid m => (a -> m) -> URec Word a -> m # foldr :: (a -> b -> b) -> b -> URec Word a -> b # foldr' :: (a -> b -> b) -> b -> URec Word a -> b # foldl :: (b -> a -> b) -> b -> URec Word a -> b # foldl' :: (b -> a -> b) -> b -> URec Word a -> b # foldr1 :: (a -> a -> a) -> URec Word a -> a # foldl1 :: (a -> a -> a) -> URec Word a -> a # toList :: URec Word a -> [a] # length :: URec Word a -> Int # elem :: Eq a => a -> URec Word a -> Bool # maximum :: Ord a => URec Word a -> a # minimum :: Ord a => URec Word a -> a # | |
Foldable (URec (Ptr ()) :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec (Ptr ()) m -> m # foldMap :: Monoid m => (a -> m) -> URec (Ptr ()) a -> m # foldr :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b # foldr' :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b # foldl :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b # foldl' :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b # foldr1 :: (a -> a -> a) -> URec (Ptr ()) a -> a # foldl1 :: (a -> a -> a) -> URec (Ptr ()) a -> a # toList :: URec (Ptr ()) a -> [a] # null :: URec (Ptr ()) a -> Bool # length :: URec (Ptr ()) a -> Int # elem :: Eq a => a -> URec (Ptr ()) a -> Bool # maximum :: Ord a => URec (Ptr ()) a -> a # minimum :: Ord a => URec (Ptr ()) a -> a # | |
Foldable (Const m :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Functor.Const Methods fold :: Monoid m0 => Const m m0 -> m0 # foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldr :: (a -> b -> b) -> b -> Const m a -> b # foldr' :: (a -> b -> b) -> b -> Const m a -> b # foldl :: (b -> a -> b) -> b -> Const m a -> b # foldl' :: (b -> a -> b) -> b -> Const m a -> b # foldr1 :: (a -> a -> a) -> Const m a -> a # foldl1 :: (a -> a -> a) -> Const m a -> a # elem :: Eq a => a -> Const m a -> Bool # maximum :: Ord a => Const m a -> a # minimum :: Ord a => Const m a -> a # | |
Foldable f => Foldable (Ap f) | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Ap f m -> m # foldMap :: Monoid m => (a -> m) -> Ap f a -> m # foldr :: (a -> b -> b) -> b -> Ap f a -> b # foldr' :: (a -> b -> b) -> b -> Ap f a -> b # foldl :: (b -> a -> b) -> b -> Ap f a -> b # foldl' :: (b -> a -> b) -> b -> Ap f a -> b # foldr1 :: (a -> a -> a) -> Ap f a -> a # foldl1 :: (a -> a -> a) -> Ap f a -> a # elem :: Eq a => a -> Ap f a -> Bool # maximum :: Ord a => Ap f a -> a # | |
Foldable f => Foldable (Alt f) | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Alt f m -> m # foldMap :: Monoid m => (a -> m) -> Alt f a -> m # foldr :: (a -> b -> b) -> b -> Alt f a -> b # foldr' :: (a -> b -> b) -> b -> Alt f a -> b # foldl :: (b -> a -> b) -> b -> Alt f a -> b # foldl' :: (b -> a -> b) -> b -> Alt f a -> b # foldr1 :: (a -> a -> a) -> Alt f a -> a # foldl1 :: (a -> a -> a) -> Alt f a -> a # elem :: Eq a => a -> Alt f a -> Bool # maximum :: Ord a => Alt f a -> a # minimum :: Ord a => Alt f a -> a # | |
Foldable f => Foldable (IdentityT f) | |
Defined in Control.Monad.Trans.Identity Methods fold :: Monoid m => IdentityT f m -> m # foldMap :: Monoid m => (a -> m) -> IdentityT f a -> m # foldr :: (a -> b -> b) -> b -> IdentityT f a -> b # foldr' :: (a -> b -> b) -> b -> IdentityT f a -> b # foldl :: (b -> a -> b) -> b -> IdentityT f a -> b # foldl' :: (b -> a -> b) -> b -> IdentityT f a -> b # foldr1 :: (a -> a -> a) -> IdentityT f a -> a # foldl1 :: (a -> a -> a) -> IdentityT f a -> a # toList :: IdentityT f a -> [a] # null :: IdentityT f a -> Bool # length :: IdentityT f a -> Int # elem :: Eq a => a -> IdentityT f a -> Bool # maximum :: Ord a => IdentityT f a -> a # minimum :: Ord a => IdentityT f a -> a # | |
Foldable f => Foldable (ErrorT e f) | |
Defined in Control.Monad.Trans.Error Methods fold :: Monoid m => ErrorT e f m -> m # foldMap :: Monoid m => (a -> m) -> ErrorT e f a -> m # foldr :: (a -> b -> b) -> b -> ErrorT e f a -> b # foldr' :: (a -> b -> b) -> b -> ErrorT e f a -> b # foldl :: (b -> a -> b) -> b -> ErrorT e f a -> b # foldl' :: (b -> a -> b) -> b -> ErrorT e f a -> b # foldr1 :: (a -> a -> a) -> ErrorT e f a -> a # foldl1 :: (a -> a -> a) -> ErrorT e f a -> a # toList :: ErrorT e f a -> [a] # null :: ErrorT e f a -> Bool # length :: ErrorT e f a -> Int # elem :: Eq a => a -> ErrorT e f a -> Bool # maximum :: Ord a => ErrorT e f a -> a # minimum :: Ord a => ErrorT e f a -> a # | |
Foldable f => Foldable (ExceptT e f) | |
Defined in Control.Monad.Trans.Except Methods fold :: Monoid m => ExceptT e f m -> m # foldMap :: Monoid m => (a -> m) -> ExceptT e f a -> m # foldr :: (a -> b -> b) -> b -> ExceptT e f a -> b # foldr' :: (a -> b -> b) -> b -> ExceptT e f a -> b # foldl :: (b -> a -> b) -> b -> ExceptT e f a -> b # foldl' :: (b -> a -> b) -> b -> ExceptT e f a -> b # foldr1 :: (a -> a -> a) -> ExceptT e f a -> a # foldl1 :: (a -> a -> a) -> ExceptT e f a -> a # toList :: ExceptT e f a -> [a] # null :: ExceptT e f a -> Bool # length :: ExceptT e f a -> Int # elem :: Eq a => a -> ExceptT e f a -> Bool # maximum :: Ord a => ExceptT e f a -> a # minimum :: Ord a => ExceptT e f a -> a # | |
Foldable f => Foldable (WriterT w f) | |
Defined in Control.Monad.Trans.Writer.Lazy Methods fold :: Monoid m => WriterT w f m -> m # foldMap :: Monoid m => (a -> m) -> WriterT w f a -> m # foldr :: (a -> b -> b) -> b -> WriterT w f a -> b # foldr' :: (a -> b -> b) -> b -> WriterT w f a -> b # foldl :: (b -> a -> b) -> b -> WriterT w f a -> b # foldl' :: (b -> a -> b) -> b -> WriterT w f a -> b # foldr1 :: (a -> a -> a) -> WriterT w f a -> a # foldl1 :: (a -> a -> a) -> WriterT w f a -> a # toList :: WriterT w f a -> [a] # null :: WriterT w f a -> Bool # length :: WriterT w f a -> Int # elem :: Eq a => a -> WriterT w f a -> Bool # maximum :: Ord a => WriterT w f a -> a # minimum :: Ord a => WriterT w f a -> a # | |
Foldable f => Foldable (WriterT w f) | |
Defined in Control.Monad.Trans.Writer.Strict Methods fold :: Monoid m => WriterT w f m -> m # foldMap :: Monoid m => (a -> m) -> WriterT w f a -> m # foldr :: (a -> b -> b) -> b -> WriterT w f a -> b # foldr' :: (a -> b -> b) -> b -> WriterT w f a -> b # foldl :: (b -> a -> b) -> b -> WriterT w f a -> b # foldl' :: (b -> a -> b) -> b -> WriterT w f a -> b # foldr1 :: (a -> a -> a) -> WriterT w f a -> a # foldl1 :: (a -> a -> a) -> WriterT w f a -> a # toList :: WriterT w f a -> [a] # null :: WriterT w f a -> Bool # length :: WriterT w f a -> Int # elem :: Eq a => a -> WriterT w f a -> Bool # maximum :: Ord a => WriterT w f a -> a # minimum :: Ord a => WriterT w f a -> a # | |
Foldable (K1 i c :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => K1 i c m -> m # foldMap :: Monoid m => (a -> m) -> K1 i c a -> m # foldr :: (a -> b -> b) -> b -> K1 i c a -> b # foldr' :: (a -> b -> b) -> b -> K1 i c a -> b # foldl :: (b -> a -> b) -> b -> K1 i c a -> b # foldl' :: (b -> a -> b) -> b -> K1 i c a -> b # foldr1 :: (a -> a -> a) -> K1 i c a -> a # foldl1 :: (a -> a -> a) -> K1 i c a -> a # elem :: Eq a => a -> K1 i c a -> Bool # maximum :: Ord a => K1 i c a -> a # minimum :: Ord a => K1 i c a -> a # | |
(Foldable f, Foldable g) => Foldable (f :+: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :+: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :+: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldr1 :: (a -> a -> a) -> (f :+: g) a -> a # foldl1 :: (a -> a -> a) -> (f :+: g) a -> a # toList :: (f :+: g) a -> [a] # length :: (f :+: g) a -> Int # elem :: Eq a => a -> (f :+: g) a -> Bool # maximum :: Ord a => (f :+: g) a -> a # minimum :: Ord a => (f :+: g) a -> a # | |
(Foldable f, Foldable g) => Foldable (f :*: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :*: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :*: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldr1 :: (a -> a -> a) -> (f :*: g) a -> a # foldl1 :: (a -> a -> a) -> (f :*: g) a -> a # toList :: (f :*: g) a -> [a] # length :: (f :*: g) a -> Int # elem :: Eq a => a -> (f :*: g) a -> Bool # maximum :: Ord a => (f :*: g) a -> a # minimum :: Ord a => (f :*: g) a -> a # | |
(Foldable f, Foldable g) => Foldable (Product f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product Methods fold :: Monoid m => Product f g m -> m # foldMap :: Monoid m => (a -> m) -> Product f g a -> m # foldr :: (a -> b -> b) -> b -> Product f g a -> b # foldr' :: (a -> b -> b) -> b -> Product f g a -> b # foldl :: (b -> a -> b) -> b -> Product f g a -> b # foldl' :: (b -> a -> b) -> b -> Product f g a -> b # foldr1 :: (a -> a -> a) -> Product f g a -> a # foldl1 :: (a -> a -> a) -> Product f g a -> a # toList :: Product f g a -> [a] # null :: Product f g a -> Bool # length :: Product f g a -> Int # elem :: Eq a => a -> Product f g a -> Bool # maximum :: Ord a => Product f g a -> a # minimum :: Ord a => Product f g a -> a # | |
(Foldable f, Foldable g) => Foldable (Sum f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Sum Methods fold :: Monoid m => Sum f g m -> m # foldMap :: Monoid m => (a -> m) -> Sum f g a -> m # foldr :: (a -> b -> b) -> b -> Sum f g a -> b # foldr' :: (a -> b -> b) -> b -> Sum f g a -> b # foldl :: (b -> a -> b) -> b -> Sum f g a -> b # foldl' :: (b -> a -> b) -> b -> Sum f g a -> b # foldr1 :: (a -> a -> a) -> Sum f g a -> a # foldl1 :: (a -> a -> a) -> Sum f g a -> a # elem :: Eq a => a -> Sum f g a -> Bool # maximum :: Ord a => Sum f g a -> a # minimum :: Ord a => Sum f g a -> a # | |
Foldable f => Foldable (M1 i c f) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => M1 i c f m -> m # foldMap :: Monoid m => (a -> m) -> M1 i c f a -> m # foldr :: (a -> b -> b) -> b -> M1 i c f a -> b # foldr' :: (a -> b -> b) -> b -> M1 i c f a -> b # foldl :: (b -> a -> b) -> b -> M1 i c f a -> b # foldl' :: (b -> a -> b) -> b -> M1 i c f a -> b # foldr1 :: (a -> a -> a) -> M1 i c f a -> a # foldl1 :: (a -> a -> a) -> M1 i c f a -> a # elem :: Eq a => a -> M1 i c f a -> Bool # maximum :: Ord a => M1 i c f a -> a # minimum :: Ord a => M1 i c f a -> a # | |
(Foldable f, Foldable g) => Foldable (f :.: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :.: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :.: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldr1 :: (a -> a -> a) -> (f :.: g) a -> a # foldl1 :: (a -> a -> a) -> (f :.: g) a -> a # toList :: (f :.: g) a -> [a] # length :: (f :.: g) a -> Int # elem :: Eq a => a -> (f :.: g) a -> Bool # maximum :: Ord a => (f :.: g) a -> a # minimum :: Ord a => (f :.: g) a -> a # | |
(Foldable f, Foldable g) => Foldable (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose Methods fold :: Monoid m => Compose f g m -> m # foldMap :: Monoid m => (a -> m) -> Compose f g a -> m # foldr :: (a -> b -> b) -> b -> Compose f g a -> b # foldr' :: (a -> b -> b) -> b -> Compose f g a -> b # foldl :: (b -> a -> b) -> b -> Compose f g a -> b # foldl' :: (b -> a -> b) -> b -> Compose f g a -> b # foldr1 :: (a -> a -> a) -> Compose f g a -> a # foldl1 :: (a -> a -> a) -> Compose f g a -> a # toList :: Compose f g a -> [a] # null :: Compose f g a -> Bool # length :: Compose f g a -> Int # elem :: Eq a => a -> Compose f g a -> Bool # maximum :: Ord a => Compose f g a -> a # minimum :: Ord a => Compose f g a -> a # |
minimumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a #
The least element of a non-empty structure with respect to the given comparison function.
maximumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a #
The largest element of a non-empty structure with respect to the given comparison function.
all :: Foldable t => (a -> Bool) -> t a -> Bool #
Determines whether all elements of the structure satisfy the predicate.
any :: Foldable t => (a -> Bool) -> t a -> Bool #
Determines whether any element of the structure satisfies the predicate.
concatMap :: Foldable t => (a -> [b]) -> t a -> [b] #
Map a function over all the elements of a container and concatenate the resulting lists.
concat :: Foldable t => t [a] -> [a] #
The concatenation of all the elements of a container of lists.
asum :: (Foldable t, Alternative f) => t (f a) -> f a #
sequence_ :: (Foldable t, Monad m) => t (m a) -> m () #
Evaluate each monadic action in the structure from left to right,
and ignore the results. For a version that doesn't ignore the
results see sequence
.
As of base 4.8.0.0, sequence_
is just sequenceA_
, specialized
to Monad
.
sequenceA_ :: (Foldable t, Applicative f) => t (f a) -> f () #
Evaluate each action in the structure from left to right, and
ignore the results. For a version that doesn't ignore the results
see sequenceA
.
for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f () #
traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f () #
Map each element of a structure to an action, evaluate these
actions from left to right, and ignore the results. For a version
that doesn't ignore the results see traverse
.
foldlM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b #
Monadic fold over the elements of a structure, associating to the left, i.e. from left to right.
foldrM :: (Foldable t, Monad m) => (a -> b -> m b) -> b -> t a -> m b #
Monadic fold over the elements of a structure, associating to the right, i.e. from right to left.
Semigroup functions
The class of semigroups (types with an associative binary operation).
Instances should satisfy the associativity law:
Since: base-4.9.0.0
Minimal complete definition
Methods
Reduce a non-empty list with <>
The default definition should be sufficient, but this can be overridden for efficiency.
stimes :: Integral b => b -> a -> a #
Repeat a value n
times.
Given that this works on a Semigroup
it is allowed to fail if
you request 0 or fewer repetitions, and the default definition
will do so.
By making this a member of the class, idempotent semigroups
and monoids can upgrade this to execute in O(1) by
picking stimes =
or stimesIdempotent
stimes =
respectively.stimesIdempotentMonoid
Instances
Semigroup Ordering | Since: base-4.9.0.0 |
Semigroup () | Since: base-4.9.0.0 |
Semigroup Void | Since: base-4.9.0.0 |
Semigroup All | Since: base-4.9.0.0 |
Semigroup Any | Since: base-4.9.0.0 |
Semigroup ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods (<>) :: ByteString -> ByteString -> ByteString # sconcat :: NonEmpty ByteString -> ByteString # stimes :: Integral b => b -> ByteString -> ByteString # | |
Semigroup ByteString | |
Defined in Data.ByteString.Internal Methods (<>) :: ByteString -> ByteString -> ByteString # sconcat :: NonEmpty ByteString -> ByteString # stimes :: Integral b => b -> ByteString -> ByteString # | |
Semigroup IntSet | Since: containers-0.5.7 |
Semigroup [a] | Since: base-4.9.0.0 |
Semigroup a => Semigroup (Maybe a) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (IO a) | Since: base-4.10.0.0 |
Semigroup p => Semigroup (Par1 p) | Since: base-4.12.0.0 |
Semigroup a => Semigroup (Concurrently a) | Only defined by Since: async-2.1.0 |
Defined in Control.Concurrent.Async Methods (<>) :: Concurrently a -> Concurrently a -> Concurrently a # sconcat :: NonEmpty (Concurrently a) -> Concurrently a # stimes :: Integral b => b -> Concurrently a -> Concurrently a # | |
Ord a => Semigroup (Min a) | Since: base-4.9.0.0 |
Ord a => Semigroup (Max a) | Since: base-4.9.0.0 |
Semigroup (First a) | Since: base-4.9.0.0 |
Semigroup (Last a) | Since: base-4.9.0.0 |
Monoid m => Semigroup (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods (<>) :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # sconcat :: NonEmpty (WrappedMonoid m) -> WrappedMonoid m # stimes :: Integral b => b -> WrappedMonoid m -> WrappedMonoid m # | |
Semigroup a => Semigroup (Option a) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (Identity a) | Since: base-4.9.0.0 |
Semigroup (First a) | Since: base-4.9.0.0 |
Semigroup (Last a) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (Dual a) | Since: base-4.9.0.0 |
Semigroup (Endo a) | Since: base-4.9.0.0 |
Num a => Semigroup (Sum a) | Since: base-4.9.0.0 |
Num a => Semigroup (Product a) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (Down a) | Since: base-4.11.0.0 |
Semigroup (NonEmpty a) | Since: base-4.9.0.0 |
Semigroup (IntMap a) | Since: containers-0.5.7 |
Semigroup (Seq a) | Since: containers-0.5.7 |
Ord a => Semigroup (Set a) | Since: containers-0.5.7 |
Semigroup (MergeSet a) | |
Semigroup b => Semigroup (a -> b) | Since: base-4.9.0.0 |
Semigroup (Either a b) | Since: base-4.9.0.0 |
Semigroup (V1 p) | Since: base-4.12.0.0 |
Semigroup (U1 p) | Since: base-4.12.0.0 |
(Semigroup a, Semigroup b) => Semigroup (a, b) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (ST s a) | Since: base-4.11.0.0 |
Semigroup (Proxy s) | Since: base-4.9.0.0 |
Ord k => Semigroup (Map k v) | |
Semigroup (f p) => Semigroup (Rec1 f p) | Since: base-4.12.0.0 |
(Semigroup a, Semigroup b, Semigroup c) => Semigroup (a, b, c) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (Const a b) | Since: base-4.9.0.0 |
(Applicative f, Semigroup a) => Semigroup (Ap f a) | Since: base-4.12.0.0 |
Alternative f => Semigroup (Alt f a) | Since: base-4.9.0.0 |
Semigroup c => Semigroup (K1 i c p) | Since: base-4.12.0.0 |
(Semigroup (f p), Semigroup (g p)) => Semigroup ((f :*: g) p) | Since: base-4.12.0.0 |
(Semigroup a, Semigroup b, Semigroup c, Semigroup d) => Semigroup (a, b, c, d) | Since: base-4.9.0.0 |
Semigroup (f p) => Semigroup (M1 i c f p) | Since: base-4.12.0.0 |
Semigroup (f (g p)) => Semigroup ((f :.: g) p) | Since: base-4.12.0.0 |
(Semigroup a, Semigroup b, Semigroup c, Semigroup d, Semigroup e) => Semigroup (a, b, c, d, e) | Since: base-4.9.0.0 |
mtimesDefault :: (Integral b, Monoid a) => b -> a -> a #
data WrappedMonoid m #
Provide a Semigroup for an arbitrary Monoid.
