Copyright | (c) David Janssen 2019 |
---|---|
License | MIT |
Maintainer | janssen.dhj@gmail.com |
Stability | experimental |
Portability | non-portable (MPTC with FD, FFI to Linux-only c-code) |
Safe Haskell | None |
Language | Haskell2010 |
KMonad.Prelude
Description
Synopsis
- (++) :: [a] -> [a] -> [a]
- seq :: a -> b -> b
- filter :: (a -> Bool) -> [a] -> [a]
- zip :: [a] -> [b] -> [(a, b)]
- fst :: (a, b) -> a
- snd :: (a, b) -> b
- otherwise :: Bool
- assert :: Bool -> a -> a
- map :: (a -> b) -> [a] -> [b]
- ($) :: (a -> b) -> a -> b
- fromIntegral :: (Integral a, Num b) => a -> b
- realToFrac :: (Real a, Fractional b) => a -> b
- guard :: Alternative f => Bool -> f ()
- join :: Monad m => m (m a) -> m a
- class Bounded a where
- class Enum a where
- class Eq a where
- class Fractional a => Floating a where
- class Num a => Fractional a where
- (/) :: a -> a -> a
- recip :: a -> a
- fromRational :: Rational -> a
- class (Real a, Enum a) => Integral a where
- class Applicative m => Monad (m :: Type -> Type) where
- class Typeable a => Data a where
- gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> a -> c a
- gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c a
- toConstr :: a -> Constr
- dataTypeOf :: a -> DataType
- dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c a)
- dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a)
- gmapT :: (forall b. Data b => b -> b) -> a -> a
- gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r
- gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r
- gmapQ :: (forall d. Data d => d -> u) -> a -> [u]
- gmapQi :: Int -> (forall d. Data d => d -> u) -> a -> u
- gmapM :: Monad m => (forall d. Data d => d -> m d) -> a -> m a
- gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> a -> m a
- gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> a -> m a
- class Functor (f :: Type -> Type) where
- class Num a where
- class Eq a => Ord a where
- class Read a
- class (Num a, Ord a) => Real a where
- toRational :: a -> Rational
- class (RealFrac a, Floating a) => RealFloat a where
- floatRadix :: a -> Integer
- floatDigits :: a -> Int
- floatRange :: a -> (Int, Int)
- decodeFloat :: a -> (Integer, Int)
- encodeFloat :: Integer -> Int -> a
- exponent :: a -> Int
- significand :: a -> a
- scaleFloat :: Int -> a -> a
- isNaN :: a -> Bool
- isInfinite :: a -> Bool
- isDenormalized :: a -> Bool
- isNegativeZero :: a -> Bool
- isIEEE :: a -> Bool
- atan2 :: a -> a -> a
- class (Real a, Fractional a) => RealFrac a where
- class Show a where
- class Typeable (a :: k)
- class Monad m => MonadFail (m :: Type -> Type)
- class IsString a where
- fromString :: String -> a
- class Functor f => Applicative (f :: Type -> Type) where
- class Foldable (t :: Type -> Type) where
- class (Functor t, Foldable t) => Traversable (t :: Type -> Type) where
- traverse :: Applicative f => (a -> f b) -> t a -> f (t b)
- sequenceA :: Applicative f => t (f a) -> f (t a)
- mapM :: Monad m => (a -> m b) -> t a -> m (t b)
- sequence :: Monad m => t (m a) -> m (t a)
- class Generic a
- class Semigroup a where
- (<>) :: a -> a -> a
- class Semigroup a => Monoid a where
- data Bool
- data Char
- data Double
- data Float
- data Int
- data Int8
- data Int16
- data Int32
- data Int64
- data Integer
- data Natural
- data Maybe a
- data Ordering
- type Rational = Ratio Integer
- data IO a
- data Word
- data Word8
- data Word16
- data Word32
- data Word64
- data Either a b
- data CallStack
- liftM :: Monad m => (a1 -> r) -> m a1 -> m r
- id :: a -> a
- either :: (a -> c) -> (b -> c) -> Either a b -> c
- class Contravariant (f :: Type -> Type) where
- class Monad m => MonadReader r (m :: Type -> Type) | m -> r where
- stdout :: Handle
- type String = [Char]
- data Handle
- data ST s a
- data ThreadId
- waitBothSTM :: Async a -> Async b -> STM (a, b)
- waitEitherSTM_ :: Async a -> Async b -> STM ()
- waitEitherSTM :: Async a -> Async b -> STM (Either a b)
- waitEitherCatchSTM :: Async a -> Async b -> STM (Either (Either SomeException a) (Either SomeException b))
- waitAnySTM :: [Async a] -> STM (Async a, a)
- waitAnyCatchSTM :: [Async a] -> STM (Async a, Either SomeException a)
- pollSTM :: Async a -> STM (Maybe (Either SomeException a))
- waitCatchSTM :: Async a -> STM (Either SomeException a)
- waitSTM :: Async a -> STM a
- data Async a
- absurd :: Void -> a
- data Void
- data Chan a
- bimapAccumR :: Bitraversable t => (a -> b -> (a, c)) -> (a -> d -> (a, e)) -> a -> t b d -> (a, t c e)
- bimapAccumL :: Bitraversable t => (a -> b -> (a, c)) -> (a -> d -> (a, e)) -> a -> t b d -> (a, t c e)
- bifor :: (Bitraversable t, Applicative f) => t a b -> (a -> f c) -> (b -> f d) -> f (t c d)
- bisequence :: (Bitraversable t, Applicative f) => t (f a) (f b) -> f (t a b)
- class (Bifunctor t, Bifoldable t) => Bitraversable (t :: Type -> Type -> Type) where
- bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> t a b -> f (t c d)
- bifind :: Bifoldable t => (a -> Bool) -> t a a -> Maybe a
- binotElem :: (Bifoldable t, Eq a) => a -> t a a -> Bool
- biminimumBy :: Bifoldable t => (a -> a -> Ordering) -> t a a -> a
- bimaximumBy :: Bifoldable t => (a -> a -> Ordering) -> t a a -> a
- biall :: Bifoldable t => (a -> Bool) -> (b -> Bool) -> t a b -> Bool
- biany :: Bifoldable t => (a -> Bool) -> (b -> Bool) -> t a b -> Bool
- bior :: Bifoldable t => t Bool Bool -> Bool
- biand :: Bifoldable t => t Bool Bool -> Bool
- biconcatMap :: Bifoldable t => (a -> [c]) -> (b -> [c]) -> t a b -> [c]
- biproduct :: (Bifoldable t, Num a) => t a a -> a
- bisum :: (Bifoldable t, Num a) => t a a -> a
- biminimum :: (Bifoldable t, Ord a) => t a a -> a
- bimaximum :: (Bifoldable t, Ord a) => t a a -> a
- biconcat :: Bifoldable t => t [a] [a] -> [a]
- bielem :: (Bifoldable t, Eq a) => a -> t a a -> Bool
- bilength :: Bifoldable t => t a b -> Int
- binull :: Bifoldable t => t a b -> Bool
- biList :: Bifoldable t => t a a -> [a]
- biasum :: (Bifoldable t, Alternative f) => t (f a) (f a) -> f a
- bisequence_ :: (Bifoldable t, Applicative f) => t (f a) (f b) -> f ()
- bifor_ :: (Bifoldable t, Applicative f) => t a b -> (a -> f c) -> (b -> f d) -> f ()
- bitraverse_ :: (Bifoldable t, Applicative f) => (a -> f c) -> (b -> f d) -> t a b -> f ()
- bifoldlM :: (Bifoldable t, Monad m) => (a -> b -> m a) -> (a -> c -> m a) -> a -> t b c -> m a
- bifoldl1 :: Bifoldable t => (a -> a -> a) -> t a a -> a
- bifoldl' :: Bifoldable t => (a -> b -> a) -> (a -> c -> a) -> a -> t b c -> a
- bifoldrM :: (Bifoldable t, Monad m) => (a -> c -> m c) -> (b -> c -> m c) -> c -> t a b -> m c
- bifoldr1 :: Bifoldable t => (a -> a -> a) -> t a a -> a
- bifoldr' :: Bifoldable t => (a -> c -> c) -> (b -> c -> c) -> c -> t a b -> c
- class Bifoldable (p :: Type -> Type -> Type) where
- class Bifunctor (p :: Type -> Type -> Type) where
- class Monad m => MonadIO (m :: Type -> Type) where
- mfilter :: MonadPlus m => (a -> Bool) -> m a -> m a
- (<$!>) :: Monad m => (a -> b) -> m a -> m b
- unless :: Applicative f => Bool -> f () -> f ()
- replicateM_ :: Applicative m => Int -> m a -> m ()
- replicateM :: Applicative m => Int -> m a -> m [a]
- foldM_ :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m ()
- foldM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b
- zipWithM_ :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m ()
- zipWithM :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m [c]
- mapAndUnzipM :: Applicative m => (a -> m (b, c)) -> [a] -> m ([b], [c])
- forever :: Applicative f => f a -> f b
- (<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c
- (>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c
- filterM :: Applicative m => (a -> m Bool) -> [a] -> m [a]
- forM :: (Traversable t, Monad m) => t a -> (a -> m b) -> m (t b)
- for :: (Traversable t, Applicative f) => t a -> (a -> f b) -> f (t b)
- optional :: Alternative f => f a -> f (Maybe a)
- class Category a => Arrow (a :: Type -> Type -> Type) where
- newtype Identity a = Identity {
- runIdentity :: a
- stderr :: Handle
- stdin :: Handle
- writeTVar :: TVar a -> a -> STM ()
- readTVar :: TVar a -> STM a
- newTVar :: a -> STM (TVar a)
- orElse :: STM a -> STM a -> STM a
- data STM a
- data TVar a
- data SomeAsyncException where
- SomeAsyncException :: forall e. Exception e => e -> SomeAsyncException
- data ExitCode
- data BufferMode
- data SeekMode
- data IORef a
- type FilePath = String
- data IOException
- class (Typeable e, Show e) => Exception e where
- toException :: e -> SomeException
- fromException :: SomeException -> Maybe e
- displayException :: e -> String
- newtype Const a (b :: k) :: forall k. Type -> k -> Type = Const {
- getConst :: a
- notElem :: (Foldable t, Eq a) => a -> t a -> Bool
- all :: Foldable t => (a -> Bool) -> t a -> Bool
- any :: Foldable t => (a -> Bool) -> t a -> Bool
- or :: Foldable t => t Bool -> Bool
- and :: Foldable t => t Bool -> Bool
- concatMap :: Foldable t => (a -> [b]) -> t a -> [b]
- concat :: Foldable t => t [a] -> [a]
- msum :: (Foldable t, MonadPlus m) => t (m a) -> m a
- asum :: (Foldable t, Alternative f) => t (f a) -> f a
- sequence_ :: (Foldable t, Monad m) => t (m a) -> m ()
- sequenceA_ :: (Foldable t, Applicative f) => t (f a) -> f ()
- forM_ :: (Foldable t, Monad m) => t a -> (a -> m b) -> m ()
- mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m ()
- for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f ()
- traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f ()
- unwords :: [String] -> String
- words :: String -> [String]
- readMaybe :: Read a => String -> Maybe a
- isRight :: Either a b -> Bool
- isLeft :: Either a b -> Bool
- partitionEithers :: [Either a b] -> ([a], [b])
- rights :: [Either a b] -> [b]
- lefts :: [Either a b] -> [a]
- comparing :: Ord a => (b -> a) -> b -> b -> Ordering
- newtype Down a = Down a
- data Proxy (t :: k) :: forall k. k -> Type = Proxy
- (>>>) :: Category cat => cat a b -> cat b c -> cat a c
- class Category (cat :: k -> k -> Type)
- data IOMode
- class Storable a
- byteSwap64 :: Word64 -> Word64
- byteSwap32 :: Word32 -> Word32
- byteSwap16 :: Word16 -> Word16
- runST :: (forall s. ST s a) -> a
- bool :: a -> a -> Bool -> a
- (&) :: a -> (a -> b) -> b
- on :: (b -> b -> c) -> (a -> b) -> a -> a -> c
- fix :: (a -> a) -> a
- void :: Functor f => f a -> f ()
- ($>) :: Functor f => f a -> b -> f b
- (<&>) :: Functor f => f a -> (a -> b) -> f b
- (<$>) :: Functor f => (a -> b) -> f a -> f b
- lcm :: Integral a => a -> a -> a
- gcd :: Integral a => a -> a -> a
- (^^) :: (Fractional a, Integral b) => a -> b -> a
- (^) :: (Num a, Integral b) => a -> b -> a
- odd :: Integral a => a -> Bool
- even :: Integral a => a -> Bool
- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
- lookup :: Eq a => a -> [(a, b)] -> Maybe b
- reverse :: [a] -> [a]
- break :: (a -> Bool) -> [a] -> ([a], [a])
- span :: (a -> Bool) -> [a] -> ([a], [a])
- drop :: Int -> [a] -> [a]
- take :: Int -> [a] -> [a]
- dropWhile :: (a -> Bool) -> [a] -> [a]
- takeWhile :: (a -> Bool) -> [a] -> [a]
- replicate :: Int -> a -> [a]
- mapMaybe :: (a -> Maybe b) -> [a] -> [b]
- catMaybes :: [Maybe a] -> [a]
- listToMaybe :: [a] -> Maybe a
- maybeToList :: Maybe a -> [a]
- fromMaybe :: a -> Maybe a -> a
- isNothing :: Maybe a -> Bool
- isJust :: Maybe a -> Bool
- maybe :: b -> (a -> b) -> Maybe a -> b
- uncurry :: (a -> b -> c) -> (a, b) -> c
- curry :: ((a, b) -> c) -> a -> b -> c
- data MVar a
- subtract :: Num a => a -> a -> a
- asTypeOf :: a -> a -> a
- ($!) :: (a -> b) -> a -> b
- flip :: (a -> b -> c) -> b -> a -> c
- (.) :: (b -> c) -> (a -> b) -> a -> c
- const :: a -> b -> a
- ap :: Monad m => m (a -> b) -> m a -> m b
- liftM5 :: Monad m => (a1 -> a2 -> a3 -> a4 -> a5 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m a5 -> m r
- liftM4 :: Monad m => (a1 -> a2 -> a3 -> a4 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m r
- liftM3 :: Monad m => (a1 -> a2 -> a3 -> r) -> m a1 -> m a2 -> m a3 -> m r
- liftM2 :: Monad m => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r
- when :: Applicative f => Bool -> f () -> f ()
- (=<<) :: Monad m => (a -> m b) -> m a -> m b
- liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d
- liftA :: Applicative f => (a -> b) -> f a -> f b
- class Applicative f => Alternative (f :: Type -> Type) where
- (<|>) :: f a -> f a -> f a
- class (Alternative m, Monad m) => MonadPlus (m :: Type -> Type) where
- data NonEmpty a = a :| [a]
- undefined :: HasCallStack => a
- error :: HasCallStack => [Char] -> a
- type HasCallStack = ?callStack :: CallStack
- data SomeException where
- SomeException :: forall e. Exception e => e -> SomeException
- (&&) :: Bool -> Bool -> Bool
- (||) :: Bool -> Bool -> Bool
- not :: Bool -> Bool
- fromShort :: ShortByteString -> ByteString
- data ShortByteString
- data ByteString
- data Builder
- toShort :: ByteString -> ShortByteString
- data Text
- data IntMap a
- data IntSet
- data Map k a
- data Seq a
- data Set a
- force :: NFData a => a -> a
- ($!!) :: NFData a => (a -> b) -> a -> b
- deepseq :: NFData a => a -> b -> b
- class NFData a where
- rnf :: a -> ()
- class Monad m => MonadThrow (m :: Type -> Type) where
- class Hashable a
- class Profunctor (p :: Type -> Type -> Type) where
- data HashMap k v
- class (Vector Vector a, MVector MVector a) => Unbox a
- data HashSet a
- data Vector a
- type Reader r = ReaderT r Identity
- defaultFieldRules :: LensRules
- makeFieldsNoPrefix :: Name -> DecsQ
- makeFields :: Name -> DecsQ
- abbreviatedNamer :: FieldNamer
- abbreviatedFields :: LensRules
- classUnderscoreNoPrefixNamer :: FieldNamer
- classUnderscoreNoPrefixFields :: LensRules
- camelCaseNamer :: FieldNamer
- camelCaseFields :: LensRules
- underscoreNamer :: FieldNamer
- underscoreFields :: LensRules
- makeWrapped :: Name -> DecsQ
- declareLensesWith :: LensRules -> DecsQ -> DecsQ
- declareFields :: DecsQ -> DecsQ
- declareWrapped :: DecsQ -> DecsQ
- declarePrisms :: DecsQ -> DecsQ
- declareClassyFor :: [(String, (String, String))] -> [(String, String)] -> DecsQ -> DecsQ
- declareClassy :: DecsQ -> DecsQ
- declareLensesFor :: [(String, String)] -> DecsQ -> DecsQ
- declareLenses :: DecsQ -> DecsQ
- makeLensesWith :: LensRules -> Name -> DecsQ
- makeClassyFor :: String -> String -> [(String, String)] -> Name -> DecsQ
- makeLensesFor :: [(String, String)] -> Name -> DecsQ
- makeClassy_ :: Name -> DecsQ
- makeClassy :: Name -> DecsQ
- makeLenses :: Name -> DecsQ
- classyRules_ :: LensRules
- classyRules :: LensRules
- mappingNamer :: (String -> [String]) -> FieldNamer
- lookingupNamer :: [(String, String)] -> FieldNamer
- lensRulesFor :: [(String, String)] -> LensRules
- underscoreNoPrefixNamer :: FieldNamer
- lensRules :: LensRules
- lensClass :: Lens' LensRules ClassyNamer
- lensField :: Lens' LensRules FieldNamer
- createClass :: Lens' LensRules Bool
- generateLazyPatterns :: Lens' LensRules Bool
- generateUpdateableOptics :: Lens' LensRules Bool
- generateSignatures :: Lens' LensRules Bool
- simpleLenses :: Lens' LensRules Bool
- data LensRules
- type FieldNamer = Name -> [Name] -> Name -> [DefName]
- data DefName
- type ClassyNamer = Name -> Maybe (Name, Name)
- makeClassyPrisms :: Name -> DecsQ
- makePrisms :: Name -> DecsQ
- iat :: At m => Index m -> IndexedLens' (Index m) m (Maybe (IxValue m))
- sans :: At m => Index m -> m -> m
- ixAt :: At m => Index m -> Traversal' m (IxValue m)
- iix :: Ixed m => Index m -> IndexedTraversal' (Index m) m (IxValue m)
- icontains :: Contains m => Index m -> IndexedLens' (Index m) m Bool
- type family Index s :: Type
- class Contains m where
- type family IxValue m :: Type
- class Ixed m where
- ix :: Index m -> Traversal' m (IxValue m)
- class Ixed m => At m where
- class Each s t a b | s -> a, t -> b, s b -> t, t a -> s where
- gplate1 :: (Generic1 f, GPlated1 f (Rep1 f)) => Traversal' (f a) (f a)
- gplate :: (Generic a, GPlated a (Rep a)) => Traversal' a a
- parts :: Plated a => Lens' a [a]
- composOpFold :: Plated a => b -> (b -> b -> b) -> (a -> b) -> a -> b
- para :: Plated a => (a -> [r] -> r) -> a -> r
- paraOf :: Getting (Endo [a]) a a -> (a -> [r] -> r) -> a -> r
- holesOnOf :: Conjoined p => LensLike (Bazaar p r r) s t a b -> Over p (Bazaar p r r) a b r r -> s -> [Pretext p r r t]
- holesOn :: Conjoined p => Over p (Bazaar p a a) s t a a -> s -> [Pretext p a a t]
- holes :: Plated a => a -> [Pretext ((->) :: Type -> Type -> Type) a a a]
- contextsOnOf :: ATraversal s t a a -> ATraversal' a a -> s -> [Context a a t]
- contextsOn :: Plated a => ATraversal s t a a -> s -> [Context a a t]
- contextsOf :: ATraversal' a a -> a -> [Context a a a]
- contexts :: Plated a => a -> [Context a a a]
- transformMOnOf :: Monad m => LensLike (WrappedMonad m) s t a b -> LensLike (WrappedMonad m) a b a b -> (b -> m b) -> s -> m t
- transformMOf :: Monad m => LensLike (WrappedMonad m) a b a b -> (b -> m b) -> a -> m b
- transformMOn :: (Monad m, Plated a) => LensLike (WrappedMonad m) s t a a -> (a -> m a) -> s -> m t
- transformM :: (Monad m, Plated a) => (a -> m a) -> a -> m a
- transformOnOf :: ASetter s t a b -> ASetter a b a b -> (b -> b) -> s -> t
- transformOf :: ASetter a b a b -> (b -> b) -> a -> b
- transformOn :: Plated a => ASetter s t a a -> (a -> a) -> s -> t
- transform :: Plated a => (a -> a) -> a -> a
- cosmosOnOf :: (Applicative f, Contravariant f) => LensLike' f s a -> LensLike' f a a -> LensLike' f s a
- cosmosOn :: (Applicative f, Contravariant f, Plated a) => LensLike' f s a -> LensLike' f s a
- cosmosOf :: (Applicative f, Contravariant f) => LensLike' f a a -> LensLike' f a a
- cosmos :: Plated a => Fold a a
- universeOnOf :: Getting [a] s a -> Getting [a] a a -> s -> [a]
- universeOn :: Plated a => Getting [a] s a -> s -> [a]
- universeOf :: Getting [a] a a -> a -> [a]
- universe :: Plated a => a -> [a]
- rewriteMOnOf :: Monad m => LensLike (WrappedMonad m) s t a b -> LensLike (WrappedMonad m) a b a b -> (b -> m (Maybe a)) -> s -> m t
- rewriteMOn :: (Monad m, Plated a) => LensLike (WrappedMonad m) s t a a -> (a -> m (Maybe a)) -> s -> m t
- rewriteMOf :: Monad m => LensLike (WrappedMonad m) a b a b -> (b -> m (Maybe a)) -> a -> m b
- rewriteM :: (Monad m, Plated a) => (a -> m (Maybe a)) -> a -> m a
- rewriteOnOf :: ASetter s t a b -> ASetter a b a b -> (b -> Maybe a) -> s -> t
- rewriteOn :: Plated a => ASetter s t a a -> (a -> Maybe a) -> s -> t
- rewriteOf :: ASetter a b a b -> (b -> Maybe a) -> a -> b
- rewrite :: Plated a => (a -> Maybe a) -> a -> a
- children :: Plated a => a -> [a]
- deep :: (Conjoined p, Applicative f, Plated s) => Traversing p f s s a b -> Over p f s s a b
- (...) :: (Applicative f, Plated c) => LensLike f s t c c -> Over p f c c a b -> Over p f s t a b
- class Plated a where
- plate :: Traversal' a a
- class GPlated a (g :: k -> Type)
- class GPlated1 (f :: k -> Type) (g :: k -> Type)
- type family Zoomed (m :: Type -> Type) :: Type -> Type -> Type
- type family Magnified (m :: Type -> Type) :: Type -> Type -> Type
- class (MonadState s m, MonadState t n) => Zoom (m :: Type -> Type) (n :: Type -> Type) s t | m -> s, n -> t, m t -> n, n s -> m where
- class (Magnified m ~ Magnified n, MonadReader b m, MonadReader a n) => Magnify (m :: Type -> Type) (n :: Type -> Type) b a | m -> b, n -> a, m a -> n, n b -> m where
- alaf :: (Functor f, Functor g, Rewrapping s t) => (Unwrapped s -> s) -> (f t -> g s) -> f (Unwrapped t) -> g (Unwrapped s)
- ala :: (Functor f, Rewrapping s t) => (Unwrapped s -> s) -> ((Unwrapped t -> t) -> f s) -> f (Unwrapped s)
- _Unwrapping :: Rewrapping s t => (Unwrapped s -> s) -> Iso (Unwrapped t) (Unwrapped s) t s
- _Wrapping :: Rewrapping s t => (Unwrapped s -> s) -> Iso s t (Unwrapped s) (Unwrapped t)
- _Unwrapping' :: Wrapped s => (Unwrapped s -> s) -> Iso' (Unwrapped s) s
- _Wrapping' :: Wrapped s => (Unwrapped s -> s) -> Iso' s (Unwrapped s)
- op :: Wrapped s => (Unwrapped s -> s) -> s -> Unwrapped s
- _Unwrapped :: Rewrapping s t => Iso (Unwrapped t) (Unwrapped s) t s
- _Wrapped :: Rewrapping s t => Iso s t (Unwrapped s) (Unwrapped t)
- _Unwrapped' :: Wrapped s => Iso' (Unwrapped s) s
- _GWrapped' :: (Generic s, D1 d (C1 c (S1 s' (Rec0 a))) ~ Rep s, Unwrapped s ~ GUnwrapped (Rep s)) => Iso' s (Unwrapped s)
- pattern Wrapped :: forall s. Rewrapped s s => Unwrapped s -> s
- pattern Unwrapped :: forall t. Rewrapped t t => t -> Unwrapped t
- class Wrapped s where
- class Wrapped s => Rewrapped s t
- class (Rewrapped s t, Rewrapped t s) => Rewrapping s t
- unsnoc :: Snoc s s a a => s -> Maybe (s, a)
- snoc :: Snoc s s a a => s -> a -> s
- (|>) :: Snoc s s a a => s -> a -> s
- _last :: Snoc s s a a => Traversal' s a
- _init :: Snoc s s a a => Traversal' s s
- _tail :: Cons s s a a => Traversal' s s
- _head :: Cons s s a a => Traversal' s a
- uncons :: Cons s s a a => s -> Maybe (a, s)
- cons :: Cons s s a a => a -> s -> s
- (<|) :: Cons s s a a => a -> s -> s
- pattern (:<) :: forall b a. Cons b b a a => a -> b -> b
- pattern (:>) :: forall a b. Snoc a a b b => a -> b -> a
- class Cons s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Snoc s t a b | s -> a, t -> b, s b -> t, t a -> s where
- pattern Empty :: forall s. AsEmpty s => s
- class AsEmpty a where
- coerced :: (Coercible s a, Coercible t b) => Iso s t a b
- seconding :: (Bifunctor f, Bifunctor g) => AnIso s t a b -> Iso (f x s) (g y t) (f x a) (g y b)
- firsting :: (Bifunctor f, Bifunctor g) => AnIso s t a b -> Iso (f s x) (g t y) (f a x) (g b y)
- bimapping :: (Bifunctor f, Bifunctor g) => AnIso s t a b -> AnIso s' t' a' b' -> Iso (f s s') (g t t') (f a a') (g b b')
- rmapping :: (Profunctor p, Profunctor q) => AnIso s t a b -> Iso (p x s) (q y t) (p x a) (q y b)
- lmapping :: (Profunctor p, Profunctor q) => AnIso s t a b -> Iso (p a x) (q b y) (p s x) (q t y)
- dimapping :: (Profunctor p, Profunctor q) => AnIso s t a b -> AnIso s' t' a' b' -> Iso (p a s') (q b t') (p s a') (q t b')
- contramapping :: Contravariant f => AnIso s t a b -> Iso (f a) (f b) (f s) (f t)
- imagma :: Over (Indexed i) (Molten i a b) s t a b -> Iso s t' (Magma i t b a) (Magma j t' c c)
- magma :: LensLike (Mafic a b) s t a b -> Iso s u (Magma Int t b a) (Magma j u c c)
- involuted :: (a -> a) -> Iso' a a
- reversed :: Reversing a => Iso' a a
- lazy :: Strict lazy strict => Iso' strict lazy
- flipped :: Iso (a -> b -> c) (a' -> b' -> c') (b -> a -> c) (b' -> a' -> c')
- uncurried :: Iso (a -> b -> c) (d -> e -> f) ((a, b) -> c) ((d, e) -> f)
- curried :: Iso ((a, b) -> c) ((d, e) -> f) (a -> b -> c) (d -> e -> f)
- anon :: a -> (a -> Bool) -> Iso' (Maybe a) a
- non' :: APrism' a () -> Iso' (Maybe a) a
- non :: Eq a => a -> Iso' (Maybe a) a
- mapping :: (Functor f, Functor g) => AnIso s t a b -> Iso (f s) (g t) (f a) (g b)
- enum :: Enum a => Iso' Int a
- under :: AnIso s t a b -> (t -> s) -> b -> a
- auf :: Optic (Costar f) g s t a b -> (f a -> g b) -> f s -> g t
- au :: Functor f => AnIso s t a b -> ((b -> t) -> f s) -> f a
- cloneIso :: AnIso s t a b -> Iso s t a b
- withIso :: AnIso s t a b -> ((s -> a) -> (b -> t) -> r) -> r
- from :: AnIso s t a b -> Iso b a t s
- iso :: (s -> a) -> (b -> t) -> Iso s t a b
- pattern Strict :: forall s t. Strict s t => t -> s
- pattern Lazy :: forall t s. Strict t s => t -> s
- pattern Swapped :: forall (p :: Type -> Type -> Type) c d. Swapped p => p d c -> p c d
- pattern Reversed :: forall t. Reversing t => t -> t
- pattern List :: forall l. IsList l => [Item l] -> l
- type AnIso s t a b = Exchange a b a (Identity b) -> Exchange a b s (Identity t)
- type AnIso' s a = AnIso s s a a
- class Bifunctor p => Swapped (p :: Type -> Type -> Type) where
- class Strict lazy strict | lazy -> strict, strict -> lazy where
- simple :: Equality' a a
- simply :: (Optic' p f s a -> r) -> Optic' p f s a -> r
- fromEq :: AnEquality s t a b -> Equality b a t s
- mapEq :: AnEquality s t a b -> f s -> f a
- substEq :: AnEquality s t a b -> ((s ~ a) -> (t ~ b) -> r) -> r
- runEq :: AnEquality s t a b -> Identical s t a b
- data Identical (a :: k) (b :: k1) (s :: k) (t :: k1) :: forall k k1. k -> k1 -> k -> k1 -> Type where
- type AnEquality (s :: k1) (t :: k2) (a :: k1) (b :: k2) = Identical a (Proxy b) a (Proxy b) -> Identical a (Proxy b) s (Proxy t)
- type AnEquality' (s :: k2) (a :: k2) = AnEquality s s a a
- itraverseByOf :: IndexedTraversal i s t a b -> (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> (i -> a -> f b) -> s -> f t
- itraverseBy :: TraversableWithIndex i t => (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> (i -> a -> f b) -> t a -> f (t b)
- ifoldMapByOf :: IndexedFold i t a -> (r -> r -> r) -> r -> (i -> a -> r) -> t -> r
- ifoldMapBy :: FoldableWithIndex i t => (r -> r -> r) -> r -> (i -> a -> r) -> t a -> r
- imapAccumL :: TraversableWithIndex i t => (i -> s -> a -> (s, b)) -> s -> t a -> (s, t b)
- imapAccumR :: TraversableWithIndex i t => (i -> s -> a -> (s, b)) -> s -> t a -> (s, t b)
- iforM :: (TraversableWithIndex i t, Monad m) => t a -> (i -> a -> m b) -> m (t b)
- imapM :: (TraversableWithIndex i t, Monad m) => (i -> a -> m b) -> t a -> m (t b)
- ifor :: (TraversableWithIndex i t, Applicative f) => t a -> (i -> a -> f b) -> f (t b)
- itoList :: FoldableWithIndex i f => f a -> [(i, a)]
- ifoldlM :: (FoldableWithIndex i f, Monad m) => (i -> b -> a -> m b) -> b -> f a -> m b
- ifoldrM :: (FoldableWithIndex i f, Monad m) => (i -> a -> b -> m b) -> b -> f a -> m b
- ifind :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Maybe (i, a)
- iconcatMap :: FoldableWithIndex i f => (i -> a -> [b]) -> f a -> [b]
- iforM_ :: (FoldableWithIndex i t, Monad m) => t a -> (i -> a -> m b) -> m ()
- imapM_ :: (FoldableWithIndex i t, Monad m) => (i -> a -> m b) -> t a -> m ()
- ifor_ :: (FoldableWithIndex i t, Applicative f) => t a -> (i -> a -> f b) -> f ()
- itraverse_ :: (FoldableWithIndex i t, Applicative f) => (i -> a -> f b) -> t a -> f ()
- none :: Foldable f => (a -> Bool) -> f a -> Bool
- inone :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Bool
- iall :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Bool
- iany :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Bool
- index :: (Indexable i p, Eq i, Applicative f) => i -> Optical' p (Indexed i) f a a
- indices :: (Indexable i p, Applicative f) => (i -> Bool) -> Optical' p (Indexed i) f a a
- icompose :: Indexable p c => (i -> j -> p) -> (Indexed i s t -> r) -> (Indexed j a b -> s -> t) -> c a b -> r
- (<.>) :: Indexable (i, j) p => (Indexed i s t -> r) -> (Indexed j a b -> s -> t) -> p a b -> r
- reindexed :: Indexable j p => (i -> j) -> (Indexed i a b -> r) -> p a b -> r
- selfIndex :: Indexable a p => p a fb -> a -> fb
- (.>) :: (st -> r) -> (kab -> st) -> kab -> r
- (<.) :: Indexable i p => (Indexed i s t -> r) -> ((a -> b) -> s -> t) -> p a b -> r
- class Functor f => FunctorWithIndex i (f :: Type -> Type) | f -> i where
- imap :: (i -> a -> b) -> f a -> f b
- imapped :: IndexedSetter i (f a) (f b) a b
- class Foldable f => FoldableWithIndex i (f :: Type -> Type) | f -> i where
- class (FunctorWithIndex i t, FoldableWithIndex i t, Traversable t) => TraversableWithIndex i (t :: Type -> Type) | t -> i where
- itraverse :: Applicative f => (i -> a -> f b) -> t a -> f (t b)
- itraversed :: IndexedTraversal i (t a) (t b) a b
- newtype ReifiedLens s t a b = Lens {}
- type ReifiedLens' s a = ReifiedLens s s a a
- newtype ReifiedIndexedLens i s t a b = IndexedLens {
- runIndexedLens :: IndexedLens i s t a b
- type ReifiedIndexedLens' i s a = ReifiedIndexedLens i s s a a
- newtype ReifiedIndexedTraversal i s t a b = IndexedTraversal {
- runIndexedTraversal :: IndexedTraversal i s t a b
- type ReifiedIndexedTraversal' i s a = ReifiedIndexedTraversal i s s a a
- newtype ReifiedTraversal s t a b = Traversal {
- runTraversal :: Traversal s t a b
- type ReifiedTraversal' s a = ReifiedTraversal s s a a
- newtype ReifiedGetter s a = Getter {}
- newtype ReifiedIndexedGetter i s a = IndexedGetter {
- runIndexedGetter :: IndexedGetter i s a
- newtype ReifiedFold s a = Fold {}
- newtype ReifiedIndexedFold i s a = IndexedFold {
- runIndexedFold :: IndexedFold i s a
- newtype ReifiedSetter s t a b = Setter {}
- type ReifiedSetter' s a = ReifiedSetter s s a a
- newtype ReifiedIndexedSetter i s t a b = IndexedSetter {
- runIndexedSetter :: IndexedSetter i s t a b
- type ReifiedIndexedSetter' i s a = ReifiedIndexedSetter i s s a a
- newtype ReifiedIso s t a b = Iso {}
- type ReifiedIso' s a = ReifiedIso s s a a
- newtype ReifiedPrism s t a b = Prism {}
- type ReifiedPrism' s a = ReifiedPrism s s a a
- ilevels :: Applicative f => Traversing (Indexed i) f s t a b -> IndexedLensLike Int f s t (Level i a) (Level j b)
- levels :: Applicative f => Traversing ((->) :: Type -> Type -> Type) f s t a b -> IndexedLensLike Int f s t (Level () a) (Level () b)
- sequenceByOf :: Traversal s t (f b) b -> (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> s -> f t
- traverseByOf :: Traversal s t a b -> (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> (a -> f b) -> s -> f t
- confusing :: Applicative f => LensLike (Curried (Yoneda f) (Yoneda f)) s t a b -> LensLike f s t a b
- deepOf :: (Conjoined p, Applicative f) => LensLike f s t s t -> Traversing p f s t a b -> Over p f s t a b
- failing :: (Conjoined p, Applicative f) => Traversing p f s t a b -> Over p f s t a b -> Over p f s t a b
- ifailover :: Alternative m => Over (Indexed i) ((,) Any) s t a b -> (i -> a -> b) -> s -> m t
- failover :: Alternative m => LensLike ((,) Any) s t a b -> (a -> b) -> s -> m t
- elements :: Traversable t => (Int -> Bool) -> IndexedTraversal' Int (t a) a
- elementsOf :: Applicative f => LensLike (Indexing f) s t a a -> (Int -> Bool) -> IndexedLensLike Int f s t a a
- element :: Traversable t => Int -> IndexedTraversal' Int (t a) a
- elementOf :: Applicative f => LensLike (Indexing f) s t a a -> Int -> IndexedLensLike Int f s t a a
- ignored :: Applicative f => pafb -> s -> f s
- traversed64 :: Traversable f => IndexedTraversal Int64 (f a) (f b) a b
- traversed1 :: Traversable1 f => IndexedTraversal1 Int (f a) (f b) a b
- traversed :: Traversable f => IndexedTraversal Int (f a) (f b) a b
- imapAccumLOf :: Over (Indexed i) (State acc) s t a b -> (i -> acc -> a -> (acc, b)) -> acc -> s -> (acc, t)
- imapAccumROf :: Over (Indexed i) (Backwards (State acc)) s t a b -> (i -> acc -> a -> (acc, b)) -> acc -> s -> (acc, t)
- iforMOf :: (Indexed i a (WrappedMonad m b) -> s -> WrappedMonad m t) -> s -> (i -> a -> m b) -> m t
- imapMOf :: Over (Indexed i) (WrappedMonad m) s t a b -> (i -> a -> m b) -> s -> m t
- iforOf :: (Indexed i a (f b) -> s -> f t) -> s -> (i -> a -> f b) -> f t
- itraverseOf :: (Indexed i a (f b) -> s -> f t) -> (i -> a -> f b) -> s -> f t
- cloneIndexedTraversal1 :: AnIndexedTraversal1 i s t a b -> IndexedTraversal1 i s t a b
- cloneIndexPreservingTraversal1 :: ATraversal1 s t a b -> IndexPreservingTraversal1 s t a b
- cloneTraversal1 :: ATraversal1 s t a b -> Traversal1 s t a b
- cloneIndexedTraversal :: AnIndexedTraversal i s t a b -> IndexedTraversal i s t a b
- cloneIndexPreservingTraversal :: ATraversal s t a b -> IndexPreservingTraversal s t a b
- cloneTraversal :: ATraversal s t a b -> Traversal s t a b
- dropping :: (Conjoined p, Applicative f) => Int -> Over p (Indexing f) s t a a -> Over p f s t a a
- taking :: (Conjoined p, Applicative f) => Int -> Traversing p f s t a a -> Over p f s t a a
- beside :: (Representable q, Applicative (Rep q), Applicative f, Bitraversable r) => Optical p q f s t a b -> Optical p q f s' t' a b -> Optical p q f (r s s') (r t t') a b
- both1 :: Bitraversable1 r => Traversal1 (r a a) (r b b) a b
- both :: Bitraversable r => Traversal (r a a) (r b b) a b
- holes1Of :: Conjoined p => Over p (Bazaar1 p a a) s t a a -> s -> NonEmpty (Pretext p a a t)
- holesOf :: Conjoined p => Over p (Bazaar p a a) s t a a -> s -> [Pretext p a a t]
- unsafeSingular :: (HasCallStack, Conjoined p, Functor f) => Traversing p f s t a b -> Over p f s t a b
- singular :: (HasCallStack, Conjoined p, Functor f) => Traversing p f s t a a -> Over p f s t a a
- iunsafePartsOf' :: Over (Indexed i) (Bazaar (Indexed i) a b) s t a b -> IndexedLens [i] s t [a] [b]
- unsafePartsOf' :: ATraversal s t a b -> Lens s t [a] [b]
- iunsafePartsOf :: (Indexable [i] p, Functor f) => Traversing (Indexed i) f s t a b -> Over p f s t [a] [b]
- unsafePartsOf :: Functor f => Traversing ((->) :: Type -> Type -> Type) f s t a b -> LensLike f s t [a] [b]
- ipartsOf' :: (Indexable [i] p, Functor f) => Over (Indexed i) (Bazaar' (Indexed i) a) s t a a -> Over p f s t [a] [a]
- partsOf' :: ATraversal s t a a -> Lens s t [a] [a]
- ipartsOf :: (Indexable [i] p, Functor f) => Traversing (Indexed i) f s t a a -> Over p f s t [a] [a]
- partsOf :: Functor f => Traversing ((->) :: Type -> Type -> Type) f s t a a -> LensLike f s t [a] [a]
- iloci :: IndexedTraversal i (Bazaar (Indexed i) a c s) (Bazaar (Indexed i) b c s) a b
- loci :: Traversal (Bazaar ((->) :: Type -> Type -> Type) a c s) (Bazaar ((->) :: Type -> Type -> Type) b c s) a b
- scanl1Of :: LensLike (State (Maybe a)) s t a a -> (a -> a -> a) -> s -> t
- scanr1Of :: LensLike (Backwards (State (Maybe a))) s t a a -> (a -> a -> a) -> s -> t
- mapAccumLOf :: LensLike (State acc) s t a b -> (acc -> a -> (acc, b)) -> acc -> s -> (acc, t)
- mapAccumROf :: LensLike (Backwards (State acc)) s t a b -> (acc -> a -> (acc, b)) -> acc -> s -> (acc, t)
- transposeOf :: LensLike ZipList s t [a] a -> s -> [t]
- sequenceOf :: LensLike (WrappedMonad m) s t (m b) b -> s -> m t
- forMOf :: LensLike (WrappedMonad m) s t a b -> s -> (a -> m b) -> m t
- mapMOf :: LensLike (WrappedMonad m) s t a b -> (a -> m b) -> s -> m t
- sequenceAOf :: LensLike f s t (f b) b -> s -> f t
- forOf :: LensLike f s t a b -> s -> (a -> f b) -> f t
- traverseOf :: LensLike f s t a b -> (a -> f b) -> s -> f t
- type ATraversal s t a b = LensLike (Bazaar ((->) :: Type -> Type -> Type) a b) s t a b
- type ATraversal' s a = ATraversal s s a a
- type ATraversal1 s t a b = LensLike (Bazaar1 ((->) :: Type -> Type -> Type) a b) s t a b
- type ATraversal1' s a = ATraversal1 s s a a
- type AnIndexedTraversal i s t a b = Over (Indexed i) (Bazaar (Indexed i) a b) s t a b
- type AnIndexedTraversal1 i s t a b = Over (Indexed i) (Bazaar1 (Indexed i) a b) s t a b
- type AnIndexedTraversal' i s a = AnIndexedTraversal i s s a a
- type AnIndexedTraversal1' i s a = AnIndexedTraversal1 i s s a a
- type Traversing (p :: Type -> Type -> Type) (f :: Type -> Type) s t a b = Over p (BazaarT p f a b) s t a b
- type Traversing1 (p :: Type -> Type -> Type) (f :: Type -> Type) s t a b = Over p (BazaarT1 p f a b) s t a b
- type Traversing' (p :: Type -> Type -> Type) (f :: Type -> Type) s a = Traversing p f s s a a
- type Traversing1' (p :: Type -> Type -> Type) (f :: Type -> Type) s a = Traversing1 p f s s a a
- class Ord k => TraverseMin k (m :: Type -> Type) | m -> k where
- traverseMin :: IndexedTraversal' k (m v) v
- class Ord k => TraverseMax k (m :: Type -> Type) | m -> k where
- traverseMax :: IndexedTraversal' k (m v) v
- foldMapByOf :: Fold s a -> (r -> r -> r) -> r -> (a -> r) -> s -> r
- foldByOf :: Fold s a -> (a -> a -> a) -> a -> s -> a
- idroppingWhile :: (Indexable i p, Profunctor q, Applicative f) => (i -> a -> Bool) -> Optical (Indexed i) q (Compose (State Bool) f) s t a a -> Optical p q f s t a a
- itakingWhile :: (Indexable i p, Profunctor q, Contravariant f, Applicative f) => (i -> a -> Bool) -> Optical' (Indexed i) q (Const (Endo (f s)) :: Type -> Type) s a -> Optical' p q f s a
- ifiltered :: (Indexable i p, Applicative f) => (i -> a -> Bool) -> Optical' p (Indexed i) f a a
- findIndicesOf :: IndexedGetting i (Endo [i]) s a -> (a -> Bool) -> s -> [i]
- findIndexOf :: IndexedGetting i (First i) s a -> (a -> Bool) -> s -> Maybe i
- elemIndicesOf :: Eq a => IndexedGetting i (Endo [i]) s a -> a -> s -> [i]
- elemIndexOf :: Eq a => IndexedGetting i (First i) s a -> a -> s -> Maybe i
- (^@?!) :: HasCallStack => s -> IndexedGetting i (Endo (i, a)) s a -> (i, a)
- (^@?) :: s -> IndexedGetting i (Endo (Maybe (i, a))) s a -> Maybe (i, a)
- (^@..) :: s -> IndexedGetting i (Endo [(i, a)]) s a -> [(i, a)]
- itoListOf :: IndexedGetting i (Endo [(i, a)]) s a -> s -> [(i, a)]
- ifoldlMOf :: Monad m => IndexedGetting i (Endo (r -> m r)) s a -> (i -> r -> a -> m r) -> r -> s -> m r
- ifoldrMOf :: Monad m => IndexedGetting i (Dual (Endo (r -> m r))) s a -> (i -> a -> r -> m r) -> r -> s -> m r
- ifoldlOf' :: IndexedGetting i (Endo (r -> r)) s a -> (i -> r -> a -> r) -> r -> s -> r
- ifoldrOf' :: IndexedGetting i (Dual (Endo (r -> r))) s a -> (i -> a -> r -> r) -> r -> s -> r
- ifindMOf :: Monad m => IndexedGetting i (Endo (m (Maybe a))) s a -> (i -> a -> m Bool) -> s -> m (Maybe a)
- ifindOf :: IndexedGetting i (Endo (Maybe a)) s a -> (i -> a -> Bool) -> s -> Maybe a
- iconcatMapOf :: IndexedGetting i [r] s a -> (i -> a -> [r]) -> s -> [r]
- iforMOf_ :: Monad m => IndexedGetting i (Sequenced r m) s a -> s -> (i -> a -> m r) -> m ()
- imapMOf_ :: Monad m => IndexedGetting i (Sequenced r m) s a -> (i -> a -> m r) -> s -> m ()
- iforOf_ :: Functor f => IndexedGetting i (Traversed r f) s a -> s -> (i -> a -> f r) -> f ()
- itraverseOf_ :: Functor f => IndexedGetting i (Traversed r f) s a -> (i -> a -> f r) -> s -> f ()
- inoneOf :: IndexedGetting i Any s a -> (i -> a -> Bool) -> s -> Bool
- iallOf :: IndexedGetting i All s a -> (i -> a -> Bool) -> s -> Bool
- ianyOf :: IndexedGetting i Any s a -> (i -> a -> Bool) -> s -> Bool
- ifoldlOf :: IndexedGetting i (Dual (Endo r)) s a -> (i -> r -> a -> r) -> r -> s -> r
- ifoldrOf :: IndexedGetting i (Endo r) s a -> (i -> a -> r -> r) -> r -> s -> r
- ifoldMapOf :: IndexedGetting i m s a -> (i -> a -> m) -> s -> m
- backwards :: (Profunctor p, Profunctor q) => Optical p q (Backwards f) s t a b -> Optical p q f s t a b
- ipreuses :: MonadState s m => IndexedGetting i (First r) s a -> (i -> a -> r) -> m (Maybe r)
- preuses :: MonadState s m => Getting (First r) s a -> (a -> r) -> m (Maybe r)
- ipreuse :: MonadState s m => IndexedGetting i (First (i, a)) s a -> m (Maybe (i, a))
- preuse :: MonadState s m => Getting (First a) s a -> m (Maybe a)
- ipreviews :: MonadReader s m => IndexedGetting i (First r) s a -> (i -> a -> r) -> m (Maybe r)
- previews :: MonadReader s m => Getting (First r) s a -> (a -> r) -> m (Maybe r)
- ipreview :: MonadReader s m => IndexedGetting i (First (i, a)) s a -> m (Maybe (i, a))
- preview :: MonadReader s m => Getting (First a) s a -> m (Maybe a)
- ipre :: IndexedGetting i (First (i, a)) s a -> IndexPreservingGetter s (Maybe (i, a))
- pre :: Getting (First a) s a -> IndexPreservingGetter s (Maybe a)
- hasn't :: Getting All s a -> s -> Bool
- has :: Getting Any s a -> s -> Bool
- foldlMOf :: Monad m => Getting (Endo (r -> m r)) s a -> (r -> a -> m r) -> r -> s -> m r
- foldrMOf :: Monad m => Getting (Dual (Endo (r -> m r))) s a -> (a -> r -> m r) -> r -> s -> m r
- foldl1Of' :: HasCallStack => Getting (Endo (Endo (Maybe a))) s a -> (a -> a -> a) -> s -> a
- foldr1Of' :: HasCallStack => Getting (Dual (Endo (Endo (Maybe a)))) s a -> (a -> a -> a) -> s -> a
- foldlOf' :: Getting (Endo (Endo r)) s a -> (r -> a -> r) -> r -> s -> r
- foldrOf' :: Getting (Dual (Endo (Endo r))) s a -> (a -> r -> r) -> r -> s -> r
- foldl1Of :: HasCallStack => Getting (Dual (Endo (Maybe a))) s a -> (a -> a -> a) -> s -> a
- foldr1Of :: HasCallStack => Getting (Endo (Maybe a)) s a -> (a -> a -> a) -> s -> a
- lookupOf :: Eq k => Getting (Endo (Maybe v)) s (k, v) -> k -> s -> Maybe v
- findMOf :: Monad m => Getting (Endo (m (Maybe a))) s a -> (a -> m Bool) -> s -> m (Maybe a)
- findOf :: Getting (Endo (Maybe a)) s a -> (a -> Bool) -> s -> Maybe a
- minimumByOf :: Getting (Endo (Endo (Maybe a))) s a -> (a -> a -> Ordering) -> s -> Maybe a
- maximumByOf :: Getting (Endo (Endo (Maybe a))) s a -> (a -> a -> Ordering) -> s -> Maybe a
- minimum1Of :: Ord a => Getting (Min a) s a -> s -> a
- minimumOf :: Ord a => Getting (Endo (Endo (Maybe a))) s a -> s -> Maybe a
- maximum1Of :: Ord a => Getting (Max a) s a -> s -> a
- maximumOf :: Ord a => Getting (Endo (Endo (Maybe a))) s a -> s -> Maybe a
- notNullOf :: Getting Any s a -> s -> Bool
- nullOf :: Getting All s a -> s -> Bool
- last1Of :: Getting (Last a) s a -> s -> a
- lastOf :: Getting (Rightmost a) s a -> s -> Maybe a
- first1Of :: Getting (First a) s a -> s -> a
- firstOf :: Getting (Leftmost a) s a -> s -> Maybe a
- (^?!) :: HasCallStack => s -> Getting (Endo a) s a -> a
- (^?) :: s -> Getting (First a) s a -> Maybe a
- lengthOf :: Getting (Endo (Endo Int)) s a -> s -> Int
- concatOf :: Getting [r] s [r] -> s -> [r]
- concatMapOf :: Getting [r] s a -> (a -> [r]) -> s -> [r]
- notElemOf :: Eq a => Getting All s a -> a -> s -> Bool
- elemOf :: Eq a => Getting Any s a -> a -> s -> Bool
- msumOf :: MonadPlus m => Getting (Endo (m a)) s (m a) -> s -> m a
- asumOf :: Alternative f => Getting (Endo (f a)) s (f a) -> s -> f a
- sequenceOf_ :: Monad m => Getting (Sequenced a m) s (m a) -> s -> m ()
- forMOf_ :: Monad m => Getting (Sequenced r m) s a -> s -> (a -> m r) -> m ()
- mapMOf_ :: Monad m => Getting (Sequenced r m) s a -> (a -> m r) -> s -> m ()
- sequence1Of_ :: Functor f => Getting (TraversedF a f) s (f a) -> s -> f ()
- for1Of_ :: Functor f => Getting (TraversedF r f) s a -> s -> (a -> f r) -> f ()
- traverse1Of_ :: Functor f => Getting (TraversedF r f) s a -> (a -> f r) -> s -> f ()
- sequenceAOf_ :: Functor f => Getting (Traversed a f) s (f a) -> s -> f ()
- forOf_ :: Functor f => Getting (Traversed r f) s a -> s -> (a -> f r) -> f ()
- traverseOf_ :: Functor f => Getting (Traversed r f) s a -> (a -> f r) -> s -> f ()
- sumOf :: Num a => Getting (Endo (Endo a)) s a -> s -> a
- productOf :: Num a => Getting (Endo (Endo a)) s a -> s -> a
- noneOf :: Getting Any s a -> (a -> Bool) -> s -> Bool
- allOf :: Getting All s a -> (a -> Bool) -> s -> Bool
- anyOf :: Getting Any s a -> (a -> Bool) -> s -> Bool
- orOf :: Getting Any s Bool -> s -> Bool
- andOf :: Getting All s Bool -> s -> Bool
- (^..) :: s -> Getting (Endo [a]) s a -> [a]
- toNonEmptyOf :: Getting (NonEmptyDList a) s a -> s -> NonEmpty a
- toListOf :: Getting (Endo [a]) s a -> s -> [a]
- foldlOf :: Getting (Dual (Endo r)) s a -> (r -> a -> r) -> r -> s -> r
- foldrOf :: Getting (Endo r) s a -> (a -> r -> r) -> r -> s -> r
- foldOf :: Getting a s a -> s -> a
- foldMapOf :: Getting r s a -> (a -> r) -> s -> r
- lined :: Applicative f => IndexedLensLike' Int f String String
- worded :: Applicative f => IndexedLensLike' Int f String String
- droppingWhile :: (Conjoined p, Profunctor q, Applicative f) => (a -> Bool) -> Optical p q (Compose (State Bool) f) s t a a -> Optical p q f s t a a
- takingWhile :: (Conjoined p, Applicative f) => (a -> Bool) -> Over p (TakingWhile p f a a) s t a a -> Over p f s t a a
- filtered :: (Choice p, Applicative f) => (a -> Bool) -> Optic' p f a a
- iterated :: Apply f => (a -> a) -> LensLike' f a a
- unfolded :: (b -> Maybe (a, b)) -> Fold b a
- cycled :: Apply f => LensLike f s t a b -> LensLike f s t a b
- replicated :: Int -> Fold a a
- repeated :: Apply f => LensLike' f a a
- folded64 :: Foldable f => IndexedFold Int64 (f a) a
- folded :: Foldable f => IndexedFold Int (f a) a
- ifoldring :: (Indexable i p, Contravariant f, Applicative f) => ((i -> a -> f a -> f a) -> f a -> s -> f a) -> Over p f s t a b
- foldring :: (Contravariant f, Applicative f) => ((a -> f a -> f a) -> f a -> s -> f a) -> LensLike f s t a b
- ifolding :: (Foldable f, Indexable i p, Contravariant g, Applicative g) => (s -> f (i, a)) -> Over p g s t a b
- folding :: Foldable f => (s -> f a) -> Fold s a
- _Show :: (Read a, Show a) => Prism' String a
- nearly :: a -> (a -> Bool) -> Prism' a ()
- only :: Eq a => a -> Prism' a ()
- _Void :: Prism s s a Void
- _Nothing :: Prism' (Maybe a) ()
- _Just :: Prism (Maybe a) (Maybe b) a b
- _Right :: Prism (Either c a) (Either c b) a b
- _Left :: Prism (Either a c) (Either b c) a b
- matching :: APrism s t a b -> s -> Either t a
- isn't :: APrism s t a b -> s -> Bool
- below :: Traversable f => APrism' s a -> Prism' (f s) (f a)
- aside :: APrism s t a b -> Prism (e, s) (e, t) (e, a) (e, b)
- without :: APrism s t a b -> APrism u v c d -> Prism (Either s u) (Either t v) (Either a c) (Either b d)
- outside :: Representable p => APrism s t a b -> Lens (p t r) (p s r) (p b r) (p a r)
- prism' :: (b -> s) -> (s -> Maybe a) -> Prism s s a b
- prism :: (b -> t) -> (s -> Either t a) -> Prism s t a b
- clonePrism :: APrism s t a b -> Prism s t a b
- withPrism :: APrism s t a b -> ((b -> t) -> (s -> Either t a) -> r) -> r
- type APrism s t a b = Market a b a (Identity b) -> Market a b s (Identity t)
- type APrism' s a = APrism s s a a
- reuses :: MonadState b m => AReview t b -> (t -> r) -> m r
- reuse :: MonadState b m => AReview t b -> m t
- reviews :: MonadReader b m => AReview t b -> (t -> r) -> m r
- (#) :: AReview t b -> b -> t
- review :: MonadReader b m => AReview t b -> m t
- re :: AReview t b -> Getter b t
- un :: (Profunctor p, Bifunctor p, Functor f) => Getting a s a -> Optic' p f a s
- unto :: (Profunctor p, Bifunctor p, Functor f) => (b -> t) -> Optic p f s t a b
- getting :: (Profunctor p, Profunctor q, Functor f, Contravariant f) => Optical p q f s t a b -> Optical' p q f s a
- (^@.) :: s -> IndexedGetting i (i, a) s a -> (i, a)
- iuses :: MonadState s m => IndexedGetting i r s a -> (i -> a -> r) -> m r
- iuse :: MonadState s m => IndexedGetting i (i, a) s a -> m (i, a)
- iviews :: MonadReader s m => IndexedGetting i r s a -> (i -> a -> r) -> m r
- iview :: MonadReader s m => IndexedGetting i (i, a) s a -> m (i, a)
- ilistenings :: MonadWriter w m => IndexedGetting i v w u -> (i -> u -> v) -> m a -> m (a, v)
- listenings :: MonadWriter w m => Getting v w u -> (u -> v) -> m a -> m (a, v)
- ilistening :: MonadWriter w m => IndexedGetting i (i, u) w u -> m a -> m (a, (i, u))
- listening :: MonadWriter w m => Getting u w u -> m a -> m (a, u)
- uses :: MonadState s m => LensLike' (Const r :: Type -> Type) s a -> (a -> r) -> m r
- use :: MonadState s m => Getting a s a -> m a
- (^.) :: s -> Getting a s a -> a
- views :: MonadReader s m => LensLike' (Const r :: Type -> Type) s a -> (a -> r) -> m r
- view :: MonadReader s m => Getting a s a -> m a
- ilike :: (Indexable i p, Contravariant f, Functor f) => i -> a -> Over' p f s a
- like :: (Profunctor p, Contravariant f, Functor f) => a -> Optic' p f s a
- ito :: (Indexable i p, Contravariant f) => (s -> (i, a)) -> Over' p f s a
- to :: (Profunctor p, Contravariant f) => (s -> a) -> Optic' p f s a
- type Getting r s a = (a -> Const r a) -> s -> Const r s
- type IndexedGetting i m s a = Indexed i a (Const m a) -> s -> Const m s
- type Accessing (p :: Type -> Type -> Type) m s a = p a (Const m a) -> s -> Const m s
- _19' :: Field19 s t a b => Lens s t a b
- _18' :: Field18 s t a b => Lens s t a b
- _17' :: Field17 s t a b => Lens s t a b
- _16' :: Field16 s t a b => Lens s t a b
- _15' :: Field15 s t a b => Lens s t a b
- _14' :: Field14 s t a b => Lens s t a b
- _13' :: Field13 s t a b => Lens s t a b
- _12' :: Field12 s t a b => Lens s t a b
- _11' :: Field11 s t a b => Lens s t a b
- _10' :: Field10 s t a b => Lens s t a b
- _9' :: Field9 s t a b => Lens s t a b
- _8' :: Field8 s t a b => Lens s t a b
- _7' :: Field7 s t a b => Lens s t a b
- _6' :: Field6 s t a b => Lens s t a b
- _5' :: Field5 s t a b => Lens s t a b
- _4' :: Field4 s t a b => Lens s t a b
- _3' :: Field3 s t a b => Lens s t a b
- _2' :: Field2 s t a b => Lens s t a b
- _1' :: Field1 s t a b => Lens s t a b
- class Field1 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field2 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field3 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field4 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field5 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field6 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field7 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field8 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field9 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field10 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field11 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field12 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field13 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field14 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field15 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field16 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field17 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field18 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field19 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- fusing :: Functor f => LensLike (Yoneda f) s t a b -> LensLike f s t a b
- united :: Lens' a ()
- devoid :: Over p f Void Void a b
- (<#=) :: MonadState s m => ALens s s a b -> b -> m b
- (<#~) :: ALens s t a b -> b -> s -> (b, t)
- (#%%=) :: MonadState s m => ALens s s a b -> (a -> (r, b)) -> m r
- (<#%=) :: MonadState s m => ALens s s a b -> (a -> b) -> m b
- (<#%~) :: ALens s t a b -> (a -> b) -> s -> (b, t)
- (#%=) :: MonadState s m => ALens s s a b -> (a -> b) -> m ()
- (#=) :: MonadState s m => ALens s s a b -> b -> m ()
- (#%%~) :: Functor f => ALens s t a b -> (a -> f b) -> s -> f t
- (#%~) :: ALens s t a b -> (a -> b) -> s -> t
- (#~) :: ALens s t a b -> b -> s -> t
- storing :: ALens s t a b -> b -> s -> t
- (^#) :: s -> ALens s t a b -> a
- (<<%@=) :: MonadState s m => Over (Indexed i) ((,) a) s s a b -> (i -> a -> b) -> m a
- (<%@=) :: MonadState s m => Over (Indexed i) ((,) b) s s a b -> (i -> a -> b) -> m b
- (%%@=) :: MonadState s m => Over (Indexed i) ((,) r) s s a b -> (i -> a -> (r, b)) -> m r
- (%%@~) :: Over (Indexed i) f s t a b -> (i -> a -> f b) -> s -> f t
- (<<%@~) :: Over (Indexed i) ((,) a) s t a b -> (i -> a -> b) -> s -> (a, t)
- (<%@~) :: Over (Indexed i) ((,) b) s t a b -> (i -> a -> b) -> s -> (b, t)
- overA :: Arrow ar => LensLike (Context a b) s t a b -> ar a b -> ar s t
- (<<>=) :: (MonadState s m, Monoid r) => LensLike' ((,) r) s r -> r -> m r
- (<<>~) :: Monoid m => LensLike ((,) m) s t m m -> m -> s -> (m, t)
- (<<~) :: MonadState s m => ALens s s a b -> m b -> m b
- (<<<>=) :: (MonadState s m, Monoid r) => LensLike' ((,) r) s r -> r -> m r
- (<<&&=) :: MonadState s m => LensLike' ((,) Bool) s Bool -> Bool -> m Bool
- (<<||=) :: MonadState s m => LensLike' ((,) Bool) s Bool -> Bool -> m Bool
- (<<**=) :: (MonadState s m, Floating a) => LensLike' ((,) a) s a -> a -> m a
- (<<^^=) :: (MonadState s m, Fractional a, Integral e) => LensLike' ((,) a) s a -> e -> m a
- (<<^=) :: (MonadState s m, Num a, Integral e) => LensLike' ((,) a) s a -> e -> m a
- (<<//=) :: (MonadState s m, Fractional a) => LensLike' ((,) a) s a -> a -> m a
- (<<*=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a
- (<<-=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a
- (<<+=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a
- (<<?=) :: MonadState s m => LensLike ((,) a) s s a (Maybe b) -> b -> m a
- (<<.=) :: MonadState s m => LensLike ((,) a) s s a b -> b -> m a
- (<<%=) :: (Strong p, MonadState s m) => Over p ((,) a) s s a b -> p a b -> m a
- (<&&=) :: MonadState s m => LensLike' ((,) Bool) s Bool -> Bool -> m Bool
- (<||=) :: MonadState s m => LensLike' ((,) Bool) s Bool -> Bool -> m Bool
- (<**=) :: (MonadState s m, Floating a) => LensLike' ((,) a) s a -> a -> m a
- (<^^=) :: (MonadState s m, Fractional a, Integral e) => LensLike' ((,) a) s a -> e -> m a
- (<^=) :: (MonadState s m, Num a, Integral e) => LensLike' ((,) a) s a -> e -> m a
- (<//=) :: (MonadState s m, Fractional a) => LensLike' ((,) a) s a -> a -> m a
- (<*=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a
- (<-=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a
- (<+=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a
- (<%=) :: MonadState s m => LensLike ((,) b) s s a b -> (a -> b) -> m b
- (<<<>~) :: Monoid r => LensLike' ((,) r) s r -> r -> s -> (r, s)
- (<<&&~) :: LensLike' ((,) Bool) s Bool -> Bool -> s -> (Bool, s)
- (<<||~) :: LensLike' ((,) Bool) s Bool -> Bool -> s -> (Bool, s)
- (<<**~) :: Floating a => LensLike' ((,) a) s a -> a -> s -> (a, s)
- (<<^^~) :: (Fractional a, Integral e) => LensLike' ((,) a) s a -> e -> s -> (a, s)
- (<<^~) :: (Num a, Integral e) => LensLike' ((,) a) s a -> e -> s -> (a, s)
- (<<//~) :: Fractional a => LensLike' ((,) a) s a -> a -> s -> (a, s)
- (<<*~) :: Num a => LensLike' ((,) a) s a -> a -> s -> (a, s)
- (<<-~) :: Num a => LensLike' ((,) a) s a -> a -> s -> (a, s)
- (<<+~) :: Num a => LensLike' ((,) a) s a -> a -> s -> (a, s)
- (<<?~) :: LensLike ((,) a) s t a (Maybe b) -> b -> s -> (a, t)
- (<<.~) :: LensLike ((,) a) s t a b -> b -> s -> (a, t)
- (<<%~) :: LensLike ((,) a) s t a b -> (a -> b) -> s -> (a, t)
- (<&&~) :: LensLike ((,) Bool) s t Bool Bool -> Bool -> s -> (Bool, t)
- (<||~) :: LensLike ((,) Bool) s t Bool Bool -> Bool -> s -> (Bool, t)
- (<**~) :: Floating a => LensLike ((,) a) s t a a -> a -> s -> (a, t)
- (<^^~) :: (Fractional a, Integral e) => LensLike ((,) a) s t a a -> e -> s -> (a, t)
- (<^~) :: (Num a, Integral e) => LensLike ((,) a) s t a a -> e -> s -> (a, t)
- (<//~) :: Fractional a => LensLike ((,) a) s t a a -> a -> s -> (a, t)
- (<*~) :: Num a => LensLike ((,) a) s t a a -> a -> s -> (a, t)
- (<-~) :: Num a => LensLike ((,) a) s t a a -> a -> s -> (a, t)
- (<+~) :: Num a => LensLike ((,) a) s t a a -> a -> s -> (a, t)
- (<%~) :: LensLike ((,) b) s t a b -> (a -> b) -> s -> (b, t)
- cloneIndexedLens :: AnIndexedLens i s t a b -> IndexedLens i s t a b
- cloneIndexPreservingLens :: ALens s t a b -> IndexPreservingLens s t a b
- cloneLens :: ALens s t a b -> Lens s t a b
- locus :: IndexedComonadStore p => Lens (p a c s) (p b c s) a b
- alongside :: LensLike (AlongsideLeft f b') s t a b -> LensLike (AlongsideRight f t) s' t' a' b' -> LensLike f (s, s') (t, t') (a, a') (b, b')
- chosen :: IndexPreservingLens (Either a a) (Either b b) a b
- choosing :: Functor f => LensLike f s t a b -> LensLike f s' t' a b -> LensLike f (Either s s') (Either t t') a b
- inside :: Corepresentable p => ALens s t a b -> Lens (p e s) (p e t) (p e a) (p e b)
- (??) :: Functor f => f (a -> b) -> a -> f b
- (%%=) :: MonadState s m => Over p ((,) r) s s a b -> p a (r, b) -> m r
- (%%~) :: LensLike f s t a b -> (a -> f b) -> s -> f t
- (&~) :: s -> State s a -> s
- ilens :: (s -> (i, a)) -> (s -> b -> t) -> IndexedLens i s t a b
- iplens :: (s -> a) -> (s -> b -> t) -> IndexPreservingLens s t a b
- lens :: (s -> a) -> (s -> b -> t) -> Lens s t a b
- type ALens s t a b = LensLike (Pretext ((->) :: Type -> Type -> Type) a b) s t a b
- type ALens' s a = ALens s s a a
- type AnIndexedLens i s t a b = Optical (Indexed i) ((->) :: Type -> Type -> Type) (Pretext (Indexed i) a b) s t a b
- type AnIndexedLens' i s a = AnIndexedLens i s s a a
- imapOf :: AnIndexedSetter i s t a b -> (i -> a -> b) -> s -> t
- mapOf :: ASetter s t a b -> (a -> b) -> s -> t
- assignA :: Arrow p => ASetter s t a b -> p s b -> p s t
- (.@=) :: MonadState s m => AnIndexedSetter i s s a b -> (i -> b) -> m ()
- imodifying :: MonadState s m => AnIndexedSetter i s s a b -> (i -> a -> b) -> m ()
- (%@=) :: MonadState s m => AnIndexedSetter i s s a b -> (i -> a -> b) -> m ()
- (.@~) :: AnIndexedSetter i s t a b -> (i -> b) -> s -> t
- (%@~) :: AnIndexedSetter i s t a b -> (i -> a -> b) -> s -> t
- isets :: ((i -> a -> b) -> s -> t) -> IndexedSetter i s t a b
- iset :: AnIndexedSetter i s t a b -> (i -> b) -> s -> t
- iover :: AnIndexedSetter i s t a b -> (i -> a -> b) -> s -> t
- ilocally :: MonadReader s m => AnIndexedSetter i s s a b -> (i -> a -> b) -> m r -> m r
- locally :: MonadReader s m => ASetter s s a b -> (a -> b) -> m r -> m r
- icensoring :: MonadWriter w m => IndexedSetter i w w u v -> (i -> u -> v) -> m a -> m a
- censoring :: MonadWriter w m => Setter w w u v -> (u -> v) -> m a -> m a
- ipassing :: MonadWriter w m => IndexedSetter i w w u v -> m (a, i -> u -> v) -> m a
- passing :: MonadWriter w m => Setter w w u v -> m (a, u -> v) -> m a
- scribe :: (MonadWriter t m, Monoid s) => ASetter s t a b -> b -> m ()
- (<>=) :: (MonadState s m, Monoid a) => ASetter' s a -> a -> m ()
- (<>~) :: Monoid a => ASetter s t a a -> a -> s -> t
- (<?=) :: MonadState s m => ASetter s s a (Maybe b) -> b -> m b
- (<.=) :: MonadState s m => ASetter s s a b -> b -> m b
- (<~) :: MonadState s m => ASetter s s a b -> m b -> m ()
- (||=) :: MonadState s m => ASetter' s Bool -> Bool -> m ()
- (&&=) :: MonadState s m => ASetter' s Bool -> Bool -> m ()
- (**=) :: (MonadState s m, Floating a) => ASetter' s a -> a -> m ()
- (^^=) :: (MonadState s m, Fractional a, Integral e) => ASetter' s a -> e -> m ()
- (^=) :: (MonadState s m, Num a, Integral e) => ASetter' s a -> e -> m ()
- (//=) :: (MonadState s m, Fractional a) => ASetter' s a -> a -> m ()
- (*=) :: (MonadState s m, Num a) => ASetter' s a -> a -> m ()
- (-=) :: (MonadState s m, Num a) => ASetter' s a -> a -> m ()
- (+=) :: (MonadState s m, Num a) => ASetter' s a -> a -> m ()
- (?=) :: MonadState s m => ASetter s s a (Maybe b) -> b -> m ()
- modifying :: MonadState s m => ASetter s s a b -> (a -> b) -> m ()
- (%=) :: MonadState s m => ASetter s s a b -> (a -> b) -> m ()
- (.=) :: MonadState s m => ASetter s s a b -> b -> m ()
- assign :: MonadState s m => ASetter s s a b -> b -> m ()
- (&&~) :: ASetter s t Bool Bool -> Bool -> s -> t
- (||~) :: ASetter s t Bool Bool -> Bool -> s -> t
- (**~) :: Floating a => ASetter s t a a -> a -> s -> t
- (^^~) :: (Fractional a, Integral e) => ASetter s t a a -> e -> s -> t
- (^~) :: (Num a, Integral e) => ASetter s t a a -> e -> s -> t
- (//~) :: Fractional a => ASetter s t a a -> a -> s -> t
- (-~) :: Num a => ASetter s t a a -> a -> s -> t
- (*~) :: Num a => ASetter s t a a -> a -> s -> t
- (+~) :: Num a => ASetter s t a a -> a -> s -> t
- (<?~) :: ASetter s t a (Maybe b) -> b -> s -> (b, t)
- (<.~) :: ASetter s t a b -> b -> s -> (b, t)
- (?~) :: ASetter s t a (Maybe b) -> b -> s -> t
- (.~) :: ASetter s t a b -> b -> s -> t
- (%~) :: ASetter s t a b -> (a -> b) -> s -> t
- set' :: ASetter' s a -> a -> s -> s
- set :: ASetter s t a b -> b -> s -> t
- over :: ASetter s t a b -> (a -> b) -> s -> t
- cloneIndexedSetter :: AnIndexedSetter i s t a b -> IndexedSetter i s t a b
- cloneIndexPreservingSetter :: ASetter s t a b -> IndexPreservingSetter s t a b
- cloneSetter :: ASetter s t a b -> Setter s t a b
- sets :: (Profunctor p, Profunctor q, Settable f) => (p a b -> q s t) -> Optical p q f s t a b
- setting :: ((a -> b) -> s -> t) -> IndexPreservingSetter s t a b
- argument :: Profunctor p => Setter (p b r) (p a r) a b
- contramapped :: Contravariant f => Setter (f b) (f a) a b
- lifted :: Monad m => Setter (m a) (m b) a b
- mapped :: Functor f => Setter (f a) (f b) a b
- type ASetter s t a b = (a -> Identity b) -> s -> Identity t
- type ASetter' s a = ASetter s s a a
- type AnIndexedSetter i s t a b = Indexed i a (Identity b) -> s -> Identity t
- type AnIndexedSetter' i s a = AnIndexedSetter i s s a a
- type Setting (p :: Type -> Type -> Type) s t a b = p a (Identity b) -> s -> Identity t
- type Setting' (p :: Type -> Type -> Type) s a = Setting p s s a a
- type Lens s t a b = forall (f :: Type -> Type). Functor f => (a -> f b) -> s -> f t
- type Lens' s a = Lens s s a a
- type IndexedLens i s t a b = forall (f :: Type -> Type) (p :: Type -> Type -> Type). (Indexable i p, Functor f) => p a (f b) -> s -> f t
- type IndexedLens' i s a = IndexedLens i s s a a
- type IndexPreservingLens s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Functor f) => p a (f b) -> p s (f t)
- type IndexPreservingLens' s a = IndexPreservingLens s s a a
- type Traversal s t a b = forall (f :: Type -> Type). Applicative f => (a -> f b) -> s -> f t
- type Traversal' s a = Traversal s s a a
- type Traversal1 s t a b = forall (f :: Type -> Type). Apply f => (a -> f b) -> s -> f t
- type Traversal1' s a = Traversal1 s s a a
- type IndexedTraversal i s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Indexable i p, Applicative f) => p a (f b) -> s -> f t
- type IndexedTraversal' i s a = IndexedTraversal i s s a a
- type IndexedTraversal1 i s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Indexable i p, Apply f) => p a (f b) -> s -> f t
- type IndexedTraversal1' i s a = IndexedTraversal1 i s s a a
- type IndexPreservingTraversal s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Applicative f) => p a (f b) -> p s (f t)
- type IndexPreservingTraversal' s a = IndexPreservingTraversal s s a a
- type IndexPreservingTraversal1 s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Apply f) => p a (f b) -> p s (f t)
- type IndexPreservingTraversal1' s a = IndexPreservingTraversal1 s s a a
- type Setter s t a b = forall (f :: Type -> Type). Settable f => (a -> f b) -> s -> f t
- type Setter' s a = Setter s s a a
- type IndexedSetter i s t a b = forall (f :: Type -> Type) (p :: Type -> Type -> Type). (Indexable i p, Settable f) => p a (f b) -> s -> f t
- type IndexedSetter' i s a = IndexedSetter i s s a a
- type IndexPreservingSetter s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Settable f) => p a (f b) -> p s (f t)
- type IndexPreservingSetter' s a = IndexPreservingSetter s s a a
- type Iso s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Profunctor p, Functor f) => p a (f b) -> p s (f t)
- type Iso' s a = Iso s s a a
- type Review t b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Choice p, Bifunctor p, Settable f) => Optic' p f t b
- type AReview t b = Optic' (Tagged :: Type -> Type -> Type) Identity t b
- type Prism s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Choice p, Applicative f) => p a (f b) -> p s (f t)
- type Prism' s a = Prism s s a a
- type Equality (s :: k1) (t :: k2) (a :: k1) (b :: k2) = forall k3 (p :: k1 -> k3 -> Type) (f :: k2 -> k3). p a (f b) -> p s (f t)
- type Equality' (s :: k2) (a :: k2) = Equality s s a a
- type As (a :: k2) = Equality' a a
- type Getter s a = forall (f :: Type -> Type). (Contravariant f, Functor f) => (a -> f a) -> s -> f s
- type IndexedGetter i s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Indexable i p, Contravariant f, Functor f) => p a (f a) -> s -> f s
- type IndexPreservingGetter s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Contravariant f, Functor f) => p a (f a) -> p s (f s)
- type Fold s a = forall (f :: Type -> Type). (Contravariant f, Applicative f) => (a -> f a) -> s -> f s
- type IndexedFold i s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Indexable i p, Contravariant f, Applicative f) => p a (f a) -> s -> f s
- type IndexPreservingFold s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Contravariant f, Applicative f) => p a (f a) -> p s (f s)
- type Fold1 s a = forall (f :: Type -> Type). (Contravariant f, Apply f) => (a -> f a) -> s -> f s
- type IndexedFold1 i s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Indexable i p, Contravariant f, Apply f) => p a (f a) -> s -> f s
- type IndexPreservingFold1 s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Contravariant f, Apply f) => p a (f a) -> p s (f s)
- type Simple (f :: k -> k -> k1 -> k1 -> k2) (s :: k) (a :: k1) = f s s a a
- type Optic (p :: k1 -> k -> Type) (f :: k2 -> k) (s :: k1) (t :: k2) (a :: k1) (b :: k2) = p a (f b) -> p s (f t)
- type Optic' (p :: k1 -> k -> Type) (f :: k1 -> k) (s :: k1) (a :: k1) = Optic p f s s a a
- type Optical (p :: k2 -> k -> Type) (q :: k1 -> k -> Type) (f :: k3 -> k) (s :: k1) (t :: k3) (a :: k2) (b :: k3) = p a (f b) -> q s (f t)
- type Optical' (p :: k1 -> k -> Type) (q :: k1 -> k -> Type) (f :: k1 -> k) (s :: k1) (a :: k1) = Optical p q f s s a a
- type LensLike (f :: k -> Type) s (t :: k) a (b :: k) = (a -> f b) -> s -> f t
- type LensLike' (f :: Type -> Type) s a = LensLike f s s a a
- type IndexedLensLike i (f :: k -> Type) s (t :: k) a (b :: k) = forall (p :: Type -> Type -> Type). Indexable i p => p a (f b) -> s -> f t
- type IndexedLensLike' i (f :: Type -> Type) s a = IndexedLensLike i f s s a a
- type Over (p :: k -> Type -> Type) (f :: k1 -> Type) s (t :: k1) (a :: k) (b :: k1) = p a (f b) -> s -> f t
- type Over' (p :: Type -> Type -> Type) (f :: Type -> Type) s a = Over p f s s a a
- class (Applicative f, Distributive f, Traversable f) => Settable (f :: Type -> Type)
- retagged :: (Profunctor p, Bifunctor p) => p a b -> p s b
- class (Profunctor p, Bifunctor p) => Reviewable (p :: Type -> Type -> Type)
- data Magma i t b a
- data Level i a
- class Reversing t where
- reversing :: t -> t
- newtype Bazaar (p :: Type -> Type -> Type) a b t = Bazaar {
- runBazaar :: forall (f :: Type -> Type). Applicative f => p a (f b) -> f t
- type Bazaar' (p :: Type -> Type -> Type) a = Bazaar p a a
- newtype Bazaar1 (p :: Type -> Type -> Type) a b t = Bazaar1 {
- runBazaar1 :: forall (f :: Type -> Type). Apply f => p a (f b) -> f t
- type Bazaar1' (p :: Type -> Type -> Type) a = Bazaar1 p a a
- data Context a b t = Context (b -> t) a
- type Context' a = Context a a
- asIndex :: (Indexable i p, Contravariant f, Functor f) => p i (f i) -> Indexed i s (f s)
- withIndex :: (Indexable i p, Functor f) => p (i, s) (f (j, t)) -> Indexed i s (f t)
- indexing64 :: Indexable Int64 p => ((a -> Indexing64 f b) -> s -> Indexing64 f t) -> p a (f b) -> s -> f t
- indexing :: Indexable Int p => ((a -> Indexing f b) -> s -> Indexing f t) -> p a (f b) -> s -> f t
- class (Choice p, Corepresentable p, Comonad (Corep p), Traversable (Corep p), Strong p, Representable p, Monad (Rep p), MonadFix (Rep p), Distributive (Rep p), Costrong p, ArrowLoop p, ArrowApply p, ArrowChoice p, Closed p) => Conjoined (p :: Type -> Type -> Type) where
- class Conjoined p => Indexable i (p :: Type -> Type -> Type) where
- indexed :: p a b -> i -> a -> b
- newtype Indexed i a b = Indexed {
- runIndexed :: i -> a -> b
- data Traversed a (f :: Type -> Type)
- data Sequenced a (m :: Type -> Type)
- data Leftmost a
- data Rightmost a
- class (Foldable1 t, Traversable t) => Traversable1 (t :: Type -> Type) where
- foldBy :: Foldable t => (a -> a -> a) -> a -> t a -> a
- foldMapBy :: Foldable t => (r -> r -> r) -> r -> (a -> r) -> t a -> r
- traverseBy :: Traversable t => (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> (a -> f b) -> t a -> f (t b)
- sequenceBy :: Traversable t => (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> t (f a) -> f (t a)
- class Profunctor p => Choice (p :: Type -> Type -> Type) where
- asks :: MonadReader r m => (r -> a) -> m a
- newtype ReaderT r (m :: k -> Type) (a :: k) :: forall k. Type -> (k -> Type) -> k -> Type = ReaderT {
- runReaderT :: r -> m a
- class MonadTrans (t :: (Type -> Type) -> Type -> Type) where
- class Monad m => MonadCont (m :: Type -> Type) where
- callCC :: ((a -> m b) -> m a) -> m a
- newtype ContT (r :: k) (m :: k -> Type) a :: forall k. k -> (k -> Type) -> Type -> Type = ContT {
- runContT :: (a -> m r) -> m r
- type Cont r = ContT r Identity
- cont :: ((a -> r) -> r) -> Cont r a
- runCont :: Cont r a -> (a -> r) -> r
- mapCont :: (r -> r) -> Cont r a -> Cont r a
- withCont :: ((b -> r) -> a -> r) -> Cont r a -> Cont r b
- mapContT :: (m r -> m r) -> ContT r m a -> ContT r m a
- withContT :: ((b -> m r) -> a -> m r) -> ContT r m a -> ContT r m b
- runReader :: Reader r a -> r -> a
- class Monad m => PrimMonad (m :: Type -> Type) where
- withAcquire :: MonadUnliftIO m => Acquire a -> (a -> m b) -> m b
- allocateAcquire :: MonadResource m => Acquire a -> m (ReleaseKey, a)
- with :: MonadUnliftIO m => Acquire a -> (a -> m b) -> m b
- mkAcquireType :: IO a -> (a -> ReleaseType -> IO ()) -> Acquire a
- mkAcquire :: IO a -> (a -> IO ()) -> Acquire a
- data ReleaseType
- data Acquire a
- class MonadIO m => MonadUnliftIO (m :: Type -> Type) where
- withRunInIO :: ((forall a. m a -> IO a) -> IO b) -> m b
- newChan :: MonadIO m => m (Chan a)
- writeChan :: MonadIO m => Chan a -> a -> m ()
- readChan :: MonadIO m => Chan a -> m a
- dupChan :: MonadIO m => Chan a -> m (Chan a)
- getChanContents :: MonadIO m => Chan a -> m [a]
- writeList2Chan :: MonadIO m => Chan a -> [a] -> m ()
- data StringException = StringException String CallStack
- data AsyncExceptionWrapper where
- AsyncExceptionWrapper :: forall e. Exception e => e -> AsyncExceptionWrapper
- data SyncExceptionWrapper where
- SyncExceptionWrapper :: forall e. Exception e => e -> SyncExceptionWrapper
- data Handler (m :: Type -> Type) a where
- catch :: (MonadUnliftIO m, Exception e) => m a -> (e -> m a) -> m a
- catchIO :: MonadUnliftIO m => m a -> (IOException -> m a) -> m a
- catchAny :: MonadUnliftIO m => m a -> (SomeException -> m a) -> m a
- catchDeep :: (MonadUnliftIO m, Exception e, NFData a) => m a -> (e -> m a) -> m a
- catchAnyDeep :: (NFData a, MonadUnliftIO m) => m a -> (SomeException -> m a) -> m a
- catchJust :: (MonadUnliftIO m, Exception e) => (e -> Maybe b) -> m a -> (b -> m a) -> m a
- handle :: (MonadUnliftIO m, Exception e) => (e -> m a) -> m a -> m a
- handleIO :: MonadUnliftIO m => (IOException -> m a) -> m a -> m a
- handleAny :: MonadUnliftIO m => (SomeException -> m a) -> m a -> m a
- handleDeep :: (MonadUnliftIO m, Exception e, NFData a) => (e -> m a) -> m a -> m a
- handleAnyDeep :: (MonadUnliftIO m, NFData a) => (SomeException -> m a) -> m a -> m a
- handleJust :: (MonadUnliftIO m, Exception e) => (e -> Maybe b) -> (b -> m a) -> m a -> m a
- try :: (MonadUnliftIO m, Exception e) => m a -> m (Either e a)
- tryIO :: MonadUnliftIO m => m a -> m (Either IOException a)
- tryAny :: MonadUnliftIO m => m a -> m (Either SomeException a)
- tryDeep :: (MonadUnliftIO m, Exception e, NFData a) => m a -> m (Either e a)
- tryAnyDeep :: (MonadUnliftIO m, NFData a) => m a -> m (Either SomeException a)
- tryJust :: (MonadUnliftIO m, Exception e) => (e -> Maybe b) -> m a -> m (Either b a)
- pureTry :: a -> Either SomeException a
- pureTryDeep :: NFData a => a -> Either SomeException a
- catches :: MonadUnliftIO m => m a -> [Handler m a] -> m a
- catchesDeep :: (MonadUnliftIO m, NFData a) => m a -> [Handler m a] -> m a
- evaluate :: MonadIO m => a -> m a
- evaluateDeep :: (MonadIO m, NFData a) => a -> m a
- bracket :: MonadUnliftIO m => m a -> (a -> m b) -> (a -> m c) -> m c
- bracket_ :: MonadUnliftIO m => m a -> m b -> m c -> m c
- bracketOnError :: MonadUnliftIO m => m a -> (a -> m b) -> (a -> m c) -> m c
- bracketOnError_ :: MonadUnliftIO m => m a -> m b -> m c -> m c
- finally :: MonadUnliftIO m => m a -> m b -> m a
- withException :: (MonadUnliftIO m, Exception e) => m a -> (e -> m b) -> m a
- onException :: MonadUnliftIO m => m a -> m b -> m a
- throwIO :: (MonadIO m, Exception e) => e -> m a
- toSyncException :: Exception e => e -> SomeException
- toAsyncException :: Exception e => e -> SomeException
- isSyncException :: Exception e => e -> Bool
- isAsyncException :: Exception e => e -> Bool
- mask :: MonadUnliftIO m => ((forall a. m a -> m a) -> m b) -> m b
- uninterruptibleMask :: MonadUnliftIO m => ((forall a. m a -> m a) -> m b) -> m b
- mask_ :: MonadUnliftIO m => m a -> m a
- uninterruptibleMask_ :: MonadUnliftIO m => m a -> m a
- throwString :: (MonadIO m, HasCallStack) => String -> m a
- stringException :: HasCallStack -> String -> StringException
- throwTo :: (Exception e, MonadIO m) => ThreadId -> e -> m ()
- impureThrow :: Exception e => e -> a
- fromEither :: (Exception e, MonadIO m) => Either e a -> m a
- fromEitherIO :: (Exception e, MonadIO m) => IO (Either e a) -> m a
- fromEitherM :: (Exception e, MonadIO m) => m (Either e a) -> m a
- withFile :: MonadUnliftIO m => FilePath -> IOMode -> (Handle -> m a) -> m a
- hClose :: MonadIO m => Handle -> m ()
- hFlush :: MonadIO m => Handle -> m ()
- hFileSize :: MonadIO m => Handle -> m Integer
- hSetFileSize :: MonadIO m => Handle -> Integer -> m ()
- hIsEOF :: MonadIO m => Handle -> m Bool
- hSetBuffering :: MonadIO m => Handle -> BufferMode -> m ()
- hGetBuffering :: MonadIO m => Handle -> m BufferMode
- hSeek :: MonadIO m => Handle -> SeekMode -> Integer -> m ()
- hTell :: MonadIO m => Handle -> m Integer
- hIsOpen :: MonadIO m => Handle -> m Bool
- hIsClosed :: MonadIO m => Handle -> m Bool
- hIsReadable :: MonadIO m => Handle -> m Bool
- hIsWritable :: MonadIO m => Handle -> m Bool
- hIsSeekable :: MonadIO m => Handle -> m Bool
- hIsTerminalDevice :: MonadIO m => Handle -> m Bool
- hSetEcho :: MonadIO m => Handle -> Bool -> m ()
- hGetEcho :: MonadIO m => Handle -> m Bool
- hWaitForInput :: MonadIO m => Handle -> Int -> m Bool
- hReady :: MonadIO m => Handle -> m Bool
- getMonotonicTime :: MonadIO m => m Double
- newIORef :: MonadIO m => a -> m (IORef a)
- readIORef :: MonadIO m => IORef a -> m a
- writeIORef :: MonadIO m => IORef a -> a -> m ()
- modifyIORef :: MonadIO m => IORef a -> (a -> a) -> m ()
- modifyIORef' :: MonadIO m => IORef a -> (a -> a) -> m ()
- atomicModifyIORef :: MonadIO m => IORef a -> (a -> (a, b)) -> m b
- atomicModifyIORef' :: MonadIO m => IORef a -> (a -> (a, b)) -> m b
- atomicWriteIORef :: MonadIO m => IORef a -> a -> m ()
- mkWeakIORef :: MonadUnliftIO m => IORef a -> m () -> m (Weak (IORef a))
- data ConcException = EmptyWithNoAlternative
- data Conc (m :: Type -> Type) a
- newtype Concurrently (m :: Type -> Type) a = Concurrently {
- runConcurrently :: m a
- async :: MonadUnliftIO m => m a -> m (Async a)
- asyncBound :: MonadUnliftIO m => m a -> m (Async a)
- asyncOn :: MonadUnliftIO m => Int -> m a -> m (Async a)
- asyncWithUnmask :: MonadUnliftIO m => ((forall b. m b -> m b) -> m a) -> m (Async a)
- asyncOnWithUnmask :: MonadUnliftIO m => Int -> ((forall b. m b -> m b) -> m a) -> m (Async a)
- withAsync :: MonadUnliftIO m => m a -> (Async a -> m b) -> m b
- withAsyncBound :: MonadUnliftIO m => m a -> (Async a -> m b) -> m b
- withAsyncOn :: MonadUnliftIO m => Int -> m a -> (Async a -> m b) -> m b
- withAsyncWithUnmask :: MonadUnliftIO m => ((forall c. m c -> m c) -> m a) -> (Async a -> m b) -> m b
- withAsyncOnWithUnmask :: MonadUnliftIO m => Int -> ((forall c. m c -> m c) -> m a) -> (Async a -> m b) -> m b
- wait :: MonadIO m => Async a -> m a
- poll :: MonadIO m => Async a -> m (Maybe (Either SomeException a))
- waitCatch :: MonadIO m => Async a -> m (Either SomeException a)
- cancel :: MonadIO m => Async a -> m ()
- uninterruptibleCancel :: MonadIO m => Async a -> m ()
- cancelWith :: (Exception e, MonadIO m) => Async a -> e -> m ()
- waitAny :: MonadIO m => [Async a] -> m (Async a, a)
- waitAnyCatch :: MonadIO m => [Async a] -> m (Async a, Either SomeException a)
- waitAnyCancel :: MonadIO m => [Async a] -> m (Async a, a)
- waitAnyCatchCancel :: MonadIO m => [Async a] -> m (Async a, Either SomeException a)
- waitEither :: MonadIO m => Async a -> Async b -> m (Either a b)
- waitEitherCatch :: MonadIO m => Async a -> Async b -> m (Either (Either SomeException a) (Either SomeException b))
- waitEitherCancel :: MonadIO m => Async a -> Async b -> m (Either a b)
- waitEitherCatchCancel :: MonadIO m => Async a -> Async b -> m (Either (Either SomeException a) (Either SomeException b))
- waitEither_ :: MonadIO m => Async a -> Async b -> m ()
- waitBoth :: MonadIO m => Async a -> Async b -> m (a, b)
- link :: MonadIO m => Async a -> m ()
- link2 :: MonadIO m => Async a -> Async b -> m ()
- race :: MonadUnliftIO m => m a -> m b -> m (Either a b)
- race_ :: MonadUnliftIO m => m a -> m b -> m ()
- concurrently :: MonadUnliftIO m => m a -> m b -> m (a, b)
- concurrently_ :: MonadUnliftIO m => m a -> m b -> m ()
- forConcurrently :: (MonadUnliftIO m, Traversable t) => t a -> (a -> m b) -> m (t b)
- forConcurrently_ :: (MonadUnliftIO m, Foldable f) => f a -> (a -> m b) -> m ()
- replicateConcurrently :: MonadUnliftIO m => Int -> m b -> m [b]
- replicateConcurrently_ :: (Applicative m, MonadUnliftIO m) => Int -> m a -> m ()
- mapConcurrently :: (MonadUnliftIO m, Traversable t) => (a -> m b) -> t a -> m (t b)
- mapConcurrently_ :: (MonadUnliftIO m, Foldable f) => (a -> m b) -> f a -> m ()
- conc :: m a -> Conc m a
- runConc :: MonadUnliftIO m => Conc m a -> m a
- pooledMapConcurrentlyN :: (MonadUnliftIO m, Traversable t) => Int -> (a -> m b) -> t a -> m (t b)
- pooledMapConcurrently :: (MonadUnliftIO m, Traversable t) => (a -> m b) -> t a -> m (t b)
- pooledForConcurrentlyN :: (MonadUnliftIO m, Traversable t) => Int -> t a -> (a -> m b) -> m (t b)
- pooledForConcurrently :: (MonadUnliftIO m, Traversable t) => t a -> (a -> m b) -> m (t b)
- pooledMapConcurrentlyN_ :: (MonadUnliftIO m, Foldable f) => Int -> (a -> m b) -> f a -> m ()
- pooledMapConcurrently_ :: (MonadUnliftIO m, Foldable f) => (a -> m b) -> f a -> m ()
- pooledForConcurrently_ :: (MonadUnliftIO m, Foldable f) => f a -> (a -> m b) -> m ()
- pooledForConcurrentlyN_ :: (MonadUnliftIO m, Foldable t) => Int -> t a -> (a -> m b) -> m ()
- pooledReplicateConcurrentlyN :: MonadUnliftIO m => Int -> Int -> m a -> m [a]
- pooledReplicateConcurrently :: MonadUnliftIO m => Int -> m a -> m [a]
- pooledReplicateConcurrentlyN_ :: MonadUnliftIO m => Int -> Int -> m a -> m ()
- pooledReplicateConcurrently_ :: MonadUnliftIO m => Int -> m a -> m ()
- newEmptyMVar :: MonadIO m => m (MVar a)
- newMVar :: MonadIO m => a -> m (MVar a)
- takeMVar :: MonadIO m => MVar a -> m a
- putMVar :: MonadIO m => MVar a -> a -> m ()
- readMVar :: MonadIO m => MVar a -> m a
- swapMVar :: MonadIO m => MVar a -> a -> m a
- tryTakeMVar :: MonadIO m => MVar a -> m (Maybe a)
- tryPutMVar :: MonadIO m => MVar a -> a -> m Bool
- isEmptyMVar :: MonadIO m => MVar a -> m Bool
- tryReadMVar :: MonadIO m => MVar a -> m (Maybe a)
- withMVar :: MonadUnliftIO m => MVar a -> (a -> m b) -> m b
- withMVarMasked :: MonadUnliftIO m => MVar a -> (a -> m b) -> m b
- modifyMVar_ :: MonadUnliftIO m => MVar a -> (a -> m a) -> m ()
- modifyMVar :: MonadUnliftIO m => MVar a -> (a -> m (a, b)) -> m b
- modifyMVarMasked_ :: MonadUnliftIO m => MVar a -> (a -> m a) -> m ()
- modifyMVarMasked :: MonadUnliftIO m => MVar a -> (a -> m (a, b)) -> m b
- mkWeakMVar :: MonadUnliftIO m => MVar a -> m () -> m (Weak (MVar a))
- data Memoized a
- runMemoized :: MonadIO m => Memoized a -> m a
- memoizeRef :: MonadUnliftIO m => m a -> m (Memoized a)
- memoizeMVar :: MonadUnliftIO m => m a -> m (Memoized a)
- atomically :: MonadIO m => STM a -> m a
- retrySTM :: STM a
- checkSTM :: Bool -> STM ()
- newTVarIO :: MonadIO m => a -> m (TVar a)
- readTVarIO :: MonadIO m => TVar a -> m a
- registerDelay :: MonadIO m => Int -> m (TVar Bool)
- mkWeakTVar :: MonadUnliftIO m => TVar a -> m () -> m (Weak (TVar a))
- newTMVarIO :: MonadIO m => a -> m (TMVar a)
- newEmptyTMVarIO :: MonadIO m => m (TMVar a)
- mkWeakTMVar :: MonadUnliftIO m => TMVar a -> m () -> m (Weak (TMVar a))
- newTChanIO :: MonadIO m => m (TChan a)
- newBroadcastTChanIO :: MonadIO m => m (TChan a)
- newTQueueIO :: MonadIO m => m (TQueue a)
- newTBQueueIO :: MonadIO m => Natural -> m (TBQueue a)
- withSystemTempFile :: MonadUnliftIO m => String -> (FilePath -> Handle -> m a) -> m a
- withSystemTempDirectory :: MonadUnliftIO m => String -> (FilePath -> m a) -> m a
- withTempFile :: MonadUnliftIO m => FilePath -> String -> (FilePath -> Handle -> m a) -> m a
- withTempDirectory :: MonadUnliftIO m => FilePath -> String -> (FilePath -> m a) -> m a
- timeout :: MonadUnliftIO m => Int -> m a -> m (Maybe a)
- wrappedWithRunInIO :: MonadUnliftIO n => (n b -> m b) -> (forall a. m a -> n a) -> ((forall a. m a -> IO a) -> IO b) -> m b
- toIO :: MonadUnliftIO m => m a -> m (IO a)
- withUnliftIO :: MonadUnliftIO m => (UnliftIO m -> IO a) -> m a
- askRunInIO :: MonadUnliftIO m => m (m a -> IO a)
- askUnliftIO :: MonadUnliftIO m => m (UnliftIO m)
- newtype UnliftIO (m :: Type -> Type) = UnliftIO {}
- data TBQueue a
- newTBQueue :: Natural -> STM (TBQueue a)
- writeTBQueue :: TBQueue a -> a -> STM ()
- readTBQueue :: TBQueue a -> STM a
- tryReadTBQueue :: TBQueue a -> STM (Maybe a)
- peekTBQueue :: TBQueue a -> STM a
- tryPeekTBQueue :: TBQueue a -> STM (Maybe a)
- unGetTBQueue :: TBQueue a -> a -> STM ()
- isEmptyTBQueue :: TBQueue a -> STM Bool
- isFullTBQueue :: TBQueue a -> STM Bool
- data TChan a
- newTChan :: STM (TChan a)
- newBroadcastTChan :: STM (TChan a)
- writeTChan :: TChan a -> a -> STM ()
- readTChan :: TChan a -> STM a
- tryReadTChan :: TChan a -> STM (Maybe a)
- peekTChan :: TChan a -> STM a
- tryPeekTChan :: TChan a -> STM (Maybe a)
- dupTChan :: TChan a -> STM (TChan a)
- unGetTChan :: TChan a -> a -> STM ()
- isEmptyTChan :: TChan a -> STM Bool
- cloneTChan :: TChan a -> STM (TChan a)
- data TMVar a
- newTMVar :: a -> STM (TMVar a)
- newEmptyTMVar :: STM (TMVar a)
- takeTMVar :: TMVar a -> STM a
- tryTakeTMVar :: TMVar a -> STM (Maybe a)
- putTMVar :: TMVar a -> a -> STM ()
- tryPutTMVar :: TMVar a -> a -> STM Bool
- readTMVar :: TMVar a -> STM a
- tryReadTMVar :: TMVar a -> STM (Maybe a)
- swapTMVar :: TMVar a -> a -> STM a
- isEmptyTMVar :: TMVar a -> STM Bool
- data TQueue a
- newTQueue :: STM (TQueue a)
- writeTQueue :: TQueue a -> a -> STM ()
- readTQueue :: TQueue a -> STM a
- tryReadTQueue :: TQueue a -> STM (Maybe a)
- peekTQueue :: TQueue a -> STM a
- tryPeekTQueue :: TQueue a -> STM (Maybe a)
- unGetTQueue :: TQueue a -> a -> STM ()
- isEmptyTQueue :: TQueue a -> STM Bool
- modifyTVar :: TVar a -> (a -> a) -> STM ()
- modifyTVar' :: TVar a -> (a -> a) -> STM ()
- swapTVar :: TVar a -> a -> STM a
- traceDisplayStack :: Display a => a -> b -> b
- traceDisplayMarkerIO :: (Display a, MonadIO m) => a -> m ()
- traceDisplayMarker :: Display a => a -> b -> b
- traceDisplayEventIO :: (Display a, MonadIO m) => a -> m ()
- traceDisplayEvent :: Display a => a -> b -> b
- traceDisplayM :: (Display a, Applicative f) => a -> f ()
- traceDisplayIO :: (Display a, MonadIO m) => a -> m ()
- traceDisplayId :: Display a => a -> a
- traceDisplay :: Display a => a -> b -> b
- traceShowStack :: Show a => a -> b -> b
- traceShowMarkerIO :: (Show a, MonadIO m) => a -> m ()
- traceShowMarker :: Show a => a -> b -> b
- traceShowEventIO :: (Show a, MonadIO m) => a -> m ()
- traceShowEvent :: Show a => a -> b -> b
- traceShowM :: (Show a, Applicative f) => a -> f ()
- traceShowIO :: (Show a, MonadIO m) => a -> m ()
- traceShowId :: Show a => a -> a
- traceShow :: Show a => a -> b -> b
- traceStack :: Text -> a -> a
- traceMarkerIO :: MonadIO m => Text -> m ()
- traceMarker :: Text -> a -> a
- traceEventIO :: MonadIO m => Text -> m ()
- traceEvent :: Text -> a -> a
- traceM :: Applicative f => Text -> f ()
- traceIO :: MonadIO m => Text -> m ()
- traceId :: Text -> Text
- trace :: Text -> a -> a
- runSimpleApp :: MonadIO m => RIO SimpleApp a -> m a
- mkSimpleApp :: MonadIO m => LogFunc -> Maybe ProcessContext -> m SimpleApp
- data SimpleApp
- newUnboxedSomeRef :: (MonadIO m, Unbox a) => a -> m (SomeRef a)
- newSomeRef :: MonadIO m => a -> m (SomeRef a)
- modifySomeRef :: MonadIO m => SomeRef a -> (a -> a) -> m ()
- writeSomeRef :: MonadIO m => SomeRef a -> a -> m ()
- readSomeRef :: MonadIO m => SomeRef a -> m a
- mapRIO :: (outer -> inner) -> RIO inner a -> RIO outer a
- liftRIO :: (MonadIO m, MonadReader env m) => RIO env a -> m a
- runRIO :: MonadIO m => env -> RIO env a -> m a
- newtype RIO env a = RIO {}
- data SomeRef a
- class HasStateRef s env | env -> s where
- class HasWriteRef w env | env -> w where
- modifyURef :: (PrimMonad m, Unbox a) => URef (PrimState m) a -> (a -> a) -> m ()
- writeURef :: (PrimMonad m, Unbox a) => URef (PrimState m) a -> a -> m ()
- readURef :: (PrimMonad m, Unbox a) => URef (PrimState m) a -> m a
- newURef :: (PrimMonad m, Unbox a) => a -> m (URef (PrimState m) a)
- data URef s a
- type IOURef = URef (PrimState IO)
- freezeDeque :: (Vector v a, PrimMonad m) => Deque (Mutable v) (PrimState m) a -> m (v a)
- dequeToVector :: (Vector v' a, MVector v a, PrimMonad m) => Deque v (PrimState m) a -> m (v' a)
- dequeToList :: (MVector v a, PrimMonad m) => Deque v (PrimState m) a -> m [a]
- foldrDeque :: (MVector v a, PrimMonad m) => (a -> acc -> m acc) -> acc -> Deque v (PrimState m) a -> m acc
- foldlDeque :: (MVector v a, PrimMonad m) => (acc -> a -> m acc) -> acc -> Deque v (PrimState m) a -> m acc
- pushBackDeque :: (MVector v a, PrimMonad m) => Deque v (PrimState m) a -> a -> m ()
- pushFrontDeque :: (MVector v a, PrimMonad m) => Deque v (PrimState m) a -> a -> m ()
- popBackDeque :: (MVector v a, PrimMonad m) => Deque v (PrimState m) a -> m (Maybe a)
- popFrontDeque :: (MVector v a, PrimMonad m) => Deque v (PrimState m) a -> m (Maybe a)
- getDequeSize :: PrimMonad m => Deque v (PrimState m) a -> m Int
- newDeque :: (MVector v a, PrimMonad m) => m (Deque v (PrimState m) a)
- asBDeque :: BDeque s a -> BDeque s a
- asSDeque :: SDeque s a -> SDeque s a
- asUDeque :: UDeque s a -> UDeque s a
- data Deque (v :: Type -> Type -> Type) s a
- type UDeque = Deque MVector
- type SDeque = Deque MVector
- type BDeque = Deque MVector
- readFileUtf8 :: MonadIO m => FilePath -> m Text
- writeFileBinary :: MonadIO m => FilePath -> ByteString -> m ()
- readFileBinary :: MonadIO m => FilePath -> m ByteString
- hPutBuilder :: MonadIO m => Handle -> Builder -> m ()
- writeFileUtf8 :: MonadIO m => FilePath -> Text -> m ()
- withLazyFileUtf8 :: MonadUnliftIO m => FilePath -> (Text -> m a) -> m a
- withLazyFile :: MonadUnliftIO m => FilePath -> (ByteString -> m a) -> m a
- gLogFuncClassic :: (HasLogLevel msg, HasLogSource msg, Display msg) => LogFunc -> GLogFunc msg
- glog :: (MonadIO m, HasCallStack, HasGLogFunc env, MonadReader env m) => GMsg env -> m ()
- mkGLogFunc :: (CallStack -> msg -> IO ()) -> GLogFunc msg
- contramapGLogFunc :: (a -> b) -> GLogFunc b -> GLogFunc a
- contramapMaybeGLogFunc :: (a -> Maybe b) -> GLogFunc b -> GLogFunc a
- noLogging :: (HasLogFunc env, MonadReader env m) => m a -> m a
- logFuncAccentColorsL :: HasLogFunc env => SimpleGetter env (Int -> Utf8Builder)
- logFuncSecondaryColorL :: HasLogFunc env => SimpleGetter env Utf8Builder
- logFuncLogLevelColorsL :: HasLogFunc env => SimpleGetter env (LogLevel -> Utf8Builder)
- logFuncUseColorL :: HasLogFunc env => SimpleGetter env Bool
- displayCallStack :: CallStack -> Utf8Builder
- setLogFormat :: (Utf8Builder -> Utf8Builder) -> LogOptions -> LogOptions
- setLogUseLoc :: Bool -> LogOptions -> LogOptions
- setLogAccentColors :: (Int -> Utf8Builder) -> LogOptions -> LogOptions
- setLogSecondaryColor :: Utf8Builder -> LogOptions -> LogOptions
- setLogLevelColors :: (LogLevel -> Utf8Builder) -> LogOptions -> LogOptions
- setLogUseColor :: Bool -> LogOptions -> LogOptions
- setLogUseTime :: Bool -> LogOptions -> LogOptions
- setLogTerminal :: Bool -> LogOptions -> LogOptions
- setLogVerboseFormatIO :: IO Bool -> LogOptions -> LogOptions
- setLogVerboseFormat :: Bool -> LogOptions -> LogOptions
- setLogMinLevelIO :: IO LogLevel -> LogOptions -> LogOptions
- setLogMinLevel :: LogLevel -> LogOptions -> LogOptions
- withLogFunc :: MonadUnliftIO m => LogOptions -> (LogFunc -> m a) -> m a
- newLogFunc :: (MonadIO n, MonadIO m) => LogOptions -> n (LogFunc, m ())
- logOptionsHandle :: MonadIO m => Handle -> Bool -> m LogOptions
- logOptionsMemory :: MonadIO m => m (IORef Builder, LogOptions)
- logStickyDone :: (MonadIO m, HasCallStack, MonadReader env m, HasLogFunc env) => Utf8Builder -> m ()
- logSticky :: (MonadIO m, HasCallStack, MonadReader env m, HasLogFunc env) => Utf8Builder -> m ()
- logOtherS :: (MonadIO m, MonadReader env m, HasLogFunc env, HasCallStack) => Text -> LogSource -> Utf8Builder -> m ()
- logErrorS :: (MonadIO m, MonadReader env m, HasLogFunc env, HasCallStack) => LogSource -> Utf8Builder -> m ()
- logWarnS :: (MonadIO m, MonadReader env m, HasLogFunc env, HasCallStack) => LogSource -> Utf8Builder -> m ()
- logInfoS :: (MonadIO m, MonadReader env m, HasLogFunc env, HasCallStack) => LogSource -> Utf8Builder -> m ()
- logDebugS :: (MonadIO m, MonadReader env m, HasLogFunc env, HasCallStack) => LogSource -> Utf8Builder -> m ()
- logOther :: (MonadIO m, MonadReader env m, HasLogFunc env, HasCallStack) => Text -> Utf8Builder -> m ()
- logError :: (MonadIO m, MonadReader env m, HasLogFunc env, HasCallStack) => Utf8Builder -> m ()
- logWarn :: (MonadIO m, MonadReader env m, HasLogFunc env, HasCallStack) => Utf8Builder -> m ()
- logInfo :: (MonadIO m, MonadReader env m, HasLogFunc env, HasCallStack) => Utf8Builder -> m ()
- logDebug :: (MonadIO m, MonadReader env m, HasLogFunc env, HasCallStack) => Utf8Builder -> m ()
- logGeneric :: (MonadIO m, MonadReader env m, HasLogFunc env, HasCallStack) => LogSource -> LogLevel -> Utf8Builder -> m ()
- mkLogFunc :: (CallStack -> LogSource -> LogLevel -> Utf8Builder -> IO ()) -> LogFunc
- data LogLevel
- type LogSource = Text
- class HasLogFunc env where
- data LogFunc
- data LogOptions
- class HasGLogFunc env where
- data GLogFunc msg
- class HasLogLevel msg where
- getLogLevel :: msg -> LogLevel
- class HasLogSource msg where
- getLogSource :: msg -> LogSource
- decodeUtf8Lenient :: ByteString -> Text
- tshow :: Show a => a -> Text
- yieldThread :: MonadIO m => m ()
- fromStrictBytes :: ByteString -> LByteString
- toStrictBytes :: LByteString -> ByteString
- sappend :: Semigroup s => s -> s -> s
- type UVector = Vector
- type SVector = Vector
- type GVector = Vector
- type LByteString = ByteString
- type LText = Text
- asIO :: IO a -> IO a
- unlessM :: Monad m => m Bool -> m () -> m ()
- whenM :: Monad m => m Bool -> m () -> m ()
- nubOrd :: Ord a => [a] -> [a]
- foldMapM :: (Monad m, Monoid w, Foldable t) => (a -> m w) -> t a -> m w
- forMaybeM :: Monad m => [a] -> (a -> m (Maybe b)) -> m [b]
- mapMaybeM :: Monad m => (a -> m (Maybe b)) -> [a] -> m [b]
- forMaybeA :: Applicative f => [a] -> (a -> f (Maybe b)) -> f [b]
- mapMaybeA :: Applicative f => (a -> f (Maybe b)) -> [a] -> f [b]
- fromFirst :: a -> First a -> a
- mapLeft :: (a1 -> a2) -> Either a1 b -> Either a2 b
- exitWith :: MonadIO m => ExitCode -> m a
- exitSuccess :: MonadIO m => m a
- exitFailure :: MonadIO m => m a
- writeFileUtf8Builder :: MonadIO m => FilePath -> Utf8Builder -> m ()
- utf8BuilderToLazyText :: Utf8Builder -> Text
- utf8BuilderToText :: Utf8Builder -> Text
- displayBytesUtf8 :: ByteString -> Utf8Builder
- displayShow :: Show a => a -> Utf8Builder
- newtype Utf8Builder = Utf8Builder {}
- class Display a where
- display :: a -> Utf8Builder
- textDisplay :: a -> Text
- withBinaryFile :: MonadUnliftIO m => FilePath -> IOMode -> (Handle -> m a) -> m a
- myThreadId :: MonadIO m => m ThreadId
- threadDelay :: MonadIO m => Int -> m ()
- threadWaitRead :: MonadIO m => Fd -> m ()
- threadWaitWrite :: MonadIO m => Fd -> m ()
- isCurrentThreadBound :: MonadIO m => m Bool
- data UnicodeException
- = DecodeError String (Maybe Word8)
- | EncodeError String (Maybe Char)
- lenientDecode :: OnDecodeError
- decodeUtf8With :: OnDecodeError -> ByteString -> Text
- decodeUtf8' :: ByteString -> Either UnicodeException Text
- encodeUtf8Builder :: Text -> Builder
- encodeUtf8 :: Text -> ByteString
- lines :: Text -> [Text]
- unlines :: [Text] -> Text
Documentation
(++) :: [a] -> [a] -> [a] infixr 5 #
Append two lists, i.e.,
[x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn] [x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]
If the first list is not finite, the result is the first list.
