| Copyright | (C) 2012-16 Edward Kmett |
|---|---|
| License | BSD-style (see the file LICENSE) |
| Maintainer | Edward Kmett <ekmett@gmail.com> |
| Stability | provisional |
| Portability | Rank2Types |
| Safe Haskell | Trustworthy |
| Language | Haskell2010 |
Control.Lens.Setter
Description
A is a generalization of Setter s t a bfmap from Functor. It allows you to map into a
structure and change out the contents, but it isn't strong enough to allow you to
enumerate those contents. Starting with
we monomorphize the type to obtain fmap :: Functor f => (a -> b) -> f a -> f b(a -> b) -> s -> t and then decorate it with Identity to obtain:
typeSetters t a b = (a ->Identityb) -> s ->Identityt
Every Traversal is a valid Setter, since Identity is Applicative.
Everything you can do with a Functor, you can do with a Setter. There
are combinators that generalize fmap and (<$).
Synopsis
- type Setter s t a b = forall f. Settable f => (a -> f b) -> s -> f t
- type Setter' s a = Setter s s a a
- type IndexedSetter i s t a b = forall f p. (Indexable i p, Settable f) => p a (f b) -> s -> f t
- type IndexedSetter' i s a = IndexedSetter i s s a a
- type ASetter s t a b = (a -> Identity b) -> s -> Identity t
- type ASetter' s a = ASetter s s a a
- type AnIndexedSetter i s t a b = Indexed i a (Identity b) -> s -> Identity t
- type AnIndexedSetter' i s a = AnIndexedSetter i s s a a
- type Setting p s t a b = p a (Identity b) -> s -> Identity t
- type Setting' p s a = Setting p s s a a
- sets :: (Profunctor p, Profunctor q, Settable f) => (p a b -> q s t) -> Optical p q f s t a b
- setting :: ((a -> b) -> s -> t) -> IndexPreservingSetter s t a b
- cloneSetter :: ASetter s t a b -> Setter s t a b
- cloneIndexPreservingSetter :: ASetter s t a b -> IndexPreservingSetter s t a b
- cloneIndexedSetter :: AnIndexedSetter i s t a b -> IndexedSetter i s t a b
- mapped :: Functor f => Setter (f a) (f b) a b
- lifted :: Monad m => Setter (m a) (m b) a b
- contramapped :: Contravariant f => Setter (f b) (f a) a b
- argument :: Profunctor p => Setter (p b r) (p a r) a b
- over :: ASetter s t a b -> (a -> b) -> s -> t
- set :: ASetter s t a b -> b -> s -> t
- (.~) :: ASetter s t a b -> b -> s -> t
- (%~) :: ASetter s t a b -> (a -> b) -> s -> t
- (+~) :: Num a => ASetter s t a a -> a -> s -> t
- (-~) :: Num a => ASetter s t a a -> a -> s -> t
- (*~) :: Num a => ASetter s t a a -> a -> s -> t
- (//~) :: Fractional a => ASetter s t a a -> a -> s -> t
- (^~) :: (Num a, Integral e) => ASetter s t a a -> e -> s -> t
- (^^~) :: (Fractional a, Integral e) => ASetter s t a a -> e -> s -> t
- (**~) :: Floating a => ASetter s t a a -> a -> s -> t
- (||~) :: ASetter s t Bool Bool -> Bool -> s -> t
- (<>~) :: Semigroup a => ASetter s t a a -> a -> s -> t
- (&&~) :: ASetter s t Bool Bool -> Bool -> s -> t
- (<.~) :: ASetter s t a b -> b -> s -> (b, t)
- (?~) :: ASetter s t a (Maybe b) -> b -> s -> t
- (<?~) :: ASetter s t a (Maybe b) -> b -> s -> (b, t)
- assign :: MonadState s m => ASetter s s a b -> b -> m ()
- modifying :: MonadState s m => ASetter s s a b -> (a -> b) -> m ()
- (.=) :: MonadState s m => ASetter s s a b -> b -> m ()
- (%=) :: MonadState s m => ASetter s s a b -> (a -> b) -> m ()
- (+=) :: (MonadState s m, Num a) => ASetter' s a -> a -> m ()
- (-=) :: (MonadState s m, Num a) => ASetter' s a -> a -> m ()
- (*=) :: (MonadState s m, Num a) => ASetter' s a -> a -> m ()
- (//=) :: (MonadState s m, Fractional a) => ASetter' s a -> a -> m ()
- (^=) :: (MonadState s m, Num a, Integral e) => ASetter' s a -> e -> m ()
- (^^=) :: (MonadState s m, Fractional a, Integral e) => ASetter' s a -> e -> m ()
- (**=) :: (MonadState s m, Floating a) => ASetter' s a -> a -> m ()
- (||=) :: MonadState s m => ASetter' s Bool -> Bool -> m ()
- (<>=) :: (MonadState s m, Semigroup a) => ASetter' s a -> a -> m ()
- (&&=) :: MonadState s m => ASetter' s Bool -> Bool -> m ()
- (<.=) :: MonadState s m => ASetter s s a b -> b -> m b
- (?=) :: MonadState s m => ASetter s s a (Maybe b) -> b -> m ()
- (<?=) :: MonadState s m => ASetter s s a (Maybe b) -> b -> m b
- (<~) :: MonadState s m => ASetter s s a b -> m b -> m ()
- scribe :: (MonadWriter t m, Monoid s) => ASetter s t a b -> b -> m ()
- passing :: MonadWriter w m => Setter w w u v -> m (a, u -> v) -> m a
- ipassing :: MonadWriter w m => IndexedSetter i w w u v -> m (a, i -> u -> v) -> m a
- censoring :: MonadWriter w m => Setter w w u v -> (u -> v) -> m a -> m a
- icensoring :: MonadWriter w m => IndexedSetter i w w u v -> (i -> u -> v) -> m a -> m a
- locally :: MonadReader s m => ASetter s s a b -> (a -> b) -> m r -> m r
- ilocally :: MonadReader s m => AnIndexedSetter i s s a b -> (i -> a -> b) -> m r -> m r