NOTE: This is not needed anymore since Semigroup
became a superclass of
Monoid
in base-4.11 and this newtype be deprecated at some point in the future.
Instances
Option
is effectively Maybe
with a better instance of
Monoid
, built off of an underlying Semigroup
instead of an
underlying Monoid
.
Ideally, this type would not exist at all and we would just fix the
Monoid
instance of Maybe
.
In GHC 8.4 and higher, the Monoid
instance for Maybe
has been
corrected to lift a Semigroup
instance instead of a Monoid
instance. Consequently, this type is no longer useful. It will be
marked deprecated in GHC 8.8 and removed in GHC 8.10.
Instances
Monad Option | Since: base-4.9.0.0 |
Functor Option | Since: base-4.9.0.0 |
MonadFix Option | Since: base-4.9.0.0 |
Defined in Data.Semigroup | |
Applicative Option | Since: base-4.9.0.0 |
Foldable Option | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Option m -> m # foldMap :: Monoid m => (a -> m) -> Option a -> m # foldr :: (a -> b -> b) -> b -> Option a -> b # foldr' :: (a -> b -> b) -> b -> Option a -> b # foldl :: (b -> a -> b) -> b -> Option a -> b # foldl' :: (b -> a -> b) -> b -> Option a -> b # foldr1 :: (a -> a -> a) -> Option a -> a # foldl1 :: (a -> a -> a) -> Option a -> a # elem :: Eq a => a -> Option a -> Bool # maximum :: Ord a => Option a -> a # minimum :: Ord a => Option a -> a # | |
Traversable Option | Since: base-4.9.0.0 |
Alternative Option | Since: base-4.9.0.0 |
MonadPlus Option | Since: base-4.9.0.0 |
NFData1 Option | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Eq a => Eq (Option a) | Since: base-4.9.0.0 |
Data a => Data (Option a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Option a -> c (Option a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Option a) # toConstr :: Option a -> Constr # dataTypeOf :: Option a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Option a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Option a)) # gmapT :: (forall b. Data b => b -> b) -> Option a -> Option a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Option a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Option a -> r # gmapQ :: (forall d. Data d => d -> u) -> Option a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Option a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Option a -> m (Option a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Option a -> m (Option a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Option a -> m (Option a) # | |
Ord a => Ord (Option a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup | |
Read a => Read (Option a) | Since: base-4.9.0.0 |
Show a => Show (Option a) | Since: base-4.9.0.0 |
Generic (Option a) | |
Semigroup a => Semigroup (Option a) | Since: base-4.9.0.0 |
Semigroup a => Monoid (Option a) | Since: base-4.9.0.0 |
NFData a => NFData (Option a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
Hashable a => Hashable (Option a) | |
Defined in Data.Hashable.Class | |
Generic1 Option | |
type Rep (Option a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup | |
type Rep1 Option | Since: base-4.9.0.0 |
Defined in Data.Semigroup |
stimesMonoid :: (Integral b, Monoid a) => b -> a -> a #
stimesIdempotent :: Integral b => b -> a -> a #
stimesIdempotentMonoid :: (Integral b, Monoid a) => b -> a -> a #
Monoid functions
module Data.Monoid
Bifunctor functions
class Bifunctor (p :: Type -> Type -> Type) where #
A bifunctor is a type constructor that takes
two type arguments and is a functor in both arguments. That
is, unlike with Functor
, a type constructor such as Either
does not need to be partially applied for a Bifunctor
instance, and the methods in this class permit mapping
functions over the Left
value or the Right
value,
or both at the same time.
Formally, the class Bifunctor
represents a bifunctor
from Hask
-> Hask
.
Intuitively it is a bifunctor where both the first and second arguments are covariant.
You can define a Bifunctor
by either defining bimap
or by
defining both first
and second
.
If you supply bimap
, you should ensure that:
bimap
id
id
≡id
If you supply first
and second
, ensure:
first
id
≡id
second
id
≡id
If you supply both, you should also ensure:
bimap
f g ≡first
f.
second
g
These ensure by parametricity:
bimap
(f.
g) (h.
i) ≡bimap
f h.
bimap
g ifirst
(f.
g) ≡first
f.
first
gsecond
(f.
g) ≡second
f.
second
g
Since: base-4.8.0.0
Methods
bimap :: (a -> b) -> (c -> d) -> p a c -> p b d #
Map over both arguments at the same time.
bimap
f g ≡first
f.
second
g
Examples
>>>
bimap toUpper (+1) ('j', 3)
('J',4)
>>>
bimap toUpper (+1) (Left 'j')
Left 'J'
>>>
bimap toUpper (+1) (Right 3)
Right 4
Instances
Bifunctor Either | Since: base-4.8.0.0 |
Bifunctor (,) | Since: base-4.8.0.0 |
Bifunctor Arg | Since: base-4.9.0.0 |
Bifunctor ((,,) x1) | Since: base-4.8.0.0 |
Bifunctor (Const :: Type -> Type -> Type) | Since: base-4.8.0.0 |
Bifunctor (K1 i :: Type -> Type -> Type) | Since: base-4.9.0.0 |
Bifunctor ((,,,) x1 x2) | Since: base-4.8.0.0 |
Bifunctor ((,,,,) x1 x2 x3) | Since: base-4.8.0.0 |
Bifunctor ((,,,,,) x1 x2 x3 x4) | Since: base-4.8.0.0 |
Bifunctor ((,,,,,,) x1 x2 x3 x4 x5) | Since: base-4.8.0.0 |
Bifunctor functions
Transform a value into a Hashable
value, then hash the
transformed value using the given salt.
This is a useful shorthand in cases where a type can easily be
mapped to another type that is already an instance of Hashable
.
Example:
data Foo = Foo | Bar deriving (Enum) instance Hashable Foo where hashWithSalt = hashUsing fromEnum
The class of types that can be converted to a hash value.
Minimal implementation: hashWithSalt
.
Minimal complete definition
Nothing
Methods
hashWithSalt :: Int -> a -> Int infixl 0 #
Return a hash value for the argument, using the given salt.
The general contract of hashWithSalt
is:
- If two values are equal according to the
==
method, then applying thehashWithSalt
method on each of the two values must produce the same integer result if the same salt is used in each case. - It is not required that if two values are unequal
according to the
==
method, then applying thehashWithSalt
method on each of the two values must produce distinct integer results. However, the programmer should be aware that producing distinct integer results for unequal values may improve the performance of hashing-based data structures. - This method can be used to compute different hash values for
the same input by providing a different salt in each
application of the method. This implies that any instance
that defines
hashWithSalt
must make use of the salt in its implementation.
Like hashWithSalt
, but no salt is used. The default
implementation uses hashWithSalt
with some default salt.
Instances might want to implement this method to provide a more
efficient implementation than the default implementation.
Instances
Deepseq functions
a variant of deepseq
that is useful in some circumstances:
force x = x `deepseq` x
force x
fully evaluates x
, and then returns it. Note that
force x
only performs evaluation when the value of force x
itself is demanded, so essentially it turns shallow evaluation into
deep evaluation.
force
can be conveniently used in combination with ViewPatterns
:
{-# LANGUAGE BangPatterns, ViewPatterns #-} import Control.DeepSeq someFun :: ComplexData -> SomeResult someFun (force -> !arg) = {- 'arg' will be fully evaluated -}
Another useful application is to combine force
with
evaluate
in order to force deep evaluation
relative to other IO
operations:
import Control.Exception (evaluate) import Control.DeepSeq main = do result <- evaluate $ force $ pureComputation {- 'result' will be fully evaluated at this point -} return ()
Finally, here's an exception safe variant of the readFile'
example:
readFile' :: FilePath -> IO String readFile' fn = bracket (openFile fn ReadMode) hClose $ \h -> evaluate . force =<< hGetContents h
Since: deepseq-1.2.0.0
($!!) :: NFData a => (a -> b) -> a -> b infixr 0 #
the deep analogue of $!
. In the expression f $!! x
, x
is
fully evaluated before the function f
is applied to it.
Since: deepseq-1.2.0.0
deepseq :: NFData a => a -> b -> b #
deepseq
: fully evaluates the first argument, before returning the
second.
The name deepseq
is used to illustrate the relationship to seq
:
where seq
is shallow in the sense that it only evaluates the top
level of its argument, deepseq
traverses the entire data structure
evaluating it completely.
deepseq
can be useful for forcing pending exceptions,
eradicating space leaks, or forcing lazy I/O to happen. It is
also useful in conjunction with parallel Strategies (see the
parallel
package).
There is no guarantee about the ordering of evaluation. The
implementation may evaluate the components of the structure in
any order or in parallel. To impose an actual order on
evaluation, use pseq
from Control.Parallel in the
parallel
package.
Since: deepseq-1.1.0.0
A class of types that can be fully evaluated.
Since: deepseq-1.1.0.0
Minimal complete definition
Nothing
Methods
rnf
should reduce its argument to normal form (that is, fully
evaluate all sub-components), and then return '()'.
Generic
NFData
deriving
Starting with GHC 7.2, you can automatically derive instances
for types possessing a Generic
instance.
Note: Generic1
can be auto-derived starting with GHC 7.4
{-# LANGUAGE DeriveGeneric #-} import GHC.Generics (Generic, Generic1) import Control.DeepSeq data Foo a = Foo a String deriving (Eq, Generic, Generic1) instance NFData a => NFData (Foo a) instance NFData1 Foo data Colour = Red | Green | Blue deriving Generic instance NFData Colour
Starting with GHC 7.10, the example above can be written more
concisely by enabling the new DeriveAnyClass
extension:
{-# LANGUAGE DeriveGeneric, DeriveAnyClass #-} import GHC.Generics (Generic) import Control.DeepSeq data Foo a = Foo a String deriving (Eq, Generic, Generic1, NFData, NFData1) data Colour = Red | Green | Blue deriving (Generic, NFData)
Compatibility with previous deepseq
versions
Prior to version 1.4.0.0, the default implementation of the rnf
method was defined as
rnf
a =seq
a ()
However, starting with deepseq-1.4.0.0
, the default
implementation is based on DefaultSignatures
allowing for
more accurate auto-derived NFData
instances. If you need the
previously used exact default rnf
method implementation
semantics, use
instance NFData Colour where rnf x = seq x ()
or alternatively
instance NFData Colour where rnf = rwhnf
or
{-# LANGUAGE BangPatterns #-} instance NFData Colour where rnf !_ = ()
Instances
NFData Bool | |
Defined in Control.DeepSeq | |
NFData Char | |
Defined in Control.DeepSeq | |
NFData Double | |
Defined in Control.DeepSeq | |
NFData Float | |
Defined in Control.DeepSeq | |
NFData Int | |
Defined in Control.DeepSeq | |
NFData Int8 | |
Defined in Control.DeepSeq | |
NFData Int16 | |
Defined in Control.DeepSeq | |
NFData Int32 | |
Defined in Control.DeepSeq | |
NFData Int64 | |
Defined in Control.DeepSeq | |
NFData Integer | |
Defined in Control.DeepSeq | |
NFData Natural | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData Ordering | |
Defined in Control.DeepSeq | |
NFData Word | |
Defined in Control.DeepSeq | |
NFData Word8 | |
Defined in Control.DeepSeq | |
NFData Word16 | |
Defined in Control.DeepSeq | |
NFData Word32 | |
Defined in Control.DeepSeq | |
NFData Word64 | |
Defined in Control.DeepSeq | |
NFData CallStack | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData () | |
Defined in Control.DeepSeq | |
NFData TyCon | NOTE: Prior to Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData ThreadId | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData Void | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData Unique | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData Version | Since: deepseq-1.3.0.0 |
Defined in Control.DeepSeq | |
NFData ExitCode | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData MaskingState | Since: deepseq-1.4.4.0 |
Defined in Control.DeepSeq Methods rnf :: MaskingState -> () # | |
NFData TypeRep | NOTE: Prior to Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData All | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData Any | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CChar | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CSChar | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CUChar | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CShort | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CUShort | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CInt | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CUInt | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CLong | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CULong | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CLLong | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CULLong | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CBool | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
NFData CFloat | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CDouble | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CPtrdiff | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CSize | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CWchar | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CSigAtomic | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq Methods rnf :: CSigAtomic -> () # | |
NFData CClock | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CTime | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CUSeconds | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CSUSeconds | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq Methods rnf :: CSUSeconds -> () # | |
NFData CFile | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CFpos | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CJmpBuf | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CIntPtr | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CUIntPtr | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CIntMax | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CUIntMax | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData Fingerprint | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq Methods rnf :: Fingerprint -> () # | |
NFData SrcLoc | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods rnf :: ByteString -> () # | |
NFData ByteString | |
Defined in Data.ByteString.Internal Methods rnf :: ByteString -> () # | |
NFData IntSet | |
Defined in Data.IntSet.Internal | |
NFData UnicodeException | |
Defined in Data.Text.Encoding.Error Methods rnf :: UnicodeException -> () # | |
NFData a => NFData [a] | |
Defined in Control.DeepSeq | |
NFData a => NFData (Maybe a) | |
Defined in Control.DeepSeq | |
NFData a => NFData (Ratio a) | |
Defined in Control.DeepSeq | |
NFData (Ptr a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData (FunPtr a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Complex a) | |
Defined in Control.DeepSeq | |
NFData (Fixed a) | Since: deepseq-1.3.0.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Min a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Max a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (First a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Last a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData m => NFData (WrappedMonoid m) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq Methods rnf :: WrappedMonoid m -> () # | |
NFData a => NFData (Option a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData (StableName a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq Methods rnf :: StableName a -> () # | |
NFData a => NFData (ZipList a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Identity a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData (IORef a) | NOTE: Only strict in the reference and not the referenced value. Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (First a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Last a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Dual a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Sum a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Product a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Down a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData (MVar a) | NOTE: Only strict in the reference and not the referenced value. Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (NonEmpty a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (IntMap a) | |
Defined in Data.IntMap.Internal | |
NFData a => NFData (Seq a) | |
Defined in Data.Sequence.Internal | |
NFData a => NFData (FingerTree a) | |
Defined in Data.Sequence.Internal Methods rnf :: FingerTree a -> () # | |
NFData a => NFData (Digit a) | |
Defined in Data.Sequence.Internal | |
NFData a => NFData (Node a) | |
Defined in Data.Sequence.Internal | |
NFData a => NFData (Elem a) | |
Defined in Data.Sequence.Internal | |
NFData a => NFData (Set a) | |
Defined in Data.Set.Internal | |
NFData a => NFData (Hashed a) | |
Defined in Data.Hashable.Class | |
NFData (a -> b) | This instance is for convenience and consistency with Since: deepseq-1.3.0.0 |
Defined in Control.DeepSeq | |
(NFData a, NFData b) => NFData (Either a b) | |
Defined in Control.DeepSeq | |
(NFData a, NFData b) => NFData (a, b) | |
Defined in Control.DeepSeq | |
(NFData a, NFData b) => NFData (Array a b) | |
Defined in Control.DeepSeq | |
(NFData a, NFData b) => NFData (Arg a b) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData (Proxy a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData (STRef s a) | NOTE: Only strict in the reference and not the referenced value. Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
(NFData k, NFData a) => NFData (Map k a) | |
Defined in Data.Map.Internal | |
(NFData a1, NFData a2, NFData a3) => NFData (a1, a2, a3) | |
Defined in Control.DeepSeq | |
NFData a => NFData (Const a b) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData (a :~: b) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
(NFData a1, NFData a2, NFData a3, NFData a4) => NFData (a1, a2, a3, a4) | |
Defined in Control.DeepSeq | |
(NFData1 f, NFData1 g, NFData a) => NFData (Product f g a) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
(NFData1 f, NFData1 g, NFData a) => NFData (Sum f g a) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
NFData (a :~~: b) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5) => NFData (a1, a2, a3, a4, a5) | |
Defined in Control.DeepSeq | |
(NFData1 f, NFData1 g, NFData a) => NFData (Compose f g a) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6) => NFData (a1, a2, a3, a4, a5, a6) | |
Defined in Control.DeepSeq | |
(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6, NFData a7) => NFData (a1, a2, a3, a4, a5, a6, a7) | |
Defined in Control.DeepSeq | |
(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6, NFData a7, NFData a8) => NFData (a1, a2, a3, a4, a5, a6, a7, a8) | |
Defined in Control.DeepSeq | |
(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6, NFData a7, NFData a8, NFData a9) => NFData (a1, a2, a3, a4, a5, a6, a7, a8, a9) | |
Defined in Control.DeepSeq |
Tuple functions
uncurry :: (a -> b -> c) -> (a, b) -> c #
uncurry
converts a curried function to a function on pairs.
Examples
>>>
uncurry (+) (1,2)
3
>>>
uncurry ($) (show, 1)
"1"
>>>
map (uncurry max) [(1,2), (3,4), (6,8)]
[2,4,8]
The class Typeable
allows a concrete representation of a type to
be calculated.
Minimal complete definition
typeRep#
gcast :: (Typeable a, Typeable b) => c a -> Maybe (c b) #
A flexible variation parameterised in a type constructor
eqT :: (Typeable a, Typeable b) => Maybe (a :~: b) #
Extract a witness of equality of two types
Since: base-4.7.0.0
typeRep :: Typeable a => proxy a -> TypeRep #
Takes a value of type a
and returns a concrete representation
of that type.
Since: base-4.7.0.0
type TypeRep = SomeTypeRep #
A quantified type representation.
Typelevel programming
Since Void
values logically don't exist, this witnesses the
logical reasoning tool of "ex falso quodlibet".
>>>
let x :: Either Void Int; x = Right 5
>>>
:{
case x of Right r -> r Left l -> absurd l :} 5
Since: base-4.8.0.0
Uninhabited data type
Since: base-4.8.0.0
Instances
Eq Void | Since: base-4.8.0.0 |
Data Void | Since: base-4.8.0.0 |
Defined in Data.Void Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Void -> c Void # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Void # dataTypeOf :: Void -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Void) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Void) # gmapT :: (forall b. Data b => b -> b) -> Void -> Void # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r # gmapQ :: (forall d. Data d => d -> u) -> Void -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Void -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Void -> m Void # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void # | |
Ord Void | Since: base-4.8.0.0 |
Read Void | Reading a Since: base-4.8.0.0 |
Show Void | Since: base-4.8.0.0 |
Ix Void | Since: base-4.8.0.0 |
Generic Void | |
Semigroup Void | Since: base-4.9.0.0 |
Exception Void | Since: base-4.8.0.0 |
Defined in Data.Void Methods toException :: Void -> SomeException # fromException :: SomeException -> Maybe Void # displayException :: Void -> String # | |
NFData Void | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
Hashable Void | |
Defined in Data.Hashable.Class | |
type Rep Void | Since: base-4.8.0.0 |
data Proxy (t :: k) :: forall k. k -> Type #
Proxy
is a type that holds no data, but has a phantom parameter of
arbitrary type (or even kind). Its use is to provide type information, even
though there is no value available of that type (or it may be too costly to
create one).
Historically,
is a safer alternative to the
Proxy
:: Proxy
a'undefined :: a'
idiom.