The value of seq a b
is bottom if a
is bottom, and
otherwise equal to b
. In other words, it evaluates the first
argument a
to weak head normal form (WHNF). seq
is usually
introduced to improve performance by avoiding unneeded laziness.
A note on evaluation order: the expression seq a b
does
not guarantee that a
will be evaluated before b
.
The only guarantee given by seq
is that the both a
and b
will be evaluated before seq
returns a value.
In particular, this means that b
may be evaluated before
a
. If you need to guarantee a specific order of evaluation,
you must use the function pseq
from the "parallel" package.
filter :: (a -> Bool) -> [a] -> [a] #
filter
, applied to a predicate and a list, returns the list of
those elements that satisfy the predicate; i.e.,
filter p xs = [ x | x <- xs, p x]
If the first argument evaluates to True
, then the result is the
second argument. Otherwise an AssertionFailed
exception is raised,
containing a String
with the source file and line number of the
call to assert
.
Assertions can normally be turned on or off with a compiler flag
(for GHC, assertions are normally on unless optimisation is turned on
with -O
or the -fignore-asserts
option is given). When assertions are turned off, the first
argument to assert
is ignored, and the second argument is
returned as the result.
map :: (a -> b) -> [a] -> [b] #
map
f xs
is the list obtained by applying f
to each element
of xs
, i.e.,
map f [x1, x2, ..., xn] == [f x1, f x2, ..., f xn] map f [x1, x2, ...] == [f x1, f x2, ...]
($) :: (a -> b) -> a -> b infixr 0 #
Application operator. This operator is redundant, since ordinary
application (f x)
means the same as (f
. However, $
x)$
has
low, right-associative binding precedence, so it sometimes allows
parentheses to be omitted; for example:
f $ g $ h x = f (g (h x))
It is also useful in higher-order situations, such as
,
or map
($
0) xs
.zipWith
($
) fs xs
Note that ($)
is levity-polymorphic in its result type, so that
foo $ True where foo :: Bool -> Int#
is well-typed
fromIntegral :: (Integral a, Num b) => a -> b #
general coercion from integral types
realToFrac :: (Real a, Fractional b) => a -> b #
general coercion to fractional types
guard :: Alternative f => Bool -> f () #
Conditional failure of Alternative
computations. Defined by
guard True =pure
() guard False =empty
Examples
Common uses of guard
include conditionally signaling an error in
an error monad and conditionally rejecting the current choice in an
Alternative
-based parser.
As an example of signaling an error in the error monad Maybe
,
consider a safe division function safeDiv x y
that returns
Nothing
when the denominator y
is zero and
otherwise. For example:Just
(x `div`
y)
>>> safeDiv 4 0 Nothing >>> safeDiv 4 2 Just 2
A definition of safeDiv
using guards, but not guard
:
safeDiv :: Int -> Int -> Maybe Int safeDiv x y | y /= 0 = Just (x `div` y) | otherwise = Nothing
A definition of safeDiv
using guard
and Monad
do
-notation:
safeDiv :: Int -> Int -> Maybe Int safeDiv x y = do guard (y /= 0) return (x `div` y)
join :: Monad m => m (m a) -> m a #
The join
function is the conventional monad join operator. It
is used to remove one level of monadic structure, projecting its
bound argument into the outer level.
Examples
A common use of join
is to run an IO
computation returned from
an STM
transaction, since STM
transactions
can't perform IO
directly. Recall that
atomically
:: STM a -> IO a
is used to run STM
transactions atomically. So, by
specializing the types of atomically
and join
to
atomically
:: STM (IO b) -> IO (IO b)join
:: IO (IO b) -> IO b
we can compose them as
join
.atomically
:: STM (IO b) -> IO b
The Bounded
class is used to name the upper and lower limits of a
type. Ord
is not a superclass of Bounded
since types that are not
totally ordered may also have upper and lower bounds.
The Bounded
class may be derived for any enumeration type;
minBound
is the first constructor listed in the data
declaration
and maxBound
is the last.
Bounded
may also be derived for single-constructor datatypes whose
constituent types are in Bounded
.
Instances
Class Enum
defines operations on sequentially ordered types.
The enumFrom
... methods are used in Haskell's translation of
arithmetic sequences.
Instances of Enum
may be derived for any enumeration type (types
whose constructors have no fields). The nullary constructors are
assumed to be numbered left-to-right by fromEnum
from 0
through n-1
.
See Chapter 10 of the Haskell Report for more details.
For any type that is an instance of class Bounded
as well as Enum
,
the following should hold:
- The calls
andsucc
maxBound
should result in a runtime error.pred
minBound
fromEnum
andtoEnum
should give a runtime error if the result value is not representable in the result type. For example,
is an error.toEnum
7 ::Bool
enumFrom
andenumFromThen
should be defined with an implicit bound, thus:
enumFrom x = enumFromTo x maxBound enumFromThen x y = enumFromThenTo x y bound where bound | fromEnum y >= fromEnum x = maxBound | otherwise = minBound
Methods
Instances
The Eq
class defines equality (==
) and inequality (/=
).
All the basic datatypes exported by the Prelude are instances of Eq
,
and Eq
may be derived for any datatype whose constituents are also
instances of Eq
.
The Haskell Report defines no laws for Eq
. However, ==
is customarily
expected to implement an equivalence relationship where two values comparing
equal are indistinguishable by "public" functions, with a "public" function
being one not allowing to see implementation details. For example, for a
type representing non-normalised natural numbers modulo 100, a "public"
function doesn't make the difference between 1 and 201. It is expected to
have the following properties:
Instances
Eq Bool | |
Eq Char | |
Eq Double | Note that due to the presence of
Also note that
|
Eq Float | Note that due to the presence of
Also note that
|
Eq Int | |
Eq Int8 | Since: base-2.1 |
Eq Int16 | Since: base-2.1 |
Eq Int32 | Since: base-2.1 |
Eq Int64 | Since: base-2.1 |
Eq Integer | |
Eq Natural | Since: base-4.8.0.0 |
Eq Ordering | |
Eq Word | |
Eq Word8 | Since: base-2.1 |
Eq Word16 | Since: base-2.1 |
Eq Word32 | Since: base-2.1 |
Eq Word64 | Since: base-2.1 |
Eq SomeTypeRep | |
Defined in Data.Typeable.Internal | |
Eq Exp | |
Eq Match | |
Eq Clause | |
Eq Pat | |
Eq Type | |
Eq Dec | |
Eq Name | |
Eq FunDep | |
Eq InjectivityAnn | |
Defined in Language.Haskell.TH.Syntax Methods (==) :: InjectivityAnn -> InjectivityAnn -> Bool # (/=) :: InjectivityAnn -> InjectivityAnn -> Bool # | |
Eq Overlap | |
Eq () | |
Eq TyCon | |
Eq Module | |
Eq TrName | |
Eq Handle | Since: base-4.1.0.0 |
Eq ThreadId | Since: base-4.2.0.0 |
Eq AsyncCancelled | |
Defined in Control.Concurrent.Async Methods (==) :: AsyncCancelled -> AsyncCancelled -> Bool # (/=) :: AsyncCancelled -> AsyncCancelled -> Bool # | |
Eq BigNat | |
Eq Void | Since: base-4.8.0.0 |
Eq SpecConstrAnnotation | Since: base-4.3.0.0 |
Defined in GHC.Exts Methods (==) :: SpecConstrAnnotation -> SpecConstrAnnotation -> Bool # (/=) :: SpecConstrAnnotation -> SpecConstrAnnotation -> Bool # | |
Eq Constr | Equality of constructors Since: base-4.0.0.0 |
Eq DataRep | Since: base-4.0.0.0 |
Eq ConstrRep | Since: base-4.0.0.0 |
Eq Fixity | Since: base-4.0.0.0 |
Eq Unique | |
Eq Version | Since: base-2.1 |
Eq BlockReason | Since: base-4.3.0.0 |
Defined in GHC.Conc.Sync | |
Eq ThreadStatus | Since: base-4.3.0.0 |
Defined in GHC.Conc.Sync | |
Eq CDev | |
Eq CIno | |
Eq CMode | |
Eq COff | |
Eq CPid | |
Eq CSsize | |
Eq CGid | |
Eq CNlink | |
Eq CUid | |
Eq CCc | |
Eq CSpeed | |
Eq CTcflag | |
Eq CRLim | |
Eq CBlkSize | |
Eq CBlkCnt | |
Eq CClockId | |
Eq CFsBlkCnt | |
Eq CFsFilCnt | |
Eq CId | |
Eq CKey | |
Eq CTimer | |
Eq Fd | |
Eq AsyncException | Since: base-4.2.0.0 |
Defined in GHC.IO.Exception Methods (==) :: AsyncException -> AsyncException -> Bool # (/=) :: AsyncException -> AsyncException -> Bool # | |
Eq ArrayException | Since: base-4.2.0.0 |
Defined in GHC.IO.Exception Methods (==) :: ArrayException -> ArrayException -> Bool # (/=) :: ArrayException -> ArrayException -> Bool # | |
Eq ExitCode | |
Eq IOErrorType | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception | |
Eq BufferMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types | |
Eq Newline | Since: base-4.2.0.0 |
Eq NewlineMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types | |
Eq IODeviceType | Since: base-4.2.0.0 |
Defined in GHC.IO.Device | |
Eq SeekMode | Since: base-4.2.0.0 |
Eq MaskingState | Since: base-4.3.0.0 |
Defined in GHC.IO | |
Eq IOException | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception | |
Eq ArithException | Since: base-3.0 |
Defined in GHC.Exception.Type Methods (==) :: ArithException -> ArithException -> Bool # (/=) :: ArithException -> ArithException -> Bool # | |
Eq All | Since: base-2.1 |
Eq Any | Since: base-2.1 |
Eq Fixity | Since: base-4.6.0.0 |
Eq Associativity | Since: base-4.6.0.0 |
Defined in GHC.Generics Methods (==) :: Associativity -> Associativity -> Bool # (/=) :: Associativity -> Associativity -> Bool # | |
Eq SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods (==) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (/=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # | |
Eq SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods (==) :: SourceStrictness -> SourceStrictness -> Bool # (/=) :: SourceStrictness -> SourceStrictness -> Bool # | |
Eq DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods (==) :: DecidedStrictness -> DecidedStrictness -> Bool # (/=) :: DecidedStrictness -> DecidedStrictness -> Bool # | |
Eq CChar | |
Eq CSChar | |
Eq CUChar | |
Eq CShort | |
Eq CUShort | |
Eq CInt | |
Eq CUInt | |
Eq CLong | |
Eq CULong | |
Eq CLLong | |
Eq CULLong | |
Eq CBool | |
Eq CFloat | |
Eq CDouble | |
Eq CPtrdiff | |
Eq CSize | |
Eq CWchar | |
Eq CSigAtomic | |
Defined in Foreign.C.Types | |
Eq CClock | |
Eq CTime | |
Eq CUSeconds | |
Eq CSUSeconds | |
Defined in Foreign.C.Types | |
Eq CIntPtr | |
Eq CUIntPtr | |
Eq CIntMax | |
Eq CUIntMax | |
Eq IOMode | Since: base-4.2.0.0 |
Eq Lexeme | Since: base-2.1 |
Eq Number | Since: base-4.6.0.0 |
Eq GeneralCategory | Since: base-2.1 |
Defined in GHC.Unicode Methods (==) :: GeneralCategory -> GeneralCategory -> Bool # (/=) :: GeneralCategory -> GeneralCategory -> Bool # | |
Eq SrcLoc | Since: base-4.9.0.0 |
Eq ShortByteString | |
Defined in Data.ByteString.Short.Internal Methods (==) :: ShortByteString -> ShortByteString -> Bool # (/=) :: ShortByteString -> ShortByteString -> Bool # | |
Eq ByteString | |
Defined in Data.ByteString.Lazy.Internal | |
Eq ByteString | |
Defined in Data.ByteString.Internal | |
Eq IntSet | |
Eq Extension | |
Eq ForeignSrcLang | |
Defined in GHC.ForeignSrcLang.Type Methods (==) :: ForeignSrcLang -> ForeignSrcLang -> Bool # (/=) :: ForeignSrcLang -> ForeignSrcLang -> Bool # | |
Eq Con | |
Eq NCon | |
Eq TyVarBndr | |
Eq DefName | |
Eq Pos | |
Eq InvalidPosException | |
Defined in Text.Megaparsec.Pos Methods (==) :: InvalidPosException -> InvalidPosException -> Bool # (/=) :: InvalidPosException -> InvalidPosException -> Bool # | |
Eq SourcePos | |
Eq ParserPrefs | |
Defined in Options.Applicative.Types | |
Eq OptName | |
Eq OptVisibility | |
Defined in Options.Applicative.Types Methods (==) :: OptVisibility -> OptVisibility -> Bool # (/=) :: OptVisibility -> OptVisibility -> Bool # | |
Eq ArgPolicy | |
Eq OptHelpInfo | |
Defined in Options.Applicative.Types | |
Eq Doc | |
Eq TextDetails | |
Defined in Text.PrettyPrint.Annotated.HughesPJ | |
Eq Style | |
Eq Mode | |
Eq ByteArray | Since: primitive-0.6.3.0 |
Eq CreateProcess | |
Defined in System.Process.Common Methods (==) :: CreateProcess -> CreateProcess -> Bool # (/=) :: CreateProcess -> CreateProcess -> Bool # | |
Eq CmdSpec | |
Eq StdStream | |
Eq ReleaseType | |
Defined in Data.Acquire.Internal | |
Eq ConcException | |
Defined in UnliftIO.Internals.Async Methods (==) :: ConcException -> ConcException -> Bool # (/=) :: ConcException -> ConcException -> Bool # | |
Eq LogLevel | |
Eq Day | |
Eq DiffTime | |
Eq NominalDiffTime | |
Defined in Data.Time.Clock.Internal.NominalDiffTime Methods (==) :: NominalDiffTime -> NominalDiffTime -> Bool # (/=) :: NominalDiffTime -> NominalDiffTime -> Bool # | |
Eq UTCTime | |
Eq UniversalTime | |
Defined in Data.Time.Clock.Internal.UniversalTime Methods (==) :: UniversalTime -> UniversalTime -> Bool # (/=) :: UniversalTime -> UniversalTime -> Bool # | |
Eq LocalTime | |
Eq UnicodeException | |
Defined in Data.Text.Encoding.Error Methods (==) :: UnicodeException -> UnicodeException -> Bool # (/=) :: UnicodeException -> UnicodeException -> Bool # | |
Eq ModName | |
Eq PkgName | |
Eq Module | |
Eq OccName | |
Eq NameFlavour | |
Defined in Language.Haskell.TH.Syntax | |
Eq NameSpace | |
Eq Loc | |
Eq Info | |
Eq ModuleInfo | |
Defined in Language.Haskell.TH.Syntax | |
Eq Fixity | |
Eq FixityDirection | |
Defined in Language.Haskell.TH.Syntax Methods (==) :: FixityDirection -> FixityDirection -> Bool # (/=) :: FixityDirection -> FixityDirection -> Bool # | |
Eq Lit | |
Eq Body | |
Eq Guard | |
Eq Stmt | |
Eq Range | |
Eq DerivClause | |
Defined in Language.Haskell.TH.Syntax | |
Eq DerivStrategy | |
Defined in Language.Haskell.TH.Syntax Methods (==) :: DerivStrategy -> DerivStrategy -> Bool # (/=) :: DerivStrategy -> DerivStrategy -> Bool # | |
Eq TypeFamilyHead | |
Defined in Language.Haskell.TH.Syntax Methods (==) :: TypeFamilyHead -> TypeFamilyHead -> Bool # (/=) :: TypeFamilyHead -> TypeFamilyHead -> Bool # | |
Eq TySynEqn | |
Eq Foreign | |
Eq Callconv | |
Eq Safety | |
Eq Pragma | |
Eq Inline | |
Eq RuleMatch | |
Eq Phases | |
Eq RuleBndr | |
Eq AnnTarget | |
Eq SourceUnpackedness | |
Defined in Language.Haskell.TH.Syntax Methods (==) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (/=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # | |
Eq SourceStrictness | |
Defined in Language.Haskell.TH.Syntax Methods (==) :: SourceStrictness -> SourceStrictness -> Bool # (/=) :: SourceStrictness -> SourceStrictness -> Bool # | |
Eq DecidedStrictness | |
Defined in Language.Haskell.TH.Syntax Methods (==) :: DecidedStrictness -> DecidedStrictness -> Bool # (/=) :: DecidedStrictness -> DecidedStrictness -> Bool # | |
Eq Bang | |
Eq PatSynDir | |
Eq PatSynArgs | |
Defined in Language.Haskell.TH.Syntax | |
Eq FamilyResultSig | |
Defined in Language.Haskell.TH.Syntax Methods (==) :: FamilyResultSig -> FamilyResultSig -> Bool # (/=) :: FamilyResultSig -> FamilyResultSig -> Bool # | |
Eq TyLit | |
Eq Role | |
Eq AnnLookup | |
Eq DatatypeInfo | |
Defined in Language.Haskell.TH.Datatype | |
Eq DatatypeVariant | |
Defined in Language.Haskell.TH.Datatype Methods (==) :: DatatypeVariant -> DatatypeVariant -> Bool # (/=) :: DatatypeVariant -> DatatypeVariant -> Bool # | |
Eq ConstructorInfo | |
Defined in Language.Haskell.TH.Datatype Methods (==) :: ConstructorInfo -> ConstructorInfo -> Bool # (/=) :: ConstructorInfo -> ConstructorInfo -> Bool # | |
Eq ConstructorVariant | |
Defined in Language.Haskell.TH.Datatype Methods (==) :: ConstructorVariant -> ConstructorVariant -> Bool # (/=) :: ConstructorVariant -> ConstructorVariant -> Bool # | |
Eq FieldStrictness | |
Defined in Language.Haskell.TH.Datatype Methods (==) :: FieldStrictness -> FieldStrictness -> Bool # (/=) :: FieldStrictness -> FieldStrictness -> Bool # | |
Eq Unpackedness | |
Defined in Language.Haskell.TH.Datatype | |
Eq Strictness | |
Defined in Language.Haskell.TH.Datatype | |
Eq SystemTime | |
Defined in Data.Time.Clock.Internal.SystemTime | |
Eq GroupEntry | |
Defined in System.Posix.User | |
Eq UserEntry | |
Eq Resource | |
Eq ResourceLimits | |
Defined in System.Posix.Resource Methods (==) :: ResourceLimits -> ResourceLimits -> Bool # (/=) :: ResourceLimits -> ResourceLimits -> Bool # | |
Eq ResourceLimit | |
Defined in System.Posix.Resource Methods (==) :: ResourceLimit -> ResourceLimit -> Bool # (/=) :: ResourceLimit -> ResourceLimit -> Bool # | |
Eq ProcessStatus | |
Defined in System.Posix.Process.Internals Methods (==) :: ProcessStatus -> ProcessStatus -> Bool # (/=) :: ProcessStatus -> ProcessStatus -> Bool # | |
Eq CodePoint | |
Eq DecoderState | |
Eq Keycode Source # | |
Eq KeyEvent Source # | |
Eq Switch Source # | |
Eq Milliseconds Source # | |
Defined in KMonad.Util | |
Eq UinputCfg Source # | |
Eq Catch Source # | |
Eq HookLocation Source # | |
Defined in KMonad.Action | |
Eq a => Eq [a] | |
Eq a => Eq (Maybe a) | Since: base-2.1 |
Eq a => Eq (Ratio a) | Since: base-2.1 |
Eq (Ptr a) | Since: base-2.1 |
Eq (FunPtr a) | |
Eq p => Eq (Par1 p) | Since: base-4.7.0.0 |
Eq (Async a) | |
Eq a => Eq (Complex a) | Since: base-2.1 |
Eq (Fixed a) | Since: base-2.1 |
Eq a => Eq (Min a) | Since: base-4.9.0.0 |
Eq a => Eq (Max a) | Since: base-4.9.0.0 |
Eq a => Eq (First a) | Since: base-4.9.0.0 |
Eq a => Eq (Last a) | Since: base-4.9.0.0 |
Eq m => Eq (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods (==) :: WrappedMonoid m -> WrappedMonoid m -> Bool # (/=) :: WrappedMonoid m -> WrappedMonoid m -> Bool # | |
Eq a => Eq (Option a) | Since: base-4.9.0.0 |
Eq (Chan a) | Since: base-4.4.0.0 |
Eq a => Eq (ZipList a) | Since: base-4.7.0.0 |
Eq a => Eq (Identity a) | Since: base-4.8.0.0 |
Eq (TVar a) | Since: base-4.8.0.0 |
Eq (IORef a) | ^ Pointer equality. Since: base-4.1.0.0 |
Eq a => Eq (First a) | Since: base-2.1 |
Eq a => Eq (Last a) | Since: base-2.1 |
Eq a => Eq (Dual a) | Since: base-2.1 |
Eq a => Eq (Sum a) | Since: base-2.1 |
Eq a => Eq (Product a) | Since: base-2.1 |
Eq a => Eq (Down a) | Since: base-4.6.0.0 |
Eq (MVar a) | Since: base-4.1.0.0 |
Eq a => Eq (NonEmpty a) | Since: base-4.9.0.0 |
Eq a => Eq (IntMap a) | |
Eq a => Eq (Tree a) | |
Eq a => Eq (Seq a) | |
Eq a => Eq (ViewL a) | |
Eq a => Eq (ViewR a) | |
Eq a => Eq (Set a) | |
Eq a => Eq (Hashed a) | Uses precomputed hash to detect inequality faster |
(Prim a, Eq a) => Eq (Vector a) | |
(Storable a, Eq a) => Eq (Vector a) | |
Eq a => Eq (HashSet a) | Note that, in the presence of hash collisions, equal
In general, the lack of substitutivity can be observed with any function that depends on the key ordering, such as folds and traversals. |
Eq a => Eq (Vector a) | |
Eq t => Eq (ErrorItem t) | |
Eq e => Eq (ErrorFancy e) | |
Defined in Text.Megaparsec.Error | |
Eq s => Eq (State s) | |
Eq s => Eq (PosState s) | |
Eq (Doc a) | |
Eq a => Eq (AnnotDetails a) | |
Defined in Text.PrettyPrint.Annotated.HughesPJ Methods (==) :: AnnotDetails a -> AnnotDetails a -> Bool # (/=) :: AnnotDetails a -> AnnotDetails a -> Bool # | |
Eq a => Eq (Span a) | |
(Eq a, Prim a) => Eq (PrimArray a) | Since: primitive-0.6.4.0 |
Eq (MutableByteArray s) | |
Defined in Data.Primitive.ByteArray Methods (==) :: MutableByteArray s -> MutableByteArray s -> Bool # (/=) :: MutableByteArray s -> MutableByteArray s -> Bool # | |
Eq a => Eq (SmallArray a) | |
Defined in Data.Primitive.SmallArray | |
Eq a => Eq (Array a) | |
Eq (TBQueue a) | |
Eq (TChan a) | |
Eq (TMVar a) | |
Eq (TQueue a) | |
(Eq a, Eq b) => Eq (Either a b) | Since: base-2.1 |
Eq (V1 p) | Since: base-4.9.0.0 |
Eq (U1 p) | Since: base-4.9.0.0 |
Eq (TypeRep a) | Since: base-2.1 |
(Eq a, Eq b) => Eq (a, b) | |
(Ix ix, Eq e, IArray UArray e) => Eq (UArray ix e) | |
(Ix i, Eq e) => Eq (Array i e) | Since: base-2.1 |
Eq a => Eq (Arg a b) | Since: base-4.9.0.0 |
Eq (Proxy s) | Since: base-4.7.0.0 |
Eq (STRef s a) | Pointer equality. Since: base-2.1 |
(Eq k, Eq a) => Eq (Map k a) | |
(Eq1 m, Eq a) => Eq (MaybeT m a) | |
(Eq1 f, Eq a) => Eq (Cofree f a) | |
(Eq1 f, Eq a) => Eq (Free f a) | |
(Eq1 f, Eq a) => Eq (Yoneda f a) | |
(Eq k, Eq v) => Eq (HashMap k v) | Note that, in the presence of hash collisions, equal
In general, the lack of substitutivity can be observed with any function that depends on the key ordering, such as folds and traversals. |
(Eq i, Eq a) => Eq (Level i a) | |
(Eq (Token s), Eq e) => Eq (ParseError s e) | |
Defined in Text.Megaparsec.Error Methods (==) :: ParseError s e -> ParseError s e -> Bool # (/=) :: ParseError s e -> ParseError s e -> Bool # | |
(Eq s, Eq (Token s), Eq e) => Eq (ParseErrorBundle s e) | |
Defined in Text.Megaparsec.Error Methods (==) :: ParseErrorBundle s e -> ParseErrorBundle s e -> Bool # (/=) :: ParseErrorBundle s e -> ParseErrorBundle s e -> Bool # | |
(Eq1 m, Eq a) => Eq (ListT m a) | |
Eq (MutablePrimArray s a) | |
Defined in Data.Primitive.PrimArray Methods (==) :: MutablePrimArray s a -> MutablePrimArray s a -> Bool # (/=) :: MutablePrimArray s a -> MutablePrimArray s a -> Bool # | |
Eq (SmallMutableArray s a) | |
Defined in Data.Primitive.SmallArray Methods (==) :: SmallMutableArray s a -> SmallMutableArray s a -> Bool # (/=) :: SmallMutableArray s a -> SmallMutableArray s a -> Bool # | |
Eq (MutableArray s a) | |
Defined in Data.Primitive.Array Methods (==) :: MutableArray s a -> MutableArray s a -> Bool # (/=) :: MutableArray s a -> MutableArray s a -> Bool # | |
(Eq k, Eq v) => Eq (Leaf k v) | |
(Eq k, Eq a) => Eq (Layer k a) Source # | |
Eq (f p) => Eq (Rec1 f p) | Since: base-4.7.0.0 |
Eq (URec (Ptr ()) p) | Since: base-4.9.0.0 |
Eq (URec Char p) | Since: base-4.9.0.0 |
Eq (URec Double p) | Since: base-4.9.0.0 |
Eq (URec Float p) | |
Eq (URec Int p) | Since: base-4.9.0.0 |
Eq (URec Word p) | Since: base-4.9.0.0 |
(Eq a, Eq b, Eq c) => Eq (a, b, c) | |
Eq (STUArray s i e) | |
Eq (STArray s i e) | Since: base-2.1 |
Eq a => Eq (Const a b) | Since: base-4.9.0.0 |
Eq (f a) => Eq (Ap f a) | Since: base-4.12.0.0 |
Eq (f a) => Eq (Alt f a) | Since: base-4.8.0.0 |
Eq (a :~: b) | Since: base-4.7.0.0 |
Eq (p a a) => Eq (Join p a) | |
Eq (p (Fix p a) a) => Eq (Fix p a) | |
(Eq1 f, Eq a) => Eq (IdentityT f a) | |
(Eq e, Eq1 m, Eq a) => Eq (ExceptT e m a) | |
(Eq a, Eq (f b)) => Eq (FreeF f a b) | |
(Eq1 f, Eq1 m, Eq a) => Eq (FreeT f m a) | |
(Eq a, Eq (f b)) => Eq (CofreeF f a b) | |
Eq (w (CofreeF f a (CofreeT f w a))) => Eq (CofreeT f w a) | |
(Eq e, Eq1 m, Eq a) => Eq (ErrorT e m a) | |
(Eq1 f, Eq a) => Eq (Backwards f a) | |
(Eq w, Eq1 m, Eq a) => Eq (WriterT w m a) | |
(Eq w, Eq1 m, Eq a) => Eq (WriterT w m a) | |
Eq b => Eq (Tagged s b) | |
(Eq l, Eq k, Eq a) => Eq (LayerStack l k a) Source # | |
Defined in Data.LayerStack Methods (==) :: LayerStack l k a -> LayerStack l k a -> Bool # (/=) :: LayerStack l k a -> LayerStack l k a -> Bool # | |
Eq c => Eq (K1 i c p) | Since: base-4.7.0.0 |
(Eq (f p), Eq (g p)) => Eq ((f :+: g) p) | Since: base-4.7.0.0 |
(Eq (f p), Eq (g p)) => Eq ((f :*: g) p) | Since: base-4.7.0.0 |
(Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d) | |
(Eq1 f, Eq1 g, Eq a) => Eq (Product f g a) | Since: base-4.9.0.0 |
(Eq1 f, Eq1 g, Eq a) => Eq (Sum f g a) | Since: base-4.9.0.0 |
Eq (a :~~: b) | Since: base-4.10.0.0 |
Eq (f p) => Eq (M1 i c f p) | Since: base-4.7.0.0 |
Eq (f (g p)) => Eq ((f :.: g) p) | Since: base-4.7.0.0 |
(Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e) | |
(Eq1 f, Eq1 g, Eq a) => Eq (Compose f g a) | Since: base-4.9.0.0 |
Eq (p a b) => Eq (WrappedBifunctor p a b) | |
Defined in Data.Bifunctor.Wrapped Methods (==) :: WrappedBifunctor p a b -> WrappedBifunctor p a b -> Bool # (/=) :: WrappedBifunctor p a b -> WrappedBifunctor p a b -> Bool # | |
Eq (g b) => Eq (Joker g a b) | |
Eq (p b a) => Eq (Flip p a b) | |
Eq (f a) => Eq (Clown f a b) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f) => Eq (a, b, c, d, e, f) | |
(Eq (p a b), Eq (q a b)) => Eq (Sum p q a b) | |
(Eq (f a b), Eq (g a b)) => Eq (Product f g a b) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g) => Eq (a, b, c, d, e, f, g) | |
Eq (f (p a b)) => Eq (Tannen f p a b) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h) => Eq (a, b, c, d, e, f, g, h) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i) => Eq (a, b, c, d, e, f, g, h, i) | |
Eq (p (f a) (g b)) => Eq (Biff p f g a b) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j) => Eq (a, b, c, d, e, f, g, h, i, j) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k) => Eq (a, b, c, d, e, f, g, h, i, j, k) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l) => Eq (a, b, c, d, e, f, g, h, i, j, k, l) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n, Eq o) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | |
class Fractional a => Floating a where #
Trigonometric and hyperbolic functions and related functions.
The Haskell Report defines no laws for Floating
. However, '(+)', '(*)'
and exp
are customarily expected to define an exponential field and have
the following properties:
exp (a + b)
= @exp a * exp bexp (fromInteger 0)
=fromInteger 1
Minimal complete definition
pi, exp, log, sin, cos, asin, acos, atan, sinh, cosh, asinh, acosh, atanh
Instances
class Num a => Fractional a where #
Fractional numbers, supporting real division.
The Haskell Report defines no laws for Fractional
. However, '(+)' and
'(*)' are customarily expected to define a division ring and have the
following properties:
recip
gives the multiplicative inversex * recip x
=recip x * x
=fromInteger 1
Note that it isn't customarily expected that a type instance of
Fractional
implement a field. However, all instances in base
do.
Minimal complete definition
fromRational, (recip | (/))
Methods
fractional division
reciprocal fraction
fromRational :: Rational -> a #
Conversion from a Rational
(that is
).
A floating literal stands for an application of Ratio
Integer
fromRational
to a value of type Rational
, so such literals have type
(
.Fractional
a) => a
Instances
Fractional CFloat | |
Fractional CDouble | |
Fractional DiffTime | |
Fractional NominalDiffTime | |
Defined in Data.Time.Clock.Internal.NominalDiffTime Methods (/) :: NominalDiffTime -> NominalDiffTime -> NominalDiffTime # recip :: NominalDiffTime -> NominalDiffTime # fromRational :: Rational -> NominalDiffTime # | |
Integral a => Fractional (Ratio a) | Since: base-2.0.1 |
RealFloat a => Fractional (Complex a) | Since: base-2.1 |
HasResolution a => Fractional (Fixed a) | Since: base-2.1 |
Fractional a => Fractional (Identity a) | Since: base-4.9.0.0 |
Fractional a => Fractional (Op a b) | |
Fractional a => Fractional (Const a b) | Since: base-4.9.0.0 |
Fractional a => Fractional (Tagged s a) | |
class (Real a, Enum a) => Integral a where #
Integral numbers, supporting integer division.
The Haskell Report defines no laws for Integral
. However, Integral
instances are customarily expected to define a Euclidean domain and have the
following properties for the 'div'/'mod' and 'quot'/'rem' pairs, given
suitable Euclidean functions f
and g
:
x
=y * quot x y + rem x y
withrem x y
=fromInteger 0
org (rem x y)
<g y
x
=y * div x y + mod x y
withmod x y
=fromInteger 0
orf (mod x y)
<f y
An example of a suitable Euclidean function, for Integer
's instance, is
abs
.
Methods
quot :: a -> a -> a infixl 7 #
integer division truncated toward zero
integer remainder, satisfying
(x `quot` y)*y + (x `rem` y) == x
integer division truncated toward negative infinity
integer modulus, satisfying
(x `div` y)*y + (x `mod` y) == x
conversion to Integer
Instances
class Applicative m => Monad (m :: Type -> Type) where #
The Monad
class defines the basic operations over a monad,
a concept from a branch of mathematics known as category theory.
From the perspective of a Haskell programmer, however, it is best to
think of a monad as an abstract datatype of actions.
Haskell's do
expressions provide a convenient syntax for writing
monadic expressions.
Instances of Monad
should satisfy the following laws:
Furthermore, the Monad
and Applicative
operations should relate as follows:
The above laws imply:
and that pure
and (<*>
) satisfy the applicative functor laws.
The instances of Monad
for lists, Maybe
and IO
defined in the Prelude satisfy these laws.
Minimal complete definition
Methods
(>>=) :: m a -> (a -> m b) -> m b infixl 1 #
Sequentially compose two actions, passing any value produced by the first as an argument to the second.
(>>) :: m a -> m b -> m b infixl 1 #
Sequentially compose two actions, discarding any value produced by the first, like sequencing operators (such as the semicolon) in imperative languages.
Inject a value into the monadic type.
Fail with a message. This operation is not part of the
mathematical definition of a monad, but is invoked on pattern-match
failure in a do
expression.
As part of the MonadFail proposal (MFP), this function is moved
to its own class MonadFail
(see Control.Monad.Fail for more
details). The definition here will be removed in a future
release.
Instances
Monad [] | Since: base-2.1 |
Monad Maybe | Since: base-2.1 |
Monad IO | Since: base-2.1 |
Monad Par1 | Since: base-4.9.0.0 |
Monad Q | |
Monad Complex | Since: base-4.9.0.0 |
Monad Min | Since: base-4.9.0.0 |
Monad Max | Since: base-4.9.0.0 |
Monad First | Since: base-4.9.0.0 |
Monad Last | Since: base-4.9.0.0 |
Monad Option | Since: base-4.9.0.0 |
Monad Identity | Since: base-4.8.0.0 |
Monad STM | Since: base-4.3.0.0 |
Monad First | Since: base-4.8.0.0 |
Monad Last | Since: base-4.8.0.0 |
Monad Dual | Since: base-4.8.0.0 |
Monad Sum | Since: base-4.8.0.0 |
Monad Product | Since: base-4.8.0.0 |
Monad Down | Since: base-4.11.0.0 |
Monad ReadPrec | Since: base-2.1 |
Monad ReadP | Since: base-2.1 |
Monad NonEmpty | Since: base-4.9.0.0 |
Monad Put | |
Monad Tree | |
Monad Seq | |
Monad Vector | |
Monad ReadM | |
Monad ParserM | |
Monad ParserResult | |
Defined in Options.Applicative.Types Methods (>>=) :: ParserResult a -> (a -> ParserResult b) -> ParserResult b # (>>) :: ParserResult a -> ParserResult b -> ParserResult b # return :: a -> ParserResult a # fail :: String -> ParserResult a # | |
Monad SmallArray | |
Defined in Data.Primitive.SmallArray Methods (>>=) :: SmallArray a -> (a -> SmallArray b) -> SmallArray b # (>>) :: SmallArray a -> SmallArray b -> SmallArray b # return :: a -> SmallArray a # fail :: String -> SmallArray a # | |
Monad Array | |
Monad Acquire | |
Monad Memoized | |
Monad Id | |
Monad Box | |
Monad P | Since: base-2.1 |
Monad (Either e) | Since: base-4.4.0.0 |
Monad (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Monoid a => Monad ((,) a) | Since: base-4.9.0.0 |
Representable f => Monad (Co f) | |
Monad (ST s) | Since: base-2.1 |
Monad m => Monad (WrappedMonad m) | Since: base-4.7.0.0 |
Defined in Control.Applicative Methods (>>=) :: WrappedMonad m a -> (a -> WrappedMonad m b) -> WrappedMonad m b # (>>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b # return :: a -> WrappedMonad m a # fail :: String -> WrappedMonad m a # | |
ArrowApply a => Monad (ArrowMonad a) | Since: base-2.1 |
Defined in Control.Arrow Methods (>>=) :: ArrowMonad a a0 -> (a0 -> ArrowMonad a b) -> ArrowMonad a b # (>>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b # return :: a0 -> ArrowMonad a a0 # fail :: String -> ArrowMonad a a0 # | |
Monad (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Monad m => Monad (MaybeT m) | |
Alternative f => Monad (Cofree f) | |
Functor f => Monad (Free f) | |
Monad m => Monad (Yoneda m) | |
Monad (ReifiedGetter s) | |
Defined in Control.Lens.Reified Methods (>>=) :: ReifiedGetter s a -> (a -> ReifiedGetter s b) -> ReifiedGetter s b # (>>) :: ReifiedGetter s a -> ReifiedGetter s b -> ReifiedGetter s b # return :: a -> ReifiedGetter s a # fail :: String -> ReifiedGetter s a # | |
Monad (ReifiedFold s) | |
Defined in Control.Lens.Reified Methods (>>=) :: ReifiedFold s a -> (a -> ReifiedFold s b) -> ReifiedFold s b # (>>) :: ReifiedFold s a -> ReifiedFold s b -> ReifiedFold s b # return :: a -> ReifiedFold s a # fail :: String -> ReifiedFold s a # | |
Monad m => Monad (ListT m) | |
(Monad (Rep p), Representable p) => Monad (Prep p) | |
Monad m => Monad (ResourceT m) | |
Monad (RIO env) | |
Monad f => Monad (Rec1 f) | Since: base-4.9.0.0 |
Monad f => Monad (Ap f) | Since: base-4.12.0.0 |
Monad f => Monad (Alt f) | Since: base-4.8.0.0 |
Monad m => Monad (IdentityT m) | |
(Applicative f, Monad f) => Monad (WhenMissing f x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods (>>=) :: WhenMissing f x a -> (a -> WhenMissing f x b) -> WhenMissing f x b # (>>) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x b # return :: a -> WhenMissing f x a # fail :: String -> WhenMissing f x a # | |
Monad m => Monad (ExceptT e m) | |
(Functor f, Monad m) => Monad (FreeT f m) | |
(Alternative f, Monad w) => Monad (CofreeT f w) | |
(Monad m, Error e) => Monad (ErrorT e m) | |
Monad m => Monad (StateT s m) | |
Monad (Indexed i a) | |
Monad m => Monad (StateT s m) | |
(Monoid w, Monad m) => Monad (WriterT w m) | |
(Monoid w, Monad m) => Monad (WriterT w m) | |
Monad f => Monad (Star f a) | |
Monad (Costar f a) | |
Monad (Tagged s) | |
Monad ((->) r :: Type -> Type) | Since: base-2.1 |
(Monad f, Monad g) => Monad (f :*: g) | Since: base-4.9.0.0 |
(Monad f, Monad g) => Monad (Product f g) | Since: base-4.9.0.0 |
(Monad f, Applicative f) => Monad (WhenMatched f x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods (>>=) :: WhenMatched f x y a -> (a -> WhenMatched f x y b) -> WhenMatched f x y b # (>>) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y b # return :: a -> WhenMatched f x y a # fail :: String -> WhenMatched f x y a # | |
(Applicative f, Monad f) => Monad (WhenMissing f k x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods (>>=) :: WhenMissing f k x a -> (a -> WhenMissing f k x b) -> WhenMissing f k x b # (>>) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x b # return :: a -> WhenMissing f k x a # fail :: String -> WhenMissing f k x a # | |
Stream s => Monad (ParsecT e s m) |
|
Monad m => Monad (ReaderT r m) | |
Monad (ContT r m) | |
Monad f => Monad (M1 i c f) | Since: base-4.9.0.0 |
(Monad f, Applicative f) => Monad (WhenMatched f k x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods (>>=) :: WhenMatched f k x y a -> (a -> WhenMatched f k x y b) -> WhenMatched f k x y b # (>>) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y b # return :: a -> WhenMatched f k x y a # fail :: String -> WhenMatched f k x y a # | |
(Monoid w, Monad m) => Monad (RWST r w s m) | |
(Monoid w, Monad m) => Monad (RWST r w s m) | |
class Typeable a => Data a where #
The Data
class comprehends a fundamental primitive gfoldl
for
folding over constructor applications, say terms. This primitive can
be instantiated in several ways to map over the immediate subterms
of a term; see the gmap
combinators later in this class. Indeed, a
generic programmer does not necessarily need to use the ingenious gfoldl
primitive but rather the intuitive gmap
combinators. The gfoldl
primitive is completed by means to query top-level constructors, to
turn constructor representations into proper terms, and to list all
possible datatype constructors. This completion allows us to serve
generic programming scenarios like read, show, equality, term generation.
The combinators gmapT
, gmapQ
, gmapM
, etc are all provided with
default definitions in terms of gfoldl
, leaving open the opportunity
to provide datatype-specific definitions.
(The inclusion of the gmap
combinators as members of class Data
allows the programmer or the compiler to derive specialised, and maybe
more efficient code per datatype. Note: gfoldl
is more higher-order
than the gmap
combinators. This is subject to ongoing benchmarking
experiments. It might turn out that the gmap
combinators will be
moved out of the class Data
.)
Conceptually, the definition of the gmap
combinators in terms of the
primitive gfoldl
requires the identification of the gfoldl
function
arguments. Technically, we also need to identify the type constructor
c
for the construction of the result type from the folded term type.
In the definition of gmapQ
x combinators, we use phantom type
constructors for the c
in the type of gfoldl
because the result type
of a query does not involve the (polymorphic) type of the term argument.
In the definition of gmapQl
we simply use the plain constant type
constructor because gfoldl
is left-associative anyway and so it is
readily suited to fold a left-associative binary operation over the
immediate subterms. In the definition of gmapQr, extra effort is
needed. We use a higher-order accumulation trick to mediate between
left-associative constructor application vs. right-associative binary
operation (e.g., (:)
). When the query is meant to compute a value
of type r
, then the result type withing generic folding is r -> r
.
So the result of folding is a function to which we finally pass the
right unit.
With the -XDeriveDataTypeable
option, GHC can generate instances of the
Data
class automatically. For example, given the declaration
data T a b = C1 a b | C2 deriving (Typeable, Data)
GHC will generate an instance that is equivalent to
instance (Data a, Data b) => Data (T a b) where gfoldl k z (C1 a b) = z C1 `k` a `k` b gfoldl k z C2 = z C2 gunfold k z c = case constrIndex c of 1 -> k (k (z C1)) 2 -> z C2 toConstr (C1 _ _) = con_C1 toConstr C2 = con_C2 dataTypeOf _ = ty_T con_C1 = mkConstr ty_T "C1" [] Prefix con_C2 = mkConstr ty_T "C2" [] Prefix ty_T = mkDataType "Module.T" [con_C1, con_C2]
This is suitable for datatypes that are exported transparently.
Minimal complete definition
Methods
Arguments
:: (forall d b. Data d => c (d -> b) -> d -> c b) | defines how nonempty constructor applications are folded. It takes the folded tail of the constructor application and its head, i.e., an immediate subterm, and combines them in some way. |
-> (forall g. g -> c g) | defines how the empty constructor application is folded, like the neutral / start element for list folding. |
-> a | structure to be folded. |
-> c a | result, with a type defined in terms of |
Left-associative fold operation for constructor applications.
The type of gfoldl
is a headache, but operationally it is a simple
generalisation of a list fold.
The default definition for gfoldl
is
, which is
suitable for abstract datatypes with no substructures.const
id
gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c a #
Unfolding constructor applications
Obtaining the constructor from a given datum. For proper terms, this is meant to be the top-level constructor. Primitive datatypes are here viewed as potentially infinite sets of values (i.e., constructors).
dataTypeOf :: a -> DataType #
The outer type constructor of the type
dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c a) #
Mediate types and unary type constructors.
In Data
instances of the form
instance (Data a, ...) => Data (T a)
dataCast1
should be defined as gcast1
.
The default definition is
, which is appropriate
for instances of other forms.const
Nothing
dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a) #
Mediate types and binary type constructors.
In Data
instances of the form
instance (Data a, Data b, ...) => Data (T a b)
dataCast2
should be defined as gcast2
.
The default definition is
, which is appropriate
for instances of other forms.const
Nothing
gmapT :: (forall b. Data b => b -> b) -> a -> a #
A generic transformation that maps over the immediate subterms
The default definition instantiates the type constructor c
in the
type of gfoldl
to an identity datatype constructor, using the
isomorphism pair as injection and projection.
gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r #
A generic query with a left-associative binary operator
gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r #
A generic query with a right-associative binary operator
gmapQ :: (forall d. Data d => d -> u) -> a -> [u] #
A generic query that processes the immediate subterms and returns a list of results. The list is given in the same order as originally specified in the declaration of the data constructors.
gmapQi :: Int -> (forall d. Data d => d -> u) -> a -> u #
A generic query that processes one child by index (zero-based)
gmapM :: Monad m => (forall d. Data d => d -> m d) -> a -> m a #
A generic monadic transformation that maps over the immediate subterms
The default definition instantiates the type constructor c
in
the type of gfoldl
to the monad datatype constructor, defining
injection and projection using return
and >>=
.
gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> a -> m a #
Transformation of at least one immediate subterm does not fail
gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> a -> m a #
Transformation of one immediate subterm with success
Instances
Data Bool | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bool -> c Bool # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bool # dataTypeOf :: Bool -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Bool) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bool) # gmapT :: (forall b. Data b => b -> b) -> Bool -> Bool # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r # gmapQ :: (forall d. Data d => d -> u) -> Bool -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Bool -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bool -> m Bool # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool # | |
Data Char | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Char -> c Char # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Char # dataTypeOf :: Char -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Char) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Char) # gmapT :: (forall b. Data b => b -> b) -> Char -> Char # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r # gmapQ :: (forall d. Data d => d -> u) -> Char -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Char -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Char -> m Char # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char # | |
Data Double | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Double -> c Double # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Double # toConstr :: Double -> Constr # dataTypeOf :: Double -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Double) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Double) # gmapT :: (forall b. Data b => b -> b) -> Double -> Double # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r # gmapQ :: (forall d. Data d => d -> u) -> Double -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Double -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Double -> m Double # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double # | |
Data Float | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Float -> c Float # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Float # dataTypeOf :: Float -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Float) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Float) # gmapT :: (forall b. Data b => b -> b) -> Float -> Float # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r # gmapQ :: (forall d. Data d => d -> u) -> Float -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Float -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Float -> m Float # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float # | |
Data Int | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int -> c Int # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int # dataTypeOf :: Int -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int) # gmapT :: (forall b. Data b => b -> b) -> Int -> Int # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r # gmapQ :: (forall d. Data d => d -> u) -> Int -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int -> m Int # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int # | |
Data Int8 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int8 -> c Int8 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int8 # dataTypeOf :: Int8 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int8) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int8) # gmapT :: (forall b. Data b => b -> b) -> Int8 -> Int8 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int8 -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int8 -> r # gmapQ :: (forall d. Data d => d -> u) -> Int8 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int8 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 # | |
Data Int16 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int16 -> c Int16 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int16 # dataTypeOf :: Int16 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int16) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int16) # gmapT :: (forall b. Data b => b -> b) -> Int16 -> Int16 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int16 -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int16 -> r # gmapQ :: (forall d. Data d => d -> u) -> Int16 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int16 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 # | |
Data Int32 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int32 -> c Int32 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int32 # dataTypeOf :: Int32 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int32) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int32) # gmapT :: (forall b. Data b => b -> b) -> Int32 -> Int32 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int32 -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int32 -> r # gmapQ :: (forall d. Data d => d -> u) -> Int32 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int32 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 # | |
Data Int64 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int64 -> c Int64 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int64 # dataTypeOf :: Int64 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int64) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int64) # gmapT :: (forall b. Data b => b -> b) -> Int64 -> Int64 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int64 -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int64 -> r # gmapQ :: (forall d. Data d => d -> u) -> Int64 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int64 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 # | |
Data Integer | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Integer -> c Integer # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Integer # toConstr :: Integer -> Constr # dataTypeOf :: Integer -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Integer) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Integer) # gmapT :: (forall b. Data b => b -> b) -> Integer -> Integer # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r # gmapQ :: (forall d. Data d => d -> u) -> Integer -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Integer -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Integer -> m Integer # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer # | |
Data Natural | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Natural -> c Natural # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Natural # toConstr :: Natural -> Constr # dataTypeOf :: Natural -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Natural) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Natural) # gmapT :: (forall b. Data b => b -> b) -> Natural -> Natural # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Natural -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Natural -> r # gmapQ :: (forall d. Data d => d -> u) -> Natural -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Natural -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Natural -> m Natural # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Natural -> m Natural # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Natural -> m Natural # | |
Data Ordering | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ordering -> c Ordering # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Ordering # toConstr :: Ordering -> Constr # dataTypeOf :: Ordering -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Ordering) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Ordering) # gmapT :: (forall b. Data b => b -> b) -> Ordering -> Ordering # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r # gmapQ :: (forall d. Data d => d -> u) -> Ordering -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ordering -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # | |
Data Word | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word -> c Word # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word # dataTypeOf :: Word -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word) # gmapT :: (forall b. Data b => b -> b) -> Word -> Word # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r # gmapQ :: (forall d. Data d => d -> u) -> Word -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word -> m Word # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word # | |
Data Word8 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word8 -> c Word8 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word8 # dataTypeOf :: Word8 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word8) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word8) # gmapT :: (forall b. Data b => b -> b) -> Word8 -> Word8 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word8 -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word8 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word8 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word8 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 # | |
Data Word16 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word16 -> c Word16 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word16 # toConstr :: Word16 -> Constr # dataTypeOf :: Word16 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word16) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word16) # gmapT :: (forall b. Data b => b -> b) -> Word16 -> Word16 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word16 -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word16 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word16 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word16 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 # | |
Data Word32 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word32 -> c Word32 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word32 # toConstr :: Word32 -> Constr # dataTypeOf :: Word32 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word32) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word32) # gmapT :: (forall b. Data b => b -> b) -> Word32 -> Word32 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word32 -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word32 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word32 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word32 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 # | |
Data Word64 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word64 -> c Word64 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word64 # toConstr :: Word64 -> Constr # dataTypeOf :: Word64 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word64) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word64) # gmapT :: (forall b. Data b => b -> b) -> Word64 -> Word64 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word64 -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word64 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word64 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word64 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 # | |
Data Exp | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Exp -> c Exp # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Exp # dataTypeOf :: Exp -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Exp) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Exp) # gmapT :: (forall b. Data b => b -> b) -> Exp -> Exp # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Exp -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Exp -> r # gmapQ :: (forall d. Data d => d -> u) -> Exp -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Exp -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Exp -> m Exp # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Exp -> m Exp # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Exp -> m Exp # | |
Data Match | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Match -> c Match # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Match # dataTypeOf :: Match -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Match) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Match) # gmapT :: (forall b. Data b => b -> b) -> Match -> Match # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Match -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Match -> r # gmapQ :: (forall d. Data d => d -> u) -> Match -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Match -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Match -> m Match # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Match -> m Match # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Match -> m Match # | |
Data Clause | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Clause -> c Clause # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Clause # toConstr :: Clause -> Constr # dataTypeOf :: Clause -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Clause) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Clause) # gmapT :: (forall b. Data b => b -> b) -> Clause -> Clause # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Clause -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Clause -> r # gmapQ :: (forall d. Data d => d -> u) -> Clause -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Clause -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Clause -> m Clause # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Clause -> m Clause # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Clause -> m Clause # | |
Data Pat | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Pat -> c Pat # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Pat # dataTypeOf :: Pat -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Pat) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Pat) # gmapT :: (forall b. Data b => b -> b) -> Pat -> Pat # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Pat -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Pat -> r # gmapQ :: (forall d. Data d => d -> u) -> Pat -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Pat -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Pat -> m Pat # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Pat -> m Pat # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Pat -> m Pat # | |
Data Type | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Type -> c Type # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Type # dataTypeOf :: Type -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Type) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Type) # gmapT :: (forall b. Data b => b -> b) -> Type -> Type # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Type -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Type -> r # gmapQ :: (forall d. Data d => d -> u) -> Type -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Type -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Type -> m Type # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Type -> m Type # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Type -> m Type # | |
Data Dec | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Dec -> c Dec # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Dec # dataTypeOf :: Dec -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Dec) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Dec) # gmapT :: (forall b. Data b => b -> b) -> Dec -> Dec # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Dec -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Dec -> r # gmapQ :: (forall d. Data d => d -> u) -> Dec -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Dec -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Dec -> m Dec # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Dec -> m Dec # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Dec -> m Dec # | |
Data Name | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Name -> c Name # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Name # dataTypeOf :: Name -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Name) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Name) # gmapT :: (forall b. Data b => b -> b) -> Name -> Name # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Name -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Name -> r # gmapQ :: (forall d. Data d => d -> u) -> Name -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Name -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Name -> m Name # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Name -> m Name # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Name -> m Name # | |
Data FunDep | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FunDep -> c FunDep # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c FunDep # toConstr :: FunDep -> Constr # dataTypeOf :: FunDep -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c FunDep) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c FunDep) # gmapT :: (forall b. Data b => b -> b) -> FunDep -> FunDep # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FunDep -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FunDep -> r # gmapQ :: (forall d. Data d => d -> u) -> FunDep -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> FunDep -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FunDep -> m FunDep # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FunDep -> m FunDep # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FunDep -> m FunDep # | |
Data InjectivityAnn | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> InjectivityAnn -> c InjectivityAnn # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c InjectivityAnn # toConstr :: InjectivityAnn -> Constr # dataTypeOf :: InjectivityAnn -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c InjectivityAnn) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c InjectivityAnn) # gmapT :: (forall b. Data b => b -> b) -> InjectivityAnn -> InjectivityAnn # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> InjectivityAnn -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> InjectivityAnn -> r # gmapQ :: (forall d. Data d => d -> u) -> InjectivityAnn -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> InjectivityAnn -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> InjectivityAnn -> m InjectivityAnn # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> InjectivityAnn -> m InjectivityAnn # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> InjectivityAnn -> m InjectivityAnn # | |
Data Overlap | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Overlap -> c Overlap # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Overlap # toConstr :: Overlap -> Constr # dataTypeOf :: Overlap -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Overlap) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Overlap) # gmapT :: (forall b. Data b => b -> b) -> Overlap -> Overlap # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Overlap -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Overlap -> r # gmapQ :: (forall d. Data d => d -> u) -> Overlap -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Overlap -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Overlap -> m Overlap # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Overlap -> m Overlap # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Overlap -> m Overlap # | |
Data () | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> () -> c () # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c () # dataTypeOf :: () -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ()) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ()) # gmapT :: (forall b. Data b => b -> b) -> () -> () # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> () -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> () -> r # gmapQ :: (forall d. Data d => d -> u) -> () -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> () -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> () -> m () # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> () -> m () # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> () -> m () # | |
Data Void | Since: base-4.8.0.0 |
Defined in Data.Void Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Void -> c Void # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Void # dataTypeOf :: Void -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Void) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Void) # gmapT :: (forall b. Data b => b -> b) -> Void -> Void # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r # gmapQ :: (forall d. Data d => d -> u) -> Void -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Void -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Void -> m Void # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void # | |
Data SpecConstrAnnotation | Since: base-4.3.0.0 |
Defined in GHC.Exts Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SpecConstrAnnotation -> c SpecConstrAnnotation # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SpecConstrAnnotation # toConstr :: SpecConstrAnnotation -> Constr # dataTypeOf :: SpecConstrAnnotation -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SpecConstrAnnotation) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SpecConstrAnnotation) # gmapT :: (forall b. Data b => b -> b) -> SpecConstrAnnotation -> SpecConstrAnnotation # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SpecConstrAnnotation -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SpecConstrAnnotation -> r # gmapQ :: (forall d. Data d => d -> u) -> SpecConstrAnnotation -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SpecConstrAnnotation -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SpecConstrAnnotation -> m SpecConstrAnnotation # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SpecConstrAnnotation -> m SpecConstrAnnotation # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SpecConstrAnnotation -> m SpecConstrAnnotation # | |
Data Version | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Version -> c Version # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Version # toConstr :: Version -> Constr # dataTypeOf :: Version -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Version) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Version) # gmapT :: (forall b. Data b => b -> b) -> Version -> Version # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Version -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Version -> r # gmapQ :: (forall d. Data d => d -> u) -> Version -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Version -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Version -> m Version # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Version -> m Version # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Version -> m Version # | |
Data All | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> All -> c All # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c All # dataTypeOf :: All -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c All) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c All) # gmapT :: (forall b. Data b => b -> b) -> All -> All # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> All -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> All -> r # gmapQ :: (forall d. Data d => d -> u) -> All -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> All -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> All -> m All # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> All -> m All # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> All -> m All # | |
Data Any | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Any -> c Any # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Any # dataTypeOf :: Any -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Any) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Any) # gmapT :: (forall b. Data b => b -> b) -> Any -> Any # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Any -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Any -> r # gmapQ :: (forall d. Data d => d -> u) -> Any -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Any -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Any -> m Any # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Any -> m Any # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Any -> m Any # | |
Data Fixity | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Fixity -> c Fixity # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Fixity # toConstr :: Fixity -> Constr # dataTypeOf :: Fixity -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Fixity) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Fixity) # gmapT :: (forall b. Data b => b -> b) -> Fixity -> Fixity # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r # gmapQ :: (forall d. Data d => d -> u) -> Fixity -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Fixity -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # | |
Data Associativity | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Associativity -> c Associativity # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Associativity # toConstr :: Associativity -> Constr # dataTypeOf :: Associativity -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Associativity) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Associativity) # gmapT :: (forall b. Data b => b -> b) -> Associativity -> Associativity # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Associativity -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Associativity -> r # gmapQ :: (forall d. Data d => d -> u) -> Associativity -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Associativity -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Associativity -> m Associativity # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Associativity -> m Associativity # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Associativity -> m Associativity # | |
Data SourceUnpackedness | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceUnpackedness -> c SourceUnpackedness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceUnpackedness # toConstr :: SourceUnpackedness -> Constr # dataTypeOf :: SourceUnpackedness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourceUnpackedness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceUnpackedness) # gmapT :: (forall b. Data b => b -> b) -> SourceUnpackedness -> SourceUnpackedness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceUnpackedness -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceUnpackedness -> r # gmapQ :: (forall d. Data d => d -> u) -> SourceUnpackedness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceUnpackedness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # | |
Data SourceStrictness | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceStrictness -> c SourceStrictness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceStrictness # toConstr :: SourceStrictness -> Constr # dataTypeOf :: SourceStrictness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourceStrictness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceStrictness) # gmapT :: (forall b. Data b => b -> b) -> SourceStrictness -> SourceStrictness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceStrictness -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceStrictness -> r # gmapQ :: (forall d. Data d => d -> u) -> SourceStrictness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceStrictness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # | |
Data DecidedStrictness | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DecidedStrictness -> c DecidedStrictness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DecidedStrictness # toConstr :: DecidedStrictness -> Constr # dataTypeOf :: DecidedStrictness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DecidedStrictness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DecidedStrictness) # gmapT :: (forall b. Data b => b -> b) -> DecidedStrictness -> DecidedStrictness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DecidedStrictness -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DecidedStrictness -> r # gmapQ :: (forall d. Data d => d -> u) -> DecidedStrictness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DecidedStrictness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # | |
Data WordPtr | Since: base-4.11.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> WordPtr -> c WordPtr # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c WordPtr # toConstr :: WordPtr -> Constr # dataTypeOf :: WordPtr -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c WordPtr) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c WordPtr) # gmapT :: (forall b. Data b => b -> b) -> WordPtr -> WordPtr # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WordPtr -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WordPtr -> r # gmapQ :: (forall d. Data d => d -> u) -> WordPtr -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> WordPtr -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> WordPtr -> m WordPtr # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> WordPtr -> m WordPtr # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> WordPtr -> m WordPtr # | |
Data IntPtr | Since: base-4.11.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntPtr -> c IntPtr # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c IntPtr # toConstr :: IntPtr -> Constr # dataTypeOf :: IntPtr -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c IntPtr) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c IntPtr) # gmapT :: (forall b. Data b => b -> b) -> IntPtr -> IntPtr # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntPtr -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntPtr -> r # gmapQ :: (forall d. Data d => d -> u) -> IntPtr -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> IntPtr -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntPtr -> m IntPtr # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntPtr -> m IntPtr # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntPtr -> m IntPtr # | |
Data ShortByteString | |
Defined in Data.ByteString.Short.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ShortByteString -> c ShortByteString # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ShortByteString # toConstr :: ShortByteString -> Constr # dataTypeOf :: ShortByteString -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ShortByteString) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ShortByteString) # gmapT :: (forall b. Data b => b -> b) -> ShortByteString -> ShortByteString # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ShortByteString -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ShortByteString -> r # gmapQ :: (forall d. Data d => d -> u) -> ShortByteString -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ShortByteString -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ShortByteString -> m ShortByteString # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ShortByteString -> m ShortByteString # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ShortByteString -> m ShortByteString # | |
Data ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ByteString -> c ByteString # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ByteString # toConstr :: ByteString -> Constr # dataTypeOf :: ByteString -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ByteString) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ByteString) # gmapT :: (forall b. Data b => b -> b) -> ByteString -> ByteString # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r # gmapQ :: (forall d. Data d => d -> u) -> ByteString -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ByteString -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # | |
Data ByteString | |
Defined in Data.ByteString.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ByteString -> c ByteString # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ByteString # toConstr :: ByteString -> Constr # dataTypeOf :: ByteString -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ByteString) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ByteString) # gmapT :: (forall b. Data b => b -> b) -> ByteString -> ByteString # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r # gmapQ :: (forall d. Data d => d -> u) -> ByteString -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ByteString -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # | |
Data IntSet | |
Defined in Data.IntSet.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntSet -> c IntSet # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c IntSet # toConstr :: IntSet -> Constr # dataTypeOf :: IntSet -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c IntSet) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c IntSet) # gmapT :: (forall b. Data b => b -> b) -> IntSet -> IntSet # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntSet -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntSet -> r # gmapQ :: (forall d. Data d => d -> u) -> IntSet -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> IntSet -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet # | |
Data Con | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Con -> c Con # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Con # dataTypeOf :: Con -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Con) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Con) # gmapT :: (forall b. Data b => b -> b) -> Con -> Con # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Con -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Con -> r # gmapQ :: (forall d. Data d => d -> u) -> Con -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Con -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Con -> m Con # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Con -> m Con # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Con -> m Con # | |
Data TyVarBndr | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TyVarBndr -> c TyVarBndr # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TyVarBndr # toConstr :: TyVarBndr -> Constr # dataTypeOf :: TyVarBndr -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TyVarBndr) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TyVarBndr) # gmapT :: (forall b. Data b => b -> b) -> TyVarBndr -> TyVarBndr # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TyVarBndr -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TyVarBndr -> r # gmapQ :: (forall d. Data d => d -> u) -> TyVarBndr -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TyVarBndr -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TyVarBndr -> m TyVarBndr # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TyVarBndr -> m TyVarBndr # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TyVarBndr -> m TyVarBndr # | |
Data Pos | |
Defined in Text.Megaparsec.Pos Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Pos -> c Pos # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Pos # dataTypeOf :: Pos -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Pos) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Pos) # gmapT :: (forall b. Data b => b -> b) -> Pos -> Pos # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Pos -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Pos -> r # gmapQ :: (forall d. Data d => d -> u) -> Pos -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Pos -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Pos -> m Pos # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Pos -> m Pos # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Pos -> m Pos # | |
Data InvalidPosException | |
Defined in Text.Megaparsec.Pos Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> InvalidPosException -> c InvalidPosException # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c InvalidPosException # toConstr :: InvalidPosException -> Constr # dataTypeOf :: InvalidPosException -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c InvalidPosException) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c InvalidPosException) # gmapT :: (forall b. Data b => b -> b) -> InvalidPosException -> InvalidPosException # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> InvalidPosException -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> InvalidPosException -> r # gmapQ :: (forall d. Data d => d -> u) -> InvalidPosException -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> InvalidPosException -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> InvalidPosException -> m InvalidPosException # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> InvalidPosException -> m InvalidPosException # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> InvalidPosException -> m InvalidPosException # | |
Data SourcePos | |
Defined in Text.Megaparsec.Pos Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourcePos -> c SourcePos # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourcePos # toConstr :: SourcePos -> Constr # dataTypeOf :: SourcePos -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourcePos) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourcePos) # gmapT :: (forall b. Data b => b -> b) -> SourcePos -> SourcePos # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourcePos -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourcePos -> r # gmapQ :: (forall d. Data d => d -> u) -> SourcePos -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourcePos -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourcePos -> m SourcePos # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourcePos -> m SourcePos # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourcePos -> m SourcePos # | |
Data ByteArray | |
Defined in Data.Primitive.ByteArray Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ByteArray -> c ByteArray # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ByteArray # toConstr :: ByteArray -> Constr # dataTypeOf :: ByteArray -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ByteArray) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ByteArray) # gmapT :: (forall b. Data b => b -> b) -> ByteArray -> ByteArray # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ByteArray -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ByteArray -> r # gmapQ :: (forall d. Data d => d -> u) -> ByteArray -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ByteArray -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ByteArray -> m ByteArray # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteArray -> m ByteArray # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteArray -> m ByteArray # | |
Data Day | |
Defined in Data.Time.Calendar.Days Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Day -> c Day # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Day # dataTypeOf :: Day -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Day) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Day) # gmapT :: (forall b. Data b => b -> b) -> Day -> Day # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Day -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Day -> r # gmapQ :: (forall d. Data d => d -> u) -> Day -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Day -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Day -> m Day # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Day -> m Day # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Day -> m Day # | |
Data DiffTime | |
Defined in Data.Time.Clock.Internal.DiffTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DiffTime -> c DiffTime # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DiffTime # toConstr :: DiffTime -> Constr # dataTypeOf :: DiffTime -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DiffTime) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DiffTime) # gmapT :: (forall b. Data b => b -> b) -> DiffTime -> DiffTime # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DiffTime -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DiffTime -> r # gmapQ :: (forall d. Data d => d -> u) -> DiffTime -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DiffTime -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DiffTime -> m DiffTime # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DiffTime -> m DiffTime # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DiffTime -> m DiffTime # | |
Data NominalDiffTime | |
Defined in Data.Time.Clock.Internal.NominalDiffTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NominalDiffTime -> c NominalDiffTime # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c NominalDiffTime # toConstr :: NominalDiffTime -> Constr # dataTypeOf :: NominalDiffTime -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c NominalDiffTime) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c NominalDiffTime) # gmapT :: (forall b. Data b => b -> b) -> NominalDiffTime -> NominalDiffTime # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NominalDiffTime -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NominalDiffTime -> r # gmapQ :: (forall d. Data d => d -> u) -> NominalDiffTime -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> NominalDiffTime -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NominalDiffTime -> m NominalDiffTime # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NominalDiffTime -> m NominalDiffTime # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NominalDiffTime -> m NominalDiffTime # | |
Data UTCTime | |
Defined in Data.Time.Clock.Internal.UTCTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> UTCTime -> c UTCTime # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c UTCTime # toConstr :: UTCTime -> Constr # dataTypeOf :: UTCTime -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c UTCTime) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c UTCTime) # gmapT :: (forall b. Data b => b -> b) -> UTCTime -> UTCTime # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> UTCTime -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> UTCTime -> r # gmapQ :: (forall d. Data d => d -> u) -> UTCTime -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> UTCTime -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> UTCTime -> m UTCTime # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> UTCTime -> m UTCTime # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> UTCTime -> m UTCTime # | |
Data UniversalTime | |
Defined in Data.Time.Clock.Internal.UniversalTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> UniversalTime -> c UniversalTime # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c UniversalTime # toConstr :: UniversalTime -> Constr # dataTypeOf :: UniversalTime -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c UniversalTime) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c UniversalTime) # gmapT :: (forall b. Data b => b -> b) -> UniversalTime -> UniversalTime # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> UniversalTime -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> UniversalTime -> r # gmapQ :: (forall d. Data d => d -> u) -> UniversalTime -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> UniversalTime -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> UniversalTime -> m UniversalTime # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> UniversalTime -> m UniversalTime # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> UniversalTime -> m UniversalTime # | |
Data LocalTime | |
Defined in Data.Time.LocalTime.Internal.LocalTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LocalTime -> c LocalTime # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LocalTime # toConstr :: LocalTime -> Constr # dataTypeOf :: LocalTime -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c LocalTime) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LocalTime) # gmapT :: (forall b. Data b => b -> b) -> LocalTime -> LocalTime # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LocalTime -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LocalTime -> r # gmapQ :: (forall d. Data d => d -> u) -> LocalTime -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> LocalTime -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> LocalTime -> m LocalTime # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LocalTime -> m LocalTime # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LocalTime -> m LocalTime # | |
Data ZonedTime | |
Defined in Data.Time.LocalTime.Internal.ZonedTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ZonedTime -> c ZonedTime # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ZonedTime # toConstr :: ZonedTime -> Constr # dataTypeOf :: ZonedTime -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ZonedTime) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ZonedTime) # gmapT :: (forall b. Data b => b -> b) -> ZonedTime -> ZonedTime # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ZonedTime -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ZonedTime -> r # gmapQ :: (forall d. Data d => d -> u) -> ZonedTime -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ZonedTime -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ZonedTime -> m ZonedTime # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ZonedTime -> m ZonedTime # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ZonedTime -> m ZonedTime # | |
Data ModName | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ModName -> c ModName # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ModName # toConstr :: ModName -> Constr # dataTypeOf :: ModName -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ModName) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ModName) # gmapT :: (forall b. Data b => b -> b) -> ModName -> ModName # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ModName -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ModName -> r # gmapQ :: (forall d. Data d => d -> u) -> ModName -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ModName -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ModName -> m ModName # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ModName -> m ModName # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ModName -> m ModName # | |
Data PkgName | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PkgName -> c PkgName # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PkgName # toConstr :: PkgName -> Constr # dataTypeOf :: PkgName -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PkgName) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PkgName) # gmapT :: (forall b. Data b => b -> b) -> PkgName -> PkgName # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PkgName -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PkgName -> r # gmapQ :: (forall d. Data d => d -> u) -> PkgName -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PkgName -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PkgName -> m PkgName # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PkgName -> m PkgName # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PkgName -> m PkgName # | |
Data Module | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Module -> c Module # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Module # toConstr :: Module -> Constr # dataTypeOf :: Module -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Module) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Module) # gmapT :: (forall b. Data b => b -> b) -> Module -> Module # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Module -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Module -> r # gmapQ :: (forall d. Data d => d -> u) -> Module -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Module -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Module -> m Module # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Module -> m Module # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Module -> m Module # | |
Data OccName | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> OccName -> c OccName # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c OccName # toConstr :: OccName -> Constr # dataTypeOf :: OccName -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c OccName) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c OccName) # gmapT :: (forall b. Data b => b -> b) -> OccName -> OccName # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> OccName -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> OccName -> r # gmapQ :: (forall d. Data d => d -> u) -> OccName -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> OccName -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> OccName -> m OccName # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> OccName -> m OccName # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> OccName -> m OccName # | |
Data NameFlavour | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NameFlavour -> c NameFlavour # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c NameFlavour # toConstr :: NameFlavour -> Constr # dataTypeOf :: NameFlavour -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c NameFlavour) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c NameFlavour) # gmapT :: (forall b. Data b => b -> b) -> NameFlavour -> NameFlavour # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NameFlavour -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NameFlavour -> r # gmapQ :: (forall d. Data d => d -> u) -> NameFlavour -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> NameFlavour -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NameFlavour -> m NameFlavour # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NameFlavour -> m NameFlavour # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NameFlavour -> m NameFlavour # | |
Data NameSpace | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NameSpace -> c NameSpace # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c NameSpace # toConstr :: NameSpace -> Constr # dataTypeOf :: NameSpace -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c NameSpace) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c NameSpace) # gmapT :: (forall b. Data b => b -> b) -> NameSpace -> NameSpace # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NameSpace -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NameSpace -> r # gmapQ :: (forall d. Data d => d -> u) -> NameSpace -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> NameSpace -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NameSpace -> m NameSpace # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NameSpace -> m NameSpace # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NameSpace -> m NameSpace # | |
Data Loc | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Loc -> c Loc # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Loc # dataTypeOf :: Loc -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Loc) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Loc) # gmapT :: (forall b. Data b => b -> b) -> Loc -> Loc # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Loc -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Loc -> r # gmapQ :: (forall d. Data d => d -> u) -> Loc -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Loc -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Loc -> m Loc # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Loc -> m Loc # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Loc -> m Loc # | |
Data Info | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Info -> c Info # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Info # dataTypeOf :: Info -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Info) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Info) # gmapT :: (forall b. Data b => b -> b) -> Info -> Info # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Info -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Info -> r # gmapQ :: (forall d. Data d => d -> u) -> Info -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Info -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Info -> m Info # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Info -> m Info # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Info -> m Info # | |
Data ModuleInfo | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ModuleInfo -> c ModuleInfo # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ModuleInfo # toConstr :: ModuleInfo -> Constr # dataTypeOf :: ModuleInfo -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ModuleInfo) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ModuleInfo) # gmapT :: (forall b. Data b => b -> b) -> ModuleInfo -> ModuleInfo # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ModuleInfo -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ModuleInfo -> r # gmapQ :: (forall d. Data d => d -> u) -> ModuleInfo -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ModuleInfo -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ModuleInfo -> m ModuleInfo # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleInfo -> m ModuleInfo # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleInfo -> m ModuleInfo # | |
Data Fixity | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Fixity -> c Fixity # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Fixity # toConstr :: Fixity -> Constr # dataTypeOf :: Fixity -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Fixity) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Fixity) # gmapT :: (forall b. Data b => b -> b) -> Fixity -> Fixity # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r # gmapQ :: (forall d. Data d => d -> u) -> Fixity -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Fixity -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # | |
Data FixityDirection | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FixityDirection -> c FixityDirection # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c FixityDirection # toConstr :: FixityDirection -> Constr # dataTypeOf :: FixityDirection -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c FixityDirection) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c FixityDirection) # gmapT :: (forall b. Data b => b -> b) -> FixityDirection -> FixityDirection # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FixityDirection -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FixityDirection -> r # gmapQ :: (forall d. Data d => d -> u) -> FixityDirection -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> FixityDirection -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FixityDirection -> m FixityDirection # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FixityDirection -> m FixityDirection # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FixityDirection -> m FixityDirection # | |
Data Lit | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Lit -> c Lit # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Lit # dataTypeOf :: Lit -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Lit) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Lit) # gmapT :: (forall b. Data b => b -> b) -> Lit -> Lit # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Lit -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Lit -> r # gmapQ :: (forall d. Data d => d -> u) -> Lit -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Lit -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Lit -> m Lit # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Lit -> m Lit # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Lit -> m Lit # | |
Data Body | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Body -> c Body # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Body # dataTypeOf :: Body -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Body) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Body) # gmapT :: (forall b. Data b => b -> b) -> Body -> Body # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Body -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Body -> r # gmapQ :: (forall d. Data d => d -> u) -> Body -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Body -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Body -> m Body # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Body -> m Body # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Body -> m Body # | |
Data Guard | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Guard -> c Guard # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Guard # dataTypeOf :: Guard -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Guard) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Guard) # gmapT :: (forall b. Data b => b -> b) -> Guard -> Guard # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Guard -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Guard -> r # gmapQ :: (forall d. Data d => d -> u) -> Guard -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Guard -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Guard -> m Guard # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Guard -> m Guard # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Guard -> m Guard # | |
Data Stmt | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Stmt -> c Stmt # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Stmt # dataTypeOf :: Stmt -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Stmt) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Stmt) # gmapT :: (forall b. Data b => b -> b) -> Stmt -> Stmt # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Stmt -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Stmt -> r # gmapQ :: (forall d. Data d => d -> u) -> Stmt -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Stmt -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Stmt -> m Stmt # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Stmt -> m Stmt # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Stmt -> m Stmt # | |
Data Range | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Range -> c Range # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Range # dataTypeOf :: Range -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Range) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Range) # gmapT :: (forall b. Data b => b -> b) -> Range -> Range # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Range -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Range -> r # gmapQ :: (forall d. Data d => d -> u) -> Range -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Range -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Range -> m Range # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Range -> m Range # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Range -> m Range # | |
Data DerivClause | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DerivClause -> c DerivClause # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DerivClause # toConstr :: DerivClause -> Constr # dataTypeOf :: DerivClause -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DerivClause) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DerivClause) # gmapT :: (forall b. Data b => b -> b) -> DerivClause -> DerivClause # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DerivClause -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DerivClause -> r # gmapQ :: (forall d. Data d => d -> u) -> DerivClause -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DerivClause -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DerivClause -> m DerivClause # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DerivClause -> m DerivClause # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DerivClause -> m DerivClause # | |
Data DerivStrategy | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DerivStrategy -> c DerivStrategy # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DerivStrategy # toConstr :: DerivStrategy -> Constr # dataTypeOf :: DerivStrategy -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DerivStrategy) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DerivStrategy) # gmapT :: (forall b. Data b => b -> b) -> DerivStrategy -> DerivStrategy # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DerivStrategy -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DerivStrategy -> r # gmapQ :: (forall d. Data d => d -> u) -> DerivStrategy -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DerivStrategy -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DerivStrategy -> m DerivStrategy # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DerivStrategy -> m DerivStrategy # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DerivStrategy -> m DerivStrategy # | |
Data TypeFamilyHead | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TypeFamilyHead -> c TypeFamilyHead # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TypeFamilyHead # toConstr :: TypeFamilyHead -> Constr # dataTypeOf :: TypeFamilyHead -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TypeFamilyHead) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TypeFamilyHead) # gmapT :: (forall b. Data b => b -> b) -> TypeFamilyHead -> TypeFamilyHead # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TypeFamilyHead -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TypeFamilyHead -> r # gmapQ :: (forall d. Data d => d -> u) -> TypeFamilyHead -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TypeFamilyHead -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TypeFamilyHead -> m TypeFamilyHead # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TypeFamilyHead -> m TypeFamilyHead # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TypeFamilyHead -> m TypeFamilyHead # | |
Data TySynEqn | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TySynEqn -> c TySynEqn # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TySynEqn # toConstr :: TySynEqn -> Constr # dataTypeOf :: TySynEqn -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TySynEqn) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TySynEqn) # gmapT :: (forall b. Data b => b -> b) -> TySynEqn -> TySynEqn # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TySynEqn -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TySynEqn -> r # gmapQ :: (forall d. Data d => d -> u) -> TySynEqn -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TySynEqn -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TySynEqn -> m TySynEqn # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TySynEqn -> m TySynEqn # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TySynEqn -> m TySynEqn # | |
Data Foreign | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Foreign -> c Foreign # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Foreign # toConstr :: Foreign -> Constr # dataTypeOf :: Foreign -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Foreign) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Foreign) # gmapT :: (forall b. Data b => b -> b) -> Foreign -> Foreign # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Foreign -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Foreign -> r # gmapQ :: (forall d. Data d => d -> u) -> Foreign -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Foreign -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Foreign -> m Foreign # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Foreign -> m Foreign # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Foreign -> m Foreign # | |
Data Callconv | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Callconv -> c Callconv # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Callconv # toConstr :: Callconv -> Constr # dataTypeOf :: Callconv -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Callconv) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Callconv) # gmapT :: (forall b. Data b => b -> b) -> Callconv -> Callconv # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Callconv -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Callconv -> r # gmapQ :: (forall d. Data d => d -> u) -> Callconv -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Callconv -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Callconv -> m Callconv # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Callconv -> m Callconv # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Callconv -> m Callconv # | |
Data Safety | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Safety -> c Safety # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Safety # toConstr :: Safety -> Constr # dataTypeOf :: Safety -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Safety) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Safety) # gmapT :: (forall b. Data b => b -> b) -> Safety -> Safety # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Safety -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Safety -> r # gmapQ :: (forall d. Data d => d -> u) -> Safety -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Safety -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Safety -> m Safety # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Safety -> m Safety # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Safety -> m Safety # | |
Data Pragma | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Pragma -> c Pragma # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Pragma # toConstr :: Pragma -> Constr # dataTypeOf :: Pragma -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Pragma) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Pragma) # gmapT :: (forall b. Data b => b -> b) -> Pragma -> Pragma # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Pragma -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Pragma -> r # gmapQ :: (forall d. Data d => d -> u) -> Pragma -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Pragma -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Pragma -> m Pragma # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Pragma -> m Pragma # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Pragma -> m Pragma # | |
Data Inline | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Inline -> c Inline # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Inline # toConstr :: Inline -> Constr # dataTypeOf :: Inline -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Inline) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Inline) # gmapT :: (forall b. Data b => b -> b) -> Inline -> Inline # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Inline -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Inline -> r # gmapQ :: (forall d. Data d => d -> u) -> Inline -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Inline -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Inline -> m Inline # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Inline -> m Inline # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Inline -> m Inline # | |
Data RuleMatch | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> RuleMatch -> c RuleMatch # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c RuleMatch # toConstr :: RuleMatch -> Constr # dataTypeOf :: RuleMatch -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c RuleMatch) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c RuleMatch) # gmapT :: (forall b. Data b => b -> b) -> RuleMatch -> RuleMatch # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> RuleMatch -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> RuleMatch -> r # gmapQ :: (forall d. Data d => d -> u) -> RuleMatch -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> RuleMatch -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> RuleMatch -> m RuleMatch # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleMatch -> m RuleMatch # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleMatch -> m RuleMatch # | |
Data Phases | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Phases -> c Phases # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Phases # toConstr :: Phases -> Constr # dataTypeOf :: Phases -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Phases) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Phases) # gmapT :: (forall b. Data b => b -> b) -> Phases -> Phases # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Phases -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Phases -> r # gmapQ :: (forall d. Data d => d -> u) -> Phases -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Phases -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Phases -> m Phases # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Phases -> m Phases # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Phases -> m Phases # | |
Data RuleBndr | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> RuleBndr -> c RuleBndr # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c RuleBndr # toConstr :: RuleBndr -> Constr # dataTypeOf :: RuleBndr -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c RuleBndr) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c RuleBndr) # gmapT :: (forall b. Data b => b -> b) -> RuleBndr -> RuleBndr # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> RuleBndr -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> RuleBndr -> r # gmapQ :: (forall d. Data d => d -> u) -> RuleBndr -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> RuleBndr -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> RuleBndr -> m RuleBndr # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleBndr -> m RuleBndr # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleBndr -> m RuleBndr # | |
Data AnnTarget | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> AnnTarget -> c AnnTarget # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c AnnTarget # toConstr :: AnnTarget -> Constr # dataTypeOf :: AnnTarget -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c AnnTarget) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c AnnTarget) # gmapT :: (forall b. Data b => b -> b) -> AnnTarget -> AnnTarget # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> AnnTarget -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> AnnTarget -> r # gmapQ :: (forall d. Data d => d -> u) -> AnnTarget -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> AnnTarget -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> AnnTarget -> m AnnTarget # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnTarget -> m AnnTarget # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnTarget -> m AnnTarget # | |
Data SourceUnpackedness | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceUnpackedness -> c SourceUnpackedness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceUnpackedness # toConstr :: SourceUnpackedness -> Constr # dataTypeOf :: SourceUnpackedness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourceUnpackedness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceUnpackedness) # gmapT :: (forall b. Data b => b -> b) -> SourceUnpackedness -> SourceUnpackedness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceUnpackedness -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceUnpackedness -> r # gmapQ :: (forall d. Data d => d -> u) -> SourceUnpackedness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceUnpackedness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # | |
Data SourceStrictness | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceStrictness -> c SourceStrictness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceStrictness # toConstr :: SourceStrictness -> Constr # dataTypeOf :: SourceStrictness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourceStrictness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceStrictness) # gmapT :: (forall b. Data b => b -> b) -> SourceStrictness -> SourceStrictness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceStrictness -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceStrictness -> r # gmapQ :: (forall d. Data d => d -> u) -> SourceStrictness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceStrictness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # | |
Data DecidedStrictness | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DecidedStrictness -> c DecidedStrictness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DecidedStrictness # toConstr :: DecidedStrictness -> Constr # dataTypeOf :: DecidedStrictness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DecidedStrictness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DecidedStrictness) # gmapT :: (forall b. Data b => b -> b) -> DecidedStrictness -> DecidedStrictness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DecidedStrictness -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DecidedStrictness -> r # gmapQ :: (forall d. Data d => d -> u) -> DecidedStrictness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DecidedStrictness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # | |
Data Bang | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bang -> c Bang # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bang # dataTypeOf :: Bang -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Bang) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bang) # gmapT :: (forall b. Data b => b -> b) -> Bang -> Bang # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bang -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bang -> r # gmapQ :: (forall d. Data d => d -> u) -> Bang -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Bang -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bang -> m Bang # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bang -> m Bang # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bang -> m Bang # | |
Data PatSynDir | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PatSynDir -> c PatSynDir # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PatSynDir # toConstr :: PatSynDir -> Constr # dataTypeOf :: PatSynDir -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PatSynDir) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PatSynDir) # gmapT :: (forall b. Data b => b -> b) -> PatSynDir -> PatSynDir # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PatSynDir -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PatSynDir -> r # gmapQ :: (forall d. Data d => d -> u) -> PatSynDir -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PatSynDir -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PatSynDir -> m PatSynDir # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PatSynDir -> m PatSynDir # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PatSynDir -> m PatSynDir # | |
Data PatSynArgs | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PatSynArgs -> c PatSynArgs # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PatSynArgs # toConstr :: PatSynArgs -> Constr # dataTypeOf :: PatSynArgs -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PatSynArgs) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PatSynArgs) # gmapT :: (forall b. Data b => b -> b) -> PatSynArgs -> PatSynArgs # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PatSynArgs -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PatSynArgs -> r # gmapQ :: (forall d. Data d => d -> u) -> PatSynArgs -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PatSynArgs -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PatSynArgs -> m PatSynArgs # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PatSynArgs -> m PatSynArgs # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PatSynArgs -> m PatSynArgs # | |
Data FamilyResultSig | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FamilyResultSig -> c FamilyResultSig # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c FamilyResultSig # toConstr :: FamilyResultSig -> Constr # dataTypeOf :: FamilyResultSig -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c FamilyResultSig) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c FamilyResultSig) # gmapT :: (forall b. Data b => b -> b) -> FamilyResultSig -> FamilyResultSig # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FamilyResultSig -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FamilyResultSig -> r # gmapQ :: (forall d. Data d => d -> u) -> FamilyResultSig -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> FamilyResultSig -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FamilyResultSig -> m FamilyResultSig # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FamilyResultSig -> m FamilyResultSig # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FamilyResultSig -> m FamilyResultSig # | |
Data TyLit | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TyLit -> c TyLit # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TyLit # dataTypeOf :: TyLit -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TyLit) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TyLit) # gmapT :: (forall b. Data b => b -> b) -> TyLit -> TyLit # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TyLit -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TyLit -> r # gmapQ :: (forall d. Data d => d -> u) -> TyLit -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TyLit -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TyLit -> m TyLit # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TyLit -> m TyLit # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TyLit -> m TyLit # | |
Data Role | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Role -> c Role # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Role # dataTypeOf :: Role -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Role) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Role) # gmapT :: (forall b. Data b => b -> b) -> Role -> Role # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Role -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Role -> r # gmapQ :: (forall d. Data d => d -> u) -> Role -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Role -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Role -> m Role # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Role -> m Role # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Role -> m Role # | |
Data AnnLookup | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> AnnLookup -> c AnnLookup # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c AnnLookup # toConstr :: AnnLookup -> Constr # dataTypeOf :: AnnLookup -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c AnnLookup) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c AnnLookup) # gmapT :: (forall b. Data b => b -> b) -> AnnLookup -> AnnLookup # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> AnnLookup -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> AnnLookup -> r # gmapQ :: (forall d. Data d => d -> u) -> AnnLookup -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> AnnLookup -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> AnnLookup -> m AnnLookup # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnLookup -> m AnnLookup # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnLookup -> m AnnLookup # | |
Data DatatypeInfo | |
Defined in Language.Haskell.TH.Datatype Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DatatypeInfo -> c DatatypeInfo # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DatatypeInfo # toConstr :: DatatypeInfo -> Constr # dataTypeOf :: DatatypeInfo -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DatatypeInfo) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DatatypeInfo) # gmapT :: (forall b. Data b => b -> b) -> DatatypeInfo -> DatatypeInfo # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DatatypeInfo -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DatatypeInfo -> r # gmapQ :: (forall d. Data d => d -> u) -> DatatypeInfo -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DatatypeInfo -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DatatypeInfo -> m DatatypeInfo # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DatatypeInfo -> m DatatypeInfo # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DatatypeInfo -> m DatatypeInfo # | |
Data DatatypeVariant | |
Defined in Language.Haskell.TH.Datatype Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DatatypeVariant -> c DatatypeVariant # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DatatypeVariant # toConstr :: DatatypeVariant -> Constr # dataTypeOf :: DatatypeVariant -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DatatypeVariant) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DatatypeVariant) # gmapT :: (forall b. Data b => b -> b) -> DatatypeVariant -> DatatypeVariant # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DatatypeVariant -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DatatypeVariant -> r # gmapQ :: (forall d. Data d => d -> u) -> DatatypeVariant -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DatatypeVariant -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DatatypeVariant -> m DatatypeVariant # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DatatypeVariant -> m DatatypeVariant # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DatatypeVariant -> m DatatypeVariant # | |
Data ConstructorInfo | |
Defined in Language.Haskell.TH.Datatype Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ConstructorInfo -> c ConstructorInfo # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ConstructorInfo # toConstr :: ConstructorInfo -> Constr # dataTypeOf :: ConstructorInfo -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ConstructorInfo) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ConstructorInfo) # gmapT :: (forall b. Data b => b -> b) -> ConstructorInfo -> ConstructorInfo # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ConstructorInfo -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ConstructorInfo -> r # gmapQ :: (forall d. Data d => d -> u) -> ConstructorInfo -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ConstructorInfo -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ConstructorInfo -> m ConstructorInfo # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ConstructorInfo -> m ConstructorInfo # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ConstructorInfo -> m ConstructorInfo # | |
Data ConstructorVariant | |
Defined in Language.Haskell.TH.Datatype Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ConstructorVariant -> c ConstructorVariant # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ConstructorVariant # toConstr :: ConstructorVariant -> Constr # dataTypeOf :: ConstructorVariant -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ConstructorVariant) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ConstructorVariant) # gmapT :: (forall b. Data b => b -> b) -> ConstructorVariant -> ConstructorVariant # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ConstructorVariant -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ConstructorVariant -> r # gmapQ :: (forall d. Data d => d -> u) -> ConstructorVariant -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ConstructorVariant -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ConstructorVariant -> m ConstructorVariant # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ConstructorVariant -> m ConstructorVariant # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ConstructorVariant -> m ConstructorVariant # | |
Data FieldStrictness | |
Defined in Language.Haskell.TH.Datatype Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FieldStrictness -> c FieldStrictness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c FieldStrictness # toConstr :: FieldStrictness -> Constr # dataTypeOf :: FieldStrictness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c FieldStrictness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c FieldStrictness) # gmapT :: (forall b. Data b => b -> b) -> FieldStrictness -> FieldStrictness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FieldStrictness -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FieldStrictness -> r # gmapQ :: (forall d. Data d => d -> u) -> FieldStrictness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> FieldStrictness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FieldStrictness -> m FieldStrictness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FieldStrictness -> m FieldStrictness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FieldStrictness -> m FieldStrictness # | |
Data Unpackedness | |
Defined in Language.Haskell.TH.Datatype Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Unpackedness -> c Unpackedness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Unpackedness # toConstr :: Unpackedness -> Constr # dataTypeOf :: Unpackedness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Unpackedness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Unpackedness) # gmapT :: (forall b. Data b => b -> b) -> Unpackedness -> Unpackedness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Unpackedness -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Unpackedness -> r # gmapQ :: (forall d. Data d => d -> u) -> Unpackedness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Unpackedness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Unpackedness -> m Unpackedness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Unpackedness -> m Unpackedness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Unpackedness -> m Unpackedness # | |
Data Strictness | |
Defined in Language.Haskell.TH.Datatype Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Strictness -> c Strictness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Strictness # toConstr :: Strictness -> Constr # dataTypeOf :: Strictness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Strictness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Strictness) # gmapT :: (forall b. Data b => b -> b) -> Strictness -> Strictness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Strictness -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Strictness -> r # gmapQ :: (forall d. Data d => d -> u) -> Strictness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Strictness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Strictness -> m Strictness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Strictness -> m Strictness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Strictness -> m Strictness # | |
Data a => Data [a] | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> [a] -> c [a] # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c [a] # dataTypeOf :: [a] -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c [a]) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c [a]) # gmapT :: (forall b. Data b => b -> b) -> [a] -> [a] # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> [a] -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> [a] -> r # gmapQ :: (forall d. Data d => d -> u) -> [a] -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> [a] -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> [a] -> m [a] # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> [a] -> m [a] # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> [a] -> m [a] # | |
Data a => Data (Maybe a) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Maybe a -> c (Maybe a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Maybe a) # toConstr :: Maybe a -> Constr # dataTypeOf :: Maybe a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Maybe a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Maybe a)) # gmapT :: (forall b. Data b => b -> b) -> Maybe a -> Maybe a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r # gmapQ :: (forall d. Data d => d -> u) -> Maybe a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Maybe a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # | |
(Data a, Integral a) => Data (Ratio a) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ratio a -> c (Ratio a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ratio a) # toConstr :: Ratio a -> Constr # dataTypeOf :: Ratio a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Ratio a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ratio a)) # gmapT :: (forall b. Data b => b -> b) -> Ratio a -> Ratio a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ratio a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ratio a -> r # gmapQ :: (forall d. Data d => d -> u) -> Ratio a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ratio a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) # | |
Data a => Data (Ptr a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ptr a -> c (Ptr a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ptr a) # dataTypeOf :: Ptr a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Ptr a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ptr a)) # gmapT :: (forall b. Data b => b -> b) -> Ptr a -> Ptr a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ptr a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ptr a -> r # gmapQ :: (forall d. Data d => d -> u) -> Ptr a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ptr a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) # | |
Data p => Data (Par1 p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Par1 p -> c (Par1 p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Par1 p) # toConstr :: Par1 p -> Constr # dataTypeOf :: Par1 p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Par1 p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Par1 p)) # gmapT :: (forall b. Data b => b -> b) -> Par1 p -> Par1 p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Par1 p -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Par1 p -> r # gmapQ :: (forall d. Data d => d -> u) -> Par1 p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Par1 p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Par1 p -> m (Par1 p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Par1 p -> m (Par1 p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Par1 p -> m (Par1 p) # | |
Data a => Data (ForeignPtr a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ForeignPtr a -> c (ForeignPtr a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ForeignPtr a) # toConstr :: ForeignPtr a -> Constr # dataTypeOf :: ForeignPtr a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ForeignPtr a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ForeignPtr a)) # gmapT :: (forall b. Data b => b -> b) -> ForeignPtr a -> ForeignPtr a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ForeignPtr a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ForeignPtr a -> r # gmapQ :: (forall d. Data d => d -> u) -> ForeignPtr a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ForeignPtr a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ForeignPtr a -> m (ForeignPtr a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignPtr a -> m (ForeignPtr a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignPtr a -> m (ForeignPtr a) # | |
Data a => Data (Complex a) | Since: base-2.1 |
Defined in Data.Complex Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Complex a -> c (Complex a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Complex a) # toConstr :: Complex a -> Constr # dataTypeOf :: Complex a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Complex a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Complex a)) # gmapT :: (forall b. Data b => b -> b) -> Complex a -> Complex a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Complex a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Complex a -> r # gmapQ :: (forall d. Data d => d -> u) -> Complex a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Complex a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Complex a -> m (Complex a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Complex a -> m (Complex a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Complex a -> m (Complex a) # | |
Typeable a => Data (Fixed a) | Since: base-4.1.0.0 |
Defined in Data.Fixed Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Fixed a -> c (Fixed a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Fixed a) # toConstr :: Fixed a -> Constr # dataTypeOf :: Fixed a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Fixed a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Fixed a)) # gmapT :: (forall b. Data b => b -> b) -> Fixed a -> Fixed a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Fixed a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Fixed a -> r # gmapQ :: (forall d. Data d => d -> u) -> Fixed a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Fixed a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Fixed a -> m (Fixed a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixed a -> m (Fixed a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixed a -> m (Fixed a) # | |
Data a => Data (Min a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Min a -> c (Min a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Min a) # dataTypeOf :: Min a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Min a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Min a)) # gmapT :: (forall b. Data b => b -> b) -> Min a -> Min a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Min a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Min a -> r # gmapQ :: (forall d. Data d => d -> u) -> Min a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Min a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Min a -> m (Min a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Min a -> m (Min a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Min a -> m (Min a) # | |
Data a => Data (Max a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Max a -> c (Max a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Max a) # dataTypeOf :: Max a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Max a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Max a)) # gmapT :: (forall b. Data b => b -> b) -> Max a -> Max a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Max a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Max a -> r # gmapQ :: (forall d. Data d => d -> u) -> Max a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Max a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Max a -> m (Max a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Max a -> m (Max a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Max a -> m (Max a) # | |
Data a => Data (First a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> First a -> c (First a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (First a) # toConstr :: First a -> Constr # dataTypeOf :: First a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (First a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (First a)) # gmapT :: (forall b. Data b => b -> b) -> First a -> First a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r # gmapQ :: (forall d. Data d => d -> u) -> First a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> First a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> First a -> m (First a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) # | |
Data a => Data (Last a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Last a -> c (Last a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Last a) # toConstr :: Last a -> Constr # dataTypeOf :: Last a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Last a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Last a)) # gmapT :: (forall b. Data b => b -> b) -> Last a -> Last a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r # gmapQ :: (forall d. Data d => d -> u) -> Last a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Last a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # | |
Data m => Data (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> WrappedMonoid m -> c (WrappedMonoid m) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (WrappedMonoid m) # toConstr :: WrappedMonoid m -> Constr # dataTypeOf :: WrappedMonoid m -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (WrappedMonoid m)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (WrappedMonoid m)) # gmapT :: (forall b. Data b => b -> b) -> WrappedMonoid m -> WrappedMonoid m # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonoid m -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonoid m -> r # gmapQ :: (forall d. Data d => d -> u) -> WrappedMonoid m -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> WrappedMonoid m -> u # gmapM :: Monad m0 => (forall d. Data d => d -> m0 d) -> WrappedMonoid m -> m0 (WrappedMonoid m) # gmapMp :: MonadPlus m0 => (forall d. Data d => d -> m0 d) -> WrappedMonoid m -> m0 (WrappedMonoid m) # gmapMo :: MonadPlus m0 => (forall d. Data d => d -> m0 d) -> WrappedMonoid m -> m0 (WrappedMonoid m) # | |
Data a => Data (Option a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Option a -> c (Option a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Option a) # toConstr :: Option a -> Constr # dataTypeOf :: Option a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Option a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Option a)) # gmapT :: (forall b. Data b => b -> b) -> Option a -> Option a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Option a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Option a -> r # gmapQ :: (forall d. Data d => d -> u) -> Option a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Option a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Option a -> m (Option a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Option a -> m (Option a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Option a -> m (Option a) # | |
Data a => Data (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Identity a -> c (Identity a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Identity a) # toConstr :: Identity a -> Constr # dataTypeOf :: Identity a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Identity a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Identity a)) # gmapT :: (forall b. Data b => b -> b) -> Identity a -> Identity a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Identity a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Identity a -> r # gmapQ :: (forall d. Data d => d -> u) -> Identity a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Identity a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Identity a -> m (Identity a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Identity a -> m (Identity a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Identity a -> m (Identity a) # | |
Data a => Data (First a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> First a -> c (First a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (First a) # toConstr :: First a -> Constr # dataTypeOf :: First a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (First a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (First a)) # gmapT :: (forall b. Data b => b -> b) -> First a -> First a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r # gmapQ :: (forall d. Data d => d -> u) -> First a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> First a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> First a -> m (First a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) # | |
Data a => Data (Last a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Last a -> c (Last a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Last a) # toConstr :: Last a -> Constr # dataTypeOf :: Last a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Last a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Last a)) # gmapT :: (forall b. Data b => b -> b) -> Last a -> Last a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r # gmapQ :: (forall d. Data d => d -> u) -> Last a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Last a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # | |
Data a => Data (Dual a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Dual a -> c (Dual a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Dual a) # toConstr :: Dual a -> Constr # dataTypeOf :: Dual a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Dual a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Dual a)) # gmapT :: (forall b. Data b => b -> b) -> Dual a -> Dual a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Dual a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Dual a -> r # gmapQ :: (forall d. Data d => d -> u) -> Dual a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Dual a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) # | |
Data a => Data (Sum a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Sum a -> c (Sum a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Sum a) # dataTypeOf :: Sum a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Sum a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Sum a)) # gmapT :: (forall b. Data b => b -> b) -> Sum a -> Sum a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Sum a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Sum a -> r # gmapQ :: (forall d. Data d => d -> u) -> Sum a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Sum a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) # | |
Data a => Data (Product a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Product a -> c (Product a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Product a) # toConstr :: Product a -> Constr # dataTypeOf :: Product a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Product a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Product a)) # gmapT :: (forall b. Data b => b -> b) -> Product a -> Product a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Product a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Product a -> r # gmapQ :: (forall d. Data d => d -> u) -> Product a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Product a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) # | |
Data a => Data (Down a) | Since: base-4.12.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Down a -> c (Down a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Down a) # toConstr :: Down a -> Constr # dataTypeOf :: Down a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Down a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Down a)) # gmapT :: (forall b. Data b => b -> b) -> Down a -> Down a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Down a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Down a -> r # gmapQ :: (forall d. Data d => d -> u) -> Down a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Down a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Down a -> m (Down a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Down a -> m (Down a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Down a -> m (Down a) # | |
Data a => Data (NonEmpty a) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NonEmpty a -> c (NonEmpty a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (NonEmpty a) # toConstr :: NonEmpty a -> Constr # dataTypeOf :: NonEmpty a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (NonEmpty a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (NonEmpty a)) # gmapT :: (forall b. Data b => b -> b) -> NonEmpty a -> NonEmpty a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NonEmpty a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NonEmpty a -> r # gmapQ :: (forall d. Data d => d -> u) -> NonEmpty a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> NonEmpty a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) # | |
Data a => Data (IntMap a) | |
Defined in Data.IntMap.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntMap a -> c (IntMap a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (IntMap a) # toConstr :: IntMap a -> Constr # dataTypeOf :: IntMap a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (IntMap a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (IntMap a)) # gmapT :: (forall b. Data b => b -> b) -> IntMap a -> IntMap a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntMap a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntMap a -> r # gmapQ :: (forall d. Data d => d -> u) -> IntMap a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> IntMap a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) # | |
Data a => Data (Tree a) | |
Defined in Data.Tree Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Tree a -> c (Tree a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Tree a) # toConstr :: Tree a -> Constr # dataTypeOf :: Tree a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Tree a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Tree a)) # gmapT :: (forall b. Data b => b -> b) -> Tree a -> Tree a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Tree a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Tree a -> r # gmapQ :: (forall d. Data d => d -> u) -> Tree a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Tree a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Tree a -> m (Tree a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Tree a -> m (Tree a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Tree a -> m (Tree a) # | |
Data a => Data (Seq a) | |
Defined in Data.Sequence.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Seq a -> c (Seq a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Seq a) # dataTypeOf :: Seq a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Seq a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Seq a)) # gmapT :: (forall b. Data b => b -> b) -> Seq a -> Seq a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Seq a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Seq a -> r # gmapQ :: (forall d. Data d => d -> u) -> Seq a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Seq a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) # | |
Data a => Data (ViewL a) | |
Defined in Data.Sequence.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ViewL a -> c (ViewL a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ViewL a) # toConstr :: ViewL a -> Constr # dataTypeOf :: ViewL a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ViewL a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ViewL a)) # gmapT :: (forall b. Data b => b -> b) -> ViewL a -> ViewL a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ViewL a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ViewL a -> r # gmapQ :: (forall d. Data d => d -> u) -> ViewL a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ViewL a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ViewL a -> m (ViewL a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ViewL a -> m (ViewL a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ViewL a -> m (ViewL a) # | |
Data a => Data (ViewR a) | |
Defined in Data.Sequence.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ViewR a -> c (ViewR a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ViewR a) # toConstr :: ViewR a -> Constr # dataTypeOf :: ViewR a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ViewR a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ViewR a)) # gmapT :: (forall b. Data b => b -> b) -> ViewR a -> ViewR a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ViewR a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ViewR a -> r # gmapQ :: (forall d. Data d => d -> u) -> ViewR a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ViewR a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ViewR a -> m (ViewR a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ViewR a -> m (ViewR a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ViewR a -> m (ViewR a) # | |
(Data a, Ord a) => Data (Set a) | |
Defined in Data.Set.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Set a -> c (Set a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Set a) # dataTypeOf :: Set a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Set a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Set a)) # gmapT :: (forall b. Data b => b -> b) -> Set a -> Set a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Set a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Set a -> r # gmapQ :: (forall d. Data d => d -> u) -> Set a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Set a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # | |
(Data a, Prim a) => Data (Vector a) | |
Defined in Data.Vector.Primitive Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Vector a -> c (Vector a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Vector a) # toConstr :: Vector a -> Constr # dataTypeOf :: Vector a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Vector a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Vector a)) # gmapT :: (forall b. Data b => b -> b) -> Vector a -> Vector a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQ :: (forall d. Data d => d -> u) -> Vector a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Vector a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # | |
(Data a, Storable a) => Data (Vector a) | |
Defined in Data.Vector.Storable Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Vector a -> c (Vector a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Vector a) # toConstr :: Vector a -> Constr # dataTypeOf :: Vector a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Vector a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Vector a)) # gmapT :: (forall b. Data b => b -> b) -> Vector a -> Vector a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQ :: (forall d. Data d => d -> u) -> Vector a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Vector a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # | |
(Data a, Unbox a) => Data (Vector a) | |
Defined in Data.Vector.Unboxed.Base Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Vector a -> c (Vector a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Vector a) # toConstr :: Vector a -> Constr # dataTypeOf :: Vector a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Vector a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Vector a)) # gmapT :: (forall b. Data b => b -> b) -> Vector a -> Vector a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQ :: (forall d. Data d => d -> u) -> Vector a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Vector a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # | |
(Data a, Eq a, Hashable a) => Data (HashSet a) | |
Defined in Data.HashSet.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> HashSet a -> c (HashSet a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (HashSet a) # toConstr :: HashSet a -> Constr # dataTypeOf :: HashSet a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (HashSet a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (HashSet a)) # gmapT :: (forall b. Data b => b -> b) -> HashSet a -> HashSet a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> HashSet a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> HashSet a -> r # gmapQ :: (forall d. Data d => d -> u) -> HashSet a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> HashSet a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> HashSet a -> m (HashSet a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> HashSet a -> m (HashSet a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> HashSet a -> m (HashSet a) # | |
Data a => Data (Vector a) | |
Defined in Data.Vector Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Vector a -> c (Vector a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Vector a) # toConstr :: Vector a -> Constr # dataTypeOf :: Vector a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Vector a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Vector a)) # gmapT :: (forall b. Data b => b -> b) -> Vector a -> Vector a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQ :: (forall d. Data d => d -> u) -> Vector a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Vector a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # | |
Data t => Data (ErrorItem t) | |
Defined in Text.Megaparsec.Error Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ErrorItem t -> c (ErrorItem t) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ErrorItem t) # toConstr :: ErrorItem t -> Constr # dataTypeOf :: ErrorItem t -> DataType # dataCast1 :: Typeable t0 => (forall d. Data d => c (t0 d)) -> Maybe (c (ErrorItem t)) # dataCast2 :: Typeable t0 => (forall d e. (Data d, Data e) => c (t0 d e)) -> Maybe (c (ErrorItem t)) # gmapT :: (forall b. Data b => b -> b) -> ErrorItem t -> ErrorItem t # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ErrorItem t -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ErrorItem t -> r # gmapQ :: (forall d. Data d => d -> u) -> ErrorItem t -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ErrorItem t -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ErrorItem t -> m (ErrorItem t) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ErrorItem t -> m (ErrorItem t) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ErrorItem t -> m (ErrorItem t) # | |
Data e => Data (ErrorFancy e) | |
Defined in Text.Megaparsec.Error Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ErrorFancy e -> c (ErrorFancy e) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ErrorFancy e) # toConstr :: ErrorFancy e -> Constr # dataTypeOf :: ErrorFancy e -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ErrorFancy e)) # dataCast2 :: Typeable t => (forall d e0. (Data d, Data e0) => c (t d e0)) -> Maybe (c (ErrorFancy e)) # gmapT :: (forall b. Data b => b -> b) -> ErrorFancy e -> ErrorFancy e # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ErrorFancy e -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ErrorFancy e -> r # gmapQ :: (forall d. Data d => d -> u) -> ErrorFancy e -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ErrorFancy e -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ErrorFancy e -> m (ErrorFancy e) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ErrorFancy e -> m (ErrorFancy e) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ErrorFancy e -> m (ErrorFancy e) # | |
Data s => Data (State s) | |
Defined in Text.Megaparsec.State Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> State s -> c (State s) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (State s) # toConstr :: State s -> Constr # dataTypeOf :: State s -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (State s)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (State s)) # gmapT :: (forall b. Data b => b -> b) -> State s -> State s # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> State s -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> State s -> r # gmapQ :: (forall d. Data d => d -> u) -> State s -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> State s -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> State s -> m (State s) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> State s -> m (State s) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> State s -> m (State s) # | |
Data s => Data (PosState s) | |
Defined in Text.Megaparsec.State Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PosState s -> c (PosState s) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (PosState s) # toConstr :: PosState s -> Constr # dataTypeOf :: PosState s -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (PosState s)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (PosState s)) # gmapT :: (forall b. Data b => b -> b) -> PosState s -> PosState s # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PosState s -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PosState s -> r # gmapQ :: (forall d. Data d => d -> u) -> PosState s -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PosState s -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PosState s -> m (PosState s) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PosState s -> m (PosState s) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PosState s -> m (PosState s) # | |
Typeable s => Data (MutableByteArray s) | |
Defined in Data.Primitive.ByteArray Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> MutableByteArray s -> c (MutableByteArray s) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (MutableByteArray s) # toConstr :: MutableByteArray s -> Constr # dataTypeOf :: MutableByteArray s -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (MutableByteArray s)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (MutableByteArray s)) # gmapT :: (forall b. Data b => b -> b) -> MutableByteArray s -> MutableByteArray s # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> MutableByteArray s -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> MutableByteArray s -> r # gmapQ :: (forall d. Data d => d -> u) -> MutableByteArray s -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> MutableByteArray s -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> MutableByteArray s -> m (MutableByteArray s) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> MutableByteArray s -> m (MutableByteArray s) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> MutableByteArray s -> m (MutableByteArray s) # | |
Data a => Data (SmallArray a) | |
Defined in Data.Primitive.SmallArray Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SmallArray a -> c (SmallArray a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (SmallArray a) # toConstr :: SmallArray a -> Constr # dataTypeOf :: SmallArray a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (SmallArray a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (SmallArray a)) # gmapT :: (forall b. Data b => b -> b) -> SmallArray a -> SmallArray a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SmallArray a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SmallArray a -> r # gmapQ :: (forall d. Data d => d -> u) -> SmallArray a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SmallArray a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SmallArray a -> m (SmallArray a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SmallArray a -> m (SmallArray a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SmallArray a -> m (SmallArray a) # | |
Data a => Data (Array a) | |
Defined in Data.Primitive.Array Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Array a -> c (Array a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Array a) # toConstr :: Array a -> Constr # dataTypeOf :: Array a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Array a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Array a)) # gmapT :: (forall b. Data b => b -> b) -> Array a -> Array a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Array a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Array a -> r # gmapQ :: (forall d. Data d => d -> u) -> Array a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Array a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Array a -> m (Array a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Array a -> m (Array a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Array a -> m (Array a) # | |
(Data a, Data b) => Data (Either a b) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Either a b -> c (Either a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Either a b) # toConstr :: Either a b -> Constr # dataTypeOf :: Either a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Either a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Either a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Either a b -> Either a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Either a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Either a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # | |
Data p => Data (V1 p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> V1 p -> c (V1 p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (V1 p) # dataTypeOf :: V1 p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (V1 p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (V1 p)) # gmapT :: (forall b. Data b => b -> b) -> V1 p -> V1 p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> V1 p -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> V1 p -> r # gmapQ :: (forall d. Data d => d -> u) -> V1 p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> V1 p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) # | |
Data p => Data (U1 p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> U1 p -> c (U1 p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (U1 p) # dataTypeOf :: U1 p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (U1 p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (U1 p)) # gmapT :: (forall b. Data b => b -> b) -> U1 p -> U1 p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> U1 p -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> U1 p -> r # gmapQ :: (forall d. Data d => d -> u) -> U1 p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> U1 p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> U1 p -> m (U1 p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> U1 p -> m (U1 p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> U1 p -> m (U1 p) # | |
(Data a, Data b) => Data (a, b) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> (a, b) -> c (a, b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a, b) # toConstr :: (a, b) -> Constr # dataTypeOf :: (a, b) -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (a, b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (a, b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b) -> (a, b) # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a, b) -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a, b) -> r # gmapQ :: (forall d. Data d => d -> u) -> (a, b) -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (a, b) -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a, b) -> m (a, b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a, b) -> m (a, b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a, b) -> m (a, b) # | |
(Data a, Data b, Ix a) => Data (Array a b) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Array a b -> c (Array a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Array a b) # toConstr :: Array a b -> Constr # dataTypeOf :: Array a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Array a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Array a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Array a b -> Array a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Array a b -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Array a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Array a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Array a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Array a b -> m (Array a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Array a b -> m (Array a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Array a b -> m (Array a b) # | |
(Data a, Data b) => Data (Arg a b) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Arg a b -> c (Arg a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Arg a b) # toConstr :: Arg a b -> Constr # dataTypeOf :: Arg a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Arg a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Arg a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Arg a b -> Arg a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Arg a b -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Arg a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Arg a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Arg a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Arg a b -> m (Arg a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Arg a b -> m (Arg a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Arg a b -> m (Arg a b) # | |
Data t => Data (Proxy t) | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Proxy t -> c (Proxy t) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Proxy t) # toConstr :: Proxy t -> Constr # dataTypeOf :: Proxy t -> DataType # dataCast1 :: Typeable t0 => (forall d. Data d => c (t0 d)) -> Maybe (c (Proxy t)) # dataCast2 :: Typeable t0 => (forall d e. (Data d, Data e) => c (t0 d e)) -> Maybe (c (Proxy t)) # gmapT :: (forall b. Data b => b -> b) -> Proxy t -> Proxy t # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Proxy t -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Proxy t -> r # gmapQ :: (forall d. Data d => d -> u) -> Proxy t -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Proxy t -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) # | |
(Data k, Data a, Ord k) => Data (Map k a) | |
Defined in Data.Map.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Map k a -> c (Map k a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Map k a) # toConstr :: Map k a -> Constr # dataTypeOf :: Map k a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Map k a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Map k a)) # gmapT :: (forall b. Data b => b -> b) -> Map k a -> Map k a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Map k a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Map k a -> r # gmapQ :: (forall d. Data d => d -> u) -> Map k a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Map k a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) # | |
(Typeable f, Data (f (Cofree f a)), Data a) => Data (Cofree f a) | |
Defined in Control.Comonad.Cofree Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Cofree f a -> c (Cofree f a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Cofree f a) # toConstr :: Cofree f a -> Constr # dataTypeOf :: Cofree f a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Cofree f a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Cofree f a)) # gmapT :: (forall b. Data b => b -> b) -> Cofree f a -> Cofree f a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Cofree f a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Cofree f a -> r # gmapQ :: (forall d. Data d => d -> u) -> Cofree f a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Cofree f a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Cofree f a -> m (Cofree f a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Cofree f a -> m (Cofree f a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Cofree f a -> m (Cofree f a) # | |
(Typeable f, Data (f (Free f a)), Data a) => Data (Free f a) | |
Defined in Control.Monad.Free Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Free f a -> c (Free f a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Free f a) # toConstr :: Free f a -> Constr # dataTypeOf :: Free f a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Free f a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Free f a)) # gmapT :: (forall b. Data b => b -> b) -> Free f a -> Free f a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Free f a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Free f a -> r # gmapQ :: (forall d. Data d => d -> u) -> Free f a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Free f a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Free f a -> m (Free f a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Free f a -> m (Free f a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Free f a -> m (Free f a) # | |
(Data k, Data v, Eq k, Hashable k) => Data (HashMap k v) | |
Defined in Data.HashMap.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> HashMap k v -> c (HashMap k v) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (HashMap k v) # toConstr :: HashMap k v -> Constr # dataTypeOf :: HashMap k v -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (HashMap k v)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (HashMap k v)) # gmapT :: (forall b. Data b => b -> b) -> HashMap k v -> HashMap k v # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> HashMap k v -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> HashMap k v -> r # gmapQ :: (forall d. Data d => d -> u) -> HashMap k v -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> HashMap k v -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> HashMap k v -> m (HashMap k v) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> HashMap k v -> m (HashMap k v) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> HashMap k v -> m (HashMap k v) # | |
(Data s, Data (Token s), Ord (Token s), Data e, Ord e) => Data (ParseError s e) | |
Defined in Text.Megaparsec.Error Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ParseError s e -> c (ParseError s e) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ParseError s e) # toConstr :: ParseError s e -> Constr # dataTypeOf :: ParseError s e -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ParseError s e)) # dataCast2 :: Typeable t => (forall d e0. (Data d, Data e0) => c (t d e0)) -> Maybe (c (ParseError s e)) # gmapT :: (forall b. Data b => b -> b) -> ParseError s e -> ParseError s e # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ParseError s e -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ParseError s e -> r # gmapQ :: (forall d. Data d => d -> u) -> ParseError s e -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ParseError s e -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ParseError s e -> m (ParseError s e) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ParseError s e -> m (ParseError s e) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ParseError s e -> m (ParseError s e) # | |
(Data s, Data (Token s), Ord (Token s), Data e, Ord e) => Data (ParseErrorBundle s e) | |
Defined in Text.Megaparsec.Error Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ParseErrorBundle s e -> c (ParseErrorBundle s e) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ParseErrorBundle s e) # toConstr :: ParseErrorBundle s e -> Constr # dataTypeOf :: ParseErrorBundle s e -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ParseErrorBundle s e)) # dataCast2 :: Typeable t => (forall d e0. (Data d, Data e0) => c (t d e0)) -> Maybe (c (ParseErrorBundle s e)) # gmapT :: (forall b. Data b => b -> b) -> ParseErrorBundle s e -> ParseErrorBundle s e # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ParseErrorBundle s e -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ParseErrorBundle s e -> r # gmapQ :: (forall d. Data d => d -> u) -> ParseErrorBundle s e -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ParseErrorBundle s e -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ParseErrorBundle s e -> m (ParseErrorBundle s e) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ParseErrorBundle s e -> m (ParseErrorBundle s e) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ParseErrorBundle s e -> m (ParseErrorBundle s e) # | |
(Typeable s, Typeable a) => Data (SmallMutableArray s a) | |
Defined in Data.Primitive.SmallArray Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SmallMutableArray s a -> c (SmallMutableArray s a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (SmallMutableArray s a) # toConstr :: SmallMutableArray s a -> Constr # dataTypeOf :: SmallMutableArray s a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (SmallMutableArray s a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (SmallMutableArray s a)) # gmapT :: (forall b. Data b => b -> b) -> SmallMutableArray s a -> SmallMutableArray s a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SmallMutableArray s a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SmallMutableArray s a -> r # gmapQ :: (forall d. Data d => d -> u) -> SmallMutableArray s a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SmallMutableArray s a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SmallMutableArray s a -> m (SmallMutableArray s a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SmallMutableArray s a -> m (SmallMutableArray s a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SmallMutableArray s a -> m (SmallMutableArray s a) # | |
(Typeable s, Typeable a) => Data (MutableArray s a) | |
Defined in Data.Primitive.Array Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> MutableArray s a -> c (MutableArray s a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (MutableArray s a) # toConstr :: MutableArray s a -> Constr # dataTypeOf :: MutableArray s a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (MutableArray s a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (MutableArray s a)) # gmapT :: (forall b. Data b => b -> b) -> MutableArray s a -> MutableArray s a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> MutableArray s a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> MutableArray s a -> r # gmapQ :: (forall d. Data d => d -> u) -> MutableArray s a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> MutableArray s a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> MutableArray s a -> m (MutableArray s a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> MutableArray s a -> m (MutableArray s a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> MutableArray s a -> m (MutableArray s a) # | |
(Data (f p), Typeable f, Data p) => Data (Rec1 f p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Rec1 f p -> c (Rec1 f p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Rec1 f p) # toConstr :: Rec1 f p -> Constr # dataTypeOf :: Rec1 f p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Rec1 f p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Rec1 f p)) # gmapT :: (forall b. Data b => b -> b) -> Rec1 f p -> Rec1 f p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Rec1 f p -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Rec1 f p -> r # gmapQ :: (forall d. Data d => d -> u) -> Rec1 f p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Rec1 f p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Rec1 f p -> m (Rec1 f p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Rec1 f p -> m (Rec1 f p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Rec1 f p -> m (Rec1 f p) # | |
(Data a, Data b, Data c) => Data (a, b, c) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c0 (d -> b0) -> d -> c0 b0) -> (forall g. g -> c0 g) -> (a, b, c) -> c0 (a, b, c) # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c) # toConstr :: (a, b, c) -> Constr # dataTypeOf :: (a, b, c) -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (a, b, c)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (a, b, c)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c) -> (a, b, c) # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a, b, c) -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a, b, c) -> r # gmapQ :: (forall d. Data d => d -> u) -> (a, b, c) -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (a, b, c) -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a, b, c) -> m (a, b, c) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a, b, c) -> m (a, b, c) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a, b, c) -> m (a, b, c) # | |
(Typeable k, Data a, Typeable b) => Data (Const a b) | Since: base-4.10.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Const a b -> c (Const a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Const a b) # toConstr :: Const a b -> Constr # dataTypeOf :: Const a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Const a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Const a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Const a b -> Const a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Const a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Const a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # | |
(Data (f a), Data a, Typeable f) => Data (Ap f a) | Since: base-4.12.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ap f a -> c (Ap f a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ap f a) # toConstr :: Ap f a -> Constr # dataTypeOf :: Ap f a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Ap f a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ap f a)) # gmapT :: (forall b. Data b => b -> b) -> Ap f a -> Ap f a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ap f a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ap f a -> r # gmapQ :: (forall d. Data d => d -> u) -> Ap f a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ap f a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ap f a -> m (Ap f a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ap f a -> m (Ap f a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ap f a -> m (Ap f a) # | |
(Data (f a), Data a, Typeable f) => Data (Alt f a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Alt f a -> c (Alt f a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Alt f a) # toConstr :: Alt f a -> Constr # dataTypeOf :: Alt f a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Alt f a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Alt f a)) # gmapT :: (forall b. Data b => b -> b) -> Alt f a -> Alt f a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Alt f a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Alt f a -> r # gmapQ :: (forall d. Data d => d -> u) -> Alt f a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Alt f a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Alt f a -> m (Alt f a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Alt f a -> m (Alt f a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Alt f a -> m (Alt f a) # | |
(Coercible a b, Data a, Data b) => Data (Coercion a b) | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Coercion a b -> c (Coercion a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Coercion a b) # toConstr :: Coercion a b -> Constr # dataTypeOf :: Coercion a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Coercion a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Coercion a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Coercion a b -> Coercion a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Coercion a b -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Coercion a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Coercion a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Coercion a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Coercion a b -> m (Coercion a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Coercion a b -> m (Coercion a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Coercion a b -> m (Coercion a b) # | |
(a ~ b, Data a) => Data (a :~: b) | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> (a :~: b) -> c (a :~: b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a :~: b) # toConstr :: (a :~: b) -> Constr # dataTypeOf :: (a :~: b) -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (a :~: b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (a :~: b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a :~: b) -> a :~: b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a :~: b) -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a :~: b) -> r # gmapQ :: (forall d. Data d => d -> u) -> (a :~: b) -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (a :~: b) -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) # | |
(Typeable f, Typeable a, Typeable b, Data a, Data (f b), Data b) => Data (CofreeF f a b) | |
Defined in Control.Comonad.Trans.Cofree Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> CofreeF f a b -> c (CofreeF f a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (CofreeF f a b) # toConstr :: CofreeF f a b -> Constr # dataTypeOf :: CofreeF f a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (CofreeF f a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (CofreeF f a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> CofreeF f a b -> CofreeF f a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> CofreeF f a b -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> CofreeF f a b -> r # gmapQ :: (forall d. Data d => d -> u) -> CofreeF f a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> CofreeF f a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> CofreeF f a b -> m (CofreeF f a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> CofreeF f a b -> m (CofreeF f a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> CofreeF f a b -> m (CofreeF f a b) # | |
(Typeable f, Typeable w, Typeable a, Data (w (CofreeF f a (CofreeT f w a))), Data a) => Data (CofreeT f w a) | |
Defined in Control.Comonad.Trans.Cofree Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> CofreeT f w a -> c (CofreeT f w a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (CofreeT f w a) # toConstr :: CofreeT f w a -> Constr # dataTypeOf :: CofreeT f w a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (CofreeT f w a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (CofreeT f w a)) # gmapT :: (forall b. Data b => b -> b) -> CofreeT f w a -> CofreeT f w a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> CofreeT f w a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> CofreeT f w a -> r # gmapQ :: (forall d. Data d => d -> u) -> CofreeT f w a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> CofreeT f w a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> CofreeT f w a -> m (CofreeT f w a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> CofreeT f w a -> m (CofreeT f w a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> CofreeT f w a -> m (CofreeT f w a) # | |
(Data s, Data b) => Data (Tagged s b) | |
Defined in Data.Tagged Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Tagged s b -> c (Tagged s b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Tagged s b) # toConstr :: Tagged s b -> Constr # dataTypeOf :: Tagged s b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Tagged s b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Tagged s b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Tagged s b -> Tagged s b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Tagged s b -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Tagged s b -> r # gmapQ :: (forall d. Data d => d -> u) -> Tagged s b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Tagged s b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Tagged s b -> m (Tagged s b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Tagged s b -> m (Tagged s b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Tagged s b -> m (Tagged s b) # | |
(Typeable i, Data p, Data c) => Data (K1 i c p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c0 (d -> b) -> d -> c0 b) -> (forall g. g -> c0 g) -> K1 i c p -> c0 (K1 i c p) # gunfold :: (forall b r. Data b => c0 (b -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (K1 i c p) # toConstr :: K1 i c p -> Constr # dataTypeOf :: K1 i c p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (K1 i c p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (K1 i c p)) # gmapT :: (forall b. Data b => b -> b) -> K1 i c p -> K1 i c p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> K1 i c p -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> K1 i c p -> r # gmapQ :: (forall d. Data d => d -> u) -> K1 i c p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> K1 i c p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> K1 i c p -> m (K1 i c p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> K1 i c p -> m (K1 i c p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> K1 i c p -> m (K1 i c p) # | |
(Typeable f, Typeable g, Data p, Data (f p), Data (g p)) => Data ((f :+: g) p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (f :+: g) p -> c ((f :+: g) p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :+: g) p) # toConstr :: (f :+: g) p -> Constr # dataTypeOf :: (f :+: g) p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ((f :+: g) p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :+: g) p)) # gmapT :: (forall b. Data b => b -> b) -> (f :+: g) p -> (f :+: g) p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :+: g) p -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :+: g) p -> r # gmapQ :: (forall d. Data d => d -> u) -> (f :+: g) p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :+: g) p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) # | |
(Typeable f, Typeable g, Data p, Data (f p), Data (g p)) => Data ((f :*: g) p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (f :*: g) p -> c ((f :*: g) p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :*: g) p) # toConstr :: (f :*: g) p -> Constr # dataTypeOf :: (f :*: g) p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ((f :*: g) p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :*: g) p)) # gmapT :: (forall b. Data b => b -> b) -> (f :*: g) p -> (f :*: g) p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :*: g) p -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :*: g) p -> r # gmapQ :: (forall d. Data d => d -> u) -> (f :*: g) p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :*: g) p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) # | |
(Data a, Data b, Data c, Data d) => Data (a, b, c, d) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d0 b0. Data d0 => c0 (d0 -> b0) -> d0 -> c0 b0) -> (forall g. g -> c0 g) -> (a, b, c, d) -> c0 (a, b, c, d) # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c, d) # toConstr :: (a, b, c, d) -> Constr # dataTypeOf :: (a, b, c, d) -> DataType # dataCast1 :: Typeable t => (forall d0. Data d0 => c0 (t d0)) -> Maybe (c0 (a, b, c, d)) # dataCast2 :: Typeable t => (forall d0 e. (Data d0, Data e) => c0 (t d0 e)) -> Maybe (c0 (a, b, c, d)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c, d) -> (a, b, c, d) # gmapQl :: (r -> r' -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d) -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d) -> r # gmapQ :: (forall d0. Data d0 => d0 -> u) -> (a, b, c, d) -> [u] # gmapQi :: Int -> (forall d0. Data d0 => d0 -> u) -> (a, b, c, d) -> u # gmapM :: Monad m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d) -> m (a, b, c, d) # gmapMp :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d) -> m (a, b, c, d) # gmapMo :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d) -> m (a, b, c, d) # | |
(Typeable a, Typeable f, Typeable g, Typeable k, Data (f a), Data (g a)) => Data (Product f g a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> Product f g a -> c (Product f g a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Product f g a) # toConstr :: Product f g a -> Constr # dataTypeOf :: Product f g a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Product f g a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Product f g a)) # gmapT :: (forall b. Data b => b -> b) -> Product f g a -> Product f g a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Product f g a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Product f g a -> r # gmapQ :: (forall d. Data d => d -> u) -> Product f g a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Product f g a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Product f g a -> m (Product f g a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Product f g a -> m (Product f g a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Product f g a -> m (Product f g a) # | |
(Typeable a, Typeable f, Typeable g, Typeable k, Data (f a), Data (g a)) => Data (Sum f g a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Sum Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> Sum f g a -> c (Sum f g a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Sum f g a) # toConstr :: Sum f g a -> Constr # dataTypeOf :: Sum f g a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Sum f g a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Sum f g a)) # gmapT :: (forall b. Data b => b -> b) -> Sum f g a -> Sum f g a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Sum f g a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Sum f g a -> r # gmapQ :: (forall d. Data d => d -> u) -> Sum f g a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Sum f g a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Sum f g a -> m (Sum f g a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum f g a -> m (Sum f g a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum f g a -> m (Sum f g a) # | |
(Typeable i, Typeable j, Typeable a, Typeable b, a ~~ b) => Data (a :~~: b) | Since: base-4.10.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> (a :~~: b) -> c (a :~~: b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a :~~: b) # toConstr :: (a :~~: b) -> Constr # dataTypeOf :: (a :~~: b) -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (a :~~: b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (a :~~: b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a :~~: b) -> a :~~: b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a :~~: b) -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a :~~: b) -> r # gmapQ :: (forall d. Data d => d -> u) -> (a :~~: b) -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (a :~~: b) -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a :~~: b) -> m (a :~~: b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~~: b) -> m (a :~~: b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~~: b) -> m (a :~~: b) # | |
(Data p, Data (f p), Typeable c, Typeable i, Typeable f) => Data (M1 i c f p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c0 (d -> b) -> d -> c0 b) -> (forall g. g -> c0 g) -> M1 i c f p -> c0 (M1 i c f p) # gunfold :: (forall b r. Data b => c0 (b -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (M1 i c f p) # toConstr :: M1 i c f p -> Constr # dataTypeOf :: M1 i c f p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (M1 i c f p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (M1 i c f p)) # gmapT :: (forall b. Data b => b -> b) -> M1 i c f p -> M1 i c f p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> M1 i c f p -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> M1 i c f p -> r # gmapQ :: (forall d. Data d => d -> u) -> M1 i c f p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> M1 i c f p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> M1 i c f p -> m (M1 i c f p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> M1 i c f p -> m (M1 i c f p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> M1 i c f p -> m (M1 i c f p) # | |
(Typeable f, Typeable g, Data p, Data (f (g p))) => Data ((f :.: g) p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (f :.: g) p -> c ((f :.: g) p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :.: g) p) # toConstr :: (f :.: g) p -> Constr # dataTypeOf :: (f :.: g) p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ((f :.: g) p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :.: g) p)) # gmapT :: (forall b. Data b => b -> b) -> (f :.: g) p -> (f :.: g) p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :.: g) p -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :.: g) p -> r # gmapQ :: (forall d. Data d => d -> u) -> (f :.: g) p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :.: g) p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :.: g) p -> m ((f :.: g) p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :.: g) p -> m ((f :.: g) p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :.: g) p -> m ((f :.: g) p) # | |
(Data a, Data b, Data c, Data d, Data e) => Data (a, b, c, d, e) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d0 b0. Data d0 => c0 (d0 -> b0) -> d0 -> c0 b0) -> (forall g. g -> c0 g) -> (a, b, c, d, e) -> c0 (a, b, c, d, e) # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c, d, e) # toConstr :: (a, b, c, d, e) -> Constr # dataTypeOf :: (a, b, c, d, e) -> DataType # dataCast1 :: Typeable t => (forall d0. Data d0 => c0 (t d0)) -> Maybe (c0 (a, b, c, d, e)) # dataCast2 :: Typeable t => (forall d0 e0. (Data d0, Data e0) => c0 (t d0 e0)) -> Maybe (c0 (a, b, c, d, e)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c, d, e) -> (a, b, c, d, e) # gmapQl :: (r -> r' -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e) -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e) -> r # gmapQ :: (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e) -> [u] # gmapQi :: Int -> (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e) -> u # gmapM :: Monad m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e) -> m (a, b, c, d, e) # gmapMp :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e) -> m (a, b, c, d, e) # gmapMo :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e) -> m (a, b, c, d, e) # | |
(Typeable a, Typeable f, Typeable g, Typeable k1, Typeable k2, Data (f (g a))) => Data (Compose f g a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> Compose f g a -> c (Compose f g a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Compose f g a) # toConstr :: Compose f g a -> Constr # dataTypeOf :: Compose f g a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Compose f g a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Compose f g a)) # gmapT :: (forall b. Data b => b -> b) -> Compose f g a -> Compose f g a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Compose f g a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Compose f g a -> r # gmapQ :: (forall d. Data d => d -> u) -> Compose f g a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Compose f g a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Compose f g a -> m (Compose f g a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Compose f g a -> m (Compose f g a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Compose f g a -> m (Compose f g a) # | |
(Data a, Data b, Data c, Data d, Data e, Data f) => Data (a, b, c, d, e, f) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d0 b0. Data d0 => c0 (d0 -> b0) -> d0 -> c0 b0) -> (forall g. g -> c0 g) -> (a, b, c, d, e, f) -> c0 (a, b, c, d, e, f) # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c, d, e, f) # toConstr :: (a, b, c, d, e, f) -> Constr # dataTypeOf :: (a, b, c, d, e, f) -> DataType # dataCast1 :: Typeable t => (forall d0. Data d0 => c0 (t d0)) -> Maybe (c0 (a, b, c, d, e, f)) # dataCast2 :: Typeable t => (forall d0 e0. (Data d0, Data e0) => c0 (t d0 e0)) -> Maybe (c0 (a, b, c, d, e, f)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) # gmapQl :: (r -> r' -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e, f) -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e, f) -> r # gmapQ :: (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e, f) -> [u] # gmapQi :: Int -> (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e, f) -> u # gmapM :: Monad m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f) -> m (a, b, c, d, e, f) # gmapMp :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f) -> m (a, b, c, d, e, f) # gmapMo :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f) -> m (a, b, c, d, e, f) # | |
(Data a, Data b, Data c, Data d, Data e, Data f, Data g) => Data (a, b, c, d, e, f, g) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d0 b0. Data d0 => c0 (d0 -> b0) -> d0 -> c0 b0) -> (forall g0. g0 -> c0 g0) -> (a, b, c, d, e, f, g) -> c0 (a, b, c, d, e, f, g) # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c, d, e, f, g) # toConstr :: (a, b, c, d, e, f, g) -> Constr # dataTypeOf :: (a, b, c, d, e, f, g) -> DataType # dataCast1 :: Typeable t => (forall d0. Data d0 => c0 (t d0)) -> Maybe (c0 (a, b, c, d, e, f, g)) # dataCast2 :: Typeable t => (forall d0 e0. (Data d0, Data e0) => c0 (t d0 e0)) -> Maybe (c0 (a, b, c, d, e, f, g)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) # gmapQl :: (r -> r' -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e, f, g) -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e, f, g) -> r # gmapQ :: (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e, f, g) -> [u] # gmapQi :: Int -> (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e, f, g) -> u # gmapM :: Monad m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f, g) -> m (a, b, c, d, e, f, g) # gmapMp :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f, g) -> m (a, b, c, d, e, f, g) # gmapMo :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f, g) -> m (a, b, c, d, e, f, g) # |
class Functor (f :: Type -> Type) where #
The Functor
class is used for types that can be mapped over.
Instances of Functor
should satisfy the following laws:
fmap id == id fmap (f . g) == fmap f . fmap g
The instances of Functor
for lists, Maybe
and IO
satisfy these laws.
Minimal complete definition
Instances
Basic numeric class.
The Haskell Report defines no laws for Num
. However, '(+)' and '(*)' are
customarily expected to define a ring and have the following properties:
- Associativity of (+)
(x + y) + z
=x + (y + z)
- Commutativity of (+)
x + y
=y + x
fromInteger 0
is the additive identityx + fromInteger 0
=x
negate
gives the additive inversex + negate x
=fromInteger 0
- Associativity of (*)
(x * y) * z
=x * (y * z)
fromInteger 1
is the multiplicative identityx * fromInteger 1
=x
andfromInteger 1 * x
=x
- Distributivity of (*) with respect to (+)
a * (b + c)
=(a * b) + (a * c)
and(b + c) * a
=(b * a) + (c * a)
Note that it isn't customarily expected that a type instance of both Num
and Ord
implement an ordered ring. Indeed, in base
only Integer
and
Rational
do.
Methods
Unary negation.
Absolute value.
Sign of a number.
The functions abs
and signum
should satisfy the law:
abs x * signum x == x
For real numbers, the signum
is either -1
(negative), 0
(zero)
or 1
(positive).
fromInteger :: Integer -> a #
Conversion from an Integer
.
An integer literal represents the application of the function
fromInteger
to the appropriate value of type Integer
,
so such literals have type (
.Num
a) => a
Instances
The Ord
class is used for totally ordered datatypes.
Instances of Ord
can be derived for any user-defined datatype whose
constituent types are in Ord
. The declared order of the constructors in
the data declaration determines the ordering in derived Ord
instances. The
Ordering
datatype allows a single comparison to determine the precise
ordering of two objects.
The Haskell Report defines no laws for Ord
. However, <=
is customarily
expected to implement a non-strict partial order and have the following
properties:
- Transitivity
- if
x <= y && y <= z
=True
, thenx <= z
=True
- Reflexivity
x <= x
=True
- Antisymmetry
- if
x <= y && y <= x
=True
, thenx == y
=True
Note that the following operator interactions are expected to hold:
x >= y
=y <= x
x < y
=x <= y && x /= y
x > y
=y < x
x < y
=compare x y == LT
x > y
=compare x y == GT
x == y
=compare x y == EQ
min x y == if x <= y then x else y
=True
max x y == if x >= y then x else y
=True
Minimal complete definition: either compare
or <=
.
Using compare
can be more efficient for complex types.
Methods
compare :: a -> a -> Ordering #
(<) :: a -> a -> Bool infix 4 #
(<=) :: a -> a -> Bool infix 4 #
(>) :: a -> a -> Bool infix 4 #
Instances
Parsing of String
s, producing values.
Derived instances of Read
make the following assumptions, which
derived instances of Show
obey:
- If the constructor is defined to be an infix operator, then the
derived
Read
instance will parse only infix applications of the constructor (not the prefix form). - Associativity is not used to reduce the occurrence of parentheses, although precedence may be.
- If the constructor is defined using record syntax, the derived
Read
will parse only the record-syntax form, and furthermore, the fields must be given in the same order as the original declaration. - The derived
Read
instance allows arbitrary Haskell whitespace between tokens of the input string. Extra parentheses are also allowed.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Read
in Haskell 2010 is equivalent to
instance (Read a) => Read (Tree a) where readsPrec d r = readParen (d > app_prec) (\r -> [(Leaf m,t) | ("Leaf",s) <- lex r, (m,t) <- readsPrec (app_prec+1) s]) r ++ readParen (d > up_prec) (\r -> [(u:^:v,w) | (u,s) <- readsPrec (up_prec+1) r, (":^:",t) <- lex s, (v,w) <- readsPrec (up_prec+1) t]) r where app_prec = 10 up_prec = 5
Note that right-associativity of :^:
is unused.
The derived instance in GHC is equivalent to
instance (Read a) => Read (Tree a) where readPrec = parens $ (prec app_prec $ do Ident "Leaf" <- lexP m <- step readPrec return (Leaf m)) +++ (prec up_prec $ do u <- step readPrec Symbol ":^:" <- lexP v <- step readPrec return (u :^: v)) where app_prec = 10 up_prec = 5 readListPrec = readListPrecDefault
Why do both readsPrec
and readPrec
exist, and why does GHC opt to
implement readPrec
in derived Read
instances instead of readsPrec
?
The reason is that readsPrec
is based on the ReadS
type, and although
ReadS
is mentioned in the Haskell 2010 Report, it is not a very efficient
parser data structure.
readPrec
, on the other hand, is based on a much more efficient ReadPrec
datatype (a.k.a "new-style parsers"), but its definition relies on the use
of the RankNTypes
language extension. Therefore, readPrec
(and its
cousin, readListPrec
) are marked as GHC-only. Nevertheless, it is
recommended to use readPrec
instead of readsPrec
whenever possible
for the efficiency improvements it brings.
As mentioned above, derived Read
instances in GHC will implement
readPrec
instead of readsPrec
. The default implementations of
readsPrec
(and its cousin, readList
) will simply use readPrec
under
the hood. If you are writing a Read
instance by hand, it is recommended
to write it like so:
instanceRead
T wherereadPrec
= ...readListPrec
=readListPrecDefault
Instances
Read Bool | Since: base-2.1 |
Read Char | Since: base-2.1 |
Read Double | Since: base-2.1 |
Read Float | Since: base-2.1 |
Read Int | Since: base-2.1 |
Read Int8 | Since: base-2.1 |
Read Int16 | Since: base-2.1 |
Read Int32 | Since: base-2.1 |
Read Int64 | Since: base-2.1 |
Read Integer | Since: base-2.1 |
Read Natural | Since: base-4.8.0.0 |
Read Ordering | Since: base-2.1 |
Read Word | Since: base-4.5.0.0 |
Read Word8 | Since: base-2.1 |
Read Word16 | Since: base-2.1 |
Read Word32 | Since: base-2.1 |
Read Word64 | Since: base-2.1 |
Read () | Since: base-2.1 |
Read Void | Reading a Since: base-4.8.0.0 |
Read Version | Since: base-2.1 |
Read CDev | |
Read CIno | |
Read CMode | |
Read COff | |
Read CPid | |
Read CSsize | |
Read CGid | |
Read CNlink | |
Read CUid | |
Read CCc | |
Read CSpeed | |
Read CTcflag | |
Read CRLim | |
Read CBlkSize | |
Read CBlkCnt | |
Read CClockId | |
Read CFsBlkCnt | |
Read CFsFilCnt | |
Read CId | |
Read CKey | |
Read Fd | |
Read ExitCode | |
Read BufferMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types Methods readsPrec :: Int -> ReadS BufferMode # readList :: ReadS [BufferMode] # readPrec :: ReadPrec BufferMode # readListPrec :: ReadPrec [BufferMode] # | |
Read Newline | Since: base-4.3.0.0 |
Read NewlineMode | Since: base-4.3.0.0 |
Defined in GHC.IO.Handle.Types Methods readsPrec :: Int -> ReadS NewlineMode # readList :: ReadS [NewlineMode] # readPrec :: ReadPrec NewlineMode # readListPrec :: ReadPrec [NewlineMode] # | |
Read SeekMode | Since: base-4.2.0.0 |
Read All | Since: base-2.1 |
Read Any | Since: base-2.1 |
Read Fixity | Since: base-4.6.0.0 |
Read Associativity | Since: base-4.6.0.0 |
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS Associativity # readList :: ReadS [Associativity] # | |
Read SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS SourceUnpackedness # readList :: ReadS [SourceUnpackedness] # | |
Read SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS SourceStrictness # readList :: ReadS [SourceStrictness] # | |
Read DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS DecidedStrictness # readList :: ReadS [DecidedStrictness] # | |
Read CChar | |
Read CSChar | |
Read CUChar | |
Read CShort | |
Read CUShort | |
Read CInt | |
Read CUInt | |
Read CLong | |
Read CULong | |
Read CLLong | |
Read CULLong | |
Read CBool | |
Read CFloat | |
Read CDouble | |
Read CPtrdiff | |
Read CSize | |
Read CWchar | |
Read CSigAtomic | |
Defined in Foreign.C.Types Methods readsPrec :: Int -> ReadS CSigAtomic # readList :: ReadS [CSigAtomic] # readPrec :: ReadPrec CSigAtomic # readListPrec :: ReadPrec [CSigAtomic] # | |
Read CClock | |
Read CTime | |
Read CUSeconds | |
Read CSUSeconds | |
Defined in Foreign.C.Types Methods readsPrec :: Int -> ReadS CSUSeconds # readList :: ReadS [CSUSeconds] # readPrec :: ReadPrec CSUSeconds # readListPrec :: ReadPrec [CSUSeconds] # | |
Read CIntPtr | |
Read CUIntPtr | |
Read CIntMax | |
Read CUIntMax | |
Read IOMode | Since: base-4.2.0.0 |
Read Lexeme | Since: base-2.1 |
Read GeneralCategory | Since: base-2.1 |
Defined in GHC.Read Methods readsPrec :: Int -> ReadS GeneralCategory # readList :: ReadS [GeneralCategory] # | |
Read ShortByteString | |
Defined in Data.ByteString.Short.Internal Methods readsPrec :: Int -> ReadS ShortByteString # readList :: ReadS [ShortByteString] # | |
Read ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods readsPrec :: Int -> ReadS ByteString # readList :: ReadS [ByteString] # readPrec :: ReadPrec ByteString # readListPrec :: ReadPrec [ByteString] # | |
Read ByteString | |
Defined in Data.ByteString.Internal Methods readsPrec :: Int -> ReadS ByteString # readList :: ReadS [ByteString] # readPrec :: ReadPrec ByteString # readListPrec :: ReadPrec [ByteString] # | |
Read IntSet | |
Read Pos | |
Read SourcePos | |
Read ReleaseType | |
Defined in Data.Acquire.Internal Methods readsPrec :: Int -> ReadS ReleaseType # readList :: ReadS [ReleaseType] # readPrec :: ReadPrec ReleaseType # readListPrec :: ReadPrec [ReleaseType] # | |
Read LogLevel | |
Read DatatypeVariant | |
Defined in Language.Haskell.TH.Datatype Methods readsPrec :: Int -> ReadS DatatypeVariant # readList :: ReadS [DatatypeVariant] # | |
Read GroupEntry | |
Defined in System.Posix.User Methods readsPrec :: Int -> ReadS GroupEntry # readList :: ReadS [GroupEntry] # readPrec :: ReadPrec GroupEntry # readListPrec :: ReadPrec [GroupEntry] # | |
Read UserEntry | |
Read RTLDFlags | |
Read Milliseconds Source # | |
Defined in KMonad.Util Methods readsPrec :: Int -> ReadS Milliseconds # readList :: ReadS [Milliseconds] # | |
Read a => Read [a] | Since: base-2.1 |
Read a => Read (Maybe a) | Since: base-2.1 |
(Integral a, Read a) => Read (Ratio a) | Since: base-2.1 |
Read p => Read (Par1 p) | Since: base-4.7.0.0 |
Read a => Read (Complex a) | Since: base-2.1 |
HasResolution a => Read (Fixed a) | Since: base-4.3.0.0 |
Read a => Read (Min a) | Since: base-4.9.0.0 |
Read a => Read (Max a) | Since: base-4.9.0.0 |
Read a => Read (First a) | Since: base-4.9.0.0 |
Read a => Read (Last a) | Since: base-4.9.0.0 |
Read m => Read (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods readsPrec :: Int -> ReadS (WrappedMonoid m) # readList :: ReadS [WrappedMonoid m] # readPrec :: ReadPrec (WrappedMonoid m) # readListPrec :: ReadPrec [WrappedMonoid m] # | |
Read a => Read (Option a) | Since: base-4.9.0.0 |
Read a => Read (ZipList a) | Since: base-4.7.0.0 |
Read a => Read (Identity a) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
Read a => Read (First a) | Since: base-2.1 |
Read a => Read (Last a) | Since: base-2.1 |
Read a => Read (Dual a) | Since: base-2.1 |
Read a => Read (Sum a) | Since: base-2.1 |
Read a => Read (Product a) | Since: base-2.1 |
Read a => Read (Down a) | Since: base-4.7.0.0 |
Read a => Read (NonEmpty a) | Since: base-4.11.0.0 |
Read e => Read (IntMap e) | |
Read a => Read (Tree a) | |
Read a => Read (Seq a) | |
Read a => Read (ViewL a) | |
Read a => Read (ViewR a) | |
(Read a, Ord a) => Read (Set a) | |
(Read a, Prim a) => Read (Vector a) | |
(Read a, Storable a) => Read (Vector a) | |
(Eq a, Hashable a, Read a) => Read (HashSet a) | |
Read a => Read (Vector a) | |
Read t => Read (ErrorItem t) | |
Read e => Read (ErrorFancy e) | |
Defined in Text.Megaparsec.Error Methods readsPrec :: Int -> ReadS (ErrorFancy e) # readList :: ReadS [ErrorFancy e] # readPrec :: ReadPrec (ErrorFancy e) # readListPrec :: ReadPrec [ErrorFancy e] # | |
Read a => Read (SmallArray a) | |
Defined in Data.Primitive.SmallArray Methods readsPrec :: Int -> ReadS (SmallArray a) # readList :: ReadS [SmallArray a] # readPrec :: ReadPrec (SmallArray a) # readListPrec :: ReadPrec [SmallArray a] # | |
Read a => Read (Array a) | |
(Read a, Read b) => Read (Either a b) | Since: base-3.0 |
Read (V1 p) | Since: base-4.9.0.0 |
Read (U1 p) | Since: base-4.9.0.0 |
(Read a, Read b) => Read (a, b) | Since: base-2.1 |
(Ix a, Read a, Read b) => Read (Array a b) | Since: base-2.1 |
(Read a, Read b) => Read (Arg a b) | Since: base-4.9.0.0 |
Read (Proxy t) | Since: base-4.7.0.0 |
(Ord k, Read k, Read e) => Read (Map k e) | |
(Read1 m, Read a) => Read (MaybeT m a) | |
(Read1 f, Read a) => Read (Cofree f a) | |
(Read1 f, Read a) => Read (Free f a) | |
(Functor f, Read (f a)) => Read (Yoneda f a) | |
(Eq k, Hashable k, Read k, Read e) => Read (HashMap k e) | |
(Read i, Read a) => Read (Level i a) | |
(Read1 m, Read a) => Read (ListT m a) | |
Read (f p) => Read (Rec1 f p) | Since: base-4.7.0.0 |
(Read a, Read b, Read c) => Read (a, b, c) | Since: base-2.1 |
Read a => Read (Const a b) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
Read (f a) => Read (Ap f a) | Since: base-4.12.0.0 |
Read (f a) => Read (Alt f a) | Since: base-4.8.0.0 |
a ~ b => Read (a :~: b) | Since: base-4.7.0.0 |
Read (p a a) => Read (Join p a) | |
Read (p (Fix p a) a) => Read (Fix p a) | |
(Read1 f, Read a) => Read (IdentityT f a) | |
(Read e, Read1 m, Read a) => Read (ExceptT e m a) | |
(Read a, Read (f b)) => Read (FreeF f a b) | |
(Read1 f, Read1 m, Read a) => Read (FreeT f m a) | |
(Read a, Read (f b)) => Read (CofreeF f a b) | |
Read (w (CofreeF f a (CofreeT f w a))) => Read (CofreeT f w a) | |
(Read e, Read1 m, Read a) => Read (ErrorT e m a) | |
(Read1 f, Read a) => Read (Backwards f a) | |
Read (f (a, b)) => Read (AlongsideLeft f b a) | |
Defined in Control.Lens.Internal.Getter Methods readsPrec :: Int -> ReadS (AlongsideLeft f b a) # readList :: ReadS [AlongsideLeft f b a] # readPrec :: ReadPrec (AlongsideLeft f b a) # readListPrec :: ReadPrec [AlongsideLeft f b a] # | |
Read (f (a, b)) => Read (AlongsideRight f a b) | |
Defined in Control.Lens.Internal.Getter Methods readsPrec :: Int -> ReadS (AlongsideRight f a b) # readList :: ReadS [AlongsideRight f a b] # readPrec :: ReadPrec (AlongsideRight f a b) # readListPrec :: ReadPrec [AlongsideRight f a b] # | |
(Read w, Read1 m, Read a) => Read (WriterT w m a) | |
(Read w, Read1 m, Read a) => Read (WriterT w m a) | |
Read b => Read (Tagged s b) | |
Read c => Read (K1 i c p) | Since: base-4.7.0.0 |
(Read (f p), Read (g p)) => Read ((f :+: g) p) | Since: base-4.7.0.0 |
(Read (f p), Read (g p)) => Read ((f :*: g) p) | Since: base-4.7.0.0 |
(Read a, Read b, Read c, Read d) => Read (a, b, c, d) | Since: base-2.1 |
(Read1 f, Read1 g, Read a) => Read (Product f g a) | Since: base-4.9.0.0 |
(Read1 f, Read1 g, Read a) => Read (Sum f g a) | Since: base-4.9.0.0 |
a ~~ b => Read (a :~~: b) | Since: base-4.10.0.0 |
Read (f p) => Read (M1 i c f p) | Since: base-4.7.0.0 |
Read (f (g p)) => Read ((f :.: g) p) | Since: base-4.7.0.0 |
(Read a, Read b, Read c, Read d, Read e) => Read (a, b, c, d, e) | Since: base-2.1 |
(Read1 f, Read1 g, Read a) => Read (Compose f g a) | Since: base-4.9.0.0 |
Read (p a b) => Read (WrappedBifunctor p a b) | |
Defined in Data.Bifunctor.Wrapped Methods readsPrec :: Int -> ReadS (WrappedBifunctor p a b) # readList :: ReadS [WrappedBifunctor p a b] # readPrec :: ReadPrec (WrappedBifunctor p a b) # readListPrec :: ReadPrec [WrappedBifunctor p a b] # | |
Read (g b) => Read (Joker g a b) | |
Read (p b a) => Read (Flip p a b) | |
Read (f a) => Read (Clown f a b) | |
(Read a, Read b, Read c, Read d, Read e, Read f) => Read (a, b, c, d, e, f) | Since: base-2.1 |
(Read (p a b), Read (q a b)) => Read (Sum p q a b) | |
(Read (f a b), Read (g a b)) => Read (Product f g a b) | |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g) => Read (a, b, c, d, e, f, g) | Since: base-2.1 |
Read (f (p a b)) => Read (Tannen f p a b) | |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h) => Read (a, b, c, d, e, f, g, h) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i) => Read (a, b, c, d, e, f, g, h, i) | Since: base-2.1 |
Read (p (f a) (g b)) => Read (Biff p f g a b) | |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j) => Read (a, b, c, d, e, f, g, h, i, j) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k) => Read (a, b, c, d, e, f, g, h, i, j, k) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l) => Read (a, b, c, d, e, f, g, h, i, j, k, l) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n, Read o) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | Since: base-2.1 |
Defined in GHC.Read |
class (Num a, Ord a) => Real a where #
Methods
toRational :: a -> Rational #
the rational equivalent of its real argument with full precision
Instances
class (RealFrac a, Floating a) => RealFloat a where #
Efficient, machine-independent access to the components of a floating-point number.
Minimal complete definition
floatRadix, floatDigits, floatRange, decodeFloat, encodeFloat, isNaN, isInfinite, isDenormalized, isNegativeZero, isIEEE
Methods
floatRadix :: a -> Integer #
a constant function, returning the radix of the representation
(often 2
)
floatDigits :: a -> Int #
a constant function, returning the number of digits of
floatRadix
in the significand
floatRange :: a -> (Int, Int) #
a constant function, returning the lowest and highest values the exponent may assume
decodeFloat :: a -> (Integer, Int) #
The function decodeFloat
applied to a real floating-point
number returns the significand expressed as an Integer
and an
appropriately scaled exponent (an Int
). If
yields decodeFloat
x(m,n)
, then x
is equal in value to m*b^^n
, where b
is the floating-point radix, and furthermore, either m
and n
are both zero or else b^(d-1) <=
, where abs
m < b^dd
is
the value of
.
In particular, floatDigits
x
. If the type
contains a negative zero, also decodeFloat
0 = (0,0)
.
The result of decodeFloat
(-0.0) = (0,0)
is unspecified if either of
decodeFloat
x
or isNaN
x
is isInfinite
xTrue
.
encodeFloat :: Integer -> Int -> a #
encodeFloat
performs the inverse of decodeFloat
in the
sense that for finite x
with the exception of -0.0
,
.
uncurry
encodeFloat
(decodeFloat
x) = x
is one of the two closest representable
floating-point numbers to encodeFloat
m nm*b^^n
(or ±Infinity
if overflow
occurs); usually the closer, but if m
contains too many bits,
the result may be rounded in the wrong direction.
exponent
corresponds to the second component of decodeFloat
.
and for finite nonzero exponent
0 = 0x
,
.
If exponent
x = snd (decodeFloat
x) + floatDigits
xx
is a finite floating-point number, it is equal in value to
, where significand
x * b ^^ exponent
xb
is the
floating-point radix.
The behaviour is unspecified on infinite or NaN
values.
significand :: a -> a #
The first component of decodeFloat
, scaled to lie in the open
interval (-1
,1
), either 0.0
or of absolute value >= 1/b
,
where b
is the floating-point radix.
The behaviour is unspecified on infinite or NaN
values.
scaleFloat :: Int -> a -> a #
multiplies a floating-point number by an integer power of the radix
True
if the argument is an IEEE "not-a-number" (NaN) value
isInfinite :: a -> Bool #
True
if the argument is an IEEE infinity or negative infinity
isDenormalized :: a -> Bool #
True
if the argument is too small to be represented in
normalized format
isNegativeZero :: a -> Bool #
True
if the argument is an IEEE negative zero
True
if the argument is an IEEE floating point number
a version of arctangent taking two real floating-point arguments.
For real floating x
and y
,
computes the angle
(from the positive x-axis) of the vector from the origin to the
point atan2
y x(x,y)
.
returns a value in the range [atan2
y x-pi
,
pi
]. It follows the Common Lisp semantics for the origin when
signed zeroes are supported.
, with atan2
y 1y
in a type
that is RealFloat
, should return the same value as
.
A default definition of atan
yatan2
is provided, but implementors
can provide a more accurate implementation.
Instances
class (Real a, Fractional a) => RealFrac a where #
Extracting components of fractions.
Minimal complete definition
Methods
properFraction :: Integral b => a -> (b, a) #
The function properFraction
takes a real fractional number x
and returns a pair (n,f)
such that x = n+f
, and:
n
is an integral number with the same sign asx
; andf
is a fraction with the same type and sign asx
, and with absolute value less than1
.
The default definitions of the ceiling
, floor
, truncate
and round
functions are in terms of properFraction
.
truncate :: Integral b => a -> b #
returns the integer nearest truncate
xx
between zero and x
round :: Integral b => a -> b #
returns the nearest integer to round
xx
;
the even integer if x
is equidistant between two integers
ceiling :: Integral b => a -> b #
returns the least integer not less than ceiling
xx
floor :: Integral b => a -> b #
returns the greatest integer not greater than floor
xx
Instances
RealFrac CFloat | |
RealFrac CDouble | |
RealFrac DiffTime | |
RealFrac NominalDiffTime | |
Defined in Data.Time.Clock.Internal.NominalDiffTime Methods properFraction :: Integral b => NominalDiffTime -> (b, NominalDiffTime) # truncate :: Integral b => NominalDiffTime -> b # round :: Integral b => NominalDiffTime -> b # ceiling :: Integral b => NominalDiffTime -> b # floor :: Integral b => NominalDiffTime -> b # | |
Integral a => RealFrac (Ratio a) | Since: base-2.0.1 |
HasResolution a => RealFrac (Fixed a) | Since: base-2.1 |
RealFrac a => RealFrac (Identity a) | Since: base-4.9.0.0 |
RealFrac a => RealFrac (Const a b) | Since: base-4.9.0.0 |
RealFrac a => RealFrac (Tagged s a) | |
Conversion of values to readable String
s.
Derived instances of Show
have the following properties, which
are compatible with derived instances of Read
:
- The result of
show
is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used. - If the constructor is defined to be an infix operator, then
showsPrec
will produce infix applications of the constructor. - the representation will be enclosed in parentheses if the
precedence of the top-level constructor in
x
is less thand
(associativity is ignored). Thus, ifd
is0
then the result is never surrounded in parentheses; ifd
is11
it is always surrounded in parentheses, unless it is an atomic expression. - If the constructor is defined using record syntax, then
show
will produce the record-syntax form, with the fields given in the same order as the original declaration.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Show
is equivalent to
instance (Show a) => Show (Tree a) where showsPrec d (Leaf m) = showParen (d > app_prec) $ showString "Leaf " . showsPrec (app_prec+1) m where app_prec = 10 showsPrec d (u :^: v) = showParen (d > up_prec) $ showsPrec (up_prec+1) u . showString " :^: " . showsPrec (up_prec+1) v where up_prec = 5
Note that right-associativity of :^:
is ignored. For example,
produces the stringshow
(Leaf 1 :^: Leaf 2 :^: Leaf 3)"Leaf 1 :^: (Leaf 2 :^: Leaf 3)"
.
Methods
Instances
The class Typeable
allows a concrete representation of a type to
be calculated.
Minimal complete definition
typeRep#
class Monad m => MonadFail (m :: Type -> Type) #
When a value is bound in do
-notation, the pattern on the left
hand side of <-
might not match. In this case, this class
provides a function to recover.
A Monad
without a MonadFail
instance may only be used in conjunction
with pattern that always match, such as newtypes, tuples, data types with
only a single data constructor, and irrefutable patterns (~pat
).
Instances of MonadFail
should satisfy the following law: fail s
should
be a left zero for >>=
,
fail s >>= f = fail s
If your Monad
is also MonadPlus
, a popular definition is
fail _ = mzero
Since: base-4.9.0.0
Minimal complete definition
Instances
Class for string-like datastructures; used by the overloaded string extension (-XOverloadedStrings in GHC).
Methods
fromString :: String -> a #
Instances
class Functor f => Applicative (f :: Type -> Type) where #
A functor with application, providing operations to
A minimal complete definition must include implementations of pure
and of either <*>
or liftA2
. If it defines both, then they must behave
the same as their default definitions:
(<*>
) =liftA2
id
liftA2
f x y = f<$>
x<*>
y
Further, any definition must satisfy the following:
- identity
pure
id
<*>
v = v- composition
pure
(.)<*>
u<*>
v<*>
w = u<*>
(v<*>
w)- homomorphism
pure
f<*>
pure
x =pure
(f x)- interchange
u
<*>
pure
y =pure
($
y)<*>
u
The other methods have the following default definitions, which may be overridden with equivalent specialized implementations:
As a consequence of these laws, the Functor
instance for f
will satisfy
It may be useful to note that supposing
forall x y. p (q x y) = f x . g y
it follows from the above that
liftA2
p (liftA2
q u v) =liftA2
f u .liftA2
g v
If f
is also a Monad
, it should satisfy
(which implies that pure
and <*>
satisfy the applicative functor laws).
Methods
Lift a value.
(<*>) :: f (a -> b) -> f a -> f b infixl 4 #
Sequential application.
A few functors support an implementation of <*>
that is more
efficient than the default one.
liftA2 :: (a -> b -> c) -> f a -> f b -> f c #
Lift a binary function to actions.
Some functors support an implementation of liftA2
that is more
efficient than the default one. In particular, if fmap
is an
expensive operation, it is likely better to use liftA2
than to
fmap
over the structure and then use <*>
.
(*>) :: f a -> f b -> f b infixl 4 #
Sequence actions, discarding the value of the first argument.
(<*) :: f a -> f b -> f a infixl 4 #
Sequence actions, discarding the value of the second argument.
Instances
class Foldable (t :: Type -> Type) where #
Data structures that can be folded.
For example, given a data type
data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)
a suitable instance would be
instance Foldable Tree where foldMap f Empty = mempty foldMap f (Leaf x) = f x foldMap f (Node l k r) = foldMap f l `mappend` f k `mappend` foldMap f r
This is suitable even for abstract types, as the monoid is assumed
to satisfy the monoid laws. Alternatively, one could define foldr
:
instance Foldable Tree where foldr f z Empty = z foldr f z (Leaf x) = f x z foldr f z (Node l k r) = foldr f (f k (foldr f z r)) l
Foldable
instances are expected to satisfy the following laws:
foldr f z t = appEndo (foldMap (Endo . f) t ) z
foldl f z t = appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z
fold = foldMap id
length = getSum . foldMap (Sum . const 1)
sum
, product
, maximum
, and minimum
should all be essentially
equivalent to foldMap
forms, such as
sum = getSum . foldMap Sum
but may be less defined.
If the type is also a Functor
instance, it should satisfy
foldMap f = fold . fmap f
which implies that
foldMap f . fmap g = foldMap (f . g)
Methods
fold :: Monoid m => t m -> m #
Combine the elements of a structure using a monoid.
foldMap :: Monoid m => (a -> m) -> t a -> m #
Map each element of the structure to a monoid, and combine the results.
foldr :: (a -> b -> b) -> b -> t a -> b #
Right-associative fold of a structure.
In the case of lists, foldr
, when applied to a binary operator, a
starting value (typically the right-identity of the operator), and a
list, reduces the list using the binary operator, from right to left:
foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...)
Note that, since the head of the resulting expression is produced by
an application of the operator to the first element of the list,
foldr
can produce a terminating expression from an infinite list.
For a general Foldable
structure this should be semantically identical
to,
foldr f z =foldr
f z .toList
foldl' :: (b -> a -> b) -> b -> t a -> b #
Left-associative fold of a structure but with strict application of the operator.
This ensures that each step of the fold is forced to weak head normal
form before being applied, avoiding the collection of thunks that would
otherwise occur. This is often what you want to strictly reduce a finite
list to a single, monolithic result (e.g. length
).
For a general Foldable
structure this should be semantically identical
to,
foldl f z =foldl'
f z .toList
List of elements of a structure, from left to right.
Test whether the structure is empty. The default implementation is optimized for structures that are similar to cons-lists, because there is no general way to do better.
Returns the size/length of a finite structure as an Int
. The
default implementation is optimized for structures that are similar to
cons-lists, because there is no general way to do better.
elem :: Eq a => a -> t a -> Bool infix 4 #
Does the element occur in the structure?
The sum
function computes the sum of the numbers of a structure.
product :: Num a => t a -> a #
The product
function computes the product of the numbers of a
structure.