- set' :: ASetter' s a -> a -> s -> s
- imapOf :: AnIndexedSetter i s t a b -> (i -> a -> b) -> s -> t
- iover :: AnIndexedSetter i s t a b -> (i -> a -> b) -> s -> t
- iset :: AnIndexedSetter i s t a b -> (i -> b) -> s -> t
- imodifying :: MonadState s m => AnIndexedSetter i s s a b -> (i -> a -> b) -> m ()
- isets :: ((i -> a -> b) -> s -> t) -> IndexedSetter i s t a b
- (%@~) :: AnIndexedSetter i s t a b -> (i -> a -> b) -> s -> t
- (.@~) :: AnIndexedSetter i s t a b -> (i -> b) -> s -> t
- (%@=) :: MonadState s m => AnIndexedSetter i s s a b -> (i -> a -> b) -> m ()
- (.@=) :: MonadState s m => AnIndexedSetter i s s a b -> (i -> b) -> m ()
- assignA :: Arrow p => ASetter s t a b -> p s b -> p s t
- class (Applicative f, Distributive f, Traversable f) => Settable f
- newtype Identity a = Identity {
- runIdentity :: a
- mapOf :: ASetter s t a b -> (a -> b) -> s -> t
Setters
type Setter s t a b = forall f. Settable f => (a -> f b) -> s -> f t Source #
The only LensLike law that can apply to a Setter l is that
setl y (setl x a) ≡setl y a
You can't view a Setter in general, so the other two laws are irrelevant.
However, two Functor laws apply to a Setter:
overlid≡idoverl f.overl g ≡overl (f.g)
These can be stated more directly:
lpure≡purel f.untainted.l g ≡ l (f.untainted.g)
You can compose a Setter with a Lens or a Traversal using (.) from the Prelude
and the result is always only a Setter and nothing more.
>>>over traverse f [a,b,c,d][f a,f b,f c,f d]
>>>over _1 f (a,b)(f a,b)
>>>over (traverse._1) f [(a,b),(c,d)][(f a,b),(f c,d)]
>>>over both f (a,b)(f a,f b)
>>>over (traverse.both) f [(a,b),(c,d)][(f a,f b),(f c,f d)]
type IndexedSetter i s t a b = forall f p. (Indexable i p, Settable f) => p a (f b) -> s -> f t Source #
Every IndexedSetter is a valid Setter.
The Setter laws are still required to hold.
type IndexedSetter' i s a = IndexedSetter i s s a a Source #
typeIndexedSetter'i =Simple(IndexedSetteri)
type ASetter s t a b = (a -> Identity b) -> s -> Identity t Source #
Running a Setter instantiates it to a concrete type.
When consuming a setter directly to perform a mapping, you can use this type, but most user code will not need to use this type.
type AnIndexedSetter i s t a b = Indexed i a (Identity b) -> s -> Identity t Source #
Running an IndexedSetter instantiates it to a concrete type.
When consuming a setter directly to perform a mapping, you can use this type, but most user code will not need to use this type.
type AnIndexedSetter' i s a = AnIndexedSetter i s s a a Source #
typeAnIndexedSetter'i =Simple(AnIndexedSetteri)
type Setting p s t a b = p a (Identity b) -> s -> Identity t Source #
This is a convenient alias when defining highly polymorphic code that takes both
ASetter and AnIndexedSetter as appropriate. If a function takes this it is
expecting one of those two things based on context.
type Setting' p s a = Setting p s s a a Source #
This is a convenient alias when defining highly polymorphic code that takes both
ASetter' and AnIndexedSetter' as appropriate. If a function takes this it is
expecting one of those two things based on context.
Building Setters
sets :: (Profunctor p, Profunctor q, Settable f) => (p a b -> q s t) -> Optical p q f s t a b Source #
Build a Setter, IndexedSetter or IndexPreservingSetter depending on your choice of Profunctor.
sets:: ((a -> b) -> s -> t) ->Setters t a b
setting :: ((a -> b) -> s -> t) -> IndexPreservingSetter s t a b Source #
Build an index-preserving Setter from a map-like function.
Your supplied function f is required to satisfy:
fid≡idf g.f h ≡ f (g.h)
Equational reasoning:
setting.over≡idover.setting≡id
Another way to view sets is that it takes a "semantic editor combinator"
and transforms it into a Setter.
setting:: ((a -> b) -> s -> t) ->Setters t a b
cloneIndexPreservingSetter :: ASetter s t a b -> IndexPreservingSetter s t a b Source #
Build an IndexPreservingSetter from any Setter.
cloneIndexedSetter :: AnIndexedSetter i s t a b -> IndexedSetter i s t a b Source #
Clone an IndexedSetter.
Common Setters
mapped :: Functor f => Setter (f a) (f b) a b Source #
This Setter can be used to map over all of the values in a Functor.
fmap≡overmappedfmapDefault≡overtraverse(<$) ≡setmapped
>>>over mapped f [a,b,c][f a,f b,f c]
>>>over mapped (+1) [1,2,3][2,3,4]
>>>set mapped x [a,b,c][x,x,x]
>>>[[a,b],[c]] & mapped.mapped +~ x[[a + x,b + x],[c + x]]
>>>over (mapped._2) length [("hello","world"),("leaders","!!!")][("hello",5),("leaders",3)]
mapped::Functorf =>Setter(f a) (f b) a b
If you want an IndexPreservingSetter use .setting fmap
lifted :: Monad m => Setter (m a) (m b) a b Source #
This setter can be used to modify all of the values in a Monad.