>>>
Proxy :: Proxy (Void, Int -> Int)
Proxy
Proxy can even hold types of higher kinds,
>>>
Proxy :: Proxy Either
Proxy
>>>
Proxy :: Proxy Functor
Proxy
>>>
Proxy :: Proxy complicatedStructure
Proxy
Constructors
Proxy |
Instances
Generic1 (Proxy :: k -> Type) | |
Monad (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Functor (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Applicative (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Foldable (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Proxy m -> m # foldMap :: Monoid m => (a -> m) -> Proxy a -> m # foldr :: (a -> b -> b) -> b -> Proxy a -> b # foldr' :: (a -> b -> b) -> b -> Proxy a -> b # foldl :: (b -> a -> b) -> b -> Proxy a -> b # foldl' :: (b -> a -> b) -> b -> Proxy a -> b # foldr1 :: (a -> a -> a) -> Proxy a -> a # foldl1 :: (a -> a -> a) -> Proxy a -> a # elem :: Eq a => a -> Proxy a -> Bool # maximum :: Ord a => Proxy a -> a # minimum :: Ord a => Proxy a -> a # | |
Traversable (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Eq1 (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
Ord1 (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Read1 (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Show1 (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
Alternative (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
MonadPlus (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
NFData1 (Proxy :: Type -> Type) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Hashable1 (Proxy :: Type -> Type) | |
Defined in Data.Hashable.Class | |
Bounded (Proxy t) | Since: base-4.7.0.0 |
Enum (Proxy s) | Since: base-4.7.0.0 |
Eq (Proxy s) | Since: base-4.7.0.0 |
Ord (Proxy s) | Since: base-4.7.0.0 |
Read (Proxy t) | Since: base-4.7.0.0 |
Show (Proxy s) | Since: base-4.7.0.0 |
Ix (Proxy s) | Since: base-4.7.0.0 |
Defined in Data.Proxy | |
Generic (Proxy t) | |
Semigroup (Proxy s) | Since: base-4.9.0.0 |
Monoid (Proxy s) | Since: base-4.7.0.0 |
NFData (Proxy a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
Hashable (Proxy a) | |
Defined in Data.Hashable.Class | |
type Rep1 (Proxy :: k -> Type) | Since: base-4.6.0.0 |
type Rep (Proxy t) | Since: base-4.6.0.0 |
repr :: (a :~: b) -> Coercion a b #
Convert propositional (nominal) equality to representational equality
coerceWith :: Coercion a b -> a -> b #
Type-safe cast, using representational equality
data Coercion (a :: k) (b :: k) :: forall k. k -> k -> Type where #
Representational equality. If Coercion a b
is inhabited by some terminating
value, then the type a
has the same underlying representation as the type b
.
To use this equality in practice, pattern-match on the Coercion a b
to get out
the Coercible a b
instance, and then use coerce
to apply it.
Since: base-4.7.0.0
Instances
TestCoercion (Coercion a :: k -> Type) | Since: base-4.7.0.0 |
Defined in Data.Type.Coercion | |
Coercible a b => Bounded (Coercion a b) | Since: base-4.7.0.0 |
Coercible a b => Enum (Coercion a b) | Since: base-4.7.0.0 |
Defined in Data.Type.Coercion Methods succ :: Coercion a b -> Coercion a b # pred :: Coercion a b -> Coercion a b # toEnum :: Int -> Coercion a b # fromEnum :: Coercion a b -> Int # enumFrom :: Coercion a b -> [Coercion a b] # enumFromThen :: Coercion a b -> Coercion a b -> [Coercion a b] # enumFromTo :: Coercion a b -> Coercion a b -> [Coercion a b] # enumFromThenTo :: Coercion a b -> Coercion a b -> Coercion a b -> [Coercion a b] # | |
Eq (Coercion a b) | Since: base-4.7.0.0 |
Ord (Coercion a b) | Since: base-4.7.0.0 |
Defined in Data.Type.Coercion | |
Coercible a b => Read (Coercion a b) | Since: base-4.7.0.0 |
Show (Coercion a b) | Since: base-4.7.0.0 |
gcastWith :: (a :~: b) -> ((a ~ b) -> r) -> r #
Generalized form of type-safe cast using propositional equality
data (a :: k) :~: (b :: k) :: forall k. k -> k -> Type where infix 4 #
Propositional equality. If a :~: b
is inhabited by some terminating
value, then the type a
is the same as the type b
. To use this equality
in practice, pattern-match on the a :~: b
to get out the Refl
constructor;
in the body of the pattern-match, the compiler knows that a ~ b
.
Since: base-4.7.0.0
Instances
TestCoercion ((:~:) a :: k -> Type) | Since: base-4.7.0.0 |
Defined in Data.Type.Coercion | |
TestEquality ((:~:) a :: k -> Type) | Since: base-4.7.0.0 |
Defined in Data.Type.Equality | |
NFData2 ((:~:) :: Type -> Type -> Type) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
NFData1 ((:~:) a) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
a ~ b => Bounded (a :~: b) | Since: base-4.7.0.0 |
a ~ b => Enum (a :~: b) | Since: base-4.7.0.0 |
Defined in Data.Type.Equality Methods succ :: (a :~: b) -> a :~: b # pred :: (a :~: b) -> a :~: b # fromEnum :: (a :~: b) -> Int # enumFrom :: (a :~: b) -> [a :~: b] # enumFromThen :: (a :~: b) -> (a :~: b) -> [a :~: b] # enumFromTo :: (a :~: b) -> (a :~: b) -> [a :~: b] # enumFromThenTo :: (a :~: b) -> (a :~: b) -> (a :~: b) -> [a :~: b] # | |
Eq (a :~: b) | Since: base-4.7.0.0 |
Ord (a :~: b) | Since: base-4.7.0.0 |
Defined in Data.Type.Equality | |
a ~ b => Read (a :~: b) | Since: base-4.7.0.0 |
Show (a :~: b) | Since: base-4.7.0.0 |
NFData (a :~: b) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq |
type family (a :: k) == (b :: k) :: Bool where ... infix 4 #
A type family to compute Boolean equality.
Monads
class Monad m => MonadFail (m :: Type -> Type) #
When a value is bound in do
-notation, the pattern on the left
hand side of <-
might not match. In this case, this class
provides a function to recover.
A Monad
without a MonadFail
instance may only be used in conjunction
with pattern that always match, such as newtypes, tuples, data types with
only a single data constructor, and irrefutable patterns (~pat
).
Instances of MonadFail
should satisfy the following law: fail s
should
be a left zero for >>=
,
fail s >>= f = fail s
If your Monad
is also MonadPlus
, a popular definition is
fail _ = mzero
Since: base-4.9.0.0
Minimal complete definition
Instances
gets :: MonadState s m => (s -> a) -> m a #
Gets specific component of the state, using a projection function supplied.
modify :: MonadState s m => (s -> s) -> m () #
Monadic state transformer.
Maps an old state to a new state inside a state monad. The old state is thrown away.
Main> :t modify ((+1) :: Int -> Int) modify (...) :: (MonadState Int a) => a ()
This says that modify (+1)
acts over any
Monad that is a member of the MonadState
class,
with an Int
state.
class Monad m => MonadState s (m :: Type -> Type) | m -> s where #
Minimal definition is either both of get
and put
or just state
Methods
Return the state from the internals of the monad.
Replace the state inside the monad.
state :: (s -> (a, s)) -> m a #
Embed a simple state action into the monad.
Instances
MonadState s m => MonadState s (MaybeT m) | |
MonadState s m => MonadState s (ListT m) | |
(Monoid w, MonadState s m) => MonadState s (WriterT w m) | |
(Monoid w, MonadState s m) => MonadState s (WriterT w m) | |
Monad m => MonadState s (StateT s m) | |
Monad m => MonadState s (StateT s m) | |
MonadState s m => MonadState s (IdentityT m) | |
MonadState s m => MonadState s (ExceptT e m) | Since: mtl-2.2 |
(Error e, MonadState s m) => MonadState s (ErrorT e m) | |
MonadState s m => MonadState s (ReaderT r m) | |
MonadState s m => MonadState s (ContT r m) | |
(Monad m, Monoid w) => MonadState s (RWST r w s m) | |
(Monad m, Monoid w) => MonadState s (RWST r w s m) | |
newtype StateT s (m :: Type -> Type) a #
A state transformer monad parameterized by:
s
- The state.m
- The inner monad.
The return
function leaves the state unchanged, while >>=
uses
the final state of the first computation as the initial state of
the second.
Instances
Monad m => MonadState s (StateT s m) | |
MonadReader r m => MonadReader r (StateT s m) | |
MonadError e m => MonadError e (StateT s m) | |
Defined in Control.Monad.Error.Class Methods throwError :: e -> StateT s m a # catchError :: StateT s m a -> (e -> StateT s m a) -> StateT s m a # | |
MonadTrans (StateT s) | |
Defined in Control.Monad.Trans.State.Lazy | |
Monad m => Monad (StateT s m) | |
Functor m => Functor (StateT s m) | |
MonadFix m => MonadFix (StateT s m) | |
Defined in Control.Monad.Trans.State.Lazy | |
MonadFail m => MonadFail (StateT s m) | |
Defined in Control.Monad.Trans.State.Lazy | |
(Functor m, Monad m) => Applicative (StateT s m) | |
Defined in Control.Monad.Trans.State.Lazy | |
Contravariant m => Contravariant (StateT s m) | |
MonadIO m => MonadIO (StateT s m) | |
Defined in Control.Monad.Trans.State.Lazy | |
(Functor m, MonadPlus m) => Alternative (StateT s m) | |
MonadPlus m => MonadPlus (StateT s m) | |
type State s = StateT s Identity #
A state monad parameterized by the type s
of the state to carry.
The return
function leaves the state unchanged, while >>=
uses
the final state of the first computation as the initial state of
the second.
Arguments
:: State s a | state-passing computation to execute |
-> s | initial state |
-> (a, s) | return value and final state |
Unwrap a state monad computation as a function.
(The inverse of state
.)
Arguments
:: State s a | state-passing computation to execute |
-> s | initial value |
-> a | return value of the state computation |
Arguments
:: State s a | state-passing computation to execute |
-> s | initial value |
-> s | final state |
evalStateT :: Monad m => StateT s m a -> s -> m a #
Evaluate a state computation with the given initial state and return the final value, discarding the final state.
evalStateT
m s =liftM
fst
(runStateT
m s)
execStateT :: Monad m => StateT s m a -> s -> m s #
Evaluate a state computation with the given initial state and return the final state, discarding the final value.
execStateT
m s =liftM
snd
(runStateT
m s)
Arguments
:: MonadReader r m | |
=> (r -> a) | The selector function to apply to the environment. |
-> m a |
Retrieves a function of the current environment.
class Monad m => MonadReader r (m :: Type -> Type) | m -> r where #
See examples in Control.Monad.Reader.
Note, the partially applied function type (->) r
is a simple reader monad.
See the instance
declaration below.
Methods
Retrieves the monad environment.
Arguments
:: (r -> r) | The function to modify the environment. |
-> m a |
|
-> m a |
Executes a computation in a modified environment.
Arguments
:: (r -> a) | The selector function to apply to the environment. |
-> m a |
Retrieves a function of the current environment.
Instances
MonadReader r m => MonadReader r (MaybeT m) | |
MonadReader r m => MonadReader r (ListT m) | |
(Monoid w, MonadReader r m) => MonadReader r (WriterT w m) | |
(Monoid w, MonadReader r m) => MonadReader r (WriterT w m) | |
MonadReader r m => MonadReader r (StateT s m) | |
MonadReader r m => MonadReader r (StateT s m) | |
MonadReader r m => MonadReader r (IdentityT m) | |
MonadReader r m => MonadReader r (ExceptT e m) | Since: mtl-2.2 |
(Error e, MonadReader r m) => MonadReader r (ErrorT e m) | |
Monad m => MonadReader r (ReaderT r m) | |
MonadReader r ((->) r :: Type -> Type) | |
MonadReader r' m => MonadReader r' (ContT r m) | |
(Monad m, Monoid w) => MonadReader r (RWST r w s m) | |
(Monad m, Monoid w) => MonadReader r (RWST r w s m) | |
newtype ReaderT r (m :: k -> Type) (a :: k) :: forall k. Type -> (k -> Type) -> k -> Type #
The reader monad transformer, which adds a read-only environment to the given monad.
The return
function ignores the environment, while >>=
passes
the inherited environment to both subcomputations.
Constructors
ReaderT | |
Fields
|
Instances
MonadState s m => MonadState s (ReaderT r m) | |
Monad m => MonadReader r (ReaderT r m) | |
MonadError e m => MonadError e (ReaderT r m) | |
Defined in Control.Monad.Error.Class Methods throwError :: e -> ReaderT r m a # catchError :: ReaderT r m a -> (e -> ReaderT r m a) -> ReaderT r m a # | |
MonadTrans (ReaderT r :: (Type -> Type) -> Type -> Type) | |
Defined in Control.Monad.Trans.Reader | |
Monad m => Monad (ReaderT r m) | |
Functor m => Functor (ReaderT r m) | |
MonadFix m => MonadFix (ReaderT r m) | |
Defined in Control.Monad.Trans.Reader | |
MonadFail m => MonadFail (ReaderT r m) | |
Defined in Control.Monad.Trans.Reader | |
Applicative m => Applicative (ReaderT r m) | |
Defined in Control.Monad.Trans.Reader | |
Contravariant m => Contravariant (ReaderT r m) | |
MonadZip m => MonadZip (ReaderT r m) | |
MonadIO m => MonadIO (ReaderT r m) | |
Defined in Control.Monad.Trans.Reader | |
Alternative m => Alternative (ReaderT r m) | |
MonadPlus m => MonadPlus (ReaderT r m) | |
type Reader r = ReaderT r Identity #
The parameterizable reader monad.
Computations are functions of a shared environment.
The return
function ignores the environment, while >>=
passes
the inherited environment to both subcomputations.
Arguments
:: Reader r a | A |
-> r | An initial environment. |
-> a |
Runs a Reader
and extracts the final value from it.
(The inverse of reader
.)
class Monad m => MonadError e (m :: Type -> Type) | m -> e where #
The strategy of combining computations that can throw exceptions by bypassing bound functions from the point an exception is thrown to the point that it is handled.
Is parameterized over the type of error information and
the monad type constructor.
It is common to use
as the monad type constructor
for an error monad in which error descriptions take the form of strings.
In that case and many other common cases the resulting monad is already defined
as an instance of the Either
StringMonadError
class.
You can also define your own error type and/or use a monad type constructor
other than
or Either
String
.
In these cases you will have to explicitly define instances of the Either
IOError
MonadError
class.
(If you are using the deprecated Control.Monad.Error or
Control.Monad.Trans.Error, you may also have to define an Error
instance.)
Methods
throwError :: e -> m a #
Is used within a monadic computation to begin exception processing.
catchError :: m a -> (e -> m a) -> m a #
A handler function to handle previous errors and return to normal execution. A common idiom is:
do { action1; action2; action3 } `catchError` handler
where the action
functions can call throwError
.
Note that handler
and the do-block must have the same return type.
Instances
newtype ExceptT e (m :: Type -> Type) a #
A monad transformer that adds exceptions to other monads.
ExceptT
constructs a monad parameterized over two things:
- e - The exception type.
- m - The inner monad.
The return
function yields a computation that produces the given
value, while >>=
sequences two subcomputations, exiting on the
first exception.
Instances
runExcept :: Except e a -> Either e a #
Extractor for computations in the exception monad.
(The inverse of except
).
withExcept :: (e -> e') -> Except e a -> Except e' a #
Transform any exceptions thrown by the computation using the given
function (a specialization of withExceptT
).
runExceptT :: ExceptT e m a -> m (Either e a) #
The inverse of ExceptT
.
mapExceptT :: (m (Either e a) -> n (Either e' b)) -> ExceptT e m a -> ExceptT e' n b #
Map the unwrapped computation using the given function.
runExceptT
(mapExceptT
f m) = f (runExceptT
m)
withExceptT :: Functor m => (e -> e') -> ExceptT e m a -> ExceptT e' m a #
Transform any exceptions thrown by the computation using the given function.
class Monad m => MonadIO (m :: Type -> Type) where #
Monads in which IO
computations may be embedded.
Any monad built by applying a sequence of monad transformers to the
IO
monad will be an instance of this class.
Instances should satisfy the following laws, which state that liftIO
is a transformer of monads:
Instances
lift :: (MonadTrans t, Monad m) => m a -> t m a #
Lift a computation from the argument monad to the constructed monad.
The strict state-transformer monad.
A computation of type
transforms an internal state indexed
by ST
s as
, and returns a value of type a
.
The s
parameter is either
- an uninstantiated type variable (inside invocations of
runST
), or RealWorld
(inside invocations ofstToIO
).
It serves to keep the internal states of different invocations
of runST
separate from each other and from invocations of
stToIO
.
The >>=
and >>
operations are strict in the state (though not in
values stored in the state). For example,
runST
(writeSTRef _|_ v >>= f) = _|_
fixST :: (a -> ST s a) -> ST s a #
Allow the result of a state transformer computation to be used (lazily) inside the computation.
Note that if f
is strict,
.fixST
f = _|_
runST :: (forall s. ST s a) -> a #
Return the value computed by a state transformer computation.
The forall
ensures that the internal state used by the ST
computation is inaccessible to the rest of the program.
throwSTM :: Exception e => e -> STM a #
A variant of throw
that can only be used within the STM
monad.
Throwing an exception in STM
aborts the transaction and propagates the
exception.
Although throwSTM
has a type that is an instance of the type of throw
, the
two functions are subtly different:
throw e `seq` x ===> throw e throwSTM e `seq` x ===> x
The first example will cause the exception e
to be raised,
whereas the second one won't. In fact, throwSTM
will only cause
an exception to be raised when it is used within the STM
monad.
The throwSTM
variant should be used in preference to throw
to
raise an exception within the STM
monad because it guarantees
ordering with respect to other STM
operations, whereas throw
does not.
Retry execution of the current memory transaction because it has seen
values in TVar
s which mean that it should not continue (e.g. the TVar
s
represent a shared buffer that is now empty). The implementation may
block the thread until one of the TVar
s that it has read from has been
updated. (GHC only)
atomically :: STM a -> IO a #
Perform a series of STM actions atomically.
Using atomically
inside an unsafePerformIO
or unsafeInterleaveIO
subverts some of guarantees that STM provides. It makes it possible to
run a transaction inside of another transaction, depending on when the
thunk is evaluated. If a nested transaction is attempted, an exception
is thrown by the runtime. It is possible to safely use atomically
inside
unsafePerformIO
or unsafeInterleaveIO
, but the typechecker does not
rule out programs that may attempt nested transactions, meaning that
the programmer must take special care to prevent these.
However, there are functions for creating transactional variables that
can always be safely called in unsafePerformIO
. See: newTVarIO
,
newTChanIO
, newBroadcastTChanIO
, newTQueueIO
, newTBQueueIO
,
and newTMVarIO
.
Using unsafePerformIO
inside of atomically
is also dangerous but for
different reasons. See unsafeIOToSTM
for more on this.
A monad supporting atomic memory transactions.
Instances
Monad STM | Since: base-4.3.0.0 |
Functor STM | Since: base-4.3.0.0 |
Applicative STM | Since: base-4.8.0.0 |
Alternative STM | Since: base-4.8.0.0 |
MonadPlus STM | Since: base-4.3.0.0 |
Check that the boolean condition is true and, if not, retry
.
In other words, check b = unless b retry
.
Since: stm-2.1.1
Integers
A fixed-precision integer type with at least the range [-2^29 .. 2^29-1]
.
The exact range for a given implementation can be determined by using
minBound
and maxBound
from the Bounded
class.