Instances
Foldable [] | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => [m] -> m # foldMap :: Monoid m => (a -> m) -> [a] -> m # foldr :: (a -> b -> b) -> b -> [a] -> b # foldr' :: (a -> b -> b) -> b -> [a] -> b # foldl :: (b -> a -> b) -> b -> [a] -> b # foldl' :: (b -> a -> b) -> b -> [a] -> b # foldr1 :: (a -> a -> a) -> [a] -> a # foldl1 :: (a -> a -> a) -> [a] -> a # elem :: Eq a => a -> [a] -> Bool # maximum :: Ord a => [a] -> a # | |
Foldable Maybe | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |
Foldable Par1 | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Par1 m -> m # foldMap :: Monoid m => (a -> m) -> Par1 a -> m # foldr :: (a -> b -> b) -> b -> Par1 a -> b # foldr' :: (a -> b -> b) -> b -> Par1 a -> b # foldl :: (b -> a -> b) -> b -> Par1 a -> b # foldl' :: (b -> a -> b) -> b -> Par1 a -> b # foldr1 :: (a -> a -> a) -> Par1 a -> a # foldl1 :: (a -> a -> a) -> Par1 a -> a # elem :: Eq a => a -> Par1 a -> Bool # maximum :: Ord a => Par1 a -> a # | |
Foldable Complex | Since: base-4.9.0.0 |
Defined in Data.Complex Methods fold :: Monoid m => Complex m -> m # foldMap :: Monoid m => (a -> m) -> Complex a -> m # foldr :: (a -> b -> b) -> b -> Complex a -> b # foldr' :: (a -> b -> b) -> b -> Complex a -> b # foldl :: (b -> a -> b) -> b -> Complex a -> b # foldl' :: (b -> a -> b) -> b -> Complex a -> b # foldr1 :: (a -> a -> a) -> Complex a -> a # foldl1 :: (a -> a -> a) -> Complex a -> a # elem :: Eq a => a -> Complex a -> Bool # maximum :: Ord a => Complex a -> a # minimum :: Ord a => Complex a -> a # | |
Foldable Min | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Min m -> m # foldMap :: Monoid m => (a -> m) -> Min a -> m # foldr :: (a -> b -> b) -> b -> Min a -> b # foldr' :: (a -> b -> b) -> b -> Min a -> b # foldl :: (b -> a -> b) -> b -> Min a -> b # foldl' :: (b -> a -> b) -> b -> Min a -> b # foldr1 :: (a -> a -> a) -> Min a -> a # foldl1 :: (a -> a -> a) -> Min a -> a # elem :: Eq a => a -> Min a -> Bool # maximum :: Ord a => Min a -> a # | |
Foldable Max | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Max m -> m # foldMap :: Monoid m => (a -> m) -> Max a -> m # foldr :: (a -> b -> b) -> b -> Max a -> b # foldr' :: (a -> b -> b) -> b -> Max a -> b # foldl :: (b -> a -> b) -> b -> Max a -> b # foldl' :: (b -> a -> b) -> b -> Max a -> b # foldr1 :: (a -> a -> a) -> Max a -> a # foldl1 :: (a -> a -> a) -> Max a -> a # elem :: Eq a => a -> Max a -> Bool # maximum :: Ord a => Max a -> a # | |
Foldable First | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |
Foldable Last | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
Foldable Option | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Option m -> m # foldMap :: Monoid m => (a -> m) -> Option a -> m # foldr :: (a -> b -> b) -> b -> Option a -> b # foldr' :: (a -> b -> b) -> b -> Option a -> b # foldl :: (b -> a -> b) -> b -> Option a -> b # foldl' :: (b -> a -> b) -> b -> Option a -> b # foldr1 :: (a -> a -> a) -> Option a -> a # foldl1 :: (a -> a -> a) -> Option a -> a # elem :: Eq a => a -> Option a -> Bool # maximum :: Ord a => Option a -> a # minimum :: Ord a => Option a -> a # | |
Foldable ZipList | Since: base-4.9.0.0 |
Defined in Control.Applicative Methods fold :: Monoid m => ZipList m -> m # foldMap :: Monoid m => (a -> m) -> ZipList a -> m # foldr :: (a -> b -> b) -> b -> ZipList a -> b # foldr' :: (a -> b -> b) -> b -> ZipList a -> b # foldl :: (b -> a -> b) -> b -> ZipList a -> b # foldl' :: (b -> a -> b) -> b -> ZipList a -> b # foldr1 :: (a -> a -> a) -> ZipList a -> a # foldl1 :: (a -> a -> a) -> ZipList a -> a # elem :: Eq a => a -> ZipList a -> Bool # maximum :: Ord a => ZipList a -> a # minimum :: Ord a => ZipList a -> a # | |
Foldable Identity | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity Methods fold :: Monoid m => Identity m -> m # foldMap :: Monoid m => (a -> m) -> Identity a -> m # foldr :: (a -> b -> b) -> b -> Identity a -> b # foldr' :: (a -> b -> b) -> b -> Identity a -> b # foldl :: (b -> a -> b) -> b -> Identity a -> b # foldl' :: (b -> a -> b) -> b -> Identity a -> b # foldr1 :: (a -> a -> a) -> Identity a -> a # foldl1 :: (a -> a -> a) -> Identity a -> a # elem :: Eq a => a -> Identity a -> Bool # maximum :: Ord a => Identity a -> a # minimum :: Ord a => Identity a -> a # | |
Foldable First | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |
Foldable Last | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
Foldable Dual | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Dual m -> m # foldMap :: Monoid m => (a -> m) -> Dual a -> m # foldr :: (a -> b -> b) -> b -> Dual a -> b # foldr' :: (a -> b -> b) -> b -> Dual a -> b # foldl :: (b -> a -> b) -> b -> Dual a -> b # foldl' :: (b -> a -> b) -> b -> Dual a -> b # foldr1 :: (a -> a -> a) -> Dual a -> a # foldl1 :: (a -> a -> a) -> Dual a -> a # elem :: Eq a => a -> Dual a -> Bool # maximum :: Ord a => Dual a -> a # | |
Foldable Sum | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Sum m -> m # foldMap :: Monoid m => (a -> m) -> Sum a -> m # foldr :: (a -> b -> b) -> b -> Sum a -> b # foldr' :: (a -> b -> b) -> b -> Sum a -> b # foldl :: (b -> a -> b) -> b -> Sum a -> b # foldl' :: (b -> a -> b) -> b -> Sum a -> b # foldr1 :: (a -> a -> a) -> Sum a -> a # foldl1 :: (a -> a -> a) -> Sum a -> a # elem :: Eq a => a -> Sum a -> Bool # maximum :: Ord a => Sum a -> a # | |
Foldable Product | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Product m -> m # foldMap :: Monoid m => (a -> m) -> Product a -> m # foldr :: (a -> b -> b) -> b -> Product a -> b # foldr' :: (a -> b -> b) -> b -> Product a -> b # foldl :: (b -> a -> b) -> b -> Product a -> b # foldl' :: (b -> a -> b) -> b -> Product a -> b # foldr1 :: (a -> a -> a) -> Product a -> a # foldl1 :: (a -> a -> a) -> Product a -> a # elem :: Eq a => a -> Product a -> Bool # maximum :: Ord a => Product a -> a # minimum :: Ord a => Product a -> a # | |
Foldable Down | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Down m -> m # foldMap :: Monoid m => (a -> m) -> Down a -> m # foldr :: (a -> b -> b) -> b -> Down a -> b # foldr' :: (a -> b -> b) -> b -> Down a -> b # foldl :: (b -> a -> b) -> b -> Down a -> b # foldl' :: (b -> a -> b) -> b -> Down a -> b # foldr1 :: (a -> a -> a) -> Down a -> a # foldl1 :: (a -> a -> a) -> Down a -> a # elem :: Eq a => a -> Down a -> Bool # maximum :: Ord a => Down a -> a # | |
Foldable NonEmpty | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => NonEmpty m -> m # foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m # foldr :: (a -> b -> b) -> b -> NonEmpty a -> b # foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b # foldl :: (b -> a -> b) -> b -> NonEmpty a -> b # foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b # foldr1 :: (a -> a -> a) -> NonEmpty a -> a # foldl1 :: (a -> a -> a) -> NonEmpty a -> a # elem :: Eq a => a -> NonEmpty a -> Bool # maximum :: Ord a => NonEmpty a -> a # minimum :: Ord a => NonEmpty a -> a # | |
Foldable IntMap | |
Defined in Data.IntMap.Internal Methods fold :: Monoid m => IntMap m -> m # foldMap :: Monoid m => (a -> m) -> IntMap a -> m # foldr :: (a -> b -> b) -> b -> IntMap a -> b # foldr' :: (a -> b -> b) -> b -> IntMap a -> b # foldl :: (b -> a -> b) -> b -> IntMap a -> b # foldl' :: (b -> a -> b) -> b -> IntMap a -> b # foldr1 :: (a -> a -> a) -> IntMap a -> a # foldl1 :: (a -> a -> a) -> IntMap a -> a # elem :: Eq a => a -> IntMap a -> Bool # maximum :: Ord a => IntMap a -> a # minimum :: Ord a => IntMap a -> a # | |
Foldable Tree | |
Defined in Data.Tree Methods fold :: Monoid m => Tree m -> m # foldMap :: Monoid m => (a -> m) -> Tree a -> m # foldr :: (a -> b -> b) -> b -> Tree a -> b # foldr' :: (a -> b -> b) -> b -> Tree a -> b # foldl :: (b -> a -> b) -> b -> Tree a -> b # foldl' :: (b -> a -> b) -> b -> Tree a -> b # foldr1 :: (a -> a -> a) -> Tree a -> a # foldl1 :: (a -> a -> a) -> Tree a -> a # elem :: Eq a => a -> Tree a -> Bool # maximum :: Ord a => Tree a -> a # | |
Foldable Seq | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Seq m -> m # foldMap :: Monoid m => (a -> m) -> Seq a -> m # foldr :: (a -> b -> b) -> b -> Seq a -> b # foldr' :: (a -> b -> b) -> b -> Seq a -> b # foldl :: (b -> a -> b) -> b -> Seq a -> b # foldl' :: (b -> a -> b) -> b -> Seq a -> b # foldr1 :: (a -> a -> a) -> Seq a -> a # foldl1 :: (a -> a -> a) -> Seq a -> a # elem :: Eq a => a -> Seq a -> Bool # maximum :: Ord a => Seq a -> a # | |
Foldable FingerTree | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => FingerTree m -> m # foldMap :: Monoid m => (a -> m) -> FingerTree a -> m # foldr :: (a -> b -> b) -> b -> FingerTree a -> b # foldr' :: (a -> b -> b) -> b -> FingerTree a -> b # foldl :: (b -> a -> b) -> b -> FingerTree a -> b # foldl' :: (b -> a -> b) -> b -> FingerTree a -> b # foldr1 :: (a -> a -> a) -> FingerTree a -> a # foldl1 :: (a -> a -> a) -> FingerTree a -> a # toList :: FingerTree a -> [a] # null :: FingerTree a -> Bool # length :: FingerTree a -> Int # elem :: Eq a => a -> FingerTree a -> Bool # maximum :: Ord a => FingerTree a -> a # minimum :: Ord a => FingerTree a -> a # sum :: Num a => FingerTree a -> a # product :: Num a => FingerTree a -> a # | |
Foldable Digit | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Digit m -> m # foldMap :: Monoid m => (a -> m) -> Digit a -> m # foldr :: (a -> b -> b) -> b -> Digit a -> b # foldr' :: (a -> b -> b) -> b -> Digit a -> b # foldl :: (b -> a -> b) -> b -> Digit a -> b # foldl' :: (b -> a -> b) -> b -> Digit a -> b # foldr1 :: (a -> a -> a) -> Digit a -> a # foldl1 :: (a -> a -> a) -> Digit a -> a # elem :: Eq a => a -> Digit a -> Bool # maximum :: Ord a => Digit a -> a # minimum :: Ord a => Digit a -> a # | |
Foldable Node | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Node m -> m # foldMap :: Monoid m => (a -> m) -> Node a -> m # foldr :: (a -> b -> b) -> b -> Node a -> b # foldr' :: (a -> b -> b) -> b -> Node a -> b # foldl :: (b -> a -> b) -> b -> Node a -> b # foldl' :: (b -> a -> b) -> b -> Node a -> b # foldr1 :: (a -> a -> a) -> Node a -> a # foldl1 :: (a -> a -> a) -> Node a -> a # elem :: Eq a => a -> Node a -> Bool # maximum :: Ord a => Node a -> a # | |
Foldable Elem | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Elem m -> m # foldMap :: Monoid m => (a -> m) -> Elem a -> m # foldr :: (a -> b -> b) -> b -> Elem a -> b # foldr' :: (a -> b -> b) -> b -> Elem a -> b # foldl :: (b -> a -> b) -> b -> Elem a -> b # foldl' :: (b -> a -> b) -> b -> Elem a -> b # foldr1 :: (a -> a -> a) -> Elem a -> a # foldl1 :: (a -> a -> a) -> Elem a -> a # elem :: Eq a => a -> Elem a -> Bool # maximum :: Ord a => Elem a -> a # | |
Foldable ViewL | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => ViewL m -> m # foldMap :: Monoid m => (a -> m) -> ViewL a -> m # foldr :: (a -> b -> b) -> b -> ViewL a -> b # foldr' :: (a -> b -> b) -> b -> ViewL a -> b # foldl :: (b -> a -> b) -> b -> ViewL a -> b # foldl' :: (b -> a -> b) -> b -> ViewL a -> b # foldr1 :: (a -> a -> a) -> ViewL a -> a # foldl1 :: (a -> a -> a) -> ViewL a -> a # elem :: Eq a => a -> ViewL a -> Bool # maximum :: Ord a => ViewL a -> a # minimum :: Ord a => ViewL a -> a # | |
Foldable ViewR | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => ViewR m -> m # foldMap :: Monoid m => (a -> m) -> ViewR a -> m # foldr :: (a -> b -> b) -> b -> ViewR a -> b # foldr' :: (a -> b -> b) -> b -> ViewR a -> b # foldl :: (b -> a -> b) -> b -> ViewR a -> b # foldl' :: (b -> a -> b) -> b -> ViewR a -> b # foldr1 :: (a -> a -> a) -> ViewR a -> a # foldl1 :: (a -> a -> a) -> ViewR a -> a # elem :: Eq a => a -> ViewR a -> Bool # maximum :: Ord a => ViewR a -> a # minimum :: Ord a => ViewR a -> a # | |
Foldable Set | |
Defined in Data.Set.Internal Methods fold :: Monoid m => Set m -> m # foldMap :: Monoid m => (a -> m) -> Set a -> m # foldr :: (a -> b -> b) -> b -> Set a -> b # foldr' :: (a -> b -> b) -> b -> Set a -> b # foldl :: (b -> a -> b) -> b -> Set a -> b # foldl' :: (b -> a -> b) -> b -> Set a -> b # foldr1 :: (a -> a -> a) -> Set a -> a # foldl1 :: (a -> a -> a) -> Set a -> a # elem :: Eq a => a -> Set a -> Bool # maximum :: Ord a => Set a -> a # | |
Foldable Hashed | |
Defined in Data.Hashable.Class Methods fold :: Monoid m => Hashed m -> m # foldMap :: Monoid m => (a -> m) -> Hashed a -> m # foldr :: (a -> b -> b) -> b -> Hashed a -> b # foldr' :: (a -> b -> b) -> b -> Hashed a -> b # foldl :: (b -> a -> b) -> b -> Hashed a -> b # foldl' :: (b -> a -> b) -> b -> Hashed a -> b # foldr1 :: (a -> a -> a) -> Hashed a -> a # foldl1 :: (a -> a -> a) -> Hashed a -> a # elem :: Eq a => a -> Hashed a -> Bool # maximum :: Ord a => Hashed a -> a # minimum :: Ord a => Hashed a -> a # | |
Foldable HashSet | |
Defined in Data.HashSet.Internal Methods fold :: Monoid m => HashSet m -> m # foldMap :: Monoid m => (a -> m) -> HashSet a -> m # foldr :: (a -> b -> b) -> b -> HashSet a -> b # foldr' :: (a -> b -> b) -> b -> HashSet a -> b # foldl :: (b -> a -> b) -> b -> HashSet a -> b # foldl' :: (b -> a -> b) -> b -> HashSet a -> b # foldr1 :: (a -> a -> a) -> HashSet a -> a # foldl1 :: (a -> a -> a) -> HashSet a -> a # elem :: Eq a => a -> HashSet a -> Bool # maximum :: Ord a => HashSet a -> a # minimum :: Ord a => HashSet a -> a # | |
Foldable Vector | |
Defined in Data.Vector Methods fold :: Monoid m => Vector m -> m # foldMap :: Monoid m => (a -> m) -> Vector a -> m # foldr :: (a -> b -> b) -> b -> Vector a -> b # foldr' :: (a -> b -> b) -> b -> Vector a -> b # foldl :: (b -> a -> b) -> b -> Vector a -> b # foldl' :: (b -> a -> b) -> b -> Vector a -> b # foldr1 :: (a -> a -> a) -> Vector a -> a # foldl1 :: (a -> a -> a) -> Vector a -> a # elem :: Eq a => a -> Vector a -> Bool # maximum :: Ord a => Vector a -> a # minimum :: Ord a => Vector a -> a # | |
Foldable SmallArray | |
Defined in Data.Primitive.SmallArray Methods fold :: Monoid m => SmallArray m -> m # foldMap :: Monoid m => (a -> m) -> SmallArray a -> m # foldr :: (a -> b -> b) -> b -> SmallArray a -> b # foldr' :: (a -> b -> b) -> b -> SmallArray a -> b # foldl :: (b -> a -> b) -> b -> SmallArray a -> b # foldl' :: (b -> a -> b) -> b -> SmallArray a -> b # foldr1 :: (a -> a -> a) -> SmallArray a -> a # foldl1 :: (a -> a -> a) -> SmallArray a -> a # toList :: SmallArray a -> [a] # null :: SmallArray a -> Bool # length :: SmallArray a -> Int # elem :: Eq a => a -> SmallArray a -> Bool # maximum :: Ord a => SmallArray a -> a # minimum :: Ord a => SmallArray a -> a # sum :: Num a => SmallArray a -> a # product :: Num a => SmallArray a -> a # | |
Foldable Array | |
Defined in Data.Primitive.Array Methods fold :: Monoid m => Array m -> m # foldMap :: Monoid m => (a -> m) -> Array a -> m # foldr :: (a -> b -> b) -> b -> Array a -> b # foldr' :: (a -> b -> b) -> b -> Array a -> b # foldl :: (b -> a -> b) -> b -> Array a -> b # foldl' :: (b -> a -> b) -> b -> Array a -> b # foldr1 :: (a -> a -> a) -> Array a -> a # foldl1 :: (a -> a -> a) -> Array a -> a # elem :: Eq a => a -> Array a -> Bool # maximum :: Ord a => Array a -> a # minimum :: Ord a => Array a -> a # | |
Foldable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Either a m -> m # foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # toList :: Either a a0 -> [a0] # length :: Either a a0 -> Int # elem :: Eq a0 => a0 -> Either a a0 -> Bool # maximum :: Ord a0 => Either a a0 -> a0 # minimum :: Ord a0 => Either a a0 -> a0 # | |
Foldable (V1 :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => V1 m -> m # foldMap :: Monoid m => (a -> m) -> V1 a -> m # foldr :: (a -> b -> b) -> b -> V1 a -> b # foldr' :: (a -> b -> b) -> b -> V1 a -> b # foldl :: (b -> a -> b) -> b -> V1 a -> b # foldl' :: (b -> a -> b) -> b -> V1 a -> b # foldr1 :: (a -> a -> a) -> V1 a -> a # foldl1 :: (a -> a -> a) -> V1 a -> a # elem :: Eq a => a -> V1 a -> Bool # maximum :: Ord a => V1 a -> a # | |
Foldable (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => U1 m -> m # foldMap :: Monoid m => (a -> m) -> U1 a -> m # foldr :: (a -> b -> b) -> b -> U1 a -> b # foldr' :: (a -> b -> b) -> b -> U1 a -> b # foldl :: (b -> a -> b) -> b -> U1 a -> b # foldl' :: (b -> a -> b) -> b -> U1 a -> b # foldr1 :: (a -> a -> a) -> U1 a -> a # foldl1 :: (a -> a -> a) -> U1 a -> a # elem :: Eq a => a -> U1 a -> Bool # maximum :: Ord a => U1 a -> a # | |
Foldable ((,) a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (a, m) -> m # foldMap :: Monoid m => (a0 -> m) -> (a, a0) -> m # foldr :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldr' :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldl :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldl' :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldr1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # foldl1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # elem :: Eq a0 => a0 -> (a, a0) -> Bool # maximum :: Ord a0 => (a, a0) -> a0 # minimum :: Ord a0 => (a, a0) -> a0 # | |
Foldable (Array i) | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Array i m -> m # foldMap :: Monoid m => (a -> m) -> Array i a -> m # foldr :: (a -> b -> b) -> b -> Array i a -> b # foldr' :: (a -> b -> b) -> b -> Array i a -> b # foldl :: (b -> a -> b) -> b -> Array i a -> b # foldl' :: (b -> a -> b) -> b -> Array i a -> b # foldr1 :: (a -> a -> a) -> Array i a -> a # foldl1 :: (a -> a -> a) -> Array i a -> a # elem :: Eq a => a -> Array i a -> Bool # maximum :: Ord a => Array i a -> a # minimum :: Ord a => Array i a -> a # | |
Foldable (Arg a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Arg a m -> m # foldMap :: Monoid m => (a0 -> m) -> Arg a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Arg a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Arg a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Arg a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Arg a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 # elem :: Eq a0 => a0 -> Arg a a0 -> Bool # maximum :: Ord a0 => Arg a a0 -> a0 # minimum :: Ord a0 => Arg a a0 -> a0 # | |
Foldable (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Proxy m -> m # foldMap :: Monoid m => (a -> m) -> Proxy a -> m # foldr :: (a -> b -> b) -> b -> Proxy a -> b # foldr' :: (a -> b -> b) -> b -> Proxy a -> b # foldl :: (b -> a -> b) -> b -> Proxy a -> b # foldl' :: (b -> a -> b) -> b -> Proxy a -> b # foldr1 :: (a -> a -> a) -> Proxy a -> a # foldl1 :: (a -> a -> a) -> Proxy a -> a # elem :: Eq a => a -> Proxy a -> Bool # maximum :: Ord a => Proxy a -> a # minimum :: Ord a => Proxy a -> a # | |
Foldable (Map k) | |
Defined in Data.Map.Internal Methods fold :: Monoid m => Map k m -> m # foldMap :: Monoid m => (a -> m) -> Map k a -> m # foldr :: (a -> b -> b) -> b -> Map k a -> b # foldr' :: (a -> b -> b) -> b -> Map k a -> b # foldl :: (b -> a -> b) -> b -> Map k a -> b # foldl' :: (b -> a -> b) -> b -> Map k a -> b # foldr1 :: (a -> a -> a) -> Map k a -> a # foldl1 :: (a -> a -> a) -> Map k a -> a # elem :: Eq a => a -> Map k a -> Bool # maximum :: Ord a => Map k a -> a # minimum :: Ord a => Map k a -> a # | |
Foldable f => Foldable (MaybeT f) | |
Defined in Control.Monad.Trans.Maybe Methods fold :: Monoid m => MaybeT f m -> m # foldMap :: Monoid m => (a -> m) -> MaybeT f a -> m # foldr :: (a -> b -> b) -> b -> MaybeT f a -> b # foldr' :: (a -> b -> b) -> b -> MaybeT f a -> b # foldl :: (b -> a -> b) -> b -> MaybeT f a -> b # foldl' :: (b -> a -> b) -> b -> MaybeT f a -> b # foldr1 :: (a -> a -> a) -> MaybeT f a -> a # foldl1 :: (a -> a -> a) -> MaybeT f a -> a # elem :: Eq a => a -> MaybeT f a -> Bool # maximum :: Ord a => MaybeT f a -> a # minimum :: Ord a => MaybeT f a -> a # | |
Foldable f => Foldable (Cofree f) | |
Defined in Control.Comonad.Cofree Methods fold :: Monoid m => Cofree f m -> m # foldMap :: Monoid m => (a -> m) -> Cofree f a -> m # foldr :: (a -> b -> b) -> b -> Cofree f a -> b # foldr' :: (a -> b -> b) -> b -> Cofree f a -> b # foldl :: (b -> a -> b) -> b -> Cofree f a -> b # foldl' :: (b -> a -> b) -> b -> Cofree f a -> b # foldr1 :: (a -> a -> a) -> Cofree f a -> a # foldl1 :: (a -> a -> a) -> Cofree f a -> a # elem :: Eq a => a -> Cofree f a -> Bool # maximum :: Ord a => Cofree f a -> a # minimum :: Ord a => Cofree f a -> a # | |
Foldable f => Foldable (Free f) | |
Defined in Control.Monad.Free Methods fold :: Monoid m => Free f m -> m # foldMap :: Monoid m => (a -> m) -> Free f a -> m # foldr :: (a -> b -> b) -> b -> Free f a -> b # foldr' :: (a -> b -> b) -> b -> Free f a -> b # foldl :: (b -> a -> b) -> b -> Free f a -> b # foldl' :: (b -> a -> b) -> b -> Free f a -> b # foldr1 :: (a -> a -> a) -> Free f a -> a # foldl1 :: (a -> a -> a) -> Free f a -> a # elem :: Eq a => a -> Free f a -> Bool # maximum :: Ord a => Free f a -> a # minimum :: Ord a => Free f a -> a # | |
Foldable f => Foldable (Yoneda f) | |
Defined in Data.Functor.Yoneda Methods fold :: Monoid m => Yoneda f m -> m # foldMap :: Monoid m => (a -> m) -> Yoneda f a -> m # foldr :: (a -> b -> b) -> b -> Yoneda f a -> b # foldr' :: (a -> b -> b) -> b -> Yoneda f a -> b # foldl :: (b -> a -> b) -> b -> Yoneda f a -> b # foldl' :: (b -> a -> b) -> b -> Yoneda f a -> b # foldr1 :: (a -> a -> a) -> Yoneda f a -> a # foldl1 :: (a -> a -> a) -> Yoneda f a -> a # elem :: Eq a => a -> Yoneda f a -> Bool # maximum :: Ord a => Yoneda f a -> a # minimum :: Ord a => Yoneda f a -> a # | |
Foldable (HashMap k) | |
Defined in Data.HashMap.Internal Methods fold :: Monoid m => HashMap k m -> m # foldMap :: Monoid m => (a -> m) -> HashMap k a -> m # foldr :: (a -> b -> b) -> b -> HashMap k a -> b # foldr' :: (a -> b -> b) -> b -> HashMap k a -> b # foldl :: (b -> a -> b) -> b -> HashMap k a -> b # foldl' :: (b -> a -> b) -> b -> HashMap k a -> b # foldr1 :: (a -> a -> a) -> HashMap k a -> a # foldl1 :: (a -> a -> a) -> HashMap k a -> a # toList :: HashMap k a -> [a] # length :: HashMap k a -> Int # elem :: Eq a => a -> HashMap k a -> Bool # maximum :: Ord a => HashMap k a -> a # minimum :: Ord a => HashMap k a -> a # | |
Foldable (Level i) | |
Defined in Control.Lens.Internal.Level Methods fold :: Monoid m => Level i m -> m # foldMap :: Monoid m => (a -> m) -> Level i a -> m # foldr :: (a -> b -> b) -> b -> Level i a -> b # foldr' :: (a -> b -> b) -> b -> Level i a -> b # foldl :: (b -> a -> b) -> b -> Level i a -> b # foldl' :: (b -> a -> b) -> b -> Level i a -> b # foldr1 :: (a -> a -> a) -> Level i a -> a # foldl1 :: (a -> a -> a) -> Level i a -> a # elem :: Eq a => a -> Level i a -> Bool # maximum :: Ord a => Level i a -> a # minimum :: Ord a => Level i a -> a # | |
Foldable f => Foldable (ListT f) | |
Defined in Control.Monad.Trans.List Methods fold :: Monoid m => ListT f m -> m # foldMap :: Monoid m => (a -> m) -> ListT f a -> m # foldr :: (a -> b -> b) -> b -> ListT f a -> b # foldr' :: (a -> b -> b) -> b -> ListT f a -> b # foldl :: (b -> a -> b) -> b -> ListT f a -> b # foldl' :: (b -> a -> b) -> b -> ListT f a -> b # foldr1 :: (a -> a -> a) -> ListT f a -> a # foldl1 :: (a -> a -> a) -> ListT f a -> a # elem :: Eq a => a -> ListT f a -> Bool # maximum :: Ord a => ListT f a -> a # minimum :: Ord a => ListT f a -> a # | |
Foldable (Layer k) Source # | |
Defined in Data.LayerStack Methods fold :: Monoid m => Layer k m -> m # foldMap :: Monoid m => (a -> m) -> Layer k a -> m # foldr :: (a -> b -> b) -> b -> Layer k a -> b # foldr' :: (a -> b -> b) -> b -> Layer k a -> b # foldl :: (b -> a -> b) -> b -> Layer k a -> b # foldl' :: (b -> a -> b) -> b -> Layer k a -> b # foldr1 :: (a -> a -> a) -> Layer k a -> a # foldl1 :: (a -> a -> a) -> Layer k a -> a # elem :: Eq a => a -> Layer k a -> Bool # maximum :: Ord a => Layer k a -> a # minimum :: Ord a => Layer k a -> a # | |
Foldable f => Foldable (Rec1 f) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Rec1 f m -> m # foldMap :: Monoid m => (a -> m) -> Rec1 f a -> m # foldr :: (a -> b -> b) -> b -> Rec1 f a -> b # foldr' :: (a -> b -> b) -> b -> Rec1 f a -> b # foldl :: (b -> a -> b) -> b -> Rec1 f a -> b # foldl' :: (b -> a -> b) -> b -> Rec1 f a -> b # foldr1 :: (a -> a -> a) -> Rec1 f a -> a # foldl1 :: (a -> a -> a) -> Rec1 f a -> a # elem :: Eq a => a -> Rec1 f a -> Bool # maximum :: Ord a => Rec1 f a -> a # minimum :: Ord a => Rec1 f a -> a # | |
Foldable (URec Char :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Char m -> m # foldMap :: Monoid m => (a -> m) -> URec Char a -> m # foldr :: (a -> b -> b) -> b -> URec Char a -> b # foldr' :: (a -> b -> b) -> b -> URec Char a -> b # foldl :: (b -> a -> b) -> b -> URec Char a -> b # foldl' :: (b -> a -> b) -> b -> URec Char a -> b # foldr1 :: (a -> a -> a) -> URec Char a -> a # foldl1 :: (a -> a -> a) -> URec Char a -> a # toList :: URec Char a -> [a] # length :: URec Char a -> Int # elem :: Eq a => a -> URec Char a -> Bool # maximum :: Ord a => URec Char a -> a # minimum :: Ord a => URec Char a -> a # | |
Foldable (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Double m -> m # foldMap :: Monoid m => (a -> m) -> URec Double a -> m # foldr :: (a -> b -> b) -> b -> URec Double a -> b # foldr' :: (a -> b -> b) -> b -> URec Double a -> b # foldl :: (b -> a -> b) -> b -> URec Double a -> b # foldl' :: (b -> a -> b) -> b -> URec Double a -> b # foldr1 :: (a -> a -> a) -> URec Double a -> a # foldl1 :: (a -> a -> a) -> URec Double a -> a # toList :: URec Double a -> [a] # null :: URec Double a -> Bool # length :: URec Double a -> Int # elem :: Eq a => a -> URec Double a -> Bool # maximum :: Ord a => URec Double a -> a # minimum :: Ord a => URec Double a -> a # | |
Foldable (URec Float :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Float m -> m # foldMap :: Monoid m => (a -> m) -> URec Float a -> m # foldr :: (a -> b -> b) -> b -> URec Float a -> b # foldr' :: (a -> b -> b) -> b -> URec Float a -> b # foldl :: (b -> a -> b) -> b -> URec Float a -> b # foldl' :: (b -> a -> b) -> b -> URec Float a -> b # foldr1 :: (a -> a -> a) -> URec Float a -> a # foldl1 :: (a -> a -> a) -> URec Float a -> a # toList :: URec Float a -> [a] # null :: URec Float a -> Bool # length :: URec Float a -> Int # elem :: Eq a => a -> URec Float a -> Bool # maximum :: Ord a => URec Float a -> a # minimum :: Ord a => URec Float a -> a # | |
Foldable (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Int m -> m # foldMap :: Monoid m => (a -> m) -> URec Int a -> m # foldr :: (a -> b -> b) -> b -> URec Int a -> b # foldr' :: (a -> b -> b) -> b -> URec Int a -> b # foldl :: (b -> a -> b) -> b -> URec Int a -> b # foldl' :: (b -> a -> b) -> b -> URec Int a -> b # foldr1 :: (a -> a -> a) -> URec Int a -> a # foldl1 :: (a -> a -> a) -> URec Int a -> a # elem :: Eq a => a -> URec Int a -> Bool # maximum :: Ord a => URec Int a -> a # minimum :: Ord a => URec Int a -> a # | |
Foldable (URec Word :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Word m -> m # foldMap :: Monoid m => (a -> m) -> URec Word a -> m # foldr :: (a -> b -> b) -> b -> URec Word a -> b # foldr' :: (a -> b -> b) -> b -> URec Word a -> b # foldl :: (b -> a -> b) -> b -> URec Word a -> b # foldl' :: (b -> a -> b) -> b -> URec Word a -> b # foldr1 :: (a -> a -> a) -> URec Word a -> a # foldl1 :: (a -> a -> a) -> URec Word a -> a # toList :: URec Word a -> [a] # length :: URec Word a -> Int # elem :: Eq a => a -> URec Word a -> Bool # maximum :: Ord a => URec Word a -> a # minimum :: Ord a => URec Word a -> a # | |
Foldable (URec (Ptr ()) :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec (Ptr ()) m -> m # foldMap :: Monoid m => (a -> m) -> URec (Ptr ()) a -> m # foldr :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b # foldr' :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b # foldl :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b # foldl' :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b # foldr1 :: (a -> a -> a) -> URec (Ptr ()) a -> a # foldl1 :: (a -> a -> a) -> URec (Ptr ()) a -> a # toList :: URec (Ptr ()) a -> [a] # null :: URec (Ptr ()) a -> Bool # length :: URec (Ptr ()) a -> Int # elem :: Eq a => a -> URec (Ptr ()) a -> Bool # maximum :: Ord a => URec (Ptr ()) a -> a # minimum :: Ord a => URec (Ptr ()) a -> a # | |
Foldable (Const m :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Functor.Const Methods fold :: Monoid m0 => Const m m0 -> m0 # foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldr :: (a -> b -> b) -> b -> Const m a -> b # foldr' :: (a -> b -> b) -> b -> Const m a -> b # foldl :: (b -> a -> b) -> b -> Const m a -> b # foldl' :: (b -> a -> b) -> b -> Const m a -> b # foldr1 :: (a -> a -> a) -> Const m a -> a # foldl1 :: (a -> a -> a) -> Const m a -> a # elem :: Eq a => a -> Const m a -> Bool # maximum :: Ord a => Const m a -> a # minimum :: Ord a => Const m a -> a # | |
Foldable f => Foldable (Ap f) | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Ap f m -> m # foldMap :: Monoid m => (a -> m) -> Ap f a -> m # foldr :: (a -> b -> b) -> b -> Ap f a -> b # foldr' :: (a -> b -> b) -> b -> Ap f a -> b # foldl :: (b -> a -> b) -> b -> Ap f a -> b # foldl' :: (b -> a -> b) -> b -> Ap f a -> b # foldr1 :: (a -> a -> a) -> Ap f a -> a # foldl1 :: (a -> a -> a) -> Ap f a -> a # elem :: Eq a => a -> Ap f a -> Bool # maximum :: Ord a => Ap f a -> a # | |
Foldable f => Foldable (Alt f) | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Alt f m -> m # foldMap :: Monoid m => (a -> m) -> Alt f a -> m # foldr :: (a -> b -> b) -> b -> Alt f a -> b # foldr' :: (a -> b -> b) -> b -> Alt f a -> b # foldl :: (b -> a -> b) -> b -> Alt f a -> b # foldl' :: (b -> a -> b) -> b -> Alt f a -> b # foldr1 :: (a -> a -> a) -> Alt f a -> a # foldl1 :: (a -> a -> a) -> Alt f a -> a # elem :: Eq a => a -> Alt f a -> Bool # maximum :: Ord a => Alt f a -> a # minimum :: Ord a => Alt f a -> a # | |
Bifoldable p => Foldable (Join p) | |
Defined in Data.Bifunctor.Join Methods fold :: Monoid m => Join p m -> m # foldMap :: Monoid m => (a -> m) -> Join p a -> m # foldr :: (a -> b -> b) -> b -> Join p a -> b # foldr' :: (a -> b -> b) -> b -> Join p a -> b # foldl :: (b -> a -> b) -> b -> Join p a -> b # foldl' :: (b -> a -> b) -> b -> Join p a -> b # foldr1 :: (a -> a -> a) -> Join p a -> a # foldl1 :: (a -> a -> a) -> Join p a -> a # elem :: Eq a => a -> Join p a -> Bool # maximum :: Ord a => Join p a -> a # minimum :: Ord a => Join p a -> a # | |
Bifoldable p => Foldable (Fix p) | |
Defined in Data.Bifunctor.Fix Methods fold :: Monoid m => Fix p m -> m # foldMap :: Monoid m => (a -> m) -> Fix p a -> m # foldr :: (a -> b -> b) -> b -> Fix p a -> b # foldr' :: (a -> b -> b) -> b -> Fix p a -> b # foldl :: (b -> a -> b) -> b -> Fix p a -> b # foldl' :: (b -> a -> b) -> b -> Fix p a -> b # foldr1 :: (a -> a -> a) -> Fix p a -> a # foldl1 :: (a -> a -> a) -> Fix p a -> a # elem :: Eq a => a -> Fix p a -> Bool # maximum :: Ord a => Fix p a -> a # minimum :: Ord a => Fix p a -> a # | |
Foldable f => Foldable (IdentityT f) | |
Defined in Control.Monad.Trans.Identity Methods fold :: Monoid m => IdentityT f m -> m # foldMap :: Monoid m => (a -> m) -> IdentityT f a -> m # foldr :: (a -> b -> b) -> b -> IdentityT f a -> b # foldr' :: (a -> b -> b) -> b -> IdentityT f a -> b # foldl :: (b -> a -> b) -> b -> IdentityT f a -> b # foldl' :: (b -> a -> b) -> b -> IdentityT f a -> b # foldr1 :: (a -> a -> a) -> IdentityT f a -> a # foldl1 :: (a -> a -> a) -> IdentityT f a -> a # toList :: IdentityT f a -> [a] # null :: IdentityT f a -> Bool # length :: IdentityT f a -> Int # elem :: Eq a => a -> IdentityT f a -> Bool # maximum :: Ord a => IdentityT f a -> a # minimum :: Ord a => IdentityT f a -> a # | |
Foldable f => Foldable (ExceptT e f) | |
Defined in Control.Monad.Trans.Except Methods fold :: Monoid m => ExceptT e f m -> m # foldMap :: Monoid m => (a -> m) -> ExceptT e f a -> m # foldr :: (a -> b -> b) -> b -> ExceptT e f a -> b # foldr' :: (a -> b -> b) -> b -> ExceptT e f a -> b # foldl :: (b -> a -> b) -> b -> ExceptT e f a -> b # foldl' :: (b -> a -> b) -> b -> ExceptT e f a -> b # foldr1 :: (a -> a -> a) -> ExceptT e f a -> a # foldl1 :: (a -> a -> a) -> ExceptT e f a -> a # toList :: ExceptT e f a -> [a] # null :: ExceptT e f a -> Bool # length :: ExceptT e f a -> Int # elem :: Eq a => a -> ExceptT e f a -> Bool # maximum :: Ord a => ExceptT e f a -> a # minimum :: Ord a => ExceptT e f a -> a # | |
Foldable f => Foldable (FreeF f a) | |
Defined in Control.Monad.Trans.Free Methods fold :: Monoid m => FreeF f a m -> m # foldMap :: Monoid m => (a0 -> m) -> FreeF f a a0 -> m # foldr :: (a0 -> b -> b) -> b -> FreeF f a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> FreeF f a a0 -> b # foldl :: (b -> a0 -> b) -> b -> FreeF f a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> FreeF f a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> FreeF f a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> FreeF f a a0 -> a0 # toList :: FreeF f a a0 -> [a0] # null :: FreeF f a a0 -> Bool # length :: FreeF f a a0 -> Int # elem :: Eq a0 => a0 -> FreeF f a a0 -> Bool # maximum :: Ord a0 => FreeF f a a0 -> a0 # minimum :: Ord a0 => FreeF f a a0 -> a0 # | |
(Foldable m, Foldable f) => Foldable (FreeT f m) | |
Defined in Control.Monad.Trans.Free Methods fold :: Monoid m0 => FreeT f m m0 -> m0 # foldMap :: Monoid m0 => (a -> m0) -> FreeT f m a -> m0 # foldr :: (a -> b -> b) -> b -> FreeT f m a -> b # foldr' :: (a -> b -> b) -> b -> FreeT f m a -> b # foldl :: (b -> a -> b) -> b -> FreeT f m a -> b # foldl' :: (b -> a -> b) -> b -> FreeT f m a -> b # foldr1 :: (a -> a -> a) -> FreeT f m a -> a # foldl1 :: (a -> a -> a) -> FreeT f m a -> a # toList :: FreeT f m a -> [a] # length :: FreeT f m a -> Int # elem :: Eq a => a -> FreeT f m a -> Bool # maximum :: Ord a => FreeT f m a -> a # minimum :: Ord a => FreeT f m a -> a # | |
Foldable f => Foldable (CofreeF f a) | |
Defined in Control.Comonad.Trans.Cofree Methods fold :: Monoid m => CofreeF f a m -> m # foldMap :: Monoid m => (a0 -> m) -> CofreeF f a a0 -> m # foldr :: (a0 -> b -> b) -> b -> CofreeF f a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> CofreeF f a a0 -> b # foldl :: (b -> a0 -> b) -> b -> CofreeF f a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> CofreeF f a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> CofreeF f a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> CofreeF f a a0 -> a0 # toList :: CofreeF f a a0 -> [a0] # null :: CofreeF f a a0 -> Bool # length :: CofreeF f a a0 -> Int # elem :: Eq a0 => a0 -> CofreeF f a a0 -> Bool # maximum :: Ord a0 => CofreeF f a a0 -> a0 # minimum :: Ord a0 => CofreeF f a a0 -> a0 # | |
(Foldable f, Foldable w) => Foldable (CofreeT f w) | |
Defined in Control.Comonad.Trans.Cofree Methods fold :: Monoid m => CofreeT f w m -> m # foldMap :: Monoid m => (a -> m) -> CofreeT f w a -> m # foldr :: (a -> b -> b) -> b -> CofreeT f w a -> b # foldr' :: (a -> b -> b) -> b -> CofreeT f w a -> b # foldl :: (b -> a -> b) -> b -> CofreeT f w a -> b # foldl' :: (b -> a -> b) -> b -> CofreeT f w a -> b # foldr1 :: (a -> a -> a) -> CofreeT f w a -> a # foldl1 :: (a -> a -> a) -> CofreeT f w a -> a # toList :: CofreeT f w a -> [a] # null :: CofreeT f w a -> Bool # length :: CofreeT f w a -> Int # elem :: Eq a => a -> CofreeT f w a -> Bool # maximum :: Ord a => CofreeT f w a -> a # minimum :: Ord a => CofreeT f w a -> a # | |
Foldable f => Foldable (ErrorT e f) | |
Defined in Control.Monad.Trans.Error Methods fold :: Monoid m => ErrorT e f m -> m # foldMap :: Monoid m => (a -> m) -> ErrorT e f a -> m # foldr :: (a -> b -> b) -> b -> ErrorT e f a -> b # foldr' :: (a -> b -> b) -> b -> ErrorT e f a -> b # foldl :: (b -> a -> b) -> b -> ErrorT e f a -> b # foldl' :: (b -> a -> b) -> b -> ErrorT e f a -> b # foldr1 :: (a -> a -> a) -> ErrorT e f a -> a # foldl1 :: (a -> a -> a) -> ErrorT e f a -> a # toList :: ErrorT e f a -> [a] # null :: ErrorT e f a -> Bool # length :: ErrorT e f a -> Int # elem :: Eq a => a -> ErrorT e f a -> Bool # maximum :: Ord a => ErrorT e f a -> a # minimum :: Ord a => ErrorT e f a -> a # | |
Foldable f => Foldable (Backwards f) | Derived instance. |
Defined in Control.Applicative.Backwards Methods fold :: Monoid m => Backwards f m -> m # foldMap :: Monoid m => (a -> m) -> Backwards f a -> m # foldr :: (a -> b -> b) -> b -> Backwards f a -> b # foldr' :: (a -> b -> b) -> b -> Backwards f a -> b # foldl :: (b -> a -> b) -> b -> Backwards f a -> b # foldl' :: (b -> a -> b) -> b -> Backwards f a -> b # foldr1 :: (a -> a -> a) -> Backwards f a -> a # foldl1 :: (a -> a -> a) -> Backwards f a -> a # toList :: Backwards f a -> [a] # null :: Backwards f a -> Bool # length :: Backwards f a -> Int # elem :: Eq a => a -> Backwards f a -> Bool # maximum :: Ord a => Backwards f a -> a # minimum :: Ord a => Backwards f a -> a # | |
Foldable f => Foldable (AlongsideLeft f b) | |
Defined in Control.Lens.Internal.Getter Methods fold :: Monoid m => AlongsideLeft f b m -> m # foldMap :: Monoid m => (a -> m) -> AlongsideLeft f b a -> m # foldr :: (a -> b0 -> b0) -> b0 -> AlongsideLeft f b a -> b0 # foldr' :: (a -> b0 -> b0) -> b0 -> AlongsideLeft f b a -> b0 # foldl :: (b0 -> a -> b0) -> b0 -> AlongsideLeft f b a -> b0 # foldl' :: (b0 -> a -> b0) -> b0 -> AlongsideLeft f b a -> b0 # foldr1 :: (a -> a -> a) -> AlongsideLeft f b a -> a # foldl1 :: (a -> a -> a) -> AlongsideLeft f b a -> a # toList :: AlongsideLeft f b a -> [a] # null :: AlongsideLeft f b a -> Bool # length :: AlongsideLeft f b a -> Int # elem :: Eq a => a -> AlongsideLeft f b a -> Bool # maximum :: Ord a => AlongsideLeft f b a -> a # minimum :: Ord a => AlongsideLeft f b a -> a # sum :: Num a => AlongsideLeft f b a -> a # product :: Num a => AlongsideLeft f b a -> a # | |
Foldable f => Foldable (AlongsideRight f a) | |
Defined in Control.Lens.Internal.Getter Methods fold :: Monoid m => AlongsideRight f a m -> m # foldMap :: Monoid m => (a0 -> m) -> AlongsideRight f a a0 -> m # foldr :: (a0 -> b -> b) -> b -> AlongsideRight f a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> AlongsideRight f a a0 -> b # foldl :: (b -> a0 -> b) -> b -> AlongsideRight f a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> AlongsideRight f a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> AlongsideRight f a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> AlongsideRight f a a0 -> a0 # toList :: AlongsideRight f a a0 -> [a0] # null :: AlongsideRight f a a0 -> Bool # length :: AlongsideRight f a a0 -> Int # elem :: Eq a0 => a0 -> AlongsideRight f a a0 -> Bool # maximum :: Ord a0 => AlongsideRight f a a0 -> a0 # minimum :: Ord a0 => AlongsideRight f a a0 -> a0 # sum :: Num a0 => AlongsideRight f a a0 -> a0 # product :: Num a0 => AlongsideRight f a a0 -> a0 # | |
Foldable f => Foldable (WriterT w f) | |
Defined in Control.Monad.Trans.Writer.Lazy Methods fold :: Monoid m => WriterT w f m -> m # foldMap :: Monoid m => (a -> m) -> WriterT w f a -> m # foldr :: (a -> b -> b) -> b -> WriterT w f a -> b # foldr' :: (a -> b -> b) -> b -> WriterT w f a -> b # foldl :: (b -> a -> b) -> b -> WriterT w f a -> b # foldl' :: (b -> a -> b) -> b -> WriterT w f a -> b # foldr1 :: (a -> a -> a) -> WriterT w f a -> a # foldl1 :: (a -> a -> a) -> WriterT w f a -> a # toList :: WriterT w f a -> [a] # null :: WriterT w f a -> Bool # length :: WriterT w f a -> Int # elem :: Eq a => a -> WriterT w f a -> Bool # maximum :: Ord a => WriterT w f a -> a # minimum :: Ord a => WriterT w f a -> a # | |
Foldable f => Foldable (WriterT w f) | |
Defined in Control.Monad.Trans.Writer.Strict Methods fold :: Monoid m => WriterT w f m -> m # foldMap :: Monoid m => (a -> m) -> WriterT w f a -> m # foldr :: (a -> b -> b) -> b -> WriterT w f a -> b # foldr' :: (a -> b -> b) -> b -> WriterT w f a -> b # foldl :: (b -> a -> b) -> b -> WriterT w f a -> b # foldl' :: (b -> a -> b) -> b -> WriterT w f a -> b # foldr1 :: (a -> a -> a) -> WriterT w f a -> a # foldl1 :: (a -> a -> a) -> WriterT w f a -> a # toList :: WriterT w f a -> [a] # null :: WriterT w f a -> Bool # length :: WriterT w f a -> Int # elem :: Eq a => a -> WriterT w f a -> Bool # maximum :: Ord a => WriterT w f a -> a # minimum :: Ord a => WriterT w f a -> a # | |
Foldable (Forget r a) | |
Defined in Data.Profunctor.Types Methods fold :: Monoid m => Forget r a m -> m # foldMap :: Monoid m => (a0 -> m) -> Forget r a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Forget r a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Forget r a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Forget r a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Forget r a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Forget r a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Forget r a a0 -> a0 # toList :: Forget r a a0 -> [a0] # null :: Forget r a a0 -> Bool # length :: Forget r a a0 -> Int # elem :: Eq a0 => a0 -> Forget r a a0 -> Bool # maximum :: Ord a0 => Forget r a a0 -> a0 # minimum :: Ord a0 => Forget r a a0 -> a0 # | |
Foldable (Tagged s) | |
Defined in Data.Tagged Methods fold :: Monoid m => Tagged s m -> m # foldMap :: Monoid m => (a -> m) -> Tagged s a -> m # foldr :: (a -> b -> b) -> b -> Tagged s a -> b # foldr' :: (a -> b -> b) -> b -> Tagged s a -> b # foldl :: (b -> a -> b) -> b -> Tagged s a -> b # foldl' :: (b -> a -> b) -> b -> Tagged s a -> b # foldr1 :: (a -> a -> a) -> Tagged s a -> a # foldl1 :: (a -> a -> a) -> Tagged s a -> a # elem :: Eq a => a -> Tagged s a -> Bool # maximum :: Ord a => Tagged s a -> a # minimum :: Ord a => Tagged s a -> a # | |
Foldable (K1 i c :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => K1 i c m -> m # foldMap :: Monoid m => (a -> m) -> K1 i c a -> m # foldr :: (a -> b -> b) -> b -> K1 i c a -> b # foldr' :: (a -> b -> b) -> b -> K1 i c a -> b # foldl :: (b -> a -> b) -> b -> K1 i c a -> b # foldl' :: (b -> a -> b) -> b -> K1 i c a -> b # foldr1 :: (a -> a -> a) -> K1 i c a -> a # foldl1 :: (a -> a -> a) -> K1 i c a -> a # elem :: Eq a => a -> K1 i c a -> Bool # maximum :: Ord a => K1 i c a -> a # minimum :: Ord a => K1 i c a -> a # | |
(Foldable f, Foldable g) => Foldable (f :+: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :+: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :+: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldr1 :: (a -> a -> a) -> (f :+: g) a -> a # foldl1 :: (a -> a -> a) -> (f :+: g) a -> a # toList :: (f :+: g) a -> [a] # length :: (f :+: g) a -> Int # elem :: Eq a => a -> (f :+: g) a -> Bool # maximum :: Ord a => (f :+: g) a -> a # minimum :: Ord a => (f :+: g) a -> a # | |
(Foldable f, Foldable g) => Foldable (f :*: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :*: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :*: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldr1 :: (a -> a -> a) -> (f :*: g) a -> a # foldl1 :: (a -> a -> a) -> (f :*: g) a -> a # toList :: (f :*: g) a -> [a] # length :: (f :*: g) a -> Int # elem :: Eq a => a -> (f :*: g) a -> Bool # maximum :: Ord a => (f :*: g) a -> a # minimum :: Ord a => (f :*: g) a -> a # | |
(Foldable f, Foldable g) => Foldable (Product f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product Methods fold :: Monoid m => Product f g m -> m # foldMap :: Monoid m => (a -> m) -> Product f g a -> m # foldr :: (a -> b -> b) -> b -> Product f g a -> b # foldr' :: (a -> b -> b) -> b -> Product f g a -> b # foldl :: (b -> a -> b) -> b -> Product f g a -> b # foldl' :: (b -> a -> b) -> b -> Product f g a -> b # foldr1 :: (a -> a -> a) -> Product f g a -> a # foldl1 :: (a -> a -> a) -> Product f g a -> a # toList :: Product f g a -> [a] # null :: Product f g a -> Bool # length :: Product f g a -> Int # elem :: Eq a => a -> Product f g a -> Bool # maximum :: Ord a => Product f g a -> a # minimum :: Ord a => Product f g a -> a # | |
(Foldable f, Foldable g) => Foldable (Sum f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Sum Methods fold :: Monoid m => Sum f g m -> m # foldMap :: Monoid m => (a -> m) -> Sum f g a -> m # foldr :: (a -> b -> b) -> b -> Sum f g a -> b # foldr' :: (a -> b -> b) -> b -> Sum f g a -> b # foldl :: (b -> a -> b) -> b -> Sum f g a -> b # foldl' :: (b -> a -> b) -> b -> Sum f g a -> b # foldr1 :: (a -> a -> a) -> Sum f g a -> a # foldl1 :: (a -> a -> a) -> Sum f g a -> a # elem :: Eq a => a -> Sum f g a -> Bool # maximum :: Ord a => Sum f g a -> a # minimum :: Ord a => Sum f g a -> a # | |
Foldable (Magma i t b) | |
Defined in Control.Lens.Internal.Magma Methods fold :: Monoid m => Magma i t b m -> m # foldMap :: Monoid m => (a -> m) -> Magma i t b a -> m # foldr :: (a -> b0 -> b0) -> b0 -> Magma i t b a -> b0 # foldr' :: (a -> b0 -> b0) -> b0 -> Magma i t b a -> b0 # foldl :: (b0 -> a -> b0) -> b0 -> Magma i t b a -> b0 # foldl' :: (b0 -> a -> b0) -> b0 -> Magma i t b a -> b0 # foldr1 :: (a -> a -> a) -> Magma i t b a -> a # foldl1 :: (a -> a -> a) -> Magma i t b a -> a # toList :: Magma i t b a -> [a] # null :: Magma i t b a -> Bool # length :: Magma i t b a -> Int # elem :: Eq a => a -> Magma i t b a -> Bool # maximum :: Ord a => Magma i t b a -> a # minimum :: Ord a => Magma i t b a -> a # | |
Foldable f => Foldable (M1 i c f) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => M1 i c f m -> m # foldMap :: Monoid m => (a -> m) -> M1 i c f a -> m # foldr :: (a -> b -> b) -> b -> M1 i c f a -> b # foldr' :: (a -> b -> b) -> b -> M1 i c f a -> b # foldl :: (b -> a -> b) -> b -> M1 i c f a -> b # foldl' :: (b -> a -> b) -> b -> M1 i c f a -> b # foldr1 :: (a -> a -> a) -> M1 i c f a -> a # foldl1 :: (a -> a -> a) -> M1 i c f a -> a # elem :: Eq a => a -> M1 i c f a -> Bool # maximum :: Ord a => M1 i c f a -> a # minimum :: Ord a => M1 i c f a -> a # | |
(Foldable f, Foldable g) => Foldable (f :.: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :.: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :.: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldr1 :: (a -> a -> a) -> (f :.: g) a -> a # foldl1 :: (a -> a -> a) -> (f :.: g) a -> a # toList :: (f :.: g) a -> [a] # length :: (f :.: g) a -> Int # elem :: Eq a => a -> (f :.: g) a -> Bool # maximum :: Ord a => (f :.: g) a -> a # minimum :: Ord a => (f :.: g) a -> a # | |
(Foldable f, Foldable g) => Foldable (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose Methods fold :: Monoid m => Compose f g m -> m # foldMap :: Monoid m => (a -> m) -> Compose f g a -> m # foldr :: (a -> b -> b) -> b -> Compose f g a -> b # foldr' :: (a -> b -> b) -> b -> Compose f g a -> b # foldl :: (b -> a -> b) -> b -> Compose f g a -> b # foldl' :: (b -> a -> b) -> b -> Compose f g a -> b # foldr1 :: (a -> a -> a) -> Compose f g a -> a # foldl1 :: (a -> a -> a) -> Compose f g a -> a # toList :: Compose f g a -> [a] # null :: Compose f g a -> Bool # length :: Compose f g a -> Int # elem :: Eq a => a -> Compose f g a -> Bool # maximum :: Ord a => Compose f g a -> a # minimum :: Ord a => Compose f g a -> a # | |
Bifoldable p => Foldable (WrappedBifunctor p a) | |
Defined in Data.Bifunctor.Wrapped Methods fold :: Monoid m => WrappedBifunctor p a m -> m # foldMap :: Monoid m => (a0 -> m) -> WrappedBifunctor p a a0 -> m # foldr :: (a0 -> b -> b) -> b -> WrappedBifunctor p a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> WrappedBifunctor p a a0 -> b # foldl :: (b -> a0 -> b) -> b -> WrappedBifunctor p a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> WrappedBifunctor p a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> WrappedBifunctor p a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> WrappedBifunctor p a a0 -> a0 # toList :: WrappedBifunctor p a a0 -> [a0] # null :: WrappedBifunctor p a a0 -> Bool # length :: WrappedBifunctor p a a0 -> Int # elem :: Eq a0 => a0 -> WrappedBifunctor p a a0 -> Bool # maximum :: Ord a0 => WrappedBifunctor p a a0 -> a0 # minimum :: Ord a0 => WrappedBifunctor p a a0 -> a0 # sum :: Num a0 => WrappedBifunctor p a a0 -> a0 # product :: Num a0 => WrappedBifunctor p a a0 -> a0 # | |
Foldable g => Foldable (Joker g a) | |
Defined in Data.Bifunctor.Joker Methods fold :: Monoid m => Joker g a m -> m # foldMap :: Monoid m => (a0 -> m) -> Joker g a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Joker g a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Joker g a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Joker g a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Joker g a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Joker g a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Joker g a a0 -> a0 # toList :: Joker g a a0 -> [a0] # null :: Joker g a a0 -> Bool # length :: Joker g a a0 -> Int # elem :: Eq a0 => a0 -> Joker g a a0 -> Bool # maximum :: Ord a0 => Joker g a a0 -> a0 # minimum :: Ord a0 => Joker g a a0 -> a0 # | |
Bifoldable p => Foldable (Flip p a) | |
Defined in Data.Bifunctor.Flip Methods fold :: Monoid m => Flip p a m -> m # foldMap :: Monoid m => (a0 -> m) -> Flip p a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Flip p a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Flip p a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Flip p a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Flip p a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Flip p a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Flip p a a0 -> a0 # toList :: Flip p a a0 -> [a0] # length :: Flip p a a0 -> Int # elem :: Eq a0 => a0 -> Flip p a a0 -> Bool # maximum :: Ord a0 => Flip p a a0 -> a0 # minimum :: Ord a0 => Flip p a a0 -> a0 # | |
Foldable (Clown f a :: Type -> Type) | |
Defined in Data.Bifunctor.Clown Methods fold :: Monoid m => Clown f a m -> m # foldMap :: Monoid m => (a0 -> m) -> Clown f a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Clown f a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Clown f a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Clown f a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Clown f a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Clown f a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Clown f a a0 -> a0 # toList :: Clown f a a0 -> [a0] # null :: Clown f a a0 -> Bool # length :: Clown f a a0 -> Int # elem :: Eq a0 => a0 -> Clown f a a0 -> Bool # maximum :: Ord a0 => Clown f a a0 -> a0 # minimum :: Ord a0 => Clown f a a0 -> a0 # | |
(Foldable f, Bifoldable p) => Foldable (Tannen f p a) | |
Defined in Data.Bifunctor.Tannen Methods fold :: Monoid m => Tannen f p a m -> m # foldMap :: Monoid m => (a0 -> m) -> Tannen f p a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Tannen f p a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Tannen f p a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Tannen f p a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Tannen f p a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Tannen f p a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Tannen f p a a0 -> a0 # toList :: Tannen f p a a0 -> [a0] # null :: Tannen f p a a0 -> Bool # length :: Tannen f p a a0 -> Int # elem :: Eq a0 => a0 -> Tannen f p a a0 -> Bool # maximum :: Ord a0 => Tannen f p a a0 -> a0 # minimum :: Ord a0 => Tannen f p a a0 -> a0 # | |
(Bifoldable p, Foldable g) => Foldable (Biff p f g a) | |
Defined in Data.Bifunctor.Biff Methods fold :: Monoid m => Biff p f g a m -> m # foldMap :: Monoid m => (a0 -> m) -> Biff p f g a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Biff p f g a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Biff p f g a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Biff p f g a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Biff p f g a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Biff p f g a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Biff p f g a a0 -> a0 # toList :: Biff p f g a a0 -> [a0] # null :: Biff p f g a a0 -> Bool # length :: Biff p f g a a0 -> Int # elem :: Eq a0 => a0 -> Biff p f g a a0 -> Bool # maximum :: Ord a0 => Biff p f g a a0 -> a0 # minimum :: Ord a0 => Biff p f g a a0 -> a0 # |
class (Functor t, Foldable t) => Traversable (t :: Type -> Type) where #
Functors representing data structures that can be traversed from left to right.
A definition of traverse
must satisfy the following laws:
- naturality
t .
for every applicative transformationtraverse
f =traverse
(t . f)t
- identity
traverse
Identity = Identity- composition
traverse
(Compose .fmap
g . f) = Compose .fmap
(traverse
g) .traverse
f
A definition of sequenceA
must satisfy the following laws:
- naturality
t .
for every applicative transformationsequenceA
=sequenceA
.fmap
tt
- identity
sequenceA
.fmap
Identity = Identity- composition
sequenceA
.fmap
Compose = Compose .fmap
sequenceA
.sequenceA
where an applicative transformation is a function
t :: (Applicative f, Applicative g) => f a -> g a
preserving the Applicative
operations, i.e.
and the identity functor Identity
and composition of functors Compose
are defined as
newtype Identity a = Identity a instance Functor Identity where fmap f (Identity x) = Identity (f x) instance Applicative Identity where pure x = Identity x Identity f <*> Identity x = Identity (f x) newtype Compose f g a = Compose (f (g a)) instance (Functor f, Functor g) => Functor (Compose f g) where fmap f (Compose x) = Compose (fmap (fmap f) x) instance (Applicative f, Applicative g) => Applicative (Compose f g) where pure x = Compose (pure (pure x)) Compose f <*> Compose x = Compose ((<*>) <$> f <*> x)
(The naturality law is implied by parametricity.)
Instances are similar to Functor
, e.g. given a data type
data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)
a suitable instance would be
instance Traversable Tree where traverse f Empty = pure Empty traverse f (Leaf x) = Leaf <$> f x traverse f (Node l k r) = Node <$> traverse f l <*> f k <*> traverse f r
This is suitable even for abstract types, as the laws for <*>
imply a form of associativity.
The superclass instances should satisfy the following:
- In the
Functor
instance,fmap
should be equivalent to traversal with the identity applicative functor (fmapDefault
). - In the
Foldable
instance,foldMap
should be equivalent to traversal with a constant applicative functor (foldMapDefault
).
Methods
traverse :: Applicative f => (a -> f b) -> t a -> f (t b) #
Map each element of a structure to an action, evaluate these actions
from left to right, and collect the results. For a version that ignores
the results see traverse_
.
sequenceA :: Applicative f => t (f a) -> f (t a) #
Evaluate each action in the structure from left to right, and
collect the results. For a version that ignores the results
see sequenceA_
.
mapM :: Monad m => (a -> m b) -> t a -> m (t b) #
Map each element of a structure to a monadic action, evaluate
these actions from left to right, and collect the results. For
a version that ignores the results see mapM_
.
sequence :: Monad m => t (m a) -> m (t a) #
Evaluate each monadic action in the structure from left to
right, and collect the results. For a version that ignores the
results see sequence_
.
Instances
Representable types of kind *
.
This class is derivable in GHC with the DeriveGeneric
flag on.
A Generic
instance must satisfy the following laws:
from
.to
≡id
to
.from
≡id
Instances
The class of semigroups (types with an associative binary operation).
Instances should satisfy the associativity law:
Since: base-4.9.0.0
Instances
class Semigroup a => Monoid a where #
The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following laws:
x
<>
mempty
= xmempty
<>
x = xx
(<>
(y<>
z) = (x<>
y)<>
zSemigroup
law)mconcat
=foldr
'(<>)'mempty
The method names refer to the monoid of lists under concatenation, but there are many other instances.
Some types can be viewed as a monoid in more than one way,
e.g. both addition and multiplication on numbers.
In such cases we often define newtype
s and make those instances
of Monoid
, e.g. Sum
and Product
.
NOTE: Semigroup
is a superclass of Monoid
since base-4.11.0.0.
Minimal complete definition
Methods
Identity of mappend
An associative operation
NOTE: This method is redundant and has the default
implementation
since base-4.11.0.0.mappend
= '(<>)'
Fold a list using the monoid.
For most types, the default definition for mconcat
will be
used, but the function is included in the class definition so
that an optimized version can be provided for specific types.
Instances
Monoid Ordering | Since: base-2.1 |
Monoid () | Since: base-2.1 |
Monoid All | Since: base-2.1 |
Monoid Any | Since: base-2.1 |
Monoid ShortByteString | |
Defined in Data.ByteString.Short.Internal Methods mappend :: ShortByteString -> ShortByteString -> ShortByteString # mconcat :: [ShortByteString] -> ShortByteString # | |
Monoid ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods mempty :: ByteString # mappend :: ByteString -> ByteString -> ByteString # mconcat :: [ByteString] -> ByteString # | |
Monoid ByteString | |
Defined in Data.ByteString.Internal Methods mempty :: ByteString # mappend :: ByteString -> ByteString -> ByteString # mconcat :: [ByteString] -> ByteString # | |
Monoid Builder | |
Monoid IntSet | |
Monoid PrefsMod | |
Monoid ParseError | |
Defined in Options.Applicative.Types Methods mempty :: ParseError # mappend :: ParseError -> ParseError -> ParseError # mconcat :: [ParseError] -> ParseError # | |
Monoid Completer | |
Monoid ParserHelp | |
Defined in Options.Applicative.Help.Types Methods mempty :: ParserHelp # mappend :: ParserHelp -> ParserHelp -> ParserHelp # mconcat :: [ParserHelp] -> ParserHelp # | |
Monoid Doc | |
Monoid ByteArray | |
Monoid LogFunc |
Since: rio-0.0.0.0 |
Monoid Utf8Builder | |
Defined in RIO.Prelude.Display Methods mempty :: Utf8Builder # mappend :: Utf8Builder -> Utf8Builder -> Utf8Builder # mconcat :: [Utf8Builder] -> Utf8Builder # | |
Monoid Catch Source # | |
Monoid [a] | Since: base-2.1 |
Semigroup a => Monoid (Maybe a) | Lift a semigroup into Since 4.11.0: constraint on inner Since: base-2.1 |
Monoid a => Monoid (IO a) | Since: base-4.9.0.0 |
Monoid p => Monoid (Par1 p) | Since: base-4.12.0.0 |
(Semigroup a, Monoid a) => Monoid (Concurrently a) | Since: async-2.1.0 |
Defined in Control.Concurrent.Async Methods mempty :: Concurrently a # mappend :: Concurrently a -> Concurrently a -> Concurrently a # mconcat :: [Concurrently a] -> Concurrently a # | |
Monoid (Predicate a) | |
Monoid (Comparison a) | |
Defined in Data.Functor.Contravariant Methods mempty :: Comparison a # mappend :: Comparison a -> Comparison a -> Comparison a # mconcat :: [Comparison a] -> Comparison a # | |
Monoid (Equivalence a) | |
Defined in Data.Functor.Contravariant Methods mempty :: Equivalence a # mappend :: Equivalence a -> Equivalence a -> Equivalence a # mconcat :: [Equivalence a] -> Equivalence a # | |
(Ord a, Bounded a) => Monoid (Min a) | Since: base-4.9.0.0 |
(Ord a, Bounded a) => Monoid (Max a) | Since: base-4.9.0.0 |
Monoid m => Monoid (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods mempty :: WrappedMonoid m # mappend :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # mconcat :: [WrappedMonoid m] -> WrappedMonoid m # | |
Semigroup a => Monoid (Option a) | Since: base-4.9.0.0 |
Monoid a => Monoid (Identity a) | Since: base-4.9.0.0 |
Monoid (First a) | Since: base-2.1 |
Monoid (Last a) | Since: base-2.1 |
Monoid a => Monoid (Dual a) | Since: base-2.1 |
Monoid (Endo a) | Since: base-2.1 |
Num a => Monoid (Sum a) | Since: base-2.1 |
Num a => Monoid (Product a) | Since: base-2.1 |
Monoid a => Monoid (Down a) | Since: base-4.11.0.0 |
Monoid (IntMap a) | |
Monoid (Seq a) | |
Ord a => Monoid (Set a) | |
Prim a => Monoid (Vector a) | |
Storable a => Monoid (Vector a) | |
(Hashable a, Eq a) => Monoid (HashSet a) | O(n+m) To obtain good performance, the smaller set must be presented as the first argument. Examples
|
Monoid (Vector a) | |
Ord a => Monoid (Min a) | |
Ord a => Monoid (Max a) | |
Monoid (Leftmost a) | |
Monoid (Rightmost a) | |
Monoid (Hints t) | |
Monoid a => Monoid (May a) | |
Monoid (InfoMod a) | |
Monoid (DefaultProp a) | |
Defined in Options.Applicative.Builder.Internal Methods mempty :: DefaultProp a # mappend :: DefaultProp a -> DefaultProp a -> DefaultProp a # mconcat :: [DefaultProp a] -> DefaultProp a # | |
Monoid (Doc a) | |
Monoid (PrimArray a) | Since: primitive-0.6.4.0 |
Monoid (SmallArray a) | |
Defined in Data.Primitive.SmallArray Methods mempty :: SmallArray a # mappend :: SmallArray a -> SmallArray a -> SmallArray a # mconcat :: [SmallArray a] -> SmallArray a # | |
Monoid (Array a) | |
Monoid (GLogFunc msg) |
Since: rio-0.1.13.0 |
Monoid (MergeSet a) | |
Monoid b => Monoid (a -> b) | Since: base-2.1 |
Monoid (U1 p) | Since: base-4.12.0.0 |
(Monoid a, Monoid b) => Monoid (a, b) | Since: base-2.1 |
Monoid a => Monoid (Op a b) | |
Monoid a => Monoid (ST s a) | Since: base-4.11.0.0 |
Monoid (Proxy s) | Since: base-4.7.0.0 |
Ord k => Monoid (Map k v) | |
(Eq k, Hashable k) => Monoid (HashMap k v) | If a key occurs in both maps, the mapping from the first will be the mapping in the result. Examples
|
Monoid (ReifiedFold s a) | |
Defined in Control.Lens.Reified Methods mempty :: ReifiedFold s a # mappend :: ReifiedFold s a -> ReifiedFold s a -> ReifiedFold s a # mconcat :: [ReifiedFold s a] -> ReifiedFold s a # | |
Monoid (Deepening i a) | This is an illegal |
Monoid (f a) => Monoid (Indexing f a) |
|
(Contravariant f, Applicative f) => Monoid (Folding f a) | |
Applicative f => Monoid (Traversed a f) | |
(Apply f, Applicative f) => Monoid (TraversedF a f) | |
Defined in Control.Lens.Internal.Fold Methods mempty :: TraversedF a f # mappend :: TraversedF a f -> TraversedF a f -> TraversedF a f # mconcat :: [TraversedF a f] -> TraversedF a f # | |
Monad m => Monoid (Sequenced a m) | |
(Stream s, Ord e) => Monoid (ParseError s e) | |
Defined in Text.Megaparsec.Error Methods mempty :: ParseError s e # mappend :: ParseError s e -> ParseError s e -> ParseError s e # mconcat :: [ParseError s e] -> ParseError s e # | |
Monoid a => Monoid (Err e a) | |
Monoid (Mod f a) | |
(Monoid a, MonadUnliftIO m) => Monoid (Conc m a) | Since: unliftio-0.2.9.0 |
(Semigroup a, Monoid a, MonadUnliftIO m) => Monoid (Concurrently m a) | Since: unliftio-0.1.0.0 |
Defined in UnliftIO.Internals.Async Methods mempty :: Concurrently m a # mappend :: Concurrently m a -> Concurrently m a -> Concurrently m a # mconcat :: [Concurrently m a] -> Concurrently m a # | |
Monoid a => Monoid (RIO env a) | |
CanMM k v => Monoid (MultiMap k v) Source # | |
Monoid (f p) => Monoid (Rec1 f p) | Since: base-4.12.0.0 |
(Monoid a, Monoid b, Monoid c) => Monoid (a, b, c) | Since: base-2.1 |
Monoid a => Monoid (Const a b) | Since: base-4.9.0.0 |
(Applicative f, Monoid a) => Monoid (Ap f a) | Since: base-4.12.0.0 |
Alternative f => Monoid (Alt f a) | Since: base-4.8.0.0 |
Monoid (ReifiedIndexedFold i s a) | |
Defined in Control.Lens.Reified Methods mempty :: ReifiedIndexedFold i s a # mappend :: ReifiedIndexedFold i s a -> ReifiedIndexedFold i s a -> ReifiedIndexedFold i s a # mconcat :: [ReifiedIndexedFold i s a] -> ReifiedIndexedFold i s a # | |
(Monad m, Monoid r) => Monoid (Effect m r a) | |
ArrowPlus p => Monoid (Tambara p a b) | |
Reifies s (ReifiedMonoid a) => Monoid (ReflectedMonoid a s) | |
Defined in Data.Reflection Methods mempty :: ReflectedMonoid a s # mappend :: ReflectedMonoid a s -> ReflectedMonoid a s -> ReflectedMonoid a s # mconcat :: [ReflectedMonoid a s] -> ReflectedMonoid a s # | |
(Semigroup a, Monoid a) => Monoid (Tagged s a) | |
Monoid c => Monoid (K1 i c p) | Since: base-4.12.0.0 |
(Monoid (f p), Monoid (g p)) => Monoid ((f :*: g) p) | Since: base-4.12.0.0 |
(Monoid a, Monoid b, Monoid c, Monoid d) => Monoid (a, b, c, d) | Since: base-2.1 |
(Stream s, Monoid a) => Monoid (ParsecT e s m a) | Since: megaparsec-5.3.0 |
Monoid (f p) => Monoid (M1 i c f p) | Since: base-4.12.0.0 |
Monoid (f (g p)) => Monoid ((f :.: g) p) | Since: base-4.12.0.0 |
(Monoid a, Monoid b, Monoid c, Monoid d, Monoid e) => Monoid (a, b, c, d, e) | Since: base-2.1 |
Contravariant g => Monoid (BazaarT p g a b t) | |
Instances
The character type Char
is an enumeration whose values represent
Unicode (or equivalently ISO/IEC 10646) code points (i.e. characters, see
http://www.unicode.org/ for details). This set extends the ISO 8859-1
(Latin-1) character set (the first 256 characters), which is itself an extension
of the ASCII character set (the first 128 characters). A character literal in
Haskell has type Char
.
To convert a Char
to or from the corresponding Int
value defined
by Unicode, use toEnum
and fromEnum
from the
Enum
class respectively (or equivalently ord
and chr
).
Instances
Double-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE double-precision type.
Instances
Eq Double | Note that due to the presence of
Also note that
|
Floating Double | Since: base-2.1 |
Data Double | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Double -> c Double # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Double # toConstr :: Double -> Constr # dataTypeOf :: Double -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Double) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Double) # gmapT :: (forall b. Data b => b -> b) -> Double -> Double # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r # gmapQ :: (forall d. Data d => d -> u) -> Double -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Double -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Double -> m Double # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double # | |
Ord Double | Note that due to the presence of
Also note that, due to the same,
|
Read Double | Since: base-2.1 |
RealFloat Double | Since: base-2.1 |
Defined in GHC.Float Methods floatRadix :: Double -> Integer # floatDigits :: Double -> Int # floatRange :: Double -> (Int, Int) # decodeFloat :: Double -> (Integer, Int) # encodeFloat :: Integer -> Int -> Double # significand :: Double -> Double # scaleFloat :: Int -> Double -> Double # isInfinite :: Double -> Bool # isDenormalized :: Double -> Bool # isNegativeZero :: Double -> Bool # | |
Lift Double | |
Storable Double | Since: base-2.1 |
Serialize Double | |
NFData Double | |
Defined in Control.DeepSeq | |
Hashable Double | Note: prior to The Since: hashable-1.3.0.0 |
Defined in Data.Hashable.Class | |
Prim Double | |
Defined in Data.Primitive.Types Methods alignment# :: Double -> Int# # indexByteArray# :: ByteArray# -> Int# -> Double # readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Double#) # writeByteArray# :: MutableByteArray# s -> Int# -> Double -> State# s -> State# s # setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Double -> State# s -> State# s # indexOffAddr# :: Addr# -> Int# -> Double # readOffAddr# :: Addr# -> Int# -> State# s -> (#State# s, Double#) # writeOffAddr# :: Addr# -> Int# -> Double -> State# s -> State# s # setOffAddr# :: Addr# -> Int# -> Int# -> Double -> State# s -> State# s # | |
Unbox Double | |
Defined in Data.Vector.Unboxed.Base | |
Display Double | |
Defined in RIO.Prelude.Display | |
IArray UArray Double | |
Defined in Data.Array.Base Methods bounds :: Ix i => UArray i Double -> (i, i) # numElements :: Ix i => UArray i Double -> Int unsafeArray :: Ix i => (i, i) -> [(Int, Double)] -> UArray i Double unsafeAt :: Ix i => UArray i Double -> Int -> Double unsafeReplace :: Ix i => UArray i Double -> [(Int, Double)] -> UArray i Double unsafeAccum :: Ix i => (Double -> e' -> Double) -> UArray i Double -> [(Int, e')] -> UArray i Double unsafeAccumArray :: Ix i => (Double -> e' -> Double) -> Double -> (i, i) -> [(Int, e')] -> UArray i Double | |
Vector Vector Double | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: PrimMonad m => Mutable Vector (PrimState m) Double -> m (Vector Double) # basicUnsafeThaw :: PrimMonad m => Vector Double -> m (Mutable Vector (PrimState m) Double) # basicLength :: Vector Double -> Int # basicUnsafeSlice :: Int -> Int -> Vector Double -> Vector Double # basicUnsafeIndexM :: Monad m => Vector Double -> Int -> m Double # basicUnsafeCopy :: PrimMonad m => Mutable Vector (PrimState m) Double -> Vector Double -> m () # | |
MVector MVector Double | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Double -> Int # basicUnsafeSlice :: Int -> Int -> MVector s Double -> MVector s Double # basicOverlaps :: MVector s Double -> MVector s Double -> Bool # basicUnsafeNew :: PrimMonad m => Int -> m (MVector (PrimState m) Double) # basicInitialize :: PrimMonad m => MVector (PrimState m) Double -> m () # basicUnsafeReplicate :: PrimMonad m => Int -> Double -> m (MVector (PrimState m) Double) # basicUnsafeRead :: PrimMonad m => MVector (PrimState m) Double -> Int -> m Double # basicUnsafeWrite :: PrimMonad m => MVector (PrimState m) Double -> Int -> Double -> m () # basicClear :: PrimMonad m => MVector (PrimState m) Double -> m () # basicSet :: PrimMonad m => MVector (PrimState m) Double -> Double -> m () # basicUnsafeCopy :: PrimMonad m => MVector (PrimState m) Double -> MVector (PrimState m) Double -> m () # basicUnsafeMove :: PrimMonad m => MVector (PrimState m) Double -> MVector (PrimState m) Double -> m () # basicUnsafeGrow :: PrimMonad m => MVector (PrimState m) Double -> Int -> m (MVector (PrimState m) Double) # | |
Generic1 (URec Double :: k -> Type) | |
MArray (STUArray s) Double (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Double -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Double -> ST s Int newArray :: Ix i => (i, i) -> Double -> ST s (STUArray s i Double) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Double) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Double) unsafeRead :: Ix i => STUArray s i Double -> Int -> ST s Double unsafeWrite :: Ix i => STUArray s i Double -> Int -> Double -> ST s () | |
Functor (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
Foldable (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Double m -> m # foldMap :: Monoid m => (a -> m) -> URec Double a -> m # foldr :: (a -> b -> b) -> b -> URec Double a -> b # foldr' :: (a -> b -> b) -> b -> URec Double a -> b # foldl :: (b -> a -> b) -> b -> URec Double a -> b # foldl' :: (b -> a -> b) -> b -> URec Double a -> b # foldr1 :: (a -> a -> a) -> URec Double a -> a # foldl1 :: (a -> a -> a) -> URec Double a -> a # toList :: URec Double a -> [a] # null :: URec Double a -> Bool # length :: URec Double a -> Int # elem :: Eq a => a -> URec Double a -> Bool # maximum :: Ord a => URec Double a -> a # minimum :: Ord a => URec Double a -> a # | |
Traversable (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
Eq (URec Double p) | Since: base-4.9.0.0 |
Ord (URec Double p) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: URec Double p -> URec Double p -> Ordering # (<) :: URec Double p -> URec Double p -> Bool # (<=) :: URec Double p -> URec Double p -> Bool # (>) :: URec Double p -> URec Double p -> Bool # (>=) :: URec Double p -> URec Double p -> Bool # | |
Show (URec Double p) | Since: base-4.9.0.0 |
Generic (URec Double p) | |
newtype Vector Double | |
data URec Double (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
newtype MVector s Double | |
type Rep1 (URec Double :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (URec Double p) | Since: base-4.9.0.0 |
Defined in GHC.Generics |
Single-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE single-precision type.
Instances
Eq Float | Note that due to the presence of
Also note that
|
Floating Float | Since: base-2.1 |
Data Float | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Float -> c Float # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Float # dataTypeOf :: Float -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Float) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Float) # gmapT :: (forall b. Data b => b -> b) -> Float -> Float # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r # gmapQ :: (forall d. Data d => d -> u) -> Float -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Float -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Float -> m Float # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float # | |
Ord Float | Note that due to the presence of
Also note that, due to the same,
|
Read Float | Since: base-2.1 |
RealFloat Float | Since: base-2.1 |
Defined in GHC.Float Methods floatRadix :: Float -> Integer # floatDigits :: Float -> Int # floatRange :: Float -> (Int, Int) # decodeFloat :: Float -> (Integer, Int) # encodeFloat :: Integer -> Int -> Float # significand :: Float -> Float # scaleFloat :: Int -> Float -> Float # isInfinite :: Float -> Bool # isDenormalized :: Float -> Bool # isNegativeZero :: Float -> Bool # | |
Lift Float | |
Storable Float | Since: base-2.1 |
Serialize Float | |
NFData Float | |
Defined in Control.DeepSeq | |
Hashable Float | Note: prior to The Since: hashable-1.3.0.0 |
Defined in Data.Hashable.Class | |
Prim Float | |
Defined in Data.Primitive.Types Methods alignment# :: Float -> Int# # indexByteArray# :: ByteArray# -> Int# -> Float # readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Float#) # writeByteArray# :: MutableByteArray# s -> Int# -> Float -> State# s -> State# s # setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Float -> State# s -> State# s # indexOffAddr# :: Addr# -> Int# -> Float # readOffAddr# :: Addr# -> Int# -> State# s -> (#State# s, Float#) # writeOffAddr# :: Addr# -> Int# -> Float -> State# s -> State# s # setOffAddr# :: Addr# -> Int# -> Int# -> Float -> State# s -> State# s # | |
Unbox Float | |
Defined in Data.Vector.Unboxed.Base | |
Display Float | Since: rio-0.1.0.0 |
Defined in RIO.Prelude.Display | |
IArray UArray Float | |
Defined in Data.Array.Base Methods bounds :: Ix i => UArray i Float -> (i, i) # numElements :: Ix i => UArray i Float -> Int unsafeArray :: Ix i => (i, i) -> [(Int, Float)] -> UArray i Float unsafeAt :: Ix i => UArray i Float -> Int -> Float unsafeReplace :: Ix i => UArray i Float -> [(Int, Float)] -> UArray i Float unsafeAccum :: Ix i => (Float -> e' -> Float) -> UArray i Float -> [(Int, e')] -> UArray i Float unsafeAccumArray :: Ix i => (Float -> e' -> Float) -> Float -> (i, i) -> [(Int, e')] -> UArray i Float | |
Vector Vector Float | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: PrimMonad m => Mutable Vector (PrimState m) Float -> m (Vector Float) # basicUnsafeThaw :: PrimMonad m => Vector Float -> m (Mutable Vector (PrimState m) Float) # basicLength :: Vector Float -> Int # basicUnsafeSlice :: Int -> Int -> Vector Float -> Vector Float # basicUnsafeIndexM :: Monad m => Vector Float -> Int -> m Float # basicUnsafeCopy :: PrimMonad m => Mutable Vector (PrimState m) Float -> Vector Float -> m () # | |
MVector MVector Float | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Float -> Int # basicUnsafeSlice :: Int -> Int -> MVector s Float -> MVector s Float # basicOverlaps :: MVector s Float -> MVector s Float -> Bool # basicUnsafeNew :: PrimMonad m => Int -> m (MVector (PrimState m) Float) # basicInitialize :: PrimMonad m => MVector (PrimState m) Float -> m () # basicUnsafeReplicate :: PrimMonad m => Int -> Float -> m (MVector (PrimState m) Float) # basicUnsafeRead :: PrimMonad m => MVector (PrimState m) Float -> Int -> m Float # basicUnsafeWrite :: PrimMonad m => MVector (PrimState m) Float -> Int -> Float -> m () # basicClear :: PrimMonad m => MVector (PrimState m) Float -> m () # basicSet :: PrimMonad m => MVector (PrimState m) Float -> Float -> m () # basicUnsafeCopy :: PrimMonad m => MVector (PrimState m) Float -> MVector (PrimState m) Float -> m () # basicUnsafeMove :: PrimMonad m => MVector (PrimState m) Float -> MVector (PrimState m) Float -> m () # basicUnsafeGrow :: PrimMonad m => MVector (PrimState m) Float -> Int -> m (MVector (PrimState m) Float) # | |
Generic1 (URec Float :: k -> Type) | |
MArray (STUArray s) Float (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Float -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Float -> ST s Int newArray :: Ix i => (i, i) -> Float -> ST s (STUArray s i Float) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Float) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Float) unsafeRead :: Ix i => STUArray s i Float -> Int -> ST s Float unsafeWrite :: Ix i => STUArray s i Float -> Int -> Float -> ST s () | |
Functor (URec Float :: Type -> Type) | Since: base-4.9.0.0 |
Foldable (URec Float :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Float m -> m # foldMap :: Monoid m => (a -> m) -> URec Float a -> m # foldr :: (a -> b -> b) -> b -> URec Float a -> b # foldr' :: (a -> b -> b) -> b -> URec Float a -> b # foldl :: (b -> a -> b) -> b -> URec Float a -> b # foldl' :: (b -> a -> b) -> b -> URec Float a -> b # foldr1 :: (a -> a -> a) -> URec Float a -> a # foldl1 :: (a -> a -> a) -> URec Float a -> a # toList :: URec Float a -> [a] # null :: URec Float a -> Bool # length :: URec Float a -> Int # elem :: Eq a => a -> URec Float a -> Bool # maximum :: Ord a => URec Float a -> a # minimum :: Ord a => URec Float a -> a # | |
Traversable (URec Float :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
Eq (URec Float p) | |
Ord (URec Float p) | |
Defined in GHC.Generics | |
Show (URec Float p) | |
Generic (URec Float p) | |
newtype Vector Float | |
data URec Float (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
newtype MVector s Float | |
type Rep1 (URec Float :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (URec Float p) | |
Defined in GHC.Generics |
A fixed-precision integer type with at least the range [-2^29 .. 2^29-1]
.
The exact range for a given implementation can be determined by using
minBound
and maxBound
from the Bounded
class.
Instances
8-bit signed integer type
Instances
16-bit signed integer type
Instances
32-bit signed integer type
Instances
64-bit signed integer type
Instances
Invariant: Jn#
and Jp#
are used iff value doesn't fit in S#
Useful properties resulting from the invariants:
Instances
Enum Integer | Since: base-2.1 |
Eq Integer | |
Integral Integer | Since: base-2.0.1 |
Defined in GHC.Real | |
Data Integer | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Integer -> c Integer # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Integer # toConstr :: Integer -> Constr # dataTypeOf :: Integer -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Integer) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Integer) # gmapT :: (forall b. Data b => b -> b) -> Integer -> Integer # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r # gmapQ :: (forall d. Data d => d -> u) -> Integer -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Integer -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Integer -> m Integer # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer # | |
Num Integer | Since: base-2.1 |
Ord Integer | |
Read Integer | Since: base-2.1 |
Real Integer | Since: base-2.0.1 |
Defined in GHC.Real Methods toRational :: Integer -> Rational # | |
Show Integer | Since: base-2.1 |
Ix Integer | Since: base-2.1 |
Defined in GHC.Arr | |
Lift Integer | |
Serialize Integer | |
NFData Integer | |
Defined in Control.DeepSeq | |
Hashable Integer | |
Defined in Data.Hashable.Class | |
Display Integer | Since: rio-0.1.0.0 |
Defined in RIO.Prelude.Display | |
KnownNat n => Reifies (n :: Nat) Integer | |
Defined in Data.Reflection |
Type representing arbitrary-precision non-negative integers.
>>>
2^100 :: Natural
1267650600228229401496703205376
Operations whose result would be negative
,throw
(Underflow
:: ArithException
)
>>>
-1 :: Natural
*** Exception: arithmetic underflow
Since: base-4.8.0.0
Instances
Enum Natural | Since: base-4.8.0.0 |
Eq Natural | Since: base-4.8.0.0 |
Integral Natural | Since: base-4.8.0.0 |
Defined in GHC.Real | |
Data Natural | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Natural -> c Natural # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Natural # toConstr :: Natural -> Constr # dataTypeOf :: Natural -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Natural) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Natural) # gmapT :: (forall b. Data b => b -> b) -> Natural -> Natural # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Natural -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Natural -> r # gmapQ :: (forall d. Data d => d -> u) -> Natural -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Natural -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Natural -> m Natural # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Natural -> m Natural # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Natural -> m Natural # | |
Num Natural | Note that Since: base-4.8.0.0 |
Ord Natural | Since: base-4.8.0.0 |
Read Natural | Since: base-4.8.0.0 |
Real Natural | Since: base-4.8.0.0 |
Defined in GHC.Real Methods toRational :: Natural -> Rational # | |
Show Natural | Since: base-4.8.0.0 |
Ix Natural | Since: base-4.8.0.0 |
Defined in GHC.Arr | |
Lift Natural | |
Serialize Natural | |
NFData Natural | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
Hashable Natural | |
Defined in Data.Hashable.Class |
The Maybe
type encapsulates an optional value. A value of type
either contains a value of type Maybe
aa
(represented as
),
or it is empty (represented as Just
aNothing
). Using Maybe
is a good way to
deal with errors or exceptional cases without resorting to drastic
measures such as error
.
The Maybe
type is also a monad. It is a simple kind of error
monad, where all errors are represented by Nothing
. A richer
error monad can be built using the Either
type.
Instances
Monad Maybe | Since: base-2.1 |
Functor Maybe | Since: base-2.1 |
MonadFix Maybe | Since: base-2.1 |
Defined in Control.Monad.Fix | |
MonadFail Maybe | Since: base-4.9.0.0 |
Defined in Control.Monad.Fail | |
Applicative Maybe | Since: base-2.1 |
Foldable Maybe | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |
Traversable Maybe | Since: base-2.1 |
Eq1 Maybe | Since: base-4.9.0.0 |
Ord1 Maybe | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Read1 Maybe | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Show1 Maybe | Since: base-4.9.0.0 |
Alternative Maybe | Since: base-2.1 |
MonadPlus Maybe | Since: base-2.1 |
NFData1 Maybe | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
MonadThrow Maybe | |
Defined in Control.Monad.Catch | |
Hashable1 Maybe | |
Defined in Data.Hashable.Class | |
Apply Maybe | |
Bind Maybe | |
MonadError () Maybe | Since: mtl-2.2.2 |
Defined in Control.Monad.Error.Class | |
FunctorWithIndex () Maybe | |
Defined in Control.Lens.Indexed | |
FoldableWithIndex () Maybe | |
TraversableWithIndex () Maybe | |
Defined in Control.Lens.Indexed Methods itraverse :: Applicative f => (() -> a -> f b) -> Maybe a -> f (Maybe b) # itraversed :: IndexedTraversal () (Maybe a) (Maybe b) a b # | |
Eq a => Eq (Maybe a) | Since: base-2.1 |
Data a => Data (Maybe a) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Maybe a -> c (Maybe a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Maybe a) # toConstr :: Maybe a -> Constr # dataTypeOf :: Maybe a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Maybe a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Maybe a)) # gmapT :: (forall b. Data b => b -> b) -> Maybe a -> Maybe a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r # gmapQ :: (forall d. Data d => d -> u) -> Maybe a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Maybe a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # | |
Ord a => Ord (Maybe a) | Since: base-2.1 |
Read a => Read (Maybe a) | Since: base-2.1 |
Show a => Show (Maybe a) | Since: base-2.1 |
Generic (Maybe a) | |
Semigroup a => Semigroup (Maybe a) | Since: base-4.9.0.0 |
Semigroup a => Monoid (Maybe a) | Lift a semigroup into Since 4.11.0: constraint on inner Since: base-2.1 |
Lift a => Lift (Maybe a) | |
SingKind a => SingKind (Maybe a) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Serialize a => Serialize (Maybe a) | |
NFData a => NFData (Maybe a) | |
Defined in Control.DeepSeq | |
Hashable a => Hashable (Maybe a) | |
Defined in Data.Hashable.Class | |
Ixed (Maybe a) | |
Defined in Control.Lens.At | |
At (Maybe a) | |
AsEmpty (Maybe a) | |
Defined in Control.Lens.Empty | |
Generic1 Maybe | |
SingI (Nothing :: Maybe a) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Each (Maybe a) (Maybe b) a b |
|
Each (Maybe a) (Maybe b) a b | |
SingI a2 => SingI (Just a2 :: Maybe a1) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (Maybe a) | Since: base-4.6.0.0 |
data Sing (b :: Maybe a) | |
type DemoteRep (Maybe a) | |
Defined in GHC.Generics | |
type Index (Maybe a) | |
Defined in Control.Lens.At | |
type IxValue (Maybe a) | |
Defined in Control.Lens.At | |
type Rep1 Maybe | Since: base-4.6.0.0 |
Instances
Bounded Ordering | Since: base-2.1 |
Enum Ordering | Since: base-2.1 |
Eq Ordering | |
Data Ordering | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ordering -> c Ordering # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Ordering # toConstr :: Ordering -> Constr # dataTypeOf :: Ordering -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Ordering) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Ordering) # gmapT :: (forall b. Data b => b -> b) -> Ordering -> Ordering # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r # gmapQ :: (forall d. Data d => d -> u) -> Ordering -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ordering -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # | |
Ord Ordering | |
Defined in GHC.Classes | |
Read Ordering | Since: base-2.1 |
Show Ordering | Since: base-2.1 |
Ix Ordering | Since: base-2.1 |
Defined in GHC.Arr | |
Generic Ordering | |
Semigroup Ordering | Since: base-4.9.0.0 |
Monoid Ordering | Since: base-2.1 |
Serialize Ordering | |
NFData Ordering | |
Defined in Control.DeepSeq | |
Hashable Ordering | |
Defined in Data.Hashable.Class | |
AsEmpty Ordering | |
Defined in Control.Lens.Empty | |
type Rep Ordering | Since: base-4.6.0.0 |
A value of type
is a computation which, when performed,
does some I/O before returning a value of type IO
aa
.
There is really only one way to "perform" an I/O action: bind it to
Main.main
in your program. When your program is run, the I/O will
be performed. It isn't possible to perform I/O from an arbitrary
function, unless that function is itself in the IO
monad and called
at some point, directly or indirectly, from Main.main
.
IO
is a monad, so IO
actions can be combined using either the do-notation
or the >>
and >>=
operations from the Monad
class.
Instances
Instances
8-bit unsigned integer type
Instances
16-bit unsigned integer type
Instances
32-bit unsigned integer type
Instances
64-bit unsigned integer type
Instances
The Either
type represents values with two possibilities: a value of
type
is either Either
a b
or Left
a
.Right
b
The Either
type is sometimes used to represent a value which is
either correct or an error; by convention, the Left
constructor is
used to hold an error value and the Right
constructor is used to
hold a correct value (mnemonic: "right" also means "correct").
Examples
The type
is the type of values which can be either
a Either
String
Int
String
or an Int
. The Left
constructor can be used only on
String
s, and the Right
constructor can be used only on Int
s:
>>>
let s = Left "foo" :: Either String Int
>>>
s
Left "foo">>>
let n = Right 3 :: Either String Int
>>>
n
Right 3>>>
:type s
s :: Either String Int>>>
:type n
n :: Either String Int
The fmap
from our Functor
instance will ignore Left
values, but
will apply the supplied function to values contained in a Right
:
>>>
let s = Left "foo" :: Either String Int
>>>
let n = Right 3 :: Either String Int
>>>
fmap (*2) s
Left "foo">>>
fmap (*2) n
Right 6
The Monad
instance for Either
allows us to chain together multiple
actions which may fail, and fail overall if any of the individual
steps failed. First we'll write a function that can either parse an
Int
from a Char
, or fail.
>>>
import Data.Char ( digitToInt, isDigit )
>>>
:{
let parseEither :: Char -> Either String Int parseEither c | isDigit c = Right (digitToInt c) | otherwise = Left "parse error">>>
:}
The following should work, since both '1'
and '2'
can be
parsed as Int
s.
>>>
:{
let parseMultiple :: Either String Int parseMultiple = do x <- parseEither '1' y <- parseEither '2' return (x + y)>>>
:}
>>>
parseMultiple
Right 3
But the following should fail overall, since the first operation where
we attempt to parse 'm'
as an Int
will fail:
>>>
:{
let parseMultiple :: Either String Int parseMultiple = do x <- parseEither 'm' y <- parseEither '2' return (x + y)>>>
:}
>>>
parseMultiple
Left "parse error"
Instances
Bitraversable Either | Since: base-4.10.0.0 |
Defined in Data.Bitraversable Methods bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Either a b -> f (Either c d) # | |
Bifoldable Either | Since: base-4.10.0.0 |
Bifunctor Either | Since: base-4.8.0.0 |
Eq2 Either | Since: base-4.9.0.0 |
Ord2 Either | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Read2 Either | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes Methods liftReadsPrec2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (Either a b) # liftReadList2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> ReadS [Either a b] # liftReadPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec (Either a b) # liftReadListPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec [Either a b] # | |
Show2 Either | Since: base-4.9.0.0 |
NFData2 Either | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Hashable2 Either | |
Defined in Data.Hashable.Class | |
Bitraversable1 Either | |
Defined in Data.Semigroup.Traversable.Class Methods bitraverse1 :: Apply f => (a -> f b) -> (c -> f d) -> Either a c -> f (Either b d) # bisequence1 :: Apply f => Either (f a) (f b) -> f (Either a b) # | |
Swapped Either | |
MonadError e (Either e) | |
Defined in Control.Monad.Error.Class | |
Monad (Either e) | Since: base-4.4.0.0 |
Functor (Either a) | Since: base-3.0 |
MonadFix (Either e) | Since: base-4.3.0.0 |
Defined in Control.Monad.Fix | |
Applicative (Either e) | Since: base-3.0 |
Foldable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Either a m -> m # foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # toList :: Either a a0 -> [a0] # length :: Either a a0 -> Int # elem :: Eq a0 => a0 -> Either a a0 -> Bool # maximum :: Ord a0 => Either a a0 -> a0 # minimum :: Ord a0 => Either a a0 -> a0 # | |
Traversable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Traversable | |
Eq a => Eq1 (Either a) | Since: base-4.9.0.0 |
Ord a => Ord1 (Either a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Read a => Read1 (Either a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes Methods liftReadsPrec :: (Int -> ReadS a0) -> ReadS [a0] -> Int -> ReadS (Either a a0) # liftReadList :: (Int -> ReadS a0) -> ReadS [a0] -> ReadS [Either a a0] # liftReadPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec (Either a a0) # liftReadListPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec [Either a a0] # | |
Show a => Show1 (Either a) | Since: base-4.9.0.0 |
NFData a => NFData1 (Either a) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
e ~ SomeException => MonadThrow (Either e) | |
Defined in Control.Monad.Catch | |
e ~ SomeException => MonadCatch (Either e) | Since: exceptions-0.8.3 |
e ~ SomeException => MonadMask (Either e) | Since: exceptions-0.8.3 |
Defined in Control.Monad.Catch | |
Hashable a => Hashable1 (Either a) | |
Defined in Data.Hashable.Class | |
Apply (Either a) | |
Bind (Either a) | |
Generic1 (Either a :: Type -> Type) | |
(Eq a, Eq b) => Eq (Either a b) | Since: base-2.1 |
(Data a, Data b) => Data (Either a b) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Either a b -> c (Either a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Either a b) # toConstr :: Either a b -> Constr # dataTypeOf :: Either a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Either a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Either a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Either a b -> Either a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Either a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Either a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # | |
(Ord a, Ord b) => Ord (Either a b) | Since: base-2.1 |
(Read a, Read b) => Read (Either a b) | Since: base-3.0 |
(Show a, Show b) => Show (Either a b) | Since: base-3.0 |
Generic (Either a b) | |
Semigroup (Either a b) | Since: base-4.9.0.0 |
(Lift a, Lift b) => Lift (Either a b) | |
(Serialize a, Serialize b) => Serialize (Either a b) | |
(NFData a, NFData b) => NFData (Either a b) | |
Defined in Control.DeepSeq | |
(Hashable a, Hashable b) => Hashable (Either a b) | |
Defined in Data.Hashable.Class | |
(a ~ a', b ~ b') => Each (Either a a') (Either b b') a b | Since: microlens-0.4.11 |
(FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex (Either i j) (Sum f g) | |
(FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex (Either i j) (Product f g) | |
(FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex (Either i j) (f :+: g) | |
(FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex (Either i j) (f :*: g) | |
(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (Either i j) (Sum f g) | |
Defined in Control.Lens.Indexed Methods ifoldMap :: Monoid m => (Either i j -> a -> m) -> Sum f g a -> m # ifolded :: IndexedFold (Either i j) (Sum f g a) a # ifoldr :: (Either i j -> a -> b -> b) -> b -> Sum f g a -> b # ifoldl :: (Either i j -> b -> a -> b) -> b -> Sum f g a -> b # ifoldr' :: (Either i j -> a -> b -> b) -> b -> Sum f g a -> b # ifoldl' :: (Either i j -> b -> a -> b) -> b -> Sum f g a -> b # | |
(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (Either i j) (Product f g) | |
Defined in Control.Lens.Indexed Methods ifoldMap :: Monoid m => (Either i j -> a -> m) -> Product f g a -> m # ifolded :: IndexedFold (Either i j) (Product f g a) a # ifoldr :: (Either i j -> a -> b -> b) -> b -> Product f g a -> b # ifoldl :: (Either i j -> b -> a -> b) -> b -> Product f g a -> b # ifoldr' :: (Either i j -> a -> b -> b) -> b -> Product f g a -> b # ifoldl' :: (Either i j -> b -> a -> b) -> b -> Product f g a -> b # | |
(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (Either i j) (f :+: g) | |
Defined in Control.Lens.Indexed Methods ifoldMap :: Monoid m => (Either i j -> a -> m) -> (f :+: g) a -> m # ifolded :: IndexedFold (Either i j) ((f :+: g) a) a # ifoldr :: (Either i j -> a -> b -> b) -> b -> (f :+: g) a -> b # ifoldl :: (Either i j -> b -> a -> b) -> b -> (f :+: g) a -> b # ifoldr' :: (Either i j -> a -> b -> b) -> b -> (f :+: g) a -> b # ifoldl' :: (Either i j -> b -> a -> b) -> b -> (f :+: g) a -> b # | |
(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (Either i j) (f :*: g) | |
Defined in Control.Lens.Indexed Methods ifoldMap :: Monoid m => (Either i j -> a -> m) -> (f :*: g) a -> m # ifolded :: IndexedFold (Either i j) ((f :*: g) a) a # ifoldr :: (Either i j -> a -> b -> b) -> b -> (f :*: g) a -> b # ifoldl :: (Either i j -> b -> a -> b) -> b -> (f :*: g) a -> b # ifoldr' :: (Either i j -> a -> b -> b) -> b -> (f :*: g) a -> b # ifoldl' :: (Either i j -> b -> a -> b) -> b -> (f :*: g) a -> b # | |
(TraversableWithIndex i f, TraversableWithIndex j g) => TraversableWithIndex (Either i j) (Sum f g) | |
Defined in Control.Lens.Indexed Methods itraverse :: Applicative f0 => (Either i j -> a -> f0 b) -> Sum f g a -> f0 (Sum f g b) # itraversed :: IndexedTraversal (Either i j) (Sum f g a) (Sum f g b) a b # | |
(TraversableWithIndex i f, TraversableWithIndex j g) => TraversableWithIndex (Either i j) (Product f g) | |
Defined in Control.Lens.Indexed Methods itraverse :: Applicative f0 => (Either i j -> a -> f0 b) -> Product f g a -> f0 (Product f g b) # itraversed :: IndexedTraversal (Either i j) (Product f g a) (Product f g b) a b # | |
(TraversableWithIndex i f, TraversableWithIndex j g) => TraversableWithIndex (Either i j) (f :+: g) | |
Defined in Control.Lens.Indexed Methods itraverse :: Applicative f0 => (Either i j -> a -> f0 b) -> (f :+: g) a -> f0 ((f :+: g) b) # itraversed :: IndexedTraversal (Either i j) ((f :+: g) a) ((f :+: g) b) a b # | |
(TraversableWithIndex i f, TraversableWithIndex j g) => TraversableWithIndex (Either i j) (f :*: g) | |
Defined in Control.Lens.Indexed Methods itraverse :: Applicative f0 => (Either i j -> a -> f0 b) -> (f :*: g) a -> f0 ((f :*: g) b) # itraversed :: IndexedTraversal (Either i j) ((f :*: g) a) ((f :*: g) b) a b # | |
type Rep1 (Either a :: Type -> Type) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep1 (Either a :: Type -> Type) = D1 (MetaData "Either" "Data.Either" "base" False) (C1 (MetaCons "Left" PrefixI False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 a)) :+: C1 (MetaCons "Right" PrefixI False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) Par1)) | |
type Rep (Either a b) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep (Either a b) = D1 (MetaData "Either" "Data.Either" "base" False) (C1 (MetaCons "Left" PrefixI False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 a)) :+: C1 (MetaCons "Right" PrefixI False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 b))) |
CallStack
s are a lightweight method of obtaining a
partial call-stack at any point in the program.