You sometimes have to use this rather than mapped -- due to
temporary insanity Functor was not a superclass of Monad until
GHC 7.10.
liftM≡overlifted
>>>over lifted f [a,b,c][f a,f b,f c]
>>>set lifted b (Just a)Just b
If you want an IndexPreservingSetter use .setting liftM
contramapped :: Contravariant f => Setter (f b) (f a) a b Source #
This Setter can be used to map over all of the inputs to a Contravariant.
contramap≡overcontramapped
>>>getPredicate (over contramapped (*2) (Predicate even)) 5True
>>>getOp (over contramapped (*5) (Op show)) 100"500"
>>>Prelude.map ($ 1) $ over (mapped . _Unwrapping' Op . contramapped) (*12) [(*2),(+1),(^3)][24,13,1728]
argument :: Profunctor p => Setter (p b r) (p a r) a b Source #
This Setter can be used to map over the input of a Profunctor.
The most common Profunctor to use this with is (->).
>>>(argument %~ f) g xg (f x)
>>>(argument %~ show) length [1,2,3]7
>>>(argument %~ f) h x yh (f x) y
Map over the argument of the result of a function -- i.e., its second argument:
>>>(mapped.argument %~ f) h x yh x (f y)
argument::Setter(b -> r) (a -> r) a b
Functional Combinators
over :: ASetter s t a b -> (a -> b) -> s -> t Source #
Modify the target of a Lens or all the targets of a Setter or Traversal
with a function.
fmap≡overmappedfmapDefault≡overtraversesets.over≡idover.sets≡id
Given any valid Setter l, you can also rely on the law:
overl f.overl g =overl (f.g)
e.g.
>>>over mapped f (over mapped g [a,b,c]) == over mapped (f . g) [a,b,c]True
Another way to view over is to say that it transforms a Setter into a
"semantic editor combinator".
>>>over mapped f (Just a)Just (f a)
>>>over mapped (*10) [1,2,3][10,20,30]
>>>over _1 f (a,b)(f a,b)
>>>over _1 show (10,20)("10",20)
over::Setters t a b -> (a -> b) -> s -> tover::ASetters t a b -> (a -> b) -> s -> t
set :: ASetter s t a b -> b -> s -> t Source #
Replace the target of a Lens or all of the targets of a Setter
or Traversal with a constant value.
(<$) ≡setmapped
>>>set _2 "hello" (1,())(1,"hello")
>>>set mapped () [1,2,3,4][(),(),(),()]
Note: Attempting to set a Fold or Getter will fail at compile time with an
relatively nice error message.
set::Setters t a b -> b -> s -> tset::Isos t a b -> b -> s -> tset::Lenss t a b -> b -> s -> tset::Traversals t a b -> b -> s -> t
(.~) :: ASetter s t a b -> b -> s -> t infixr 4 Source #
Replace the target of a Lens or all of the targets of a Setter
or Traversal with a constant value.
This is an infix version of set, provided for consistency with (.=).
f<$a ≡mapped.~f$a
>>>(a,b,c,d) & _4 .~ e(a,b,c,e)
>>>(42,"world") & _1 .~ "hello"("hello","world")
>>>(a,b) & both .~ c(c,c)
(.~) ::Setters t a b -> b -> s -> t (.~) ::Isos t a b -> b -> s -> t (.~) ::Lenss t a b -> b -> s -> t (.~) ::Traversals t a b -> b -> s -> t
(%~) :: ASetter s t a b -> (a -> b) -> s -> t infixr 4 Source #
Modifies the target of a Lens or all of the targets of a Setter or
Traversal with a user supplied function.
This is an infix version of over.
fmapf ≡mapped%~ffmapDefaultf ≡traverse%~f
>>>(a,b,c) & _3 %~ f(a,b,f c)
>>>(a,b) & both %~ f(f a,f b)
>>>_2 %~ length $ (1,"hello")(1,5)
>>>traverse %~ f $ [a,b,c][f a,f b,f c]
>>>traverse %~ even $ [1,2,3][False,True,False]
>>>traverse.traverse %~ length $ [["hello","world"],["!!!"]][[5,5],[3]]
(%~) ::Setters t a b -> (a -> b) -> s -> t (%~) ::Isos t a b -> (a -> b) -> s -> t (%~) ::Lenss t a b -> (a -> b) -> s -> t (%~) ::Traversals t a b -> (a -> b) -> s -> t
(+~) :: Num a => ASetter s t a a -> a -> s -> t infixr 4 Source #
Increment the target(s) of a numerically valued Lens, Setter or Traversal.
>>>(a,b) & _1 +~ c(a + c,b)
>>>(a,b) & both +~ c(a + c,b + c)
>>>(1,2) & _2 +~ 1(1,3)
>>>[(a,b),(c,d)] & traverse.both +~ e[(a + e,b + e),(c + e,d + e)]
(+~) ::Numa =>Setter's a -> a -> s -> s (+~) ::Numa =>Iso's a -> a -> s -> s (+~) ::Numa =>Lens's a -> a -> s -> s (+~) ::Numa =>Traversal's a -> a -> s -> s
(-~) :: Num a => ASetter s t a a -> a -> s -> t infixr 4 Source #
Decrement the target(s) of a numerically valued Lens, Iso, Setter or Traversal.
>>>(a,b) & _1 -~ c(a - c,b)
>>>(a,b) & both -~ c(a - c,b - c)
>>>_1 -~ 2 $ (1,2)(-1,2)
>>>mapped.mapped -~ 1 $ [[4,5],[6,7]][[3,4],[5,6]]
(-~) ::Numa =>Setter's a -> a -> s -> s (-~) ::Numa =>Iso's a -> a -> s -> s (-~) ::Numa =>Lens's a -> a -> s -> s (-~) ::Numa =>Traversal's a -> a -> s -> s
(*~) :: Num a => ASetter s t a a -> a -> s -> t infixr 4 Source #
Multiply the target(s) of a numerically valued Lens, Iso, Setter or Traversal.