Instances
Bounded Int | Since: base-2.1 |
Enum Int | Since: base-2.1 |
Eq Int | |
Integral Int | Since: base-2.0.1 |
Num Int | Since: base-2.1 |
Ord Int | |
Read Int | Since: base-2.1 |
Real Int | Since: base-2.0.1 |
Defined in GHC.Real Methods toRational :: Int -> Rational # | |
Show Int | Since: base-2.1 |
Ix Int | Since: base-2.1 |
Storable Int | Since: base-2.1 |
Defined in Foreign.Storable | |
Bits Int | Since: base-2.1 |
Defined in Data.Bits | |
FiniteBits Int | Since: base-4.6.0.0 |
Defined in Data.Bits Methods finiteBitSize :: Int -> Int # countLeadingZeros :: Int -> Int # countTrailingZeros :: Int -> Int # | |
NFData Int | |
Defined in Control.DeepSeq | |
Hashable Int | |
Defined in Data.Hashable.Class | |
Generic1 (URec Int :: k -> Type) | |
Functor (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
Foldable (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Int m -> m # foldMap :: Monoid m => (a -> m) -> URec Int a -> m # foldr :: (a -> b -> b) -> b -> URec Int a -> b # foldr' :: (a -> b -> b) -> b -> URec Int a -> b # foldl :: (b -> a -> b) -> b -> URec Int a -> b # foldl' :: (b -> a -> b) -> b -> URec Int a -> b # foldr1 :: (a -> a -> a) -> URec Int a -> a # foldl1 :: (a -> a -> a) -> URec Int a -> a # elem :: Eq a => a -> URec Int a -> Bool # maximum :: Ord a => URec Int a -> a # minimum :: Ord a => URec Int a -> a # | |
Traversable (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
Eq (URec Int p) | Since: base-4.9.0.0 |
Ord (URec Int p) | Since: base-4.9.0.0 |
Show (URec Int p) | Since: base-4.9.0.0 |
Generic (URec Int p) | |
data URec Int (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
type Rep1 (URec Int :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (URec Int p) | Since: base-4.9.0.0 |
Defined in GHC.Generics |
8-bit signed integer type
Instances
16-bit signed integer type
Instances
32-bit signed integer type
Instances
64-bit signed integer type
Instances
Instances
Bounded Word | Since: base-2.1 |
Enum Word | Since: base-2.1 |
Eq Word | |
Integral Word | Since: base-2.1 |
Num Word | Since: base-2.1 |
Ord Word | |
Read Word | Since: base-4.5.0.0 |
Real Word | Since: base-2.1 |
Defined in GHC.Real Methods toRational :: Word -> Rational # | |
Show Word | Since: base-2.1 |
Ix Word | Since: base-4.6.0.0 |
Storable Word | Since: base-2.1 |
Defined in Foreign.Storable | |
Bits Word | Since: base-2.1 |
Defined in Data.Bits Methods (.&.) :: Word -> Word -> Word # (.|.) :: Word -> Word -> Word # complement :: Word -> Word # shift :: Word -> Int -> Word # rotate :: Word -> Int -> Word # setBit :: Word -> Int -> Word # clearBit :: Word -> Int -> Word # complementBit :: Word -> Int -> Word # testBit :: Word -> Int -> Bool # bitSizeMaybe :: Word -> Maybe Int # shiftL :: Word -> Int -> Word # unsafeShiftL :: Word -> Int -> Word # shiftR :: Word -> Int -> Word # unsafeShiftR :: Word -> Int -> Word # rotateL :: Word -> Int -> Word # | |
FiniteBits Word | Since: base-4.6.0.0 |
Defined in Data.Bits Methods finiteBitSize :: Word -> Int # countLeadingZeros :: Word -> Int # countTrailingZeros :: Word -> Int # | |
NFData Word | |
Defined in Control.DeepSeq | |
Hashable Word | |
Defined in Data.Hashable.Class | |
Generic1 (URec Word :: k -> Type) | |
Functor (URec Word :: Type -> Type) | Since: base-4.9.0.0 |
Foldable (URec Word :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Word m -> m # foldMap :: Monoid m => (a -> m) -> URec Word a -> m # foldr :: (a -> b -> b) -> b -> URec Word a -> b # foldr' :: (a -> b -> b) -> b -> URec Word a -> b # foldl :: (b -> a -> b) -> b -> URec Word a -> b # foldl' :: (b -> a -> b) -> b -> URec Word a -> b # foldr1 :: (a -> a -> a) -> URec Word a -> a # foldl1 :: (a -> a -> a) -> URec Word a -> a # toList :: URec Word a -> [a] # length :: URec Word a -> Int # elem :: Eq a => a -> URec Word a -> Bool # maximum :: Ord a => URec Word a -> a # minimum :: Ord a => URec Word a -> a # | |
Traversable (URec Word :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
Eq (URec Word p) | Since: base-4.9.0.0 |
Ord (URec Word p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Show (URec Word p) | Since: base-4.9.0.0 |
Generic (URec Word p) | |
data URec Word (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
type Rep1 (URec Word :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (URec Word p) | Since: base-4.9.0.0 |
Defined in GHC.Generics |
8-bit unsigned integer type
Instances
16-bit unsigned integer type
Instances
32-bit unsigned integer type
Instances
64-bit unsigned integer type
Instances
byteSwap64 :: Word64 -> Word64 #
Reverse order of bytes in Word64
.
Since: base-4.7.0.0
byteSwap32 :: Word32 -> Word32 #
Reverse order of bytes in Word32
.
Since: base-4.7.0.0
byteSwap16 :: Word16 -> Word16 #
Swap bytes in Word16
.
Since: base-4.7.0.0
toIntegralSized :: (Integral a, Integral b, Bits a, Bits b) => a -> Maybe b #
Attempt to convert an Integral
type a
to an Integral
type b
using
the size of the types as measured by Bits
methods.
A simpler version of this function is:
toIntegral :: (Integral a, Integral b) => a -> Maybe b toIntegral x | toInteger x == y = Just (fromInteger y) | otherwise = Nothing where y = toInteger x
This version requires going through Integer
, which can be inefficient.
However, toIntegralSized
is optimized to allow GHC to statically determine
the relative type sizes (as measured by bitSizeMaybe
and isSigned
) and
avoid going through Integer
for many types. (The implementation uses
fromIntegral
, which is itself optimized with rules for base
types but may
go through Integer
for some type pairs.)
Since: base-4.8.0.0
popCountDefault :: (Bits a, Num a) => a -> Int #
Default implementation for popCount
.
This implementation is intentionally naive. Instances are expected to provide an optimized implementation for their size.
Since: base-4.6.0.0
testBitDefault :: (Bits a, Num a) => a -> Int -> Bool #
Default implementation for testBit
.
Note that: testBitDefault x i = (x .&. bit i) /= 0
Since: base-4.6.0.0
bitDefault :: (Bits a, Num a) => Int -> a #
The Bits
class defines bitwise operations over integral types.
- Bits are numbered from 0 with bit 0 being the least significant bit.
Minimal complete definition
(.&.), (.|.), xor, complement, (shift | shiftL, shiftR), (rotate | rotateL, rotateR), bitSize, bitSizeMaybe, isSigned, testBit, bit, popCount
Methods
(.&.) :: a -> a -> a infixl 7 #
Bitwise "and"
(.|.) :: a -> a -> a infixl 5 #
Bitwise "or"
Bitwise "xor"
complement :: a -> a #
Reverse all the bits in the argument
shift :: a -> Int -> a infixl 8 #
shifts shift
x ix
left by i
bits if i
is positive,
or right by -i
bits otherwise.
Right shifts perform sign extension on signed number types;
i.e. they fill the top bits with 1 if the x
is negative
and with 0 otherwise.
An instance can define either this unified shift
or shiftL
and
shiftR
, depending on which is more convenient for the type in
question.
rotate :: a -> Int -> a infixl 8 #
rotates rotate
x ix
left by i
bits if i
is positive,
or right by -i
bits otherwise.
For unbounded types like Integer
, rotate
is equivalent to shift
.
An instance can define either this unified rotate
or rotateL
and
rotateR
, depending on which is more convenient for the type in
question.
zeroBits
is the value with all bits unset.
The following laws ought to hold (for all valid bit indices n
):
clearBit
zeroBits
n ==zeroBits
setBit
zeroBits
n ==bit
ntestBit
zeroBits
n == FalsepopCount
zeroBits
== 0
This method uses
as its default
implementation (which ought to be equivalent to clearBit
(bit
0) 0zeroBits
for
types which possess a 0th bit).
Since: base-4.7.0.0
bit i
is a value with the i
th bit set and all other bits clear.
Can be implemented using bitDefault
if a
is also an
instance of Num
.
See also zeroBits
.
x `setBit` i
is the same as x .|. bit i
x `clearBit` i
is the same as x .&. complement (bit i)
complementBit :: a -> Int -> a #
x `complementBit` i
is the same as x `xor` bit i
Return True
if the n
th bit of the argument is 1
Can be implemented using testBitDefault
if a
is also an
instance of Num
.
bitSizeMaybe :: a -> Maybe Int #
Return the number of bits in the type of the argument. The actual
value of the argument is ignored. Returns Nothing
for types that do not have a fixed bitsize, like Integer
.
Since: base-4.7.0.0
Return the number of bits in the type of the argument. The actual
value of the argument is ignored. The function bitSize
is
undefined for types that do not have a fixed bitsize, like Integer
.
Default implementation based upon bitSizeMaybe
provided since
4.12.0.0.
Return True
if the argument is a signed type. The actual
value of the argument is ignored
shiftL :: a -> Int -> a infixl 8 #
Shift the argument left by the specified number of bits (which must be non-negative).
An instance can define either this and shiftR
or the unified
shift
, depending on which is more convenient for the type in
question.
shiftR :: a -> Int -> a infixl 8 #
Shift the first argument right by the specified number of bits. The
result is undefined for negative shift amounts and shift amounts
greater or equal to the bitSize
.
Right shifts perform sign extension on signed number types;
i.e. they fill the top bits with 1 if the x
is negative
and with 0 otherwise.
An instance can define either this and shiftL
or the unified
shift
, depending on which is more convenient for the type in
question.
rotateL :: a -> Int -> a infixl 8 #
Rotate the argument left by the specified number of bits (which must be non-negative).
An instance can define either this and rotateR
or the unified
rotate
, depending on which is more convenient for the type in
question.
rotateR :: a -> Int -> a infixl 8 #
Rotate the argument right by the specified number of bits (which must be non-negative).
An instance can define either this and rotateL
or the unified
rotate
, depending on which is more convenient for the type in
question.
Return the number of set bits in the argument. This number is known as the population count or the Hamming weight.
Can be implemented using popCountDefault
if a
is also an
instance of Num
.
Since: base-4.5.0.0
Instances
class Bits b => FiniteBits b where #
The FiniteBits
class denotes types with a finite, fixed number of bits.
Since: base-4.7.0.0
Minimal complete definition
Methods
finiteBitSize :: b -> Int #
Return the number of bits in the type of the argument.
The actual value of the argument is ignored. Moreover, finiteBitSize
is total, in contrast to the deprecated bitSize
function it replaces.
finiteBitSize
=bitSize
bitSizeMaybe
=Just
.finiteBitSize
Since: base-4.7.0.0
countLeadingZeros :: b -> Int #
Count number of zero bits preceding the most significant set bit.
countLeadingZeros
(zeroBits
:: a) = finiteBitSize (zeroBits
:: a)
countLeadingZeros
can be used to compute log base 2 via
logBase2 x =finiteBitSize
x - 1 -countLeadingZeros
x
Note: The default implementation for this method is intentionally naive. However, the instances provided for the primitive integral types are implemented using CPU specific machine instructions.
Since: base-4.8.0.0
countTrailingZeros :: b -> Int #
Count number of zero bits following the least significant set bit.
countTrailingZeros
(zeroBits
:: a) = finiteBitSize (zeroBits
:: a)countTrailingZeros
.negate
=countTrailingZeros
The related
find-first-set operation
can be expressed in terms of countTrailingZeros
as follows
findFirstSet x = 1 + countTrailingZeros
x
Note: The default implementation for this method is intentionally naive. However, the instances provided for the primitive integral types are implemented using CPU specific machine instructions.
Since: base-4.8.0.0
Instances
Complex functions
mkPolar :: Floating a => a -> a -> Complex a #
Form a complex number from polar components of magnitude and phase.
Complex numbers are an algebraic type.
For a complex number z
,
is a number with the magnitude of abs
zz
,
but oriented in the positive real direction, whereas
has the phase of signum
zz
, but unit magnitude.
The Foldable
and Traversable
instances traverse the real part first.
Note that Complex
's instances inherit the deficiencies from the type
parameter's. For example, Complex Float
's Ord
instance has similar
problems to Float
's.
Constructors
!a :+ !a infix 6 | forms a complex number from its real and imaginary rectangular components. |
Instances
Monad Complex | Since: base-4.9.0.0 |
Functor Complex | Since: base-4.9.0.0 |
Applicative Complex | Since: base-4.9.0.0 |
Foldable Complex | Since: base-4.9.0.0 |
Defined in Data.Complex Methods fold :: Monoid m => Complex m -> m # foldMap :: Monoid m => (a -> m) -> Complex a -> m # foldr :: (a -> b -> b) -> b -> Complex a -> b # foldr' :: (a -> b -> b) -> b -> Complex a -> b # foldl :: (b -> a -> b) -> b -> Complex a -> b # foldl' :: (b -> a -> b) -> b -> Complex a -> b # foldr1 :: (a -> a -> a) -> Complex a -> a # foldl1 :: (a -> a -> a) -> Complex a -> a # elem :: Eq a => a -> Complex a -> Bool # maximum :: Ord a => Complex a -> a # minimum :: Ord a => Complex a -> a # | |
Traversable Complex | Since: base-4.9.0.0 |
Hashable1 Complex | |
Defined in Data.Hashable.Class | |
Eq a => Eq (Complex a) | Since: base-2.1 |
RealFloat a => Floating (Complex a) | Since: base-2.1 |
Defined in Data.Complex Methods exp :: Complex a -> Complex a # log :: Complex a -> Complex a # sqrt :: Complex a -> Complex a # (**) :: Complex a -> Complex a -> Complex a # logBase :: Complex a -> Complex a -> Complex a # sin :: Complex a -> Complex a # cos :: Complex a -> Complex a # tan :: Complex a -> Complex a # asin :: Complex a -> Complex a # acos :: Complex a -> Complex a # atan :: Complex a -> Complex a # sinh :: Complex a -> Complex a # cosh :: Complex a -> Complex a # tanh :: Complex a -> Complex a # asinh :: Complex a -> Complex a # acosh :: Complex a -> Complex a # atanh :: Complex a -> Complex a # log1p :: Complex a -> Complex a # expm1 :: Complex a -> Complex a # | |
RealFloat a => Fractional (Complex a) | Since: base-2.1 |
Data a => Data (Complex a) | Since: base-2.1 |
Defined in Data.Complex Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Complex a -> c (Complex a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Complex a) # toConstr :: Complex a -> Constr # dataTypeOf :: Complex a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Complex a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Complex a)) # gmapT :: (forall b. Data b => b -> b) -> Complex a -> Complex a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Complex a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Complex a -> r # gmapQ :: (forall d. Data d => d -> u) -> Complex a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Complex a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Complex a -> m (Complex a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Complex a -> m (Complex a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Complex a -> m (Complex a) # | |
RealFloat a => Num (Complex a) | Since: base-2.1 |
Read a => Read (Complex a) | Since: base-2.1 |
Show a => Show (Complex a) | Since: base-2.1 |
Generic (Complex a) | |
Storable a => Storable (Complex a) | Since: base-4.8.0.0 |
Defined in Data.Complex | |
NFData a => NFData (Complex a) | |
Defined in Control.DeepSeq | |
Hashable a => Hashable (Complex a) | |
Defined in Data.Hashable.Class | |
Generic1 Complex | |
type Rep (Complex a) | Since: base-4.9.0.0 |
Defined in Data.Complex type Rep (Complex a) = D1 (MetaData "Complex" "Data.Complex" "base" False) (C1 (MetaCons ":+" (InfixI NotAssociative 6) False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness SourceStrict DecidedStrict) (Rec0 a) :*: S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness SourceStrict DecidedStrict) (Rec0 a))) | |
type Rep1 Complex | Since: base-4.9.0.0 |
Defined in Data.Complex type Rep1 Complex = D1 (MetaData "Complex" "Data.Complex" "base" False) (C1 (MetaCons ":+" (InfixI NotAssociative 6) False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness SourceStrict DecidedStrict) Par1 :*: S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness SourceStrict DecidedStrict) Par1)) |
Char functions
The character type Char
is an enumeration whose values represent
Unicode (or equivalently ISO/IEC 10646) code points (i.e. characters, see
http://www.unicode.org/ for details). This set extends the ISO 8859-1
(Latin-1) character set (the first 256 characters), which is itself an extension
of the ASCII character set (the first 128 characters). A character literal in
Haskell has type Char
.
To convert a Char
to or from the corresponding Int
value defined
by Unicode, use toEnum
and fromEnum
from the
Enum
class respectively (or equivalently ord
and chr
).
Instances
Selects alphabetic Unicode characters (lower-case, upper-case and
title-case letters, plus letters of caseless scripts and
modifiers letters). This function is equivalent to
isAlpha
.
This function returns True
if its argument has one of the
following GeneralCategory
s, or False
otherwise:
These classes are defined in the Unicode Character Database, part of the Unicode standard. The same document defines what is and is not a "Letter".
Examples
Basic usage:
>>>
isLetter 'a'
True>>>
isLetter 'A'
True>>>
isLetter 'λ'
True>>>
isLetter '0'
False>>>
isLetter '%'
False>>>
isLetter '♥'
False>>>
isLetter '\31'
False
Ensure that isLetter
and isAlpha
are equivalent.
>>>
let chars = [(chr 0)..]
>>>
let letters = map isLetter chars
>>>
let alphas = map isAlpha chars
>>>
letters == alphas
True
digitToInt :: Char -> Int #
Convert a single digit Char
to the corresponding Int
. This
function fails unless its argument satisfies isHexDigit
, but
recognises both upper- and lower-case hexadecimal digits (that
is, '0'
..'9'
, 'a'
..'f'
, 'A'
..'F'
).
Examples
Characters '0'
through '9'
are converted properly to
0..9
:
>>>
map digitToInt ['0'..'9']
[0,1,2,3,4,5,6,7,8,9]
Both upper- and lower-case 'A'
through 'F'
are converted
as well, to 10..15
.
>>>
map digitToInt ['a'..'f']
[10,11,12,13,14,15]>>>
map digitToInt ['A'..'F']
[10,11,12,13,14,15]
Anything else throws an exception:
>>>
digitToInt 'G'
*** Exception: Char.digitToInt: not a digit 'G'>>>
digitToInt '♥'
*** Exception: Char.digitToInt: not a digit '\9829'
Convert a letter to the corresponding title-case or upper-case letter, if any. (Title case differs from upper case only for a small number of ligature letters.) Any other character is returned unchanged.
Convert a letter to the corresponding upper-case letter, if any. Any other character is returned unchanged.
Convert a letter to the corresponding lower-case letter, if any. Any other character is returned unchanged.
Selects upper-case or title-case alphabetic Unicode characters (letters). Title case is used by a small number of letter ligatures like the single-character form of Lj.
Selects printable Unicode characters (letters, numbers, marks, punctuation, symbols and spaces).
Selects control characters, which are the non-printing characters of the Latin-1 subset of Unicode.
isAlphaNum :: Char -> Bool #
Selects alphabetic or numeric Unicode characters.
Note that numeric digits outside the ASCII range, as well as numeric
characters which aren't digits, are selected by this function but not by
isDigit
. Such characters may be part of identifiers but are not used by
the printer and reader to represent numbers.
Selects alphabetic Unicode characters (lower-case, upper-case and
title-case letters, plus letters of caseless scripts and modifiers letters).
This function is equivalent to isLetter
.
isHexDigit :: Char -> Bool #
Selects ASCII hexadecimal digits,
i.e. '0'
..'9'
, 'a'
..'f'
, 'A'
..'F'
.
Returns True
for any Unicode space character, and the control
characters \t
, \n
, \r
, \f
, \v
.
Selects the first 128 characters of the Unicode character set, corresponding to the ASCII character set.
intToDigit :: Int -> Char #
Maybe functions
The Maybe
type encapsulates an optional value. A value of type
either contains a value of type Maybe
aa
(represented as
),
or it is empty (represented as Just
aNothing
). Using Maybe
is a good way to
deal with errors or exceptional cases without resorting to drastic
measures such as error
.
The Maybe
type is also a monad. It is a simple kind of error
monad, where all errors are represented by Nothing
. A richer
error monad can be built using the Either
type.