A function can request its call-site with the HasCallStack
constraint.
For example, we can define
putStrLnWithCallStack :: HasCallStack => String -> IO ()
as a variant of putStrLn
that will get its call-site and print it,
along with the string given as argument. We can access the
call-stack inside putStrLnWithCallStack
with callStack
.
putStrLnWithCallStack :: HasCallStack => String -> IO () putStrLnWithCallStack msg = do putStrLn msg putStrLn (prettyCallStack callStack)
Thus, if we call putStrLnWithCallStack
we will get a formatted call-stack
alongside our string.
>>>
putStrLnWithCallStack "hello"
hello CallStack (from HasCallStack): putStrLnWithCallStack, called at <interactive>:2:1 in interactive:Ghci1
GHC solves HasCallStack
constraints in three steps:
- If there is a
CallStack
in scope -- i.e. the enclosing function has aHasCallStack
constraint -- GHC will append the new call-site to the existingCallStack
. - If there is no
CallStack
in scope -- e.g. in the GHCi session above -- and the enclosing definition does not have an explicit type signature, GHC will infer aHasCallStack
constraint for the enclosing definition (subject to the monomorphism restriction). - If there is no
CallStack
in scope and the enclosing definition has an explicit type signature, GHC will solve theHasCallStack
constraint for the singletonCallStack
containing just the current call-site.
CallStack
s do not interact with the RTS and do not require compilation
with -prof
. On the other hand, as they are built up explicitly via the
HasCallStack
constraints, they will generally not contain as much
information as the simulated call-stacks maintained by the RTS.
A CallStack
is a [(String, SrcLoc)]
. The String
is the name of
function that was called, the SrcLoc
is the call-site. The list is
ordered with the most recently called function at the head.
NOTE: The intrepid user may notice that HasCallStack
is just an
alias for an implicit parameter ?callStack :: CallStack
. This is an
implementation detail and should not be considered part of the
CallStack
API, we may decide to change the implementation in the
future.
Since: base-4.8.1.0
either :: (a -> c) -> (b -> c) -> Either a b -> c #
Case analysis for the Either
type.
If the value is
, apply the first function to Left
aa
;
if it is
, apply the second function to Right
bb
.
Examples
We create two values of type
, one using the
Either
String
Int
Left
constructor and another using the Right
constructor. Then
we apply "either" the length
function (if we have a String
)
or the "times-two" function (if we have an Int
):
>>>
let s = Left "foo" :: Either String Int
>>>
let n = Right 3 :: Either String Int
>>>
either length (*2) s
3>>>
either length (*2) n
6
class Contravariant (f :: Type -> Type) where #
The class of contravariant functors.
Whereas in Haskell, one can think of a Functor
as containing or producing
values, a contravariant functor is a functor that can be thought of as
consuming values.
As an example, consider the type of predicate functions a -> Bool
. One
such predicate might be negative x = x < 0
, which
classifies integers as to whether they are negative. However, given this
predicate, we can re-use it in other situations, providing we have a way to
map values to integers. For instance, we can use the negative
predicate
on a person's bank balance to work out if they are currently overdrawn:
newtype Predicate a = Predicate { getPredicate :: a -> Bool } instance Contravariant Predicate where contramap f (Predicate p) = Predicate (p . f) | `- First, map the input... `----- then apply the predicate. overdrawn :: Predicate Person overdrawn = contramap personBankBalance negative
Any instance should be subject to the following laws:
contramap id = id contramap f . contramap g = contramap (g . f)
Note, that the second law follows from the free theorem of the type of
contramap
and the first law, so you need only check that the former
condition holds.
Minimal complete definition
Instances
class Monad m => MonadReader r (m :: Type -> Type) | m -> r where #
See examples in Control.Monad.Reader.
Note, the partially applied function type (->) r
is a simple reader monad.
See the instance
declaration below.
Methods
Retrieves the monad environment.
Arguments
:: (r -> r) | The function to modify the environment. |
-> m a |
|
-> m a |
Executes a computation in a modified environment.
Instances
Haskell defines operations to read and write characters from and to files,
represented by values of type Handle
. Each value of this type is a
handle: a record used by the Haskell run-time system to manage I/O
with file system objects. A handle has at least the following properties:
- whether it manages input or output or both;
- whether it is open, closed or semi-closed;
- whether the object is seekable;
- whether buffering is disabled, or enabled on a line or block basis;
- a buffer (whose length may be zero).
Most handles will also have a current I/O position indicating where the next
input or output operation will occur. A handle is readable if it
manages only input or both input and output; likewise, it is writable if
it manages only output or both input and output. A handle is open when
first allocated.
Once it is closed it can no longer be used for either input or output,
though an implementation cannot re-use its storage while references
remain to it. Handles are in the Show
and Eq
classes. The string
produced by showing a handle is system dependent; it should include
enough information to identify the handle for debugging. A handle is
equal according to ==
only to itself; no attempt
is made to compare the internal state of different handles for equality.
The strict state-transformer monad.
A computation of type
transforms an internal state indexed
by ST
s as
, and returns a value of type a
.
The s
parameter is either
- an uninstantiated type variable (inside invocations of
runST
), or RealWorld
(inside invocations ofstToIO
).
It serves to keep the internal states of different invocations
of runST
separate from each other and from invocations of
stToIO
.
The >>=
and >>
operations are strict in the state (though not in
values stored in the state). For example,
runST
(writeSTRef _|_ v >>= f) = _|_
Instances
A ThreadId
is an abstract type representing a handle to a thread.
ThreadId
is an instance of Eq
, Ord
and Show
, where
the Ord
instance implements an arbitrary total ordering over
ThreadId
s. The Show
instance lets you convert an arbitrary-valued
ThreadId
to string form; showing a ThreadId
value is occasionally
useful when debugging or diagnosing the behaviour of a concurrent
program.
Note: in GHC, if you have a ThreadId
, you essentially have
a pointer to the thread itself. This means the thread itself can't be
garbage collected until you drop the ThreadId
.
This misfeature will hopefully be corrected at a later date.
Instances
Eq ThreadId | Since: base-4.2.0.0 |
Ord ThreadId | Since: base-4.2.0.0 |
Defined in GHC.Conc.Sync | |
Show ThreadId | Since: base-4.2.0.0 |
NFData ThreadId | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
Hashable ThreadId | |
Defined in Data.Hashable.Class |
waitBothSTM :: Async a -> Async b -> STM (a, b) #
A version of waitBoth
that can be used inside an STM transaction.
Since: async-2.1.0
waitEitherSTM_ :: Async a -> Async b -> STM () #
A version of waitEither_
that can be used inside an STM transaction.
Since: async-2.1.0
waitEitherSTM :: Async a -> Async b -> STM (Either a b) #
A version of waitEither
that can be used inside an STM transaction.
Since: async-2.1.0
waitEitherCatchSTM :: Async a -> Async b -> STM (Either (Either SomeException a) (Either SomeException b)) #
A version of waitEitherCatch
that can be used inside an STM transaction.
Since: async-2.1.0
waitAnySTM :: [Async a] -> STM (Async a, a) #
A version of waitAny
that can be used inside an STM transaction.
Since: async-2.1.0
waitAnyCatchSTM :: [Async a] -> STM (Async a, Either SomeException a) #
A version of waitAnyCatch
that can be used inside an STM transaction.
Since: async-2.1.0
pollSTM :: Async a -> STM (Maybe (Either SomeException a)) #
A version of poll
that can be used inside an STM transaction.
waitCatchSTM :: Async a -> STM (Either SomeException a) #
A version of waitCatch
that can be used inside an STM transaction.
An asynchronous action spawned by async
or withAsync
.
Asynchronous actions are executed in a separate thread, and
operations are provided for waiting for asynchronous actions to
complete and obtaining their results (see e.g. wait
).
Instances
Functor Async | |
Eq (Async a) | |
Ord (Async a) | |
Defined in Control.Concurrent.Async | |
Hashable (Async a) | |
Defined in Control.Concurrent.Async |
Since Void
values logically don't exist, this witnesses the
logical reasoning tool of "ex falso quodlibet".
>>>
let x :: Either Void Int; x = Right 5
>>>
:{
case x of Right r -> r Left l -> absurd l :} 5
Since: base-4.8.0.0
Uninhabited data type
Since: base-4.8.0.0
Instances
Eq Void | Since: base-4.8.0.0 |
Data Void | Since: base-4.8.0.0 |
Defined in Data.Void Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Void -> c Void # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Void # dataTypeOf :: Void -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Void) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Void) # gmapT :: (forall b. Data b => b -> b) -> Void -> Void # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r # gmapQ :: (forall d. Data d => d -> u) -> Void -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Void -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Void -> m Void # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void # | |
Ord Void | Since: base-4.8.0.0 |
Read Void | Reading a Since: base-4.8.0.0 |
Show Void | Since: base-4.8.0.0 |
Ix Void | Since: base-4.8.0.0 |
Generic Void | |
Semigroup Void | Since: base-4.9.0.0 |
Exception Void | Since: base-4.8.0.0 |
Defined in Data.Void Methods toException :: Void -> SomeException # fromException :: SomeException -> Maybe Void # displayException :: Void -> String # | |
NFData Void | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
Hashable Void | |
Defined in Data.Hashable.Class | |
ShowErrorComponent Void | |
Defined in Text.Megaparsec.Error | |
FunctorWithIndex Void (V1 :: Type -> Type) | |
FunctorWithIndex Void (U1 :: Type -> Type) | |
FunctorWithIndex Void (Proxy :: Type -> Type) | |
FoldableWithIndex Void (V1 :: Type -> Type) | |
FoldableWithIndex Void (U1 :: Type -> Type) | |
FoldableWithIndex Void (Proxy :: Type -> Type) | |
Defined in Control.Lens.Indexed | |
TraversableWithIndex Void (V1 :: Type -> Type) | |
Defined in Control.Lens.Indexed Methods itraverse :: Applicative f => (Void -> a -> f b) -> V1 a -> f (V1 b) # itraversed :: IndexedTraversal Void (V1 a) (V1 b) a b # | |
TraversableWithIndex Void (U1 :: Type -> Type) | |
Defined in Control.Lens.Indexed Methods itraverse :: Applicative f => (Void -> a -> f b) -> U1 a -> f (U1 b) # itraversed :: IndexedTraversal Void (U1 a) (U1 b) a b # | |
TraversableWithIndex Void (Proxy :: Type -> Type) | |
Defined in Control.Lens.Indexed Methods itraverse :: Applicative f => (Void -> a -> f b) -> Proxy a -> f (Proxy b) # itraversed :: IndexedTraversal Void (Proxy a) (Proxy b) a b # | |
FunctorWithIndex Void (K1 i c :: Type -> Type) | |
FoldableWithIndex Void (K1 i c :: Type -> Type) | |
Defined in Control.Lens.Indexed | |
TraversableWithIndex Void (K1 i c :: Type -> Type) | |
Defined in Control.Lens.Indexed Methods itraverse :: Applicative f => (Void -> a -> f b) -> K1 i c a -> f (K1 i c b) # itraversed :: IndexedTraversal Void (K1 i c a) (K1 i c b) a b # | |
type Rep Void | Since: base-4.8.0.0 |
Chan
is an abstract type representing an unbounded FIFO channel.
bimapAccumR :: Bitraversable t => (a -> b -> (a, c)) -> (a -> d -> (a, e)) -> a -> t b d -> (a, t c e) #
The bimapAccumR
function behaves like a combination of bimap
and
bifoldl
; it traverses a structure from right to left, threading a state
of type a
and using the given actions to compute new elements for the
structure.
Since: base-4.10.0.0
bimapAccumL :: Bitraversable t => (a -> b -> (a, c)) -> (a -> d -> (a, e)) -> a -> t b d -> (a, t c e) #
The bimapAccumL
function behaves like a combination of bimap
and
bifoldl
; it traverses a structure from left to right, threading a state
of type a
and using the given actions to compute new elements for the
structure.
Since: base-4.10.0.0
bifor :: (Bitraversable t, Applicative f) => t a b -> (a -> f c) -> (b -> f d) -> f (t c d) #
bifor
is bitraverse
with the structure as the first argument. For a
version that ignores the results, see bifor_
.
Since: base-4.10.0.0
bisequence :: (Bitraversable t, Applicative f) => t (f a) (f b) -> f (t a b) #
Sequences all the actions in a structure, building a new structure with
the same shape using the results of the actions. For a version that ignores
the results, see bisequence_
.
bisequence
≡bitraverse
id
id
Since: base-4.10.0.0
class (Bifunctor t, Bifoldable t) => Bitraversable (t :: Type -> Type -> Type) where #
Bitraversable
identifies bifunctorial data structures whose elements can
be traversed in order, performing Applicative
or Monad
actions at each
element, and collecting a result structure with the same shape.
As opposed to Traversable
data structures, which have one variety of
element on which an action can be performed, Bitraversable
data structures
have two such varieties of elements.
A definition of bitraverse
must satisfy the following laws:
- naturality
for every applicative transformationbitraverse
(t . f) (t . g) ≡ t .bitraverse
f gt
- identity
bitraverse
Identity
Identity
≡Identity
- composition
Compose
.fmap
(bitraverse
g1 g2) .bitraverse
f1 f2 ≡traverse
(Compose
.fmap
g1 . f1) (Compose
.fmap
g2 . f2)
where an applicative transformation is a function
t :: (Applicative
f,Applicative
g) => f a -> g a
preserving the Applicative
operations:
t (pure
x) =pure
x t (f<*>
x) = t f<*>
t x
and the identity functor Identity
and composition functors Compose
are
defined as
newtype Identity a = Identity { runIdentity :: a } instance Functor Identity where fmap f (Identity x) = Identity (f x) instance Applicative Identity where pure = Identity Identity f <*> Identity x = Identity (f x) newtype Compose f g a = Compose (f (g a)) instance (Functor f, Functor g) => Functor (Compose f g) where fmap f (Compose x) = Compose (fmap (fmap f) x) instance (Applicative f, Applicative g) => Applicative (Compose f g) where pure = Compose . pure . pure Compose f <*> Compose x = Compose ((<*>) <$> f <*> x)
Some simple examples are Either
and '(,)':
instance Bitraversable Either where bitraverse f _ (Left x) = Left <$> f x bitraverse _ g (Right y) = Right <$> g y instance Bitraversable (,) where bitraverse f g (x, y) = (,) <$> f x <*> g y
Bitraversable
relates to its superclasses in the following ways:
bimap
f g ≡runIdentity
.bitraverse
(Identity
. f) (Identity
. g)bifoldMap
f g =getConst
.bitraverse
(Const
. f) (Const
. g)
These are available as bimapDefault
and bifoldMapDefault
respectively.
Since: base-4.10.0.0
Minimal complete definition
Nothing
Methods
bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> t a b -> f (t c d) #
Evaluates the relevant functions at each element in the structure, running the action, and builds a new structure with the same shape, using the results produced from sequencing the actions.
bitraverse
f g ≡bisequenceA
.bimap
f g
For a version that ignores the results, see bitraverse_
.
Since: base-4.10.0.0
Instances
Bitraversable Either | Since: base-4.10.0.0 |
Defined in Data.Bitraversable Methods bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Either a b -> f (Either c d) # | |
Bitraversable (,) | Since: base-4.10.0.0 |
Defined in Data.Bitraversable Methods bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> (a, b) -> f (c, d) # | |
Bitraversable Arg | Since: base-4.10.0.0 |
Defined in Data.Semigroup Methods bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Arg a b -> f (Arg c d) # | |
Bitraversable ((,,) x) | Since: base-4.10.0.0 |
Defined in Data.Bitraversable Methods bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> (x, a, b) -> f (x, c, d) # | |
Bitraversable (Const :: Type -> Type -> Type) | Since: base-4.10.0.0 |
Defined in Data.Bitraversable Methods bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Const a b -> f (Const c d) # | |
Traversable f => Bitraversable (FreeF f) | |
Defined in Control.Monad.Trans.Free Methods bitraverse :: Applicative f0 => (a -> f0 c) -> (b -> f0 d) -> FreeF f a b -> f0 (FreeF f c d) # | |
Traversable f => Bitraversable (CofreeF f) | |
Defined in Control.Comonad.Trans.Cofree Methods bitraverse :: Applicative f0 => (a -> f0 c) -> (b -> f0 d) -> CofreeF f a b -> f0 (CofreeF f c d) # | |
Traversable f => Bitraversable (AlongsideLeft f) | |
Defined in Control.Lens.Internal.Getter Methods bitraverse :: Applicative f0 => (a -> f0 c) -> (b -> f0 d) -> AlongsideLeft f a b -> f0 (AlongsideLeft f c d) # | |
Traversable f => Bitraversable (AlongsideRight f) | |
Defined in Control.Lens.Internal.Getter Methods bitraverse :: Applicative f0 => (a -> f0 c) -> (b -> f0 d) -> AlongsideRight f a b -> f0 (AlongsideRight f c d) # | |
Bitraversable (Tagged :: Type -> Type -> Type) | |
Defined in Data.Tagged Methods bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Tagged a b -> f (Tagged c d) # | |
Bitraversable (K1 i :: Type -> Type -> Type) | Since: base-4.10.0.0 |
Defined in Data.Bitraversable Methods bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> K1 i a b -> f (K1 i c d) # | |
Bitraversable ((,,,) x y) | Since: base-4.10.0.0 |
Defined in Data.Bitraversable Methods bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> (x, y, a, b) -> f (x, y, c, d) # | |
Bitraversable ((,,,,) x y z) | Since: base-4.10.0.0 |
Defined in Data.Bitraversable Methods bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> (x, y, z, a, b) -> f (x, y, z, c, d) # | |
Bitraversable p => Bitraversable (WrappedBifunctor p) | |
Defined in Data.Bifunctor.Wrapped Methods bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> WrappedBifunctor p a b -> f (WrappedBifunctor p c d) # | |
Traversable g => Bitraversable (Joker g :: Type -> Type -> Type) | |
Defined in Data.Bifunctor.Joker Methods bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Joker g a b -> f (Joker g c d) # | |
Bitraversable p => Bitraversable (Flip p) | |
Defined in Data.Bifunctor.Flip Methods bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Flip p a b -> f (Flip p c d) # | |
Traversable f => Bitraversable (Clown f :: Type -> Type -> Type) | |
Defined in Data.Bifunctor.Clown Methods bitraverse :: Applicative f0 => (a -> f0 c) -> (b -> f0 d) -> Clown f a b -> f0 (Clown f c d) # | |
Bitraversable ((,,,,,) x y z w) | Since: base-4.10.0.0 |
Defined in Data.Bitraversable Methods bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> (x, y, z, w, a, b) -> f (x, y, z, w, c, d) # | |
(Bitraversable p, Bitraversable q) => Bitraversable (Sum p q) | |
Defined in Data.Bifunctor.Sum Methods bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Sum p q a b -> f (Sum p q c d) # | |
(Bitraversable f, Bitraversable g) => Bitraversable (Product f g) | |
Defined in Data.Bifunctor.Product Methods bitraverse :: Applicative f0 => (a -> f0 c) -> (b -> f0 d) -> Product f g a b -> f0 (Product f g c d) # | |
Bitraversable ((,,,,,,) x y z w v) | Since: base-4.10.0.0 |
Defined in Data.Bitraversable Methods bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> (x, y, z, w, v, a, b) -> f (x, y, z, w, v, c, d) # | |
(Traversable f, Bitraversable p) => Bitraversable (Tannen f p) | |
Defined in Data.Bifunctor.Tannen Methods bitraverse :: Applicative f0 => (a -> f0 c) -> (b -> f0 d) -> Tannen f p a b -> f0 (Tannen f p c d) # | |
(Bitraversable p, Traversable f, Traversable g) => Bitraversable (Biff p f g) | |
Defined in Data.Bifunctor.Biff Methods bitraverse :: Applicative f0 => (a -> f0 c) -> (b -> f0 d) -> Biff p f g a b -> f0 (Biff p f g c d) # |
bifind :: Bifoldable t => (a -> Bool) -> t a a -> Maybe a #
binotElem :: (Bifoldable t, Eq a) => a -> t a a -> Bool #
biminimumBy :: Bifoldable t => (a -> a -> Ordering) -> t a a -> a #
The least element of a non-empty structure with respect to the given comparison function.
Since: base-4.10.0.0
bimaximumBy :: Bifoldable t => (a -> a -> Ordering) -> t a a -> a #
The largest element of a non-empty structure with respect to the given comparison function.
Since: base-4.10.0.0
biall :: Bifoldable t => (a -> Bool) -> (b -> Bool) -> t a b -> Bool #
Determines whether all elements of the structure satisfy their appropriate predicate argument.
Since: base-4.10.0.0
biany :: Bifoldable t => (a -> Bool) -> (b -> Bool) -> t a b -> Bool #
Determines whether any element of the structure satisfies its appropriate predicate argument.
Since: base-4.10.0.0
biconcatMap :: Bifoldable t => (a -> [c]) -> (b -> [c]) -> t a b -> [c] #
Given a means of mapping the elements of a structure to lists, computes the concatenation of all such lists in order.
Since: base-4.10.0.0
biproduct :: (Bifoldable t, Num a) => t a a -> a #
The biproduct
function computes the product of the numbers of a
structure.
Since: base-4.10.0.0
bisum :: (Bifoldable t, Num a) => t a a -> a #
The bisum
function computes the sum of the numbers of a structure.
Since: base-4.10.0.0
biminimum :: (Bifoldable t, Ord a) => t a a -> a #
The least element of a non-empty structure.
Since: base-4.10.0.0
bimaximum :: (Bifoldable t, Ord a) => t a a -> a #
The largest element of a non-empty structure.
Since: base-4.10.0.0
biconcat :: Bifoldable t => t [a] [a] -> [a] #
Reduces a structure of lists to the concatenation of those lists.
Since: base-4.10.0.0
bielem :: (Bifoldable t, Eq a) => a -> t a a -> Bool #
Does the element occur in the structure?
Since: base-4.10.0.0
bilength :: Bifoldable t => t a b -> Int #
Returns the size/length of a finite structure as an Int
.
Since: base-4.10.0.0
binull :: Bifoldable t => t a b -> Bool #
Test whether the structure is empty.
Since: base-4.10.0.0
biList :: Bifoldable t => t a a -> [a] #
Collects the list of elements of a structure, from left to right.
Since: base-4.10.0.0
biasum :: (Bifoldable t, Alternative f) => t (f a) (f a) -> f a #
The sum of a collection of actions, generalizing biconcat
.
Since: base-4.10.0.0
bisequence_ :: (Bifoldable t, Applicative f) => t (f a) (f b) -> f () #
Evaluate each action in the structure from left to right, and ignore the
results. For a version that doesn't ignore the results, see
bisequence
.
Since: base-4.10.0.0
bifor_ :: (Bifoldable t, Applicative f) => t a b -> (a -> f c) -> (b -> f d) -> f () #
As bitraverse_
, but with the structure as the primary argument. For a
version that doesn't ignore the results, see bifor
.
>>>
> bifor_ ('a', "bc") print (print . reverse)
'a' "cb"
Since: base-4.10.0.0
bitraverse_ :: (Bifoldable t, Applicative f) => (a -> f c) -> (b -> f d) -> t a b -> f () #
Map each element of a structure using one of two actions, evaluate these
actions from left to right, and ignore the results. For a version that
doesn't ignore the results, see bitraverse
.
Since: base-4.10.0.0
bifoldlM :: (Bifoldable t, Monad m) => (a -> b -> m a) -> (a -> c -> m a) -> a -> t b c -> m a #
Left associative monadic bifold over a structure.
Since: base-4.10.0.0
bifoldl1 :: Bifoldable t => (a -> a -> a) -> t a a -> a #
A variant of bifoldl
that has no base case,
and thus may only be applied to non-empty structures.
Since: base-4.10.0.0
bifoldl' :: Bifoldable t => (a -> b -> a) -> (a -> c -> a) -> a -> t b c -> a #
As bifoldl
, but strict in the result of the reduction functions at each
step.
This ensures that each step of the bifold is forced to weak head normal form
before being applied, avoiding the collection of thunks that would otherwise
occur. This is often what you want to strictly reduce a finite structure to
a single, monolithic result (e.g., bilength
).
Since: base-4.10.0.0
bifoldrM :: (Bifoldable t, Monad m) => (a -> c -> m c) -> (b -> c -> m c) -> c -> t a b -> m c #
Right associative monadic bifold over a structure.
Since: base-4.10.0.0
bifoldr1 :: Bifoldable t => (a -> a -> a) -> t a a -> a #
A variant of bifoldr
that has no base case,
and thus may only be applied to non-empty structures.
Since: base-4.10.0.0
bifoldr' :: Bifoldable t => (a -> c -> c) -> (b -> c -> c) -> c -> t a b -> c #
As bifoldr
, but strict in the result of the reduction functions at each
step.
Since: base-4.10.0.0
class Bifoldable (p :: Type -> Type -> Type) where #
Bifoldable
identifies foldable structures with two different varieties
of elements (as opposed to Foldable
, which has one variety of element).
Common examples are Either
and '(,)':
instance Bifoldable Either where bifoldMap f _ (Left a) = f a bifoldMap _ g (Right b) = g b instance Bifoldable (,) where bifoldr f g z (a, b) = f a (g b z)
A minimal Bifoldable
definition consists of either bifoldMap
or
bifoldr
. When defining more than this minimal set, one should ensure
that the following identities hold:
bifold
≡bifoldMap
id
id
bifoldMap
f g ≡bifoldr
(mappend
. f) (mappend
. g)mempty
bifoldr
f g z t ≡appEndo
(bifoldMap
(Endo . f) (Endo . g) t) z
If the type is also a Bifunctor
instance, it should satisfy:
'bifoldMap' f g ≡ 'bifold' . 'bimap' f g
which implies that
'bifoldMap' f g . 'bimap' h i ≡ 'bifoldMap' (f . h) (g . i)
Since: base-4.10.0.0
Methods
bifold :: Monoid m => p m m -> m #
bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> p a b -> m #
Combines the elements of a structure, given ways of mapping them to a common monoid.
bifoldMap
f g ≡bifoldr
(mappend
. f) (mappend
. g)mempty
Since: base-4.10.0.0
bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> p a b -> c #
Combines the elements of a structure in a right associative manner.
Given a hypothetical function toEitherList :: p a b -> [Either a b]
yielding a list of all elements of a structure in order, the following
would hold:
bifoldr
f g z ≡foldr
(either
f g) z . toEitherList
Since: base-4.10.0.0
bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> p a b -> c #
Combines the elements of a structure in a left associative manner. Given
a hypothetical function toEitherList :: p a b -> [Either a b]
yielding a
list of all elements of a structure in order, the following would hold:
bifoldl
f g z ≡foldl
(acc ->either
(f acc) (g acc)) z . toEitherList
Note that if you want an efficient left-fold, you probably want to use
bifoldl'
instead of bifoldl
. The reason is that the latter does not
force the "inner" results, resulting in a thunk chain which then must be
evaluated from the outside-in.
Since: base-4.10.0.0
Instances
Bifoldable Either | Since: base-4.10.0.0 |
Bifoldable (,) | Since: base-4.10.0.0 |
Bifoldable Arg | Since: base-4.10.0.0 |
Bifoldable HashMap | Since: unordered-containers-0.2.11 |
Bifoldable ((,,) x) | Since: base-4.10.0.0 |
Bifoldable (Const :: Type -> Type -> Type) | Since: base-4.10.0.0 |
Foldable f => Bifoldable (FreeF f) | |
Foldable f => Bifoldable (CofreeF f) | |
Foldable f => Bifoldable (AlongsideLeft f) | |
Defined in Control.Lens.Internal.Getter Methods bifold :: Monoid m => AlongsideLeft f m m -> m # bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> AlongsideLeft f a b -> m # bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> AlongsideLeft f a b -> c # bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> AlongsideLeft f a b -> c # | |
Foldable f => Bifoldable (AlongsideRight f) | |
Defined in Control.Lens.Internal.Getter Methods bifold :: Monoid m => AlongsideRight f m m -> m # bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> AlongsideRight f a b -> m # bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> AlongsideRight f a b -> c # bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> AlongsideRight f a b -> c # | |
Bifoldable (Tagged :: Type -> Type -> Type) | |
Bifoldable (K1 i :: Type -> Type -> Type) | Since: base-4.10.0.0 |
Bifoldable ((,,,) x y) | Since: base-4.10.0.0 |
Bifoldable ((,,,,) x y z) | Since: base-4.10.0.0 |
Bifoldable p => Bifoldable (WrappedBifunctor p) | |
Defined in Data.Bifunctor.Wrapped Methods bifold :: Monoid m => WrappedBifunctor p m m -> m # bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> WrappedBifunctor p a b -> m # bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> WrappedBifunctor p a b -> c # bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> WrappedBifunctor p a b -> c # | |
Foldable g => Bifoldable (Joker g :: Type -> Type -> Type) | |
Bifoldable p => Bifoldable (Flip p) | |
Foldable f => Bifoldable (Clown f :: Type -> Type -> Type) | |
Bifoldable ((,,,,,) x y z w) | Since: base-4.10.0.0 |
Defined in Data.Bifoldable | |
(Bifoldable p, Bifoldable q) => Bifoldable (Sum p q) | |
(Bifoldable f, Bifoldable g) => Bifoldable (Product f g) | |
Defined in Data.Bifunctor.Product | |
Bifoldable ((,,,,,,) x y z w v) | Since: base-4.10.0.0 |
Defined in Data.Bifoldable | |
(Foldable f, Bifoldable p) => Bifoldable (Tannen f p) | |
(Bifoldable p, Foldable f, Foldable g) => Bifoldable (Biff p f g) | |
class Bifunctor (p :: Type -> Type -> Type) where #
A bifunctor is a type constructor that takes
two type arguments and is a functor in both arguments. That
is, unlike with Functor
, a type constructor such as Either
does not need to be partially applied for a Bifunctor
instance, and the methods in this class permit mapping
functions over the Left
value or the Right
value,
or both at the same time.
Formally, the class Bifunctor
represents a bifunctor
from Hask
-> Hask
.
Intuitively it is a bifunctor where both the first and second arguments are covariant.
You can define a Bifunctor
by either defining bimap
or by
defining both first
and second
.
If you supply bimap
, you should ensure that:
bimap
id
id
≡id
If you supply first
and second
, ensure:
first
id
≡id
second
id
≡id
If you supply both, you should also ensure:
bimap
f g ≡first
f.
second
g
These ensure by parametricity:
bimap
(f.
g) (h.
i) ≡bimap
f h.
bimap
g ifirst
(f.
g) ≡first
f.
first
gsecond
(f.
g) ≡second
f.
second
g
Since: base-4.8.0.0
Methods
bimap :: (a -> b) -> (c -> d) -> p a c -> p b d #
Map over both arguments at the same time.
bimap
f g ≡first
f.
second
g
Examples
>>>
bimap toUpper (+1) ('j', 3)
('J',4)
>>>
bimap toUpper (+1) (Left 'j')
Left 'J'
>>>
bimap toUpper (+1) (Right 3)
Right 4
Instances
class Monad m => MonadIO (m :: Type -> Type) where #
Monads in which IO
computations may be embedded.
Any monad built by applying a sequence of monad transformers to the
IO
monad will be an instance of this class.
Instances should satisfy the following laws, which state that liftIO
is a transformer of monads:
Instances
unless :: Applicative f => Bool -> f () -> f () #
The reverse of when
.
replicateM_ :: Applicative m => Int -> m a -> m () #
Like replicateM
, but discards the result.
replicateM :: Applicative m => Int -> m a -> m [a] #
performs the action replicateM
n actn
times,
gathering the results.
foldM_ :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m () #
Like foldM
, but discards the result.
foldM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b #
The foldM
function is analogous to foldl
, except that its result is
encapsulated in a monad. Note that foldM
works from left-to-right over
the list arguments. This could be an issue where (
and the `folded
function' are not commutative.>>
)
foldM f a1 [x1, x2, ..., xm] == do a2 <- f a1 x1 a3 <- f a2 x2 ... f am xm
If right-to-left evaluation is required, the input list should be reversed.
zipWithM_ :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m () #
zipWithM :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m [c] #
mapAndUnzipM :: Applicative m => (a -> m (b, c)) -> [a] -> m ([b], [c]) #
The mapAndUnzipM
function maps its first argument over a list, returning
the result as a pair of lists. This function is mainly used with complicated
data structures or a state-transforming monad.
forever :: Applicative f => f a -> f b #
Repeat an action indefinitely.
Examples
A common use of forever
is to process input from network sockets,
Handle
s, and channels
(e.g. MVar
and
Chan
).
For example, here is how we might implement an echo
server, using
forever
both to listen for client connections on a network socket
and to echo client input on client connection handles:
echoServer :: Socket -> IO () echoServer socket =forever
$ do client <- accept socketforkFinally
(echo client) (\_ -> hClose client) where echo :: Handle -> IO () echo client =forever
$ hGetLine client >>= hPutStrLn client
(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c infixr 1 #
Left-to-right composition of Kleisli arrows.
filterM :: Applicative m => (a -> m Bool) -> [a] -> m [a] #
This generalizes the list-based filter
function.
forM :: (Traversable t, Monad m) => t a -> (a -> m b) -> m (t b) #
for :: (Traversable t, Applicative f) => t a -> (a -> f b) -> f (t b) #
optional :: Alternative f => f a -> f (Maybe a) #
One or none.
class Category a => Arrow (a :: Type -> Type -> Type) where #
The basic arrow class.
Instances should satisfy the following laws:
arr
id =id
arr
(f >>> g) =arr
f >>>arr
gfirst
(arr
f) =arr
(first
f)first
(f >>> g) =first
f >>>first
gfirst
f >>>arr
fst
=arr
fst
>>> ffirst
f >>>arr
(id
*** g) =arr
(id
*** g) >>>first
ffirst
(first
f) >>>arr
assoc
=arr
assoc
>>>first
f
where
assoc ((a,b),c) = (a,(b,c))
The other combinators have sensible default definitions, which may be overridden for efficiency.
Methods
(***) :: a b c -> a b' c' -> a (b, b') (c, c') infixr 3 #
Split the input between the two argument arrows and combine their output. Note that this is in general not a functor.
The default definition may be overridden with a more efficient version if desired.
(&&&) :: a b c -> a b c' -> a b (c, c') infixr 3 #
Fanout: send the input to both argument arrows and combine their output.
The default definition may be overridden with a more efficient version if desired.
Instances
Identity functor and monad. (a non-strict monad)
Since: base-4.8.0.0
Constructors
Identity | |
Fields
|
Instances
A monad supporting atomic memory transactions.
Instances
Monad STM | Since: base-4.3.0.0 |
Functor STM | Since: base-4.3.0.0 |
Applicative STM | Since: base-4.8.0.0 |
Alternative STM | Since: base-4.8.0.0 |
MonadPlus STM | Since: base-4.3.0.0 |
MonadThrow STM | |
Defined in Control.Monad.Catch | |
MonadCatch STM | |
Shared memory locations that support atomic memory transactions.
data SomeAsyncException where #
Superclass for asynchronous exceptions.
Since: base-4.7.0.0
Constructors
SomeAsyncException :: forall e. Exception e => e -> SomeAsyncException |
Instances
Show SomeAsyncException | Since: base-4.7.0.0 |
Defined in GHC.IO.Exception Methods showsPrec :: Int -> SomeAsyncException -> ShowS # show :: SomeAsyncException -> String # showList :: [SomeAsyncException] -> ShowS # | |
Exception SomeAsyncException | Since: base-4.7.0.0 |
Defined in GHC.IO.Exception Methods toException :: SomeAsyncException -> SomeException # fromException :: SomeException -> Maybe SomeAsyncException # |
Defines the exit codes that a program can return.
Constructors
ExitSuccess | indicates successful termination; |
ExitFailure Int | indicates program failure with an exit code. The exact interpretation of the code is operating-system dependent. In particular, some values may be prohibited (e.g. 0 on a POSIX-compliant system). |
Instances
Eq ExitCode | |
Ord ExitCode | |
Defined in GHC.IO.Exception | |
Read ExitCode | |
Show ExitCode | |
Generic ExitCode | |
Exception ExitCode | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods toException :: ExitCode -> SomeException # fromException :: SomeException -> Maybe ExitCode # displayException :: ExitCode -> String # | |
NFData ExitCode | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
type Rep ExitCode | |
Defined in GHC.IO.Exception |
data BufferMode #
Three kinds of buffering are supported: line-buffering, block-buffering or no-buffering. These modes have the following effects. For output, items are written out, or flushed, from the internal buffer according to the buffer mode:
- line-buffering: the entire output buffer is flushed
whenever a newline is output, the buffer overflows,
a
hFlush
is issued, or the handle is closed. - block-buffering: the entire buffer is written out whenever it
overflows, a
hFlush
is issued, or the handle is closed. - no-buffering: output is written immediately, and never stored in the buffer.
An implementation is free to flush the buffer more frequently, but not less frequently, than specified above. The output buffer is emptied as soon as it has been written out.
Similarly, input occurs according to the buffer mode for the handle:
- line-buffering: when the buffer for the handle is not empty, the next item is obtained from the buffer; otherwise, when the buffer is empty, characters up to and including the next newline character are read into the buffer. No characters are available until the newline character is available or the buffer is full.
- block-buffering: when the buffer for the handle becomes empty, the next block of data is read into the buffer.
- no-buffering: the next input item is read and returned.
The
hLookAhead
operation implies that even a no-buffered handle may require a one-character buffer.
The default buffering mode when a handle is opened is implementation-dependent and may depend on the file system object which is attached to that handle. For most implementations, physical files will normally be block-buffered and terminals will normally be line-buffered.
Constructors
NoBuffering | buffering is disabled if possible. |
LineBuffering | line-buffering should be enabled if possible. |
BlockBuffering (Maybe Int) | block-buffering should be enabled if possible.
The size of the buffer is |
Instances
Eq BufferMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types | |
Ord BufferMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types Methods compare :: BufferMode -> BufferMode -> Ordering # (<) :: BufferMode -> BufferMode -> Bool # (<=) :: BufferMode -> BufferMode -> Bool # (>) :: BufferMode -> BufferMode -> Bool # (>=) :: BufferMode -> BufferMode -> Bool # max :: BufferMode -> BufferMode -> BufferMode # min :: BufferMode -> BufferMode -> BufferMode # | |
Read BufferMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types Methods readsPrec :: Int -> ReadS BufferMode # readList :: ReadS [BufferMode] # readPrec :: ReadPrec BufferMode # readListPrec :: ReadPrec [BufferMode] # | |
Show BufferMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types Methods showsPrec :: Int -> BufferMode -> ShowS # show :: BufferMode -> String # showList :: [BufferMode] -> ShowS # |
A mode that determines the effect of hSeek
hdl mode i
.
Constructors
AbsoluteSeek | the position of |
RelativeSeek | the position of |
SeekFromEnd | the position of |
Instances
Enum SeekMode | Since: base-4.2.0.0 |
Eq SeekMode | Since: base-4.2.0.0 |
Ord SeekMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Device | |
Read SeekMode | Since: base-4.2.0.0 |
Show SeekMode | Since: base-4.2.0.0 |
Ix SeekMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Device |
A mutable variable in the IO
monad
Instances
NFData1 IORef | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Eq (IORef a) | ^ Pointer equality. Since: base-4.1.0.0 |
NFData (IORef a) | NOTE: Only strict in the reference and not the referenced value. Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq |
File and directory names are values of type String
, whose precise
meaning is operating system dependent. Files can be opened, yielding a
handle which can then be used to operate on the contents of that file.
data IOException #
Exceptions that occur in the IO
monad.
An IOException
records a more specific error type, a descriptive
string and maybe the handle that was used when the error was
flagged.
Instances
Eq IOException | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception | |
Show IOException | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods showsPrec :: Int -> IOException -> ShowS # show :: IOException -> String # showList :: [IOException] -> ShowS # | |
Exception IOException | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods toException :: IOException -> SomeException # fromException :: SomeException -> Maybe IOException # displayException :: IOException -> String # | |
Error IOException | |
Defined in Control.Monad.Trans.Error | |
Display IOException | Since: rio-0.1.0.0 |
Defined in RIO.Prelude.Display | |
MonadError IOException IO | |
Defined in Control.Monad.Error.Class |
class (Typeable e, Show e) => Exception e where #
Any type that you wish to throw or catch as an exception must be an
instance of the Exception
class. The simplest case is a new exception
type directly below the root:
data MyException = ThisException | ThatException deriving Show instance Exception MyException
The default method definitions in the Exception
class do what we need
in this case. You can now throw and catch ThisException
and
ThatException
as exceptions:
*Main> throw ThisException `catch` \e -> putStrLn ("Caught " ++ show (e :: MyException)) Caught ThisException
In more complicated examples, you may wish to define a whole hierarchy of exceptions:
--------------------------------------------------------------------- -- Make the root exception type for all the exceptions in a compiler data SomeCompilerException = forall e . Exception e => SomeCompilerException e instance Show SomeCompilerException where show (SomeCompilerException e) = show e instance Exception SomeCompilerException compilerExceptionToException :: Exception e => e -> SomeException compilerExceptionToException = toException . SomeCompilerException compilerExceptionFromException :: Exception e => SomeException -> Maybe e compilerExceptionFromException x = do SomeCompilerException a <- fromException x cast a --------------------------------------------------------------------- -- Make a subhierarchy for exceptions in the frontend of the compiler data SomeFrontendException = forall e . Exception e => SomeFrontendException e instance Show SomeFrontendException where show (SomeFrontendException e) = show e instance Exception SomeFrontendException where toException = compilerExceptionToException fromException = compilerExceptionFromException frontendExceptionToException :: Exception e => e -> SomeException frontendExceptionToException = toException . SomeFrontendException frontendExceptionFromException :: Exception e => SomeException -> Maybe e frontendExceptionFromException x = do SomeFrontendException a <- fromException x cast a --------------------------------------------------------------------- -- Make an exception type for a particular frontend compiler exception data MismatchedParentheses = MismatchedParentheses deriving Show instance Exception MismatchedParentheses where toException = frontendExceptionToException fromException = frontendExceptionFromException
We can now catch a MismatchedParentheses
exception as
MismatchedParentheses
, SomeFrontendException
or
SomeCompilerException
, but not other types, e.g. IOException
:
*Main> throw MismatchedParentheses `catch` \e -> putStrLn ("Caught " ++ show (e :: MismatchedParentheses)) Caught MismatchedParentheses *Main> throw MismatchedParentheses `catch` \e -> putStrLn ("Caught " ++ show (e :: SomeFrontendException)) Caught MismatchedParentheses *Main> throw MismatchedParentheses `catch` \e -> putStrLn ("Caught " ++ show (e :: SomeCompilerException)) Caught MismatchedParentheses *Main> throw MismatchedParentheses `catch` \e -> putStrLn ("Caught " ++ show (e :: IOException)) *** Exception: MismatchedParentheses
Minimal complete definition
Nothing
Methods
toException :: e -> SomeException #
fromException :: SomeException -> Maybe e #
displayException :: e -> String #
Render this exception value in a human-friendly manner.
Default implementation:
.show
Since: base-4.8.0.0
Instances
newtype Const a (b :: k) :: forall k. Type -> k -> Type #
The Const
functor.
Instances
Generic1 (Const a :: k -> Type) | |
Unbox a => Vector Vector (Const a b) | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: PrimMonad m => Mutable Vector (PrimState m) (Const a b) -> m (Vector (Const a b)) # basicUnsafeThaw :: PrimMonad m => Vector (Const a b) -> m (Mutable Vector (PrimState m) (Const a b)) # basicLength :: Vector (Const a b) -> Int # basicUnsafeSlice :: Int -> Int -> Vector (Const a b) -> Vector (Const a b) # basicUnsafeIndexM :: Monad m => Vector (Const a b) -> Int -> m (Const a b) # basicUnsafeCopy :: PrimMonad m => Mutable Vector (PrimState m) (Const a b) -> Vector (Const a b) -> m () # | |
Unbox a => MVector MVector (Const a b) | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (Const a b) -> Int # basicUnsafeSlice :: Int -> Int -> MVector s (Const a b) -> MVector s (Const a b) # basicOverlaps :: MVector s (Const a b) -> MVector s (Const a b) -> Bool # basicUnsafeNew :: PrimMonad m => Int -> m (MVector (PrimState m) (Const a b)) # basicInitialize :: PrimMonad m => MVector (PrimState m) (Const a b) -> m () # basicUnsafeReplicate :: PrimMonad m => Int -> Const a b -> m (MVector (PrimState m) (Const a b)) # basicUnsafeRead :: PrimMonad m => MVector (PrimState m) (Const a b) -> Int -> m (Const a b) # basicUnsafeWrite :: PrimMonad m => MVector (PrimState m) (Const a b) -> Int -> Const a b -> m () # basicClear :: PrimMonad m => MVector (PrimState m) (Const a b) -> m () # basicSet :: PrimMonad m => MVector (PrimState m) (Const a b) -> Const a b -> m () # basicUnsafeCopy :: PrimMonad m => MVector (PrimState m) (Const a b) -> MVector (PrimState m) (Const a b) -> m () # basicUnsafeMove :: PrimMonad m => MVector (PrimState m) (Const a b) -> MVector (PrimState m) (Const a b) -> m () # basicUnsafeGrow :: PrimMonad m => MVector (PrimState m) (Const a b) -> Int -> m (MVector (PrimState m) (Const a b)) # | |
Bitraversable (Const :: Type -> Type -> Type) | Since: base-4.10.0.0 |
Defined in Data.Bitraversable Methods bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Const a b -> f (Const c d) # | |
Bifoldable (Const :: Type -> Type -> Type) | Since: base-4.10.0.0 |
Bifunctor (Const :: Type -> Type -> Type) | Since: base-4.8.0.0 |
Eq2 (Const :: Type -> Type -> Type) | Since: base-4.9.0.0 |
Ord2 (Const :: Type -> Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Read2 (Const :: Type -> Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes Methods liftReadsPrec2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (Const a b) # liftReadList2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> ReadS [Const a b] # liftReadPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec (Const a b) # liftReadListPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec [Const a b] # | |
Show2 (Const :: Type -> Type -> Type) | Since: base-4.9.0.0 |
Biapplicative (Const :: Type -> Type -> Type) | |
Defined in Data.Biapplicative | |
NFData2 (Const :: Type -> Type -> Type) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Hashable2 (Const :: Type -> Type -> Type) | |
Defined in Data.Hashable.Class | |
Bitraversable1 (Const :: Type -> Type -> Type) | |
Defined in Data.Semigroup.Traversable.Class Methods bitraverse1 :: Apply f => (a -> f b) -> (c -> f d) -> Const a c -> f (Const b d) # bisequence1 :: Apply f => Const (f a) (f b) -> f (Const a b) # | |
Biapply (Const :: Type -> Type -> Type) | |
Functor (Const m :: Type -> Type) | Since: base-2.1 |
Monoid m => Applicative (Const m :: Type -> Type) | Since: base-2.0.1 |
Foldable (Const m :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Functor.Const Methods fold :: Monoid m0 => Const m m0 -> m0 # foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldr :: (a -> b -> b) -> b -> Const m a -> b # foldr' :: (a -> b -> b) -> b -> Const m a -> b # foldl :: (b -> a -> b) -> b -> Const m a -> b # foldl' :: (b -> a -> b) -> b -> Const m a -> b # foldr1 :: (a -> a -> a) -> Const m a -> a # foldl1 :: (a -> a -> a) -> Const m a -> a # elem :: Eq a => a -> Const m a -> Bool # maximum :: Ord a => Const m a -> a # minimum :: Ord a => Const m a -> a # | |
Traversable (Const m :: Type -> Type) | Since: base-4.7.0.0 |
Contravariant (Const a :: Type -> Type) | |
Eq a => Eq1 (Const a :: Type -> Type) | Since: base-4.9.0.0 |
Ord a => Ord1 (Const a :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Read a => Read1 (Const a :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes Methods liftReadsPrec :: (Int -> ReadS a0) -> ReadS [a0] -> Int -> ReadS (Const a a0) # liftReadList :: (Int -> ReadS a0) -> ReadS [a0] -> ReadS [Const a a0] # liftReadPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec (Const a a0) # liftReadListPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec [Const a a0] # | |
Show a => Show1 (Const a :: Type -> Type) | Since: base-4.9.0.0 |
NFData a => NFData1 (Const a :: Type -> Type) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Hashable a => Hashable1 (Const a :: Type -> Type) | |
Defined in Data.Hashable.Class | |
Semigroup m => Apply (Const m :: Type -> Type) | A 'Const m' is not |
Bounded a => Bounded (Const a b) | Since: base-4.9.0.0 |
Enum a => Enum (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods succ :: Const a b -> Const a b # pred :: Const a b -> Const a b # fromEnum :: Const a b -> Int # enumFrom :: Const a b -> [Const a b] # enumFromThen :: Const a b -> Const a b -> [Const a b] # enumFromTo :: Const a b -> Const a b -> [Const a b] # enumFromThenTo :: Const a b -> Const a b -> Const a b -> [Const a b] # | |
Eq a => Eq (Const a b) | Since: base-4.9.0.0 |
Floating a => Floating (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods exp :: Const a b -> Const a b # log :: Const a b -> Const a b # sqrt :: Const a b -> Const a b # (**) :: Const a b -> Const a b -> Const a b # logBase :: Const a b -> Const a b -> Const a b # sin :: Const a b -> Const a b # cos :: Const a b -> Const a b # tan :: Const a b -> Const a b # asin :: Const a b -> Const a b # acos :: Const a b -> Const a b # atan :: Const a b -> Const a b # sinh :: Const a b -> Const a b # cosh :: Const a b -> Const a b # tanh :: Const a b -> Const a b # asinh :: Const a b -> Const a b # acosh :: Const a b -> Const a b # atanh :: Const a b -> Const a b # log1p :: Const a b -> Const a b # expm1 :: Const a b -> Const a b # | |
Fractional a => Fractional (Const a b) | Since: base-4.9.0.0 |
Integral a => Integral (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods quot :: Const a b -> Const a b -> Const a b # rem :: Const a b -> Const a b -> Const a b # div :: Const a b -> Const a b -> Const a b # mod :: Const a b -> Const a b -> Const a b # quotRem :: Const a b -> Const a b -> (Const a b, Const a b) # divMod :: Const a b -> Const a b -> (Const a b, Const a b) # | |
(Typeable k, Data a, Typeable b) => Data (Const a b) | Since: base-4.10.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Const a b -> c (Const a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Const a b) # toConstr :: Const a b -> Constr # dataTypeOf :: Const a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Const a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Const a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Const a b -> Const a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Const a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Const a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # | |
Num a => Num (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
Ord a => Ord (Const a b) | Since: base-4.9.0.0 |
Read a => Read (Const a b) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
Real a => Real (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods toRational :: Const a b -> Rational # | |
RealFloat a => RealFloat (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods floatRadix :: Const a b -> Integer # floatDigits :: Const a b -> Int # floatRange :: Const a b -> (Int, Int) # decodeFloat :: Const a b -> (Integer, Int) # encodeFloat :: Integer -> Int -> Const a b # exponent :: Const a b -> Int # significand :: Const a b -> Const a b # scaleFloat :: Int -> Const a b -> Const a b # isInfinite :: Const a b -> Bool # isDenormalized :: Const a b -> Bool # isNegativeZero :: Const a b -> Bool # | |
RealFrac a => RealFrac (Const a b) | Since: base-4.9.0.0 |
Show a => Show (Const a b) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
Ix a => Ix (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods range :: (Const a b, Const a b) -> [Const a b] # index :: (Const a b, Const a b) -> Const a b -> Int # unsafeIndex :: (Const a b, Const a b) -> Const a b -> Int inRange :: (Const a b, Const a b) -> Const a b -> Bool # rangeSize :: (Const a b, Const a b) -> Int # unsafeRangeSize :: (Const a b, Const a b) -> Int | |
IsString a => IsString (Const a b) | Since: base-4.9.0.0 |
Defined in Data.String Methods fromString :: String -> Const a b # | |
Generic (Const a b) | |
Semigroup a => Semigroup (Const a b) | Since: base-4.9.0.0 |
Monoid a => Monoid (Const a b) | Since: base-4.9.0.0 |
Storable a => Storable (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
Bits a => Bits (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods (.&.) :: Const a b -> Const a b -> Const a b # (.|.) :: Const a b -> Const a b -> Const a b # xor :: Const a b -> Const a b -> Const a b # complement :: Const a b -> Const a b # shift :: Const a b -> Int -> Const a b # rotate :: Const a b -> Int -> Const a b # setBit :: Const a b -> Int -> Const a b # clearBit :: Const a b -> Int -> Const a b # complementBit :: Const a b -> Int -> Const a b # testBit :: Const a b -> Int -> Bool # bitSizeMaybe :: Const a b -> Maybe Int # isSigned :: Const a b -> Bool # shiftL :: Const a b -> Int -> Const a b # unsafeShiftL :: Const a b -> Int -> Const a b # shiftR :: Const a b -> Int -> Const a b # unsafeShiftR :: Const a b -> Int -> Const a b # rotateL :: Const a b -> Int -> Const a b # | |
FiniteBits a => FiniteBits (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods finiteBitSize :: Const a b -> Int # countLeadingZeros :: Const a b -> Int # countTrailingZeros :: Const a b -> Int # | |
NFData a => NFData (Const a b) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
Hashable a => Hashable (Const a b) | |
Defined in Data.Hashable.Class | |
Prim a => Prim (Const a b) | Since: primitive-0.6.5.0 |
Defined in Data.Primitive.Types Methods sizeOf# :: Const a b -> Int# # alignment# :: Const a b -> Int# # indexByteArray# :: ByteArray# -> Int# -> Const a b # readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Const a b#) # writeByteArray# :: MutableByteArray# s -> Int# -> Const a b -> State# s -> State# s # setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Const a b -> State# s -> State# s # indexOffAddr# :: Addr# -> Int# -> Const a b # readOffAddr# :: Addr# -> Int# -> State# s -> (#State# s, Const a b#) # writeOffAddr# :: Addr# -> Int# -> Const a b -> State# s -> State# s # setOffAddr# :: Addr# -> Int# -> Int# -> Const a b -> State# s -> State# s # | |
Unbox a => Unbox (Const a b) | |
Defined in Data.Vector.Unboxed.Base | |
Wrapped (Const a x) | |
t ~ Const a' x' => Rewrapped (Const a x) t | |
Defined in Control.Lens.Wrapped | |
type Rep1 (Const a :: k -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
newtype MVector s (Const a b) | |
Defined in Data.Vector.Unboxed.Base | |
type Rep (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
newtype Vector (Const a b) | |
Defined in Data.Vector.Unboxed.Base | |
type Unwrapped (Const a x) | |
Defined in Control.Lens.Wrapped |
all :: Foldable t => (a -> Bool) -> t a -> Bool #
Determines whether all elements of the structure satisfy the predicate.
any :: Foldable t => (a -> Bool) -> t a -> Bool #
Determines whether any element of the structure satisfies the predicate.
concatMap :: Foldable t => (a -> [b]) -> t a -> [b] #
Map a function over all the elements of a container and concatenate the resulting lists.
concat :: Foldable t => t [a] -> [a] #
The concatenation of all the elements of a container of lists.
asum :: (Foldable t, Alternative f) => t (f a) -> f a #
sequence_ :: (Foldable t, Monad m) => t (m a) -> m () #
Evaluate each monadic action in the structure from left to right,
and ignore the results. For a version that doesn't ignore the
results see sequence
.
As of base 4.8.0.0, sequence_
is just sequenceA_
, specialized
to Monad
.
sequenceA_ :: (Foldable t, Applicative f) => t (f a) -> f () #
Evaluate each action in the structure from left to right, and
ignore the results. For a version that doesn't ignore the results
see sequenceA
.
for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f () #
traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f () #
Map each element of a structure to an action, evaluate these
actions from left to right, and ignore the results. For a version
that doesn't ignore the results see traverse
.
words
breaks a string up into a list of words, which were delimited
by white space.
>>>
words "Lorem ipsum\ndolor"
["Lorem","ipsum","dolor"]
readMaybe :: Read a => String -> Maybe a #
Parse a string using the Read
instance.
Succeeds if there is exactly one valid result.
>>>
readMaybe "123" :: Maybe Int
Just 123
>>>
readMaybe "hello" :: Maybe Int
Nothing
Since: base-4.6.0.0
isRight :: Either a b -> Bool #
Return True
if the given value is a Right
-value, False
otherwise.
Examples
Basic usage:
>>>
isRight (Left "foo")
False>>>
isRight (Right 3)
True
Assuming a Left
value signifies some sort of error, we can use
isRight
to write a very simple reporting function that only
outputs "SUCCESS" when a computation has succeeded.
This example shows how isRight
might be used to avoid pattern
matching when one does not care about the value contained in the
constructor:
>>>
import Control.Monad ( when )
>>>
let report e = when (isRight e) $ putStrLn "SUCCESS"
>>>
report (Left "parse error")
>>>
report (Right 1)
SUCCESS
Since: base-4.7.0.0
isLeft :: Either a b -> Bool #
Return True
if the given value is a Left
-value, False
otherwise.
Examples
Basic usage:
>>>
isLeft (Left "foo")
True>>>
isLeft (Right 3)
False
Assuming a Left
value signifies some sort of error, we can use
isLeft
to write a very simple error-reporting function that does
absolutely nothing in the case of success, and outputs "ERROR" if
any error occurred.
This example shows how isLeft
might be used to avoid pattern
matching when one does not care about the value contained in the
constructor:
>>>
import Control.Monad ( when )
>>>
let report e = when (isLeft e) $ putStrLn "ERROR"
>>>
report (Right 1)
>>>
report (Left "parse error")
ERROR
Since: base-4.7.0.0
partitionEithers :: [Either a b] -> ([a], [b]) #
Partitions a list of Either
into two lists.
All the Left
elements are extracted, in order, to the first
component of the output. Similarly the Right
elements are extracted
to the second component of the output.
Examples
Basic usage:
>>>
let list = [ Left "foo", Right 3, Left "bar", Right 7, Left "baz" ]
>>>
partitionEithers list
(["foo","bar","baz"],[3,7])
The pair returned by
should be the same
pair as partitionEithers
x(
:lefts
x, rights
x)
>>>
let list = [ Left "foo", Right 3, Left "bar", Right 7, Left "baz" ]
>>>
partitionEithers list == (lefts list, rights list)
True
comparing :: Ord a => (b -> a) -> b -> b -> Ordering #
comparing p x y = compare (p x) (p y)
Useful combinator for use in conjunction with the xxxBy
family
of functions from Data.List, for example:
... sortBy (comparing fst) ...
The Down
type allows you to reverse sort order conveniently. A value of type
contains a value of type Down
aa
(represented as
).
If Down
aa
has an
instance associated with it then comparing two
values thus wrapped will give you the opposite of their normal sort order.
This is particularly useful when sorting in generalised list comprehensions,
as in: Ord
then sortWith by
Down
x
Since: base-4.6.0.0
Constructors
Down a |
Instances
Monad Down | Since: base-4.11.0.0 |
Functor Down | Since: base-4.11.0.0 |
MonadFix Down | Since: base-4.12.0.0 |
Defined in Control.Monad.Fix | |
Applicative Down | Since: base-4.11.0.0 |
Foldable Down | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Down m -> m # foldMap :: Monoid m => (a -> m) -> Down a -> m # foldr :: (a -> b -> b) -> b -> Down a -> b # foldr' :: (a -> b -> b) -> b -> Down a -> b # foldl :: (b -> a -> b) -> b -> Down a -> b # foldl' :: (b -> a -> b) -> b -> Down a -> b # foldr1 :: (a -> a -> a) -> Down a -> a # foldl1 :: (a -> a -> a) -> Down a -> a # elem :: Eq a => a -> Down a -> Bool # maximum :: Ord a => Down a -> a # | |
Traversable Down | Since: base-4.12.0.0 |
Eq1 Down | Since: base-4.12.0.0 |
Ord1 Down | Since: base-4.12.0.0 |
Defined in Data.Functor.Classes | |
Read1 Down | Since: base-4.12.0.0 |
Defined in Data.Functor.Classes | |
Show1 Down | Since: base-4.12.0.0 |
NFData1 Down | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Apply Down | |
Bind Down | |
Unbox a => Vector Vector (Down a) | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: PrimMonad m => Mutable Vector (PrimState m) (Down a) -> m (Vector (Down a)) # basicUnsafeThaw :: PrimMonad m => Vector (Down a) -> m (Mutable Vector (PrimState m) (Down a)) # basicLength :: Vector (Down a) -> Int # basicUnsafeSlice :: Int -> Int -> Vector (Down a) -> Vector (Down a) # basicUnsafeIndexM :: Monad m => Vector (Down a) -> Int -> m (Down a) # basicUnsafeCopy :: PrimMonad m => Mutable Vector (PrimState m) (Down a) -> Vector (Down a) -> m () # | |
Unbox a => MVector MVector (Down a) | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (Down a) -> Int # basicUnsafeSlice :: Int -> Int -> MVector s (Down a) -> MVector s (Down a) # basicOverlaps :: MVector s (Down a) -> MVector s (Down a) -> Bool # basicUnsafeNew :: PrimMonad m => Int -> m (MVector (PrimState m) (Down a)) # basicInitialize :: PrimMonad m => MVector (PrimState m) (Down a) -> m () # basicUnsafeReplicate :: PrimMonad m => Int -> Down a -> m (MVector (PrimState m) (Down a)) # basicUnsafeRead :: PrimMonad m => MVector (PrimState m) (Down a) -> Int -> m (Down a) # basicUnsafeWrite :: PrimMonad m => MVector (PrimState m) (Down a) -> Int -> Down a -> m () # basicClear :: PrimMonad m => MVector (PrimState m) (Down a) -> m () # basicSet :: PrimMonad m => MVector (PrimState m) (Down a) -> Down a -> m () # basicUnsafeCopy :: PrimMonad m => MVector (PrimState m) (Down a) -> MVector (PrimState m) (Down a) -> m () # basicUnsafeMove :: PrimMonad m => MVector (PrimState m) (Down a) -> MVector (PrimState m) (Down a) -> m () # basicUnsafeGrow :: PrimMonad m => MVector (PrimState m) (Down a) -> Int -> m (MVector (PrimState m) (Down a)) # | |
Eq a => Eq (Down a) | Since: base-4.6.0.0 |
Data a => Data (Down a) | Since: base-4.12.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Down a -> c (Down a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Down a) # toConstr :: Down a -> Constr # dataTypeOf :: Down a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Down a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Down a)) # gmapT :: (forall b. Data b => b -> b) -> Down a -> Down a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Down a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Down a -> r # gmapQ :: (forall d. Data d => d -> u) -> Down a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Down a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Down a -> m (Down a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Down a -> m (Down a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Down a -> m (Down a) # | |
Num a => Num (Down a) | Since: base-4.11.0.0 |
Ord a => Ord (Down a) | Since: base-4.6.0.0 |
Read a => Read (Down a) | Since: base-4.7.0.0 |
Show a => Show (Down a) | Since: base-4.7.0.0 |
Generic (Down a) | |
Semigroup a => Semigroup (Down a) | Since: base-4.11.0.0 |
Monoid a => Monoid (Down a) | Since: base-4.11.0.0 |
NFData a => NFData (Down a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
Prim a => Prim (Down a) | Since: primitive-0.6.5.0 |
Defined in Data.Primitive.Types Methods alignment# :: Down a -> Int# # indexByteArray# :: ByteArray# -> Int# -> Down a # readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Down a#) # writeByteArray# :: MutableByteArray# s -> Int# -> Down a -> State# s -> State# s # setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Down a -> State# s -> State# s # indexOffAddr# :: Addr# -> Int# -> Down a # readOffAddr# :: Addr# -> Int# -> State# s -> (#State# s, Down a#) # writeOffAddr# :: Addr# -> Int# -> Down a -> State# s -> State# s # setOffAddr# :: Addr# -> Int# -> Int# -> Down a -> State# s -> State# s # | |
Unbox a => Unbox (Down a) | |
Defined in Data.Vector.Unboxed.Base | |
Wrapped (Down a) | |
Generic1 Down | |
t ~ Down b => Rewrapped (Down a) t | |
Defined in Control.Lens.Wrapped | |
newtype MVector s (Down a) | |
Defined in Data.Vector.Unboxed.Base | |
type Rep (Down a) | Since: base-4.12.0.0 |
Defined in GHC.Generics | |
newtype Vector (Down a) | |
Defined in Data.Vector.Unboxed.Base | |
type Unwrapped (Down a) | |
Defined in Control.Lens.Wrapped | |
type Rep1 Down | Since: base-4.12.0.0 |
Defined in GHC.Generics |
data Proxy (t :: k) :: forall k. k -> Type #
Proxy
is a type that holds no data, but has a phantom parameter of
arbitrary type (or even kind). Its use is to provide type information, even
though there is no value available of that type (or it may be too costly to
create one).
Historically,
is a safer alternative to the
Proxy
:: Proxy
a'undefined :: a'
idiom.
>>>
Proxy :: Proxy (Void, Int -> Int)
Proxy
Proxy can even hold types of higher kinds,
>>>
Proxy :: Proxy Either
Proxy
>>>
Proxy :: Proxy Functor
Proxy
>>>
Proxy :: Proxy complicatedStructure
Proxy
Constructors
Proxy |
Instances
Generic1 (Proxy :: k -> Type) | |
FunctorWithIndex Void (Proxy :: Type -> Type) | |
FoldableWithIndex Void (Proxy :: Type -> Type) | |
Defined in Control.Lens.Indexed | |
TraversableWithIndex Void (Proxy :: Type -> Type) | |
Defined in Control.Lens.Indexed Methods itraverse :: Applicative f => (Void -> a -> f b) -> Proxy a -> f (Proxy b) # itraversed :: IndexedTraversal Void (Proxy a) (Proxy b) a b # | |
Monad (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Functor (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Applicative (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Foldable (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Proxy m -> m # foldMap :: Monoid m => (a -> m) -> Proxy a -> m # foldr :: (a -> b -> b) -> b -> Proxy a -> b # foldr' :: (a -> b -> b) -> b -> Proxy a -> b # foldl :: (b -> a -> b) -> b -> Proxy a -> b # foldl' :: (b -> a -> b) -> b -> Proxy a -> b # foldr1 :: (a -> a -> a) -> Proxy a -> a # foldl1 :: (a -> a -> a) -> Proxy a -> a # elem :: Eq a => a -> Proxy a -> Bool # maximum :: Ord a => Proxy a -> a # minimum :: Ord a => Proxy a -> a # | |
Traversable (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Contravariant (Proxy :: Type -> Type) | |
Representable (Proxy :: Type -> Type) | |
Eq1 (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
Ord1 (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Read1 (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Show1 (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
Alternative (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
MonadPlus (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
NFData1 (Proxy :: Type -> Type) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Hashable1 (Proxy :: Type -> Type) | |
Defined in Data.Hashable.Class | |
Apply (Proxy :: Type -> Type) | |
Bind (Proxy :: Type -> Type) | |
Bounded (Proxy t) | Since: base-4.7.0.0 |
Enum (Proxy s) | Since: base-4.7.0.0 |
Eq (Proxy s) | Since: base-4.7.0.0 |
Data t => Data (Proxy t) | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Proxy t -> c (Proxy t) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Proxy t) # toConstr :: Proxy t -> Constr # dataTypeOf :: Proxy t -> DataType # dataCast1 :: Typeable t0 => (forall d. Data d => c (t0 d)) -> Maybe (c (Proxy t)) # dataCast2 :: Typeable t0 => (forall d e. (Data d, Data e) => c (t0 d e)) -> Maybe (c (Proxy t)) # gmapT :: (forall b. Data b => b -> b) -> Proxy t -> Proxy t # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Proxy t -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Proxy t -> r # gmapQ :: (forall d. Data d => d -> u) -> Proxy t -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Proxy t -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) # | |
Ord (Proxy s) | Since: base-4.7.0.0 |
Read (Proxy t) | Since: base-4.7.0.0 |
Show (Proxy s) | Since: base-4.7.0.0 |
Ix (Proxy s) | Since: base-4.7.0.0 |
Defined in Data.Proxy | |
Generic (Proxy t) | |
Semigroup (Proxy s) | Since: base-4.9.0.0 |
Monoid (Proxy s) | Since: base-4.7.0.0 |
NFData (Proxy a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
Hashable (Proxy a) | |
Defined in Data.Hashable.Class | |
type Rep1 (Proxy :: k -> Type) | Since: base-4.6.0.0 |
type Rep (Proxy :: Type -> Type) | |
type Rep (Proxy t) | Since: base-4.6.0.0 |
class Category (cat :: k -> k -> Type) #
A class for categories. Instances should satisfy the laws
f.
id
= f -- (right identity)id
.
f = f -- (left identity) f.
(g.
h) = (f.
g).
h -- (associativity)
Instances
See openFile
Constructors
ReadMode | |
WriteMode | |
AppendMode | |
ReadWriteMode |
The member functions of this class facilitate writing values of primitive types to raw memory (which may have been allocated with the above mentioned routines) and reading values from blocks of raw memory. The class, furthermore, includes support for computing the storage requirements and alignment restrictions of storable types.
Memory addresses are represented as values of type
, for some
Ptr
aa
which is an instance of class Storable
. The type argument to
Ptr
helps provide some valuable type safety in FFI code (you can't
mix pointers of different types without an explicit cast), while
helping the Haskell type system figure out which marshalling method is
needed for a given pointer.
All marshalling between Haskell and a foreign language ultimately
boils down to translating Haskell data structures into the binary
representation of a corresponding data structure of the foreign
language and vice versa. To code this marshalling in Haskell, it is
necessary to manipulate primitive data types stored in unstructured
memory blocks. The class Storable
facilitates this manipulation on
all types for which it is instantiated, which are the standard basic
types of Haskell, the fixed size Int
types (Int8
, Int16
,
Int32
, Int64
), the fixed size Word
types (Word8
, Word16
,
Word32
, Word64
), StablePtr
, all types from Foreign.C.Types,
as well as Ptr
.
Minimal complete definition
sizeOf, alignment, (peek | peekElemOff | peekByteOff), (poke | pokeElemOff | pokeByteOff)
Instances
byteSwap64 :: Word64 -> Word64 #
Reverse order of bytes in Word64
.
Since: base-4.7.0.0
byteSwap32 :: Word32 -> Word32 #
Reverse order of bytes in Word32
.
Since: base-4.7.0.0
byteSwap16 :: Word16 -> Word16 #
Swap bytes in Word16
.
Since: base-4.7.0.0
runST :: (forall s. ST s a) -> a #
Return the value computed by a state transformer computation.
The forall
ensures that the internal state used by the ST
computation is inaccessible to the rest of the program.
Case analysis for the Bool
type.
evaluates to bool
x y px
when p
is False
, and evaluates to y
when p
is True
.
This is equivalent to if p then y else x
; that is, one can
think of it as an if-then-else construct with its arguments
reordered.
Examples
Basic usage:
>>>
bool "foo" "bar" True
"bar">>>
bool "foo" "bar" False
"foo"
Confirm that
and bool
x y pif p then y else x
are
equivalent:
>>>
let p = True; x = "bar"; y = "foo"
>>>
bool x y p == if p then y else x
True>>>
let p = False
>>>
bool x y p == if p then y else x
True
Since: base-4.7.0.0
is the least fixed point of the function fix
ff
,
i.e. the least defined x
such that f x = x
.
For example, we can write the factorial function using direct recursion as
>>>
let fac n = if n <= 1 then 1 else n * fac (n-1) in fac 5
120
This uses the fact that Haskell’s let
introduces recursive bindings. We can
rewrite this definition using fix
,
>>>
fix (\rec n -> if n <= 1 then 1 else n * rec (n-1)) 5
120
Instead of making a recursive call, we introduce a dummy parameter rec
;
when used within fix
, this parameter then refers to fix'
argument, hence
the recursion is reintroduced.
void :: Functor f => f a -> f () #
discards or ignores the result of evaluation, such
as the return value of an void
valueIO
action.
Examples
Replace the contents of a
with unit:Maybe
Int
>>>
void Nothing
Nothing>>>
void (Just 3)
Just ()
Replace the contents of an
with unit,
resulting in an Either
Int
Int
:Either
Int
'()'
>>>
void (Left 8675309)
Left 8675309>>>
void (Right 8675309)
Right ()
Replace every element of a list with unit:
>>>
void [1,2,3]
[(),(),()]
Replace the second element of a pair with unit:
>>>
void (1,2)
(1,())
Discard the result of an IO
action:
>>>
mapM print [1,2]
1 2 [(),()]>>>
void $ mapM print [1,2]
1 2
($>) :: Functor f => f a -> b -> f b infixl 4 #
Flipped version of <$
.
Examples
Replace the contents of a
with a constant Maybe
Int
String
:
>>>
Nothing $> "foo"
Nothing>>>
Just 90210 $> "foo"
Just "foo"
Replace the contents of an
with a constant
Either
Int
Int
String
, resulting in an
:Either
Int
String
>>>
Left 8675309 $> "foo"
Left 8675309>>>
Right 8675309 $> "foo"
Right "foo"
Replace each element of a list with a constant String
:
>>>
[1,2,3] $> "foo"
["foo","foo","foo"]
Replace the second element of a pair with a constant String
:
>>>
(1,2) $> "foo"
(1,"foo")
Since: base-4.7.0.0
(<$>) :: Functor f => (a -> b) -> f a -> f b infixl 4 #
An infix synonym for fmap
.
The name of this operator is an allusion to $
.
Note the similarities between their types:
($) :: (a -> b) -> a -> b (<$>) :: Functor f => (a -> b) -> f a -> f b
Whereas $
is function application, <$>
is function
application lifted over a Functor
.
Examples
Convert from a
to a Maybe
Int
using Maybe
String
show
:
>>>
show <$> Nothing
Nothing>>>
show <$> Just 3
Just "3"
Convert from an
to an Either
Int
Int
Either
Int
String
using show
:
>>>
show <$> Left 17
Left 17>>>
show <$> Right 17
Right "17"
Double each element of a list:
>>>
(*2) <$> [1,2,3]
[2,4,6]
Apply even
to the second element of a pair:
>>>
even <$> (2,2)
(2,True)
lcm :: Integral a => a -> a -> a #
is the smallest positive integer that both lcm
x yx
and y
divide.
gcd :: Integral a => a -> a -> a #
is the non-negative factor of both gcd
x yx
and y
of which
every common factor of x
and y
is also a factor; for example
, gcd
4 2 = 2
, gcd
(-4) 6 = 2
= gcd
0 44
.
= gcd
0 00
.
(That is, the common divisor that is "greatest" in the divisibility
preordering.)
Note: Since for signed fixed-width integer types,
,
the result may be negative if one of the arguments is abs
minBound
< 0
(and
necessarily is if the other is minBound
0
or
) for such types.minBound
(^^) :: (Fractional a, Integral b) => a -> b -> a infixr 8 #
raise a number to an integral power
lookup :: Eq a => a -> [(a, b)] -> Maybe b #
lookup
key assocs
looks up a key in an association list.
break :: (a -> Bool) -> [a] -> ([a], [a]) #
break
, applied to a predicate p
and a list xs
, returns a tuple where
first element is longest prefix (possibly empty) of xs
of elements that
do not satisfy p
and second element is the remainder of the list:
break (> 3) [1,2,3,4,1,2,3,4] == ([1,2,3],[4,1,2,3,4]) break (< 9) [1,2,3] == ([],[1,2,3]) break (> 9) [1,2,3] == ([1,2,3],[])
span :: (a -> Bool) -> [a] -> ([a], [a]) #
span
, applied to a predicate p
and a list xs
, returns a tuple where
first element is longest prefix (possibly empty) of xs
of elements that
satisfy p
and second element is the remainder of the list:
span (< 3) [1,2,3,4,1,2,3,4] == ([1,2],[3,4,1,2,3,4]) span (< 9) [1,2,3] == ([1,2,3],[]) span (< 0) [1,2,3] == ([],[1,2,3])
drop
n xs
returns the suffix of xs
after the first n
elements, or []
if n >
:length
xs
drop 6 "Hello World!" == "World!" drop 3 [1,2,3,4,5] == [4,5] drop 3 [1,2] == [] drop 3 [] == [] drop (-1) [1,2] == [1,2] drop 0 [1,2] == [1,2]
It is an instance of the more general genericDrop
,
in which n
may be of any integral type.
take
n
, applied to a list xs
, returns the prefix of xs
of length n
, or xs
itself if n >
:length
xs
take 5 "Hello World!" == "Hello" take 3 [1,2,3,4,5] == [1,2,3] take 3 [1,2] == [1,2] take 3 [] == [] take (-1) [1,2] == [] take 0 [1,2] == []
It is an instance of the more general genericTake
,
in which n
may be of any integral type.
takeWhile :: (a -> Bool) -> [a] -> [a] #
takeWhile
, applied to a predicate p
and a list xs
, returns the
longest prefix (possibly empty) of xs
of elements that satisfy p
:
takeWhile (< 3) [1,2,3,4,1,2,3,4] == [1,2] takeWhile (< 9) [1,2,3] == [1,2,3] takeWhile (< 0) [1,2,3] == []
replicate :: Int -> a -> [a] #
replicate
n x
is a list of length n
with x
the value of
every element.
It is an instance of the more general genericReplicate
,
in which n
may be of any integral type.
mapMaybe :: (a -> Maybe b) -> [a] -> [b] #
The mapMaybe
function is a version of map
which can throw
out elements. In particular, the functional argument returns
something of type
. If this is Maybe
bNothing
, no element
is added on to the result list. If it is
, then Just
bb
is
included in the result list.
Examples
Using
is a shortcut for mapMaybe
f x
in most cases:catMaybes
$ map
f x
>>>
import Text.Read ( readMaybe )
>>>
let readMaybeInt = readMaybe :: String -> Maybe Int
>>>
mapMaybe readMaybeInt ["1", "Foo", "3"]
[1,3]>>>
catMaybes $ map readMaybeInt ["1", "Foo", "3"]
[1,3]
If we map the Just
constructor, the entire list should be returned:
>>>
mapMaybe Just [1,2,3]
[1,2,3]
catMaybes :: [Maybe a] -> [a] #
The catMaybes
function takes a list of Maybe
s and returns
a list of all the Just
values.
Examples
Basic usage:
>>>
catMaybes [Just 1, Nothing, Just 3]
[1,3]
When constructing a list of Maybe
values, catMaybes
can be used
to return all of the "success" results (if the list is the result
of a map
, then mapMaybe
would be more appropriate):
>>>
import Text.Read ( readMaybe )
>>>
[readMaybe x :: Maybe Int | x <- ["1", "Foo", "3"] ]
[Just 1,Nothing,Just 3]>>>
catMaybes $ [readMaybe x :: Maybe Int | x <- ["1", "Foo", "3"] ]
[1,3]
listToMaybe :: [a] -> Maybe a #
The listToMaybe
function returns Nothing
on an empty list
or
where Just
aa
is the first element of the list.
Examples
Basic usage:
>>>
listToMaybe []
Nothing
>>>
listToMaybe [9]
Just 9
>>>
listToMaybe [1,2,3]
Just 1
Composing maybeToList
with listToMaybe
should be the identity
on singleton/empty lists:
>>>
maybeToList $ listToMaybe [5]
[5]>>>
maybeToList $ listToMaybe []
[]
But not on lists with more than one element:
>>>
maybeToList $ listToMaybe [1,2,3]
[1]
maybeToList :: Maybe a -> [a] #
The maybeToList
function returns an empty list when given
Nothing
or a singleton list when not given Nothing
.
Examples
Basic usage:
>>>
maybeToList (Just 7)
[7]
>>>
maybeToList Nothing
[]
One can use maybeToList
to avoid pattern matching when combined
with a function that (safely) works on lists:
>>>
import Text.Read ( readMaybe )
>>>
sum $ maybeToList (readMaybe "3")
3>>>
sum $ maybeToList (readMaybe "")
0
fromMaybe :: a -> Maybe a -> a #
The fromMaybe
function takes a default value and and Maybe
value. If the Maybe
is Nothing
, it returns the default values;
otherwise, it returns the value contained in the Maybe
.
Examples
Basic usage:
>>>
fromMaybe "" (Just "Hello, World!")
"Hello, World!"
>>>
fromMaybe "" Nothing
""
Read an integer from a string using readMaybe
. If we fail to
parse an integer, we want to return 0
by default:
>>>
import Text.Read ( readMaybe )
>>>
fromMaybe 0 (readMaybe "5")
5>>>
fromMaybe 0 (readMaybe "")
0
maybe :: b -> (a -> b) -> Maybe a -> b #
The maybe
function takes a default value, a function, and a Maybe
value. If the Maybe
value is Nothing
, the function returns the
default value. Otherwise, it applies the function to the value inside
the Just
and returns the result.
Examples
Basic usage:
>>>
maybe False odd (Just 3)
True
>>>
maybe False odd Nothing
False
Read an integer from a string using readMaybe
. If we succeed,
return twice the integer; that is, apply (*2)
to it. If instead
we fail to parse an integer, return 0
by default:
>>>
import Text.Read ( readMaybe )
>>>
maybe 0 (*2) (readMaybe "5")
10>>>
maybe 0 (*2) (readMaybe "")
0
Apply show
to a Maybe Int
. If we have Just n
, we want to show
the underlying Int
n
. But if we have Nothing
, we return the
empty string instead of (for example) "Nothing":
>>>
maybe "" show (Just 5)
"5">>>
maybe "" show Nothing
""
uncurry :: (a -> b -> c) -> (a, b) -> c #
uncurry
converts a curried function to a function on pairs.
Examples
>>>
uncurry (+) (1,2)
3
>>>
uncurry ($) (show, 1)
"1"
>>>
map (uncurry max) [(1,2), (3,4), (6,8)]
[2,4,8]
An MVar
(pronounced "em-var") is a synchronising variable, used
for communication between concurrent threads. It can be thought of
as a box, which may be empty or full.
Instances
NFData1 MVar | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Eq (MVar a) | Since: base-4.1.0.0 |
NFData (MVar a) | NOTE: Only strict in the reference and not the referenced value. Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq |
($!) :: (a -> b) -> a -> b infixr 0 #
Strict (call-by-value) application operator. It takes a function and an argument, evaluates the argument to weak head normal form (WHNF), then calls the function with that value.
flip :: (a -> b -> c) -> b -> a -> c #
takes its (first) two arguments in the reverse order of flip
ff
.
>>>
flip (++) "hello" "world"
"worldhello"
const x
is a unary function which evaluates to x
for all inputs.
>>>
const 42 "hello"
42
>>>
map (const 42) [0..3]
[42,42,42,42]
liftM5 :: Monad m => (a1 -> a2 -> a3 -> a4 -> a5 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m a5 -> m r #
Promote a function to a monad, scanning the monadic arguments from
left to right (cf. liftM2
).
liftM4 :: Monad m => (a1 -> a2 -> a3 -> a4 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m r #
Promote a function to a monad, scanning the monadic arguments from
left to right (cf. liftM2
).
liftM3 :: Monad m => (a1 -> a2 -> a3 -> r) -> m a1 -> m a2 -> m a3 -> m r #
Promote a function to a monad, scanning the monadic arguments from
left to right (cf. liftM2
).
liftM2 :: Monad m => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r #
Promote a function to a monad, scanning the monadic arguments from left to right. For example,
liftM2 (+) [0,1] [0,2] = [0,2,1,3] liftM2 (+) (Just 1) Nothing = Nothing
when :: Applicative f => Bool -> f () -> f () #
Conditional execution of Applicative
expressions. For example,
when debug (putStrLn "Debugging")
will output the string Debugging
if the Boolean value debug
is True
, and otherwise do nothing.
(=<<) :: Monad m => (a -> m b) -> m a -> m b infixr 1 #
Same as >>=
, but with the arguments interchanged.
liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d #
Lift a ternary function to actions.
liftA :: Applicative f => (a -> b) -> f a -> f b #
class Applicative f => Alternative (f :: Type -> Type) where #
A monoid on applicative functors.
If defined, some
and many
should be the least solutions
of the equations:
Instances
class (Alternative m, Monad m) => MonadPlus (m :: Type -> Type) where #
Monads that also support choice and failure.
Minimal complete definition
Nothing
Methods
The identity of mplus
. It should also satisfy the equations
mzero >>= f = mzero v >> mzero = mzero
The default definition is
mzero = empty
An associative operation. The default definition is
mplus = (<|>
)
Instances
Non-empty (and non-strict) list type.
Since: base-4.9.0.0
Constructors
a :| [a] infixr 5 |
Instances
Monad NonEmpty | Since: base-4.9.0.0 |
Functor NonEmpty | Since: base-4.9.0.0 |
MonadFix NonEmpty | Since: base-4.9.0.0 |
Defined in Control.Monad.Fix | |
Applicative NonEmpty | Since: base-4.9.0.0 |
Foldable NonEmpty | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => NonEmpty m -> m # foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m # foldr :: (a -> b -> b) -> b -> NonEmpty a -> b # foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b # foldl :: (b -> a -> b) -> b -> NonEmpty a -> b # foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b # foldr1 :: (a -> a -> a) -> NonEmpty a -> a # foldl1 :: (a -> a -> a) -> NonEmpty a -> a # elem :: Eq a => a -> NonEmpty a -> Bool # maximum :: Ord a => NonEmpty a -> a # minimum :: Ord a => NonEmpty a -> a # | |
Traversable NonEmpty | Since: base-4.9.0.0 |
Eq1 NonEmpty | Since: base-4.10.0.0 |
Ord1 NonEmpty | Since: base-4.10.0.0 |
Defined in Data.Functor.Classes | |
Read1 NonEmpty | Since: base-4.10.0.0 |
Defined in Data.Functor.Classes | |
Show1 NonEmpty | Since: base-4.10.0.0 |
NFData1 NonEmpty | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Apply NonEmpty | |
Traversable1 NonEmpty | |
Bind NonEmpty | |
FunctorWithIndex Int NonEmpty | |
FoldableWithIndex Int NonEmpty | |
Defined in Control.Lens.Indexed | |
TraversableWithIndex Int NonEmpty | |
Defined in Control.Lens.Indexed Methods itraverse :: Applicative f => (Int -> a -> f b) -> NonEmpty a -> f (NonEmpty b) # itraversed :: IndexedTraversal Int (NonEmpty a) (NonEmpty b) a b # | |
IsList (NonEmpty a) | Since: base-4.9.0.0 |
Eq a => Eq (NonEmpty a) | Since: base-4.9.0.0 |
Data a => Data (NonEmpty a) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NonEmpty a -> c (NonEmpty a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (NonEmpty a) # toConstr :: NonEmpty a -> Constr # dataTypeOf :: NonEmpty a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (NonEmpty a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (NonEmpty a)) # gmapT :: (forall b. Data b => b -> b) -> NonEmpty a -> NonEmpty a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NonEmpty a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NonEmpty a -> r # gmapQ :: (forall d. Data d => d -> u) -> NonEmpty a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> NonEmpty a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) # | |
Ord a => Ord (NonEmpty a) | Since: base-4.9.0.0 |
Read a => Read (NonEmpty a) | Since: base-4.11.0.0 |
Show a => Show (NonEmpty a) | Since: base-4.11.0.0 |
Generic (NonEmpty a) | |
Semigroup (NonEmpty a) | Since: base-4.9.0.0 |
NFData a => NFData (NonEmpty a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
Hashable a => Hashable (NonEmpty a) | |
Defined in Data.Hashable.Class | |
Ixed (NonEmpty a) | |
Defined in Control.Lens.At | |
Wrapped (NonEmpty a) | |
Reversing (NonEmpty a) | |
Defined in Control.Lens.Internal.Iso | |
Generic1 NonEmpty | |
t ~ NonEmpty b => Rewrapped (NonEmpty a) t | |
Defined in Control.Lens.Wrapped | |
Each (NonEmpty a) (NonEmpty b) a b |
|
Each (NonEmpty a) (NonEmpty b) a b | |
type Rep (NonEmpty a) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep (NonEmpty a) = D1 (MetaData "NonEmpty" "GHC.Base" "base" False) (C1 (MetaCons ":|" (InfixI LeftAssociative 9) False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 a) :*: S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 [a]))) | |
type Item (NonEmpty a) | |
type Index (NonEmpty a) | |
Defined in Control.Lens.At | |
type IxValue (NonEmpty a) | |
Defined in Control.Lens.At | |
type Unwrapped (NonEmpty a) | |
Defined in Control.Lens.Wrapped | |
type Rep1 NonEmpty | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep1 NonEmpty = D1 (MetaData "NonEmpty" "GHC.Base" "base" False) (C1 (MetaCons ":|" (InfixI LeftAssociative 9) False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) Par1 :*: S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec1 []))) |
undefined :: HasCallStack => a #
error :: HasCallStack => [Char] -> a #
error
stops execution and displays an error message.
type HasCallStack = ?callStack :: CallStack #
Request a CallStack.
NOTE: The implicit parameter ?callStack :: CallStack
is an
implementation detail and should not be considered part of the
CallStack
API, we may decide to change the implementation in the
future.
Since: base-4.9.0.0
data SomeException where #
The SomeException
type is the root of the exception type hierarchy.
When an exception of type e
is thrown, behind the scenes it is
encapsulated in a SomeException
.
Constructors
SomeException :: forall e. Exception e => e -> SomeException |
Instances
Show SomeException | Since: base-3.0 |
Defined in GHC.Exception.Type Methods showsPrec :: Int -> SomeException -> ShowS # show :: SomeException -> String # showList :: [SomeException] -> ShowS # | |
Exception SomeException | Since: base-3.0 |
Defined in GHC.Exception.Type Methods toException :: SomeException -> SomeException # fromException :: SomeException -> Maybe SomeException # displayException :: SomeException -> String # | |
Display SomeException | Since: rio-0.1.0.0 |
Defined in RIO.Prelude.Display |
fromShort :: ShortByteString -> ByteString #
O(n). Convert a ShortByteString
into a ByteString
.
data ShortByteString #
A compact representation of a Word8
vector.
It has a lower memory overhead than a ByteString
and and does not
contribute to heap fragmentation. It can be converted to or from a
ByteString
(at the cost of copying the string data). It supports very few
other operations.
It is suitable for use as an internal representation for code that needs
to keep many short strings in memory, but it should not be used as an
interchange type. That is, it should not generally be used in public APIs.
The ByteString
type is usually more suitable for use in interfaces; it is
more flexible and it supports a wide range of operations.
Instances
data ByteString #
A space-efficient representation of a Word8
vector, supporting many
efficient operations.
A ByteString
contains 8-bit bytes, or by using the operations from
Data.ByteString.Char8 it can be interpreted as containing 8-bit
characters.
Instances
Builder
s denote sequences of bytes.
They are Monoid
s where
mempty
is the zero-length sequence and
mappend
is concatenation, which runs in O(1).
toShort :: ByteString -> ShortByteString #
O(n). Convert a ByteString
into a ShortByteString
.
This makes a copy, so does not retain the input string.
A space efficient, packed, unboxed Unicode text type.
Instances
A map of integers to values a
.
Instances
Functor IntMap | |
Foldable IntMap | |
Defined in Data.IntMap.Internal Methods fold :: Monoid m => IntMap m -> m # foldMap :: Monoid m => (a -> m) -> IntMap a -> m # foldr :: (a -> b -> b) -> b -> IntMap a -> b # foldr' :: (a -> b -> b) -> b -> IntMap a -> b # foldl :: (b -> a -> b) -> b -> IntMap a -> b # foldl' :: (b -> a -> b) -> b -> IntMap a -> b # foldr1 :: (a -> a -> a) -> IntMap a -> a # foldl1 :: (a -> a -> a) -> IntMap a -> a # elem :: Eq a => a -> IntMap a -> Bool # maximum :: Ord a => IntMap a -> a # minimum :: Ord a => IntMap a -> a # | |
Traversable IntMap | |
Eq1 IntMap | Since: containers-0.5.9 |
Ord1 IntMap | Since: containers-0.5.9 |
Defined in Data.IntMap.Internal | |
Read1 IntMap | Since: containers-0.5.9 |
Defined in Data.IntMap.Internal | |
Show1 IntMap | Since: containers-0.5.9 |
Apply IntMap | An |
Bind IntMap | |
FunctorWithIndex Int IntMap | |
FoldableWithIndex Int IntMap | |
Defined in Control.Lens.Indexed | |
TraversableWithIndex Int IntMap | |
Defined in Control.Lens.Indexed Methods itraverse :: Applicative f => (Int -> a -> f b) -> IntMap a -> f (IntMap b) # itraversed :: IndexedTraversal Int (IntMap a) (IntMap b) a b # | |
TraverseMin Int IntMap | |
Defined in Control.Lens.Traversal Methods traverseMin :: IndexedTraversal' Int (IntMap v) v # | |
TraverseMax Int IntMap | |
Defined in Control.Lens.Traversal Methods traverseMax :: IndexedTraversal' Int (IntMap v) v # | |
IsList (IntMap a) | Since: containers-0.5.6.2 |
Eq a => Eq (IntMap a) | |
Data a => Data (IntMap a) | |
Defined in Data.IntMap.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntMap a -> c (IntMap a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (IntMap a) # toConstr :: IntMap a -> Constr # dataTypeOf :: IntMap a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (IntMap a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (IntMap a)) # gmapT :: (forall b. Data b => b -> b) -> IntMap a -> IntMap a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntMap a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntMap a -> r # gmapQ :: (forall d. Data d => d -> u) -> IntMap a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> IntMap a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) # | |
Ord a => Ord (IntMap a) | |
Defined in Data.IntMap.Internal | |
Read e => Read (IntMap e) | |
Show a => Show (IntMap a) | |
Semigroup (IntMap a) | Since: containers-0.5.7 |
Monoid (IntMap a) | |
Serialize e => Serialize (IntMap e) | |
NFData a => NFData (IntMap a) | |
Defined in Data.IntMap.Internal | |
Ixed (IntMap a) | |
Defined in Control.Lens.At | |
At (IntMap a) | |
Wrapped (IntMap a) | |
AsEmpty (IntMap a) | |
Defined in Control.Lens.Empty | |
t ~ IntMap a' => Rewrapped (IntMap a) t | Use |
Defined in Control.Lens.Wrapped | |
Each (IntMap a) (IntMap b) a b |
|
type Item (IntMap a) | |
Defined in Data.IntMap.Internal | |
type Index (IntMap a) | |
Defined in Control.Lens.At | |
type IxValue (IntMap a) | |
Defined in Control.Lens.At | |
type Unwrapped (IntMap a) | |
Defined in Control.Lens.Wrapped |
A set of integers.