>>>(a,b) & _1 *~ c(a * c,b)
>>>(a,b) & both *~ c(a * c,b * c)
>>>(1,2) & _2 *~ 4(1,8)
>>>Just 24 & mapped *~ 2Just 48
(*~) ::Numa =>Setter's a -> a -> s -> s (*~) ::Numa =>Iso's a -> a -> s -> s (*~) ::Numa =>Lens's a -> a -> s -> s (*~) ::Numa =>Traversal's a -> a -> s -> s
(//~) :: Fractional a => ASetter s t a a -> a -> s -> t infixr 4 Source #
Divide the target(s) of a numerically valued Lens, Iso, Setter or Traversal.
>>>(a,b) & _1 //~ c(a / c,b)
>>>(a,b) & both //~ c(a / c,b / c)
>>>("Hawaii",10) & _2 //~ 2("Hawaii",5.0)
(//~) ::Fractionala =>Setter's a -> a -> s -> s (//~) ::Fractionala =>Iso's a -> a -> s -> s (//~) ::Fractionala =>Lens's a -> a -> s -> s (//~) ::Fractionala =>Traversal's a -> a -> s -> s
(^~) :: (Num a, Integral e) => ASetter s t a a -> e -> s -> t infixr 4 Source #
Raise the target(s) of a numerically valued Lens, Setter or Traversal to a non-negative integral power.
>>>(1,3) & _2 ^~ 2(1,9)
(^~) :: (Numa,Integrale) =>Setter's a -> e -> s -> s (^~) :: (Numa,Integrale) =>Iso's a -> e -> s -> s (^~) :: (Numa,Integrale) =>Lens's a -> e -> s -> s (^~) :: (Numa,Integrale) =>Traversal's a -> e -> s -> s
(^^~) :: (Fractional a, Integral e) => ASetter s t a a -> e -> s -> t infixr 4 Source #
Raise the target(s) of a fractionally valued Lens, Setter or Traversal to an integral power.
>>>(1,2) & _2 ^^~ (-1)(1,0.5)
(^^~) :: (Fractionala,Integrale) =>Setter's a -> e -> s -> s (^^~) :: (Fractionala,Integrale) =>Iso's a -> e -> s -> s (^^~) :: (Fractionala,Integrale) =>Lens's a -> e -> s -> s (^^~) :: (Fractionala,Integrale) =>Traversal's a -> e -> s -> s
(**~) :: Floating a => ASetter s t a a -> a -> s -> t infixr 4 Source #
Raise the target(s) of a floating-point valued Lens, Setter or Traversal to an arbitrary power.
>>>(a,b) & _1 **~ c(a**c,b)
>>>(a,b) & both **~ c(a**c,b**c)
>>>_2 **~ 10 $ (3,2)(3,1024.0)
(**~) ::Floatinga =>Setter's a -> a -> s -> s (**~) ::Floatinga =>Iso's a -> a -> s -> s (**~) ::Floatinga =>Lens's a -> a -> s -> s (**~) ::Floatinga =>Traversal's a -> a -> s -> s
(||~) :: ASetter s t Bool Bool -> Bool -> s -> t infixr 4 Source #
Logically || the target(s) of a Bool-valued Lens or Setter.
>>>both ||~ True $ (False,True)(True,True)
>>>both ||~ False $ (False,True)(False,True)
(||~) ::Setter'sBool->Bool-> s -> s (||~) ::Iso'sBool->Bool-> s -> s (||~) ::Lens'sBool->Bool-> s -> s (||~) ::Traversal'sBool->Bool-> s -> s
(<>~) :: Semigroup a => ASetter s t a a -> a -> s -> t infixr 4 Source #
Modify the target of a Semigroup value by using (.<>)
>>>(Sum a,b) & _1 <>~ Sum c(Sum {getSum = a + c},b)
>>>(Sum a,Sum b) & both <>~ Sum c(Sum {getSum = a + c},Sum {getSum = b + c})
>>>both <>~ "!!!" $ ("hello","world")("hello!!!","world!!!")
(<>~) ::Semigroupa =>Setters t a a -> a -> s -> t (<>~) ::Semigroupa =>Isos t a a -> a -> s -> t (<>~) ::Semigroupa =>Lenss t a a -> a -> s -> t (<>~) ::Semigroupa =>Traversals t a a -> a -> s -> t
(&&~) :: ASetter s t Bool Bool -> Bool -> s -> t infixr 4 Source #
Logically && the target(s) of a Bool-valued Lens or Setter.
>>>both &&~ True $ (False, True)(False,True)
>>>both &&~ False $ (False, True)(False,False)
(&&~) ::Setter'sBool->Bool-> s -> s (&&~) ::Iso'sBool->Bool-> s -> s (&&~) ::Lens'sBool->Bool-> s -> s (&&~) ::Traversal'sBool->Bool-> s -> s
(<.~) :: ASetter s t a b -> b -> s -> (b, t) infixr 4 Source #
Set with pass-through.
This is mostly present for consistency, but may be useful for chaining assignments.