Instances
Monad Maybe | Since: base-2.1 |
Functor Maybe | Since: base-2.1 |
MonadFail Maybe | Since: base-4.9.0.0 |
Defined in Control.Monad.Fail | |
Applicative Maybe | Since: base-2.1 |
Foldable Maybe | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |
Traversable Maybe | Since: base-2.1 |
Eq1 Maybe | Since: base-4.9.0.0 |
Ord1 Maybe | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Read1 Maybe | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Show1 Maybe | Since: base-4.9.0.0 |
Alternative Maybe | Since: base-2.1 |
MonadPlus Maybe | Since: base-2.1 |
NFData1 Maybe | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Hashable1 Maybe | |
Defined in Data.Hashable.Class | |
MonadError () Maybe | Since: mtl-2.2.2 |
Defined in Control.Monad.Error.Class | |
Eq a => Eq (Maybe a) | Since: base-2.1 |
Ord a => Ord (Maybe a) | Since: base-2.1 |
Read a => Read (Maybe a) | Since: base-2.1 |
Show a => Show (Maybe a) | Since: base-2.1 |
Generic (Maybe a) | |
Semigroup a => Semigroup (Maybe a) | Since: base-4.9.0.0 |
Semigroup a => Monoid (Maybe a) | Lift a semigroup into Since 4.11.0: constraint on inner Since: base-2.1 |
SingKind a => SingKind (Maybe a) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
NFData a => NFData (Maybe a) | |
Defined in Control.DeepSeq | |
Hashable a => Hashable (Maybe a) | |
Defined in Data.Hashable.Class | |
Generic1 Maybe | |
SingI (Nothing :: Maybe a) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
SingI a2 => SingI (Just a2 :: Maybe a1) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (Maybe a) | Since: base-4.6.0.0 |
data Sing (b :: Maybe a) | |
type DemoteRep (Maybe a) | |
Defined in GHC.Generics | |
type Rep1 Maybe | Since: base-4.6.0.0 |
mapMaybe :: (a -> Maybe b) -> [a] -> [b] #
The mapMaybe
function is a version of map
which can throw
out elements. In particular, the functional argument returns
something of type
. If this is Maybe
bNothing
, no element
is added on to the result list. If it is
, then Just
bb
is
included in the result list.
Examples
Using
is a shortcut for mapMaybe
f x
in most cases:catMaybes
$ map
f x
>>>
import Text.Read ( readMaybe )
>>>
let readMaybeInt = readMaybe :: String -> Maybe Int
>>>
mapMaybe readMaybeInt ["1", "Foo", "3"]
[1,3]>>>
catMaybes $ map readMaybeInt ["1", "Foo", "3"]
[1,3]
If we map the Just
constructor, the entire list should be returned:
>>>
mapMaybe Just [1,2,3]
[1,2,3]
catMaybes :: [Maybe a] -> [a] #
The catMaybes
function takes a list of Maybe
s and returns
a list of all the Just
values.
Examples
Basic usage:
>>>
catMaybes [Just 1, Nothing, Just 3]
[1,3]
When constructing a list of Maybe
values, catMaybes
can be used
to return all of the "success" results (if the list is the result
of a map
, then mapMaybe
would be more appropriate):
>>>
import Text.Read ( readMaybe )
>>>
[readMaybe x :: Maybe Int | x <- ["1", "Foo", "3"] ]
[Just 1,Nothing,Just 3]>>>
catMaybes $ [readMaybe x :: Maybe Int | x <- ["1", "Foo", "3"] ]
[1,3]
listToMaybe :: [a] -> Maybe a #
The listToMaybe
function returns Nothing
on an empty list
or
where Just
aa
is the first element of the list.
Examples
Basic usage:
>>>
listToMaybe []
Nothing
>>>
listToMaybe [9]
Just 9
>>>
listToMaybe [1,2,3]
Just 1
Composing maybeToList
with listToMaybe
should be the identity
on singleton/empty lists:
>>>
maybeToList $ listToMaybe [5]
[5]>>>
maybeToList $ listToMaybe []
[]
But not on lists with more than one element:
>>>
maybeToList $ listToMaybe [1,2,3]
[1]
maybeToList :: Maybe a -> [a] #
The maybeToList
function returns an empty list when given
Nothing
or a singleton list when not given Nothing
.
Examples
Basic usage:
>>>
maybeToList (Just 7)
[7]
>>>
maybeToList Nothing
[]
One can use maybeToList
to avoid pattern matching when combined
with a function that (safely) works on lists:
>>>
import Text.Read ( readMaybe )
>>>
sum $ maybeToList (readMaybe "3")
3>>>
sum $ maybeToList (readMaybe "")
0
fromMaybe :: a -> Maybe a -> a #
The fromMaybe
function takes a default value and and Maybe
value. If the Maybe
is Nothing
, it returns the default values;
otherwise, it returns the value contained in the Maybe
.
Examples
Basic usage:
>>>
fromMaybe "" (Just "Hello, World!")
"Hello, World!"
>>>
fromMaybe "" Nothing
""
Read an integer from a string using readMaybe
. If we fail to
parse an integer, we want to return 0
by default:
>>>
import Text.Read ( readMaybe )
>>>
fromMaybe 0 (readMaybe "5")
5>>>
fromMaybe 0 (readMaybe "")
0
maybe :: b -> (a -> b) -> Maybe a -> b #
The maybe
function takes a default value, a function, and a Maybe
value. If the Maybe
value is Nothing
, the function returns the
default value. Otherwise, it applies the function to the value inside
the Just
and returns the result.
Examples
Basic usage:
>>>
maybe False odd (Just 3)
True
>>>
maybe False odd Nothing
False
Read an integer from a string using readMaybe
. If we succeed,
return twice the integer; that is, apply (*2)
to it. If instead
we fail to parse an integer, return 0
by default:
>>>
import Text.Read ( readMaybe )
>>>
maybe 0 (*2) (readMaybe "5")
10>>>
maybe 0 (*2) (readMaybe "")
0
Apply show
to a Maybe Int
. If we have Just n
, we want to show
the underlying Int
n
. But if we have Nothing
, we return the
empty string instead of (for example) "Nothing":
>>>
maybe "" show (Just 5)
"5">>>
maybe "" show Nothing
""
Generics functions
Representable types of kind *
.
This class is derivable in GHC with the DeriveGeneric
flag on.
A Generic
instance must satisfy the following laws:
from
.to
≡id
to
.from
≡id
Methods
Convert from the datatype to its representation
Convert from the representation to the datatype
Instances
class Generic1 (f :: k -> Type) #
Representable types of kind * -> *
(or kind k -> *
, when PolyKinds
is enabled).
This class is derivable in GHC with the DeriveGeneric
flag on.
A Generic1
instance must satisfy the following laws:
from1
.to1
≡id
to1
.from1
≡id
Instances
class Datatype (d :: k) where #
Class for datatypes that represent datatypes
Minimal complete definition
Methods
datatypeName :: t d f a -> [Char] #
The name of the datatype (unqualified)
moduleName :: t d f a -> [Char] #
The fully-qualified name of the module where the type is declared
packageName :: t d f a -> [Char] #
The package name of the module where the type is declared
Since: base-4.9.0.0
isNewtype :: t d f a -> Bool #
Marks if the datatype is actually a newtype
Since: base-4.7.0.0
Instances
(KnownSymbol n, KnownSymbol m, KnownSymbol p, SingI nt) => Datatype (MetaData n m p nt :: Meta) | Since: base-4.9.0.0 |
Defined in GHC.Generics |
class Constructor (c :: k) where #
Class for datatypes that represent data constructors
Minimal complete definition
Methods
conName :: t c f a -> [Char] #
The name of the constructor
conFixity :: t c f a -> Fixity #
The fixity of the constructor
conIsRecord :: t c f a -> Bool #
Marks if this constructor is a record
Instances
(KnownSymbol n, SingI f, SingI r) => Constructor (MetaCons n f r :: Meta) | Since: base-4.9.0.0 |
class Selector (s :: k) where #
Class for datatypes that represent records
Methods
selName :: t s f a -> [Char] #
The name of the selector
selSourceUnpackedness :: t s f a -> SourceUnpackedness #
The selector's unpackedness annotation (if any)
Since: base-4.9.0.0
selSourceStrictness :: t s f a -> SourceStrictness #
The selector's strictness annotation (if any)
Since: base-4.9.0.0
selDecidedStrictness :: t s f a -> DecidedStrictness #
The strictness that the compiler inferred for the selector
Since: base-4.9.0.0
Instances
(SingI mn, SingI su, SingI ss, SingI ds) => Selector (MetaSel mn su ss ds :: Meta) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods selName :: t (MetaSel mn su ss ds) f a -> [Char] # selSourceUnpackedness :: t (MetaSel mn su ss ds) f a -> SourceUnpackedness # selSourceStrictness :: t (MetaSel mn su ss ds) f a -> SourceStrictness # selDecidedStrictness :: t (MetaSel mn su ss ds) f a -> DecidedStrictness # |
data V1 (p :: k) :: forall k. k -> Type #
Void: used for datatypes without constructors
Instances
Generic1 (V1 :: k -> Type) | |
GNFData arity (V1 :: Type -> Type) | |
Defined in Control.DeepSeq | |
Functor (V1 :: Type -> Type) | Since: base-4.9.0.0 |
Foldable (V1 :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => V1 m -> m # foldMap :: Monoid m => (a -> m) -> V1 a -> m # foldr :: (a -> b -> b) -> b -> V1 a -> b # foldr' :: (a -> b -> b) -> b -> V1 a -> b # foldl :: (b -> a -> b) -> b -> V1 a -> b # foldl' :: (b -> a -> b) -> b -> V1 a -> b # foldr1 :: (a -> a -> a) -> V1 a -> a # foldl1 :: (a -> a -> a) -> V1 a -> a # elem :: Eq a => a -> V1 a -> Bool # maximum :: Ord a => V1 a -> a # | |
Traversable (V1 :: Type -> Type) | Since: base-4.9.0.0 |
Eq (V1 p) | Since: base-4.9.0.0 |
Ord (V1 p) | Since: base-4.9.0.0 |
Read (V1 p) | Since: base-4.9.0.0 |
Show (V1 p) | Since: base-4.9.0.0 |
Generic (V1 p) | |
Semigroup (V1 p) | Since: base-4.12.0.0 |
type Rep1 (V1 :: k -> Type) | Since: base-4.9.0.0 |
type Rep (V1 p) | Since: base-4.9.0.0 |
data U1 (p :: k) :: forall k. k -> Type #
Unit: used for constructors without arguments
Constructors
U1 |
Instances
Generic1 (U1 :: k -> Type) | |
GNFData arity (U1 :: Type -> Type) | |
Defined in Control.DeepSeq | |
Monad (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Functor (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Applicative (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Foldable (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => U1 m -> m # foldMap :: Monoid m => (a -> m) -> U1 a -> m # foldr :: (a -> b -> b) -> b -> U1 a -> b # foldr' :: (a -> b -> b) -> b -> U1 a -> b # foldl :: (b -> a -> b) -> b -> U1 a -> b # foldl' :: (b -> a -> b) -> b -> U1 a -> b # foldr1 :: (a -> a -> a) -> U1 a -> a # foldl1 :: (a -> a -> a) -> U1 a -> a # elem :: Eq a => a -> U1 a -> Bool # maximum :: Ord a => U1 a -> a # | |
Traversable (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Alternative (U1 :: Type -> Type) | Since: base-4.9.0.0 |
MonadPlus (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Eq (U1 p) | Since: base-4.9.0.0 |
Ord (U1 p) | Since: base-4.7.0.0 |
Read (U1 p) | Since: base-4.9.0.0 |
Show (U1 p) | Since: base-4.9.0.0 |
Generic (U1 p) | |
Semigroup (U1 p) | Since: base-4.12.0.0 |
Monoid (U1 p) | Since: base-4.12.0.0 |
type Rep1 (U1 :: k -> Type) | Since: base-4.9.0.0 |
type Rep (U1 p) | Since: base-4.7.0.0 |
newtype K1 i c (p :: k) :: forall k. Type -> Type -> k -> Type #
Constants, additional parameters and recursion of kind *
Instances
Generic1 (K1 i c :: k -> Type) | |
NFData a => GNFData arity (K1 i a :: Type -> Type) | |
Defined in Control.DeepSeq | |
Bifunctor (K1 i :: Type -> Type -> Type) | Since: base-4.9.0.0 |
Functor (K1 i c :: Type -> Type) | Since: base-4.9.0.0 |
Monoid c => Applicative (K1 i c :: Type -> Type) | Since: base-4.12.0.0 |
Foldable (K1 i c :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => K1 i c m -> m # foldMap :: Monoid m => (a -> m) -> K1 i c a -> m # foldr :: (a -> b -> b) -> b -> K1 i c a -> b # foldr' :: (a -> b -> b) -> b -> K1 i c a -> b # foldl :: (b -> a -> b) -> b -> K1 i c a -> b # foldl' :: (b -> a -> b) -> b -> K1 i c a -> b # foldr1 :: (a -> a -> a) -> K1 i c a -> a # foldl1 :: (a -> a -> a) -> K1 i c a -> a # elem :: Eq a => a -> K1 i c a -> Bool # maximum :: Ord a => K1 i c a -> a # minimum :: Ord a => K1 i c a -> a # | |
Traversable (K1 i c :: Type -> Type) | Since: base-4.9.0.0 |
Eq c => Eq (K1 i c p) | Since: base-4.7.0.0 |
Ord c => Ord (K1 i c p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
Read c => Read (K1 i c p) | Since: base-4.7.0.0 |
Show c => Show (K1 i c p) | Since: base-4.7.0.0 |
Generic (K1 i c p) | |
Semigroup c => Semigroup (K1 i c p) | Since: base-4.12.0.0 |
Monoid c => Monoid (K1 i c p) | Since: base-4.12.0.0 |
type Rep1 (K1 i c :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (K1 i c p) | Since: base-4.7.0.0 |
Defined in GHC.Generics |
newtype M1 i (c :: Meta) (f :: k -> Type) (p :: k) :: forall k. Type -> Meta -> (k -> Type) -> k -> Type #
Meta-information (constructor names, etc.)