Instances
IsList IntSet | Since: containers-0.5.6.2 |
Eq IntSet | |
Data IntSet | |
Defined in Data.IntSet.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntSet -> c IntSet # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c IntSet # toConstr :: IntSet -> Constr # dataTypeOf :: IntSet -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c IntSet) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c IntSet) # gmapT :: (forall b. Data b => b -> b) -> IntSet -> IntSet # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntSet -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntSet -> r # gmapQ :: (forall d. Data d => d -> u) -> IntSet -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> IntSet -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet # | |
Ord IntSet | |
Read IntSet | |
Show IntSet | |
Semigroup IntSet | Since: containers-0.5.7 |
Monoid IntSet | |
Serialize IntSet | |
NFData IntSet | |
Defined in Data.IntSet.Internal | |
Contains IntSet | |
Ixed IntSet | |
Defined in Control.Lens.At | |
At IntSet | |
Wrapped IntSet | |
AsEmpty IntSet | |
Defined in Control.Lens.Empty | |
t ~ IntSet => Rewrapped IntSet t | Use |
Defined in Control.Lens.Wrapped | |
type Item IntSet | |
Defined in Data.IntSet.Internal | |
type Index IntSet | |
Defined in Control.Lens.At | |
type IxValue IntSet | |
Defined in Control.Lens.At | |
type Unwrapped IntSet | |
Defined in Control.Lens.Wrapped |
A Map from keys k
to values a
.
Instances
Eq2 Map | Since: containers-0.5.9 |
Ord2 Map | Since: containers-0.5.9 |
Defined in Data.Map.Internal | |
Show2 Map | Since: containers-0.5.9 |
FunctorWithIndex k (Map k) | |
Defined in Control.Lens.Indexed | |
FoldableWithIndex k (Map k) | |
TraversableWithIndex k (Map k) | |
Defined in Control.Lens.Indexed Methods itraverse :: Applicative f => (k -> a -> f b) -> Map k a -> f (Map k b) # itraversed :: IndexedTraversal k (Map k a) (Map k b) a b # | |
Ord k => TraverseMin k (Map k) | |
Defined in Control.Lens.Traversal Methods traverseMin :: IndexedTraversal' k (Map k v) v # | |
Ord k => TraverseMax k (Map k) | |
Defined in Control.Lens.Traversal Methods traverseMax :: IndexedTraversal' k (Map k v) v # | |
Functor (Map k) | |
Foldable (Map k) | |
Defined in Data.Map.Internal Methods fold :: Monoid m => Map k m -> m # foldMap :: Monoid m => (a -> m) -> Map k a -> m # foldr :: (a -> b -> b) -> b -> Map k a -> b # foldr' :: (a -> b -> b) -> b -> Map k a -> b # foldl :: (b -> a -> b) -> b -> Map k a -> b # foldl' :: (b -> a -> b) -> b -> Map k a -> b # foldr1 :: (a -> a -> a) -> Map k a -> a # foldl1 :: (a -> a -> a) -> Map k a -> a # elem :: Eq a => a -> Map k a -> Bool # maximum :: Ord a => Map k a -> a # minimum :: Ord a => Map k a -> a # | |
Traversable (Map k) | |
Eq k => Eq1 (Map k) | Since: containers-0.5.9 |
Ord k => Ord1 (Map k) | Since: containers-0.5.9 |
Defined in Data.Map.Internal | |
(Ord k, Read k) => Read1 (Map k) | Since: containers-0.5.9 |
Defined in Data.Map.Internal | |
Show k => Show1 (Map k) | Since: containers-0.5.9 |
Ord k => Apply (Map k) | A 'Map k' is not |
Ord k => Bind (Map k) | |
Ord k => IsList (Map k v) | Since: containers-0.5.6.2 |
(Eq k, Eq a) => Eq (Map k a) | |
(Data k, Data a, Ord k) => Data (Map k a) | |
Defined in Data.Map.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Map k a -> c (Map k a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Map k a) # toConstr :: Map k a -> Constr # dataTypeOf :: Map k a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Map k a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Map k a)) # gmapT :: (forall b. Data b => b -> b) -> Map k a -> Map k a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Map k a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Map k a -> r # gmapQ :: (forall d. Data d => d -> u) -> Map k a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Map k a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) # | |
(Ord k, Ord v) => Ord (Map k v) | |
(Ord k, Read k, Read e) => Read (Map k e) | |
(Show k, Show a) => Show (Map k a) | |
Ord k => Semigroup (Map k v) | |
Ord k => Monoid (Map k v) | |
(Ord k, Serialize k, Serialize e) => Serialize (Map k e) | |
(NFData k, NFData a) => NFData (Map k a) | |
Defined in Data.Map.Internal | |
Ord k => Ixed (Map k a) | |
Defined in Control.Lens.At | |
Ord k => At (Map k a) | |
Ord k => Wrapped (Map k a) | |
AsEmpty (Map k a) | |
Defined in Control.Lens.Empty | |
(t ~ Map k' a', Ord k) => Rewrapped (Map k a) t | Use |
Defined in Control.Lens.Wrapped | |
c ~ d => Each (Map c a) (Map d b) a b |
|
type Item (Map k v) | |
Defined in Data.Map.Internal | |
type Index (Map k a) | |
Defined in Control.Lens.At | |
type IxValue (Map k a) | |
Defined in Control.Lens.At | |
type Unwrapped (Map k a) | |
Defined in Control.Lens.Wrapped |
General-purpose finite sequences.
Instances
Monad Seq | |
Functor Seq | |
MonadFix Seq | Since: containers-0.5.11 |
Defined in Data.Sequence.Internal | |
Applicative Seq | Since: containers-0.5.4 |
Foldable Seq | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Seq m -> m # foldMap :: Monoid m => (a -> m) -> Seq a -> m # foldr :: (a -> b -> b) -> b -> Seq a -> b # foldr' :: (a -> b -> b) -> b -> Seq a -> b # foldl :: (b -> a -> b) -> b -> Seq a -> b # foldl' :: (b -> a -> b) -> b -> Seq a -> b # foldr1 :: (a -> a -> a) -> Seq a -> a # foldl1 :: (a -> a -> a) -> Seq a -> a # elem :: Eq a => a -> Seq a -> Bool # maximum :: Ord a => Seq a -> a # | |
Traversable Seq | |
Eq1 Seq | Since: containers-0.5.9 |
Ord1 Seq | Since: containers-0.5.9 |
Defined in Data.Sequence.Internal | |
Read1 Seq | Since: containers-0.5.9 |
Defined in Data.Sequence.Internal | |
Show1 Seq | Since: containers-0.5.9 |
MonadZip Seq |
|
Alternative Seq | Since: containers-0.5.4 |
MonadPlus Seq | |
Apply Seq | |
Bind Seq | |
UnzipWith Seq | |
Defined in Data.Sequence.Internal Methods unzipWith' :: (x -> (a, b)) -> Seq x -> (Seq a, Seq b) | |
FunctorWithIndex Int Seq | The position in the |
FoldableWithIndex Int Seq | |
TraversableWithIndex Int Seq | |
Defined in Control.Lens.Indexed Methods itraverse :: Applicative f => (Int -> a -> f b) -> Seq a -> f (Seq b) # itraversed :: IndexedTraversal Int (Seq a) (Seq b) a b # | |
IsList (Seq a) | |
Eq a => Eq (Seq a) | |
Data a => Data (Seq a) | |
Defined in Data.Sequence.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Seq a -> c (Seq a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Seq a) # dataTypeOf :: Seq a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Seq a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Seq a)) # gmapT :: (forall b. Data b => b -> b) -> Seq a -> Seq a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Seq a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Seq a -> r # gmapQ :: (forall d. Data d => d -> u) -> Seq a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Seq a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) # | |
Ord a => Ord (Seq a) | |
Read a => Read (Seq a) | |
Show a => Show (Seq a) | |
a ~ Char => IsString (Seq a) | Since: containers-0.5.7 |
Defined in Data.Sequence.Internal Methods fromString :: String -> Seq a # | |
Semigroup (Seq a) | Since: containers-0.5.7 |
Monoid (Seq a) | |
Serialize e => Serialize (Seq e) | |
NFData a => NFData (Seq a) | |
Defined in Data.Sequence.Internal | |
Ixed (Seq a) | |
Defined in Control.Lens.At | |
Wrapped (Seq a) | |
AsEmpty (Seq a) | |
Defined in Control.Lens.Empty | |
Reversing (Seq a) | |
Defined in Control.Lens.Internal.Iso | |
t ~ Seq a' => Rewrapped (Seq a) t | |
Defined in Control.Lens.Wrapped | |
Each (Seq a) (Seq b) a b |
|
Cons (Seq a) (Seq b) a b | |
Snoc (Seq a) (Seq b) a b | |
type Item (Seq a) | |
Defined in Data.Sequence.Internal | |
type Index (Seq a) | |
Defined in Control.Lens.At | |
type IxValue (Seq a) | |
Defined in Control.Lens.At | |
type Unwrapped (Seq a) | |
Defined in Control.Lens.Wrapped |
A set of values a
.
Instances
Foldable Set | |
Defined in Data.Set.Internal Methods fold :: Monoid m => Set m -> m # foldMap :: Monoid m => (a -> m) -> Set a -> m # foldr :: (a -> b -> b) -> b -> Set a -> b # foldr' :: (a -> b -> b) -> b -> Set a -> b # foldl :: (b -> a -> b) -> b -> Set a -> b # foldl' :: (b -> a -> b) -> b -> Set a -> b # foldr1 :: (a -> a -> a) -> Set a -> a # foldl1 :: (a -> a -> a) -> Set a -> a # elem :: Eq a => a -> Set a -> Bool # maximum :: Ord a => Set a -> a # | |
Eq1 Set | Since: containers-0.5.9 |
Ord1 Set | Since: containers-0.5.9 |
Defined in Data.Set.Internal | |
Show1 Set | Since: containers-0.5.9 |
Ord a => IsList (Set a) | Since: containers-0.5.6.2 |
Eq a => Eq (Set a) | |
(Data a, Ord a) => Data (Set a) | |
Defined in Data.Set.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Set a -> c (Set a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Set a) # dataTypeOf :: Set a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Set a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Set a)) # gmapT :: (forall b. Data b => b -> b) -> Set a -> Set a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Set a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Set a -> r # gmapQ :: (forall d. Data d => d -> u) -> Set a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Set a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # | |
Ord a => Ord (Set a) | |
(Read a, Ord a) => Read (Set a) | |
Show a => Show (Set a) | |
Ord a => Semigroup (Set a) | Since: containers-0.5.7 |
Ord a => Monoid (Set a) | |
(Ord a, Serialize a) => Serialize (Set a) | |
NFData a => NFData (Set a) | |
Defined in Data.Set.Internal | |
Ord a => Contains (Set a) | |
Ord k => Ixed (Set k) | |
Defined in Control.Lens.At | |
Ord k => At (Set k) | |
Ord a => Wrapped (Set a) | |
AsEmpty (Set a) | |
Defined in Control.Lens.Empty | |
(t ~ Set a', Ord a) => Rewrapped (Set a) t | Use |
Defined in Control.Lens.Wrapped | |
type Item (Set a) | |
Defined in Data.Set.Internal | |
type Index (Set a) | |
Defined in Control.Lens.At | |
type IxValue (Set k) | |
Defined in Control.Lens.At | |
type Unwrapped (Set a) | |
Defined in Control.Lens.Wrapped |
a variant of deepseq
that is useful in some circumstances:
force x = x `deepseq` x
force x
fully evaluates x
, and then returns it. Note that
force x
only performs evaluation when the value of force x
itself is demanded, so essentially it turns shallow evaluation into
deep evaluation.
force
can be conveniently used in combination with ViewPatterns
:
{-# LANGUAGE BangPatterns, ViewPatterns #-} import Control.DeepSeq someFun :: ComplexData -> SomeResult someFun (force -> !arg) = {- 'arg' will be fully evaluated -}
Another useful application is to combine force
with
evaluate
in order to force deep evaluation
relative to other IO
operations:
import Control.Exception (evaluate) import Control.DeepSeq main = do result <- evaluate $ force $ pureComputation {- 'result' will be fully evaluated at this point -} return ()
Finally, here's an exception safe variant of the readFile'
example:
readFile' :: FilePath -> IO String readFile' fn = bracket (openFile fn ReadMode) hClose $ \h -> evaluate . force =<< hGetContents h
Since: deepseq-1.2.0.0
($!!) :: NFData a => (a -> b) -> a -> b infixr 0 #
the deep analogue of $!
. In the expression f $!! x
, x
is
fully evaluated before the function f
is applied to it.
Since: deepseq-1.2.0.0
deepseq :: NFData a => a -> b -> b #
deepseq
: fully evaluates the first argument, before returning the
second.
The name deepseq
is used to illustrate the relationship to seq
:
where seq
is shallow in the sense that it only evaluates the top
level of its argument, deepseq
traverses the entire data structure
evaluating it completely.
deepseq
can be useful for forcing pending exceptions,
eradicating space leaks, or forcing lazy I/O to happen. It is
also useful in conjunction with parallel Strategies (see the
parallel
package).
There is no guarantee about the ordering of evaluation. The
implementation may evaluate the components of the structure in
any order or in parallel. To impose an actual order on
evaluation, use pseq
from Control.Parallel in the
parallel
package.
Since: deepseq-1.1.0.0
A class of types that can be fully evaluated.
Since: deepseq-1.1.0.0
Minimal complete definition
Nothing
Methods
rnf
should reduce its argument to normal form (that is, fully
evaluate all sub-components), and then return '()'.
Generic
NFData
deriving
Starting with GHC 7.2, you can automatically derive instances
for types possessing a Generic
instance.
Note: Generic1
can be auto-derived starting with GHC 7.4
{-# LANGUAGE DeriveGeneric #-} import GHC.Generics (Generic, Generic1) import Control.DeepSeq data Foo a = Foo a String deriving (Eq, Generic, Generic1) instance NFData a => NFData (Foo a) instance NFData1 Foo data Colour = Red | Green | Blue deriving Generic instance NFData Colour
Starting with GHC 7.10, the example above can be written more
concisely by enabling the new DeriveAnyClass
extension:
{-# LANGUAGE DeriveGeneric, DeriveAnyClass #-} import GHC.Generics (Generic) import Control.DeepSeq data Foo a = Foo a String deriving (Eq, Generic, Generic1, NFData, NFData1) data Colour = Red | Green | Blue deriving (Generic, NFData)
Compatibility with previous deepseq
versions
Prior to version 1.4.0.0, the default implementation of the rnf
method was defined as
rnf
a =seq
a ()
However, starting with deepseq-1.4.0.0
, the default
implementation is based on DefaultSignatures
allowing for
more accurate auto-derived NFData
instances. If you need the
previously used exact default rnf
method implementation
semantics, use
instance NFData Colour where rnf x = seq x ()
or alternatively
instance NFData Colour where rnf = rwhnf
or
{-# LANGUAGE BangPatterns #-} instance NFData Colour where rnf !_ = ()
Instances
NFData Bool | |
Defined in Control.DeepSeq | |
NFData Char | |
Defined in Control.DeepSeq | |
NFData Double | |
Defined in Control.DeepSeq | |
NFData Float | |
Defined in Control.DeepSeq | |
NFData Int | |
Defined in Control.DeepSeq | |
NFData Int8 | |
Defined in Control.DeepSeq | |
NFData Int16 | |
Defined in Control.DeepSeq | |
NFData Int32 | |
Defined in Control.DeepSeq | |
NFData Int64 | |
Defined in Control.DeepSeq | |
NFData Integer | |
Defined in Control.DeepSeq | |
NFData Natural | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData Ordering | |
Defined in Control.DeepSeq | |
NFData Word | |
Defined in Control.DeepSeq | |
NFData Word8 | |
Defined in Control.DeepSeq | |
NFData Word16 | |
Defined in Control.DeepSeq | |
NFData Word32 | |
Defined in Control.DeepSeq | |
NFData Word64 | |
Defined in Control.DeepSeq | |
NFData CallStack | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData () | |
Defined in Control.DeepSeq | |
NFData TyCon | NOTE: Prior to Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData ThreadId | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData Void | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData Unique | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData Version | Since: deepseq-1.3.0.0 |
Defined in Control.DeepSeq | |
NFData ExitCode | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData MaskingState | Since: deepseq-1.4.4.0 |
Defined in Control.DeepSeq Methods rnf :: MaskingState -> () # | |
NFData TypeRep | NOTE: Prior to Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData All | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData Any | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CChar | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CSChar | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CUChar | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CShort | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CUShort | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CInt | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CUInt | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CLong | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CULong | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CLLong | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CULLong | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CBool | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
NFData CFloat | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CDouble | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CPtrdiff | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CSize | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CWchar | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CSigAtomic | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq Methods rnf :: CSigAtomic -> () # | |
NFData CClock | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CTime | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CUSeconds | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CSUSeconds | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq Methods rnf :: CSUSeconds -> () # | |
NFData CFile | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CFpos | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CJmpBuf | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CIntPtr | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CUIntPtr | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CIntMax | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CUIntMax | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData Fingerprint | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq Methods rnf :: Fingerprint -> () # | |
NFData SrcLoc | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData ShortByteString | |
Defined in Data.ByteString.Short.Internal Methods rnf :: ShortByteString -> () # | |
NFData ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods rnf :: ByteString -> () # | |
NFData ByteString | |
Defined in Data.ByteString.Internal Methods rnf :: ByteString -> () # | |
NFData IntSet | |
Defined in Data.IntSet.Internal | |
NFData Pos | |
Defined in Text.Megaparsec.Pos | |
NFData InvalidPosException | |
Defined in Text.Megaparsec.Pos Methods rnf :: InvalidPosException -> () # | |
NFData SourcePos | |
Defined in Text.Megaparsec.Pos | |
NFData Doc | |
Defined in Text.PrettyPrint.HughesPJ | |
NFData TextDetails | |
Defined in Text.PrettyPrint.Annotated.HughesPJ Methods rnf :: TextDetails -> () # | |
NFData ByteArray | |
Defined in Data.Primitive.ByteArray | |
NFData Day | |
Defined in Data.Time.Calendar.Days | |
NFData DiffTime | |
Defined in Data.Time.Clock.Internal.DiffTime | |
NFData NominalDiffTime | |
Defined in Data.Time.Clock.Internal.NominalDiffTime Methods rnf :: NominalDiffTime -> () # | |
NFData UTCTime | |
Defined in Data.Time.Clock.Internal.UTCTime | |
NFData UniversalTime | |
Defined in Data.Time.Clock.Internal.UniversalTime Methods rnf :: UniversalTime -> () # | |
NFData LocalTime | |
Defined in Data.Time.LocalTime.Internal.LocalTime | |
NFData ZonedTime | |
Defined in Data.Time.LocalTime.Internal.ZonedTime | |
NFData UnicodeException | |
Defined in Data.Text.Encoding.Error Methods rnf :: UnicodeException -> () # | |
NFData SystemTime | |
Defined in Data.Time.Clock.Internal.SystemTime Methods rnf :: SystemTime -> () # | |
NFData a => NFData [a] | |
Defined in Control.DeepSeq | |
NFData a => NFData (Maybe a) | |
Defined in Control.DeepSeq | |
NFData a => NFData (Ratio a) | |
Defined in Control.DeepSeq | |
NFData (Ptr a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData (FunPtr a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Complex a) | |
Defined in Control.DeepSeq | |
NFData (Fixed a) | Since: deepseq-1.3.0.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Min a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Max a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (First a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Last a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData m => NFData (WrappedMonoid m) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq Methods rnf :: WrappedMonoid m -> () # | |
NFData a => NFData (Option a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData (StableName a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq Methods rnf :: StableName a -> () # | |
NFData a => NFData (ZipList a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Identity a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData (IORef a) | NOTE: Only strict in the reference and not the referenced value. Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (First a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Last a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Dual a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Sum a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Product a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Down a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData (MVar a) | NOTE: Only strict in the reference and not the referenced value. Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (NonEmpty a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (IntMap a) | |
Defined in Data.IntMap.Internal | |
NFData a => NFData (Tree a) | |
NFData a => NFData (Seq a) | |
Defined in Data.Sequence.Internal | |
NFData a => NFData (FingerTree a) | |
Defined in Data.Sequence.Internal Methods rnf :: FingerTree a -> () # | |
NFData a => NFData (Digit a) | |
Defined in Data.Sequence.Internal | |
NFData a => NFData (Node a) | |
Defined in Data.Sequence.Internal | |
NFData a => NFData (Elem a) | |
Defined in Data.Sequence.Internal | |
NFData a => NFData (Set a) | |
Defined in Data.Set.Internal | |
NFData a => NFData (Hashed a) | |
Defined in Data.Hashable.Class | |
NFData (Vector a) | |
Defined in Data.Vector.Primitive | |
NFData (Vector a) | |
Defined in Data.Vector.Storable | |
NFData (Vector a) | |
Defined in Data.Vector.Unboxed.Base | |
NFData a => NFData (HashSet a) | |
Defined in Data.HashSet.Internal | |
NFData a => NFData (Vector a) | |
Defined in Data.Vector | |
NFData t => NFData (ErrorItem t) | |
Defined in Text.Megaparsec.Error | |
NFData a => NFData (ErrorFancy a) | |
Defined in Text.Megaparsec.Error Methods rnf :: ErrorFancy a -> () # | |
NFData s => NFData (State s) | |
Defined in Text.Megaparsec.State | |
NFData s => NFData (PosState s) | |
Defined in Text.Megaparsec.State | |
NFData a => NFData (Doc a) | |
Defined in Text.PrettyPrint.Annotated.HughesPJ | |
NFData a => NFData (AnnotDetails a) | |
Defined in Text.PrettyPrint.Annotated.HughesPJ Methods rnf :: AnnotDetails a -> () # | |
NFData (PrimArray a) | |
Defined in Data.Primitive.PrimArray | |
NFData (MutableByteArray s) | |
Defined in Data.Primitive.ByteArray Methods rnf :: MutableByteArray s -> () # | |
NFData a => NFData (SmallArray a) | |
Defined in Data.Primitive.SmallArray Methods rnf :: SmallArray a -> () # | |
NFData a => NFData (Array a) | |
Defined in Data.Primitive.Array | |
NFData (a -> b) | This instance is for convenience and consistency with Since: deepseq-1.3.0.0 |
Defined in Control.DeepSeq | |
(NFData a, NFData b) => NFData (Either a b) | |
Defined in Control.DeepSeq | |
(NFData a, NFData b) => NFData (a, b) | |
Defined in Control.DeepSeq | |
(NFData a, NFData b) => NFData (Array a b) | |
Defined in Control.DeepSeq | |
(NFData a, NFData b) => NFData (Arg a b) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData (Proxy a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData (STRef s a) | NOTE: Only strict in the reference and not the referenced value. Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
(NFData k, NFData a) => NFData (Map k a) | |
Defined in Data.Map.Internal | |
(NFData k, NFData v) => NFData (HashMap k v) | |
Defined in Data.HashMap.Internal | |
(NFData (Token s), NFData e) => NFData (ParseError s e) | |
Defined in Text.Megaparsec.Error Methods rnf :: ParseError s e -> () # | |
(NFData s, NFData (Token s), NFData e) => NFData (ParseErrorBundle s e) | |
Defined in Text.Megaparsec.Error Methods rnf :: ParseErrorBundle s e -> () # | |
NFData (MutablePrimArray s a) | |
Defined in Data.Primitive.PrimArray Methods rnf :: MutablePrimArray s a -> () # | |
NFData (MVector s a) | |
Defined in Data.Vector.Storable.Mutable | |
NFData (MVector s a) | |
Defined in Data.Vector.Unboxed.Base | |
(NFData k, NFData v) => NFData (Leaf k v) | |
Defined in Data.HashMap.Internal | |
NFData (MVector s a) | |
Defined in Data.Vector.Primitive.Mutable | |
(NFData a1, NFData a2, NFData a3) => NFData (a1, a2, a3) | |
Defined in Control.DeepSeq | |
NFData a => NFData (Const a b) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData (a :~: b) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
NFData b => NFData (Tagged s b) | |
Defined in Data.Tagged | |
(NFData a1, NFData a2, NFData a3, NFData a4) => NFData (a1, a2, a3, a4) | |
Defined in Control.DeepSeq | |
(NFData1 f, NFData1 g, NFData a) => NFData (Product f g a) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
(NFData1 f, NFData1 g, NFData a) => NFData (Sum f g a) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
NFData (a :~~: b) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5) => NFData (a1, a2, a3, a4, a5) | |
Defined in Control.DeepSeq | |
(NFData1 f, NFData1 g, NFData a) => NFData (Compose f g a) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6) => NFData (a1, a2, a3, a4, a5, a6) | |
Defined in Control.DeepSeq | |
(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6, NFData a7) => NFData (a1, a2, a3, a4, a5, a6, a7) | |
Defined in Control.DeepSeq | |
(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6, NFData a7, NFData a8) => NFData (a1, a2, a3, a4, a5, a6, a7, a8) | |
Defined in Control.DeepSeq | |
(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6, NFData a7, NFData a8, NFData a9) => NFData (a1, a2, a3, a4, a5, a6, a7, a8, a9) | |
Defined in Control.DeepSeq |
class Monad m => MonadThrow (m :: Type -> Type) where #
A class for monads in which exceptions may be thrown.
Instances should obey the following law:
throwM e >> x = throwM e
In other words, throwing an exception short-circuits the rest of the monadic computation.
Methods
throwM :: Exception e => e -> m a #
Throw an exception. Note that this throws when this action is run in
the monad m
, not when it is applied. It is a generalization of
Control.Exception's throwIO
.
Should satisfy the law:
throwM e >> f = throwM e
Instances
The class of types that can be converted to a hash value.
Minimal implementation: hashWithSalt
.
Instances
class Profunctor (p :: Type -> Type -> Type) where #
Formally, the class Profunctor
represents a profunctor
from Hask
-> Hask
.
Intuitively it is a bifunctor where the first argument is contravariant and the second argument is covariant.
You can define a Profunctor
by either defining dimap
or by defining both
lmap
and rmap
.
If you supply dimap
, you should ensure that:
dimap
id
id
≡id
If you supply lmap
and rmap
, ensure:
lmap
id
≡id
rmap
id
≡id
If you supply both, you should also ensure:
dimap
f g ≡lmap
f.
rmap
g
These ensure by parametricity:
dimap
(f.
g) (h.
i) ≡dimap
g h.
dimap
f ilmap
(f.
g) ≡lmap
g.
lmap
frmap
(f.
g) ≡rmap
f.
rmap
g
Instances
Profunctor ReifiedGetter | |
Defined in Control.Lens.Reified Methods dimap :: (a -> b) -> (c -> d) -> ReifiedGetter b c -> ReifiedGetter a d # lmap :: (a -> b) -> ReifiedGetter b c -> ReifiedGetter a c # rmap :: (b -> c) -> ReifiedGetter a b -> ReifiedGetter a c # (#.) :: Coercible c b => q b c -> ReifiedGetter a b -> ReifiedGetter a c # (.#) :: Coercible b a => ReifiedGetter b c -> q a b -> ReifiedGetter a c # | |
Profunctor ReifiedFold | |
Defined in Control.Lens.Reified Methods dimap :: (a -> b) -> (c -> d) -> ReifiedFold b c -> ReifiedFold a d # lmap :: (a -> b) -> ReifiedFold b c -> ReifiedFold a c # rmap :: (b -> c) -> ReifiedFold a b -> ReifiedFold a c # (#.) :: Coercible c b => q b c -> ReifiedFold a b -> ReifiedFold a c # (.#) :: Coercible b a => ReifiedFold b c -> q a b -> ReifiedFold a c # | |
Monad m => Profunctor (Kleisli m) | |
Defined in Data.Profunctor.Unsafe Methods dimap :: (a -> b) -> (c -> d) -> Kleisli m b c -> Kleisli m a d # lmap :: (a -> b) -> Kleisli m b c -> Kleisli m a c # rmap :: (b -> c) -> Kleisli m a b -> Kleisli m a c # (#.) :: Coercible c b => q b c -> Kleisli m a b -> Kleisli m a c # (.#) :: Coercible b a => Kleisli m b c -> q a b -> Kleisli m a c # | |
Profunctor (ReifiedIndexedGetter i) | |
Defined in Control.Lens.Reified Methods dimap :: (a -> b) -> (c -> d) -> ReifiedIndexedGetter i b c -> ReifiedIndexedGetter i a d # lmap :: (a -> b) -> ReifiedIndexedGetter i b c -> ReifiedIndexedGetter i a c # rmap :: (b -> c) -> ReifiedIndexedGetter i a b -> ReifiedIndexedGetter i a c # (#.) :: Coercible c b => q b c -> ReifiedIndexedGetter i a b -> ReifiedIndexedGetter i a c # (.#) :: Coercible b a => ReifiedIndexedGetter i b c -> q a b -> ReifiedIndexedGetter i a c # | |
Profunctor (ReifiedIndexedFold i) | |
Defined in Control.Lens.Reified Methods dimap :: (a -> b) -> (c -> d) -> ReifiedIndexedFold i b c -> ReifiedIndexedFold i a d # lmap :: (a -> b) -> ReifiedIndexedFold i b c -> ReifiedIndexedFold i a c # rmap :: (b -> c) -> ReifiedIndexedFold i a b -> ReifiedIndexedFold i a c # (#.) :: Coercible c b => q b c -> ReifiedIndexedFold i a b -> ReifiedIndexedFold i a c # (.#) :: Coercible b a => ReifiedIndexedFold i b c -> q a b -> ReifiedIndexedFold i a c # | |
Profunctor (Indexed i) | |
Defined in Control.Lens.Internal.Indexed Methods dimap :: (a -> b) -> (c -> d) -> Indexed i b c -> Indexed i a d # lmap :: (a -> b) -> Indexed i b c -> Indexed i a c # rmap :: (b -> c) -> Indexed i a b -> Indexed i a c # (#.) :: Coercible c b => q b c -> Indexed i a b -> Indexed i a c # (.#) :: Coercible b a => Indexed i b c -> q a b -> Indexed i a c # | |
Profunctor p => Profunctor (TambaraSum p) | |
Defined in Data.Profunctor.Choice Methods dimap :: (a -> b) -> (c -> d) -> TambaraSum p b c -> TambaraSum p a d # lmap :: (a -> b) -> TambaraSum p b c -> TambaraSum p a c # rmap :: (b -> c) -> TambaraSum p a b -> TambaraSum p a c # (#.) :: Coercible c b => q b c -> TambaraSum p a b -> TambaraSum p a c # (.#) :: Coercible b a => TambaraSum p b c -> q a b -> TambaraSum p a c # | |
Profunctor (PastroSum p) | |
Defined in Data.Profunctor.Choice Methods dimap :: (a -> b) -> (c -> d) -> PastroSum p b c -> PastroSum p a d # lmap :: (a -> b) -> PastroSum p b c -> PastroSum p a c # rmap :: (b -> c) -> PastroSum p a b -> PastroSum p a c # (#.) :: Coercible c b => q b c -> PastroSum p a b -> PastroSum p a c # (.#) :: Coercible b a => PastroSum p b c -> q a b -> PastroSum p a c # | |
Profunctor (CotambaraSum p) | |
Defined in Data.Profunctor.Choice Methods dimap :: (a -> b) -> (c -> d) -> CotambaraSum p b c -> CotambaraSum p a d # lmap :: (a -> b) -> CotambaraSum p b c -> CotambaraSum p a c # rmap :: (b -> c) -> CotambaraSum p a b -> CotambaraSum p a c # (#.) :: Coercible c b => q b c -> CotambaraSum p a b -> CotambaraSum p a c # (.#) :: Coercible b a => CotambaraSum p b c -> q a b -> CotambaraSum p a c # | |
Profunctor (CopastroSum p) | |
Defined in Data.Profunctor.Choice Methods dimap :: (a -> b) -> (c -> d) -> CopastroSum p b c -> CopastroSum p a d # lmap :: (a -> b) -> CopastroSum p b c -> CopastroSum p a c # rmap :: (b -> c) -> CopastroSum p a b -> CopastroSum p a c # (#.) :: Coercible c b => q b c -> CopastroSum p a b -> CopastroSum p a c # (.#) :: Coercible b a => CopastroSum p b c -> q a b -> CopastroSum p a c # | |
Profunctor p => Profunctor (Tambara p) | |
Defined in Data.Profunctor.Strong Methods dimap :: (a -> b) -> (c -> d) -> Tambara p b c -> Tambara p a d # lmap :: (a -> b) -> Tambara p b c -> Tambara p a c # rmap :: (b -> c) -> Tambara p a b -> Tambara p a c # (#.) :: Coercible c b => q b c -> Tambara p a b -> Tambara p a c # (.#) :: Coercible b a => Tambara p b c -> q a b -> Tambara p a c # | |
Profunctor (Pastro p) | |
Defined in Data.Profunctor.Strong | |
Profunctor (Cotambara p) | |
Defined in Data.Profunctor.Strong Methods dimap :: (a -> b) -> (c -> d) -> Cotambara p b c -> Cotambara p a d # lmap :: (a -> b) -> Cotambara p b c -> Cotambara p a c # rmap :: (b -> c) -> Cotambara p a b -> Cotambara p a c # (#.) :: Coercible c b => q b c -> Cotambara p a b -> Cotambara p a c # (.#) :: Coercible b a => Cotambara p b c -> q a b -> Cotambara p a c # | |
Profunctor (Copastro p) | |
Defined in Data.Profunctor.Strong Methods dimap :: (a -> b) -> (c -> d) -> Copastro p b c -> Copastro p a d # lmap :: (a -> b) -> Copastro p b c -> Copastro p a c # rmap :: (b -> c) -> Copastro p a b -> Copastro p a c # (#.) :: Coercible c b => q b c -> Copastro p a b -> Copastro p a c # (.#) :: Coercible b a => Copastro p b c -> q a b -> Copastro p a c # | |
Functor f => Profunctor (Star f) | |
Defined in Data.Profunctor.Types | |
Functor f => Profunctor (Costar f) | |
Defined in Data.Profunctor.Types | |
Arrow p => Profunctor (WrappedArrow p) | |
Defined in Data.Profunctor.Types Methods dimap :: (a -> b) -> (c -> d) -> WrappedArrow p b c -> WrappedArrow p a d # lmap :: (a -> b) -> WrappedArrow p b c -> WrappedArrow p a c # rmap :: (b -> c) -> WrappedArrow p a b -> WrappedArrow p a c # (#.) :: Coercible c b => q b c -> WrappedArrow p a b -> WrappedArrow p a c # (.#) :: Coercible b a => WrappedArrow p b c -> q a b -> WrappedArrow p a c # | |
Profunctor (Forget r) | |
Defined in Data.Profunctor.Types | |
Profunctor (Tagged :: Type -> Type -> Type) | |
Defined in Data.Profunctor.Unsafe | |
Profunctor ((->) :: Type -> Type -> Type) | |
Functor w => Profunctor (Cokleisli w) | |
Defined in Data.Profunctor.Unsafe Methods dimap :: (a -> b) -> (c -> d) -> Cokleisli w b c -> Cokleisli w a d # lmap :: (a -> b) -> Cokleisli w b c -> Cokleisli w a c # rmap :: (b -> c) -> Cokleisli w a b -> Cokleisli w a c # (#.) :: Coercible c b => q b c -> Cokleisli w a b -> Cokleisli w a c # (.#) :: Coercible b a => Cokleisli w b c -> q a b -> Cokleisli w a c # | |
Profunctor (Exchange a b) | |
Defined in Control.Lens.Internal.Iso Methods dimap :: (a0 -> b0) -> (c -> d) -> Exchange a b b0 c -> Exchange a b a0 d # lmap :: (a0 -> b0) -> Exchange a b b0 c -> Exchange a b a0 c # rmap :: (b0 -> c) -> Exchange a b a0 b0 -> Exchange a b a0 c # (#.) :: Coercible c b0 => q b0 c -> Exchange a b a0 b0 -> Exchange a b a0 c # (.#) :: Coercible b0 a0 => Exchange a b b0 c -> q a0 b0 -> Exchange a b a0 c # | |
(Profunctor p, Profunctor q) => Profunctor (Procompose p q) | |
Defined in Data.Profunctor.Composition Methods dimap :: (a -> b) -> (c -> d) -> Procompose p q b c -> Procompose p q a d # lmap :: (a -> b) -> Procompose p q b c -> Procompose p q a c # rmap :: (b -> c) -> Procompose p q a b -> Procompose p q a c # (#.) :: Coercible c b => q0 b c -> Procompose p q a b -> Procompose p q a c # (.#) :: Coercible b a => Procompose p q b c -> q0 a b -> Procompose p q a c # | |
(Profunctor p, Profunctor q) => Profunctor (Rift p q) | |
Defined in Data.Profunctor.Composition Methods dimap :: (a -> b) -> (c -> d) -> Rift p q b c -> Rift p q a d # lmap :: (a -> b) -> Rift p q b c -> Rift p q a c # rmap :: (b -> c) -> Rift p q a b -> Rift p q a c # (#.) :: Coercible c b => q0 b c -> Rift p q a b -> Rift p q a c # (.#) :: Coercible b a => Rift p q b c -> q0 a b -> Rift p q a c # | |
Functor f => Profunctor (Joker f :: Type -> Type -> Type) | |
Defined in Data.Profunctor.Unsafe | |
Contravariant f => Profunctor (Clown f :: Type -> Type -> Type) | |
Defined in Data.Profunctor.Unsafe | |
(Profunctor p, Profunctor q) => Profunctor (Sum p q) | |
Defined in Data.Profunctor.Unsafe | |
(Profunctor p, Profunctor q) => Profunctor (Product p q) | |
Defined in Data.Profunctor.Unsafe Methods dimap :: (a -> b) -> (c -> d) -> Product p q b c -> Product p q a d # lmap :: (a -> b) -> Product p q b c -> Product p q a c # rmap :: (b -> c) -> Product p q a b -> Product p q a c # (#.) :: Coercible c b => q0 b c -> Product p q a b -> Product p q a c # (.#) :: Coercible b a => Product p q b c -> q0 a b -> Product p q a c # | |
(Functor f, Profunctor p) => Profunctor (Tannen f p) | |
Defined in Data.Profunctor.Unsafe Methods dimap :: (a -> b) -> (c -> d) -> Tannen f p b c -> Tannen f p a d # lmap :: (a -> b) -> Tannen f p b c -> Tannen f p a c # rmap :: (b -> c) -> Tannen f p a b -> Tannen f p a c # (#.) :: Coercible c b => q b c -> Tannen f p a b -> Tannen f p a c # (.#) :: Coercible b a => Tannen f p b c -> q a b -> Tannen f p a c # | |
(Profunctor p, Functor f, Functor g) => Profunctor (Biff p f g) | |
Defined in Data.Profunctor.Unsafe Methods dimap :: (a -> b) -> (c -> d) -> Biff p f g b c -> Biff p f g a d # lmap :: (a -> b) -> Biff p f g b c -> Biff p f g a c # rmap :: (b -> c) -> Biff p f g a b -> Biff p f g a c # (#.) :: Coercible c b => q b c -> Biff p f g a b -> Biff p f g a c # (.#) :: Coercible b a => Biff p f g b c -> q a b -> Biff p f g a c # |
A map from keys to values. A map cannot contain duplicate keys; each key can map to at most one value.
Instances
Bifoldable HashMap | Since: unordered-containers-0.2.11 |
Eq2 HashMap | |
Ord2 HashMap | |
Defined in Data.HashMap.Internal | |
Show2 HashMap | |
Hashable2 HashMap | |
Defined in Data.HashMap.Internal | |
FunctorWithIndex k (HashMap k) | |
Defined in Control.Lens.Indexed | |
FoldableWithIndex k (HashMap k) | |
Defined in Control.Lens.Indexed | |
TraversableWithIndex k (HashMap k) | |
Defined in Control.Lens.Indexed Methods itraverse :: Applicative f => (k -> a -> f b) -> HashMap k a -> f (HashMap k b) # itraversed :: IndexedTraversal k (HashMap k a) (HashMap k b) a b # | |
Functor (HashMap k) | |
Foldable (HashMap k) | |
Defined in Data.HashMap.Internal Methods fold :: Monoid m => HashMap k m -> m # foldMap :: Monoid m => (a -> m) -> HashMap k a -> m # foldr :: (a -> b -> b) -> b -> HashMap k a -> b # foldr' :: (a -> b -> b) -> b -> HashMap k a -> b # foldl :: (b -> a -> b) -> b -> HashMap k a -> b # foldl' :: (b -> a -> b) -> b -> HashMap k a -> b # foldr1 :: (a -> a -> a) -> HashMap k a -> a # foldl1 :: (a -> a -> a) -> HashMap k a -> a # toList :: HashMap k a -> [a] # length :: HashMap k a -> Int # elem :: Eq a => a -> HashMap k a -> Bool # maximum :: Ord a => HashMap k a -> a # minimum :: Ord a => HashMap k a -> a # | |
Traversable (HashMap k) | |
Defined in Data.HashMap.Internal | |
Eq k => Eq1 (HashMap k) | |
Ord k => Ord1 (HashMap k) | |
Defined in Data.HashMap.Internal | |
(Eq k, Hashable k, Read k) => Read1 (HashMap k) | |
Defined in Data.HashMap.Internal | |
Show k => Show1 (HashMap k) | |
Hashable k => Hashable1 (HashMap k) | |
Defined in Data.HashMap.Internal | |
(Hashable k, Eq k) => Apply (HashMap k) | A 'HashMap k' is not |
(Hashable k, Eq k) => Bind (HashMap k) | |
(Eq k, Hashable k) => IsList (HashMap k v) | |
(Eq k, Eq v) => Eq (HashMap k v) | Note that, in the presence of hash collisions, equal
In general, the lack of substitutivity can be observed with any function that depends on the key ordering, such as folds and traversals. |
(Data k, Data v, Eq k, Hashable k) => Data (HashMap k v) | |
Defined in Data.HashMap.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> HashMap k v -> c (HashMap k v) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (HashMap k v) # toConstr :: HashMap k v -> Constr # dataTypeOf :: HashMap k v -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (HashMap k v)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (HashMap k v)) # gmapT :: (forall b. Data b => b -> b) -> HashMap k v -> HashMap k v # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> HashMap k v -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> HashMap k v -> r # gmapQ :: (forall d. Data d => d -> u) -> HashMap k v -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> HashMap k v -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> HashMap k v -> m (HashMap k v) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> HashMap k v -> m (HashMap k v) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> HashMap k v -> m (HashMap k v) # | |
(Ord k, Ord v) => Ord (HashMap k v) | The ordering is total and consistent with the |
Defined in Data.HashMap.Internal | |
(Eq k, Hashable k, Read k, Read e) => Read (HashMap k e) | |
(Show k, Show v) => Show (HashMap k v) | |
(Eq k, Hashable k) => Semigroup (HashMap k v) | If a key occurs in both maps, the mapping from the first will be the mapping in the result. Examples
|
(Eq k, Hashable k) => Monoid (HashMap k v) | If a key occurs in both maps, the mapping from the first will be the mapping in the result. Examples
|
(NFData k, NFData v) => NFData (HashMap k v) | |
Defined in Data.HashMap.Internal | |
(Hashable k, Hashable v) => Hashable (HashMap k v) | |
Defined in Data.HashMap.Internal | |
(Eq k, Hashable k) => Ixed (HashMap k a) | |
Defined in Control.Lens.At | |
(Eq k, Hashable k) => At (HashMap k a) | |
(Hashable k, Eq k) => Wrapped (HashMap k a) | |
AsEmpty (HashMap k a) | |
Defined in Control.Lens.Empty | |
(t ~ HashMap k' a', Hashable k, Eq k) => Rewrapped (HashMap k a) t | Use |
Defined in Control.Lens.Wrapped | |
c ~ d => Each (HashMap c a) (HashMap d b) a b |
|
type Item (HashMap k v) | |
Defined in Data.HashMap.Internal | |
type Index (HashMap k a) | |
Defined in Control.Lens.At | |
type IxValue (HashMap k a) | |
Defined in Control.Lens.At | |
type Unwrapped (HashMap k a) | |
Defined in Control.Lens.Wrapped |
class (Vector Vector a, MVector MVector a) => Unbox a #
Instances
A set of values. A set cannot contain duplicate values.
Instances
Foldable HashSet | |
Defined in Data.HashSet.Internal Methods fold :: Monoid m => HashSet m -> m # foldMap :: Monoid m => (a -> m) -> HashSet a -> m # foldr :: (a -> b -> b) -> b -> HashSet a -> b # foldr' :: (a -> b -> b) -> b -> HashSet a -> b # foldl :: (b -> a -> b) -> b -> HashSet a -> b # foldl' :: (b -> a -> b) -> b -> HashSet a -> b # foldr1 :: (a -> a -> a) -> HashSet a -> a # foldl1 :: (a -> a -> a) -> HashSet a -> a # elem :: Eq a => a -> HashSet a -> Bool # maximum :: Ord a => HashSet a -> a # minimum :: Ord a => HashSet a -> a # | |
Eq1 HashSet | |
Ord1 HashSet | |
Defined in Data.HashSet.Internal | |
Show1 HashSet | |
Hashable1 HashSet | |
Defined in Data.HashSet.Internal | |
(Eq a, Hashable a) => IsList (HashSet a) | |
Eq a => Eq (HashSet a) | Note that, in the presence of hash collisions, equal
In general, the lack of substitutivity can be observed with any function that depends on the key ordering, such as folds and traversals. |
(Data a, Eq a, Hashable a) => Data (HashSet a) | |
Defined in Data.HashSet.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> HashSet a -> c (HashSet a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (HashSet a) # toConstr :: HashSet a -> Constr # dataTypeOf :: HashSet a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (HashSet a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (HashSet a)) # gmapT :: (forall b. Data b => b -> b) -> HashSet a -> HashSet a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> HashSet a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> HashSet a -> r # gmapQ :: (forall d. Data d => d -> u) -> HashSet a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> HashSet a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> HashSet a -> m (HashSet a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> HashSet a -> m (HashSet a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> HashSet a -> m (HashSet a) # | |
Ord a => Ord (HashSet a) | |
(Eq a, Hashable a, Read a) => Read (HashSet a) | |
Show a => Show (HashSet a) | |
(Hashable a, Eq a) => Semigroup (HashSet a) | O(n+m) To obtain good performance, the smaller set must be presented as the first argument. Examples
|
(Hashable a, Eq a) => Monoid (HashSet a) | O(n+m) To obtain good performance, the smaller set must be presented as the first argument. Examples
|
NFData a => NFData (HashSet a) | |
Defined in Data.HashSet.Internal | |
Hashable a => Hashable (HashSet a) | |
Defined in Data.HashSet.Internal | |
(Eq a, Hashable a) => Contains (HashSet a) | |
(Eq k, Hashable k) => Ixed (HashSet k) | |
Defined in Control.Lens.At | |
(Eq k, Hashable k) => At (HashSet k) | |
(Hashable a, Eq a) => Wrapped (HashSet a) | |
AsEmpty (HashSet a) | |
Defined in Control.Lens.Empty | |
(t ~ HashSet a', Hashable a, Eq a) => Rewrapped (HashSet a) t | Use |
Defined in Control.Lens.Wrapped | |
type Item (HashSet a) | |
Defined in Data.HashSet.Internal | |
type Index (HashSet a) | |
Defined in Control.Lens.At | |
type IxValue (HashSet k) | |
Defined in Control.Lens.At | |
type Unwrapped (HashSet a) | |
Defined in Control.Lens.Wrapped |
Boxed vectors, supporting efficient slicing.
Instances
Monad Vector | |
Functor Vector | |
MonadFail Vector | Since: vector-0.12.1.0 |
Defined in Data.Vector | |
Applicative Vector | |
Foldable Vector | |
Defined in Data.Vector Methods fold :: Monoid m => Vector m -> m # foldMap :: Monoid m => (a -> m) -> Vector a -> m # foldr :: (a -> b -> b) -> b -> Vector a -> b # foldr' :: (a -> b -> b) -> b -> Vector a -> b # foldl :: (b -> a -> b) -> b -> Vector a -> b # foldl' :: (b -> a -> b) -> b -> Vector a -> b # foldr1 :: (a -> a -> a) -> Vector a -> a # foldl1 :: (a -> a -> a) -> Vector a -> a # elem :: Eq a => a -> Vector a -> Bool # maximum :: Ord a => Vector a -> a # minimum :: Ord a => Vector a -> a # | |
Traversable Vector | |
Eq1 Vector | |
Ord1 Vector | |
Defined in Data.Vector | |
Read1 Vector | |
Defined in Data.Vector | |
Show1 Vector | |
MonadZip Vector | |
Alternative Vector | |
MonadPlus Vector | |
NFData1 Vector | Since: vector-0.12.1.0 |
Defined in Data.Vector | |
Vector Vector a | |
Defined in Data.Vector Methods basicUnsafeFreeze :: PrimMonad m => Mutable Vector (PrimState m) a -> m (Vector a) # basicUnsafeThaw :: PrimMonad m => Vector a -> m (Mutable Vector (PrimState m) a) # basicLength :: Vector a -> Int # basicUnsafeSlice :: Int -> Int -> Vector a -> Vector a # basicUnsafeIndexM :: Monad m => Vector a -> Int -> m a # basicUnsafeCopy :: PrimMonad m => Mutable Vector (PrimState m) a -> Vector a -> m () # | |
FunctorWithIndex Int Vector | |
FoldableWithIndex Int Vector | |
Defined in Control.Lens.Indexed | |
TraversableWithIndex Int Vector | |
Defined in Control.Lens.Indexed Methods itraverse :: Applicative f => (Int -> a -> f b) -> Vector a -> f (Vector b) # itraversed :: IndexedTraversal Int (Vector a) (Vector b) a b # | |
IsList (Vector a) | |
Eq a => Eq (Vector a) | |
Data a => Data (Vector a) | |
Defined in Data.Vector Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Vector a -> c (Vector a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Vector a) # toConstr :: Vector a -> Constr # dataTypeOf :: Vector a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Vector a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Vector a)) # gmapT :: (forall b. Data b => b -> b) -> Vector a -> Vector a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQ :: (forall d. Data d => d -> u) -> Vector a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Vector a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # | |
Ord a => Ord (Vector a) | |
Defined in Data.Vector | |
Read a => Read (Vector a) | |
Show a => Show (Vector a) | |
Semigroup (Vector a) | |
Monoid (Vector a) | |
NFData a => NFData (Vector a) | |
Defined in Data.Vector | |
Ixed (Vector a) | |
Defined in Control.Lens.At | |
Wrapped (Vector a) | |
AsEmpty (Vector a) | |
Defined in Control.Lens.Empty | |
Reversing (Vector a) | |
Defined in Control.Lens.Internal.Iso | |
t ~ Vector a' => Rewrapped (Vector a) t | |
Defined in Control.Lens.Wrapped | |
Each (Vector a) (Vector b) a b |
|
Cons (Vector a) (Vector b) a b | |
Snoc (Vector a) (Vector b) a b | |
type Mutable Vector | |
Defined in Data.Vector | |
type Item (Vector a) | |
Defined in Data.Vector | |
type Index (Vector a) | |
Defined in Control.Lens.At | |
type IxValue (Vector a) | |
Defined in Control.Lens.At | |
type Unwrapped (Vector a) | |
Defined in Control.Lens.Wrapped |
type Reader r = ReaderT r Identity #
The parameterizable reader monad.
Computations are functions of a shared environment.
The return
function ignores the environment, while >>=
passes
the inherited environment to both subcomputations.
makeFieldsNoPrefix :: Name -> DecsQ #
Generate overloaded field accessors based on field names which
are only prefixed with an underscore (e.g. _name
), not
additionally with the type name (e.g. _fooName
).
This might be the desired behaviour in case the
DuplicateRecordFields
language extension is used in order to get
rid of the necessity to prefix each field name with the type name.
As an example:
data Foo a = Foo { _x ::Int
, _y :: a } newtype Bar = Bar { _x ::Char
} makeFieldsNoPrefix ''Foo makeFieldsNoPrefix ''Bar
will create classes
class HasX s a | s -> a where x :: Lens' s a class HasY s a | s -> a where y :: Lens' s a
together with instances
instance HasX (Foo a) Int instance HasY (Foo a) a where instance HasX Bar Char where
For details, see classUnderscoreNoPrefixFields
.
makeFieldsNoPrefix =makeLensesWith
classUnderscoreNoPrefixFields
makeFields :: Name -> DecsQ #
Generate overloaded field accessors.
e.g
data Foo a = Foo { _fooX ::Int
, _fooY :: a } newtype Bar = Bar { _barX ::Char
} makeFields ''Foo makeFields ''Bar
will create
_fooXLens :: Lens' (Foo a) Int _fooYLens :: Lens (Foo a) (Foo b) a b class HasX s a | s -> a where x :: Lens' s a instance HasX (Foo a) Int where x = _fooXLens class HasY s a | s -> a where y :: Lens' s a instance HasY (Foo a) a where y = _fooYLens _barXLens :: Iso' Bar Char instance HasX Bar Char where x = _barXLens
For details, see camelCaseFields
.
makeFields =makeLensesWith
defaultFieldRules
abbreviatedFields :: LensRules #
Field rules fields in the form prefixFieldname or _prefixFieldname
If you want all fields to be lensed, then there is no reason to use an _
before the prefix.
If any of the record fields leads with an _
then it is assume a field without an _
should not have a lens created.
Note that prefix
may be any string of characters that are not uppercase
letters. (In particular, it may be arbitrary string of lowercase letters
and numbers) This is the behavior that defaultFieldRules
had in lens
4.4 and earlier.
classUnderscoreNoPrefixFields :: LensRules #
Field rules for fields in the form _fieldname
(the leading
underscore is mandatory).
Note: The primary difference to camelCaseFields
is that for
classUnderscoreNoPrefixFields
the field names are not expected to
be prefixed with the type name. This might be the desired behaviour
when the DuplicateRecordFields
extension is enabled.
camelCaseNamer :: FieldNamer #
A FieldNamer
for camelCaseFields
.
camelCaseFields :: LensRules #
Field rules for fields in the form prefixFieldname or _prefixFieldname
If you want all fields to be lensed, then there is no reason to use an _
before the prefix.
If any of the record fields leads with an _
then it is assume a field without an _
should not have a lens created.
Note: The prefix
must be the same as the typename (with the first
letter lowercased). This is a change from lens versions before lens 4.5.
If you want the old behaviour, use makeLensesWith
abbreviatedFields
underscoreNamer :: FieldNamer #
A FieldNamer
for underscoreFields
.
underscoreFields :: LensRules #
Field rules for fields in the form _prefix_fieldname
makeWrapped :: Name -> DecsQ #
Build Wrapped
instance for a given newtype
declareLensesWith :: LensRules -> DecsQ -> DecsQ #
Declare lenses for each records in the given declarations, using the
specified LensRules
. Any record syntax in the input will be stripped
off.
declareFields :: DecsQ -> DecsQ #
declareFields =declareLensesWith
defaultFieldRules
declareWrapped :: DecsQ -> DecsQ #
Build Wrapped
instance for each newtype.
declarePrisms :: DecsQ -> DecsQ #
Generate a Prism
for each constructor of each data type.
e.g.
declarePrisms [d| data Exp = Lit Int | Var String | Lambda{ bound::String, body::Exp } |]
will create
data Exp = Lit Int | Var String | Lambda { bound::String, body::Exp } _Lit ::Prism'
Exp Int _Var ::Prism'
Exp String _Lambda ::Prism'
Exp (String, Exp)
declareClassyFor :: [(String, (String, String))] -> [(String, String)] -> DecsQ -> DecsQ #
Similar to makeClassyFor
, but takes a declaration quote.
declareClassy :: DecsQ -> DecsQ #
For each record in the declaration quote, make lenses and traversals for it, and create a class when the type has no arguments. All record syntax in the input will be stripped off.
e.g.
declareClassy [d| data Foo = Foo { fooX, fooY ::Int
} derivingShow
|]
will create
data Foo = FooInt
Int
derivingShow
class HasFoo t where foo ::Lens'
t Foo instance HasFoo Foo where foo =id
fooX, fooY :: HasFoo t =>Lens'
tInt
declareLensesFor :: [(String, String)] -> DecsQ -> DecsQ #
Similar to makeLensesFor
, but takes a declaration quote.
declareLenses :: DecsQ -> DecsQ #
makeLensesWith :: LensRules -> Name -> DecsQ #
Build lenses with a custom configuration.
makeClassyFor :: String -> String -> [(String, String)] -> Name -> DecsQ #
Derive lenses and traversals, using a named wrapper class, and
specifying explicit pairings of (fieldName, traversalName)
.
Example usage:
makeClassyFor
"HasFoo" "foo" [("_foo", "fooLens"), ("bar", "lbar")] ''Foo
makeLensesFor :: [(String, String)] -> Name -> DecsQ #
Derive lenses and traversals, specifying explicit pairings
of (fieldName, lensName)
.
If you map multiple names to the same label, and it is present in the same
constructor then this will generate a Traversal
.
e.g.
makeLensesFor
[("_foo", "fooLens"), ("baz", "lbaz")] ''FoomakeLensesFor
[("_barX", "bar"), ("_barY", "bar")] ''Bar
makeClassy_ :: Name -> DecsQ #
Make lenses and traversals for a type, and create a class when the type
has no arguments. Works the same as makeClassy
except that (a) it
expects that record field names do not begin with an underscore, (b) all
record fields are made into lenses, and (c) the resulting lens is prefixed
with an underscore.
makeClassy :: Name -> DecsQ #
Make lenses and traversals for a type, and create a class when the type has no arguments.
e.g.
data Foo = Foo { _fooX, _fooY ::Int
}makeClassy
''Foo
will create
class HasFoo t where foo ::Lens'
t Foo fooX ::Lens'
tInt
fooX = foo . go where go f (Foo x y) = (\x' -> Foo x' y) <$> f x fooY ::Lens'
tInt
fooY = foo . go where go f (Foo x y) = (\y' -> Foo x y') <$> f y instance HasFoo Foo where foo = id
makeClassy
=makeLensesWith
classyRules
makeLenses :: Name -> DecsQ #
Build lenses (and traversals) with a sensible default configuration.
e.g.
data FooBar = Foo { _x, _y ::Int
} | Bar { _x ::Int
}makeLenses
''FooBar
will create
x ::Lens'
FooBarInt
x f (Foo a b) = (\a' -> Foo a' b) <$> f a x f (Bar a) = Bar <$> f a y ::Traversal'
FooBarInt
y f (Foo a b) = (\b' -> Foo a b') <$> f b y _ c@(Bar _) = pure c
makeLenses
=makeLensesWith
lensRules
A LensRules
used by makeClassy_
.
Rules for making lenses and traversals that precompose another Lens
.
Arguments
:: (String -> [String]) | A function that maps a |
-> FieldNamer |
Create a FieldNamer
from a mapping function. If the function
returns []
, it creates no lens for the field.
lookingupNamer :: [(String, String)] -> FieldNamer #
Create a FieldNamer
from explicit pairings of (fieldName, lensName)
.
Construct a LensRules
value for generating top-level definitions
using the given map from field names to definition names.
underscoreNoPrefixNamer :: FieldNamer #
A FieldNamer
that strips the _ off of the field name,
lowercases the name, and skips the field if it doesn't start with
an '_'.
Rules for making fairly simple partial lenses, ignoring the special cases
for isomorphisms and traversals, and not making any classes.
It uses underscoreNoPrefixNamer
.
generateLazyPatterns :: Lens' LensRules Bool #
Generate optics using lazy pattern matches. This can allow fields of an undefined value to be initialized with lenses:
data Foo = Foo {_x :: Int, _y :: Bool} deriving ShowmakeLensesWith
(lensRules
&generateLazyPatterns
.~ True) ''Foo
> undefined & x .~ 8 & y .~ True Foo {_x = 8, _y = True}
The downside of this flag is that it can lead to space-leaks and code-size/compile-time increases when generated for large records. By default this flag is turned off, and strict optics are generated.
When using lazy optics the strict optic can be recovered by composing
with $!
:
strictOptic = ($!) . lazyOptic
generateSignatures :: Lens' LensRules Bool #
Indicate whether or not to supply the signatures for the generated lenses.
Disabling this can be useful if you want to provide a more restricted type signature or if you want to supply hand-written haddocks.
type FieldNamer #
Arguments
= Name | Name of the data type that lenses are being generated for. |
-> [Name] | Names of all fields (including the field being named) in the data type. |
-> Name | Name of the field being named. |
-> [DefName] | Name(s) of the lens functions. If empty, no lens is created for that field. |
The rule to create function names of lenses for data fields.
Although it's sometimes useful, you won't need the first two arguments most of the time.
Name to give to generated field optics.
Constructors
TopName Name | Simple top-level definiton name |
MethodName Name Name | makeFields-style class name and method name |
type ClassyNamer #
Arguments
= Name | Name of the data type that lenses are being generated for. |
-> Maybe (Name, Name) | Names of the class and the main method it generates, respectively. |
The optional rule to create a class and method around a monomorphic data type. If this naming convention is provided, it generates a "classy" lens.
Generate a Prism
for each constructor of a data type
and combine them into a single class. No Isos are created.
Reviews are created for constructors with existentially
quantified constructors and GADTs.
e.g.
data FooBarBaz a = Foo Int | Bar a | Baz Int Char makeClassyPrisms ''FooBarBaz
will create
class AsFooBarBaz s a | s -> a where _FooBarBaz :: Prism' s (FooBarBaz a) _Foo :: Prism' s Int _Bar :: Prism' s a _Baz :: Prism' s (Int,Char) _Foo = _FooBarBaz . _Foo _Bar = _FooBarBaz . _Bar _Baz = _FooBarBaz . _Baz instance AsFooBarBaz (FooBarBaz a) a
Generate an As class of prisms. Names are selected by prefixing the constructor name with an underscore. Constructors with multiple fields will construct Prisms to tuples of those fields.
Generate a Prism
for each constructor of a data type.
Isos generated when possible.
Reviews are created for constructors with existentially
quantified constructors and GADTs.
e.g.
data FooBarBaz a = Foo Int | Bar a | Baz Int Char makePrisms ''FooBarBaz
will create
_Foo :: Prism' (FooBarBaz a) Int _Bar :: Prism (FooBarBaz a) (FooBarBaz b) a b _Baz :: Prism' (FooBarBaz a) (Int, Char)
iat :: At m => Index m -> IndexedLens' (Index m) m (Maybe (IxValue m)) #
An indexed version of at
.
>>>
Map.fromList [(1,"world")] ^@. iat 1
(1,Just "world")
>>>
iat 1 %@~ (\i x -> if odd i then Just "hello" else Nothing) $ Map.empty
fromList [(1,"hello")]
>>>
iat 2 %@~ (\i x -> if odd i then Just "hello" else Nothing) $ Map.empty
fromList []
iix :: Ixed m => Index m -> IndexedTraversal' (Index m) m (IxValue m) #
An indexed version of ix
.
>>>
Seq.fromList [a,b,c,d] & iix 2 %@~ f'
fromList [a,b,f' 2 c,d]
>>>
Seq.fromList [a,b,c,d] & iix 2 .@~ h
fromList [a,b,h 2,d]
>>>
Seq.fromList [a,b,c,d] ^@? iix 2
Just (2,c)
>>>
Seq.fromList [] ^@? iix 2
Nothing
icontains :: Contains m => Index m -> IndexedLens' (Index m) m Bool #
An indexed version of contains
.
>>>
IntSet.fromList [1,2,3,4] ^@. icontains 3
(3,True)
>>>
IntSet.fromList [1,2,3,4] ^@. icontains 5
(5,False)
>>>
IntSet.fromList [1,2,3,4] & icontains 3 %@~ \i x -> if odd i then not x else x
fromList [1,2,4]
>>>
IntSet.fromList [1,2,3,4] & icontains 3 %@~ \i x -> if even i then not x else x
fromList [1,2,3,4]
Instances
type Index ByteString | |
Defined in Control.Lens.At | |
type Index ByteString | |
Defined in Control.Lens.At | |
type Index Text | |
Defined in Control.Lens.At | |
type Index IntSet | |
Defined in Control.Lens.At | |
type Index Text | |
Defined in Control.Lens.At | |
type Index [a] | |
Defined in Control.Lens.At | |
type Index (Maybe a) | |
Defined in Control.Lens.At | |
type Index (Complex a) | |
Defined in Control.Lens.At | |
type Index (Identity a) | |
Defined in Control.Lens.At | |
type Index (NonEmpty a) | |
Defined in Control.Lens.At | |
type Index (IntMap a) | |
Defined in Control.Lens.At | |
type Index (Tree a) | |
Defined in Control.Lens.At | |
type Index (Seq a) | |
Defined in Control.Lens.At | |
type Index (Set a) | |
Defined in Control.Lens.At | |
type Index (Vector a) | |
Defined in Control.Lens.At | |
type Index (Vector a) | |
Defined in Control.Lens.At | |
type Index (Vector a) | |
Defined in Control.Lens.At | |
type Index (HashSet a) | |
Defined in Control.Lens.At | |
type Index (Vector a) | |
Defined in Control.Lens.At | |
type Index (e -> a) | |
Defined in Control.Lens.At type Index (e -> a) = e | |
type Index (a, b) | |
Defined in Control.Lens.At | |
type Index (UArray i e) | |
Defined in Control.Lens.At | |
type Index (Array i e) | |
Defined in Control.Lens.At | |
type Index (Map k a) | |
Defined in Control.Lens.At | |
type Index (HashMap k a) | |
Defined in Control.Lens.At | |
type Index (MultiMap k v) Source # | |
Defined in Data.MultiMap | |
type Index (a, b, c) | |
Defined in Control.Lens.At | |
type Index (a, b, c, d) | |
Defined in Control.Lens.At | |
type Index (a, b, c, d, e) | |
Defined in Control.Lens.At | |
type Index (a, b, c, d, e, f) | |
Defined in Control.Lens.At | |
type Index (a, b, c, d, e, f, g) | |
Defined in Control.Lens.At | |
type Index (a, b, c, d, e, f, g, h) | |
Defined in Control.Lens.At | |
type Index (a, b, c, d, e, f, g, h, i) | |
Defined in Control.Lens.At |
This class provides a simple Lens
that lets you view (and modify)
information about whether or not a container contains a given Index
.
Methods
contains :: Index m -> Lens' m Bool #
>>>
IntSet.fromList [1,2,3,4] ^. contains 3
True
>>>
IntSet.fromList [1,2,3,4] ^. contains 5
False
>>>
IntSet.fromList [1,2,3,4] & contains 3 .~ False
fromList [1,2,4]
type family IxValue m :: Type #
Instances
type IxValue ByteString | |
Defined in Control.Lens.At | |
type IxValue ByteString | |
Defined in Control.Lens.At | |
type IxValue Text | |
Defined in Control.Lens.At | |
type IxValue IntSet | |
Defined in Control.Lens.At | |
type IxValue Text | |
Defined in Control.Lens.At | |
type IxValue [a] | |
Defined in Control.Lens.At type IxValue [a] = a | |
type IxValue (Maybe a) | |
Defined in Control.Lens.At | |
type IxValue (Identity a) | |
Defined in Control.Lens.At | |
type IxValue (NonEmpty a) | |
Defined in Control.Lens.At | |
type IxValue (IntMap a) | |
Defined in Control.Lens.At | |
type IxValue (Tree a) | |
Defined in Control.Lens.At | |
type IxValue (Seq a) | |
Defined in Control.Lens.At | |
type IxValue (Set k) | |
Defined in Control.Lens.At | |
type IxValue (Vector a) | |
Defined in Control.Lens.At | |
type IxValue (Vector a) | |
Defined in Control.Lens.At | |
type IxValue (Vector a) | |
Defined in Control.Lens.At | |
type IxValue (HashSet k) | |
Defined in Control.Lens.At | |
type IxValue (Vector a) | |
Defined in Control.Lens.At | |
type IxValue (e -> a) | |
Defined in Control.Lens.At type IxValue (e -> a) = a | |
type IxValue (a, a2) |
|
Defined in Control.Lens.At type IxValue (a, a2) = a | |
type IxValue (UArray i e) | |
Defined in Control.Lens.At | |
type IxValue (Array i e) | |
Defined in Control.Lens.At | |
type IxValue (Map k a) | |
Defined in Control.Lens.At | |
type IxValue (HashMap k a) | |
Defined in Control.Lens.At | |
type IxValue (MultiMap k v) Source # | |
Defined in Data.MultiMap | |
type IxValue (a, a2, a3) |
|
Defined in Control.Lens.At type IxValue (a, a2, a3) = a | |
type IxValue (a, a2, a3, a4) |
|
Defined in Control.Lens.At type IxValue (a, a2, a3, a4) = a | |
type IxValue (a, a2, a3, a4, a5) |
|
Defined in Control.Lens.At type IxValue (a, a2, a3, a4, a5) = a | |
type IxValue (a, a2, a3, a4, a5, a6) |
|
Defined in Control.Lens.At type IxValue (a, a2, a3, a4, a5, a6) = a | |
type IxValue (a, a2, a3, a4, a5, a6, a7) |
|
Defined in Control.Lens.At type IxValue (a, a2, a3, a4, a5, a6, a7) = a | |
type IxValue (a, a2, a3, a4, a5, a6, a7, a8) |
|
Defined in Control.Lens.At type IxValue (a, a2, a3, a4, a5, a6, a7, a8) = a | |
type IxValue (a, a2, a3, a4, a5, a6, a7, a8, a9) |
|
Defined in Control.Lens.At type IxValue (a, a2, a3, a4, a5, a6, a7, a8, a9) = a |
Provides a simple Traversal
lets you traverse
the value at a given
key in a Map
or element at an ordinal position in a list or Seq
.
Minimal complete definition
Nothing
Methods
ix :: Index m -> Traversal' m (IxValue m) #
NB: Setting the value of this Traversal
will only set the value in
at
if it is already present.
If you want to be able to insert missing values, you want at
.
>>>
Seq.fromList [a,b,c,d] & ix 2 %~ f
fromList [a,b,f c,d]
>>>
Seq.fromList [a,b,c,d] & ix 2 .~ e
fromList [a,b,e,d]
>>>
Seq.fromList [a,b,c,d] ^? ix 2
Just c
>>>
Seq.fromList [] ^? ix 2
Nothing
Instances
Ixed ByteString | |
Defined in Control.Lens.At Methods ix :: Index ByteString -> Traversal' ByteString (IxValue ByteString) # | |
Ixed ByteString | |
Defined in Control.Lens.At Methods ix :: Index ByteString -> Traversal' ByteString (IxValue ByteString) # | |
Ixed Text | |
Defined in Control.Lens.At | |
Ixed IntSet | |
Defined in Control.Lens.At | |
Ixed Text | |
Defined in Control.Lens.At | |
Ixed [a] | |
Defined in Control.Lens.At Methods ix :: Index [a] -> Traversal' [a] (IxValue [a]) # | |
Ixed (Maybe a) | |
Defined in Control.Lens.At | |
Ixed (Identity a) | |
Defined in Control.Lens.At | |
Ixed (NonEmpty a) | |
Defined in Control.Lens.At | |
Ixed (IntMap a) | |
Defined in Control.Lens.At | |
Ixed (Tree a) | |
Defined in Control.Lens.At | |
Ixed (Seq a) | |
Defined in Control.Lens.At | |
Ord k => Ixed (Set k) | |
Defined in Control.Lens.At | |
Prim a => Ixed (Vector a) | |
Defined in Control.Lens.At | |
Storable a => Ixed (Vector a) | |
Defined in Control.Lens.At | |
Unbox a => Ixed (Vector a) | |
Defined in Control.Lens.At | |
(Eq k, Hashable k) => Ixed (HashSet k) | |
Defined in Control.Lens.At | |
Ixed (Vector a) | |
Defined in Control.Lens.At | |
Eq e => Ixed (e -> a) | |
Defined in Control.Lens.At Methods ix :: Index (e -> a) -> Traversal' (e -> a) (IxValue (e -> a)) # | |
a ~ a2 => Ixed (a, a2) | |
Defined in Control.Lens.At Methods ix :: Index (a, a2) -> Traversal' (a, a2) (IxValue (a, a2)) # | |
(IArray UArray e, Ix i) => Ixed (UArray i e) | arr |
Defined in Control.Lens.At | |
Ix i => Ixed (Array i e) | arr |
Defined in Control.Lens.At | |
Ord k => Ixed (Map k a) | |
Defined in Control.Lens.At | |
(Eq k, Hashable k) => Ixed (HashMap k a) | |
Defined in Control.Lens.At | |
CanMM k v => Ixed (MultiMap k v) Source # | |
Defined in Data.MultiMap | |
(a ~ a2, a ~ a3) => Ixed (a, a2, a3) | |
Defined in Control.Lens.At Methods ix :: Index (a, a2, a3) -> Traversal' (a, a2, a3) (IxValue (a, a2, a3)) # | |
(a ~ a2, a ~ a3, a ~ a4) => Ixed (a, a2, a3, a4) | |
Defined in Control.Lens.At Methods ix :: Index (a, a2, a3, a4) -> Traversal' (a, a2, a3, a4) (IxValue (a, a2, a3, a4)) # | |
(a ~ a2, a ~ a3, a ~ a4, a ~ a5) => Ixed (a, a2, a3, a4, a5) | |
Defined in Control.Lens.At Methods ix :: Index (a, a2, a3, a4, a5) -> Traversal' (a, a2, a3, a4, a5) (IxValue (a, a2, a3, a4, a5)) # | |
(a ~ a2, a ~ a3, a ~ a4, a ~ a5, a ~ a6) => Ixed (a, a2, a3, a4, a5, a6) | |
Defined in Control.Lens.At Methods ix :: Index (a, a2, a3, a4, a5, a6) -> Traversal' (a, a2, a3, a4, a5, a6) (IxValue (a, a2, a3, a4, a5, a6)) # | |
(a ~ a2, a ~ a3, a ~ a4, a ~ a5, a ~ a6, a ~ a7) => Ixed (a, a2, a3, a4, a5, a6, a7) | |
Defined in Control.Lens.At Methods ix :: Index (a, a2, a3, a4, a5, a6, a7) -> Traversal' (a, a2, a3, a4, a5, a6, a7) (IxValue (a, a2, a3, a4, a5, a6, a7)) # | |
(a ~ a2, a ~ a3, a ~ a4, a ~ a5, a ~ a6, a ~ a7, a ~ a8) => Ixed (a, a2, a3, a4, a5, a6, a7, a8) | |
Defined in Control.Lens.At Methods ix :: Index (a, a2, a3, a4, a5, a6, a7, a8) -> Traversal' (a, a2, a3, a4, a5, a6, a7, a8) (IxValue (a, a2, a3, a4, a5, a6, a7, a8)) # | |
(a ~ a2, a ~ a3, a ~ a4, a ~ a5, a ~ a6, a ~ a7, a ~ a8, a ~ a9) => Ixed (a, a2, a3, a4, a5, a6, a7, a8, a9) | |
Defined in Control.Lens.At Methods ix :: Index (a, a2, a3, a4, a5, a6, a7, a8, a9) -> Traversal' (a, a2, a3, a4, a5, a6, a7, a8, a9) (IxValue (a, a2, a3, a4, a5, a6, a7, a8, a9)) # |
At
provides a Lens
that can be used to read,
write or delete the value associated with a key in a Map
-like
container on an ad hoc basis.
An instance of At
should satisfy:
ix
k ≡at
k.
traverse
Methods
class Each s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Extract each
element of a (potentially monomorphic) container.
Notably, when applied to a tuple, this generalizes both
to arbitrary homogeneous tuples.
>>>
(1,2,3) & each *~ 10
(10,20,30)
It can also be used on monomorphic containers like Text
or ByteString
.
>>>
over each Char.toUpper ("hello"^.Text.packed)
"HELLO"
>>>
("hello","world") & each.each %~ Char.toUpper
("HELLO","WORLD")
Minimal complete definition
Nothing
Instances
(a ~ Word8, b ~ Word8) => Each ByteString ByteString a b |
|
Defined in Control.Lens.Each Methods each :: Traversal ByteString ByteString a b # | |
(a ~ Word8, b ~ Word8) => Each ByteString ByteString a b |
|
Defined in Control.Lens.Each Methods each :: Traversal ByteString ByteString a b # | |
(a ~ Char, b ~ Char) => Each Text Text a b |
|
(a ~ Char, b ~ Char) => Each Text Text a b |
|
Each [a] [b] a b |
|
Defined in Control.Lens.Each | |
Each (Maybe a) (Maybe b) a b |
|
Each (Complex a) (Complex b) a b |
|
Each (Identity a) (Identity b) a b |
|
Each (NonEmpty a) (NonEmpty b) a b |
|
Each (IntMap a) (IntMap b) a b |
|
Each (Tree a) (Tree b) a b |
|
Each (Seq a) (Seq b) a b |
|
(Prim a, Prim b) => Each (Vector a) (Vector b) a b |
|
(Storable a, Storable b) => Each (Vector a) (Vector b) a b |
|
(Unbox a, Unbox b) => Each (Vector a) (Vector b) a b |
|
Each (Vector a) (Vector b) a b |
|
(a ~ a', b ~ b') => Each (a, a') (b, b') a b |
|
Defined in Control.Lens.Each | |
(Ix i, IArray UArray a, IArray UArray b, i ~ j) => Each (UArray i a) (UArray j b) a b |
|
(Ix i, i ~ j) => Each (Array i a) (Array j b) a b |
|
c ~ d => Each (Map c a) (Map d b) a b |
|
c ~ d => Each (HashMap c a) (HashMap d b) a b |
|
(a ~ a2, a ~ a3, b ~ b2, b ~ b3) => Each (a, a2, a3) (b, b2, b3) a b |
|
Defined in Control.Lens.Each | |
(a ~ a2, a ~ a3, a ~ a4, b ~ b2, b ~ b3, b ~ b4) => Each (a, a2, a3, a4) (b, b2, b3, b4) a b |
|
Defined in Control.Lens.Each | |
(a ~ a2, a ~ a3, a ~ a4, a ~ a5, b ~ b2, b ~ b3, b ~ b4, b ~ b5) => Each (a, a2, a3, a4, a5) (b, b2, b3, b4, b5) a b |
|
Defined in Control.Lens.Each | |
(a ~ a2, a ~ a3, a ~ a4, a ~ a5, a ~ a6, b ~ b2, b ~ b3, b ~ b4, b ~ b5, b ~ b6) => Each (a, a2, a3, a4, a5, a6) (b, b2, b3, b4, b5, b6) a b |
|
Defined in Control.Lens.Each | |
(a ~ a2, a ~ a3, a ~ a4, a ~ a5, a ~ a6, a ~ a7, b ~ b2, b ~ b3, b ~ b4, b ~ b5, b ~ b6, b ~ b7) => Each (a, a2, a3, a4, a5, a6, a7) (b, b2, b3, b4, b5, b6, b7) a b |
|
Defined in Control.Lens.Each | |
(a ~ a2, a ~ a3, a ~ a4, a ~ a5, a ~ a6, a ~ a7, a ~ a8, b ~ b2, b ~ b3, b ~ b4, b ~ b5, b ~ b6, b ~ b7, b ~ b8) => Each (a, a2, a3, a4, a5, a6, a7, a8) (b, b2, b3, b4, b5, b6, b7, b8) a b |
|
Defined in Control.Lens.Each | |
(a ~ a2, a ~ a3, a ~ a4, a ~ a5, a ~ a6, a ~ a7, a ~ a8, a ~ a9, b ~ b2, b ~ b3, b ~ b4, b ~ b5, b ~ b6, b ~ b7, b ~ b8, b ~ b9) => Each (a, a2, a3, a4, a5, a6, a7, a8, a9) (b, b2, b3, b4, b5, b6, b7, b8, b9) a b |
|
Defined in Control.Lens.Each |
composOpFold :: Plated a => b -> (b -> b -> b) -> (a -> b) -> a -> b #
Fold the immediate children of a Plated
container.
composOpFold
z c f =foldrOf
plate
(c.
f) z
holesOnOf :: Conjoined p => LensLike (Bazaar p r r) s t a b -> Over p (Bazaar p r r) a b r r -> s -> [Pretext p r r t] #
Extract one level of holes
from a container in a region specified by one Traversal
, using another.
holesOnOf
b l ≡holesOf
(b.
l)
holesOnOf
::Iso'
s a ->Iso'
a a -> s -> [Pretext
(->) a a s]holesOnOf
::Lens'
s a ->Lens'
a a -> s -> [Pretext
(->) a a s]holesOnOf
::Traversal'
s a ->Traversal'
a a -> s -> [Pretext
(->) a a s]holesOnOf
::Lens'
s a ->IndexedLens'
i a a -> s -> [Pretext
(Indexed
i) a a s]holesOnOf
::Traversal'
s a ->IndexedTraversal'
i a a -> s -> [Pretext
(Indexed
i) a a s]
holesOn :: Conjoined p => Over p (Bazaar p a a) s t a a -> s -> [Pretext p a a t] #
An alias for holesOf
, provided for consistency with the other combinators.
holesOn
≡holesOf
holesOn
::Iso'
s a -> s -> [Pretext
(->) a a s]holesOn
::Lens'
s a -> s -> [Pretext
(->) a a s]holesOn
::Traversal'
s a -> s -> [Pretext
(->) a a s]holesOn
::IndexedLens'
i s a -> s -> [Pretext
(Indexed
i) a a s]holesOn
::IndexedTraversal'
i s a -> s -> [Pretext
(Indexed
i) a a s]
holes :: Plated a => a -> [Pretext ((->) :: Type -> Type -> Type) a a a] #
The one-level version of context
. This extracts a list of the immediate children as editable contexts.
Given a context you can use pos
to see the values, peek
at what the structure would be like with an edited result, or simply extract
the original structure.
propChildren x =children
l x==
map
pos
(holes
l x) propId x =all
(==
x) [extract
w | w <-holes
l x]
holes
=holesOf
plate
contextsOnOf :: ATraversal s t a a -> ATraversal' a a -> s -> [Context a a t] #
Return a list of all of the editable contexts for every location in the structure in an areas indicated by a user supplied Traversal
, recursively using
another user-supplied Traversal
to walk each layer.
contextsOnOf
::Traversal'
s a ->Traversal'
a a -> s -> [Context
a a s]
contextsOn :: Plated a => ATraversal s t a a -> s -> [Context a a t] #
Return a list of all of the editable contexts for every location in the structure in an areas indicated by a user supplied Traversal
, recursively using plate
.
contextsOn
b ≡contextsOnOf
bplate
contextsOn
::Plated
a =>Traversal'
s a -> s -> [Context
a a s]
contextsOf :: ATraversal' a a -> a -> [Context a a a] #
Return a list of all of the editable contexts for every location in the structure, recursively, using a user-specified Traversal
to walk each layer.
propUniverse l x =universeOf
l x==
map
pos
(contextsOf
l x) propId l x =all
(==
x) [extract
w | w <-contextsOf
l x]
contextsOf
::Traversal'
a a -> a -> [Context
a a a]
transformMOnOf :: Monad m => LensLike (WrappedMonad m) s t a b -> LensLike (WrappedMonad m) a b a b -> (b -> m b) -> s -> m t #
Transform every element in a tree that lies in a region indicated by a supplied Traversal
, walking with a user supplied Traversal
in
a bottom-up manner with a monadic effect.
transformMOnOf
::Monad
m =>Traversal'
s a ->Traversal'
a a -> (a -> m a) -> s -> m s
transformMOf :: Monad m => LensLike (WrappedMonad m) a b a b -> (b -> m b) -> a -> m b #
Transform every element in a tree using a user supplied Traversal
in a bottom-up manner with a monadic effect.
transformMOf
::Monad
m =>Traversal'
a a -> (a -> m a) -> a -> m a
transformMOn :: (Monad m, Plated a) => LensLike (WrappedMonad m) s t a a -> (a -> m a) -> s -> m t #
Transform every element in the tree in a region indicated by a supplied Traversal
, in a bottom-up manner, monadically.
transformMOn
:: (Monad
m,Plated
a) =>Traversal'
s a -> (a -> m a) -> s -> m s
transformM :: (Monad m, Plated a) => (a -> m a) -> a -> m a #
Transform every element in the tree, in a bottom-up manner, monadically.
transformOnOf :: ASetter s t a b -> ASetter a b a b -> (b -> b) -> s -> t #
Transform every element in a region indicated by a Setter
by recursively applying another Setter
in a bottom-up manner.
transformOnOf
::Setter'
s a ->Traversal'
a a -> (a -> a) -> s -> stransformOnOf
::Setter'
s a ->Setter'
a a -> (a -> a) -> s -> s
transformOf :: ASetter a b a b -> (b -> b) -> a -> b #
Transform every element by recursively applying a given Setter
in a bottom-up manner.
transformOf
::Traversal'
a a -> (a -> a) -> a -> atransformOf
::Setter'
a a -> (a -> a) -> a -> a
transformOn :: Plated a => ASetter s t a a -> (a -> a) -> s -> t #
Transform every element in the tree in a bottom-up manner over a region indicated by a Setter
.
transformOn
::Plated
a =>Traversal'
s a -> (a -> a) -> s -> stransformOn
::Plated
a =>Setter'
s a -> (a -> a) -> s -> s
cosmosOnOf :: (Applicative f, Contravariant f) => LensLike' f s a -> LensLike' f a a -> LensLike' f s a #
cosmosOn :: (Applicative f, Contravariant f, Plated a) => LensLike' f s a -> LensLike' f s a #
cosmosOf :: (Applicative f, Contravariant f) => LensLike' f a a -> LensLike' f a a #
cosmos :: Plated a => Fold a a #
Fold over all transitive descendants of a Plated
container, including itself.
universeOnOf :: Getting [a] s a -> Getting [a] a a -> s -> [a] #
Given a Fold
that knows how to locate immediate children, retrieve all of the transitive descendants of a node, including itself that lie
in a region indicated by another Fold
.
toListOf
l ≡universeOnOf
lignored
universeOn :: Plated a => Getting [a] s a -> s -> [a] #
universeOf :: Getting [a] a a -> a -> [a] #
Given a Fold
that knows how to locate immediate children, retrieve all of the transitive descendants of a node, including itself.
universeOf
::Fold
a a -> a -> [a]
universe :: Plated a => a -> [a] #
Retrieve all of the transitive descendants of a Plated
container, including itself.
rewriteMOnOf :: Monad m => LensLike (WrappedMonad m) s t a b -> LensLike (WrappedMonad m) a b a b -> (b -> m (Maybe a)) -> s -> m t #
rewriteMOn :: (Monad m, Plated a) => LensLike (WrappedMonad m) s t a a -> (a -> m (Maybe a)) -> s -> m t #
Rewrite by applying a monadic rule everywhere inside of a structure located by a user-specified Traversal
.
Ensures that the rule cannot be applied anywhere in the result.
rewriteMOf :: Monad m => LensLike (WrappedMonad m) a b a b -> (b -> m (Maybe a)) -> a -> m b #
Rewrite by applying a monadic rule everywhere you recursing with a user-specified Traversal
.
Ensures that the rule cannot be applied anywhere in the result.
rewriteM :: (Monad m, Plated a) => (a -> m (Maybe a)) -> a -> m a #
Rewrite by applying a monadic rule everywhere you can. Ensures that the rule cannot be applied anywhere in the result.
rewriteOnOf :: ASetter s t a b -> ASetter a b a b -> (b -> Maybe a) -> s -> t #
Rewrite recursively over part of a larger structure using a specified Setter
.
rewriteOnOf
::Iso'
s a ->Iso'
a a -> (a ->Maybe
a) -> s -> srewriteOnOf
::Lens'
s a ->Lens'
a a -> (a ->Maybe
a) -> s -> srewriteOnOf
::Traversal'
s a ->Traversal'
a a -> (a ->Maybe
a) -> s -> srewriteOnOf
::Setter'
s a ->Setter'
a a -> (a ->Maybe
a) -> s -> s
rewriteOn :: Plated a => ASetter s t a a -> (a -> Maybe a) -> s -> t #
Rewrite recursively over part of a larger structure.
rewriteOn
::Plated
a =>Iso'
s a -> (a ->Maybe
a) -> s -> srewriteOn
::Plated
a =>Lens'
s a -> (a ->Maybe
a) -> s -> srewriteOn
::Plated
a =>Traversal'
s a -> (a ->Maybe
a) -> s -> srewriteOn
::Plated
a =>ASetter'
s a -> (a ->Maybe
a) -> s -> s
rewriteOf :: ASetter a b a b -> (b -> Maybe a) -> a -> b #
Rewrite by applying a rule everywhere you can. Ensures that the rule cannot be applied anywhere in the result:
propRewriteOf l r x =all
(isNothing
.
r) (universeOf
l (rewriteOf
l r x))
Usually transformOf
is more appropriate, but rewriteOf
can give better
compositionality. Given two single transformations f
and g
, you can
construct \a -> f a
which performs both rewrites until a fixed point.<|>
g a
rewriteOf
::Iso'
a a -> (a ->Maybe
a) -> a -> arewriteOf
::Lens'
a a -> (a ->Maybe
a) -> a -> arewriteOf
::Traversal'
a a -> (a ->Maybe
a) -> a -> arewriteOf
::Setter'
a a -> (a ->Maybe
a) -> a -> a
rewrite :: Plated a => (a -> Maybe a) -> a -> a #
Rewrite by applying a rule everywhere you can. Ensures that the rule cannot be applied anywhere in the result:
propRewrite r x =all
(isNothing
.
r) (universe
(rewrite
r x))
Usually transform
is more appropriate, but rewrite
can give better
compositionality. Given two single transformations f
and g
, you can
construct \a -> f a
which performs both rewrites until a fixed point.<|>
g a
deep :: (Conjoined p, Applicative f, Plated s) => Traversing p f s s a b -> Over p f s s a b #
Try to apply a traversal to all transitive descendants of a Plated
container, but
do not recurse through matching descendants.
deep
::Plated
s =>Fold
s a ->Fold
s adeep
::Plated
s =>IndexedFold
s a ->IndexedFold
s adeep
::Plated
s =>Traversal
s s a b ->Traversal
s s a bdeep
::Plated
s =>IndexedTraversal
s s a b ->IndexedTraversal
s s a b
(...) :: (Applicative f, Plated c) => LensLike f s t c c -> Over p f c c a b -> Over p f s t a b infixr 9 #
Compose through a plate
A Plated
type is one where we know how to extract its immediate self-similar children.
Example 1:
import Control.Applicative
import Control.Lens
import Control.Lens.Plated
import Data.Data
import Data.Data.Lens (uniplate
)
data Expr = ValInt
| Neg Expr | Add Expr Expr deriving (Eq
,Ord
,Show
,Read
,Data
,Typeable
)
instancePlated
Expr whereplate
f (Neg e) = Neg<$>
f eplate
f (Add a b) = Add<$>
f a<*>
f bplate
_ a =pure
a
or
instancePlated
Expr whereplate
=uniplate
Example 2:
import Control.Applicative
import Control.Lens
import Control.Lens.Plated
import Data.Data
import Data.Data.Lens (uniplate
)
data Tree a = Bin (Tree a) (Tree a) | Tip a deriving (Eq
,Ord
,Show
,Read
,Data
,Typeable
)
instancePlated
(Tree a) whereplate
f (Bin l r) = Bin<$>
f l<*>
f rplate
_ t =pure
t
or
instanceData
a =>Plated
(Tree a) whereplate
=uniplate
Note the big distinction between these two implementations.
The former will only treat children directly in this tree as descendents, the latter will treat trees contained in the values under the tips also as descendants!
When in doubt, pick a Traversal
and just use the various ...Of
combinators
rather than pollute Plated
with orphan instances!
If you want to find something unplated and non-recursive with biplate
use the ...OnOf
variant with ignored
, though those usecases are much better served
in most cases by using the existing Lens
combinators! e.g.
toListOf
biplate
≡universeOnOf
biplate
ignored
This same ability to explicitly pass the Traversal
in question is why there is no
analogue to uniplate's Biplate
.
Moreover, since we can allow custom traversals, we implement reasonable defaults for
polymorphic data types, that only traverse
into themselves, and not their
polymorphic arguments.
Minimal complete definition
Nothing
Methods
plate :: Traversal' a a #
Instances
class GPlated a (g :: k -> Type) #
Minimal complete definition
gplate'
Instances
GPlated a (V1 :: k -> Type) | |
Defined in Control.Lens.Plated Methods gplate' :: Traversal' (V1 p) a | |
GPlated a (U1 :: k -> Type) | |
Defined in Control.Lens.Plated Methods gplate' :: Traversal' (U1 p) a | |
GPlated a (URec b :: k -> Type) | |
Defined in Control.Lens.Plated Methods gplate' :: Traversal' (URec b p) a | |
GPlated a (K1 i a :: k -> Type) | |
Defined in Control.Lens.Plated Methods gplate' :: Traversal' (K1 i a p) a | |
GPlated a (K1 i b :: k -> Type) | |
Defined in Control.Lens.Plated Methods gplate' :: Traversal' (K1 i b p) a | |
(GPlated a f, GPlated a g) => GPlated a (f :+: g :: k -> Type) | |
Defined in Control.Lens.Plated Methods gplate' :: Traversal' ((f :+: g) p) a | |
(GPlated a f, GPlated a g) => GPlated a (f :*: g :: k -> Type) | |
Defined in Control.Lens.Plated Methods gplate' :: Traversal' ((f :*: g) p) a | |
GPlated a f => GPlated a (M1 i c f :: k -> Type) | |
Defined in Control.Lens.Plated Methods gplate' :: Traversal' (M1 i c f p) a |
class GPlated1 (f :: k -> Type) (g :: k -> Type) #
Minimal complete definition
gplate1'
Instances
GPlated1 (f :: k -> Type) (V1 :: k -> Type) | ignored |
Defined in Control.Lens.Plated Methods gplate1' :: Traversal' (V1 a) (f a) | |
GPlated1 (f :: k -> Type) (U1 :: k -> Type) | ignored |
Defined in Control.Lens.Plated Methods gplate1' :: Traversal' (U1 a) (f a) | |
GPlated1 (f :: k -> Type) (URec a :: k -> Type) | ignored |
Defined in Control.Lens.Plated Methods gplate1' :: Traversal' (URec a a0) (f a0) | |
GPlated1 (f :: k -> Type) (Rec1 f :: k -> Type) | match |
Defined in Control.Lens.Plated Methods gplate1' :: Traversal' (Rec1 f a) (f a) | |
GPlated1 (f :: k -> Type) (Rec1 g :: k -> Type) | ignored |
Defined in Control.Lens.Plated Methods gplate1' :: Traversal' (Rec1 g a) (f a) | |
GPlated1 (f :: k -> Type) (K1 i a :: k -> Type) | ignored |
Defined in Control.Lens.Plated Methods gplate1' :: Traversal' (K1 i a a0) (f a0) | |
(GPlated1 f g, GPlated1 f h) => GPlated1 (f :: k -> Type) (g :+: h :: k -> Type) | recursive match |
Defined in Control.Lens.Plated Methods gplate1' :: Traversal' ((g :+: h) a) (f a) | |
(GPlated1 f g, GPlated1 f h) => GPlated1 (f :: k -> Type) (g :*: h :: k -> Type) | recursive match |
Defined in Control.Lens.Plated Methods gplate1' :: Traversal' ((g :*: h) a) (f a) | |
GPlated1 f g => GPlated1 (f :: k -> Type) (M1 i c g :: k -> Type) | recursive match |
Defined in Control.Lens.Plated Methods gplate1' :: Traversal' (M1 i c g a) (f a) | |
(Traversable t, GPlated1 f g) => GPlated1 (f :: k1 -> Type) (t :.: g :: k1 -> Type) | recursive match under outer |
Defined in Control.Lens.Plated Methods gplate1' :: Traversal' ((t :.: g) a) (f a) | |
GPlated1 (f :: Type -> Type) Par1 | ignored |
Defined in Control.Lens.Plated Methods gplate1' :: Traversal' (Par1 a) (f a) |
type family Zoomed (m :: Type -> Type) :: Type -> Type -> Type #
This type family is used by Zoom
to describe the common effect type.
Instances
type Zoomed (MaybeT m) | |
Defined in Control.Lens.Zoom | |
type Zoomed (ListT m) | |
Defined in Control.Lens.Zoom | |
type Zoomed (IdentityT m) | |
Defined in Control.Lens.Zoom | |
type Zoomed (ExceptT e m) | |
Defined in Control.Lens.Zoom | |
type Zoomed (FreeT f m) | |
Defined in Control.Lens.Zoom | |
type Zoomed (ErrorT e m) | |
Defined in Control.Lens.Zoom | |
type Zoomed (StateT s z) | |
Defined in Control.Lens.Zoom | |
type Zoomed (StateT s z) | |
Defined in Control.Lens.Zoom | |
type Zoomed (WriterT w m) | |
Defined in Control.Lens.Zoom | |
type Zoomed (WriterT w m) | |
Defined in Control.Lens.Zoom | |
type Zoomed (ReaderT e m) | |
Defined in Control.Lens.Zoom | |
type Zoomed (RWST r w s z) | |
Defined in Control.Lens.Zoom | |
type Zoomed (RWST r w s z) | |
Defined in Control.Lens.Zoom |
type family Magnified (m :: Type -> Type) :: Type -> Type -> Type #
This type family is used by Magnify
to describe the common effect type.