If you do not need a copy of the intermediate result, then using l directly is a good idea..~ t
>>>(a,b) & _1 <.~ c(c,(c,b))
>>>("good","morning","vietnam") & _3 <.~ "world"("world",("good","morning","world"))
>>>(42,Map.fromList [("goodnight","gracie")]) & _2.at "hello" <.~ Just "world"(Just "world",(42,fromList [("goodnight","gracie"),("hello","world")]))
(<.~) ::Setters t a b -> b -> s -> (b, t) (<.~) ::Isos t a b -> b -> s -> (b, t) (<.~) ::Lenss t a b -> b -> s -> (b, t) (<.~) ::Traversals t a b -> b -> s -> (b, t)
(?~) :: ASetter s t a (Maybe b) -> b -> s -> t infixr 4 Source #
Set the target of a Lens, Traversal or Setter to Just a value.
l?~t ≡setl (Justt)
>>>Nothing & id ?~ aJust a
>>>Map.empty & at 3 ?~ xfromList [(3,x)]
?~ can be used type-changily:
>>>('a', ('b', 'c')) & _2.both ?~ 'x'('a',(Just 'x',Just 'x'))
(?~) ::Setters t a (Maybeb) -> b -> s -> t (?~) ::Isos t a (Maybeb) -> b -> s -> t (?~) ::Lenss t a (Maybeb) -> b -> s -> t (?~) ::Traversals t a (Maybeb) -> b -> s -> t
(<?~) :: ASetter s t a (Maybe b) -> b -> s -> (b, t) infixr 4 Source #
Set to Just a value with pass-through.
This is mostly present for consistency, but may be useful for for chaining assignments.
If you do not need a copy of the intermediate result, then using l directly is a good idea.?~ d
>>>import qualified Data.Map as Map>>>_2.at "hello" <?~ "world" $ (42,Map.fromList [("goodnight","gracie")])("world",(42,fromList [("goodnight","gracie"),("hello","world")]))
(<?~) ::Setters t a (Maybeb) -> b -> s -> (b, t) (<?~) ::Isos t a (Maybeb) -> b -> s -> (b, t) (<?~) ::Lenss t a (Maybeb) -> b -> s -> (b, t) (<?~) ::Traversals t a (Maybeb) -> b -> s -> (b, t)
State Combinators
assign :: MonadState s m => ASetter s s a b -> b -> m () Source #
Replace the target of a Lens or all of the targets of a Setter or Traversal in our monadic
state with a new value, irrespective of the old.
This is an alias for (.=).
>>>execState (do assign _1 c; assign _2 d) (a,b)(c,d)
>>>execState (both .= c) (a,b)(c,c)
assign::MonadStates m =>Iso's a -> a -> m ()assign::MonadStates m =>Lens's a -> a -> m ()assign::MonadStates m =>Traversal's a -> a -> m ()assign::MonadStates m =>Setter's a -> a -> m ()
modifying :: MonadState s m => ASetter s s a b -> (a -> b) -> m () Source #
This is an alias for (%=).
(.=) :: MonadState s m => ASetter s s a b -> b -> m () infix 4 Source #
Replace the target of a Lens or all of the targets of a Setter
or Traversal in our monadic state with a new value, irrespective of the
old.
This is an infix version of assign.
>>>execState (do _1 .= c; _2 .= d) (a,b)(c,d)
>>>execState (both .= c) (a,b)(c,c)
(.=) ::MonadStates m =>Iso's a -> a -> m () (.=) ::MonadStates m =>Lens's a -> a -> m () (.=) ::MonadStates m =>Traversal's a -> a -> m () (.=) ::MonadStates m =>Setter's a -> a -> m ()
It puts the state in the monad or it gets the hose again.
(%=) :: MonadState s m => ASetter s s a b -> (a -> b) -> m () infix 4 Source #
Map over the target of a Lens or all of the targets of a Setter or Traversal in our monadic state.
>>>execState (do _1 %= f;_2 %= g) (a,b)(f a,g b)
>>>execState (do both %= f) (a,b)(f a,f b)
(%=) ::MonadStates m =>Iso's a -> (a -> a) -> m () (%=) ::MonadStates m =>Lens's a -> (a -> a) -> m () (%=) ::MonadStates m =>Traversal's a -> (a -> a) -> m () (%=) ::MonadStates m =>Setter's a -> (a -> a) -> m ()
(%=) ::MonadStates m =>ASetters s a b -> (a -> b) -> m ()
(+=) :: (MonadState s m, Num a) => ASetter' s a -> a -> m () infix 4 Source #
Modify the target(s) of a Lens', Iso, Setter or Traversal by adding a value.
Example:
fresh::MonadStateIntm => mIntfresh= doid+=1useid
>>>execState (do _1 += c; _2 += d) (a,b)(a + c,b + d)
>>>execState (do _1.at 1.non 0 += 10) (Map.fromList [(2,100)],"hello")(fromList [(1,10),(2,100)],"hello")
(+=) :: (MonadStates m,Numa) =>Setter's a -> a -> m () (+=) :: (MonadStates m,Numa) =>Iso's a -> a -> m () (+=) :: (MonadStates m,Numa) =>Lens's a -> a -> m () (+=) :: (MonadStates m,Numa) =>Traversal's a -> a -> m ()
(-=) :: (MonadState s m, Num a) => ASetter' s a -> a -> m () infix 4 Source #
Modify the target(s) of a Lens', Iso, Setter or Traversal by subtracting a value.
>>>execState (do _1 -= c; _2 -= d) (a,b)(a - c,b - d)
(-=) :: (MonadStates m,Numa) =>Setter's a -> a -> m () (-=) :: (MonadStates m,Numa) =>Iso's a -> a -> m () (-=) :: (MonadStates m,Numa) =>Lens's a -> a -> m () (-=) :: (MonadStates m,Numa) =>Traversal's a -> a -> m ()
(*=) :: (MonadState s m, Num a) => ASetter' s a -> a -> m () infix 4 Source #
Modify the target(s) of a Lens', Iso, Setter or Traversal by multiplying by value.
>>>execState (do _1 *= c; _2 *= d) (a,b)(a * c,b * d)
(*=) :: (MonadStates m,Numa) =>Setter's a -> a -> m () (*=) :: (MonadStates m,Numa) =>Iso's a -> a -> m () (*=) :: (MonadStates m,Numa) =>Lens's a -> a -> m () (*=) :: (MonadStates m,Numa) =>Traversal's a -> a -> m ()
(//=) :: (MonadState s m, Fractional a) => ASetter' s a -> a -> m () infix 4 Source #
Modify the target(s) of a Lens', Iso, Setter or Traversal by dividing by a value.