Instances
GHashable arity a => GSum arity (C1 c a) | |
Generic1 (M1 i c f :: k -> Type) | |
GNFData arity a => GNFData arity (M1 i c a) | |
Defined in Control.DeepSeq | |
GBinaryGet a => GSumGet (C1 c a) | |
SumSize (C1 c a) | |
Defined in Data.Binary.Generic | |
GBinaryPut a => GSumPut (C1 c a) | |
SumSize (C1 c a) | |
Defined in Data.Hashable.Generic.Instances | |
Monad f => Monad (M1 i c f) | Since: base-4.9.0.0 |
Functor f => Functor (M1 i c f) | Since: base-4.9.0.0 |
Applicative f => Applicative (M1 i c f) | Since: base-4.9.0.0 |
Foldable f => Foldable (M1 i c f) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => M1 i c f m -> m # foldMap :: Monoid m => (a -> m) -> M1 i c f a -> m # foldr :: (a -> b -> b) -> b -> M1 i c f a -> b # foldr' :: (a -> b -> b) -> b -> M1 i c f a -> b # foldl :: (b -> a -> b) -> b -> M1 i c f a -> b # foldl' :: (b -> a -> b) -> b -> M1 i c f a -> b # foldr1 :: (a -> a -> a) -> M1 i c f a -> a # foldl1 :: (a -> a -> a) -> M1 i c f a -> a # elem :: Eq a => a -> M1 i c f a -> Bool # maximum :: Ord a => M1 i c f a -> a # minimum :: Ord a => M1 i c f a -> a # | |
Traversable f => Traversable (M1 i c f) | Since: base-4.9.0.0 |
Alternative f => Alternative (M1 i c f) | Since: base-4.9.0.0 |
MonadPlus f => MonadPlus (M1 i c f) | Since: base-4.9.0.0 |
Eq (f p) => Eq (M1 i c f p) | Since: base-4.7.0.0 |
Ord (f p) => Ord (M1 i c f p) | Since: base-4.7.0.0 |
Read (f p) => Read (M1 i c f p) | Since: base-4.7.0.0 |
Show (f p) => Show (M1 i c f p) | Since: base-4.7.0.0 |
Generic (M1 i c f p) | |
Semigroup (f p) => Semigroup (M1 i c f p) | Since: base-4.12.0.0 |
Monoid (f p) => Monoid (M1 i c f p) | Since: base-4.12.0.0 |
type Rep1 (M1 i c f :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (M1 i c f p) | Since: base-4.7.0.0 |
Defined in GHC.Generics |
data ((f :: k -> Type) :+: (g :: k -> Type)) (p :: k) :: forall k. (k -> Type) -> (k -> Type) -> k -> Type infixr 5 #
Sums: encode choice between constructors
Instances
Generic1 (f :+: g :: k -> Type) | |
(GNFData arity a, GNFData arity b) => GNFData arity (a :+: b) | |
Defined in Control.DeepSeq | |
(GSum arity a, GSum arity b) => GSum arity (a :+: b) | |
(Functor f, Functor g) => Functor (f :+: g) | Since: base-4.9.0.0 |
(Foldable f, Foldable g) => Foldable (f :+: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :+: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :+: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldr1 :: (a -> a -> a) -> (f :+: g) a -> a # foldl1 :: (a -> a -> a) -> (f :+: g) a -> a # toList :: (f :+: g) a -> [a] # length :: (f :+: g) a -> Int # elem :: Eq a => a -> (f :+: g) a -> Bool # maximum :: Ord a => (f :+: g) a -> a # minimum :: Ord a => (f :+: g) a -> a # | |
(Traversable f, Traversable g) => Traversable (f :+: g) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
(GSumGet a, GSumGet b) => GSumGet (a :+: b) | |
(SumSize a, SumSize b) => SumSize (a :+: b) | |
Defined in Data.Binary.Generic | |
(GSumPut a, GSumPut b) => GSumPut (a :+: b) | |
(SumSize a, SumSize b) => SumSize (a :+: b) | |
Defined in Data.Hashable.Generic.Instances | |
(Eq (f p), Eq (g p)) => Eq ((f :+: g) p) | Since: base-4.7.0.0 |
(Ord (f p), Ord (g p)) => Ord ((f :+: g) p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
(Read (f p), Read (g p)) => Read ((f :+: g) p) | Since: base-4.7.0.0 |
(Show (f p), Show (g p)) => Show ((f :+: g) p) | Since: base-4.7.0.0 |
Generic ((f :+: g) p) | |
type Rep1 (f :+: g :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics type Rep1 (f :+: g :: k -> Type) = D1 (MetaData ":+:" "GHC.Generics" "base" False) (C1 (MetaCons "L1" PrefixI False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec1 f)) :+: C1 (MetaCons "R1" PrefixI False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec1 g))) | |
type Rep ((f :+: g) p) | Since: base-4.7.0.0 |
Defined in GHC.Generics type Rep ((f :+: g) p) = D1 (MetaData ":+:" "GHC.Generics" "base" False) (C1 (MetaCons "L1" PrefixI False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (f p))) :+: C1 (MetaCons "R1" PrefixI False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (g p)))) |
data ((f :: k -> Type) :*: (g :: k -> Type)) (p :: k) :: forall k. (k -> Type) -> (k -> Type) -> k -> Type infixr 6 #
Products: encode multiple arguments to constructors
Constructors
(f p) :*: (g p) infixr 6 |
Instances
Generic1 (f :*: g :: k -> Type) | |
(GNFData arity a, GNFData arity b) => GNFData arity (a :*: b) | |
Defined in Control.DeepSeq | |
(Monad f, Monad g) => Monad (f :*: g) | Since: base-4.9.0.0 |
(Functor f, Functor g) => Functor (f :*: g) | Since: base-4.9.0.0 |
(Applicative f, Applicative g) => Applicative (f :*: g) | Since: base-4.9.0.0 |
(Foldable f, Foldable g) => Foldable (f :*: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :*: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :*: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldr1 :: (a -> a -> a) -> (f :*: g) a -> a # foldl1 :: (a -> a -> a) -> (f :*: g) a -> a # toList :: (f :*: g) a -> [a] # length :: (f :*: g) a -> Int # elem :: Eq a => a -> (f :*: g) a -> Bool # maximum :: Ord a => (f :*: g) a -> a # minimum :: Ord a => (f :*: g) a -> a # | |
(Traversable f, Traversable g) => Traversable (f :*: g) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
(Alternative f, Alternative g) => Alternative (f :*: g) | Since: base-4.9.0.0 |
(MonadPlus f, MonadPlus g) => MonadPlus (f :*: g) | Since: base-4.9.0.0 |
(Eq (f p), Eq (g p)) => Eq ((f :*: g) p) | Since: base-4.7.0.0 |
(Ord (f p), Ord (g p)) => Ord ((f :*: g) p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
(Read (f p), Read (g p)) => Read ((f :*: g) p) | Since: base-4.7.0.0 |
(Show (f p), Show (g p)) => Show ((f :*: g) p) | Since: base-4.7.0.0 |
Generic ((f :*: g) p) | |
(Semigroup (f p), Semigroup (g p)) => Semigroup ((f :*: g) p) | Since: base-4.12.0.0 |
(Monoid (f p), Monoid (g p)) => Monoid ((f :*: g) p) | Since: base-4.12.0.0 |
type Rep1 (f :*: g :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics type Rep1 (f :*: g :: k -> Type) = D1 (MetaData ":*:" "GHC.Generics" "base" False) (C1 (MetaCons ":*:" (InfixI RightAssociative 6) False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec1 f) :*: S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec1 g))) | |
type Rep ((f :*: g) p) | Since: base-4.7.0.0 |
Defined in GHC.Generics type Rep ((f :*: g) p) = D1 (MetaData ":*:" "GHC.Generics" "base" False) (C1 (MetaCons ":*:" (InfixI RightAssociative 6) False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (f p)) :*: S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (g p)))) |
newtype ((f :: k2 -> Type) :.: (g :: k1 -> k2)) (p :: k1) :: forall k2 k1. (k2 -> Type) -> (k1 -> k2) -> k1 -> Type infixr 7 #
Composition of functors
Instances
Functor f => Generic1 (f :.: g :: k -> Type) | |
(NFData1 f, GNFData One g) => GNFData One (f :.: g) | |
Defined in Control.DeepSeq | |
(Functor f, Functor g) => Functor (f :.: g) | Since: base-4.9.0.0 |
(Applicative f, Applicative g) => Applicative (f :.: g) | Since: base-4.9.0.0 |
(Foldable f, Foldable g) => Foldable (f :.: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :.: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :.: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldr1 :: (a -> a -> a) -> (f :.: g) a -> a # foldl1 :: (a -> a -> a) -> (f :.: g) a -> a # toList :: (f :.: g) a -> [a] # length :: (f :.: g) a -> Int # elem :: Eq a => a -> (f :.: g) a -> Bool # maximum :: Ord a => (f :.: g) a -> a # minimum :: Ord a => (f :.: g) a -> a # | |
(Traversable f, Traversable g) => Traversable (f :.: g) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
(Alternative f, Applicative g) => Alternative (f :.: g) | Since: base-4.9.0.0 |
Eq (f (g p)) => Eq ((f :.: g) p) | Since: base-4.7.0.0 |
Ord (f (g p)) => Ord ((f :.: g) p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
Read (f (g p)) => Read ((f :.: g) p) | Since: base-4.7.0.0 |
Show (f (g p)) => Show ((f :.: g) p) | Since: base-4.7.0.0 |
Generic ((f :.: g) p) | |
Semigroup (f (g p)) => Semigroup ((f :.: g) p) | Since: base-4.12.0.0 |
Monoid (f (g p)) => Monoid ((f :.: g) p) | Since: base-4.12.0.0 |
type Rep1 (f :.: g :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep ((f :.: g) p) | Since: base-4.7.0.0 |
Defined in GHC.Generics |
type D1 = (M1 D :: Meta -> (k -> Type) -> k -> Type) #
Type synonym for encoding meta-information for datatypes
type C1 = (M1 C :: Meta -> (k -> Type) -> k -> Type) #
Type synonym for encoding meta-information for constructors
type S1 = (M1 S :: Meta -> (k -> Type) -> k -> Type) #
Type synonym for encoding meta-information for record selectors
data family URec a (p :: k) :: Type #
Constants of unlifted kinds
Since: base-4.9.0.0
Instances
Generic1 (URec (Ptr ()) :: k -> Type) | |
Generic1 (URec Char :: k -> Type) | |
Generic1 (URec Double :: k -> Type) | |
Generic1 (URec Float :: k -> Type) | |
Generic1 (URec Int :: k -> Type) | |
Generic1 (URec Word :: k -> Type) | |
Functor (URec Char :: Type -> Type) | Since: base-4.9.0.0 |
Functor (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
Functor (URec Float :: Type -> Type) | Since: base-4.9.0.0 |
Functor (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
Functor (URec Word :: Type -> Type) | Since: base-4.9.0.0 |
Functor (URec (Ptr ()) :: Type -> Type) | Since: base-4.9.0.0 |
Foldable (URec Char :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Char m -> m # foldMap :: Monoid m => (a -> m) -> URec Char a -> m # foldr :: (a -> b -> b) -> b -> URec Char a -> b # foldr' :: (a -> b -> b) -> b -> URec Char a -> b # foldl :: (b -> a -> b) -> b -> URec Char a -> b # foldl' :: (b -> a -> b) -> b -> URec Char a -> b # foldr1 :: (a -> a -> a) -> URec Char a -> a # foldl1 :: (a -> a -> a) -> URec Char a -> a # toList :: URec Char a -> [a] # length :: URec Char a -> Int # elem :: Eq a => a -> URec Char a -> Bool # maximum :: Ord a => URec Char a -> a # minimum :: Ord a => URec Char a -> a # | |
Foldable (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Double m -> m # foldMap :: Monoid m => (a -> m) -> URec Double a -> m # foldr :: (a -> b -> b) -> b -> URec Double a -> b # foldr' :: (a -> b -> b) -> b -> URec Double a -> b # foldl :: (b -> a -> b) -> b -> URec Double a -> b # foldl' :: (b -> a -> b) -> b -> URec Double a -> b # foldr1 :: (a -> a -> a) -> URec Double a -> a # foldl1 :: (a -> a -> a) -> URec Double a -> a # toList :: URec Double a -> [a] # null :: URec Double a -> Bool # length :: URec Double a -> Int # elem :: Eq a => a -> URec Double a -> Bool # maximum :: Ord a => URec Double a -> a # minimum :: Ord a => URec Double a -> a # | |
Foldable (URec Float :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Float m -> m # foldMap :: Monoid m => (a -> m) -> URec Float a -> m # foldr :: (a -> b -> b) -> b -> URec Float a -> b # foldr' :: (a -> b -> b) -> b -> URec Float a -> b # foldl :: (b -> a -> b) -> b -> URec Float a -> b # foldl' :: (b -> a -> b) -> b -> URec Float a -> b # foldr1 :: (a -> a -> a) -> URec Float a -> a # foldl1 :: (a -> a -> a) -> URec Float a -> a # toList :: URec Float a -> [a] # null :: URec Float a -> Bool # length :: URec Float a -> Int # elem :: Eq a => a -> URec Float a -> Bool # maximum :: Ord a => URec Float a -> a # minimum :: Ord a => URec Float a -> a # | |
Foldable (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Int m -> m # foldMap :: Monoid m => (a -> m) -> URec Int a -> m # foldr :: (a -> b -> b) -> b -> URec Int a -> b # foldr' :: (a -> b -> b) -> b -> URec Int a -> b # foldl :: (b -> a -> b) -> b -> URec Int a -> b # foldl' :: (b -> a -> b) -> b -> URec Int a -> b # foldr1 :: (a -> a -> a) -> URec Int a -> a # foldl1 :: (a -> a -> a) -> URec Int a -> a # elem :: Eq a => a -> URec Int a -> Bool # maximum :: Ord a => URec Int a -> a # minimum :: Ord a => URec Int a -> a # | |
Foldable (URec Word :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Word m -> m # foldMap :: Monoid m => (a -> m) -> URec Word a -> m # foldr :: (a -> b -> b) -> b -> URec Word a -> b # foldr' :: (a -> b -> b) -> b -> URec Word a -> b # foldl :: (b -> a -> b) -> b -> URec Word a -> b # foldl' :: (b -> a -> b) -> b -> URec Word a -> b # foldr1 :: (a -> a -> a) -> URec Word a -> a # foldl1 :: (a -> a -> a) -> URec Word a -> a # toList :: URec Word a -> [a] # length :: URec Word a -> Int # elem :: Eq a => a -> URec Word a -> Bool # maximum :: Ord a => URec Word a -> a # minimum :: Ord a => URec Word a -> a # | |
Foldable (URec (Ptr ()) :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec (Ptr ()) m -> m # foldMap :: Monoid m => (a -> m) -> URec (Ptr ()) a -> m # foldr :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b # foldr' :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b # foldl :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b # foldl' :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b # foldr1 :: (a -> a -> a) -> URec (Ptr ()) a -> a # foldl1 :: (a -> a -> a) -> URec (Ptr ()) a -> a # toList :: URec (Ptr ()) a -> [a] # null :: URec (Ptr ()) a -> Bool # length :: URec (Ptr ()) a -> Int # elem :: Eq a => a -> URec (Ptr ()) a -> Bool # maximum :: Ord a => URec (Ptr ()) a -> a # minimum :: Ord a => URec (Ptr ()) a -> a # | |
Traversable (URec Char :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
Traversable (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
Traversable (URec Float :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
Traversable (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
Traversable (URec Word :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
Traversable (URec (Ptr ()) :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Traversable Methods traverse :: Applicative f => (a -> f b) -> URec (Ptr ()) a -> f (URec (Ptr ()) b) # sequenceA :: Applicative f => URec (Ptr ()) (f a) -> f (URec (Ptr ()) a) # mapM :: Monad m => (a -> m b) -> URec (Ptr ()) a -> m (URec (Ptr ()) b) # sequence :: Monad m => URec (Ptr ()) (m a) -> m (URec (Ptr ()) a) # | |
Eq (URec (Ptr ()) p) | Since: base-4.9.0.0 |
Eq (URec Char p) | Since: base-4.9.0.0 |
Eq (URec Double p) | Since: base-4.9.0.0 |
Eq (URec Float p) | |
Eq (URec Int p) | Since: base-4.9.0.0 |
Eq (URec Word p) | Since: base-4.9.0.0 |
Ord (URec (Ptr ()) p) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: URec (Ptr ()) p -> URec (Ptr ()) p -> Ordering # (<) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (<=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (>) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (>=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # max :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p # min :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p # | |
Ord (URec Char p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Ord (URec Double p) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: URec Double p -> URec Double p -> Ordering # (<) :: URec Double p -> URec Double p -> Bool # (<=) :: URec Double p -> URec Double p -> Bool # (>) :: URec Double p -> URec Double p -> Bool # (>=) :: URec Double p -> URec Double p -> Bool # | |
Ord (URec Float p) | |
Defined in GHC.Generics | |
Ord (URec Int p) | Since: base-4.9.0.0 |
Ord (URec Word p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Show (URec Char p) | Since: base-4.9.0.0 |
Show (URec Double p) | Since: base-4.9.0.0 |
Show (URec Float p) | |
Show (URec Int p) | Since: base-4.9.0.0 |
Show (URec Word p) | Since: base-4.9.0.0 |
Generic (URec (Ptr ()) p) | |
Generic (URec Char p) | |
Generic (URec Double p) | |
Generic (URec Float p) | |
Generic (URec Int p) | |
Generic (URec Word p) | |
data URec Word (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
data URec Int (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
data URec Float (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
data URec Double (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
data URec Char (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
data URec (Ptr ()) (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
type Rep1 (URec Word :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep1 (URec Int :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep1 (URec Float :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep1 (URec Double :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep1 (URec Char :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep1 (URec (Ptr ()) :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (URec Word p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (URec Int p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (URec Float p) | |
Defined in GHC.Generics | |
type Rep (URec Double p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (URec Char p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (URec (Ptr ()) p) | Since: base-4.9.0.0 |
Defined in GHC.Generics |
Datatype to represent the fixity of a constructor. An infix
| declaration directly corresponds to an application of Infix
.
Constructors
Prefix | |
Infix Associativity Int |
Instances
Eq Fixity | Since: base-4.6.0.0 |
Ord Fixity | Since: base-4.6.0.0 |
Read Fixity | Since: base-4.6.0.0 |
Show Fixity | Since: base-4.6.0.0 |
Generic Fixity | |
type Rep Fixity | Since: base-4.7.0.0 |
Defined in GHC.Generics type Rep Fixity = D1 (MetaData "Fixity" "GHC.Generics" "base" False) (C1 (MetaCons "Prefix" PrefixI False) (U1 :: Type -> Type) :+: C1 (MetaCons "Infix" PrefixI False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 Associativity) :*: S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 Int))) |
This variant of Fixity
appears at the type level.
Since: base-4.9.0.0
Constructors
PrefixI | |
InfixI Associativity Nat |
Instances
SingKind FixityI | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
SingI PrefixI | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
(SingI a, KnownNat n) => SingI (InfixI a n :: FixityI) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
data Sing (a :: FixityI) | |
type DemoteRep FixityI | |
Defined in GHC.Generics |
data Associativity #
Datatype to represent the associativity of a constructor
Constructors
LeftAssociative | |
RightAssociative | |
NotAssociative |
Instances
Datatype to represent metadata associated with a datatype (MetaData
),
constructor (MetaCons
), or field selector (MetaSel
).
- In
MetaData n m p nt
,n
is the datatype's name,m
is the module in which the datatype is defined,p
is the package in which the datatype is defined, andnt
is'True
if the datatype is anewtype
. - In
MetaCons n f s
,n
is the constructor's name,f
is its fixity, ands
is'True
if the constructor contains record selectors. - In
MetaSel mn su ss ds
, if the field uses record syntax, thenmn
isJust
the record name. Otherwise,mn
isNothing
.su
andss
are the field's unpackedness and strictness annotations, andds
is the strictness that GHC infers for the field.
Since: base-4.9.0.0
Constructors
MetaData Symbol Symbol Symbol Bool | |
MetaCons Symbol FixityI Bool | |
MetaSel (Maybe Symbol) SourceUnpackedness SourceStrictness DecidedStrictness |
Instances
(KnownSymbol n, SingI f, SingI r) => Constructor (MetaCons n f r :: Meta) | Since: base-4.9.0.0 |
(KnownSymbol n, KnownSymbol m, KnownSymbol p, SingI nt) => Datatype (MetaData n m p nt :: Meta) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
(SingI mn, SingI su, SingI ss, SingI ds) => Selector (MetaSel mn su ss ds :: Meta) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods selName :: t (MetaSel mn su ss ds) f a -> [Char] # selSourceUnpackedness :: t (MetaSel mn su ss ds) f a -> SourceUnpackedness # selSourceStrictness :: t (MetaSel mn su ss ds) f a -> SourceStrictness # selDecidedStrictness :: t (MetaSel mn su ss ds) f a -> DecidedStrictness # |
ByteString functions
data ByteString #
A space-efficient representation of a Word8
vector, supporting many
efficient operations.
A ByteString
contains 8-bit bytes, or by using the operations from
Data.ByteString.Char8 it can be interpreted as containing 8-bit
characters.
Instances
type LByteString = ByteString Source #
Text functions
getContents :: IO Text #
Read all user input on stdin
as a single string.
interact :: (Text -> Text) -> IO () #
The interact
function takes a function of type Text -> Text
as its argument. The entire input from the standard input device is
passed to this function as its argument, and the resulting string
is output on the standard output device.
appendFile :: FilePath -> Text -> IO () #
Write a string the end of a file.
writeFile :: FilePath -> Text -> IO () #
Write a string to a file. The file is truncated to zero length before writing begins.
readFile :: FilePath -> IO Text #
The readFile
function reads a file and returns the contents of
the file as a string. The entire file is read strictly, as with
getContents
.
encodeUtf8 :: Text -> ByteString #
Encode text using UTF-8 encoding.
decodeUtf8' :: ByteString -> Either UnicodeException Text #
Decode a ByteString
containing UTF-8 encoded text.
If the input contains any invalid UTF-8 data, the relevant exception will be returned, otherwise the decoded text.
decodeUtf8 :: ByteString -> Text #
Decode a ByteString
containing UTF-8 encoded text that is known
to be valid.
If the input contains any invalid UTF-8 data, an exception will be
thrown that cannot be caught in pure code. For more control over
the handling of invalid data, use decodeUtf8'
or
decodeUtf8With
.
decodeUtf8With :: OnDecodeError -> ByteString -> Text #
Decode a ByteString
containing UTF-8 encoded text.
NOTE: The replacement character returned by OnDecodeError
MUST be within the BMP plane; surrogate code points will
automatically be remapped to the replacement char U+FFFD
(since 0.11.3.0), whereas code points beyond the BMP will throw an
error
(since 1.2.3.1); For earlier versions of text
using
those unsupported code points would result in undefined behavior.
A space efficient, packed, unboxed Unicode text type.
Instances
Hashable Text | |
Defined in Data.Hashable.Class | |
Print Text Source # | |
StringConv String Text Source # | |
StringConv ByteString Text Source # | |
Defined in Protolude.Conv | |
StringConv ByteString Text Source # | |
Defined in Protolude.Conv | |
StringConv Text Text Source # | |
StringConv Text String Source # | |
StringConv Text ByteString Source # | |
Defined in Protolude.Conv | |
StringConv Text ByteString Source # | |
Defined in Protolude.Conv | |
StringConv Text Text Source # | |
StringConv Text Text Source # | |
ConvertText String Text Source # | |
ConvertText Text Text Source # | |
ConvertText Text String Source # | |
ConvertText Text Text Source # | |
ConvertText Text Text Source # | |
type Item Text | |
lenientDecode :: OnDecodeError #
Replace an invalid input byte with the Unicode replacement character U+FFFD.
strictDecode :: OnDecodeError #
Throw a UnicodeException
if decoding fails.
type OnError a b = String -> Maybe a -> Maybe b #
Function type for handling a coding error. It is supplied with two inputs:
- A
String
that describes the error. - The input value that caused the error. If the error arose
because the end of input was reached or could not be identified
precisely, this value will be
Nothing
.
If the handler returns a value wrapped with Just
, that value will
be used in the output as the replacement for the invalid input. If
it returns Nothing
, no value will be used in the output.
Should the handler need to abort processing, it should use error
or throw
an exception (preferably a UnicodeException
). It may
use the description provided to construct a more helpful error
report.
type OnDecodeError = OnError Word8 Char #
A handler for a decoding error.
data UnicodeException #
An exception type for representing Unicode encoding errors.
Instances
Eq UnicodeException | |
Defined in Data.Text.Encoding.Error Methods (==) :: UnicodeException -> UnicodeException -> Bool # (/=) :: UnicodeException -> UnicodeException -> Bool # | |
Show UnicodeException | |
Defined in Data.Text.Encoding.Error Methods showsPrec :: Int -> UnicodeException -> ShowS # show :: UnicodeException -> String # showList :: [UnicodeException] -> ShowS # | |
Exception UnicodeException | |
Defined in Data.Text.Encoding.Error Methods toException :: UnicodeException -> SomeException # | |
NFData UnicodeException | |
Defined in Data.Text.Encoding.Error Methods rnf :: UnicodeException -> () # |
Read functions
Parsing of String
s, producing values.
Derived instances of Read
make the following assumptions, which
derived instances of Show
obey:
- If the constructor is defined to be an infix operator, then the
derived
Read
instance will parse only infix applications of the constructor (not the prefix form). - Associativity is not used to reduce the occurrence of parentheses, although precedence may be.