Instances
type Magnified (IdentityT m) | |
Defined in Control.Lens.Zoom | |
type Magnified ((->) b :: Type -> Type) | |
type Magnified (ReaderT b m) | |
Defined in Control.Lens.Zoom | |
type Magnified (RWST a w s m) | |
Defined in Control.Lens.Zoom | |
type Magnified (RWST a w s m) | |
Defined in Control.Lens.Zoom |
class (MonadState s m, MonadState t n) => Zoom (m :: Type -> Type) (n :: Type -> Type) s t | m -> s, n -> t, m t -> n, n s -> m where #
This class allows us to use zoom
in, changing the State
supplied by
many different Monad
transformers, potentially quite
deep in a Monad
transformer stack.
Methods
zoom :: LensLike' (Zoomed m c) t s -> m c -> n c infixr 2 #
Run a monadic action in a larger State
than it was defined in,
using a Lens'
or Traversal'
.
This is commonly used to lift actions in a simpler State
Monad
into a State
Monad
with a larger State
type.
When applied to a Traversal'
over
multiple values, the actions for each target are executed sequentially
and the results are aggregated.
This can be used to edit pretty much any Monad
transformer stack with a State
in it!
>>>
flip State.evalState (a,b) $ zoom _1 $ use id
a
>>>
flip State.execState (a,b) $ zoom _1 $ id .= c
(c,b)
>>>
flip State.execState [(a,b),(c,d)] $ zoom traverse $ _2 %= f
[(a,f b),(c,f d)]
>>>
flip State.runState [(a,b),(c,d)] $ zoom traverse $ _2 <%= f
(f b <> f d <> mempty,[(a,f b),(c,f d)])
>>>
flip State.evalState (a,b) $ zoom both (use id)
a <> b
zoom
::Monad
m =>Lens'
s t ->StateT
t m a ->StateT
s m azoom
:: (Monad
m,Monoid
c) =>Traversal'
s t ->StateT
t m c ->StateT
s m czoom
:: (Monad
m,Monoid
w) =>Lens'
s t ->RWST
r w t m c ->RWST
r w s m czoom
:: (Monad
m,Monoid
w,Monoid
c) =>Traversal'
s t ->RWST
r w t m c ->RWST
r w s m czoom
:: (Monad
m,Monoid
w,Error
e) =>Lens'
s t ->ErrorT
e (RWST
r w t m) c ->ErrorT
e (RWST
r w s m) czoom
:: (Monad
m,Monoid
w,Monoid
c,Error
e) =>Traversal'
s t ->ErrorT
e (RWST
r w t m) c ->ErrorT
e (RWST
r w s m) c ...
Instances
Zoom m n s t => Zoom (MaybeT m) (MaybeT n) s t | |
Zoom m n s t => Zoom (ListT m) (ListT n) s t | |
Zoom m n s t => Zoom (IdentityT m) (IdentityT n) s t | |
Zoom m n s t => Zoom (ExceptT e m) (ExceptT e n) s t | |
(Functor f, Zoom m n s t) => Zoom (FreeT f m) (FreeT f n) s t | |
(Error e, Zoom m n s t) => Zoom (ErrorT e m) (ErrorT e n) s t | |
Monad z => Zoom (StateT s z) (StateT t z) s t | |
Monad z => Zoom (StateT s z) (StateT t z) s t | |
(Monoid w, Zoom m n s t) => Zoom (WriterT w m) (WriterT w n) s t | |
(Monoid w, Zoom m n s t) => Zoom (WriterT w m) (WriterT w n) s t | |
Zoom m n s t => Zoom (ReaderT e m) (ReaderT e n) s t | |
(Monoid w, Monad z) => Zoom (RWST r w s z) (RWST r w t z) s t | |
(Monoid w, Monad z) => Zoom (RWST r w s z) (RWST r w t z) s t | |
class (Magnified m ~ Magnified n, MonadReader b m, MonadReader a n) => Magnify (m :: Type -> Type) (n :: Type -> Type) b a | m -> b, n -> a, m a -> n, n b -> m where #
This class allows us to use magnify
part of the environment, changing the environment supplied by
many different Monad
transformers. Unlike zoom
this can change the environment of a deeply nested Monad
transformer.
Also, unlike zoom
, this can be used with any valid Getter
, but cannot be used with a Traversal
or Fold
.
Methods
magnify :: LensLike' (Magnified m c) a b -> m c -> n c infixr 2 #
Run a monadic action in a larger environment than it was defined in, using a Getter
.
This acts like local
, but can in many cases change the type of the environment as well.
This is commonly used to lift actions in a simpler Reader
Monad
into a Monad
with a larger environment type.
This can be used to edit pretty much any Monad
transformer stack with an environment in it:
>>>
(1,2) & magnify _2 (+1)
3
>>>
flip Reader.runReader (1,2) $ magnify _1 Reader.ask
1
>>>
flip Reader.runReader (1,2,[10..20]) $ magnify (_3._tail) Reader.ask
[11,12,13,14,15,16,17,18,19,20]
magnify
::Getter
s a -> (a -> r) -> s -> rmagnify
::Monoid
r =>Fold
s a -> (a -> r) -> s -> r
magnify
::Monoid
w =>Getter
s t ->RWS
t w st c ->RWS
s w st cmagnify
:: (Monoid
w,Monoid
c) =>Fold
s a ->RWS
a w st c ->RWS
s w st c ...
Instances
Magnify m n b a => Magnify (IdentityT m) (IdentityT n) b a | |
Magnify ((->) b :: Type -> Type) ((->) a :: Type -> Type) b a |
|
Defined in Control.Lens.Zoom | |
Monad m => Magnify (ReaderT b m) (ReaderT a m) b a | |
(Monad m, Monoid w) => Magnify (RWST b w s m) (RWST a w s m) b a | |
(Monad m, Monoid w) => Magnify (RWST b w s m) (RWST a w s m) b a | |
alaf :: (Functor f, Functor g, Rewrapping s t) => (Unwrapped s -> s) -> (f t -> g s) -> f (Unwrapped t) -> g (Unwrapped s) #
This combinator is based on ala'
from Conor McBride's work on Epigram.
As with _Wrapping
, the user supplied function for the newtype is ignored.
alaf :: Rewrapping s t => (Unwrapped s -> s) -> ((r -> t) -> e -> s) -> (r -> Unwrapped t) -> e -> Unwrapped s
>>>
alaf Sum foldMap Prelude.length ["hello","world"]
10
ala :: (Functor f, Rewrapping s t) => (Unwrapped s -> s) -> ((Unwrapped t -> t) -> f s) -> f (Unwrapped s) #
This combinator is based on ala
from Conor McBride's work on Epigram.
As with _Wrapping
, the user supplied function for the newtype is ignored.
>>>
ala Sum foldMap [1,2,3,4]
10
>>>
ala All foldMap [True,True]
True
>>>
ala All foldMap [True,False]
False
>>>
ala Any foldMap [False,False]
False
>>>
ala Any foldMap [True,False]
True
>>>
ala Product foldMap [1,2,3,4]
24
You may want to think of this combinator as having the following, simpler, type.
ala :: Rewrapping s t => (Unwrapped s -> s) -> ((Unwrapped t -> t) -> e -> s) -> e -> Unwrapped s
_Unwrapping :: Rewrapping s t => (Unwrapped s -> s) -> Iso (Unwrapped t) (Unwrapped s) t s #
This is a convenient version of _Unwrapped
with an argument that's ignored.
The user supplied function is ignored, merely its types are used.
_Wrapping :: Rewrapping s t => (Unwrapped s -> s) -> Iso s t (Unwrapped s) (Unwrapped t) #
This is a convenient version of _Wrapped
with an argument that's ignored.
The user supplied function is ignored, merely its types are used.
_Unwrapping' :: Wrapped s => (Unwrapped s -> s) -> Iso' (Unwrapped s) s #
This is a convenient version of _Wrapped
with an argument that's ignored.
The user supplied function is ignored, merely its type is used.
_Wrapping' :: Wrapped s => (Unwrapped s -> s) -> Iso' s (Unwrapped s) #
This is a convenient version of _Wrapped
with an argument that's ignored.
The user supplied function is ignored, merely its type is used.
_Unwrapped :: Rewrapping s t => Iso (Unwrapped t) (Unwrapped s) t s #
_Wrapped :: Rewrapping s t => Iso s t (Unwrapped s) (Unwrapped t) #
Work under a newtype wrapper.
>>>
Const "hello" & _Wrapped %~ Prelude.length & getConst
5
_Wrapped
≡from
_Unwrapped
_Unwrapped
≡from
_Wrapped
_Unwrapped' :: Wrapped s => Iso' (Unwrapped s) s #
_GWrapped' :: (Generic s, D1 d (C1 c (S1 s' (Rec0 a))) ~ Rep s, Unwrapped s ~ GUnwrapped (Rep s)) => Iso' s (Unwrapped s) #
Wrapped
provides isomorphisms to wrap and unwrap newtypes or
data types with one constructor.
Minimal complete definition
Nothing
Methods
_Wrapped' :: Iso' s (Unwrapped s) #
An isomorphism between s
and a
.
If your type has a Generic
instance, _Wrapped'
will default to _GWrapped'
,
and you can choose to not override it with your own definition.
Instances
class Wrapped s => Rewrapped s t #
Instances
class (Rewrapped s t, Rewrapped t s) => Rewrapping s t #
Instances
(Rewrapped s t, Rewrapped t s) => Rewrapping s t | |
Defined in Control.Lens.Wrapped |
unsnoc :: Snoc s s a a => s -> Maybe (s, a) #
Attempt to extract the right-most element from a container, and a version of the container without that element.
>>>
unsnoc (LazyT.pack "hello!")
Just ("hello",'!')
>>>
unsnoc (LazyT.pack "")
Nothing
>>>
unsnoc (Seq.fromList [b,c,a])
Just (fromList [b,c],a)
>>>
unsnoc (Seq.fromList [])
Nothing
snoc :: Snoc s s a a => s -> a -> s infixl 5 #
snoc
an element onto the end of a container.
>>>
snoc (Seq.fromList []) a
fromList [a]
>>>
snoc (Seq.fromList [b, c]) a
fromList [b,c,a]
>>>
snoc (LazyT.pack "hello") '!'
"hello!"
_last :: Snoc s s a a => Traversal' s a #
A Traversal
reading and writing to the last element of a non-empty container.
>>>
[a,b,c]^?!_last
c
>>>
[]^?_last
Nothing
>>>
[a,b,c] & _last %~ f
[a,b,f c]
>>>
[1,2]^?_last
Just 2
>>>
[] & _last .~ 1
[]
>>>
[0] & _last .~ 2
[2]
>>>
[0,1] & _last .~ 2
[0,2]
This Traversal
is not limited to lists, however. We can also work with other containers, such as a Vector
.
>>>
Vector.fromList "abcde" ^? _last
Just 'e'
>>>
Vector.empty ^? _last
Nothing
>>>
(Vector.fromList "abcde" & _last .~ 'Q') == Vector.fromList "abcdQ"
True
_last
::Traversal'
[a] a_last
::Traversal'
(Seq
a) a_last
::Traversal'
(Vector
a) a
_init :: Snoc s s a a => Traversal' s s #
A Traversal
reading and replacing all but the a last element of a non-empty container.
>>>
[a,b,c,d]^?_init
Just [a,b,c]
>>>
[]^?_init
Nothing
>>>
[a,b] & _init .~ [c,d,e]
[c,d,e,b]
>>>
[] & _init .~ [a,b]
[]
>>>
[a,b,c,d] & _init.traverse %~ f
[f a,f b,f c,d]
>>>
[1,2,3]^?_init
Just [1,2]
>>>
[1,2,3,4]^?!_init
[1,2,3]
>>>
"hello"^._init
"hell"
>>>
""^._init
""
_init
::Traversal'
[a] [a]_init
::Traversal'
(Seq
a) (Seq
a)_init
::Traversal'
(Vector
a) (Vector
a)
_tail :: Cons s s a a => Traversal' s s #
A Traversal
reading and writing to the tail
of a non-empty container.
>>>
[a,b] & _tail .~ [c,d,e]
[a,c,d,e]
>>>
[] & _tail .~ [a,b]
[]
>>>
[a,b,c,d,e] & _tail.traverse %~ f
[a,f b,f c,f d,f e]
>>>
[1,2] & _tail .~ [3,4,5]
[1,3,4,5]
>>>
[] & _tail .~ [1,2]
[]
>>>
[a,b,c]^?_tail
Just [b,c]
>>>
[1,2]^?!_tail
[2]
>>>
"hello"^._tail
"ello"
>>>
""^._tail
""
This isn't limited to lists. For instance you can also traverse
the tail of a Seq
.
>>>
Seq.fromList [a,b] & _tail .~ Seq.fromList [c,d,e]
fromList [a,c,d,e]
>>>
Seq.fromList [a,b,c] ^? _tail
Just (fromList [b,c])
>>>
Seq.fromList [] ^? _tail
Nothing
_tail
::Traversal'
[a] [a]_tail
::Traversal'
(Seq
a) (Seq
a)_tail
::Traversal'
(Vector
a) (Vector
a)
_head :: Cons s s a a => Traversal' s a #
A Traversal
reading and writing to the head
of a non-empty container.
>>>
[a,b,c]^? _head
Just a
>>>
[a,b,c] & _head .~ d
[d,b,c]
>>>
[a,b,c] & _head %~ f
[f a,b,c]
>>>
[] & _head %~ f
[]
>>>
[1,2,3]^?!_head
1
>>>
[]^?_head
Nothing
>>>
[1,2]^?_head
Just 1
>>>
[] & _head .~ 1
[]
>>>
[0] & _head .~ 2
[2]
>>>
[0,1] & _head .~ 2
[2,1]
This isn't limited to lists.
For instance you can also traverse
the head of a Seq
:
>>>
Seq.fromList [a,b,c,d] & _head %~ f
fromList [f a,b,c,d]
>>>
Seq.fromList [] ^? _head
Nothing
>>>
Seq.fromList [a,b,c,d] ^? _head
Just a
_head
::Traversal'
[a] a_head
::Traversal'
(Seq
a) a_head
::Traversal'
(Vector
a) a
uncons :: Cons s s a a => s -> Maybe (a, s) #
Attempt to extract the left-most element from a container, and a version of the container without that element.
>>>
uncons []
Nothing
>>>
uncons [a, b, c]
Just (a,[b,c])
cons :: Cons s s a a => a -> s -> s infixr 5 #
cons
an element onto a container.
>>>
cons a []
[a]
>>>
cons a [b, c]
[a,b,c]
>>>
cons a (Seq.fromList [])
fromList [a]
>>>
cons a (Seq.fromList [b, c])
fromList [a,b,c]
class Cons s t a b | s -> a, t -> b, s b -> t, t a -> s where #
This class provides a way to attach or detach elements on the left side of a structure in a flexible manner.
Methods
Instances
Cons ByteString ByteString Word8 Word8 | |
Defined in Control.Lens.Cons Methods _Cons :: Prism ByteString ByteString (Word8, ByteString) (Word8, ByteString) # | |
Cons ByteString ByteString Word8 Word8 | |
Defined in Control.Lens.Cons Methods _Cons :: Prism ByteString ByteString (Word8, ByteString) (Word8, ByteString) # | |
Cons Text Text Char Char | |
Cons Text Text Char Char | |
Cons [a] [b] a b | |
Defined in Control.Lens.Cons | |
Cons (ZipList a) (ZipList b) a b | |
Cons (Seq a) (Seq b) a b | |
(Prim a, Prim b) => Cons (Vector a) (Vector b) a b | |
(Storable a, Storable b) => Cons (Vector a) (Vector b) a b | |
(Unbox a, Unbox b) => Cons (Vector a) (Vector b) a b | |
Cons (Vector a) (Vector b) a b | |
class Snoc s t a b | s -> a, t -> b, s b -> t, t a -> s where #
This class provides a way to attach or detach elements on the right side of a structure in a flexible manner.
Methods
Instances
Snoc ByteString ByteString Word8 Word8 | |
Defined in Control.Lens.Cons Methods _Snoc :: Prism ByteString ByteString (ByteString, Word8) (ByteString, Word8) # | |
Snoc ByteString ByteString Word8 Word8 | |
Defined in Control.Lens.Cons Methods _Snoc :: Prism ByteString ByteString (ByteString, Word8) (ByteString, Word8) # | |
Snoc Text Text Char Char | |
Snoc Text Text Char Char | |
Snoc [a] [b] a b | |
Defined in Control.Lens.Cons | |
Snoc (ZipList a) (ZipList b) a b | |
Snoc (Seq a) (Seq b) a b | |
(Prim a, Prim b) => Snoc (Vector a) (Vector b) a b | |
(Storable a, Storable b) => Snoc (Vector a) (Vector b) a b | |
(Unbox a, Unbox b) => Snoc (Vector a) (Vector b) a b | |
Snoc (Vector a) (Vector b) a b | |
Minimal complete definition
Nothing
Instances
coerced :: (Coercible s a, Coercible t b) => Iso s t a b #
Data types that are representationally equal are isomorphic.
This is only available on GHC 7.8+
Since: lens-4.13
seconding :: (Bifunctor f, Bifunctor g) => AnIso s t a b -> Iso (f x s) (g y t) (f x a) (g y b) #
Lift an Iso
into the second argument of a Bifunctor
. This is
essentially the same as mapping
, but it takes a 'Bifunctor p'
constraint instead of a 'Functor (p a)' one.
seconding ::Bifunctor
p =>Iso
s t a b ->Iso
(p x s) (p y t) (p x a) (p y b) seconding ::Bifunctor
p =>Iso'
s a ->Iso'
(p x s) (p x a)
bimapping :: (Bifunctor f, Bifunctor g) => AnIso s t a b -> AnIso s' t' a' b' -> Iso (f s s') (g t t') (f a a') (g b b') #
rmapping :: (Profunctor p, Profunctor q) => AnIso s t a b -> Iso (p x s) (q y t) (p x a) (q y b) #
Lift an Iso
covariantly into the right argument of a Profunctor
.
rmapping ::Profunctor
p =>Iso
s t a b ->Iso
(p x s) (p y t) (p x a) (p y b) rmapping ::Profunctor
p =>Iso'
s a ->Iso'
(p x s) (p x a)
lmapping :: (Profunctor p, Profunctor q) => AnIso s t a b -> Iso (p a x) (q b y) (p s x) (q t y) #
Lift an Iso
contravariantly into the left argument of a Profunctor
.
lmapping ::Profunctor
p =>Iso
s t a b ->Iso
(p a x) (p b y) (p s x) (p t y) lmapping ::Profunctor
p =>Iso'
s a ->Iso'
(p a x) (p s x)
dimapping :: (Profunctor p, Profunctor q) => AnIso s t a b -> AnIso s' t' a' b' -> Iso (p a s') (q b t') (p s a') (q t b') #
Lift two Iso
s into both arguments of a Profunctor
simultaneously.
dimapping ::Profunctor
p =>Iso
s t a b ->Iso
s' t' a' b' ->Iso
(p a s') (p b t') (p s a') (p t b') dimapping ::Profunctor
p =>Iso'
s a ->Iso'
s' a' ->Iso'
(p a s') (p s a')
contramapping :: Contravariant f => AnIso s t a b -> Iso (f a) (f b) (f s) (f t) #
Lift an Iso
into a Contravariant
functor.
contramapping ::Contravariant
f =>Iso
s t a b ->Iso
(f a) (f b) (f s) (f t) contramapping ::Contravariant
f =>Iso'
s a ->Iso'
(f a) (f s)
imagma :: Over (Indexed i) (Molten i a b) s t a b -> Iso s t' (Magma i t b a) (Magma j t' c c) #
This isomorphism can be used to inspect an IndexedTraversal
to see how it associates
the structure and it can also be used to bake the IndexedTraversal
into a Magma
so
that you can traverse over it multiple times with access to the original indices.
reversed :: Reversing a => Iso' a a #
An Iso
between a list, ByteString
, Text
fragment, etc. and its reversal.
>>>
"live" ^. reversed
"evil"
>>>
"live" & reversed %~ ('d':)
"lived"
lazy :: Strict lazy strict => Iso' strict lazy #
An Iso
between the strict variant of a structure and its lazy
counterpart.
lazy
=from
strict
See http://hackage.haskell.org/package/strict-base-types for an example use.
flipped :: Iso (a -> b -> c) (a' -> b' -> c') (b -> a -> c) (b' -> a' -> c') #
The isomorphism for flipping a function.
>>>
((,)^.flipped) 1 2
(2,1)
anon :: a -> (a -> Bool) -> Iso' (Maybe a) a #
generalizes anon
a p
to take any value and a predicate.non
a
This function assumes that p a
holds
and generates an isomorphism between True
and Maybe
(a | not
(p a))a
.
>>>
Map.empty & at "hello" . anon Map.empty Map.null . at "world" ?~ "!!!"
fromList [("hello",fromList [("world","!!!")])]
>>>
fromList [("hello",fromList [("world","!!!")])] & at "hello" . anon Map.empty Map.null . at "world" .~ Nothing
fromList []
non' :: APrism' a () -> Iso' (Maybe a) a #
generalizes non'
p
to take any unit non
(p # ())Prism
This function generates an isomorphism between
and Maybe
(a | isn't
p a)a
.
>>>
Map.singleton "hello" Map.empty & at "hello" . non' _Empty . at "world" ?~ "!!!"
fromList [("hello",fromList [("world","!!!")])]
>>>
fromList [("hello",fromList [("world","!!!")])] & at "hello" . non' _Empty . at "world" .~ Nothing
fromList []
non :: Eq a => a -> Iso' (Maybe a) a #
If v
is an element of a type a
, and a'
is a
sans the element v
, then
is an isomorphism from
non
v
to Maybe
a'a
.
non
≡non'
.
only
Keep in mind this is only a real isomorphism if you treat the domain as being
.Maybe
(a sans v)
This is practically quite useful when you want to have a Map
where all the entries should have non-zero values.
>>>
Map.fromList [("hello",1)] & at "hello" . non 0 +~ 2
fromList [("hello",3)]
>>>
Map.fromList [("hello",1)] & at "hello" . non 0 -~ 1
fromList []
>>>
Map.fromList [("hello",1)] ^. at "hello" . non 0
1
>>>
Map.fromList [] ^. at "hello" . non 0
0
This combinator is also particularly useful when working with nested maps.
e.g. When you want to create the nested Map
when it is missing:
>>>
Map.empty & at "hello" . non Map.empty . at "world" ?~ "!!!"
fromList [("hello",fromList [("world","!!!")])]
and when have deleting the last entry from the nested Map
mean that we
should delete its entry from the surrounding one:
>>>
fromList [("hello",fromList [("world","!!!")])] & at "hello" . non Map.empty . at "world" .~ Nothing
fromList []
It can also be used in reverse to exclude a given value:
>>>
non 0 # rem 10 4
Just 2
>>>
non 0 # rem 10 5
Nothing
enum :: Enum a => Iso' Int a #
This isomorphism can be used to convert to or from an instance of Enum
.
>>>
LT^.from enum
0
>>>
97^.enum :: Char
'a'
Note: this is only an isomorphism from the numeric range actually used
and it is a bit of a pleasant fiction, since there are questionable
Enum
instances for Double
, and Float
that exist solely for
[1.0 .. 4.0]
sugar and the instances for those and Integer
don't
cover all values in their range.
auf :: Optic (Costar f) g s t a b -> (f a -> g b) -> f s -> g t #
Based on ala'
from Conor McBride's work on Epigram.
This version is generalized to accept any Iso
, not just a newtype
.
For a version you pass the name of the newtype
constructor to, see alaf
.
>>>
auf (_Unwrapping Sum) (foldMapOf both) Prelude.length ("hello","world")
10
Mnemonically, the German auf plays a similar role to à la, and the combinator
is au
with an extra function argument:
auf
::Iso
s t a b -> ((r -> a) -> e -> b) -> (r -> s) -> e -> t
but the signature is general.
cloneIso :: AnIso s t a b -> Iso s t a b #
Convert from AnIso
back to any Iso
.
This is useful when you need to store an isomorphism as a data type inside a container and later reconstitute it as an overloaded function.
See cloneLens
or cloneTraversal
for more information on why you might want to do this.
withIso :: AnIso s t a b -> ((s -> a) -> (b -> t) -> r) -> r #
Extract the two functions, one from s -> a
and
one from b -> t
that characterize an Iso
.
type AnIso s t a b = Exchange a b a (Identity b) -> Exchange a b s (Identity t) #
When you see this as an argument to a function, it expects an Iso
.
class Bifunctor p => Swapped (p :: Type -> Type -> Type) where #
This class provides for symmetric bifunctors.
Methods
class Strict lazy strict | lazy -> strict, strict -> lazy where #
Ad hoc conversion between "strict" and "lazy" versions of a structure,
such as Text
or ByteString
.
simply :: (Optic' p f s a -> r) -> Optic' p f s a -> r #
This is an adverb that can be used to modify many other Lens
combinators to make them require
simple lenses, simple traversals, simple prisms or simple isos as input.
fromEq :: AnEquality s t a b -> Equality b a t s #
Equality
is symmetric.
mapEq :: AnEquality s t a b -> f s -> f a #
We can use Equality
to do substitution into anything.
substEq :: AnEquality s t a b -> ((s ~ a) -> (t ~ b) -> r) -> r #
Substituting types with Equality
.
runEq :: AnEquality s t a b -> Identical s t a b #
Extract a witness of type Equality
.
data Identical (a :: k) (b :: k1) (s :: k) (t :: k1) :: forall k k1. k -> k1 -> k -> k1 -> Type where #
Provides witness that (s ~ a, b ~ t)
holds.
type AnEquality (s :: k1) (t :: k2) (a :: k1) (b :: k2) = Identical a (Proxy b) a (Proxy b) -> Identical a (Proxy b) s (Proxy t) #
When you see this as an argument to a function, it expects an Equality
.
type AnEquality' (s :: k2) (a :: k2) = AnEquality s s a a #
A Simple
AnEquality
.
itraverseByOf :: IndexedTraversal i s t a b -> (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> (i -> a -> f b) -> s -> f t #
itraverseBy :: TraversableWithIndex i t => (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> (i -> a -> f b) -> t a -> f (t b) #
ifoldMapByOf :: IndexedFold i t a -> (r -> r -> r) -> r -> (i -> a -> r) -> t -> r #
ifoldMapBy :: FoldableWithIndex i t => (r -> r -> r) -> r -> (i -> a -> r) -> t a -> r #
imapAccumL :: TraversableWithIndex i t => (i -> s -> a -> (s, b)) -> s -> t a -> (s, t b) #
Generalizes mapAccumL
to add access to the index.
imapAccumLOf
accumulates state from left to right.
mapAccumLOf
≡imapAccumL
.
const
imapAccumR :: TraversableWithIndex i t => (i -> s -> a -> (s, b)) -> s -> t a -> (s, t b) #
Generalizes mapAccumR
to add access to the index.
imapAccumROf
accumulates state from right to left.
mapAccumR
≡imapAccumR
.
const
iforM :: (TraversableWithIndex i t, Monad m) => t a -> (i -> a -> m b) -> m (t b) #
imapM :: (TraversableWithIndex i t, Monad m) => (i -> a -> m b) -> t a -> m (t b) #
ifor :: (TraversableWithIndex i t, Applicative f) => t a -> (i -> a -> f b) -> f (t b) #
itoList :: FoldableWithIndex i f => f a -> [(i, a)] #
ifoldlM :: (FoldableWithIndex i f, Monad m) => (i -> b -> a -> m b) -> b -> f a -> m b #
ifoldrM :: (FoldableWithIndex i f, Monad m) => (i -> a -> b -> m b) -> b -> f a -> m b #
ifind :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Maybe (i, a) #
iconcatMap :: FoldableWithIndex i f => (i -> a -> [b]) -> f a -> [b] #
Concatenate the results of a function of the elements of an indexed container with access to the index.
When you don't need access to the index then concatMap
is more flexible in what it accepts.
concatMap
≡iconcatMap
.
const
iconcatMap
≡ifoldMap
iforM_ :: (FoldableWithIndex i t, Monad m) => t a -> (i -> a -> m b) -> m () #
Run monadic actions for each target of an IndexedFold
or IndexedTraversal
with access to the index,
discarding the results (with the arguments flipped).
iforM_
≡flip
imapM_
When you don't need access to the index then forMOf_
is more flexible in what it accepts.
forMOf_
l a ≡iforMOf
l a.
const
imapM_ :: (FoldableWithIndex i t, Monad m) => (i -> a -> m b) -> t a -> m () #
Run monadic actions for each target of an IndexedFold
or IndexedTraversal
with access to the index,
discarding the results.
When you don't need access to the index then mapMOf_
is more flexible in what it accepts.
mapM_
≡imapM
.
const
ifor_ :: (FoldableWithIndex i t, Applicative f) => t a -> (i -> a -> f b) -> f () #
itraverse_ :: (FoldableWithIndex i t, Applicative f) => (i -> a -> f b) -> t a -> f () #
inone :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Bool #
iall :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Bool #
iany :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Bool #
index :: (Indexable i p, Eq i, Applicative f) => i -> Optical' p (Indexed i) f a a #
This allows you to filter an IndexedFold
, IndexedGetter
, IndexedTraversal
or IndexedLens
based on an index.
>>>
["hello","the","world","!!!"]^?traversed.index 2
Just "world"
indices :: (Indexable i p, Applicative f) => (i -> Bool) -> Optical' p (Indexed i) f a a #
This allows you to filter an IndexedFold
, IndexedGetter
, IndexedTraversal
or IndexedLens
based on a predicate
on the indices.
>>>
["hello","the","world","!!!"]^..traversed.indices even
["hello","world"]
>>>
over (traversed.indices (>0)) Prelude.reverse $ ["He","was","stressed","o_O"]
["He","saw","desserts","O_o"]
icompose :: Indexable p c => (i -> j -> p) -> (Indexed i s t -> r) -> (Indexed j a b -> s -> t) -> c a b -> r #
Composition of Indexed
functions with a user supplied function for combining indices.
(<.>) :: Indexable (i, j) p => (Indexed i s t -> r) -> (Indexed j a b -> s -> t) -> p a b -> r infixr 9 #
Composition of Indexed
functions.
Mnemonically, the <
and >
points to the fact that we want to preserve the indices.
>>>
let nestedMap = (fmap Map.fromList . Map.fromList) [(1, [(10, "one,ten"), (20, "one,twenty")]), (2, [(30, "two,thirty"), (40,"two,forty")])]
>>>
nestedMap^..(itraversed<.>itraversed).withIndex
[((1,10),"one,ten"),((1,20),"one,twenty"),((2,30),"two,thirty"),((2,40),"two,forty")]
selfIndex :: Indexable a p => p a fb -> a -> fb #
Use a value itself as its own index. This is essentially an indexed version of id
.
Note: When used to modify the value, this can break the index requirements assumed by indices
and similar,
so this is only properly an IndexedGetter
, but it can be used as more.
selfIndex
::IndexedGetter
a a b
(.>) :: (st -> r) -> (kab -> st) -> kab -> r infixr 9 #
Compose a non-indexed function with an Indexed
function.
Mnemonically, the >
points to the indexing we want to preserve.
This is the same as (
..
)
f
(and .
gf
) gives you the index of .>
gg
unless g
is index-preserving, like a
Prism
, Iso
or Equality
, in which case it'll pass through the index of f
.
>>>
let nestedMap = (fmap Map.fromList . Map.fromList) [(1, [(10, "one,ten"), (20, "one,twenty")]), (2, [(30, "two,thirty"), (40,"two,forty")])]
>>>
nestedMap^..(itraversed.>itraversed).withIndex
[(10,"one,ten"),(20,"one,twenty"),(30,"two,thirty"),(40,"two,forty")]
(<.) :: Indexable i p => (Indexed i s t -> r) -> ((a -> b) -> s -> t) -> p a b -> r infixr 9 #
Compose an Indexed
function with a non-indexed function.
Mnemonically, the <
points to the indexing we want to preserve.
>>>
let nestedMap = (fmap Map.fromList . Map.fromList) [(1, [(10, "one,ten"), (20, "one,twenty")]), (2, [(30, "two,thirty"), (40,"two,forty")])]
>>>
nestedMap^..(itraversed<.itraversed).withIndex
[(1,"one,ten"),(1,"one,twenty"),(2,"two,thirty"),(2,"two,forty")]
class Functor f => FunctorWithIndex i (f :: Type -> Type) | f -> i where #
A Functor
with an additional index.
Instances must satisfy a modified form of the Functor
laws:
imap
f.
imap
g ≡imap
(\i -> f i.
g i)imap
(\_ a -> a) ≡id
Minimal complete definition
Nothing
Methods
imap :: (i -> a -> b) -> f a -> f b #
Map with access to the index.
imapped :: IndexedSetter i (f a) (f b) a b #
The IndexedSetter
for a FunctorWithIndex
.
If you don't need access to the index, then mapped
is more flexible in what it accepts.
Instances
class Foldable f => FoldableWithIndex i (f :: Type -> Type) | f -> i where #
A container that supports folding with an additional index.
Minimal complete definition
Nothing
Methods
ifoldMap :: Monoid m => (i -> a -> m) -> f a -> m #
Fold a container by mapping value to an arbitrary Monoid
with access to the index i
.
When you don't need access to the index then foldMap
is more flexible in what it accepts.
foldMap
≡ifoldMap
.
const
ifolded :: IndexedFold i (f a) a #
The IndexedFold
of a FoldableWithIndex
container.
is a fold over the keys of a ifolded
.
asIndex
FoldableWithIndex
.
>>>
Data.Map.fromList [(2, "hello"), (1, "world")]^..ifolded.asIndex
[1,2]
ifoldr :: (i -> a -> b -> b) -> b -> f a -> b #
Right-associative fold of an indexed container with access to the index i
.
When you don't need access to the index then foldr
is more flexible in what it accepts.
foldr
≡ifoldr
.
const
ifoldl :: (i -> b -> a -> b) -> b -> f a -> b #
Left-associative fold of an indexed container with access to the index i
.
When you don't need access to the index then foldl
is more flexible in what it accepts.
foldl
≡ifoldl
.
const
Instances
FoldableWithIndex Int [] | |
Defined in Control.Lens.Indexed | |
FoldableWithIndex Int ZipList | |
Defined in Control.Lens.Indexed | |
FoldableWithIndex Int NonEmpty | |
Defined in Control.Lens.Indexed | |
FoldableWithIndex Int IntMap | |
Defined in Control.Lens.Indexed | |
FoldableWithIndex Int Seq | |
FoldableWithIndex Int Vector | |
Defined in Control.Lens.Indexed | |
FoldableWithIndex () Maybe | |
FoldableWithIndex () Par1 | |
FoldableWithIndex () Identity | |
Defined in Control.Lens.Indexed | |
FoldableWithIndex k (HashMap k) | |
Defined in Control.Lens.Indexed | |
FoldableWithIndex k (Map k) | |
FoldableWithIndex k ((,) k) | |
Defined in Control.Lens.Indexed | |
FoldableWithIndex i (Level i) | |
Ix i => FoldableWithIndex i (Array i) | |
FoldableWithIndex Void (V1 :: Type -> Type) | |
FoldableWithIndex Void (U1 :: Type -> Type) | |
FoldableWithIndex Void (Proxy :: Type -> Type) | |
Defined in Control.Lens.Indexed | |
FoldableWithIndex () (Tagged a) | |
Defined in Control.Lens.Indexed | |
FoldableWithIndex i f => FoldableWithIndex i (Reverse f) | |
Defined in Control.Lens.Indexed | |
FoldableWithIndex i f => FoldableWithIndex i (Rec1 f) | |
FoldableWithIndex i m => FoldableWithIndex i (IdentityT m) | |
Defined in Control.Lens.Indexed | |
FoldableWithIndex i f => FoldableWithIndex i (Backwards f) | |
Defined in Control.Lens.Indexed | |
FoldableWithIndex i (Magma i t b) | |
Defined in Control.Lens.Indexed Methods ifoldMap :: Monoid m => (i -> a -> m) -> Magma i t b a -> m # ifolded :: IndexedFold i (Magma i t b a) a # ifoldr :: (i -> a -> b0 -> b0) -> b0 -> Magma i t b a -> b0 # ifoldl :: (i -> b0 -> a -> b0) -> b0 -> Magma i t b a -> b0 # ifoldr' :: (i -> a -> b0 -> b0) -> b0 -> Magma i t b a -> b0 # ifoldl' :: (i -> b0 -> a -> b0) -> b0 -> Magma i t b a -> b0 # | |
FoldableWithIndex Void (K1 i c :: Type -> Type) | |
Defined in Control.Lens.Indexed | |
FoldableWithIndex [Int] Tree | |
Defined in Control.Lens.Indexed | |
FoldableWithIndex i f => FoldableWithIndex [i] (Free f) | |
Defined in Control.Lens.Indexed | |
FoldableWithIndex i f => FoldableWithIndex [i] (Cofree f) | |
Defined in Control.Lens.Indexed | |
(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (Either i j) (Sum f g) | |
Defined in Control.Lens.Indexed Methods ifoldMap :: Monoid m => (Either i j -> a -> m) -> Sum f g a -> m # ifolded :: IndexedFold (Either i j) (Sum f g a) a # ifoldr :: (Either i j -> a -> b -> b) -> b -> Sum f g a -> b # ifoldl :: (Either i j -> b -> a -> b) -> b -> Sum f g a -> b # ifoldr' :: (Either i j -> a -> b -> b) -> b -> Sum f g a -> b # ifoldl' :: (Either i j -> b -> a -> b) -> b -> Sum f g a -> b # | |
(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (Either i j) (Product f g) | |
Defined in Control.Lens.Indexed Methods ifoldMap :: Monoid m => (Either i j -> a -> m) -> Product f g a -> m # ifolded :: IndexedFold (Either i j) (Product f g a) a # ifoldr :: (Either i j -> a -> b -> b) -> b -> Product f g a -> b # ifoldl :: (Either i j -> b -> a -> b) -> b -> Product f g a -> b # ifoldr' :: (Either i j -> a -> b -> b) -> b -> Product f g a -> b # ifoldl' :: (Either i j -> b -> a -> b) -> b -> Product f g a -> b # | |
(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (Either i j) (f :+: g) | |
Defined in Control.Lens.Indexed Methods ifoldMap :: Monoid m => (Either i j -> a -> m) -> (f :+: g) a -> m # ifolded :: IndexedFold (Either i j) ((f :+: g) a) a # ifoldr :: (Either i j -> a -> b -> b) -> b -> (f :+: g) a -> b # ifoldl :: (Either i j -> b -> a -> b) -> b -> (f :+: g) a -> b # ifoldr' :: (Either i j -> a -> b -> b) -> b -> (f :+: g) a -> b # ifoldl' :: (Either i j -> b -> a -> b) -> b -> (f :+: g) a -> b # | |
(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (Either i j) (f :*: g) | |
Defined in Control.Lens.Indexed Methods ifoldMap :: Monoid m => (Either i j -> a -> m) -> (f :*: g) a -> m # ifolded :: IndexedFold (Either i j) ((f :*: g) a) a # ifoldr :: (Either i j -> a -> b -> b) -> b -> (f :*: g) a -> b # ifoldl :: (Either i j -> b -> a -> b) -> b -> (f :*: g) a -> b # ifoldr' :: (Either i j -> a -> b -> b) -> b -> (f :*: g) a -> b # ifoldl' :: (Either i j -> b -> a -> b) -> b -> (f :*: g) a -> b # | |
(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (i, j) (Compose f g) | |
Defined in Control.Lens.Indexed Methods ifoldMap :: Monoid m => ((i, j) -> a -> m) -> Compose f g a -> m # ifolded :: IndexedFold (i, j) (Compose f g a) a # ifoldr :: ((i, j) -> a -> b -> b) -> b -> Compose f g a -> b # ifoldl :: ((i, j) -> b -> a -> b) -> b -> Compose f g a -> b # ifoldr' :: ((i, j) -> a -> b -> b) -> b -> Compose f g a -> b # ifoldl' :: ((i, j) -> b -> a -> b) -> b -> Compose f g a -> b # | |
(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (i, j) (f :.: g) | |
Defined in Control.Lens.Indexed Methods ifoldMap :: Monoid m => ((i, j) -> a -> m) -> (f :.: g) a -> m # ifolded :: IndexedFold (i, j) ((f :.: g) a) a # ifoldr :: ((i, j) -> a -> b -> b) -> b -> (f :.: g) a -> b # ifoldl :: ((i, j) -> b -> a -> b) -> b -> (f :.: g) a -> b # ifoldr' :: ((i, j) -> a -> b -> b) -> b -> (f :.: g) a -> b # ifoldl' :: ((i, j) -> b -> a -> b) -> b -> (f :.: g) a -> b # |
class (FunctorWithIndex i t, FoldableWithIndex i t, Traversable t) => TraversableWithIndex i (t :: Type -> Type) | t -> i where #
A Traversable
with an additional index.
An instance must satisfy a (modified) form of the Traversable
laws:
itraverse
(const
Identity
) ≡Identity
fmap
(itraverse
f).
itraverse
g ≡getCompose
.
itraverse
(\i ->Compose
.
fmap
(f i).
g i)
Minimal complete definition
Nothing
Methods
itraverse :: Applicative f => (i -> a -> f b) -> t a -> f (t b) #
Traverse an indexed container.
itraverse
≡itraverseOf
itraversed
itraversed :: IndexedTraversal i (t a) (t b) a b #
The IndexedTraversal
of a TraversableWithIndex
container.
Instances
newtype ReifiedLens s t a b #
Reify a ReifiedLens
so it can be stored safely in a container.
type ReifiedLens' s a = ReifiedLens s s a a #
typeReifiedLens'
=Simple
ReifiedLens
newtype ReifiedIndexedLens i s t a b #
Reify an ReifiedIndexedLens
so it can be stored safely in a container.
Constructors
IndexedLens | |
Fields
|
type ReifiedIndexedLens' i s a = ReifiedIndexedLens i s s a a #
typeReifiedIndexedLens'
i =Simple
(ReifiedIndexedLens
i)
newtype ReifiedIndexedTraversal i s t a b #
Reify an ReifiedIndexedTraversal
so it can be stored safely in a container.
Constructors
IndexedTraversal | |
Fields
|
type ReifiedIndexedTraversal' i s a = ReifiedIndexedTraversal i s s a a #
typeReifiedIndexedTraversal'
i =Simple
(ReifiedIndexedTraversal
i)
newtype ReifiedTraversal s t a b #
A form of ReifiedTraversal
that can be stored monomorphically in a container.
Constructors
Traversal | |
Fields
|
type ReifiedTraversal' s a = ReifiedTraversal s s a a #
newtype ReifiedGetter s a #
Reify a ReifiedGetter
so it can be stored safely in a container.
This can also be useful when combining getters in novel ways, as
ReifiedGetter
is isomorphic to '(->)' and provides similar instances.
>>>
("hello","world","!!!")^.runGetter ((,) <$> Getter _2 <*> Getter (_1.to length))
("world",5)
Instances
newtype ReifiedIndexedGetter i s a #
Reify an ReifiedIndexedGetter
so it can be stored safely in a container.
Constructors
IndexedGetter | |
Fields
|
Instances
newtype ReifiedFold s a #
Reify a ReifiedFold
so it can be stored safely in a container.
This can also be useful for creatively combining folds as
is isomorphic to ReifiedFold
sReaderT s []
and provides similar
instances.
>>>
("hello","world")^..runFold ((,) <$> Fold _2 <*> Fold both)
[("world","hello"),("world","world")]
Instances
newtype ReifiedIndexedFold i s a #
Constructors
IndexedFold | |
Fields
|
Instances
newtype ReifiedSetter s t a b #
Reify a ReifiedSetter
so it can be stored safely in a container.
type ReifiedSetter' s a = ReifiedSetter s s a a #
typeReifiedSetter'
=Simple
ReifiedSetter
newtype ReifiedIndexedSetter i s t a b #
Reify an ReifiedIndexedSetter
so it can be stored safely in a container.
Constructors
IndexedSetter | |
Fields
|
type ReifiedIndexedSetter' i s a = ReifiedIndexedSetter i s s a a #
typeReifiedIndexedSetter'
i =Simple
(ReifiedIndexedSetter
i)
newtype ReifiedIso s t a b #
Reify an ReifiedIso
so it can be stored safely in a container.
type ReifiedIso' s a = ReifiedIso s s a a #
typeReifiedIso'
=Simple
ReifiedIso
newtype ReifiedPrism s t a b #
Reify a ReifiedPrism
so it can be stored safely in a container.
type ReifiedPrism' s a = ReifiedPrism s s a a #
typeReifiedPrism'
=Simple
ReifiedPrism
ilevels :: Applicative f => Traversing (Indexed i) f s t a b -> IndexedLensLike Int f s t (Level i a) (Level j b) #
This provides a breadth-first Traversal
or Fold
of the individual
levels of any other Traversal
or Fold
via iterative deepening depth-first
search. The levels are returned to you in a compressed format.
This is similar to levels
, but retains the index of the original IndexedTraversal
, so you can
access it when traversing the levels later on.
>>>
["dog","cat"]^@..ilevels (traversed<.>traversed).itraversed
[((0,0),'d'),((0,1),'o'),((1,0),'c'),((0,2),'g'),((1,1),'a'),((1,2),'t')]
The resulting Traversal
of the levels which is indexed by the depth of each Level
.
>>>
["dog","cat"]^@..ilevels (traversed<.>traversed)<.>itraversed
[((2,(0,0)),'d'),((3,(0,1)),'o'),((3,(1,0)),'c'),((4,(0,2)),'g'),((4,(1,1)),'a'),((5,(1,2)),'t')]
ilevels
::IndexedTraversal
i s t a b ->IndexedTraversal
Int
s t (Level
i a) (Level
i b)ilevels
::IndexedFold
i s a ->IndexedFold
Int
s (Level
i a)
Note: Internally this is implemented by using an illegal Applicative
, as it extracts information
in an order that violates the Applicative
laws.
levels :: Applicative f => Traversing ((->) :: Type -> Type -> Type) f s t a b -> IndexedLensLike Int f s t (Level () a) (Level () b) #
This provides a breadth-first Traversal
or Fold
of the individual
levels
of any other Traversal
or Fold
via iterative deepening
depth-first search. The levels are returned to you in a compressed format.
This can permit us to extract the levels
directly:
>>>
["hello","world"]^..levels (traverse.traverse)
[Zero,Zero,One () 'h',Two 0 (One () 'e') (One () 'w'),Two 0 (One () 'l') (One () 'o'),Two 0 (One () 'l') (One () 'r'),Two 0 (One () 'o') (One () 'l'),One () 'd']
But we can also traverse them in turn:
>>>
["hello","world"]^..levels (traverse.traverse).traverse
"hewlolrold"
We can use this to traverse to a fixed depth in the tree of (<*>
) used in the Traversal
:
>>>
["hello","world"] & taking 4 (levels (traverse.traverse)).traverse %~ toUpper
["HEllo","World"]
Or we can use it to traverse the first n
elements in found in that Traversal
regardless of the depth
at which they were found.
>>>
["hello","world"] & taking 4 (levels (traverse.traverse).traverse) %~ toUpper
["HELlo","World"]
The resulting Traversal
of the levels
which is indexed by the depth of each Level
.
>>>
["dog","cat"]^@..levels (traverse.traverse) <. traverse
[(2,'d'),(3,'o'),(3,'c'),(4,'g'),(4,'a'),(5,'t')]
levels
::Traversal
s t a b ->IndexedTraversal
Int
s t (Level
() a) (Level
() b)levels
::Fold
s a ->IndexedFold
Int
s (Level
() a)
Note: Internally this is implemented by using an illegal Applicative
, as it extracts information
in an order that violates the Applicative
laws.
sequenceByOf :: Traversal s t (f b) b -> (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> s -> f t #
Sequence a container using a specified Applicative
.
This is like traverseBy
where the Traversable
instance can be specified by any Traversal
sequenceByOf
traverse
≡sequenceBy
traverseByOf :: Traversal s t a b -> (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> (a -> f b) -> s -> f t #
Traverse a container using a specified Applicative
.
This is like traverseBy
where the Traversable
instance can be specified by any Traversal
traverseByOf
traverse
≡traverseBy
confusing :: Applicative f => LensLike (Curried (Yoneda f) (Yoneda f)) s t a b -> LensLike f s t a b #
Fuse a Traversal
by reassociating all of the (
operations to the
left and fusing all of the <*>
)fmap
calls into one. This is particularly
useful when constructing a Traversal
using operations from GHC.Generics.
Given a pair of Traversal
s foo
and bar
,
confusing
(foo.bar) = foo.bar
However, foo
and bar
are each going to use the Applicative
they are given.
confusing
exploits the Yoneda
lemma to merge their separate uses of fmap
into a single fmap
.
and it further exploits an interesting property of the right Kan lift (or Curried
) to left associate
all of the uses of (
to make it possible to fuse together more fmaps.<*>
)
This is particularly effective when the choice of functor f
is unknown at compile
time or when the Traversal
foo.bar
in the above description is recursive or complex
enough to prevent inlining.
fusing
is a version of this combinator suitable for fusing lenses.
confusing
::Traversal
s t a b ->Traversal
s t a b
deepOf :: (Conjoined p, Applicative f) => LensLike f s t s t -> Traversing p f s t a b -> Over p f s t a b #
Try the second traversal. If it returns no entries, try again with all entries from the first traversal, recursively.
deepOf
::Fold
s s ->Fold
s a ->Fold
s adeepOf
::Traversal'
s s ->Traversal'
s a ->Traversal'
s adeepOf
::Traversal
s t s t ->Traversal
s t a b ->Traversal
s t a bdeepOf
::Fold
s s ->IndexedFold
i s a ->IndexedFold
i s adeepOf
::Traversal
s t s t ->IndexedTraversal
i s t a b ->IndexedTraversal
i s t a b
failing :: (Conjoined p, Applicative f) => Traversing p f s t a b -> Over p f s t a b -> Over p f s t a b infixl 5 #
Try the first Traversal
(or Fold
), falling back on the second Traversal
(or Fold
) if it returns no entries.
This is only a valid Traversal
if the second Traversal
is disjoint from the result of the first or returns
exactly the same results. These conditions are trivially met when given a Lens
, Iso
, Getter
, Prism
or "affine" Traversal -- one that
has 0 or 1 target.
Mutatis mutandis for Fold
.
>>>
[0,1,2,3] ^? failing (ix 1) (ix 2)
Just 1
>>>
[0,1,2,3] ^? failing (ix 42) (ix 2)
Just 2
failing
::Traversal
s t a b ->Traversal
s t a b ->Traversal
s t a bfailing
::Prism
s t a b ->Prism
s t a b ->Traversal
s t a bfailing
::Fold
s a ->Fold
s a ->Fold
s a
These cases are also supported, trivially, but are boring, because the left hand side always succeeds.
failing
::Lens
s t a b ->Traversal
s t a b ->Traversal
s t a bfailing
::Iso
s t a b ->Traversal
s t a b ->Traversal
s t a bfailing
::Equality
s t a b ->Traversal
s t a b ->Traversal
s t a bfailing
::Getter
s a ->Fold
s a ->Fold
s a
If both of the inputs are indexed, the result is also indexed, so you can apply this to a pair of indexed traversals or indexed folds, obtaining an indexed traversal or indexed fold.
failing
::IndexedTraversal
i s t a b ->IndexedTraversal
i s t a b ->IndexedTraversal
i s t a bfailing
::IndexedFold
i s a ->IndexedFold
i s a ->IndexedFold
i s a
These cases are also supported, trivially, but are boring, because the left hand side always succeeds.
failing
::IndexedLens
i s t a b ->IndexedTraversal
i s t a b ->IndexedTraversal
i s t a bfailing
::IndexedGetter
i s a ->IndexedGetter
i s a ->IndexedFold
i s a
ifailover :: Alternative m => Over (Indexed i) ((,) Any) s t a b -> (i -> a -> b) -> s -> m t #
Try to map a function which uses the index over this IndexedTraversal
, failing if the IndexedTraversal
has no targets.
ifailover
:: Alternative m => IndexedTraversal i s t a b -> (i -> a -> b) -> s -> m t
failover :: Alternative m => LensLike ((,) Any) s t a b -> (a -> b) -> s -> m t #
Try to map a function over this Traversal
, failing if the Traversal
has no targets.
>>>
failover (element 3) (*2) [1,2] :: Maybe [Int]
Nothing
>>>
failover _Left (*2) (Right 4) :: Maybe (Either Int Int)
Nothing
>>>
failover _Right (*2) (Right 4) :: Maybe (Either Int Int)
Just (Right 8)
failover
:: Alternative m => Traversal s t a b -> (a -> b) -> s -> m t
elements :: Traversable t => (Int -> Bool) -> IndexedTraversal' Int (t a) a #
Traverse elements of a Traversable
container where their ordinal positions match a predicate.
elements
≡elementsOf
traverse
elementsOf :: Applicative f => LensLike (Indexing f) s t a a -> (Int -> Bool) -> IndexedLensLike Int f s t a a #
Traverse (or fold) selected elements of a Traversal
(or Fold
) where their ordinal positions match a predicate.
elementsOf
::Traversal'
s a -> (Int
->Bool
) ->IndexedTraversal'
Int
s aelementsOf
::Fold
s a -> (Int
->Bool
) ->IndexedFold
Int
s a
element :: Traversable t => Int -> IndexedTraversal' Int (t a) a #
Traverse the nth element of a Traversable
container.
element
≡elementOf
traverse
elementOf :: Applicative f => LensLike (Indexing f) s t a a -> Int -> IndexedLensLike Int f s t a a #
Traverse the nth elementOf
a Traversal
, Lens
or
Iso
if it exists.
>>>
[[1],[3,4]] & elementOf (traverse.traverse) 1 .~ 5
[[1],[5,4]]
>>>
[[1],[3,4]] ^? elementOf (folded.folded) 1
Just 3
>>>
timingOut $ ['a'..] ^?! elementOf folded 5
'f'
>>>
timingOut $ take 10 $ elementOf traverse 3 .~ 16 $ [0..]
[0,1,2,16,4,5,6,7,8,9]
elementOf
::Traversal'
s a ->Int
->IndexedTraversal'
Int
s aelementOf
::Fold
s a ->Int
->IndexedFold
Int
s a
ignored :: Applicative f => pafb -> s -> f s #
traversed64 :: Traversable f => IndexedTraversal Int64 (f a) (f b) a b #
Traverse any Traversable
container. This is an IndexedTraversal
that is indexed by ordinal position.
traversed1 :: Traversable1 f => IndexedTraversal1 Int (f a) (f b) a b #
Traverse any Traversable1
container. This is an IndexedTraversal1
that is indexed by ordinal position.
traversed :: Traversable f => IndexedTraversal Int (f a) (f b) a b #
Traverse any Traversable
container. This is an IndexedTraversal
that is indexed by ordinal position.
imapAccumLOf :: Over (Indexed i) (State acc) s t a b -> (i -> acc -> a -> (acc, b)) -> acc -> s -> (acc, t) #
Generalizes mapAccumL
to an arbitrary IndexedTraversal
with access to the index.
imapAccumLOf
accumulates state from left to right.
mapAccumLOf
l ≡imapAccumLOf
l.
const
imapAccumLOf
::IndexedLens
i s t a b -> (i -> acc -> a -> (acc, b)) -> acc -> s -> (acc, t)imapAccumLOf
::IndexedTraversal
i s t a b -> (i -> acc -> a -> (acc, b)) -> acc -> s -> (acc, t)
imapAccumROf :: Over (Indexed i) (Backwards (State acc)) s t a b -> (i -> acc -> a -> (acc, b)) -> acc -> s -> (acc, t) #
Generalizes mapAccumR
to an arbitrary IndexedTraversal
with access to the index.
imapAccumROf
accumulates state from right to left.
mapAccumROf
l ≡imapAccumROf
l.
const
imapAccumROf
::IndexedLens
i s t a b -> (i -> acc -> a -> (acc, b)) -> acc -> s -> (acc, t)imapAccumROf
::IndexedTraversal
i s t a b -> (i -> acc -> a -> (acc, b)) -> acc -> s -> (acc, t)
iforMOf :: (Indexed i a (WrappedMonad m b) -> s -> WrappedMonad m t) -> s -> (i -> a -> m b) -> m t #
Map each element of a structure targeted by a Lens
to a monadic action,
evaluate these actions from left to right, and collect the results, with access
its position (and the arguments flipped).
forMOf
l a ≡iforMOf
l a.
const
iforMOf
≡flip
.
imapMOf
iforMOf
::Monad
m =>IndexedLens
i s t a b -> s -> (i -> a -> m b) -> m tiforMOf
::Monad
m =>IndexedTraversal
i s t a b -> s -> (i -> a -> m b) -> m t
imapMOf :: Over (Indexed i) (WrappedMonad m) s t a b -> (i -> a -> m b) -> s -> m t #
Map each element of a structure targeted by a Lens
to a monadic action,
evaluate these actions from left to right, and collect the results, with access
its position.
When you don't need access to the index mapMOf
is more liberal in what it can accept.
mapMOf
l ≡imapMOf
l.
const
imapMOf
::Monad
m =>IndexedLens
i s t a b -> (i -> a -> m b) -> s -> m timapMOf
::Monad
m =>IndexedTraversal
i s t a b -> (i -> a -> m b) -> s -> m timapMOf
::Bind
m =>IndexedTraversal1
i s t a b -> (i -> a -> m b) -> s -> m t
iforOf :: (Indexed i a (f b) -> s -> f t) -> s -> (i -> a -> f b) -> f t #
Traverse with an index (and the arguments flipped).
forOf
l a ≡iforOf
l a.
const
iforOf
≡flip
.
itraverseOf
iforOf
::Functor
f =>IndexedLens
i s t a b -> s -> (i -> a -> f b) -> f tiforOf
::Applicative
f =>IndexedTraversal
i s t a b -> s -> (i -> a -> f b) -> f tiforOf
::Apply
f =>IndexedTraversal1
i s t a b -> s -> (i -> a -> f b) -> f t
itraverseOf :: (Indexed i a (f b) -> s -> f t) -> (i -> a -> f b) -> s -> f t #
Traversal with an index.
NB: When you don't need access to the index then you can just apply your IndexedTraversal
directly as a function!
itraverseOf
≡withIndex
traverseOf
l =itraverseOf
l.
const
=id
itraverseOf
::Functor
f =>IndexedLens
i s t a b -> (i -> a -> f b) -> s -> f titraverseOf
::Applicative
f =>IndexedTraversal
i s t a b -> (i -> a -> f b) -> s -> f titraverseOf
::Apply
f =>IndexedTraversal1
i s t a b -> (i -> a -> f b) -> s -> f t
cloneIndexedTraversal1 :: AnIndexedTraversal1 i s t a b -> IndexedTraversal1 i s t a b #
Clone an IndexedTraversal1
yielding an IndexedTraversal1
with the same index.
cloneIndexPreservingTraversal1 :: ATraversal1 s t a b -> IndexPreservingTraversal1 s t a b #
Clone a Traversal1
yielding an IndexPreservingTraversal1
that passes through
whatever index it is composed with.
cloneTraversal1 :: ATraversal1 s t a b -> Traversal1 s t a b #
A Traversal1
is completely characterized by its behavior on a Bazaar1
.
cloneIndexedTraversal :: AnIndexedTraversal i s t a b -> IndexedTraversal i s t a b #
Clone an IndexedTraversal
yielding an IndexedTraversal
with the same index.
cloneIndexPreservingTraversal :: ATraversal s t a b -> IndexPreservingTraversal s t a b #
Clone a Traversal
yielding an IndexPreservingTraversal
that passes through
whatever index it is composed with.
cloneTraversal :: ATraversal s t a b -> Traversal s t a b #
A Traversal
is completely characterized by its behavior on a Bazaar
.
Cloning a Traversal
is one way to make sure you aren't given
something weaker, such as a Fold
and can be
used as a way to pass around traversals that have to be monomorphic in f
.
Note: This only accepts a proper Traversal
(or Lens
). To clone a Lens
as such, use cloneLens
.
Note: It is usually better to use ReifiedTraversal
and
runTraversal
than to cloneTraversal
. The
former can execute at full speed, while the latter needs to round trip through
the Bazaar
.
>>>
let foo l a = (view (getting (cloneTraversal l)) a, set (cloneTraversal l) 10 a)
>>>
foo both ("hello","world")
("helloworld",(10,10))
cloneTraversal
::LensLike
(Bazaar
(->) a b) s t a b ->Traversal
s t a b
dropping :: (Conjoined p, Applicative f) => Int -> Over p (Indexing f) s t a a -> Over p f s t a a #
Visit all but the first n targets of a Traversal
, Fold
, Getter
or Lens
.
>>>
("hello","world") ^? dropping 1 both
Just "world"
Dropping works on infinite traversals as well:
>>>
[1..] ^? dropping 1 folded
Just 2
dropping
::Int
->Traversal'
s a ->Traversal'
s adropping
::Int
->Lens'
s a ->Traversal'
s adropping
::Int
->Iso'
s a ->Traversal'
s adropping
::Int
->Prism'
s a ->Traversal'
s adropping
::Int
->Getter
s a ->Fold
s adropping
::Int
->Fold
s a ->Fold
s adropping
::Int
->IndexedTraversal'
i s a ->IndexedTraversal'
i s adropping
::Int
->IndexedLens'
i s a ->IndexedTraversal'
i s adropping
::Int
->IndexedGetter
i s a ->IndexedFold
i s adropping
::Int
->IndexedFold
i s a ->IndexedFold
i s a
taking :: (Conjoined p, Applicative f) => Int -> Traversing p f s t a a -> Over p f s t a a #
Visit the first n targets of a Traversal
, Fold
, Getter
or Lens
.
>>>
[("hello","world"),("!!!","!!!")]^.. taking 2 (traverse.both)
["hello","world"]
>>>
timingOut $ [1..] ^.. taking 3 traverse
[1,2,3]
>>>
over (taking 5 traverse) succ "hello world"
"ifmmp world"
taking
::Int
->Traversal'
s a ->Traversal'
s ataking
::Int
->Lens'
s a ->Traversal'
s ataking
::Int
->Iso'
s a ->Traversal'
s ataking
::Int
->Prism'
s a ->Traversal'
s ataking
::Int
->Getter
s a ->Fold
s ataking
::Int
->Fold
s a ->Fold
s ataking
::Int
->IndexedTraversal'
i s a ->IndexedTraversal'
i s ataking
::Int
->IndexedLens'
i s a ->IndexedTraversal'
i s ataking
::Int
->IndexedGetter
i s a ->IndexedFold
i s ataking
::Int
->IndexedFold
i s a ->IndexedFold
i s a
beside :: (Representable q, Applicative (Rep q), Applicative f, Bitraversable r) => Optical p q f s t a b -> Optical p q f s' t' a b -> Optical p q f (r s s') (r t t') a b #
Apply a different Traversal
or Fold
to each side of a Bitraversable
container.
beside
::Traversal
s t a b ->Traversal
s' t' a b ->Traversal
(r s s') (r t t') a bbeside
::IndexedTraversal
i s t a b ->IndexedTraversal
i s' t' a b ->IndexedTraversal
i (r s s') (r t t') a bbeside
::IndexPreservingTraversal
s t a b ->IndexPreservingTraversal
s' t' a b ->IndexPreservingTraversal
(r s s') (r t t') a b
beside
::Traversal
s t a b ->Traversal
s' t' a b ->Traversal
(s,s') (t,t') a bbeside
::Lens
s t a b ->Lens
s' t' a b ->Traversal
(s,s') (t,t') a bbeside
::Fold
s a ->Fold
s' a ->Fold
(s,s') abeside
::Getter
s a ->Getter
s' a ->Fold
(s,s') a
beside
::IndexedTraversal
i s t a b ->IndexedTraversal
i s' t' a b ->IndexedTraversal
i (s,s') (t,t') a bbeside
::IndexedLens
i s t a b ->IndexedLens
i s' t' a b ->IndexedTraversal
i (s,s') (t,t') a bbeside
::IndexedFold
i s a ->IndexedFold
i s' a ->IndexedFold
i (s,s') abeside
::IndexedGetter
i s a ->IndexedGetter
i s' a ->IndexedFold
i (s,s') a
beside
::IndexPreservingTraversal
s t a b ->IndexPreservingTraversal
s' t' a b ->IndexPreservingTraversal
(s,s') (t,t') a bbeside
::IndexPreservingLens
s t a b ->IndexPreservingLens
s' t' a b ->IndexPreservingTraversal
(s,s') (t,t') a bbeside
::IndexPreservingFold
s a ->IndexPreservingFold
s' a ->IndexPreservingFold
(s,s') abeside
::IndexPreservingGetter
s a ->IndexPreservingGetter
s' a ->IndexPreservingFold
(s,s') a
>>>
("hello",["world","!!!"])^..beside id traverse
["hello","world","!!!"]
both1 :: Bitraversable1 r => Traversal1 (r a a) (r b b) a b #
Traverse both parts of a Bitraversable1
container with matching types.
Usually that type will be a pair.
both1
::Traversal1
(a, a) (b, b) a bboth1
::Traversal1
(Either
a a) (Either
b b) a b
both :: Bitraversable r => Traversal (r a a) (r b b) a b #
Traverse both parts of a Bitraversable
container with matching types.
Usually that type will be a pair.
>>>
(1,2) & both *~ 10
(10,20)
>>>
over both length ("hello","world")
(5,5)
>>>
("hello","world")^.both
"helloworld"
both
::Traversal
(a, a) (b, b) a bboth
::Traversal
(Either
a a) (Either
b b) a b
holes1Of :: Conjoined p => Over p (Bazaar1 p a a) s t a a -> s -> NonEmpty (Pretext p a a t) #
The non-empty version of holesOf
.
This extract a non-empty list of immediate children accroding to a given
Traversal1
as editable contexts.
>>>
let head1 f s = runPretext (NonEmpty.head $ holes1Of traversed1 s) f
>>>
('a' :| "bc") ^. head1
'a'
>>>
('a' :| "bc") & head1 %~ toUpper
'A' :| "bc"
holes1Of
::Iso'
s a -> s ->NonEmpty
(Pretext'
(->) a s)holes1Of
::Lens'
s a -> s ->NonEmpty
(Pretext'
(->) a s)holes1Of
::Traversal1'
s a -> s ->NonEmpty
(Pretext'
(->) a s)holes1Of
::IndexedLens'
i s a -> s ->NonEmpty
(Pretext'
(Indexed
i) a s)holes1Of
::IndexedTraversal1'
i s a -> s ->NonEmpty
(Pretext'
(Indexed
i) a s)
holesOf :: Conjoined p => Over p (Bazaar p a a) s t a a -> s -> [Pretext p a a t] #
The one-level version of contextsOf
. This extracts a
list of the immediate children according to a given Traversal
as editable
contexts.
Given a context you can use pos
to see the
values, peek
at what the structure would be
like with an edited result, or simply extract
the original structure.
propChildren l x =toListOf
l x==
map
pos
(holesOf
l x) propId l x =all
(==
x) [extract
w | w <-holesOf
l x]
holesOf
::Iso'
s a -> s -> [Pretext'
(->) a s]holesOf
::Lens'
s a -> s -> [Pretext'
(->) a s]holesOf
::Traversal'
s a -> s -> [Pretext'
(->) a s]holesOf
::IndexedLens'
i s a -> s -> [Pretext'
(Indexed
i) a s]holesOf
::IndexedTraversal'
i s a -> s -> [Pretext'
(Indexed
i) a s]
unsafeSingular :: (HasCallStack, Conjoined p, Functor f) => Traversing p f s t a b -> Over p f s t a b #
This converts a Traversal
that you "know" will target only one element to a Lens
. It can also be
used to transform a Fold
into a Getter
.
The resulting Lens
or Getter
will be partial if the Traversal
targets nothing
or more than one element.
>>>
Left (ErrorCall "unsafeSingular: empty traversal") <- try (evaluate ([] & unsafeSingular traverse .~ 0)) :: IO (Either ErrorCall [Integer])
unsafeSingular
::Traversal
s t a b ->Lens
s t a bunsafeSingular
::Fold
s a ->Getter
s aunsafeSingular
::IndexedTraversal
i s t a b ->IndexedLens
i s t a bunsafeSingular
::IndexedFold
i s a ->IndexedGetter
i s a
singular :: (HasCallStack, Conjoined p, Functor f) => Traversing p f s t a a -> Over p f s t a a #
This converts a Traversal
that you "know" will target one or more elements to a Lens
. It can
also be used to transform a non-empty Fold
into a Getter
.
The resulting Lens
or Getter
will be partial if the supplied Traversal
returns
no results.
>>>
[1,2,3] ^. singular _head
1
>>>
Left (ErrorCall "singular: empty traversal") <- try (evaluate ([] ^. singular _head)) :: IO (Either ErrorCall ())
>>>
Left 4 ^. singular _Left
4
>>>
[1..10] ^. singular (ix 7)
8
>>>
[] & singular traverse .~ 0
[]
singular
::Traversal
s t a a ->Lens
s t a asingular
::Fold
s a ->Getter
s asingular
::IndexedTraversal
i s t a a ->IndexedLens
i s t a asingular
::IndexedFold
i s a ->IndexedGetter
i s a
iunsafePartsOf' :: Over (Indexed i) (Bazaar (Indexed i) a b) s t a b -> IndexedLens [i] s t [a] [b] #
unsafePartsOf' :: ATraversal s t a b -> Lens s t [a] [b] #
iunsafePartsOf :: (Indexable [i] p, Functor f) => Traversing (Indexed i) f s t a b -> Over p f s t [a] [b] #
An indexed version of unsafePartsOf
that receives the entire list of indices as its index.
unsafePartsOf :: Functor f => Traversing ((->) :: Type -> Type -> Type) f s t a b -> LensLike f s t [a] [b] #
unsafePartsOf
turns a Traversal
into a uniplate
(or biplate
) family.
If you do not need the types of s
and t
to be different, it is recommended that
you use partsOf
.
It is generally safer to traverse with the Bazaar
rather than use this
combinator. However, it is sometimes convenient.
This is unsafe because if you don't supply at least as many b
's as you were
given a
's, then the reconstruction of t
will result in an error!
When applied to a Fold
the result is merely a Getter
(and becomes safe).
unsafePartsOf
::Iso
s t a b ->Lens
s t [a] [b]unsafePartsOf
::Lens
s t a b ->Lens
s t [a] [b]unsafePartsOf
::Traversal
s t a b ->Lens
s t [a] [b]unsafePartsOf
::Fold
s a ->Getter
s [a]unsafePartsOf
::Getter
s a ->Getter
s [a]
ipartsOf' :: (Indexable [i] p, Functor f) => Over (Indexed i) (Bazaar' (Indexed i) a) s t a a -> Over p f s t [a] [a] #
A type-restricted version of ipartsOf
that can only be used with an IndexedTraversal
.
partsOf' :: ATraversal s t a a -> Lens s t [a] [a] #
ipartsOf :: (Indexable [i] p, Functor f) => Traversing (Indexed i) f s t a a -> Over p f s t [a] [a] #
An indexed version of partsOf
that receives the entire list of indices as its index.
partsOf :: Functor f => Traversing ((->) :: Type -> Type -> Type) f s t a a -> LensLike f s t [a] [a] #
partsOf
turns a Traversal
into a Lens
that resembles an early version of the uniplate
(or biplate
) type.
Note: You should really try to maintain the invariant of the number of children in the list.
>>>
(a,b,c) & partsOf each .~ [x,y,z]
(x,y,z)
Any extras will be lost. If you do not supply enough, then the remainder will come from the original structure.
>>>
(a,b,c) & partsOf each .~ [w,x,y,z]
(w,x,y)
>>>
(a,b,c) & partsOf each .~ [x,y]
(x,y,c)
>>>
('b', 'a', 'd', 'c') & partsOf each %~ sort
('a','b','c','d')
So technically, this is only a Lens
if you do not change the number of results it returns.
When applied to a Fold
the result is merely a Getter
.
partsOf
::Iso'
s a ->Lens'
s [a]partsOf
::Lens'
s a ->Lens'
s [a]partsOf
::Traversal'
s a ->Lens'
s [a]partsOf
::Fold
s a ->Getter
s [a]partsOf
::Getter
s a ->Getter
s [a]
iloci :: IndexedTraversal i (Bazaar (Indexed i) a c s) (Bazaar (Indexed i) b c s) a b #
This IndexedTraversal
allows you to traverse
the individual stores in
a Bazaar
with access to their indices.
loci :: Traversal (Bazaar ((->) :: Type -> Type -> Type) a c s) (Bazaar ((->) :: Type -> Type -> Type) b c s) a b #
mapAccumLOf :: LensLike (State acc) s t a b -> (acc -> a -> (acc, b)) -> acc -> s -> (acc, t) #
This generalizes mapAccumL
to an arbitrary Traversal
.
mapAccumL
≡mapAccumLOf
traverse
mapAccumLOf
accumulates State
from left to right.
mapAccumLOf
::Iso
s t a b -> (acc -> a -> (acc, b)) -> acc -> s -> (acc, t)mapAccumLOf
::Lens
s t a b -> (acc -> a -> (acc, b)) -> acc -> s -> (acc, t)mapAccumLOf
::Traversal
s t a b -> (acc -> a -> (acc, b)) -> acc -> s -> (acc, t)
mapAccumLOf
::LensLike
(State
acc) s t a b -> (acc -> a -> (acc, b)) -> acc -> s -> (acc, t)mapAccumLOf
l f acc0 s =swap
(runState
(l (a ->state
(acc ->swap
(f acc a))) s) acc0)
mapAccumROf :: LensLike (Backwards (State acc)) s t a b -> (acc -> a -> (acc, b)) -> acc -> s -> (acc, t) #
This generalizes mapAccumR
to an arbitrary Traversal
.
mapAccumR
≡mapAccumROf
traverse
mapAccumROf
accumulates State
from right to left.
mapAccumROf
::Iso
s t a b -> (acc -> a -> (acc, b)) -> acc -> s -> (acc, t)mapAccumROf
::Lens
s t a b -> (acc -> a -> (acc, b)) -> acc -> s -> (acc, t)mapAccumROf
::Traversal
s t a b -> (acc -> a -> (acc, b)) -> acc -> s -> (acc, t)
mapAccumROf
::LensLike
(Backwards
(State
acc)) s t a b -> (acc -> a -> (acc, b)) -> acc -> s -> (acc, t)
transposeOf :: LensLike ZipList s t [a] a -> s -> [t] #
This generalizes transpose
to an arbitrary Traversal
.
Note: transpose
handles ragged inputs more intelligently, but for non-ragged inputs:
>>>
transposeOf traverse [[1,2,3],[4,5,6]]
[[1,4],[2,5],[3,6]]
transpose
≡transposeOf
traverse
Since every Lens
is a Traversal
, we can use this as a form of
monadic strength as well:
transposeOf
_2
:: (b, [a]) -> [(b, a)]
sequenceOf :: LensLike (WrappedMonad m) s t (m b) b -> s -> m t #
Sequence the (monadic) effects targeted by a Lens
in a container from left to right.
>>>
sequenceOf each ([1,2],[3,4],[5,6])
[(1,3,5),(1,3,6),(1,4,5),(1,4,6),(2,3,5),(2,3,6),(2,4,5),(2,4,6)]
sequence
≡sequenceOf
traverse
sequenceOf
l ≡mapMOf
lid
sequenceOf
l ≡unwrapMonad
.
lWrapMonad
sequenceOf
::Monad
m =>Iso
s t (m b) b -> s -> m tsequenceOf
::Monad
m =>Lens
s t (m b) b -> s -> m tsequenceOf
::Monad
m =>Traversal
s t (m b) b -> s -> m t
forMOf :: LensLike (WrappedMonad m) s t a b -> s -> (a -> m b) -> m t #
forMOf
is a flipped version of mapMOf
, consistent with the definition of forM
.
>>>
forMOf both (1,3) $ \x -> [x, x + 1]
[(1,3),(1,4),(2,3),(2,4)]
forM
≡forMOf
traverse
forMOf
l ≡flip
(mapMOf
l)iforMOf
l s ≡forM
l s.
Indexed
forMOf
::Monad
m =>Iso
s t a b -> s -> (a -> m b) -> m tforMOf
::Monad
m =>Lens
s t a b -> s -> (a -> m b) -> m tforMOf
::Monad
m =>Traversal
s t a b -> s -> (a -> m b) -> m t
mapMOf :: LensLike (WrappedMonad m) s t a b -> (a -> m b) -> s -> m t #
Map each element of a structure targeted by a Lens
to a monadic action,
evaluate these actions from left to right, and collect the results.
>>>
mapMOf both (\x -> [x, x + 1]) (1,3)
[(1,3),(1,4),(2,3),(2,4)]
mapM
≡mapMOf
traverse
imapMOf
l ≡forM
l.
Indexed
mapMOf
::Monad
m =>Iso
s t a b -> (a -> m b) -> s -> m tmapMOf
::Monad
m =>Lens
s t a b -> (a -> m b) -> s -> m tmapMOf
::Monad
m =>Traversal
s t a b -> (a -> m b) -> s -> m t
sequenceAOf :: LensLike f s t (f b) b -> s -> f t #
Evaluate each action in the structure from left to right, and collect the results.
>>>
sequenceAOf both ([1,2],[3,4])
[(1,3),(1,4),(2,3),(2,4)]
sequenceA
≡sequenceAOf
traverse
≡traverse
id
sequenceAOf
l ≡traverseOf
lid
≡ lid
sequenceAOf
::Functor
f =>Iso
s t (f b) b -> s -> f tsequenceAOf
::Functor
f =>Lens
s t (f b) b -> s -> f tsequenceAOf
::Applicative
f =>Traversal
s t (f b) b -> s -> f t
forOf :: LensLike f s t a b -> s -> (a -> f b) -> f t #
A version of traverseOf
with the arguments flipped, such that:
>>>
forOf each (1,2,3) print
1 2 3 ((),(),())
This function is only provided for consistency, flip
is strictly more general.
forOf
≡flip
forOf
≡flip
.traverseOf
for
≡forOf
traverse
ifor
l s ≡for
l s.
Indexed
forOf
::Functor
f =>Iso
s t a b -> s -> (a -> f b) -> f tforOf
::Functor
f =>Lens
s t a b -> s -> (a -> f b) -> f tforOf
::Applicative
f =>Traversal
s t a b -> s -> (a -> f b) -> f t
traverseOf :: LensLike f s t a b -> (a -> f b) -> s -> f t #
Map each element of a structure targeted by a Lens
or Traversal
,
evaluate these actions from left to right, and collect the results.
This function is only provided for consistency, id
is strictly more general.
>>>
traverseOf each print (1,2,3)
1 2 3 ((),(),())
traverseOf
≡id
itraverseOf
l ≡traverseOf
l.
Indexed
itraverseOf
itraversed
≡itraverse
This yields the obvious law:
traverse
≡traverseOf
traverse
traverseOf
::Functor
f =>Iso
s t a b -> (a -> f b) -> s -> f ttraverseOf
::Functor
f =>Lens
s t a b -> (a -> f b) -> s -> f ttraverseOf
::Apply
f =>Traversal1
s t a b -> (a -> f b) -> s -> f ttraverseOf
::Applicative
f =>Traversal
s t a b -> (a -> f b) -> s -> f t
type ATraversal s t a b = LensLike (Bazaar ((->) :: Type -> Type -> Type) a b) s t a b #
When you see this as an argument to a function, it expects a Traversal
.
type ATraversal' s a = ATraversal s s a a #
typeATraversal'
=Simple
ATraversal
type ATraversal1 s t a b = LensLike (Bazaar1 ((->) :: Type -> Type -> Type) a b) s t a b #
When you see this as an argument to a function, it expects a Traversal1
.
type ATraversal1' s a = ATraversal1 s s a a #
typeATraversal1'
=Simple
ATraversal1
type AnIndexedTraversal i s t a b = Over (Indexed i) (Bazaar (Indexed i) a b) s t a b #
When you see this as an argument to a function, it expects an IndexedTraversal
.
type AnIndexedTraversal1 i s t a b = Over (Indexed i) (Bazaar1 (Indexed i) a b) s t a b #
When you see this as an argument to a function, it expects an IndexedTraversal1
.
type AnIndexedTraversal' i s a = AnIndexedTraversal i s s a a #
typeAnIndexedTraversal'
=Simple
(AnIndexedTraversal
i)
type AnIndexedTraversal1' i s a = AnIndexedTraversal1 i s s a a #
typeAnIndexedTraversal1'
=Simple
(AnIndexedTraversal1
i)
type Traversing (p :: Type -> Type -> Type) (f :: Type -> Type) s t a b = Over p (BazaarT p f a b) s t a b #
When you see this as an argument to a function, it expects
- to be indexed if
p
is an instance ofIndexed
i, - to be unindexed if
p
is(->)
, - a
Traversal
iff
isApplicative
, - a
Getter
iff
is only aFunctor
andContravariant
, - a
Lens
iff
is only aFunctor
, - a
Fold
iff
isApplicative
andContravariant
.
type Traversing1 (p :: Type -> Type -> Type) (f :: Type -> Type) s t a b = Over p (BazaarT1 p f a b) s t a b #
type Traversing' (p :: Type -> Type -> Type) (f :: Type -> Type) s a = Traversing p f s s a a #
typeTraversing'
f =Simple
(Traversing
f)
type Traversing1' (p :: Type -> Type -> Type) (f :: Type -> Type) s a = Traversing1 p f s s a a #
class Ord k => TraverseMin k (m :: Type -> Type) | m -> k where #
Allows IndexedTraversal
the value at the smallest index.
Methods
traverseMin :: IndexedTraversal' k (m v) v #
IndexedTraversal
of the element with the smallest index.
Instances
TraverseMin Int IntMap | |
Defined in Control.Lens.Traversal Methods traverseMin :: IndexedTraversal' Int (IntMap v) v # | |
Ord k => TraverseMin k (Map k) | |
Defined in Control.Lens.Traversal Methods traverseMin :: IndexedTraversal' k (Map k v) v # |
class Ord k => TraverseMax k (m :: Type -> Type) | m -> k where #
Allows IndexedTraversal
of the value at the largest index.
Methods
traverseMax :: IndexedTraversal' k (m v) v #
IndexedTraversal
of the element at the largest index.
Instances
TraverseMax Int IntMap | |
Defined in Control.Lens.Traversal Methods traverseMax :: IndexedTraversal' Int (IntMap v) v # | |
Ord k => TraverseMax k (Map k) | |
Defined in Control.Lens.Traversal Methods traverseMax :: IndexedTraversal' k (Map k v) v # |
foldMapByOf :: Fold s a -> (r -> r -> r) -> r -> (a -> r) -> s -> r #
Fold a value using a specified Fold
and Monoid
operations.
This is like foldMapBy
where the Foldable
instance can be
manually specified.
foldMapByOf
folded
≡foldMapBy
foldMapByOf
::Getter
s a -> (r -> r -> r) -> r -> (a -> r) -> s -> rfoldMapByOf
::Fold
s a -> (r -> r -> r) -> r -> (a -> r) -> s -> rfoldMapByOf
::Traversal'
s a -> (r -> r -> r) -> r -> (a -> r) -> s -> rfoldMapByOf
::Lens'
s a -> (r -> r -> r) -> r -> (a -> r) -> s -> rfoldMapByOf
::Iso'
s a -> (r -> r -> r) -> r -> (a -> r) -> s -> r
>>>
foldMapByOf both (+) 0 length ("hello","world")
10
foldByOf :: Fold s a -> (a -> a -> a) -> a -> s -> a #
Fold a value using a specified Fold
and Monoid
operations.
This is like foldBy
where the Foldable
instance can be
manually specified.
foldByOf
folded
≡foldBy
foldByOf
::Getter
s a -> (a -> a -> a) -> a -> s -> afoldByOf
::Fold
s a -> (a -> a -> a) -> a -> s -> afoldByOf
::Lens'
s a -> (a -> a -> a) -> a -> s -> afoldByOf
::Traversal'
s a -> (a -> a -> a) -> a -> s -> afoldByOf
::Iso'
s a -> (a -> a -> a) -> a -> s -> a
>>>
foldByOf both (++) [] ("hello","world")
"helloworld"
idroppingWhile :: (Indexable i p, Profunctor q, Applicative f) => (i -> a -> Bool) -> Optical (Indexed i) q (Compose (State Bool) f) s t a a -> Optical p q f s t a a #
Obtain an IndexedFold
by dropping elements from another IndexedFold
, IndexedLens
, IndexedGetter
or IndexedTraversal
while a predicate holds.
idroppingWhile
:: (i -> a ->Bool
) ->IndexedFold
i s a ->IndexedFold
i s aidroppingWhile
:: (i -> a ->Bool
) ->IndexedTraversal'
i s a ->IndexedFold
i s a -- see notesidroppingWhile
:: (i -> a ->Bool
) ->IndexedLens'
i s a ->IndexedFold
i s a -- see notesidroppingWhile
:: (i -> a ->Bool
) ->IndexedGetter
i s a ->IndexedFold
i s a
Note: As with droppingWhile
applying idroppingWhile
to an IndexedLens
or IndexedTraversal
will still
allow you to use it as a pseudo-IndexedTraversal
, but if you change the value of the first target to one
where the predicate returns True
, then you will break the Traversal
laws and Traversal
fusion will
no longer be sound.
itakingWhile :: (Indexable i p, Profunctor q, Contravariant f, Applicative f) => (i -> a -> Bool) -> Optical' (Indexed i) q (Const (Endo (f s)) :: Type -> Type) s a -> Optical' p q f s a #
Obtain an IndexedFold
by taking elements from another
IndexedFold
, IndexedLens
, IndexedGetter
or IndexedTraversal
while a predicate holds.
itakingWhile
:: (i -> a ->Bool
) ->IndexedFold
i s a ->IndexedFold
i s aitakingWhile
:: (i -> a ->Bool
) ->IndexedTraversal'
i s a ->IndexedFold
i s aitakingWhile
:: (i -> a ->Bool
) ->IndexedLens'
i s a ->IndexedFold
i s aitakingWhile
:: (i -> a ->Bool
) ->IndexedGetter
i s a ->IndexedFold
i s a
Note: Applying itakingWhile
to an IndexedLens
or IndexedTraversal
will still allow you to use it as a
pseudo-IndexedTraversal
, but if you change the value of any target to one where the predicate returns
False
, then you will break the Traversal
laws and Traversal
fusion will no longer be sound.
ifiltered :: (Indexable i p, Applicative f) => (i -> a -> Bool) -> Optical' p (Indexed i) f a a #
Filter an IndexedFold
or IndexedGetter
, obtaining an IndexedFold
.
>>>
[0,0,0,5,5,5]^..traversed.ifiltered (\i a -> i <= a)
[0,5,5,5]
Compose with ifiltered
to filter another IndexedLens
, IndexedIso
, IndexedGetter
, IndexedFold
(or IndexedTraversal
) with
access to both the value and the index.
Note: As with filtered
, this is not a legal IndexedTraversal
, unless you are very careful not to invalidate the predicate on the target!
findIndicesOf :: IndexedGetting i (Endo [i]) s a -> (a -> Bool) -> s -> [i] #
Retrieve the indices of the values targeted by a IndexedFold
or IndexedTraversal
which satisfy a predicate.
findIndices
≡findIndicesOf
folded
findIndicesOf
::IndexedFold
i s a -> (a ->Bool
) -> s -> [i]findIndicesOf
::IndexedTraversal'
i s a -> (a ->Bool
) -> s -> [i]
findIndexOf :: IndexedGetting i (First i) s a -> (a -> Bool) -> s -> Maybe i #
Retrieve the index of the first value targeted by a IndexedFold
or IndexedTraversal
which satisfies a predicate.
findIndex
≡findIndexOf
folded
findIndexOf
::IndexedFold
i s a -> (a ->Bool
) -> s ->Maybe
ifindIndexOf
::IndexedTraversal'
i s a -> (a ->Bool
) -> s ->Maybe
i
elemIndicesOf :: Eq a => IndexedGetting i (Endo [i]) s a -> a -> s -> [i] #
Retrieve the indices of the values targeted by a IndexedFold
or IndexedTraversal
which are equal to a given value.
elemIndices
≡elemIndicesOf
folded
elemIndicesOf
::Eq
a =>IndexedFold
i s a -> a -> s -> [i]elemIndicesOf
::Eq
a =>IndexedTraversal'
i s a -> a -> s -> [i]
elemIndexOf :: Eq a => IndexedGetting i (First i) s a -> a -> s -> Maybe i #
Retrieve the index of the first value targeted by a IndexedFold
or IndexedTraversal
which is equal to a given value.
elemIndex
≡elemIndexOf
folded
elemIndexOf
::Eq
a =>IndexedFold
i s a -> a -> s ->Maybe
ielemIndexOf
::Eq
a =>IndexedTraversal'
i s a -> a -> s ->Maybe
i
(^@?!) :: HasCallStack => s -> IndexedGetting i (Endo (i, a)) s a -> (i, a) infixl 8 #
Perform an *UNSAFE* head
(with index) of an IndexedFold
or IndexedTraversal
assuming that it is there.
(^@?!
) :: s ->IndexedGetter
i s a -> (i, a) (^@?!
) :: s ->IndexedFold
i s a -> (i, a) (^@?!
) :: s ->IndexedLens'
i s a -> (i, a) (^@?!
) :: s ->IndexedTraversal'
i s a -> (i, a)
(^@?) :: s -> IndexedGetting i (Endo (Maybe (i, a))) s a -> Maybe (i, a) infixl 8 #
Perform a safe head
(with index) of an IndexedFold
or IndexedTraversal
or retrieve Just
the index and result
from an IndexedGetter
or IndexedLens
.
When using a IndexedTraversal
as a partial IndexedLens
, or an IndexedFold
as a partial IndexedGetter
this can be a convenient
way to extract the optional value.
(^@?
) :: s ->IndexedGetter
i s a ->Maybe
(i, a) (^@?
) :: s ->IndexedFold
i s a ->Maybe
(i, a) (^@?
) :: s ->IndexedLens'
i s a ->Maybe
(i, a) (^@?
) :: s ->IndexedTraversal'
i s a ->Maybe
(i, a)
(^@..) :: s -> IndexedGetting i (Endo [(i, a)]) s a -> [(i, a)] infixl 8 #
An infix version of itoListOf
.
itoListOf :: IndexedGetting i (Endo [(i, a)]) s a -> s -> [(i, a)] #
Extract the key-value pairs from a structure.
When you don't need access to the indices in the result, then toListOf
is more flexible in what it accepts.
toListOf
l ≡map
snd
.
itoListOf
l
itoListOf
::IndexedGetter
i s a -> s -> [(i,a)]itoListOf
::IndexedFold
i s a -> s -> [(i,a)]itoListOf
::IndexedLens'
i s a -> s -> [(i,a)]itoListOf
::IndexedTraversal'
i s a -> s -> [(i,a)]
ifoldlMOf :: Monad m => IndexedGetting i (Endo (r -> m r)) s a -> (i -> r -> a -> m r) -> r -> s -> m r #
Monadic fold over the elements of a structure with an index, associating to the left.
When you don't need access to the index then foldlMOf
is more flexible in what it accepts.
foldlMOf
l ≡ifoldlMOf
l.
const
ifoldlMOf
::Monad
m =>IndexedGetter
i s a -> (i -> r -> a -> m r) -> r -> s -> m rifoldlMOf
::Monad
m =>IndexedFold
i s a -> (i -> r -> a -> m r) -> r -> s -> m rifoldlMOf
::Monad
m =>IndexedLens'
i s a -> (i -> r -> a -> m r) -> r -> s -> m rifoldlMOf
::Monad
m =>IndexedTraversal'
i s a -> (i -> r -> a -> m r) -> r -> s -> m r
ifoldrMOf :: Monad m => IndexedGetting i (Dual (Endo (r -> m r))) s a -> (i -> a -> r -> m r) -> r -> s -> m r #
Monadic fold right over the elements of a structure with an index.
When you don't need access to the index then foldrMOf
is more flexible in what it accepts.
foldrMOf
l ≡ifoldrMOf
l.
const
ifoldrMOf
::Monad
m =>IndexedGetter
i s a -> (i -> a -> r -> m r) -> r -> s -> m rifoldrMOf
::Monad
m =>IndexedFold
i s a -> (i -> a -> r -> m r) -> r -> s -> m rifoldrMOf
::Monad
m =>IndexedLens'
i s a -> (i -> a -> r -> m r) -> r -> s -> m rifoldrMOf
::Monad
m =>IndexedTraversal'
i s a -> (i -> a -> r -> m r) -> r -> s -> m r
ifoldlOf' :: IndexedGetting i (Endo (r -> r)) s a -> (i -> r -> a -> r) -> r -> s -> r #
Fold over the elements of a structure with an index, associating to the left, but strictly.
When you don't need access to the index then foldlOf'
is more flexible in what it accepts.
foldlOf'
l ≡ifoldlOf'
l.
const
ifoldlOf'
::IndexedGetter
i s a -> (i -> r -> a -> r) -> r -> s -> rifoldlOf'
::IndexedFold
i s a -> (i -> r -> a -> r) -> r -> s -> rifoldlOf'
::IndexedLens'
i s a -> (i -> r -> a -> r) -> r -> s -> rifoldlOf'
::IndexedTraversal'
i s a -> (i -> r -> a -> r) -> r -> s -> r
ifoldrOf' :: IndexedGetting i (Dual (Endo (r -> r))) s a -> (i -> a -> r -> r) -> r -> s -> r #
Strictly fold right over the elements of a structure with an index.
When you don't need access to the index then foldrOf'
is more flexible in what it accepts.
foldrOf'
l ≡ifoldrOf'
l.
const
ifoldrOf'
::IndexedGetter
i s a -> (i -> a -> r -> r) -> r -> s -> rifoldrOf'
::IndexedFold
i s a -> (i -> a -> r -> r) -> r -> s -> rifoldrOf'
::IndexedLens'
i s a -> (i -> a -> r -> r) -> r -> s -> rifoldrOf'
::IndexedTraversal'
i s a -> (i -> a -> r -> r) -> r -> s -> r
ifindMOf :: Monad m => IndexedGetting i (Endo (m (Maybe a))) s a -> (i -> a -> m Bool) -> s -> m (Maybe a) #
The ifindMOf
function takes an IndexedFold
or IndexedTraversal
, a monadic predicate that is also
supplied the index, a structure and returns in the monad the left-most element of the structure
matching the predicate, or Nothing
if there is no such element.
When you don't need access to the index then findMOf
is more flexible in what it accepts.
findMOf
l ≡ifindMOf
l.
const
ifindMOf
::Monad
m =>IndexedGetter
i s a -> (i -> a -> mBool
) -> s -> m (Maybe
a)ifindMOf
::Monad
m =>IndexedFold
i s a -> (i -> a -> mBool
) -> s -> m (Maybe
a)ifindMOf
::Monad
m =>IndexedLens'
i s a -> (i -> a -> mBool
) -> s -> m (Maybe
a)ifindMOf
::Monad
m =>IndexedTraversal'
i s a -> (i -> a -> mBool
) -> s -> m (Maybe
a)
ifindOf :: IndexedGetting i (Endo (Maybe a)) s a -> (i -> a -> Bool) -> s -> Maybe a #
The ifindOf
function takes an IndexedFold
or IndexedTraversal
, a predicate that is also
supplied the index, a structure and returns the left-most element of the structure
matching the predicate, or Nothing
if there is no such element.
When you don't need access to the index then findOf
is more flexible in what it accepts.
findOf
l ≡ifindOf
l.
const
ifindOf
::IndexedGetter
i s a -> (i -> a ->Bool
) -> s ->Maybe
aifindOf
::IndexedFold
i s a -> (i -> a ->Bool
) -> s ->Maybe
aifindOf
::IndexedLens'
i s a -> (i -> a ->Bool
) -> s ->Maybe
aifindOf
::IndexedTraversal'
i s a -> (i -> a ->Bool
) -> s ->Maybe
a
iconcatMapOf :: IndexedGetting i [r] s a -> (i -> a -> [r]) -> s -> [r] #
Concatenate the results of a function of the elements of an IndexedFold
or IndexedTraversal
with access to the index.
When you don't need access to the index then concatMapOf
is more flexible in what it accepts.
concatMapOf
l ≡iconcatMapOf
l.
const
iconcatMapOf
≡ifoldMapOf
iconcatMapOf
::IndexedGetter
i s a -> (i -> a -> [r]) -> s -> [r]iconcatMapOf
::IndexedFold
i s a -> (i -> a -> [r]) -> s -> [r]iconcatMapOf
::IndexedLens'
i s a -> (i -> a -> [r]) -> s -> [r]iconcatMapOf
::IndexedTraversal'
i s a -> (i -> a -> [r]) -> s -> [r]
iforMOf_ :: Monad m => IndexedGetting i (Sequenced r m) s a -> s -> (i -> a -> m r) -> m () #
Run monadic actions for each target of an IndexedFold
or IndexedTraversal
with access to the index,
discarding the results (with the arguments flipped).
iforMOf_
≡flip
.
imapMOf_
When you don't need access to the index then forMOf_
is more flexible in what it accepts.
forMOf_
l a ≡iforMOf
l a.
const
iforMOf_
::Monad
m =>IndexedGetter
i s a -> s -> (i -> a -> m r) -> m ()iforMOf_
::Monad
m =>IndexedFold
i s a -> s -> (i -> a -> m r) -> m ()iforMOf_
::Monad
m =>IndexedLens'
i s a -> s -> (i -> a -> m r) -> m ()iforMOf_
::Monad
m =>IndexedTraversal'
i s a -> s -> (i -> a -> m r) -> m ()
imapMOf_ :: Monad m => IndexedGetting i (Sequenced r m) s a -> (i -> a -> m r) -> s -> m () #
Run monadic actions for each target of an IndexedFold
or IndexedTraversal
with access to the index,
discarding the results.