>>>execState (do _1 //= c; _2 //= d) (a,b)(a / c,b / d)
(//=) :: (MonadStates m,Fractionala) =>Setter's a -> a -> m () (//=) :: (MonadStates m,Fractionala) =>Iso's a -> a -> m () (//=) :: (MonadStates m,Fractionala) =>Lens's a -> a -> m () (//=) :: (MonadStates m,Fractionala) =>Traversal's a -> a -> m ()
(^=) :: (MonadState s m, Num a, Integral e) => ASetter' s a -> e -> m () infix 4 Source #
Raise the target(s) of a numerically valued Lens, Setter or Traversal to a non-negative integral power.
(^=) :: (MonadStates m,Numa,Integrale) =>Setter's a -> e -> m () (^=) :: (MonadStates m,Numa,Integrale) =>Iso's a -> e -> m () (^=) :: (MonadStates m,Numa,Integrale) =>Lens's a -> e -> m () (^=) :: (MonadStates m,Numa,Integrale) =>Traversal's a -> e -> m ()
(^^=) :: (MonadState s m, Fractional a, Integral e) => ASetter' s a -> e -> m () infix 4 Source #
Raise the target(s) of a numerically valued Lens, Setter or Traversal to an integral power.
(^^=) :: (MonadStates m,Fractionala,Integrale) =>Setter's a -> e -> m () (^^=) :: (MonadStates m,Fractionala,Integrale) =>Iso's a -> e -> m () (^^=) :: (MonadStates m,Fractionala,Integrale) =>Lens's a -> e -> m () (^^=) :: (MonadStates m,Fractionala,Integrale) =>Traversal's a -> e -> m ()
(**=) :: (MonadState s m, Floating a) => ASetter' s a -> a -> m () infix 4 Source #
Raise the target(s) of a numerically valued Lens, Setter or Traversal to an arbitrary power
>>>execState (do _1 **= c; _2 **= d) (a,b)(a**c,b**d)
(**=) :: (MonadStates m,Floatinga) =>Setter's a -> a -> m () (**=) :: (MonadStates m,Floatinga) =>Iso's a -> a -> m () (**=) :: (MonadStates m,Floatinga) =>Lens's a -> a -> m () (**=) :: (MonadStates m,Floatinga) =>Traversal's a -> a -> m ()
(||=) :: MonadState s m => ASetter' s Bool -> Bool -> m () infix 4 Source #
Modify the target(s) of a Lens', 'Iso, Setter or Traversal by taking their logical || with a value.
>>>execState (do _1 ||= True; _2 ||= False; _3 ||= True; _4 ||= False) (True,True,False,False)(True,True,True,False)
(||=) ::MonadStates m =>Setter'sBool->Bool-> m () (||=) ::MonadStates m =>Iso'sBool->Bool-> m () (||=) ::MonadStates m =>Lens'sBool->Bool-> m () (||=) ::MonadStates m =>Traversal'sBool->Bool-> m ()
(<>=) :: (MonadState s m, Semigroup a) => ASetter' s a -> a -> m () infix 4 Source #
Modify the target(s) of a Lens', Iso, Setter or Traversal by using (.<>)
>>>execState (do _1 <>= Sum c; _2 <>= Product d) (Sum a,Product b)(Sum {getSum = a + c},Product {getProduct = b * d})
>>>execState (both <>= "!!!") ("hello","world")("hello!!!","world!!!")
(<>=) :: (MonadStates m,Semigroupa) =>Setter's a -> a -> m () (<>=) :: (MonadStates m,Semigroupa) =>Iso's a -> a -> m () (<>=) :: (MonadStates m,Semigroupa) =>Lens's a -> a -> m () (<>=) :: (MonadStates m,Semigroupa) =>Traversal's a -> a -> m ()
(&&=) :: MonadState s m => ASetter' s Bool -> Bool -> m () infix 4 Source #
Modify the target(s) of a Lens', Iso, Setter or Traversal by taking their logical && with a value.
>>>execState (do _1 &&= True; _2 &&= False; _3 &&= True; _4 &&= False) (True,True,False,False)(True,False,False,False)
(&&=) ::MonadStates m =>Setter'sBool->Bool-> m () (&&=) ::MonadStates m =>Iso'sBool->Bool-> m () (&&=) ::MonadStates m =>Lens'sBool->Bool-> m () (&&=) ::MonadStates m =>Traversal'sBool->Bool-> m ()
(<.=) :: MonadState s m => ASetter s s a b -> b -> m b infix 4 Source #
Set with pass-through
This is useful for chaining assignment without round-tripping through your Monad stack.
do x <-_2<.=ninety_nine_bottles_of_beer_on_the_wall
If you do not need a copy of the intermediate result, then using l will avoid unused binding warnings..= d
(<.=) ::MonadStates m =>Setters s a b -> b -> m b (<.=) ::MonadStates m =>Isos s a b -> b -> m b (<.=) ::MonadStates m =>Lenss s a b -> b -> m b (<.=) ::MonadStates m =>Traversals s a b -> b -> m b
(?=) :: MonadState s m => ASetter s s a (Maybe b) -> b -> m () infix 4 Source #
Replace the target of a Lens or all of the targets of a Setter or Traversal in our monadic
state with Just a new value, irrespective of the old.