- If the constructor is defined using record syntax, the derived
Read
will parse only the record-syntax form, and furthermore, the fields must be given in the same order as the original declaration. - The derived
Read
instance allows arbitrary Haskell whitespace between tokens of the input string. Extra parentheses are also allowed.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Read
in Haskell 2010 is equivalent to
instance (Read a) => Read (Tree a) where readsPrec d r = readParen (d > app_prec) (\r -> [(Leaf m,t) | ("Leaf",s) <- lex r, (m,t) <- readsPrec (app_prec+1) s]) r ++ readParen (d > up_prec) (\r -> [(u:^:v,w) | (u,s) <- readsPrec (up_prec+1) r, (":^:",t) <- lex s, (v,w) <- readsPrec (up_prec+1) t]) r where app_prec = 10 up_prec = 5
Note that right-associativity of :^:
is unused.
The derived instance in GHC is equivalent to
instance (Read a) => Read (Tree a) where readPrec = parens $ (prec app_prec $ do Ident "Leaf" <- lexP m <- step readPrec return (Leaf m)) +++ (prec up_prec $ do u <- step readPrec Symbol ":^:" <- lexP v <- step readPrec return (u :^: v)) where app_prec = 10 up_prec = 5 readListPrec = readListPrecDefault
Why do both readsPrec
and readPrec
exist, and why does GHC opt to
implement readPrec
in derived Read
instances instead of readsPrec
?
The reason is that readsPrec
is based on the ReadS
type, and although
ReadS
is mentioned in the Haskell 2010 Report, it is not a very efficient
parser data structure.
readPrec
, on the other hand, is based on a much more efficient ReadPrec
datatype (a.k.a "new-style parsers"), but its definition relies on the use
of the RankNTypes
language extension. Therefore, readPrec
(and its
cousin, readListPrec
) are marked as GHC-only. Nevertheless, it is
recommended to use readPrec
instead of readsPrec
whenever possible
for the efficiency improvements it brings.
As mentioned above, derived Read
instances in GHC will implement
readPrec
instead of readsPrec
. The default implementations of
readsPrec
(and its cousin, readList
) will simply use readPrec
under
the hood. If you are writing a Read
instance by hand, it is recommended
to write it like so:
instanceRead
T wherereadPrec
= ...readListPrec
=readListPrecDefault
Instances
Read Bool | Since: base-2.1 |
Read Char | Since: base-2.1 |
Read Double | Since: base-2.1 |
Read Float | Since: base-2.1 |
Read Int | Since: base-2.1 |
Read Int8 | Since: base-2.1 |
Read Int16 | Since: base-2.1 |
Read Int32 | Since: base-2.1 |
Read Int64 | Since: base-2.1 |
Read Integer | Since: base-2.1 |
Read Natural | Since: base-4.8.0.0 |
Read Ordering | Since: base-2.1 |
Read Word | Since: base-4.5.0.0 |
Read Word8 | Since: base-2.1 |
Read Word16 | Since: base-2.1 |
Read Word32 | Since: base-2.1 |
Read Word64 | Since: base-2.1 |
Read () | Since: base-2.1 |
Read Void | Reading a Since: base-4.8.0.0 |
Read CDev | |
Read CIno | |
Read CMode | |
Read COff | |
Read CPid | |
Read CSsize | |
Read CGid | |
Read CNlink | |
Read CUid | |
Read CCc | |
Read CSpeed | |
Read CTcflag | |
Read CRLim | |
Read CBlkSize | |
Read CBlkCnt | |
Read CClockId | |
Read CFsBlkCnt | |
Read CFsFilCnt | |
Read CId | |
Read CKey | |
Read Fd | |
Read ExitCode | |
Read BufferMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types Methods readsPrec :: Int -> ReadS BufferMode # readList :: ReadS [BufferMode] # readPrec :: ReadPrec BufferMode # readListPrec :: ReadPrec [BufferMode] # | |
Read Newline | Since: base-4.3.0.0 |
Read NewlineMode | Since: base-4.3.0.0 |
Defined in GHC.IO.Handle.Types Methods readsPrec :: Int -> ReadS NewlineMode # readList :: ReadS [NewlineMode] # readPrec :: ReadPrec NewlineMode # readListPrec :: ReadPrec [NewlineMode] # | |
Read All | Since: base-2.1 |
Read Any | Since: base-2.1 |
Read Fixity | Since: base-4.6.0.0 |
Read Associativity | Since: base-4.6.0.0 |
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS Associativity # readList :: ReadS [Associativity] # | |
Read SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS SourceUnpackedness # readList :: ReadS [SourceUnpackedness] # | |
Read SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS SourceStrictness # readList :: ReadS [SourceStrictness] # | |
Read DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS DecidedStrictness # readList :: ReadS [DecidedStrictness] # | |
Read SomeSymbol | Since: base-4.7.0.0 |
Defined in GHC.TypeLits Methods readsPrec :: Int -> ReadS SomeSymbol # readList :: ReadS [SomeSymbol] # readPrec :: ReadPrec SomeSymbol # readListPrec :: ReadPrec [SomeSymbol] # | |
Read SomeNat | Since: base-4.7.0.0 |
Read CChar | |
Read CSChar | |
Read CUChar | |
Read CShort | |
Read CUShort | |
Read CInt | |
Read CUInt | |
Read CLong | |
Read CULong | |
Read CLLong | |
Read CULLong | |
Read CBool | |
Read CFloat | |
Read CDouble | |
Read CPtrdiff | |
Read CSize | |
Read CWchar | |
Read CSigAtomic | |
Defined in Foreign.C.Types Methods readsPrec :: Int -> ReadS CSigAtomic # readList :: ReadS [CSigAtomic] # readPrec :: ReadPrec CSigAtomic # readListPrec :: ReadPrec [CSigAtomic] # | |
Read CClock | |
Read CTime | |
Read CUSeconds | |
Read CSUSeconds | |
Defined in Foreign.C.Types Methods readsPrec :: Int -> ReadS CSUSeconds # readList :: ReadS [CSUSeconds] # readPrec :: ReadPrec CSUSeconds # readListPrec :: ReadPrec [CSUSeconds] # | |
Read CIntPtr | |
Read CUIntPtr | |
Read CIntMax | |
Read CUIntMax | |
Read WordPtr | |
Read IntPtr | |
Read IOMode | Since: base-4.2.0.0 |
Read Lexeme | Since: base-2.1 |
Read GeneralCategory | Since: base-2.1 |
Defined in GHC.Read Methods readsPrec :: Int -> ReadS GeneralCategory # readList :: ReadS [GeneralCategory] # | |
Read ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods readsPrec :: Int -> ReadS ByteString # readList :: ReadS [ByteString] # readPrec :: ReadPrec ByteString # readListPrec :: ReadPrec [ByteString] # | |
Read ByteString | |
Defined in Data.ByteString.Internal Methods readsPrec :: Int -> ReadS ByteString # readList :: ReadS [ByteString] # readPrec :: ReadPrec ByteString # readListPrec :: ReadPrec [ByteString] # | |
Read IntSet | |
Read a => Read [a] | Since: base-2.1 |
Read a => Read (Maybe a) | Since: base-2.1 |
(Integral a, Read a) => Read (Ratio a) | Since: base-2.1 |
Read p => Read (Par1 p) | Since: base-4.7.0.0 |
Read a => Read (Complex a) | Since: base-2.1 |
Read a => Read (Min a) | Since: base-4.9.0.0 |
Read a => Read (Max a) | Since: base-4.9.0.0 |
Read a => Read (First a) | Since: base-4.9.0.0 |
Read a => Read (Last a) | Since: base-4.9.0.0 |
Read m => Read (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods readsPrec :: Int -> ReadS (WrappedMonoid m) # readList :: ReadS [WrappedMonoid m] # readPrec :: ReadPrec (WrappedMonoid m) # readListPrec :: ReadPrec [WrappedMonoid m] # | |
Read a => Read (Option a) | Since: base-4.9.0.0 |
Read a => Read (ZipList a) | Since: base-4.7.0.0 |
Read a => Read (Identity a) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
Read a => Read (First a) | Since: base-2.1 |
Read a => Read (Last a) | Since: base-2.1 |
Read a => Read (Dual a) | Since: base-2.1 |
Read a => Read (Sum a) | Since: base-2.1 |
Read a => Read (Product a) | Since: base-2.1 |
Read a => Read (Down a) | Since: base-4.7.0.0 |
Read a => Read (NonEmpty a) | Since: base-4.11.0.0 |
Read e => Read (IntMap e) | |
Read a => Read (Seq a) | |
Read a => Read (ViewL a) | |
Read a => Read (ViewR a) | |
(Read a, Ord a) => Read (Set a) | |
(Read a, Read b) => Read (Either a b) | Since: base-3.0 |
Read (V1 p) | Since: base-4.9.0.0 |
Read (U1 p) | Since: base-4.9.0.0 |
(Read a, Read b) => Read (a, b) | Since: base-2.1 |
(Ix a, Read a, Read b) => Read (Array a b) | Since: base-2.1 |
(Read a, Read b) => Read (Arg a b) | Since: base-4.9.0.0 |
Read (Proxy t) | Since: base-4.7.0.0 |
(Ord k, Read k, Read e) => Read (Map k e) | |
(Read1 m, Read a) => Read (ListT m a) | |
(Read1 m, Read a) => Read (MaybeT m a) | |
Read (f p) => Read (Rec1 f p) | Since: base-4.7.0.0 |
(Read a, Read b, Read c) => Read (a, b, c) | Since: base-2.1 |
Read a => Read (Const a b) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
Read (f a) => Read (Ap f a) | Since: base-4.12.0.0 |
Read (f a) => Read (Alt f a) | Since: base-4.8.0.0 |
Coercible a b => Read (Coercion a b) | Since: base-4.7.0.0 |
a ~ b => Read (a :~: b) | Since: base-4.7.0.0 |
(Read1 f, Read a) => Read (IdentityT f a) | |
(Read e, Read1 m, Read a) => Read (ErrorT e m a) | |
(Read e, Read1 m, Read a) => Read (ExceptT e m a) | |
(Read w, Read1 m, Read a) => Read (WriterT w m a) | |
(Read w, Read1 m, Read a) => Read (WriterT w m a) | |
Read c => Read (K1 i c p) | Since: base-4.7.0.0 |
(Read (f p), Read (g p)) => Read ((f :+: g) p) | Since: base-4.7.0.0 |
(Read (f p), Read (g p)) => Read ((f :*: g) p) | Since: base-4.7.0.0 |
(Read a, Read b, Read c, Read d) => Read (a, b, c, d) | Since: base-2.1 |
(Read1 f, Read1 g, Read a) => Read (Product f g a) | Since: base-4.9.0.0 |
(Read1 f, Read1 g, Read a) => Read (Sum f g a) | Since: base-4.9.0.0 |
a ~~ b => Read (a :~~: b) | Since: base-4.10.0.0 |
Read (f p) => Read (M1 i c f p) | Since: base-4.7.0.0 |
Read (f (g p)) => Read ((f :.: g) p) | Since: base-4.7.0.0 |
(Read a, Read b, Read c, Read d, Read e) => Read (a, b, c, d, e) | Since: base-2.1 |
(Read1 f, Read1 g, Read a) => Read (Compose f g a) | Since: base-4.9.0.0 |
(Read a, Read b, Read c, Read d, Read e, Read f) => Read (a, b, c, d, e, f) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g) => Read (a, b, c, d, e, f, g) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h) => Read (a, b, c, d, e, f, g, h) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i) => Read (a, b, c, d, e, f, g, h, i) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j) => Read (a, b, c, d, e, f, g, h, i, j) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k) => Read (a, b, c, d, e, f, g, h, i, j, k) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l) => Read (a, b, c, d, e, f, g, h, i, j, k, l) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n, Read o) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | Since: base-2.1 |
Defined in GHC.Read |
readMaybe :: Read a => String -> Maybe a #
Parse a string using the Read
instance.
Succeeds if there is exactly one valid result.
>>>
readMaybe "123" :: Maybe Int
Just 123
>>>
readMaybe "hello" :: Maybe Int
Nothing
Since: base-4.6.0.0
System functions
Haskell defines operations to read and write characters from and to files,
represented by values of type Handle
. Each value of this type is a
handle: a record used by the Haskell run-time system to manage I/O
with file system objects. A handle has at least the following properties:
- whether it manages input or output or both;
- whether it is open, closed or semi-closed;
- whether the object is seekable;
- whether buffering is disabled, or enabled on a line or block basis;
- a buffer (whose length may be zero).
Most handles will also have a current I/O position indicating where the next
input or output operation will occur. A handle is readable if it
manages only input or both input and output; likewise, it is writable if
it manages only output or both input and output. A handle is open when
first allocated.
Once it is closed it can no longer be used for either input or output,
though an implementation cannot re-use its storage while references
remain to it. Handles are in the Show
and Eq
classes. The string
produced by showing a handle is system dependent; it should include
enough information to identify the handle for debugging. A handle is
equal according to ==
only to itself; no attempt
is made to compare the internal state of different handles for equality.
Computation getArgs
returns a list of the program's command
line arguments (not including the program name).
exitSuccess :: IO a #
The computation exitSuccess
is equivalent to
exitWith
ExitSuccess
, It terminates the program
successfully.
exitFailure :: IO a #
The computation exitFailure
is equivalent to
exitWith
(
ExitFailure
exitfail)
,
where exitfail is implementation-dependent.
exitWith :: ExitCode -> IO a #
Computation exitWith
code
throws ExitCode
code
.
Normally this terminates the program, returning code
to the
program's caller.
On program termination, the standard Handle
s stdout
and
stderr
are flushed automatically; any other buffered Handle
s
need to be flushed manually, otherwise the buffered data will be
discarded.
A program that fails in any other way is treated as if it had
called exitFailure
.
A program that terminates successfully without calling exitWith
explicitly is treated as if it had called exitWith
ExitSuccess
.
As an ExitCode
is not an IOException
, exitWith
bypasses
the error handling in the IO
monad and cannot be intercepted by
catch
from the Prelude. However it is a SomeException
, and can
be caught using the functions of Control.Exception. This means
that cleanup computations added with bracket
(from Control.Exception) are also executed properly on exitWith
.
Note: in GHC, exitWith
should be called from the main program
thread in order to exit the process. When called from another
thread, exitWith
will throw an ExitException
as normal, but the
exception will not cause the process itself to exit.
withFile :: FilePath -> IOMode -> (Handle -> IO r) -> IO r #
opens a file using withFile
name mode actopenFile
and passes
the resulting handle to the computation act
. The handle will be
closed on exit from withFile
, whether by normal termination or by
raising an exception. If closing the handle raises an exception, then
this exception will be raised by withFile
rather than any exception
raised by act
.
openFile :: FilePath -> IOMode -> IO Handle #
Computation openFile
file mode
allocates and returns a new, open
handle to manage the file file
. It manages input if mode
is ReadMode
, output if mode
is WriteMode
or AppendMode
,
and both input and output if mode is ReadWriteMode
.
If the file does not exist and it is opened for output, it should be
created as a new file. If mode
is WriteMode
and the file
already exists, then it should be truncated to zero length.
Some operating systems delete empty files, so there is no guarantee
that the file will exist following an openFile
with mode
WriteMode
unless it is subsequently written to successfully.
The handle is positioned at the end of the file if mode
is
AppendMode
, and otherwise at the beginning (in which case its
internal position is 0).
The initial buffer mode is implementation-dependent.
This operation may fail with:
isAlreadyInUseError
if the file is already open and cannot be reopened;isDoesNotExistError
if the file does not exist or (on POSIX systems) is a FIFO without a reader andWriteMode
was requested; orisPermissionError
if the user does not have permission to open the file.
Note: if you will be working with files containing binary data, you'll want to
be using openBinaryFile
.
Defines the exit codes that a program can return.
Constructors
ExitSuccess | indicates successful termination; |
ExitFailure Int | indicates program failure with an exit code. The exact interpretation of the code is operating-system dependent. In particular, some values may be prohibited (e.g. 0 on a POSIX-compliant system). |
Instances
Eq ExitCode | |
Ord ExitCode | |
Defined in GHC.IO.Exception | |
Read ExitCode | |
Show ExitCode | |
Generic ExitCode | |
Exception ExitCode | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods toException :: ExitCode -> SomeException # fromException :: SomeException -> Maybe ExitCode # displayException :: ExitCode -> String # | |
NFData ExitCode | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
type Rep ExitCode | |
Defined in GHC.IO.Exception |
File and directory names are values of type String
, whose precise
meaning is operating system dependent. Files can be opened, yielding a
handle which can then be used to operate on the contents of that file.
See openFile
Constructors
ReadMode | |
WriteMode | |
AppendMode | |
ReadWriteMode |
Concurrency functions
forkOnWithUnmask :: Int -> ((forall a. IO a -> IO a) -> IO ()) -> IO ThreadId #
Like forkIOWithUnmask
, but the child thread is pinned to the
given CPU, as with forkOn
.
Since: base-4.4.0.0
forkIOWithUnmask :: ((forall a. IO a -> IO a) -> IO ()) -> IO ThreadId #
Like forkIO
, but the child thread is passed a function that can
be used to unmask asynchronous exceptions. This function is
typically used in the following way
... mask_ $ forkIOWithUnmask $ \unmask -> catch (unmask ...) handler
so that the exception handler in the child thread is established with asynchronous exceptions masked, meanwhile the main body of the child thread is executed in the unmasked state.
Note that the unmask function passed to the child thread should only be used in that thread; the behaviour is undefined if it is invoked in a different thread.
Since: base-4.4.0.0
forkOn :: Int -> IO () -> IO ThreadId #
Like forkIO
, but lets you specify on which capability the thread
should run. Unlike a forkIO
thread, a thread created by forkOn
will stay on the same capability for its entire lifetime (forkIO
threads can migrate between capabilities according to the scheduling
policy). forkOn
is useful for overriding the scheduling policy when
you know in advance how best to distribute the threads.
The Int
argument specifies a capability number (see
getNumCapabilities
). Typically capabilities correspond to physical
processors, but the exact behaviour is implementation-dependent. The
value passed to forkOn
is interpreted modulo the total number of
capabilities as returned by getNumCapabilities
.
GHC note: the number of capabilities is specified by the +RTS -N
option when the program is started. Capabilities can be fixed to
actual processor cores with +RTS -qa
if the underlying operating
system supports that, although in practice this is usually unnecessary
(and may actually degrade performance in some cases - experimentation
is recommended).
Since: base-4.4.0.0
forkOS :: IO () -> IO ThreadId #
Like forkIO
, this sparks off a new thread to run the IO
computation passed as the first argument, and returns the ThreadId
of the newly created thread.
However, forkOS
creates a bound thread, which is necessary if you
need to call foreign (non-Haskell) libraries that make use of
thread-local state, such as OpenGL (see Control.Concurrent).
Using forkOS
instead of forkIO
makes no difference at all to the
scheduling behaviour of the Haskell runtime system. It is a common
misconception that you need to use forkOS
instead of forkIO
to
avoid blocking all the Haskell threads when making a foreign call;
this isn't the case. To allow foreign calls to be made without
blocking all the Haskell threads (with GHC), it is only necessary to
use the -threaded
option when linking your program, and to make sure
the foreign import is not marked unsafe
.
A ThreadId
is an abstract type representing a handle to a thread.
ThreadId
is an instance of Eq
, Ord
and Show
, where
the Ord
instance implements an arbitrary total ordering over
ThreadId
s. The Show
instance lets you convert an arbitrary-valued
ThreadId
to string form; showing a ThreadId
value is occasionally
useful when debugging or diagnosing the behaviour of a concurrent
program.
Note: in GHC, if you have a ThreadId
, you essentially have
a pointer to the thread itself. This means the thread itself can't be
garbage collected until you drop the ThreadId
.
This misfeature will hopefully be corrected at a later date.