>>>execState (do at 1 ?= a; at 2 ?= b) Map.emptyfromList [(1,a),(2,b)]
>>>execState (do _1 ?= b; _2 ?= c) (Just a, Nothing)(Just b,Just c)
(?=) ::MonadStates m =>Iso's (Maybea) -> a -> m () (?=) ::MonadStates m =>Lens's (Maybea) -> a -> m () (?=) ::MonadStates m =>Traversal's (Maybea) -> a -> m () (?=) ::MonadStates m =>Setter's (Maybea) -> a -> m ()
(<?=) :: MonadState s m => ASetter s s a (Maybe b) -> b -> m b infix 4 Source #
Set Just a value with pass-through
This is useful for chaining assignment without round-tripping through your Monad stack.
do x <-at"foo"<?=ninety_nine_bottles_of_beer_on_the_wall
If you do not need a copy of the intermediate result, then using l will avoid unused binding warnings.?= d
(<?=) ::MonadStates m =>Setters s a (Maybeb) -> b -> m b (<?=) ::MonadStates m =>Isos s a (Maybeb) -> b -> m b (<?=) ::MonadStates m =>Lenss s a (Maybeb) -> b -> m b (<?=) ::MonadStates m =>Traversals s a (Maybeb) -> b -> m b
(<~) :: MonadState s m => ASetter s s a b -> m b -> m () infixr 2 Source #
Run a monadic action, and set all of the targets of a Lens, Setter or Traversal to its result.
(<~) ::MonadStates m =>Isos s a b -> m b -> m () (<~) ::MonadStates m =>Lenss s a b -> m b -> m () (<~) ::MonadStates m =>Traversals s a b -> m b -> m () (<~) ::MonadStates m =>Setters s a b -> m b -> m ()
As a reasonable mnemonic, this lets you store the result of a monadic action in a Lens rather than
in a local variable.
do foo <- bar ...
will store the result in a variable, while
do foo <~ bar
...
Writer Combinators
scribe :: (MonadWriter t m, Monoid s) => ASetter s t a b -> b -> m () Source #
Write to a fragment of a larger Writer format.
passing :: MonadWriter w m => Setter w w u v -> m (a, u -> v) -> m a Source #
This is a generalization of pass that allows you to modify just a
portion of the resulting MonadWriter.
ipassing :: MonadWriter w m => IndexedSetter i w w u v -> m (a, i -> u -> v) -> m a Source #
This is a generalization of pass that allows you to modify just a
portion of the resulting MonadWriter with access to the index of an
IndexedSetter.
censoring :: MonadWriter w m => Setter w w u v -> (u -> v) -> m a -> m a Source #
This is a generalization of censor that allows you to censor just a
portion of the resulting MonadWriter.
icensoring :: MonadWriter w m => IndexedSetter i w w u v -> (i -> u -> v) -> m a -> m a Source #
This is a generalization of censor that allows you to censor just a
portion of the resulting MonadWriter, with access to the index of an
IndexedSetter.
Reader Combinators
locally :: MonadReader s m => ASetter s s a b -> (a -> b) -> m r -> m r Source #
Modify the value of the Reader environment associated with the target of a
Setter, Lens, or Traversal.
locallylida ≡ alocallyl f.locally l g ≡locallyl (f.g)
>>>(1,1) & locally _1 (+1) (uncurry (+))3
>>>"," & locally ($) ("Hello" <>) (<> " world!")"Hello, world!"
locally :: MonadReader s m =>Isos s a b -> (a -> b) -> m r -> m r locally :: MonadReader s m =>Lenss s a b -> (a -> b) -> m r -> m r locally :: MonadReader s m =>Traversals s a b -> (a -> b) -> m r -> m r locally :: MonadReader s m =>Setters s a b -> (a -> b) -> m r -> m r
ilocally :: MonadReader s m => AnIndexedSetter i s s a b -> (i -> a -> b) -> m r -> m r Source #
This is a generalization of locally that allows one to make indexed
local changes to a Reader environment associated with the target of a
Setter, Lens, or Traversal.
locallyl f ≡ilocallyl f . constilocallyl f ≡locallyl f .Indexed
ilocally :: MonadReader s m =>IndexedLenss s a b -> (i -> a -> b) -> m r -> m r ilocally :: MonadReader s m =>IndexedTraversals s a b -> (i -> a -> b) -> m r -> m r ilocally :: MonadReader s m =>IndexedSetters s a b -> (i -> a -> b) -> m r -> m r
Simplified State Setting
set' :: ASetter' s a -> a -> s -> s Source #
Replace the target of a Lens or all of the targets of a Setter'
or Traversal with a constant value, without changing its type.
This is a type restricted version of set, which retains the type of the original.
>>>set' mapped x [a,b,c,d][x,x,x,x]
>>>set' _2 "hello" (1,"world")(1,"hello")
>>>set' mapped 0 [1,2,3,4][0,0,0,0]
Note: Attempting to adjust set' a Fold or Getter will fail at compile time with an
relatively nice error message.
set'::Setter's a -> a -> s -> sset'::Iso's a -> a -> s -> sset'::Lens's a -> a -> s -> sset'::Traversal's a -> a -> s -> s
Indexed Setters
imapOf :: AnIndexedSetter i s t a b -> (i -> a -> b) -> s -> t Source #
Deprecated: Use iover
Map with index. (Deprecated alias for iover).
When you do not need access to the index, then mapOf is more liberal in what it can accept.
mapOfl ≡imapOfl.const
imapOf::IndexedSetteri s t a b -> (i -> a -> b) -> s -> timapOf::IndexedLensi s t a b -> (i -> a -> b) -> s -> timapOf::IndexedTraversali s t a b -> (i -> a -> b) -> s -> t
iover :: AnIndexedSetter i s t a b -> (i -> a -> b) -> s -> t Source #
Map with index. This is an alias for imapOf.
When you do not need access to the index, then over is more liberal in what it can accept.
overl ≡ioverl.constioverl ≡overl.Indexed
iover::IndexedSetteri s t a b -> (i -> a -> b) -> s -> tiover::IndexedLensi s t a b -> (i -> a -> b) -> s -> tiover::IndexedTraversali s t a b -> (i -> a -> b) -> s -> t
iset :: AnIndexedSetter i s t a b -> (i -> b) -> s -> t Source #
Set with index. Equivalent to iover with the current value ignored.