Instances
Eq ThreadId | Since: base-4.2.0.0 |
Ord ThreadId | Since: base-4.2.0.0 |
Defined in GHC.Conc.Sync | |
Show ThreadId | Since: base-4.2.0.0 |
NFData ThreadId | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
Hashable ThreadId | |
Defined in Data.Hashable.Class |
concurrently :: IO a -> IO b -> IO (a, b) #
Run two IO
actions concurrently, and return both results. If
either action throws an exception at any time, then the other
action is cancel
led, and the exception is re-thrown by
concurrently
.
concurrently left right = withAsync left $ \a -> withAsync right $ \b -> waitBoth a b
race :: IO a -> IO b -> IO (Either a b) #
Run two IO
actions concurrently, and return the first to
finish. The loser of the race is cancel
led.
race left right = withAsync left $ \a -> withAsync right $ \b -> waitEither a b
link2 :: Async a -> Async b -> IO () #
Link two Async
s together, such that if either raises an
exception, the same exception is re-thrown in the other Async
,
wrapped in ExceptionInLinkedThread
.
link2
ignores AsyncCancelled
exceptions, so that it's possible
to cancel
either thread without cancelling the other. If you
want different behaviour, use link2Only
.
Link the given Async
to the current thread, such that if the
Async
raises an exception, that exception will be re-thrown in
the current thread, wrapped in ExceptionInLinkedThread
.
link
ignores AsyncCancelled
exceptions thrown in the other thread,
so that it's safe to cancel
a thread you're linked to. If you want
different behaviour, use linkOnly
.
waitBoth :: Async a -> Async b -> IO (a, b) #
Waits for both Async
s to finish, but if either of them throws
an exception before they have both finished, then the exception is
re-thrown by waitBoth
.
waitEitherCancel :: Async a -> Async b -> IO (Either a b) #
Like waitEither
, but also cancel
s both Async
s before
returning.
waitEither_ :: Async a -> Async b -> IO () #
Like waitEither
, but the result is ignored.
waitEither :: Async a -> Async b -> IO (Either a b) #
Wait for the first of two Async
s to finish. If the Async
that finished first raised an exception, then the exception is
re-thrown by waitEither
.
waitEitherCatchCancel :: Async a -> Async b -> IO (Either (Either SomeException a) (Either SomeException b)) #
Like waitEitherCatch
, but also cancel
s both Async
s before
returning.
waitEitherCatch :: Async a -> Async b -> IO (Either (Either SomeException a) (Either SomeException b)) #
Wait for the first of two Async
s to finish.
waitAnyCancel :: [Async a] -> IO (Async a, a) #
Like waitAny
, but also cancels the other asynchronous
operations as soon as one has completed.
waitAnyCatchCancel :: [Async a] -> IO (Async a, Either SomeException a) #
Like waitAnyCatch
, but also cancels the other asynchronous
operations as soon as one has completed.
waitAnyCatch :: [Async a] -> IO (Async a, Either SomeException a) #
Wait for any of the supplied asynchronous operations to complete.
The value returned is a pair of the Async
that completed, and the
result that would be returned by wait
on that Async
.
If multiple Async
s complete or have completed, then the value
returned corresponds to the first completed Async
in the list.
cancelWith :: Exception e => Async a -> e -> IO () #
Cancel an asynchronous action by throwing the supplied exception to it.
cancelWith a x = throwTo (asyncThreadId a) x
The notes about the synchronous nature of cancel
also apply to
cancelWith
.
Cancel an asynchronous action by throwing the AsyncCancelled
exception to it, and waiting for the Async
thread to quit.
Has no effect if the Async
has already completed.
cancel a = throwTo (asyncThreadId a) AsyncCancelled <* waitCatch a
Note that cancel
will not terminate until the thread the Async
refers to has terminated. This means that cancel
will block for
as long said thread blocks when receiving an asynchronous exception.
For example, it could block if:
- It's executing a foreign call, and thus cannot receive the asynchronous exception;
- It's executing some cleanup handler after having received the exception, and the handler is blocking.
poll :: Async a -> IO (Maybe (Either SomeException a)) #
Check whether an Async
has completed yet. If it has not
completed yet, then the result is Nothing
, otherwise the result
is Just e
where e
is Left x
if the Async
raised an
exception x
, or Right a
if it returned a value a
.
poll = atomically . pollSTM
waitCatch :: Async a -> IO (Either SomeException a) #
Wait for an asynchronous action to complete, and return either
Left e
if the action raised an exception e
, or Right a
if it
returned a value a
.
waitCatch = atomically . waitCatchSTM
Wait for an asynchronous action to complete, and return its
value. If the asynchronous action threw an exception, then the
exception is re-thrown by wait
.
wait = atomically . waitSTM
withAsync :: IO a -> (Async a -> IO b) -> IO b #
Spawn an asynchronous action in a separate thread, and pass its
Async
handle to the supplied function. When the function returns
or throws an exception, uninterruptibleCancel
is called on the Async
.
withAsync action inner = mask $ \restore -> do a <- async (restore action) restore (inner a) `finally` uninterruptibleCancel a
This is a useful variant of async
that ensures an Async
is
never left running unintentionally.
Note: a reference to the child thread is kept alive until the call
to withAsync
returns, so nesting many withAsync
calls requires
linear memory.
An asynchronous action spawned by async
or withAsync
.
Asynchronous actions are executed in a separate thread, and
operations are provided for waiting for asynchronous actions to
complete and obtaining their results (see e.g. wait
).
Instances
Functor Async | |
Eq (Async a) | |
Ord (Async a) | |
Defined in Control.Concurrent.Async | |
Hashable (Async a) | |
Defined in Control.Concurrent.Async |
newtype Concurrently a #
A value of type Concurrently a
is an IO
operation that can be
composed with other Concurrently
values, using the Applicative
and Alternative
instances.
Calling runConcurrently
on a value of type Concurrently a
will
execute the IO
operations it contains concurrently, before
delivering the result of type a
.
For example
(page1, page2, page3) <- runConcurrently $ (,,) <$> Concurrently (getURL "url1") <*> Concurrently (getURL "url2") <*> Concurrently (getURL "url3")
Constructors
Concurrently | |
Fields
|
Instances
threadWaitWriteSTM :: Fd -> IO (STM (), IO ()) #
Returns an STM action that can be used to wait until data can be written to a file descriptor. The second returned value is an IO action that can be used to deregister interest in the file descriptor.
Since: base-4.7.0.0
threadWaitReadSTM :: Fd -> IO (STM (), IO ()) #
Returns an STM action that can be used to wait for data to read from a file descriptor. The second returned value is an IO action that can be used to deregister interest in the file descriptor.
Since: base-4.7.0.0
threadWaitWrite :: Fd -> IO () #
Block the current thread until data can be written to the given file descriptor (GHC only).
This will throw an IOError
if the file descriptor was closed
while this thread was blocked. To safely close a file descriptor
that has been used with threadWaitWrite
, use
closeFdWith
.
threadWaitRead :: Fd -> IO () #
Block the current thread until data is available to read on the given file descriptor (GHC only).
This will throw an IOError
if the file descriptor was closed
while this thread was blocked. To safely close a file descriptor
that has been used with threadWaitRead
, use
closeFdWith
.
runInUnboundThread :: IO a -> IO a #
Run the IO
computation passed as the first argument. If the calling thread
is bound, an unbound thread is created temporarily using forkIO
.
runInBoundThread
doesn't finish until the IO
computation finishes.
Use this function only in the rare case that you have actually observed a
performance loss due to the use of bound threads. A program that
doesn't need its main thread to be bound and makes heavy use of concurrency
(e.g. a web server), might want to wrap its main
action in
runInUnboundThread
.
Note that exceptions which are thrown to the current thread are thrown in turn to the thread that is executing the given computation. This ensures there's always a way of killing the forked thread.
runInBoundThread :: IO a -> IO a #
Run the IO
computation passed as the first argument. If the calling thread
is not bound, a bound thread is created temporarily. runInBoundThread
doesn't finish until the IO
computation finishes.
You can wrap a series of foreign function calls that rely on thread-local state
with runInBoundThread
so that you can use them without knowing whether the
current thread is bound.
isCurrentThreadBound :: IO Bool #
Returns True
if the calling thread is bound, that is, if it is
safe to use foreign libraries that rely on thread-local state from the
calling thread.
forkOSWithUnmask :: ((forall a. IO a -> IO a) -> IO ()) -> IO ThreadId #
Like forkIOWithUnmask
, but the child thread is a bound thread,
as with forkOS
.
forkFinally :: IO a -> (Either SomeException a -> IO ()) -> IO ThreadId #
Fork a thread and call the supplied function when the thread is about to terminate, with an exception or a returned value. The function is called with asynchronous exceptions masked.
forkFinally action and_then = mask $ \restore -> forkIO $ try (restore action) >>= and_then
This function is useful for informing the parent when a child terminates, for example.
Since: base-4.6.0.0
rtsSupportsBoundThreads :: Bool #
True
if bound threads are supported.
If rtsSupportsBoundThreads
is False
, isCurrentThreadBound
will always return False
and both forkOS
and runInBoundThread
will
fail.
writeList2Chan :: Chan a -> [a] -> IO () #
Write an entire list of items to a Chan
.
getChanContents :: Chan a -> IO [a] #
Return a lazy list representing the contents of the supplied
Chan
, much like hGetContents
.
dupChan :: Chan a -> IO (Chan a) #
Duplicate a Chan
: the duplicate channel begins empty, but data written to
either channel from then on will be available from both. Hence this creates
a kind of broadcast channel, where data written by anyone is seen by
everyone else.
(Note that a duplicated channel is not equal to its original.
So: fmap (c /=) $ dupChan c
returns True
for all c
.)
Read the next value from the Chan
. Blocks when the channel is empty. Since
the read end of a channel is an MVar
, this operation inherits fairness
guarantees of MVar
s (e.g. threads blocked in this operation are woken up in
FIFO order).
Throws BlockedIndefinitelyOnMVar
when the channel is empty and no other
thread holds a reference to the channel.
Chan
is an abstract type representing an unbounded FIFO channel.
signalQSem :: QSem -> IO () #
Signal that a unit of the QSem
is available
Build a new QSem
with a supplied initial quantity.
The initial quantity must be at least 0.
Build a new QSemN
with a supplied initial quantity.
The initial quantity must be at least 0.
threadDelay :: Int -> IO () #
Suspends the current thread for a given number of microseconds (GHC only).
There is no guarantee that the thread will be rescheduled promptly when the delay has expired, but the thread will never continue to run earlier than specified.
addMVarFinalizer :: MVar a -> IO () -> IO () #
modifyMVarMasked :: MVar a -> (a -> IO (a, b)) -> IO b #
Like modifyMVar
, but the IO
action in the second argument is executed with
asynchronous exceptions masked.
Since: base-4.6.0.0
modifyMVarMasked_ :: MVar a -> (a -> IO a) -> IO () #
Like modifyMVar_
, but the IO
action in the second argument is executed with
asynchronous exceptions masked.
Since: base-4.6.0.0
modifyMVar :: MVar a -> (a -> IO (a, b)) -> IO b #
A slight variation on modifyMVar_
that allows a value to be
returned (b
) in addition to the modified value of the MVar
.
modifyMVar_ :: MVar a -> (a -> IO a) -> IO () #
An exception-safe wrapper for modifying the contents of an MVar
.
Like withMVar
, modifyMVar
will replace the original contents of
the MVar
if an exception is raised during the operation. This
function is only atomic if there are no other producers for this
MVar
.
withMVarMasked :: MVar a -> (a -> IO b) -> IO b #
Like withMVar
, but the IO
action in the second argument is executed
with asynchronous exceptions masked.
Since: base-4.7.0.0
withMVar :: MVar a -> (a -> IO b) -> IO b #
withMVar
is an exception-safe wrapper for operating on the contents
of an MVar
. This operation is exception-safe: it will replace the
original contents of the MVar
if an exception is raised (see
Control.Exception). However, it is only atomic if there are no
other producers for this MVar
.
mkWeakThreadId :: ThreadId -> IO (Weak ThreadId) #
Make a weak pointer to a ThreadId
. It can be important to do
this if you want to hold a reference to a ThreadId
while still
allowing the thread to receive the BlockedIndefinitely
family of
exceptions (e.g. BlockedIndefinitelyOnMVar
). Holding a normal
ThreadId
reference will prevent the delivery of
BlockedIndefinitely
exceptions because the reference could be
used as the target of throwTo
at any time, which would unblock
the thread.
Holding a Weak ThreadId
, on the other hand, will not prevent the
thread from receiving BlockedIndefinitely
exceptions. It is
still possible to throw an exception to a Weak ThreadId
, but the
caller must use deRefWeak
first to determine whether the thread
still exists.
Since: base-4.6.0.0
threadCapability :: ThreadId -> IO (Int, Bool) #
Returns the number of the capability on which the thread is currently
running, and a boolean indicating whether the thread is locked to
that capability or not. A thread is locked to a capability if it
was created with forkOn
.
Since: base-4.4.0.0
The yield
action allows (forces, in a co-operative multitasking
implementation) a context-switch to any other currently runnable
threads (if any), and is occasionally useful when implementing
concurrency abstractions.
myThreadId :: IO ThreadId #
Returns the ThreadId
of the calling thread (GHC only).
killThread :: ThreadId -> IO () #
killThread
raises the ThreadKilled
exception in the given
thread (GHC only).
killThread tid = throwTo tid ThreadKilled
setNumCapabilities :: Int -> IO () #
Set the number of Haskell threads that can run truly simultaneously
(on separate physical processors) at any given time. The number
passed to forkOn
is interpreted modulo this value. The initial
value is given by the +RTS -N
runtime flag.
This is also the number of threads that will participate in parallel garbage collection. It is strongly recommended that the number of capabilities is not set larger than the number of physical processor cores, and it may often be beneficial to leave one or more cores free to avoid contention with other processes in the machine.
Since: base-4.5.0.0
getNumCapabilities :: IO Int #
Returns the number of Haskell threads that can run truly
simultaneously (on separate physical processors) at any given time. To change
this value, use setNumCapabilities
.
Since: base-4.4.0.0
forkIO :: IO () -> IO ThreadId #
Creates a new thread to run the IO
computation passed as the
first argument, and returns the ThreadId
of the newly created
thread.
The new thread will be a lightweight, unbound thread. Foreign calls
made by this thread are not guaranteed to be made by any particular OS
thread; if you need foreign calls to be made by a particular OS
thread, then use forkOS
instead.
The new thread inherits the masked state of the parent (see
mask
).
The newly created thread has an exception handler that discards the
exceptions BlockedIndefinitelyOnMVar
, BlockedIndefinitelyOnSTM
, and
ThreadKilled
, and passes all other exceptions to the uncaught
exception handler.
isEmptyMVar :: MVar a -> IO Bool #
Check whether a given MVar
is empty.
Notice that the boolean value returned is just a snapshot of
the state of the MVar. By the time you get to react on its result,
the MVar may have been filled (or emptied) - so be extremely
careful when using this operation. Use tryTakeMVar
instead if possible.
tryReadMVar :: MVar a -> IO (Maybe a) #
tryPutMVar :: MVar a -> a -> IO Bool #
A non-blocking version of putMVar
. The tryPutMVar
function
attempts to put the value a
into the MVar
, returning True
if
it was successful, or False
otherwise.
tryTakeMVar :: MVar a -> IO (Maybe a) #
A non-blocking version of takeMVar
. The tryTakeMVar
function
returns immediately, with Nothing
if the MVar
was empty, or
if the Just
aMVar
was full with contents a
. After tryTakeMVar
,
the MVar
is left empty.
putMVar :: MVar a -> a -> IO () #
Put a value into an MVar
. If the MVar
is currently full,
putMVar
will wait until it becomes empty.
There are two further important properties of putMVar
:
putMVar
is single-wakeup. That is, if there are multiple threads blocked inputMVar
, and theMVar
becomes empty, only one thread will be woken up. The runtime guarantees that the woken thread completes itsputMVar
operation.- When multiple threads are blocked on an
MVar
, they are woken up in FIFO order. This is useful for providing fairness properties of abstractions built usingMVar
s.
Atomically read the contents of an MVar
. If the MVar
is
currently empty, readMVar
will wait until it is full.
readMVar
is guaranteed to receive the next putMVar
.
readMVar
is multiple-wakeup, so when multiple readers are
blocked on an MVar
, all of them are woken up at the same time.
Compatibility note: Prior to base 4.7, readMVar
was a combination
of takeMVar
and putMVar
. This mean that in the presence of
other threads attempting to putMVar
, readMVar
could block.
Furthermore, readMVar
would not receive the next putMVar
if there
was already a pending thread blocked on takeMVar
. The old behavior
can be recovered by implementing 'readMVar as follows:
readMVar :: MVar a -> IO a readMVar m = mask_ $ do a <- takeMVar m putMVar m a return a
Return the contents of the MVar
. If the MVar
is currently
empty, takeMVar
will wait until it is full. After a takeMVar
,
the MVar
is left empty.
There are two further important properties of takeMVar
:
takeMVar
is single-wakeup. That is, if there are multiple threads blocked intakeMVar
, and theMVar
becomes full, only one thread will be woken up. The runtime guarantees that the woken thread completes itstakeMVar
operation.- When multiple threads are blocked on an
MVar
, they are woken up in FIFO order. This is useful for providing fairness properties of abstractions built usingMVar
s.
newEmptyMVar :: IO (MVar a) #
Create an MVar
which is initially empty.
An MVar
(pronounced "em-var") is a synchronising variable, used
for communication between concurrent threads. It can be thought of
as a box, which may be empty or full.
Instances
NFData1 MVar | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Eq (MVar a) | Since: base-4.1.0.0 |
NFData (MVar a) | NOTE: Only strict in the reference and not the referenced value. Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq |
Foreign functions
A stable pointer is a reference to a Haskell expression that is guaranteed not to be affected by garbage collection, i.e., it will neither be deallocated nor will the value of the stable pointer itself change during garbage collection (ordinary references may be relocated during garbage collection). Consequently, stable pointers can be passed to foreign code, which can treat it as an opaque reference to a Haskell value.
A value of type StablePtr a
is a stable pointer to a Haskell
expression of type a
.
Instances
Eq (StablePtr a) | Since: base-2.1 |
Storable (StablePtr a) | Since: base-2.1 |
Defined in Foreign.Storable Methods sizeOf :: StablePtr a -> Int # alignment :: StablePtr a -> Int # peekElemOff :: Ptr (StablePtr a) -> Int -> IO (StablePtr a) # pokeElemOff :: Ptr (StablePtr a) -> Int -> StablePtr a -> IO () # peekByteOff :: Ptr b -> Int -> IO (StablePtr a) # pokeByteOff :: Ptr b -> Int -> StablePtr a -> IO () # |
An unsigned integral type that can be losslessly converted to and from
Ptr
. This type is also compatible with the C99 type uintptr_t
, and
can be marshalled to and from that type safely.
Instances
A signed integral type that can be losslessly converted to and from
Ptr
. This type is also compatible with the C99 type intptr_t
, and
can be marshalled to and from that type safely.
Instances
The member functions of this class facilitate writing values of primitive types to raw memory (which may have been allocated with the above mentioned routines) and reading values from blocks of raw memory. The class, furthermore, includes support for computing the storage requirements and alignment restrictions of storable types.
Memory addresses are represented as values of type
, for some
Ptr
aa
which is an instance of class Storable
. The type argument to
Ptr
helps provide some valuable type safety in FFI code (you can't
mix pointers of different types without an explicit cast), while
helping the Haskell type system figure out which marshalling method is
needed for a given pointer.
All marshalling between Haskell and a foreign language ultimately
boils down to translating Haskell data structures into the binary
representation of a corresponding data structure of the foreign
language and vice versa. To code this marshalling in Haskell, it is
necessary to manipulate primitive data types stored in unstructured
memory blocks. The class Storable
facilitates this manipulation on
all types for which it is instantiated, which are the standard basic
types of Haskell, the fixed size Int
types (Int8
, Int16
,
Int32
, Int64
), the fixed size Word
types (Word8
, Word16
,
Word32
, Word64
), StablePtr
, all types from Foreign.C.Types,
as well as Ptr
.
Minimal complete definition
sizeOf, alignment, (peek | peekElemOff | peekByteOff), (poke | pokeElemOff | pokeByteOff)