When you do not need access to the index, then set is more liberal in what it can accept.
setl ≡isetl.const
iset::IndexedSetteri s t a b -> (i -> b) -> s -> tiset::IndexedLensi s t a b -> (i -> b) -> s -> tiset::IndexedTraversali s t a b -> (i -> b) -> s -> t
imodifying :: MonadState s m => AnIndexedSetter i s s a b -> (i -> a -> b) -> m () Source #
This is an alias for (%@=).
isets :: ((i -> a -> b) -> s -> t) -> IndexedSetter i s t a b Source #
Build an IndexedSetter from an imap-like function.
Your supplied function f is required to satisfy:
fid≡idf g.f h ≡ f (g.h)
Equational reasoning:
isets.iover≡idiover.isets≡id
Another way to view isets is that it takes a "semantic editor combinator"
which has been modified to carry an index and transforms it into a IndexedSetter.
(%@~) :: AnIndexedSetter i s t a b -> (i -> a -> b) -> s -> t infixr 4 Source #
Adjust every target of an IndexedSetter, IndexedLens or IndexedTraversal
with access to the index.
(%@~) ≡iover
When you do not need access to the index then (%~) is more liberal in what it can accept.
l%~f ≡ l%@~constf
(%@~) ::IndexedSetteri s t a b -> (i -> a -> b) -> s -> t (%@~) ::IndexedLensi s t a b -> (i -> a -> b) -> s -> t (%@~) ::IndexedTraversali s t a b -> (i -> a -> b) -> s -> t
(.@~) :: AnIndexedSetter i s t a b -> (i -> b) -> s -> t infixr 4 Source #
Replace every target of an IndexedSetter, IndexedLens or IndexedTraversal
with access to the index.
(.@~) ≡iset
When you do not need access to the index then (.~) is more liberal in what it can accept.
l.~b ≡ l.@~constb
(.@~) ::IndexedSetteri s t a b -> (i -> b) -> s -> t (.@~) ::IndexedLensi s t a b -> (i -> b) -> s -> t (.@~) ::IndexedTraversali s t a b -> (i -> b) -> s -> t
(%@=) :: MonadState s m => AnIndexedSetter i s s a b -> (i -> a -> b) -> m () infix 4 Source #
Adjust every target in the current state of an IndexedSetter, IndexedLens or IndexedTraversal
with access to the index.
When you do not need access to the index then (%=) is more liberal in what it can accept.
l%=f ≡ l%@=constf
(%@=) ::MonadStates m =>IndexedSetteri s s a b -> (i -> a -> b) -> m () (%@=) ::MonadStates m =>IndexedLensi s s a b -> (i -> a -> b) -> m () (%@=) ::MonadStates m =>IndexedTraversali s t a b -> (i -> a -> b) -> m ()
(.@=) :: MonadState s m => AnIndexedSetter i s s a b -> (i -> b) -> m () infix 4 Source #
Replace every target in the current state of an IndexedSetter, IndexedLens or IndexedTraversal
with access to the index.
When you do not need access to the index then (.=) is more liberal in what it can accept.
l.=b ≡ l.@=constb
(.@=) ::MonadStates m =>IndexedSetteri s s a b -> (i -> b) -> m () (.@=) ::MonadStates m =>IndexedLensi s s a b -> (i -> b) -> m () (.@=) ::MonadStates m =>IndexedTraversali s t a b -> (i -> b) -> m ()
Arrow operators
assignA :: Arrow p => ASetter s t a b -> p s b -> p s t Source #
Run an arrow command and use the output to set all the targets of
a Lens, Setter or Traversal to the result.
assignA can be used very similarly to (<~), except that the type of
the object being modified can change; for example:
runKleisli action ((), (), ()) where
action = assignA _1 (Kleisli (const getVal1))
>>> assignA _2 (Kleisli (const getVal2))
>>> assignA _3 (Kleisli (const getVal3))
getVal1 :: Either String Int
getVal1 = ...
getVal2 :: Either String Bool
getVal2 = ...
getVal3 :: Either String Char
getVal3 = ...
has the type Either String (Int, Bool, Char)
assignA::Arrowp =>Isos t a b -> p s b -> p s tassignA::Arrowp =>Lenss t a b -> p s b -> p s tassignA::Arrowp =>Traversals t a b -> p s b -> p s tassignA::Arrowp =>Setters t a b -> p s b -> p s t
Exported for legible error messages
class (Applicative f, Distributive f, Traversable f) => Settable f Source #
Minimal complete definition
Instances
| Settable Identity Source # | So you can pass our |
Defined in Control.Lens.Internal.Setter Methods untainted :: Identity a -> a Source # untaintedDot :: Profunctor p => p a (Identity b) -> p a b Source # taintedDot :: Profunctor p => p a b -> p a (Identity b) Source # | |
| Settable f => Settable (Backwards f) Source # | |
Defined in Control.Lens.Internal.Setter Methods untainted :: Backwards f a -> a Source # untaintedDot :: Profunctor p => p a (Backwards f b) -> p a b Source # taintedDot :: Profunctor p => p a b -> p a (Backwards f b) Source # | |
| (Settable f, Settable g) => Settable (Compose f g) Source # | |
Defined in Control.Lens.Internal.Setter Methods untainted :: Compose f g a -> a Source # untaintedDot :: Profunctor p => p a (Compose f g b) -> p a b Source # taintedDot :: Profunctor p => p a b -> p a (Compose f g b) Source # | |
Identity functor and monad. (a non-strict monad)
Since: base-4.8.0.0
Constructors
| Identity | |
Fields
| |