When you don't need access to the index then mapMOf_
is more flexible in what it accepts.
mapMOf_
l ≡imapMOf
l.
const
imapMOf_
::Monad
m =>IndexedGetter
i s a -> (i -> a -> m r) -> s -> m ()imapMOf_
::Monad
m =>IndexedFold
i s a -> (i -> a -> m r) -> s -> m ()imapMOf_
::Monad
m =>IndexedLens'
i s a -> (i -> a -> m r) -> s -> m ()imapMOf_
::Monad
m =>IndexedTraversal'
i s a -> (i -> a -> m r) -> s -> m ()
iforOf_ :: Functor f => IndexedGetting i (Traversed r f) s a -> s -> (i -> a -> f r) -> f () #
Traverse the targets of an IndexedFold
or IndexedTraversal
with access to the index, discarding the results
(with the arguments flipped).
iforOf_
≡flip
.
itraverseOf_
When you don't need access to the index then forOf_
is more flexible in what it accepts.
forOf_
l a ≡iforOf_
l a.
const
iforOf_
::Functor
f =>IndexedGetter
i s a -> s -> (i -> a -> f r) -> f ()iforOf_
::Applicative
f =>IndexedFold
i s a -> s -> (i -> a -> f r) -> f ()iforOf_
::Functor
f =>IndexedLens'
i s a -> s -> (i -> a -> f r) -> f ()iforOf_
::Applicative
f =>IndexedTraversal'
i s a -> s -> (i -> a -> f r) -> f ()
itraverseOf_ :: Functor f => IndexedGetting i (Traversed r f) s a -> (i -> a -> f r) -> s -> f () #
Traverse the targets of an IndexedFold
or IndexedTraversal
with access to the i
, discarding the results.
When you don't need access to the index then traverseOf_
is more flexible in what it accepts.
traverseOf_
l ≡itraverseOf
l.
const
itraverseOf_
::Functor
f =>IndexedGetter
i s a -> (i -> a -> f r) -> s -> f ()itraverseOf_
::Applicative
f =>IndexedFold
i s a -> (i -> a -> f r) -> s -> f ()itraverseOf_
::Functor
f =>IndexedLens'
i s a -> (i -> a -> f r) -> s -> f ()itraverseOf_
::Applicative
f =>IndexedTraversal'
i s a -> (i -> a -> f r) -> s -> f ()
inoneOf :: IndexedGetting i Any s a -> (i -> a -> Bool) -> s -> Bool #
Return whether or not none of the elements viewed through an IndexedFold
or IndexedTraversal
satisfy a predicate, with access to the i
.
When you don't need access to the index then noneOf
is more flexible in what it accepts.
noneOf
l ≡inoneOf
l.
const
inoneOf
::IndexedGetter
i s a -> (i -> a ->Bool
) -> s ->Bool
inoneOf
::IndexedFold
i s a -> (i -> a ->Bool
) -> s ->Bool
inoneOf
::IndexedLens'
i s a -> (i -> a ->Bool
) -> s ->Bool
inoneOf
::IndexedTraversal'
i s a -> (i -> a ->Bool
) -> s ->Bool
iallOf :: IndexedGetting i All s a -> (i -> a -> Bool) -> s -> Bool #
Return whether or not all elements viewed through an IndexedFold
or IndexedTraversal
satisfy a predicate, with access to the i
.
When you don't need access to the index then allOf
is more flexible in what it accepts.
allOf
l ≡iallOf
l.
const
iallOf
::IndexedGetter
i s a -> (i -> a ->Bool
) -> s ->Bool
iallOf
::IndexedFold
i s a -> (i -> a ->Bool
) -> s ->Bool
iallOf
::IndexedLens'
i s a -> (i -> a ->Bool
) -> s ->Bool
iallOf
::IndexedTraversal'
i s a -> (i -> a ->Bool
) -> s ->Bool
ianyOf :: IndexedGetting i Any s a -> (i -> a -> Bool) -> s -> Bool #
Return whether or not any element viewed through an IndexedFold
or IndexedTraversal
satisfy a predicate, with access to the i
.
When you don't need access to the index then anyOf
is more flexible in what it accepts.
anyOf
l ≡ianyOf
l.
const
ianyOf
::IndexedGetter
i s a -> (i -> a ->Bool
) -> s ->Bool
ianyOf
::IndexedFold
i s a -> (i -> a ->Bool
) -> s ->Bool
ianyOf
::IndexedLens'
i s a -> (i -> a ->Bool
) -> s ->Bool
ianyOf
::IndexedTraversal'
i s a -> (i -> a ->Bool
) -> s ->Bool
ifoldlOf :: IndexedGetting i (Dual (Endo r)) s a -> (i -> r -> a -> r) -> r -> s -> r #
Left-associative fold of the parts of a structure that are viewed through an IndexedFold
or IndexedTraversal
with
access to the i
.
When you don't need access to the index then foldlOf
is more flexible in what it accepts.
foldlOf
l ≡ifoldlOf
l.
const
ifoldlOf
::IndexedGetter
i s a -> (i -> r -> a -> r) -> r -> s -> rifoldlOf
::IndexedFold
i s a -> (i -> r -> a -> r) -> r -> s -> rifoldlOf
::IndexedLens'
i s a -> (i -> r -> a -> r) -> r -> s -> rifoldlOf
::IndexedTraversal'
i s a -> (i -> r -> a -> r) -> r -> s -> r
ifoldrOf :: IndexedGetting i (Endo r) s a -> (i -> a -> r -> r) -> r -> s -> r #
Right-associative fold of parts of a structure that are viewed through an IndexedFold
or IndexedTraversal
with
access to the i
.
When you don't need access to the index then foldrOf
is more flexible in what it accepts.
foldrOf
l ≡ifoldrOf
l.
const
ifoldrOf
::IndexedGetter
i s a -> (i -> a -> r -> r) -> r -> s -> rifoldrOf
::IndexedFold
i s a -> (i -> a -> r -> r) -> r -> s -> rifoldrOf
::IndexedLens'
i s a -> (i -> a -> r -> r) -> r -> s -> rifoldrOf
::IndexedTraversal'
i s a -> (i -> a -> r -> r) -> r -> s -> r
ifoldMapOf :: IndexedGetting i m s a -> (i -> a -> m) -> s -> m #
Fold an IndexedFold
or IndexedTraversal
by mapping indices and values to an arbitrary Monoid
with access
to the i
.
When you don't need access to the index then foldMapOf
is more flexible in what it accepts.
foldMapOf
l ≡ifoldMapOf
l.
const
ifoldMapOf
::IndexedGetter
i s a -> (i -> a -> m) -> s -> mifoldMapOf
::Monoid
m =>IndexedFold
i s a -> (i -> a -> m) -> s -> mifoldMapOf
::IndexedLens'
i s a -> (i -> a -> m) -> s -> mifoldMapOf
::Monoid
m =>IndexedTraversal'
i s a -> (i -> a -> m) -> s -> m
backwards :: (Profunctor p, Profunctor q) => Optical p q (Backwards f) s t a b -> Optical p q f s t a b #
This allows you to traverse
the elements of a pretty much any LensLike
construction in the opposite order.
This will preserve indexes on Indexed
types and will give you the elements of a (finite) Fold
or Traversal
in the opposite order.
This has no practical impact on a Getter
, Setter
, Lens
or Iso
.
NB: To write back through an Iso
, you want to use from
.
Similarly, to write back through an Prism
, you want to use re
.
ipreuses :: MonadState s m => IndexedGetting i (First r) s a -> (i -> a -> r) -> m (Maybe r) #
Retrieve a function of the first index and value targeted by an IndexedFold
or
IndexedTraversal
(or a function of Just
the index and result from an IndexedGetter
or IndexedLens
) into the current state.
ipreuses
=uses
.
ipre
ipreuses
::MonadState
s m =>IndexedGetter
i s a -> (i -> a -> r) -> m (Maybe
r)ipreuses
::MonadState
s m =>IndexedFold
i s a -> (i -> a -> r) -> m (Maybe
r)ipreuses
::MonadState
s m =>IndexedLens'
i s a -> (i -> a -> r) -> m (Maybe
r)ipreuses
::MonadState
s m =>IndexedTraversal'
i s a -> (i -> a -> r) -> m (Maybe
r)
preuses :: MonadState s m => Getting (First r) s a -> (a -> r) -> m (Maybe r) #
Retrieve a function of the first value targeted by a Fold
or
Traversal
(or Just
the result from a Getter
or Lens
) into the current state.
preuses
=uses
.
pre
preuses
::MonadState
s m =>Getter
s a -> (a -> r) -> m (Maybe
r)preuses
::MonadState
s m =>Fold
s a -> (a -> r) -> m (Maybe
r)preuses
::MonadState
s m =>Lens'
s a -> (a -> r) -> m (Maybe
r)preuses
::MonadState
s m =>Iso'
s a -> (a -> r) -> m (Maybe
r)preuses
::MonadState
s m =>Traversal'
s a -> (a -> r) -> m (Maybe
r)
ipreuse :: MonadState s m => IndexedGetting i (First (i, a)) s a -> m (Maybe (i, a)) #
Retrieve the first index and value targeted by an IndexedFold
or IndexedTraversal
(or Just
the index
and result from an IndexedGetter
or IndexedLens
) into the current state.
ipreuse
=use
.
ipre
ipreuse
::MonadState
s m =>IndexedGetter
i s a -> m (Maybe
(i, a))ipreuse
::MonadState
s m =>IndexedFold
i s a -> m (Maybe
(i, a))ipreuse
::MonadState
s m =>IndexedLens'
i s a -> m (Maybe
(i, a))ipreuse
::MonadState
s m =>IndexedTraversal'
i s a -> m (Maybe
(i, a))
preuse :: MonadState s m => Getting (First a) s a -> m (Maybe a) #
Retrieve the first value targeted by a Fold
or Traversal
(or Just
the result
from a Getter
or Lens
) into the current state.
preuse
=use
.
pre
preuse
::MonadState
s m =>Getter
s a -> m (Maybe
a)preuse
::MonadState
s m =>Fold
s a -> m (Maybe
a)preuse
::MonadState
s m =>Lens'
s a -> m (Maybe
a)preuse
::MonadState
s m =>Iso'
s a -> m (Maybe
a)preuse
::MonadState
s m =>Traversal'
s a -> m (Maybe
a)
ipreviews :: MonadReader s m => IndexedGetting i (First r) s a -> (i -> a -> r) -> m (Maybe r) #
Retrieve a function of the first index and value targeted by an IndexedFold
or
IndexedTraversal
(or Just
the result from an IndexedGetter
or IndexedLens
).
See also (^@?
).
ipreviews
=views
.
ipre
This is usually applied in the Reader
Monad
(->) s
.
ipreviews
::IndexedGetter
i s a -> (i -> a -> r) -> s ->Maybe
ripreviews
::IndexedFold
i s a -> (i -> a -> r) -> s ->Maybe
ripreviews
::IndexedLens'
i s a -> (i -> a -> r) -> s ->Maybe
ripreviews
::IndexedTraversal'
i s a -> (i -> a -> r) -> s ->Maybe
r
However, it may be useful to think of its full generality when working with
a Monad
transformer stack:
ipreviews
::MonadReader
s m =>IndexedGetter
i s a -> (i -> a -> r) -> m (Maybe
r)ipreviews
::MonadReader
s m =>IndexedFold
i s a -> (i -> a -> r) -> m (Maybe
r)ipreviews
::MonadReader
s m =>IndexedLens'
i s a -> (i -> a -> r) -> m (Maybe
r)ipreviews
::MonadReader
s m =>IndexedTraversal'
i s a -> (i -> a -> r) -> m (Maybe
r)
ipreview :: MonadReader s m => IndexedGetting i (First (i, a)) s a -> m (Maybe (i, a)) #
Retrieve the first index and value targeted by a Fold
or Traversal
(or Just
the result
from a Getter
or Lens
). See also (^@?
).
ipreview
=view
.
ipre
This is usually applied in the Reader
Monad
(->) s
.
ipreview
::IndexedGetter
i s a -> s ->Maybe
(i, a)ipreview
::IndexedFold
i s a -> s ->Maybe
(i, a)ipreview
::IndexedLens'
i s a -> s ->Maybe
(i, a)ipreview
::IndexedTraversal'
i s a -> s ->Maybe
(i, a)
However, it may be useful to think of its full generality when working with
a Monad
transformer stack:
ipreview
::MonadReader
s m =>IndexedGetter
s a -> m (Maybe
(i, a))ipreview
::MonadReader
s m =>IndexedFold
s a -> m (Maybe
(i, a))ipreview
::MonadReader
s m =>IndexedLens'
s a -> m (Maybe
(i, a))ipreview
::MonadReader
s m =>IndexedTraversal'
s a -> m (Maybe
(i, a))
preview :: MonadReader s m => Getting (First a) s a -> m (Maybe a) #
Retrieve the first value targeted by a Fold
or Traversal
(or Just
the result
from a Getter
or Lens
). See also (^?
).
listToMaybe
.
toList
≡preview
folded
This is usually applied in the Reader
Monad
(->) s
.
preview
=view
.
pre
preview
::Getter
s a -> s ->Maybe
apreview
::Fold
s a -> s ->Maybe
apreview
::Lens'
s a -> s ->Maybe
apreview
::Iso'
s a -> s ->Maybe
apreview
::Traversal'
s a -> s ->Maybe
a
However, it may be useful to think of its full generality when working with
a Monad
transformer stack:
preview
::MonadReader
s m =>Getter
s a -> m (Maybe
a)preview
::MonadReader
s m =>Fold
s a -> m (Maybe
a)preview
::MonadReader
s m =>Lens'
s a -> m (Maybe
a)preview
::MonadReader
s m =>Iso'
s a -> m (Maybe
a)preview
::MonadReader
s m =>Traversal'
s a -> m (Maybe
a)
ipre :: IndexedGetting i (First (i, a)) s a -> IndexPreservingGetter s (Maybe (i, a)) #
This converts an IndexedFold
to an IndexPreservingGetter
that returns the first index
and element, if they exist, as a Maybe
.
ipre
::IndexedGetter
i s a ->IndexPreservingGetter
s (Maybe
(i, a))ipre
::IndexedFold
i s a ->IndexPreservingGetter
s (Maybe
(i, a))ipre
::IndexedTraversal'
i s a ->IndexPreservingGetter
s (Maybe
(i, a))ipre
::IndexedLens'
i s a ->IndexPreservingGetter
s (Maybe
(i, a))
pre :: Getting (First a) s a -> IndexPreservingGetter s (Maybe a) #
This converts a Fold
to a IndexPreservingGetter
that returns the first element, if it
exists, as a Maybe
.
pre
::Getter
s a ->IndexPreservingGetter
s (Maybe
a)pre
::Fold
s a ->IndexPreservingGetter
s (Maybe
a)pre
::Traversal'
s a ->IndexPreservingGetter
s (Maybe
a)pre
::Lens'
s a ->IndexPreservingGetter
s (Maybe
a)pre
::Iso'
s a ->IndexPreservingGetter
s (Maybe
a)pre
::Prism'
s a ->IndexPreservingGetter
s (Maybe
a)
has :: Getting Any s a -> s -> Bool #
Check to see if this Fold
or Traversal
matches 1 or more entries.
>>>
has (element 0) []
False
>>>
has _Left (Left 12)
True
>>>
has _Right (Left 12)
False
This will always return True
for a Lens
or Getter
.
>>>
has _1 ("hello","world")
True
has
::Getter
s a -> s ->Bool
has
::Fold
s a -> s ->Bool
has
::Iso'
s a -> s ->Bool
has
::Lens'
s a -> s ->Bool
has
::Traversal'
s a -> s ->Bool
foldlMOf :: Monad m => Getting (Endo (r -> m r)) s a -> (r -> a -> m r) -> r -> s -> m r #
Monadic fold over the elements of a structure, associating to the left, i.e. from left to right.
foldlM
≡foldlMOf
folded
foldlMOf
::Monad
m =>Getter
s a -> (r -> a -> m r) -> r -> s -> m rfoldlMOf
::Monad
m =>Fold
s a -> (r -> a -> m r) -> r -> s -> m rfoldlMOf
::Monad
m =>Iso'
s a -> (r -> a -> m r) -> r -> s -> m rfoldlMOf
::Monad
m =>Lens'
s a -> (r -> a -> m r) -> r -> s -> m rfoldlMOf
::Monad
m =>Traversal'
s a -> (r -> a -> m r) -> r -> s -> m r
foldrMOf :: Monad m => Getting (Dual (Endo (r -> m r))) s a -> (a -> r -> m r) -> r -> s -> m r #
Monadic fold over the elements of a structure, associating to the right, i.e. from right to left.
foldrM
≡foldrMOf
folded
foldrMOf
::Monad
m =>Getter
s a -> (a -> r -> m r) -> r -> s -> m rfoldrMOf
::Monad
m =>Fold
s a -> (a -> r -> m r) -> r -> s -> m rfoldrMOf
::Monad
m =>Iso'
s a -> (a -> r -> m r) -> r -> s -> m rfoldrMOf
::Monad
m =>Lens'
s a -> (a -> r -> m r) -> r -> s -> m rfoldrMOf
::Monad
m =>Traversal'
s a -> (a -> r -> m r) -> r -> s -> m r
foldl1Of' :: HasCallStack => Getting (Endo (Endo (Maybe a))) s a -> (a -> a -> a) -> s -> a #
A variant of foldlOf'
that has no base case and thus may only be applied
to folds and structures such that the fold views at least one element of
the structure.
foldl1Of'
l f ≡foldl1'
f.
toListOf
l
foldl1Of'
::Getter
s a -> (a -> a -> a) -> s -> afoldl1Of'
::Fold
s a -> (a -> a -> a) -> s -> afoldl1Of'
::Iso'
s a -> (a -> a -> a) -> s -> afoldl1Of'
::Lens'
s a -> (a -> a -> a) -> s -> afoldl1Of'
::Traversal'
s a -> (a -> a -> a) -> s -> a
foldr1Of' :: HasCallStack => Getting (Dual (Endo (Endo (Maybe a)))) s a -> (a -> a -> a) -> s -> a #
A variant of foldrOf'
that has no base case and thus may only be applied
to folds and structures such that the fold views at least one element of the
structure.
foldr1Of
l f ≡foldr1
f.
toListOf
l
foldr1Of'
::Getter
s a -> (a -> a -> a) -> s -> afoldr1Of'
::Fold
s a -> (a -> a -> a) -> s -> afoldr1Of'
::Iso'
s a -> (a -> a -> a) -> s -> afoldr1Of'
::Lens'
s a -> (a -> a -> a) -> s -> afoldr1Of'
::Traversal'
s a -> (a -> a -> a) -> s -> a
foldlOf' :: Getting (Endo (Endo r)) s a -> (r -> a -> r) -> r -> s -> r #
Fold over the elements of a structure, associating to the left, but strictly.
foldl'
≡foldlOf'
folded
foldlOf'
::Getter
s a -> (r -> a -> r) -> r -> s -> rfoldlOf'
::Fold
s a -> (r -> a -> r) -> r -> s -> rfoldlOf'
::Iso'
s a -> (r -> a -> r) -> r -> s -> rfoldlOf'
::Lens'
s a -> (r -> a -> r) -> r -> s -> rfoldlOf'
::Traversal'
s a -> (r -> a -> r) -> r -> s -> r
foldrOf' :: Getting (Dual (Endo (Endo r))) s a -> (a -> r -> r) -> r -> s -> r #
Strictly fold right over the elements of a structure.
foldr'
≡foldrOf'
folded
foldrOf'
::Getter
s a -> (a -> r -> r) -> r -> s -> rfoldrOf'
::Fold
s a -> (a -> r -> r) -> r -> s -> rfoldrOf'
::Iso'
s a -> (a -> r -> r) -> r -> s -> rfoldrOf'
::Lens'
s a -> (a -> r -> r) -> r -> s -> rfoldrOf'
::Traversal'
s a -> (a -> r -> r) -> r -> s -> r
foldl1Of :: HasCallStack => Getting (Dual (Endo (Maybe a))) s a -> (a -> a -> a) -> s -> a #
A variant of foldlOf
that has no base case and thus may only be applied to lenses and structures such
that the Lens
views at least one element of the structure.
>>>
foldl1Of each (+) (1,2,3,4)
10
foldl1Of
l f ≡foldl1
f.
toListOf
lfoldl1
≡foldl1Of
folded
foldl1Of
::Getter
s a -> (a -> a -> a) -> s -> afoldl1Of
::Fold
s a -> (a -> a -> a) -> s -> afoldl1Of
::Iso'
s a -> (a -> a -> a) -> s -> afoldl1Of
::Lens'
s a -> (a -> a -> a) -> s -> afoldl1Of
::Traversal'
s a -> (a -> a -> a) -> s -> a
foldr1Of :: HasCallStack => Getting (Endo (Maybe a)) s a -> (a -> a -> a) -> s -> a #
A variant of foldrOf
that has no base case and thus may only be applied
to lenses and structures such that the Lens
views at least one element of
the structure.
>>>
foldr1Of each (+) (1,2,3,4)
10
foldr1Of
l f ≡foldr1
f.
toListOf
lfoldr1
≡foldr1Of
folded
foldr1Of
::Getter
s a -> (a -> a -> a) -> s -> afoldr1Of
::Fold
s a -> (a -> a -> a) -> s -> afoldr1Of
::Iso'
s a -> (a -> a -> a) -> s -> afoldr1Of
::Lens'
s a -> (a -> a -> a) -> s -> afoldr1Of
::Traversal'
s a -> (a -> a -> a) -> s -> a
lookupOf :: Eq k => Getting (Endo (Maybe v)) s (k, v) -> k -> s -> Maybe v #
The lookupOf
function takes a Fold
(or Getter
, Traversal
,
Lens
, Iso
, etc.), a key, and a structure containing key/value pairs.
It returns the first value corresponding to the given key. This function
generalizes lookup
to work on an arbitrary Fold
instead of lists.
>>>
lookupOf folded 4 [(2, 'a'), (4, 'b'), (4, 'c')]
Just 'b'
>>>
lookupOf each 2 [(2, 'a'), (4, 'b'), (4, 'c')]
Just 'a'
lookupOf
::Eq
k =>Fold
s (k,v) -> k -> s ->Maybe
v
findMOf :: Monad m => Getting (Endo (m (Maybe a))) s a -> (a -> m Bool) -> s -> m (Maybe a) #
The findMOf
function takes a Lens
(or Getter
, Iso
, Fold
, or Traversal
),
a monadic predicate and a structure and returns in the monad the leftmost element of the structure
matching the predicate, or Nothing
if there is no such element.
>>>
findMOf each ( \x -> print ("Checking " ++ show x) >> return (even x)) (1,3,4,6)
"Checking 1" "Checking 3" "Checking 4" Just 4
>>>
findMOf each ( \x -> print ("Checking " ++ show x) >> return (even x)) (1,3,5,7)
"Checking 1" "Checking 3" "Checking 5" "Checking 7" Nothing
findMOf
:: (Monad
m,Getter
s a) -> (a -> mBool
) -> s -> m (Maybe
a)findMOf
:: (Monad
m,Fold
s a) -> (a -> mBool
) -> s -> m (Maybe
a)findMOf
:: (Monad
m,Iso'
s a) -> (a -> mBool
) -> s -> m (Maybe
a)findMOf
:: (Monad
m,Lens'
s a) -> (a -> mBool
) -> s -> m (Maybe
a)findMOf
:: (Monad
m,Traversal'
s a) -> (a -> mBool
) -> s -> m (Maybe
a)
findMOf
folded
:: (Monad m, Foldable f) => (a -> m Bool) -> f a -> m (Maybe a)ifindMOf
l ≡findMOf
l.
Indexed
A simpler version that didn't permit indexing, would be:
findMOf
:: Monad m =>Getting
(Endo
(m (Maybe
a))) s a -> (a -> mBool
) -> s -> m (Maybe
a)findMOf
l p =foldrOf
l (a y -> p a >>= x -> if x then return (Just
a) else y) $ returnNothing
findOf :: Getting (Endo (Maybe a)) s a -> (a -> Bool) -> s -> Maybe a #
The findOf
function takes a Lens
(or Getter
, Iso
, Fold
, or Traversal
),
a predicate and a structure and returns the leftmost element of the structure
matching the predicate, or Nothing
if there is no such element.
>>>
findOf each even (1,3,4,6)
Just 4
>>>
findOf folded even [1,3,5,7]
Nothing
findOf
::Getter
s a -> (a ->Bool
) -> s ->Maybe
afindOf
::Fold
s a -> (a ->Bool
) -> s ->Maybe
afindOf
::Iso'
s a -> (a ->Bool
) -> s ->Maybe
afindOf
::Lens'
s a -> (a ->Bool
) -> s ->Maybe
afindOf
::Traversal'
s a -> (a ->Bool
) -> s ->Maybe
a
find
≡findOf
folded
ifindOf
l ≡findOf
l.
Indexed
A simpler version that didn't permit indexing, would be:
findOf
::Getting
(Endo
(Maybe
a)) s a -> (a ->Bool
) -> s ->Maybe
afindOf
l p =foldrOf
l (a y -> if p a thenJust
a else y)Nothing
minimumByOf :: Getting (Endo (Endo (Maybe a))) s a -> (a -> a -> Ordering) -> s -> Maybe a #
Obtain the minimum element (if any) targeted by a Fold
, Traversal
, Lens
, Iso
or Getter
according to a user supplied Ordering
.
In the interest of efficiency, This operation has semantics more strict than strictly necessary.
>>>
minimumByOf traverse (compare `on` length) ["mustard","relish","ham"]
Just "ham"
minimumBy
cmp ≡fromMaybe
(error
"empty").
minimumByOf
folded
cmp
minimumByOf
::Getter
s a -> (a -> a ->Ordering
) -> s ->Maybe
aminimumByOf
::Fold
s a -> (a -> a ->Ordering
) -> s ->Maybe
aminimumByOf
::Iso'
s a -> (a -> a ->Ordering
) -> s ->Maybe
aminimumByOf
::Lens'
s a -> (a -> a ->Ordering
) -> s ->Maybe
aminimumByOf
::Traversal'
s a -> (a -> a ->Ordering
) -> s ->Maybe
a
maximumByOf :: Getting (Endo (Endo (Maybe a))) s a -> (a -> a -> Ordering) -> s -> Maybe a #
Obtain the maximum element (if any) targeted by a Fold
, Traversal
, Lens
, Iso
,
or Getter
according to a user supplied Ordering
.
>>>
maximumByOf traverse (compare `on` length) ["mustard","relish","ham"]
Just "mustard"
In the interest of efficiency, This operation has semantics more strict than strictly necessary.
maximumBy
cmp ≡fromMaybe
(error
"empty").
maximumByOf
folded
cmp
maximumByOf
::Getter
s a -> (a -> a ->Ordering
) -> s ->Maybe
amaximumByOf
::Fold
s a -> (a -> a ->Ordering
) -> s ->Maybe
amaximumByOf
::Iso'
s a -> (a -> a ->Ordering
) -> s ->Maybe
amaximumByOf
::Lens'
s a -> (a -> a ->Ordering
) -> s ->Maybe
amaximumByOf
::Traversal'
s a -> (a -> a ->Ordering
) -> s ->Maybe
a
minimum1Of :: Ord a => Getting (Min a) s a -> s -> a #
Obtain the minimum element targeted by a Fold1
or Traversal1
.
>>>
minimum1Of traverse1 (1 :| [2..10])
1
minimum1Of
::Ord
a =>Getter
s a -> s -> aminimum1Of
::Ord
a =>Fold1
s a -> s -> aminimum1Of
::Ord
a =>Iso'
s a -> s -> aminimum1Of
::Ord
a =>Lens'
s a -> s -> aminimum1Of
::Ord
a =>Traversal1'
s a -> s -> a
minimumOf :: Ord a => Getting (Endo (Endo (Maybe a))) s a -> s -> Maybe a #
Obtain the minimum element (if any) targeted by a Fold
or Traversal
safely.
Note: minimumOf
on a valid Iso
, Lens
or Getter
will always return Just
a value.
>>>
minimumOf traverse [1..10]
Just 1
>>>
minimumOf traverse []
Nothing
>>>
minimumOf (folded.filtered even) [1,4,3,6,7,9,2]
Just 2
minimum
≡fromMaybe
(error
"empty").
minimumOf
folded
In the interest of efficiency, This operation has semantics more strict than strictly necessary.
has lazier semantics but could leak memory.rmap
getMin
(foldMapOf
l Min
)
minimumOf
::Ord
a =>Getter
s a -> s ->Maybe
aminimumOf
::Ord
a =>Fold
s a -> s ->Maybe
aminimumOf
::Ord
a =>Iso'
s a -> s ->Maybe
aminimumOf
::Ord
a =>Lens'
s a -> s ->Maybe
aminimumOf
::Ord
a =>Traversal'
s a -> s ->Maybe
a
maximum1Of :: Ord a => Getting (Max a) s a -> s -> a #
Obtain the maximum element targeted by a Fold1
or Traversal1
.
>>>
maximum1Of traverse1 (1 :| [2..10])
10
maximum1Of
::Ord
a =>Getter
s a -> s -> amaximum1Of
::Ord
a =>Fold1
s a -> s -> amaximum1Of
::Ord
a =>Iso'
s a -> s -> amaximum1Of
::Ord
a =>Lens'
s a -> s -> amaximum1Of
::Ord
a =>Traversal1'
s a -> s -> a
maximumOf :: Ord a => Getting (Endo (Endo (Maybe a))) s a -> s -> Maybe a #
Obtain the maximum element (if any) targeted by a Fold
or Traversal
safely.
Note: maximumOf
on a valid Iso
, Lens
or Getter
will always return Just
a value.
>>>
maximumOf traverse [1..10]
Just 10
>>>
maximumOf traverse []
Nothing
>>>
maximumOf (folded.filtered even) [1,4,3,6,7,9,2]
Just 6
maximum
≡fromMaybe
(error
"empty").
maximumOf
folded
In the interest of efficiency, This operation has semantics more strict than strictly necessary.
has lazier semantics but could leak memory.rmap
getMax
(foldMapOf
l Max
)
maximumOf
::Ord
a =>Getter
s a -> s ->Maybe
amaximumOf
::Ord
a =>Fold
s a -> s ->Maybe
amaximumOf
::Ord
a =>Iso'
s a -> s ->Maybe
amaximumOf
::Ord
a =>Lens'
s a -> s ->Maybe
amaximumOf
::Ord
a =>Traversal'
s a -> s ->Maybe
a
notNullOf :: Getting Any s a -> s -> Bool #
Returns True
if this Fold
or Traversal
has any targets in the given container.
A more "conversational" alias for this combinator is has
.
Note: notNullOf
on a valid Iso
, Lens
or Getter
should always return True
.
not
.
null
≡notNullOf
folded
This may be rather inefficient compared to the
check of many containers.not
.
null
>>>
notNullOf _1 (1,2)
True
>>>
notNullOf traverse [1..10]
True
>>>
notNullOf folded []
False
>>>
notNullOf (element 20) [1..10]
False
notNullOf
(folded
.
_1
.
folded
) :: (Foldable
f,Foldable
g) => f (g a, b) ->Bool
notNullOf
::Getter
s a -> s ->Bool
notNullOf
::Fold
s a -> s ->Bool
notNullOf
::Iso'
s a -> s ->Bool
notNullOf
::Lens'
s a -> s ->Bool
notNullOf
::Traversal'
s a -> s ->Bool
nullOf :: Getting All s a -> s -> Bool #
Returns True
if this Fold
or Traversal
has no targets in the given container.
Note: nullOf
on a valid Iso
, Lens
or Getter
should always return False
.
null
≡nullOf
folded
This may be rather inefficient compared to the null
check of many containers.
>>>
nullOf _1 (1,2)
False
>>>
nullOf ignored ()
True
>>>
nullOf traverse []
True
>>>
nullOf (element 20) [1..10]
True
nullOf
(folded
.
_1
.
folded
) :: (Foldable
f,Foldable
g) => f (g a, b) ->Bool
nullOf
::Getter
s a -> s ->Bool
nullOf
::Fold
s a -> s ->Bool
nullOf
::Iso'
s a -> s ->Bool
nullOf
::Lens'
s a -> s ->Bool
nullOf
::Traversal'
s a -> s ->Bool
last1Of :: Getting (Last a) s a -> s -> a #
Retrieve the Last
entry of a Fold1
or Traversal1
or retrieve the result
from a Getter
or Lens
.o
>>>
last1Of traverse1 (1 :| [2..10])
10
>>>
last1Of both1 (1,2)
2
last1Of
::Getter
s a -> s ->Maybe
alast1Of
::Fold1
s a -> s ->Maybe
alast1Of
::Lens'
s a -> s ->Maybe
alast1Of
::Iso'
s a -> s ->Maybe
alast1Of
::Traversal1'
s a -> s ->Maybe
a
lastOf :: Getting (Rightmost a) s a -> s -> Maybe a #
Retrieve the Last
entry of a Fold
or Traversal
or retrieve Just
the result
from a Getter
or Lens
.
The answer is computed in a manner that leaks space less than
and gives you back access to the outermost ala
Last
.
foldMapOf
Just
constructor more quickly, but may have worse
constant factors.
>>>
lastOf traverse [1..10]
Just 10
>>>
lastOf both (1,2)
Just 2
>>>
lastOf ignored ()
Nothing
lastOf
::Getter
s a -> s ->Maybe
alastOf
::Fold
s a -> s ->Maybe
alastOf
::Lens'
s a -> s ->Maybe
alastOf
::Iso'
s a -> s ->Maybe
alastOf
::Traversal'
s a -> s ->Maybe
a
first1Of :: Getting (First a) s a -> s -> a #
Retrieve the First
entry of a Fold1
or Traversal1
or the result from a Getter
or Lens
.
>>>
first1Of traverse1 (1 :| [2..10])
1
>>>
first1Of both1 (1,2)
1
Note: this is different from ^.
.
>>>
first1Of traverse1 ([1,2] :| [[3,4],[5,6]])
[1,2]
>>>
([1,2] :| [[3,4],[5,6]]) ^. traverse1
[1,2,3,4,5,6]
first1Of
::Getter
s a -> s -> afirst1Of
::Fold1
s a -> s -> afirst1Of
::Lens'
s a -> s -> afirst1Of
::Iso'
s a -> s -> afirst1Of
::Traversal1'
s a -> s -> a
firstOf :: Getting (Leftmost a) s a -> s -> Maybe a #
Retrieve the First
entry of a Fold
or Traversal
or retrieve Just
the result
from a Getter
or Lens
.
The answer is computed in a manner that leaks space less than
and gives you back access to the outermost ala
First
.
foldMapOf
Just
constructor more quickly, but may have worse
constant factors.
Note: this could been named headOf
.
>>>
firstOf traverse [1..10]
Just 1
>>>
firstOf both (1,2)
Just 1
>>>
firstOf ignored ()
Nothing
firstOf
::Getter
s a -> s ->Maybe
afirstOf
::Fold
s a -> s ->Maybe
afirstOf
::Lens'
s a -> s ->Maybe
afirstOf
::Iso'
s a -> s ->Maybe
afirstOf
::Traversal'
s a -> s ->Maybe
a
(^?!) :: HasCallStack => s -> Getting (Endo a) s a -> a infixl 8 #
(^?) :: s -> Getting (First a) s a -> Maybe a infixl 8 #
Perform a safe head
of a Fold
or Traversal
or retrieve Just
the result
from a Getter
or Lens
.
When using a Traversal
as a partial Lens
, or a Fold
as a partial Getter
this can be a convenient
way to extract the optional value.
Note: if you get stack overflows due to this, you may want to use firstOf
instead, which can deal
more gracefully with heavily left-biased trees.
>>>
Left 4 ^?_Left
Just 4
>>>
Right 4 ^?_Left
Nothing
>>>
"world" ^? ix 3
Just 'l'
>>>
"world" ^? ix 20
Nothing
(^?
) ≡flip
preview
(^?
) :: s ->Getter
s a ->Maybe
a (^?
) :: s ->Fold
s a ->Maybe
a (^?
) :: s ->Lens'
s a ->Maybe
a (^?
) :: s ->Iso'
s a ->Maybe
a (^?
) :: s ->Traversal'
s a ->Maybe
a
lengthOf :: Getting (Endo (Endo Int)) s a -> s -> Int #
Calculate the number of targets there are for a Fold
in a given container.
Note: This can be rather inefficient for large containers and just like length
,
this will not terminate for infinite folds.
length
≡lengthOf
folded
>>>
lengthOf _1 ("hello",())
1
>>>
lengthOf traverse [1..10]
10
>>>
lengthOf (traverse.traverse) [[1,2],[3,4],[5,6]]
6
lengthOf
(folded
.
folded
) :: (Foldable
f,Foldable
g) => f (g a) ->Int
lengthOf
::Getter
s a -> s ->Int
lengthOf
::Fold
s a -> s ->Int
lengthOf
::Lens'
s a -> s ->Int
lengthOf
::Iso'
s a -> s ->Int
lengthOf
::Traversal'
s a -> s ->Int
concatOf :: Getting [r] s [r] -> s -> [r] #
Concatenate all of the lists targeted by a Fold
into a longer list.
>>>
concatOf both ("pan","ama")
"panama"
concat
≡concatOf
folded
concatOf
≡view
concatOf
::Getter
s [r] -> s -> [r]concatOf
::Fold
s [r] -> s -> [r]concatOf
::Iso'
s [r] -> s -> [r]concatOf
::Lens'
s [r] -> s -> [r]concatOf
::Traversal'
s [r] -> s -> [r]
concatMapOf :: Getting [r] s a -> (a -> [r]) -> s -> [r] #
Map a function over all the targets of a Fold
of a container and concatenate the resulting lists.
>>>
concatMapOf both (\x -> [x, x + 1]) (1,3)
[1,2,3,4]
concatMap
≡concatMapOf
folded
concatMapOf
::Getter
s a -> (a -> [r]) -> s -> [r]concatMapOf
::Fold
s a -> (a -> [r]) -> s -> [r]concatMapOf
::Lens'
s a -> (a -> [r]) -> s -> [r]concatMapOf
::Iso'
s a -> (a -> [r]) -> s -> [r]concatMapOf
::Traversal'
s a -> (a -> [r]) -> s -> [r]
notElemOf :: Eq a => Getting All s a -> a -> s -> Bool #
Does the element not occur anywhere within a given Fold
of the structure?
>>>
notElemOf each 'd' ('a','b','c')
True
>>>
notElemOf each 'a' ('a','b','c')
False
notElem
≡notElemOf
folded
notElemOf
::Eq
a =>Getter
s a -> a -> s ->Bool
notElemOf
::Eq
a =>Fold
s a -> a -> s ->Bool
notElemOf
::Eq
a =>Iso'
s a -> a -> s ->Bool
notElemOf
::Eq
a =>Lens'
s a -> a -> s ->Bool
notElemOf
::Eq
a =>Traversal'
s a -> a -> s ->Bool
notElemOf
::Eq
a =>Prism'
s a -> a -> s ->Bool
elemOf :: Eq a => Getting Any s a -> a -> s -> Bool #
Does the element occur anywhere within a given Fold
of the structure?
>>>
elemOf both "hello" ("hello","world")
True
elem
≡elemOf
folded
elemOf
::Eq
a =>Getter
s a -> a -> s ->Bool
elemOf
::Eq
a =>Fold
s a -> a -> s ->Bool
elemOf
::Eq
a =>Lens'
s a -> a -> s ->Bool
elemOf
::Eq
a =>Iso'
s a -> a -> s ->Bool
elemOf
::Eq
a =>Traversal'
s a -> a -> s ->Bool
elemOf
::Eq
a =>Prism'
s a -> a -> s ->Bool
msumOf :: MonadPlus m => Getting (Endo (m a)) s (m a) -> s -> m a #
The sum of a collection of actions, generalizing concatOf
.
>>>
msumOf both ("hello","world")
"helloworld"
>>>
msumOf each (Nothing, Just "hello", Nothing)
Just "hello"
msum
≡msumOf
folded
msumOf
::MonadPlus
m =>Getter
s (m a) -> s -> m amsumOf
::MonadPlus
m =>Fold
s (m a) -> s -> m amsumOf
::MonadPlus
m =>Lens'
s (m a) -> s -> m amsumOf
::MonadPlus
m =>Iso'
s (m a) -> s -> m amsumOf
::MonadPlus
m =>Traversal'
s (m a) -> s -> m amsumOf
::MonadPlus
m =>Prism'
s (m a) -> s -> m a
asumOf :: Alternative f => Getting (Endo (f a)) s (f a) -> s -> f a #
The sum of a collection of actions, generalizing concatOf
.
>>>
asumOf both ("hello","world")
"helloworld"
>>>
asumOf each (Nothing, Just "hello", Nothing)
Just "hello"
asum
≡asumOf
folded
asumOf
::Alternative
f =>Getter
s (f a) -> s -> f aasumOf
::Alternative
f =>Fold
s (f a) -> s -> f aasumOf
::Alternative
f =>Lens'
s (f a) -> s -> f aasumOf
::Alternative
f =>Iso'
s (f a) -> s -> f aasumOf
::Alternative
f =>Traversal'
s (f a) -> s -> f aasumOf
::Alternative
f =>Prism'
s (f a) -> s -> f a
sequenceOf_ :: Monad m => Getting (Sequenced a m) s (m a) -> s -> m () #
Evaluate each monadic action referenced by a Fold
on the structure from left to right, and ignore the results.
>>>
sequenceOf_ both (putStrLn "hello",putStrLn "world")
hello world
sequence_
≡sequenceOf_
folded
sequenceOf_
::Monad
m =>Getter
s (m a) -> s -> m ()sequenceOf_
::Monad
m =>Fold
s (m a) -> s -> m ()sequenceOf_
::Monad
m =>Lens'
s (m a) -> s -> m ()sequenceOf_
::Monad
m =>Iso'
s (m a) -> s -> m ()sequenceOf_
::Monad
m =>Traversal'
s (m a) -> s -> m ()sequenceOf_
::Monad
m =>Prism'
s (m a) -> s -> m ()
forMOf_ :: Monad m => Getting (Sequenced r m) s a -> s -> (a -> m r) -> m () #
forMOf_
is mapMOf_
with two of its arguments flipped.
>>>
forMOf_ both ("hello","world") putStrLn
hello world
forM_
≡forMOf_
folded
forMOf_
::Monad
m =>Getter
s a -> s -> (a -> m r) -> m ()forMOf_
::Monad
m =>Fold
s a -> s -> (a -> m r) -> m ()forMOf_
::Monad
m =>Lens'
s a -> s -> (a -> m r) -> m ()forMOf_
::Monad
m =>Iso'
s a -> s -> (a -> m r) -> m ()forMOf_
::Monad
m =>Traversal'
s a -> s -> (a -> m r) -> m ()forMOf_
::Monad
m =>Prism'
s a -> s -> (a -> m r) -> m ()
mapMOf_ :: Monad m => Getting (Sequenced r m) s a -> (a -> m r) -> s -> m () #
Map each target of a Fold
on a structure to a monadic action, evaluate these actions from left to right, and ignore the results.
>>>
mapMOf_ both putStrLn ("hello","world")
hello world
mapM_
≡mapMOf_
folded
mapMOf_
::Monad
m =>Getter
s a -> (a -> m r) -> s -> m ()mapMOf_
::Monad
m =>Fold
s a -> (a -> m r) -> s -> m ()mapMOf_
::Monad
m =>Lens'
s a -> (a -> m r) -> s -> m ()mapMOf_
::Monad
m =>Iso'
s a -> (a -> m r) -> s -> m ()mapMOf_
::Monad
m =>Traversal'
s a -> (a -> m r) -> s -> m ()mapMOf_
::Monad
m =>Prism'
s a -> (a -> m r) -> s -> m ()
sequence1Of_ :: Functor f => Getting (TraversedF a f) s (f a) -> s -> f () #
See sequenceAOf_
and traverse1Of_
.
sequence1Of_
::Apply
f =>Fold1
s (f a) -> s -> f ()
Since: lens-4.16
for1Of_ :: Functor f => Getting (TraversedF r f) s a -> s -> (a -> f r) -> f () #
See forOf_
and traverse1Of_
.
>>>
for1Of_ both1 ("abc", "bcd") (\ks -> Map.fromList [ (k, ()) | k <- ks ])
fromList [('b',()),('c',())]
for1Of_
::Apply
f =>Fold1
s a -> s -> (a -> f r) -> f ()
Since: lens-4.16
traverse1Of_ :: Functor f => Getting (TraversedF r f) s a -> (a -> f r) -> s -> f () #
Traverse over all of the targets of a Fold1
, computing an Apply
based answer.
As long as you have Applicative
or Functor
effect you are better using traverseOf_
.
The traverse1Of_
is useful only when you have genuine Apply
effect.
>>>
traverse1Of_ both1 (\ks -> Map.fromList [ (k, ()) | k <- ks ]) ("abc", "bcd")
fromList [('b',()),('c',())]
traverse1Of_
::Apply
f =>Fold1
s a -> (a -> f r) -> s -> f ()
Since: lens-4.16
sequenceAOf_ :: Functor f => Getting (Traversed a f) s (f a) -> s -> f () #
Evaluate each action in observed by a Fold
on a structure from left to right, ignoring the results.
sequenceA_
≡sequenceAOf_
folded
>>>
sequenceAOf_ both (putStrLn "hello",putStrLn "world")
hello world
sequenceAOf_
::Functor
f =>Getter
s (f a) -> s -> f ()sequenceAOf_
::Applicative
f =>Fold
s (f a) -> s -> f ()sequenceAOf_
::Functor
f =>Lens'
s (f a) -> s -> f ()sequenceAOf_
::Functor
f =>Iso'
s (f a) -> s -> f ()sequenceAOf_
::Applicative
f =>Traversal'
s (f a) -> s -> f ()sequenceAOf_
::Applicative
f =>Prism'
s (f a) -> s -> f ()
forOf_ :: Functor f => Getting (Traversed r f) s a -> s -> (a -> f r) -> f () #
Traverse over all of the targets of a Fold
(or Getter
), computing an Applicative
(or Functor
)-based answer,
but unlike forOf
do not construct a new structure. forOf_
generalizes
for_
to work over any Fold
.
When passed a Getter
, forOf_
can work over any Functor
, but when passed a Fold
, forOf_
requires
an Applicative
.
for_
≡forOf_
folded
>>>
forOf_ both ("hello","world") putStrLn
hello world
The rather specific signature of forOf_
allows it to be used as if the signature was any of:
iforOf_
l s ≡forOf_
l s.
Indexed
forOf_
::Functor
f =>Getter
s a -> s -> (a -> f r) -> f ()forOf_
::Applicative
f =>Fold
s a -> s -> (a -> f r) -> f ()forOf_
::Functor
f =>Lens'
s a -> s -> (a -> f r) -> f ()forOf_
::Functor
f =>Iso'
s a -> s -> (a -> f r) -> f ()forOf_
::Applicative
f =>Traversal'
s a -> s -> (a -> f r) -> f ()forOf_
::Applicative
f =>Prism'
s a -> s -> (a -> f r) -> f ()
traverseOf_ :: Functor f => Getting (Traversed r f) s a -> (a -> f r) -> s -> f () #
Traverse over all of the targets of a Fold
(or Getter
), computing an Applicative
(or Functor
)-based answer,
but unlike traverseOf
do not construct a new structure. traverseOf_
generalizes
traverse_
to work over any Fold
.
When passed a Getter
, traverseOf_
can work over any Functor
, but when passed a Fold
, traverseOf_
requires
an Applicative
.
>>>
traverseOf_ both putStrLn ("hello","world")
hello world
traverse_
≡traverseOf_
folded
traverseOf_
_2
::Functor
f => (c -> f r) -> (d, c) -> f ()traverseOf_
_Left
::Applicative
f => (a -> f b) ->Either
a c -> f ()
itraverseOf_
l ≡traverseOf_
l.
Indexed
The rather specific signature of traverseOf_
allows it to be used as if the signature was any of:
traverseOf_
::Functor
f =>Getter
s a -> (a -> f r) -> s -> f ()traverseOf_
::Applicative
f =>Fold
s a -> (a -> f r) -> s -> f ()traverseOf_
::Functor
f =>Lens'
s a -> (a -> f r) -> s -> f ()traverseOf_
::Functor
f =>Iso'
s a -> (a -> f r) -> s -> f ()traverseOf_
::Applicative
f =>Traversal'
s a -> (a -> f r) -> s -> f ()traverseOf_
::Applicative
f =>Prism'
s a -> (a -> f r) -> s -> f ()
sumOf :: Num a => Getting (Endo (Endo a)) s a -> s -> a #
Calculate the Sum
of every number targeted by a Fold
.
>>>
sumOf both (5,6)
11>>>
sumOf folded [1,2,3,4]
10>>>
sumOf (folded.both) [(1,2),(3,4)]
10>>>
import Data.Data.Lens
>>>
sumOf biplate [(1::Int,[]),(2,[(3::Int,4::Int)])] :: Int
10
sum
≡sumOf
folded
This operation may be more strict than you would expect. If you
want a lazier version use ala
Sum
.
foldMapOf
sumOf
_1
::Num
a => (a, b) -> asumOf
(folded
.
_1
) :: (Foldable
f,Num
a) => f (a, b) -> a
sumOf
::Num
a =>Getter
s a -> s -> asumOf
::Num
a =>Fold
s a -> s -> asumOf
::Num
a =>Lens'
s a -> s -> asumOf
::Num
a =>Iso'
s a -> s -> asumOf
::Num
a =>Traversal'
s a -> s -> asumOf
::Num
a =>Prism'
s a -> s -> a
productOf :: Num a => Getting (Endo (Endo a)) s a -> s -> a #
Calculate the Product
of every number targeted by a Fold
.
>>>
productOf both (4,5)
20>>>
productOf folded [1,2,3,4,5]
120
product
≡productOf
folded
This operation may be more strict than you would expect. If you
want a lazier version use ala
Product
.
foldMapOf
productOf
::Num
a =>Getter
s a -> s -> aproductOf
::Num
a =>Fold
s a -> s -> aproductOf
::Num
a =>Lens'
s a -> s -> aproductOf
::Num
a =>Iso'
s a -> s -> aproductOf
::Num
a =>Traversal'
s a -> s -> aproductOf
::Num
a =>Prism'
s a -> s -> a
noneOf :: Getting Any s a -> (a -> Bool) -> s -> Bool #
Returns True
only if no targets of a Fold
satisfy a predicate.
>>>
noneOf each (is _Nothing) (Just 3, Just 4, Just 5)
True>>>
noneOf (folded.folded) (<10) [[13,99,20],[3,71,42]]
False
inoneOf
l =noneOf
l.
Indexed
noneOf
::Getter
s a -> (a ->Bool
) -> s ->Bool
noneOf
::Fold
s a -> (a ->Bool
) -> s ->Bool
noneOf
::Lens'
s a -> (a ->Bool
) -> s ->Bool
noneOf
::Iso'
s a -> (a ->Bool
) -> s ->Bool
noneOf
::Traversal'
s a -> (a ->Bool
) -> s ->Bool
noneOf
::Prism'
s a -> (a ->Bool
) -> s ->Bool
allOf :: Getting All s a -> (a -> Bool) -> s -> Bool #
Returns True
if every target of a Fold
satisfies a predicate.
>>>
allOf both (>=3) (4,5)
True>>>
allOf folded (>=2) [1..10]
False
all
≡allOf
folded
iallOf
l =allOf
l.
Indexed
allOf
::Getter
s a -> (a ->Bool
) -> s ->Bool
allOf
::Fold
s a -> (a ->Bool
) -> s ->Bool
allOf
::Lens'
s a -> (a ->Bool
) -> s ->Bool
allOf
::Iso'
s a -> (a ->Bool
) -> s ->Bool
allOf
::Traversal'
s a -> (a ->Bool
) -> s ->Bool
allOf
::Prism'
s a -> (a ->Bool
) -> s ->Bool
anyOf :: Getting Any s a -> (a -> Bool) -> s -> Bool #
Returns True
if any target of a Fold
satisfies a predicate.
>>>
anyOf both (=='x') ('x','y')
True>>>
import Data.Data.Lens
>>>
anyOf biplate (== "world") (((),2::Int),"hello",("world",11::Int))
True
any
≡anyOf
folded
ianyOf
l ≡anyOf
l.
Indexed
anyOf
::Getter
s a -> (a ->Bool
) -> s ->Bool
anyOf
::Fold
s a -> (a ->Bool
) -> s ->Bool
anyOf
::Lens'
s a -> (a ->Bool
) -> s ->Bool
anyOf
::Iso'
s a -> (a ->Bool
) -> s ->Bool
anyOf
::Traversal'
s a -> (a ->Bool
) -> s ->Bool
anyOf
::Prism'
s a -> (a ->Bool
) -> s ->Bool
orOf :: Getting Any s Bool -> s -> Bool #
Returns True
if any target of a Fold
is True
.
>>>
orOf both (True,False)
True>>>
orOf both (False,False)
False
or
≡orOf
folded
orOf
::Getter
sBool
-> s ->Bool
orOf
::Fold
sBool
-> s ->Bool
orOf
::Lens'
sBool
-> s ->Bool
orOf
::Iso'
sBool
-> s ->Bool
orOf
::Traversal'
sBool
-> s ->Bool
orOf
::Prism'
sBool
-> s ->Bool
andOf :: Getting All s Bool -> s -> Bool #
Returns True
if every target of a Fold
is True
.
>>>
andOf both (True,False)
False>>>
andOf both (True,True)
True
and
≡andOf
folded
andOf
::Getter
sBool
-> s ->Bool
andOf
::Fold
sBool
-> s ->Bool
andOf
::Lens'
sBool
-> s ->Bool
andOf
::Iso'
sBool
-> s ->Bool
andOf
::Traversal'
sBool
-> s ->Bool
andOf
::Prism'
sBool
-> s ->Bool
(^..) :: s -> Getting (Endo [a]) s a -> [a] infixl 8 #
A convenient infix (flipped) version of toListOf
.
>>>
[[1,2],[3]]^..id
[[[1,2],[3]]]>>>
[[1,2],[3]]^..traverse
[[1,2],[3]]>>>
[[1,2],[3]]^..traverse.traverse
[1,2,3]
>>>
(1,2)^..both
[1,2]
toList
xs ≡ xs^..
folded
(^..
) ≡flip
toListOf
(^..
) :: s ->Getter
s a -> a :: s ->Fold
s a -> a :: s ->Lens'
s a -> a :: s ->Iso'
s a -> a :: s ->Traversal'
s a -> a :: s ->Prism'
s a -> [a]
toNonEmptyOf :: Getting (NonEmptyDList a) s a -> s -> NonEmpty a #
Extract a NonEmpty
of the targets of Fold1
.
>>>
toNonEmptyOf both1 ("hello", "world")
"hello" :| ["world"]
toNonEmptyOf
::Getter
s a -> s -> NonEmpty atoNonEmptyOf
::Fold1
s a -> s -> NonEmpty atoNonEmptyOf
::Lens'
s a -> s -> NonEmpty atoNonEmptyOf
::Iso'
s a -> s -> NonEmpty atoNonEmptyOf
::Traversal1'
s a -> s -> NonEmpty atoNonEmptyOf
::Prism'
s a -> s -> NonEmpty a
foldlOf :: Getting (Dual (Endo r)) s a -> (r -> a -> r) -> r -> s -> r #
Left-associative fold of the parts of a structure that are viewed through a Lens
, Getter
, Fold
or Traversal
.
foldl
≡foldlOf
folded
foldlOf
::Getter
s a -> (r -> a -> r) -> r -> s -> rfoldlOf
::Fold
s a -> (r -> a -> r) -> r -> s -> rfoldlOf
::Lens'
s a -> (r -> a -> r) -> r -> s -> rfoldlOf
::Iso'
s a -> (r -> a -> r) -> r -> s -> rfoldlOf
::Traversal'
s a -> (r -> a -> r) -> r -> s -> rfoldlOf
::Prism'
s a -> (r -> a -> r) -> r -> s -> r
foldrOf :: Getting (Endo r) s a -> (a -> r -> r) -> r -> s -> r #
Right-associative fold of parts of a structure that are viewed through a Lens
, Getter
, Fold
or Traversal
.
foldr
≡foldrOf
folded
foldrOf
::Getter
s a -> (a -> r -> r) -> r -> s -> rfoldrOf
::Fold
s a -> (a -> r -> r) -> r -> s -> rfoldrOf
::Lens'
s a -> (a -> r -> r) -> r -> s -> rfoldrOf
::Iso'
s a -> (a -> r -> r) -> r -> s -> rfoldrOf
::Traversal'
s a -> (a -> r -> r) -> r -> s -> rfoldrOf
::Prism'
s a -> (a -> r -> r) -> r -> s -> r
ifoldrOf
l ≡foldrOf
l.
Indexed
foldrOf
::Getting
(Endo
r) s a -> (a -> r -> r) -> r -> s -> r
foldOf :: Getting a s a -> s -> a #
Combine the elements of a structure viewed through a Lens
, Getter
,
Fold
or Traversal
using a monoid.
>>>
foldOf (folded.folded) [[Sum 1,Sum 4],[Sum 8, Sum 8],[Sum 21]]
Sum {getSum = 42}
fold
=foldOf
folded
foldOf
≡view
foldOf
::Getter
s m -> s -> mfoldOf
::Monoid
m =>Fold
s m -> s -> mfoldOf
::Lens'
s m -> s -> mfoldOf
::Iso'
s m -> s -> mfoldOf
::Monoid
m =>Traversal'
s m -> s -> mfoldOf
::Monoid
m =>Prism'
s m -> s -> m
foldMapOf :: Getting r s a -> (a -> r) -> s -> r #
Map each part of a structure viewed through a Lens
, Getter
,
Fold
or Traversal
to a monoid and combine the results.
>>>
foldMapOf (folded . both . _Just) Sum [(Just 21, Just 21)]
Sum {getSum = 42}
foldMap
=foldMapOf
folded
foldMapOf
≡views
ifoldMapOf
l =foldMapOf
l.
Indexed
foldMapOf
::Getter
s a -> (a -> r) -> s -> rfoldMapOf
::Monoid
r =>Fold
s a -> (a -> r) -> s -> rfoldMapOf
::Semigroup
r =>Fold1
s a -> (a -> r) -> s -> rfoldMapOf
::Lens'
s a -> (a -> r) -> s -> rfoldMapOf
::Iso'
s a -> (a -> r) -> s -> rfoldMapOf
::Monoid
r =>Traversal'
s a -> (a -> r) -> s -> rfoldMapOf
::Semigroup
r =>Traversal1'
s a -> (a -> r) -> s -> rfoldMapOf
::Monoid
r =>Prism'
s a -> (a -> r) -> s -> r
foldMapOf
::Getting
r s a -> (a -> r) -> s -> r
lined :: Applicative f => IndexedLensLike' Int f String String #
A Fold
over the individual lines
of a String
.
lined
::Fold
String
String
lined
::Traversal'
String
String
lined
::IndexedFold
Int
String
String
lined
::IndexedTraversal'
Int
String
String
Note: This function type-checks as a Traversal
but it doesn't satisfy the laws. It's only valid to use it
when you don't insert any newline characters while traversing, and if your original String
contains only
isolated newline characters.
worded :: Applicative f => IndexedLensLike' Int f String String #
A Fold
over the individual words
of a String
.
worded
::Fold
String
String
worded
::Traversal'
String
String
worded
::IndexedFold
Int
String
String
worded
::IndexedTraversal'
Int
String
String
Note: This function type-checks as a Traversal
but it doesn't satisfy the laws. It's only valid to use it
when you don't insert any whitespace characters while traversing, and if your original String
contains only
isolated space characters (and no other characters that count as space, such as non-breaking spaces).
droppingWhile :: (Conjoined p, Profunctor q, Applicative f) => (a -> Bool) -> Optical p q (Compose (State Bool) f) s t a a -> Optical p q f s t a a #
Obtain a Fold
by dropping elements from another Fold
, Lens
, Iso
, Getter
or Traversal
while a predicate holds.
dropWhile
p ≡toListOf
(droppingWhile
pfolded
)
>>>
toListOf (droppingWhile (<=3) folded) [1..6]
[4,5,6]
>>>
toListOf (droppingWhile (<=3) folded) [1,6,1]
[6,1]
droppingWhile
:: (a ->Bool
) ->Fold
s a ->Fold
s adroppingWhile
:: (a ->Bool
) ->Getter
s a ->Fold
s adroppingWhile
:: (a ->Bool
) ->Traversal'
s a ->Fold
s a -- see notesdroppingWhile
:: (a ->Bool
) ->Lens'
s a ->Fold
s a -- see notesdroppingWhile
:: (a ->Bool
) ->Prism'
s a ->Fold
s a -- see notesdroppingWhile
:: (a ->Bool
) ->Iso'
s a ->Fold
s a -- see notes
droppingWhile
:: (a ->Bool
) ->IndexPreservingTraversal'
s a ->IndexPreservingFold
s a -- see notesdroppingWhile
:: (a ->Bool
) ->IndexPreservingLens'
s a ->IndexPreservingFold
s a -- see notesdroppingWhile
:: (a ->Bool
) ->IndexPreservingGetter
s a ->IndexPreservingFold
s adroppingWhile
:: (a ->Bool
) ->IndexPreservingFold
s a ->IndexPreservingFold
s a
droppingWhile
:: (a ->Bool
) ->IndexedTraversal'
i s a ->IndexedFold
i s a -- see notesdroppingWhile
:: (a ->Bool
) ->IndexedLens'
i s a ->IndexedFold
i s a -- see notesdroppingWhile
:: (a ->Bool
) ->IndexedGetter
i s a ->IndexedFold
i s adroppingWhile
:: (a ->Bool
) ->IndexedFold
i s a ->IndexedFold
i s a
Note: Many uses of this combinator will yield something that meets the types, but not the laws of a valid
Traversal
or IndexedTraversal
. The Traversal
and IndexedTraversal
laws are only satisfied if the
new values you assign to the first target also does not pass the predicate! Otherwise subsequent traversals
will visit fewer elements and Traversal
fusion is not sound.
So for any traversal t
and predicate p
,
may not be lawful, but
droppingWhile
p t(
is. For example:dropping
1 . droppingWhile
p) t
>>>
let l :: Traversal' [Int] Int; l = droppingWhile (<= 1) traverse
>>>
let l' :: Traversal' [Int] Int; l' = dropping 1 l
l
is not a lawful setter because
:over
l f .
over
l g ≢ over
l (f . g)
>>>
[1,2,3] & l .~ 0 & l .~ 4
[1,0,0]>>>
[1,2,3] & l .~ 4
[1,4,4]
l'
on the other hand behaves lawfully:
>>>
[1,2,3] & l' .~ 0 & l' .~ 4
[1,2,4]>>>
[1,2,3] & l' .~ 4
[1,2,4]
takingWhile :: (Conjoined p, Applicative f) => (a -> Bool) -> Over p (TakingWhile p f a a) s t a a -> Over p f s t a a #
Obtain a Fold
by taking elements from another Fold
, Lens
, Iso
, Getter
or Traversal
while a predicate holds.
takeWhile
p ≡toListOf
(takingWhile
pfolded
)
>>>
timingOut $ toListOf (takingWhile (<=3) folded) [1..]
[1,2,3]
takingWhile
:: (a ->Bool
) ->Fold
s a ->Fold
s atakingWhile
:: (a ->Bool
) ->Getter
s a ->Fold
s atakingWhile
:: (a ->Bool
) ->Traversal'
s a ->Fold
s a -- * See note belowtakingWhile
:: (a ->Bool
) ->Lens'
s a ->Fold
s a -- * See note belowtakingWhile
:: (a ->Bool
) ->Prism'
s a ->Fold
s a -- * See note belowtakingWhile
:: (a ->Bool
) ->Iso'
s a ->Fold
s a -- * See note belowtakingWhile
:: (a ->Bool
) ->IndexedTraversal'
i s a ->IndexedFold
i s a -- * See note belowtakingWhile
:: (a ->Bool
) ->IndexedLens'
i s a ->IndexedFold
i s a -- * See note belowtakingWhile
:: (a ->Bool
) ->IndexedFold
i s a ->IndexedFold
i s atakingWhile
:: (a ->Bool
) ->IndexedGetter
i s a ->IndexedFold
i s a
Note: When applied to a Traversal
, takingWhile
yields something that can be used as if it were a Traversal
, but
which is not a Traversal
per the laws, unless you are careful to ensure that you do not invalidate the predicate when
writing back through it.
filtered :: (Choice p, Applicative f) => (a -> Bool) -> Optic' p f a a #
Obtain a Fold
that can be composed with to filter another Lens
, Iso
, Getter
, Fold
(or Traversal
).
Note: This is not a legal Traversal
, unless you are very careful not to invalidate the predicate on the target.
Note: This is also not a legal Prism
, unless you are very careful not to inject a value that matches the predicate.
As a counter example, consider that given evens =
the second filtered
even
Traversal
law is violated:
over
evenssucc
.
over
evenssucc
/=
over
evens (succ
.
succ
)
So, in order for this to qualify as a legal Traversal
you can only use it for actions that preserve the result of the predicate!
>>>
[1..10]^..folded.filtered even
[2,4,6,8,10]
This will preserve an index if it is present.
replicated :: Int -> Fold a a #
A Fold
that replicates its input n
times.
replicate
n ≡toListOf
(replicated
n)
>>>
5^..replicated 20
[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5]
folded64 :: Foldable f => IndexedFold Int64 (f a) a #
folded :: Foldable f => IndexedFold Int (f a) a #
ifoldring :: (Indexable i p, Contravariant f, Applicative f) => ((i -> a -> f a -> f a) -> f a -> s -> f a) -> Over p f s t a b #
Obtain FoldWithIndex
by lifting ifoldr
like function.
foldring :: (Contravariant f, Applicative f) => ((a -> f a -> f a) -> f a -> s -> f a) -> LensLike f s t a b #
ifolding :: (Foldable f, Indexable i p, Contravariant g, Applicative g) => (s -> f (i, a)) -> Over p g s t a b #
_Show :: (Read a, Show a) => Prism' String a #
This is an improper prism for text formatting based on Read
and Show
.
This Prism
is "improper" in the sense that it normalizes the text formatting, but round tripping
is idempotent given sane 'Read'/'Show' instances.
>>>
_Show # 2
"2"
>>>
"EQ" ^? _Show :: Maybe Ordering
Just EQ
_Show
≡prism'
show
readMaybe
nearly :: a -> (a -> Bool) -> Prism' a () #
This Prism
compares for approximate equality with a given value and a predicate for testing,
an example where the value is the empty list and the predicate checks that a list is empty (same
as _Empty
with the AsEmpty
list instance):
>>>
nearly [] null # ()
[]>>>
[1,2,3,4] ^? nearly [] null
Nothing
nearly
[]null
::Prism'
[a] ()
To comply with the Prism
laws the arguments you supply to nearly a p
are somewhat constrained.
We assume p x
holds iff x ≡ a
. Under that assumption then this is a valid Prism
.
This is useful when working with a type where you can test equality for only a subset of its values, and the prism selects such a value.
_Just :: Prism (Maybe a) (Maybe b) a b #
This Prism
provides a Traversal
for tweaking the target of the value of Just
in a Maybe
.
>>>
over _Just (+1) (Just 2)
Just 3
Unlike traverse
this is a Prism
, and so you can use it to inject as well:
>>>
_Just # 5
Just 5
>>>
5^.re _Just
Just 5
Interestingly,
m^?
_Just
≡ m
>>>
Just x ^? _Just
Just x
>>>
Nothing ^? _Just
Nothing
_Right :: Prism (Either c a) (Either c b) a b #
This Prism
provides a Traversal
for tweaking the Right
half of an Either
:
>>>
over _Right (+1) (Left 2)
Left 2
>>>
over _Right (+1) (Right 2)
Right 3
>>>
Right "hello" ^._Right
"hello"
>>>
Left "hello" ^._Right :: [Double]
[]
It also can be turned around to obtain the embedding into the Right
half of an Either
:
>>>
_Right # 5
Right 5
>>>
5^.re _Right
Right 5
_Left :: Prism (Either a c) (Either b c) a b #
This Prism
provides a Traversal
for tweaking the Left
half of an Either
:
>>>
over _Left (+1) (Left 2)
Left 3
>>>
over _Left (+1) (Right 2)
Right 2
>>>
Right 42 ^._Left :: String
""
>>>
Left "hello" ^._Left
"hello"
It also can be turned around to obtain the embedding into the Left
half of an Either
:
>>>
_Left # 5
Left 5
>>>
5^.re _Left
Left 5
matching :: APrism s t a b -> s -> Either t a #
Retrieve the value targeted by a Prism
or return the
original value while allowing the type to change if it does
not match.
>>>
matching _Just (Just 12)
Right 12
>>>
matching _Just (Nothing :: Maybe Int) :: Either (Maybe Bool) Int
Left Nothing
isn't :: APrism s t a b -> s -> Bool #
Check to see if this Prism
doesn't match.
>>>
isn't _Left (Right 12)
True
>>>
isn't _Left (Left 12)
False
>>>
isn't _Empty []
False
below :: Traversable f => APrism' s a -> Prism' (f s) (f a) #
lift
a Prism
through a Traversable
functor, giving a Prism that matches only if all the elements of the container match the Prism
.
>>>
[Left 1, Right "foo", Left 4, Right "woot"]^..below _Right
[]
>>>
[Right "hail hydra!", Right "foo", Right "blah", Right "woot"]^..below _Right
[["hail hydra!","foo","blah","woot"]]
aside :: APrism s t a b -> Prism (e, s) (e, t) (e, a) (e, b) #
Use a Prism
to work over part of a structure.
without :: APrism s t a b -> APrism u v c d -> Prism (Either s u) (Either t v) (Either a c) (Either b d) #
outside :: Representable p => APrism s t a b -> Lens (p t r) (p s r) (p b r) (p a r) #
clonePrism :: APrism s t a b -> Prism s t a b #
Clone a Prism
so that you can reuse the same monomorphically typed Prism
for different purposes.
See cloneLens
and cloneTraversal
for examples of why you might want to do this.
withPrism :: APrism s t a b -> ((b -> t) -> (s -> Either t a) -> r) -> r #
Convert APrism
to the pair of functions that characterize it.
type APrism s t a b = Market a b a (Identity b) -> Market a b s (Identity t) #
If you see this in a signature for a function, the function is expecting a Prism
.
reuses :: MonadState b m => AReview t b -> (t -> r) -> m r #
This can be used to turn an Iso
or Prism
around and use
the current state through it the other way,
applying a function.
reuses
≡uses
.
re
reuses
(unto
f) g ≡gets
(g.
f)
>>>
evalState (reuses _Left isLeft) (5 :: Int)
True
reuses
::MonadState
a m =>Prism'
s a -> (s -> r) -> m rreuses
::MonadState
a m =>Iso'
s a -> (s -> r) -> m r
reuse :: MonadState b m => AReview t b -> m t #
This can be used to turn an Iso
or Prism
around and use
a value (or the current environment) through it the other way.
reuse
≡use
.
re
reuse
.
unto
≡gets
>>>
evalState (reuse _Left) 5
Left 5
>>>
evalState (reuse (unto succ)) 5
6
reuse
::MonadState
a m =>Prism'
s a -> m sreuse
::MonadState
a m =>Iso'
s a -> m s
reviews :: MonadReader b m => AReview t b -> (t -> r) -> m r #
This can be used to turn an Iso
or Prism
around and view
a value (or the current environment) through it the other way,
applying a function.
reviews
≡views
.
re
reviews
(unto
f) g ≡ g.
f
>>>
reviews _Left isRight "mustard"
False
>>>
reviews (unto succ) (*2) 3
8
Usually this function is used in the (->)
Monad
with a Prism
or Iso
, in which case it may be useful to think of
it as having one of these more restricted type signatures:
reviews
::Iso'
s a -> (s -> r) -> a -> rreviews
::Prism'
s a -> (s -> r) -> a -> r
However, when working with a Monad
transformer stack, it is sometimes useful to be able to review
the current environment, in which case
it may be beneficial to think of it as having one of these slightly more liberal type signatures:
reviews
::MonadReader
a m =>Iso'
s a -> (s -> r) -> m rreviews
::MonadReader
a m =>Prism'
s a -> (s -> r) -> m r
(#) :: AReview t b -> b -> t infixr 8 #
An infix alias for review
.
unto
f # x ≡ f x l # x ≡ x^.
re
l
This is commonly used when using a Prism
as a smart constructor.
>>>
_Left # 4
Left 4
But it can be used for any Prism
>>>
base 16 # 123
"7b"
(#) ::Iso'
s a -> a -> s (#) ::Prism'
s a -> a -> s (#) ::Review
s a -> a -> s (#) ::Equality'
s a -> a -> s
review :: MonadReader b m => AReview t b -> m t #
This can be used to turn an Iso
or Prism
around and view
a value (or the current environment) through it the other way.
review
≡view
.
re
review
.unto
≡id
>>>
review _Left "mustard"
Left "mustard"
>>>
review (unto succ) 5
6
Usually review
is used in the (->)
Monad
with a Prism
or Iso
, in which case it may be useful to think of
it as having one of these more restricted type signatures:
review
::Iso'
s a -> a -> sreview
::Prism'
s a -> a -> s
However, when working with a Monad
transformer stack, it is sometimes useful to be able to review
the current environment, in which case
it may be beneficial to think of it as having one of these slightly more liberal type signatures:
review
::MonadReader
a m =>Iso'
s a -> m sreview
::MonadReader
a m =>Prism'
s a -> m s
re :: AReview t b -> Getter b t #
Turn a Prism
or Iso
around to build a Getter
.
If you have an Iso
, from
is a more powerful version of this function
that will return an Iso
instead of a mere Getter
.
>>>
5 ^.re _Left
Left 5
>>>
6 ^.re (_Left.unto succ)
Left 7
review
≡view
.
re
reviews
≡views
.
re
reuse
≡use
.
re
reuses
≡uses
.
re
re
::Prism
s t a b ->Getter
b tre
::Iso
s t a b ->Getter
b t
getting :: (Profunctor p, Profunctor q, Functor f, Contravariant f) => Optical p q f s t a b -> Optical' p q f s a #
Coerce a Getter
-compatible Optical
to an Optical'
. This
is useful when using a Traversal
that is not simple as a Getter
or a
Fold
.
getting
::Traversal
s t a b ->Fold
s agetting
::Lens
s t a b ->Getter
s agetting
::IndexedTraversal
i s t a b ->IndexedFold
i s agetting
::IndexedLens
i s t a b ->IndexedGetter
i s a
(^@.) :: s -> IndexedGetting i (i, a) s a -> (i, a) infixl 8 #
View the index and value of an IndexedGetter
or IndexedLens
.
This is the same operation as iview
with the arguments flipped.
The fixity and semantics are such that subsequent field accesses can be
performed with (.
).
(^@.
) :: s ->IndexedGetter
i s a -> (i, a) (^@.
) :: s ->IndexedLens'
i s a -> (i, a)
The result probably doesn't have much meaning when applied to an IndexedFold
.
iuses :: MonadState s m => IndexedGetting i r s a -> (i -> a -> r) -> m r #
Use a function of the index and value of an IndexedGetter
into the current state.
When applied to an IndexedFold
the result will be a monoidal summary instead of a single answer.
iuse :: MonadState s m => IndexedGetting i (i, a) s a -> m (i, a) #
Use the index and value of an IndexedGetter
into the current state as a pair.
When applied to an IndexedFold
the result will most likely be a nonsensical monoidal summary of
the indices tupled with a monoidal summary of the values and probably not whatever it is you wanted.
iviews :: MonadReader s m => IndexedGetting i r s a -> (i -> a -> r) -> m r #
View a function of the index and value of an IndexedGetter
into the current environment.
When applied to an IndexedFold
the result will be a monoidal summary instead of a single answer.
iviews
≡ifoldMapOf
iview :: MonadReader s m => IndexedGetting i (i, a) s a -> m (i, a) #
View the index and value of an IndexedGetter
into the current environment as a pair.
When applied to an IndexedFold
the result will most likely be a nonsensical monoidal summary of
the indices tupled with a monoidal summary of the values and probably not whatever it is you wanted.
ilistenings :: MonadWriter w m => IndexedGetting i v w u -> (i -> u -> v) -> m a -> m (a, v) #
This is a generalized form of listen
that only extracts the portion of
the log that is focused on by a Getter
. If given a Fold
or a Traversal
then a monoidal summary of the parts of the log that are visited will be
returned.
ilistenings
::MonadWriter
w m =>IndexedGetter
w u -> (i -> u -> v) -> m a -> m (a, v)ilistenings
::MonadWriter
w m =>IndexedLens'
w u -> (i -> u -> v) -> m a -> m (a, v)ilistenings
:: (MonadWriter
w m,Monoid
v) =>IndexedFold
w u -> (i -> u -> v) -> m a -> m (a, v)ilistenings
:: (MonadWriter
w m,Monoid
v) =>IndexedTraversal'
w u -> (i -> u -> v) -> m a -> m (a, v)
listenings :: MonadWriter w m => Getting v w u -> (u -> v) -> m a -> m (a, v) #
This is a generalized form of listen
that only extracts the portion of
the log that is focused on by a Getter
. If given a Fold
or a Traversal
then a monoidal summary of the parts of the log that are visited will be
returned.
listenings
::MonadWriter
w m =>Getter
w u -> (u -> v) -> m a -> m (a, v)listenings
::MonadWriter
w m =>Lens'
w u -> (u -> v) -> m a -> m (a, v)listenings
::MonadWriter
w m =>Iso'
w u -> (u -> v) -> m a -> m (a, v)listenings
:: (MonadWriter
w m,Monoid
v) =>Fold
w u -> (u -> v) -> m a -> m (a, v)listenings
:: (MonadWriter
w m,Monoid
v) =>Traversal'
w u -> (u -> v) -> m a -> m (a, v)listenings
:: (MonadWriter
w m,Monoid
v) =>Prism'
w u -> (u -> v) -> m a -> m (a, v)
ilistening :: MonadWriter w m => IndexedGetting i (i, u) w u -> m a -> m (a, (i, u)) #
This is a generalized form of listen
that only extracts the portion of
the log that is focused on by a Getter
. If given a Fold
or a Traversal
then a monoidal summary of the parts of the log that are visited will be
returned.
ilistening
::MonadWriter
w m =>IndexedGetter
i w u -> m a -> m (a, (i, u))ilistening
::MonadWriter
w m =>IndexedLens'
i w u -> m a -> m (a, (i, u))ilistening
:: (MonadWriter
w m,Monoid
u) =>IndexedFold
i w u -> m a -> m (a, (i, u))ilistening
:: (MonadWriter
w m,Monoid
u) =>IndexedTraversal'
i w u -> m a -> m (a, (i, u))
listening :: MonadWriter w m => Getting u w u -> m a -> m (a, u) #
This is a generalized form of listen
that only extracts the portion of
the log that is focused on by a Getter
. If given a Fold
or a Traversal
then a monoidal summary of the parts of the log that are visited will be
returned.
listening
::MonadWriter
w m =>Getter
w u -> m a -> m (a, u)listening
::MonadWriter
w m =>Lens'
w u -> m a -> m (a, u)listening
::MonadWriter
w m =>Iso'
w u -> m a -> m (a, u)listening
:: (MonadWriter
w m,Monoid
u) =>Fold
w u -> m a -> m (a, u)listening
:: (MonadWriter
w m,Monoid
u) =>Traversal'
w u -> m a -> m (a, u)listening
:: (MonadWriter
w m,Monoid
u) =>Prism'
w u -> m a -> m (a, u)
uses :: MonadState s m => LensLike' (Const r :: Type -> Type) s a -> (a -> r) -> m r #
Use the target of a Lens
, Iso
or
Getter
in the current state, or use a summary of a
Fold
or Traversal
that
points to a monoidal value.
>>>
evalState (uses _1 length) ("hello","world")
5
uses
::MonadState
s m =>Getter
s a -> (a -> r) -> m ruses
:: (MonadState
s m,Monoid
r) =>Fold
s a -> (a -> r) -> m ruses
::MonadState
s m =>Lens'
s a -> (a -> r) -> m ruses
::MonadState
s m =>Iso'
s a -> (a -> r) -> m ruses
:: (MonadState
s m,Monoid
r) =>Traversal'
s a -> (a -> r) -> m r
uses
::MonadState
s m =>Getting
r s t a b -> (a -> r) -> m r
use :: MonadState s m => Getting a s a -> m a #
Use the target of a Lens
, Iso
, or
Getter
in the current state, or use a summary of a
Fold
or Traversal
that points
to a monoidal value.
>>>
evalState (use _1) (a,b)
a
>>>
evalState (use _1) ("hello","world")
"hello"
use
::MonadState
s m =>Getter
s a -> m ause
:: (MonadState
s m,Monoid
r) =>Fold
s r -> m ruse
::MonadState
s m =>Iso'
s a -> m ause
::MonadState
s m =>Lens'
s a -> m ause
:: (MonadState
s m,Monoid
r) =>Traversal'
s r -> m r
(^.) :: s -> Getting a s a -> a infixl 8 #
View the value pointed to by a Getter
or Lens
or the
result of folding over all the results of a Fold
or
Traversal
that points at a monoidal values.
This is the same operation as view
with the arguments flipped.
The fixity and semantics are such that subsequent field accesses can be
performed with (.
).
>>>
(a,b)^._2
b
>>>
("hello","world")^._2
"world"
>>>
import Data.Complex
>>>
((0, 1 :+ 2), 3)^._1._2.to magnitude
2.23606797749979
(^.
) :: s ->Getter
s a -> a (^.
) ::Monoid
m => s ->Fold
s m -> m (^.
) :: s ->Iso'
s a -> a (^.
) :: s ->Lens'
s a -> a (^.
) ::Monoid
m => s ->Traversal'
s m -> m
views :: MonadReader s m => LensLike' (Const r :: Type -> Type) s a -> (a -> r) -> m r #
View a function of the value pointed to by a Getter
or Lens
or the result of
folding over the result of mapping the targets of a Fold
or
Traversal
.
views
l f ≡view
(l.
to
f)
>>>
views (to f) g a
g (f a)
>>>
views _2 length (1,"hello")
5
As views
is commonly used to access the target of a Getter
or obtain a monoidal summary of the targets of a Fold
,
It may be useful to think of it as having one of these more restricted signatures:
views
::Getter
s a -> (a -> r) -> s -> rviews
::Monoid
m =>Fold
s a -> (a -> m) -> s -> mviews
::Iso'
s a -> (a -> r) -> s -> rviews
::Lens'
s a -> (a -> r) -> s -> rviews
::Monoid
m =>Traversal'
s a -> (a -> m) -> s -> m
In a more general setting, such as when working with a Monad
transformer stack you can use:
views
::MonadReader
s m =>Getter
s a -> (a -> r) -> m rviews
:: (MonadReader
s m,Monoid
r) =>Fold
s a -> (a -> r) -> m rviews
::MonadReader
s m =>Iso'
s a -> (a -> r) -> m rviews
::MonadReader
s m =>Lens'
s a -> (a -> r) -> m rviews
:: (MonadReader
s m,Monoid
r) =>Traversal'
s a -> (a -> r) -> m r
views
::MonadReader
s m =>Getting
r s a -> (a -> r) -> m r
view :: MonadReader s m => Getting a s a -> m a #
View the value pointed to by a Getter
, Iso
or
Lens
or the result of folding over all the results of a
Fold
or Traversal
that points
at a monoidal value.
view
.
to
≡id
>>>
view (to f) a
f a
>>>
view _2 (1,"hello")
"hello"
>>>
view (to succ) 5
6
>>>
view (_2._1) ("hello",("world","!!!"))
"world"
As view
is commonly used to access the target of a Getter
or obtain a monoidal summary of the targets of a Fold
,
It may be useful to think of it as having one of these more restricted signatures:
view
::Getter
s a -> s -> aview
::Monoid
m =>Fold
s m -> s -> mview
::Iso'
s a -> s -> aview
::Lens'
s a -> s -> aview
::Monoid
m =>Traversal'
s m -> s -> m
In a more general setting, such as when working with a Monad
transformer stack you can use:
view
::MonadReader
s m =>Getter
s a -> m aview
:: (MonadReader
s m,Monoid
a) =>Fold
s a -> m aview
::MonadReader
s m =>Iso'
s a -> m aview
::MonadReader
s m =>Lens'
s a -> m aview
:: (MonadReader
s m,Monoid
a) =>Traversal'
s a -> m a
ilike :: (Indexable i p, Contravariant f, Functor f) => i -> a -> Over' p f s a #
ilike
:: i -> a ->IndexedGetter
i s a
like :: (Profunctor p, Contravariant f, Functor f) => a -> Optic' p f s a #
ito :: (Indexable i p, Contravariant f) => (s -> (i, a)) -> Over' p f s a #
ito
:: (s -> (i, a)) ->IndexedGetter
i s a
to :: (Profunctor p, Contravariant f) => (s -> a) -> Optic' p f s a #
type Getting r s a = (a -> Const r a) -> s -> Const r s #
When you see this in a type signature it indicates that you can
pass the function a Lens
, Getter
,
Traversal
, Fold
,
Prism
, Iso
, or one of
the indexed variants, and it will just "do the right thing".
Most Getter
combinators are able to be used with both a Getter
or a
Fold
in limited situations, to do so, they need to be
monomorphic in what we are going to extract with Const
. To be compatible
with Lens
, Traversal
and
Iso
we also restricted choices of the irrelevant t
and
b
parameters.
If a function accepts a
, then when Getting
r s ar
is a Monoid
, then
you can pass a Fold
(or
Traversal
), otherwise you can only pass this a
Getter
or Lens
.
type IndexedGetting i m s a = Indexed i a (Const m a) -> s -> Const m s #
Used to consume an IndexedFold
.
type Accessing (p :: Type -> Type -> Type) m s a = p a (Const m a) -> s -> Const m s #
This is a convenient alias used when consuming (indexed) getters and (indexed) folds in a highly general fashion.
class Field1 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Provides access to 1st field of a tuple.
Minimal complete definition
Nothing
Methods
Access the 1st field of a tuple (and possibly change its type).
>>>
(1,2)^._1
1
>>>
_1 .~ "hello" $ (1,2)
("hello",2)
>>>
(1,2) & _1 .~ "hello"
("hello",2)
>>>
_1 putStrLn ("hello","world")
hello ((),"world")
This can also be used on larger tuples as well:
>>>
(1,2,3,4,5) & _1 +~ 41
(42,2,3,4,5)
_1
::Lens
(a,b) (a',b) a a'_1
::Lens
(a,b,c) (a',b,c) a a'_1
::Lens
(a,b,c,d) (a',b,c,d) a a' ..._1
::Lens
(a,b,c,d,e,f,g,h,i) (a',b,c,d,e,f,g,h,i) a a'
Instances
Field1 (Identity a) (Identity b) a b | |
Field1 (a, b) (a', b) a a' |
|
Defined in Control.Lens.Tuple | |
Field1 (a, b, c) (a', b, c) a a' | |
Defined in Control.Lens.Tuple | |
Field1 (a, b, c, d) (a', b, c, d) a a' | |
Defined in Control.Lens.Tuple | |
Field1 ((f :*: g) p) ((f' :*: g) p) (f p) (f' p) | |
Field1 (Product f g a) (Product f' g a) (f a) (f' a) | |
Field1 (a, b, c, d, e) (a', b, c, d, e) a a' | |
Defined in Control.Lens.Tuple | |
Field1 (a, b, c, d, e, f) (a', b, c, d, e, f) a a' | |
Defined in Control.Lens.Tuple | |
Field1 (a, b, c, d, e, f, g) (a', b, c, d, e, f, g) a a' | |
Defined in Control.Lens.Tuple | |
Field1 (a, b, c, d, e, f, g, h) (a', b, c, d, e, f, g, h) a a' | |
Defined in Control.Lens.Tuple | |
Field1 (a, b, c, d, e, f, g, h, i) (a', b, c, d, e, f, g, h, i) a a' | |
Defined in Control.Lens.Tuple | |
Field1 (a, b, c, d, e, f, g, h, i, j) (a', b, c, d, e, f, g, h, i, j) a a' | |
Defined in Control.Lens.Tuple | |
Field1 (a, b, c, d, e, f, g, h, i, j, kk) (a', b, c, d, e, f, g, h, i, j, kk) a a' | |
Defined in Control.Lens.Tuple | |
Field1 (a, b, c, d, e, f, g, h, i, j, kk, l) (a', b, c, d, e, f, g, h, i, j, kk, l) a a' | |
Defined in Control.Lens.Tuple | |
Field1 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a', b, c, d, e, f, g, h, i, j, kk, l, m) a a' | |
Defined in Control.Lens.Tuple | |
Field1 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a', b, c, d, e, f, g, h, i, j, kk, l, m, n) a a' | |
Defined in Control.Lens.Tuple | |
Field1 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o) a a' | |
Defined in Control.Lens.Tuple | |
Field1 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) a a' | |
Defined in Control.Lens.Tuple | |
Field1 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) a a' | |
Defined in Control.Lens.Tuple | |
Field1 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) a a' | |
Defined in Control.Lens.Tuple | |
Field1 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) a a' | |
Defined in Control.Lens.Tuple |
class Field2 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Provides access to the 2nd field of a tuple.
Minimal complete definition
Nothing
Methods
Access the 2nd field of a tuple.
>>>
_2 .~ "hello" $ (1,(),3,4)
(1,"hello",3,4)
>>>
(1,2,3,4) & _2 *~ 3
(1,6,3,4)
>>>
_2 print (1,2)
2 (1,())
anyOf
_2
:: (s ->Bool
) -> (a, s) ->Bool
traverse
.
_2
:: (Applicative
f,Traversable
t) => (a -> f b) -> t (s, a) -> f (t (s, b))foldMapOf
(traverse
.
_2
) :: (Traversable
t,Monoid
m) => (s -> m) -> t (b, s) -> m
Instances
Field2 (a, b) (a, b') b b' |
|
Defined in Control.Lens.Tuple | |
Field2 (a, b, c) (a, b', c) b b' | |
Defined in Control.Lens.Tuple | |
Field2 (a, b, c, d) (a, b', c, d) b b' | |
Defined in Control.Lens.Tuple | |
Field2 ((f :*: g) p) ((f :*: g') p) (g p) (g' p) | |
Field2 (Product f g a) (Product f g' a) (g a) (g' a) | |
Field2 (a, b, c, d, e) (a, b', c, d, e) b b' | |
Defined in Control.Lens.Tuple | |
Field2 (a, b, c, d, e, f) (a, b', c, d, e, f) b b' | |
Defined in Control.Lens.Tuple | |
Field2 (a, b, c, d, e, f, g) (a, b', c, d, e, f, g) b b' | |
Defined in Control.Lens.Tuple | |
Field2 (a, b, c, d, e, f, g, h) (a, b', c, d, e, f, g, h) b b' | |
Defined in Control.Lens.Tuple | |
Field2 (a, b, c, d, e, f, g, h, i) (a, b', c, d, e, f, g, h, i) b b' | |
Defined in Control.Lens.Tuple | |
Field2 (a, b, c, d, e, f, g, h, i, j) (a, b', c, d, e, f, g, h, i, j) b b' | |
Defined in Control.Lens.Tuple | |
Field2 (a, b, c, d, e, f, g, h, i, j, kk) (a, b', c, d, e, f, g, h, i, j, kk) b b' | |
Defined in Control.Lens.Tuple | |
Field2 (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b', c, d, e, f, g, h, i, j, kk, l) b b' | |
Defined in Control.Lens.Tuple | |
Field2 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b', c, d, e, f, g, h, i, j, kk, l, m) b b' | |
Defined in Control.Lens.Tuple | |
Field2 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b', c, d, e, f, g, h, i, j, kk, l, m, n) b b' | |
Defined in Control.Lens.Tuple | |
Field2 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o) b b' | |
Defined in Control.Lens.Tuple | |
Field2 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o, p) b b' | |
Defined in Control.Lens.Tuple | |
Field2 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) b b' | |
Defined in Control.Lens.Tuple | |
Field2 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) b b' | |
Defined in Control.Lens.Tuple | |
Field2 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) b b' | |
Defined in Control.Lens.Tuple |
class Field3 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Provides access to the 3rd field of a tuple.
Minimal complete definition
Nothing
Instances
Field3 (a, b, c) (a, b, c') c c' | |
Defined in Control.Lens.Tuple | |
Field3 (a, b, c, d) (a, b, c', d) c c' | |
Defined in Control.Lens.Tuple | |
Field3 (a, b, c, d, e) (a, b, c', d, e) c c' | |
Defined in Control.Lens.Tuple | |
Field3 (a, b, c, d, e, f) (a, b, c', d, e, f) c c' | |
Defined in Control.Lens.Tuple | |
Field3 (a, b, c, d, e, f, g) (a, b, c', d, e, f, g) c c' | |
Defined in Control.Lens.Tuple | |
Field3 (a, b, c, d, e, f, g, h) (a, b, c', d, e, f, g, h) c c' | |
Defined in Control.Lens.Tuple | |
Field3 (a, b, c, d, e, f, g, h, i) (a, b, c', d, e, f, g, h, i) c c' | |
Defined in Control.Lens.Tuple | |
Field3 (a, b, c, d, e, f, g, h, i, j) (a, b, c', d, e, f, g, h, i, j) c c' | |
Defined in Control.Lens.Tuple | |
Field3 (a, b, c, d, e, f, g, h, i, j, kk) (a, b, c', d, e, f, g, h, i, j, kk) c c' | |
Defined in Control.Lens.Tuple | |
Field3 (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c', d, e, f, g, h, i, j, kk, l) c c' | |
Defined in Control.Lens.Tuple | |
Field3 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c', d, e, f, g, h, i, j, kk, l, m) c c' | |
Defined in Control.Lens.Tuple | |
Field3 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c', d, e, f, g, h, i, j, kk, l, m, n) c c' | |
Defined in Control.Lens.Tuple | |
Field3 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o) c c' | |
Defined in Control.Lens.Tuple | |
Field3 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o, p) c c' | |
Defined in Control.Lens.Tuple | |
Field3 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o, p, q) c c' | |
Defined in Control.Lens.Tuple | |
Field3 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) c c' | |
Defined in Control.Lens.Tuple | |
Field3 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) c c' | |
Defined in Control.Lens.Tuple |
class Field4 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Provide access to the 4th field of a tuple.
Minimal complete definition
Nothing
Instances
Field4 (a, b, c, d) (a, b, c, d') d d' | |
Defined in Control.Lens.Tuple | |
Field4 (a, b, c, d, e) (a, b, c, d', e) d d' | |
Defined in Control.Lens.Tuple | |
Field4 (a, b, c, d, e, f) (a, b, c, d', e, f) d d' | |
Defined in Control.Lens.Tuple | |
Field4 (a, b, c, d, e, f, g) (a, b, c, d', e, f, g) d d' | |
Defined in Control.Lens.Tuple | |
Field4 (a, b, c, d, e, f, g, h) (a, b, c, d', e, f, g, h) d d' | |
Defined in Control.Lens.Tuple | |
Field4 (a, b, c, d, e, f, g, h, i) (a, b, c, d', e, f, g, h, i) d d' | |
Defined in Control.Lens.Tuple | |
Field4 (a, b, c, d, e, f, g, h, i, j) (a, b, c, d', e, f, g, h, i, j) d d' | |
Defined in Control.Lens.Tuple | |
Field4 (a, b, c, d, e, f, g, h, i, j, kk) (a, b, c, d', e, f, g, h, i, j, kk) d d' | |
Defined in Control.Lens.Tuple | |
Field4 (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c, d', e, f, g, h, i, j, kk, l) d d' | |
Defined in Control.Lens.Tuple | |
Field4 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d', e, f, g, h, i, j, kk, l, m) d d' | |
Defined in Control.Lens.Tuple | |
Field4 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d', e, f, g, h, i, j, kk, l, m, n) d d' | |
Defined in Control.Lens.Tuple | |
Field4 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o) d d' | |
Defined in Control.Lens.Tuple | |
Field4 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o, p) d d' | |
Defined in Control.Lens.Tuple | |
Field4 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o, p, q) d d' | |
Defined in Control.Lens.Tuple | |
Field4 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o, p, q, r) d d' | |
Defined in Control.Lens.Tuple | |
Field4 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) d d' | |
Defined in Control.Lens.Tuple |
class Field5 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Provides access to the 5th field of a tuple.
Minimal complete definition
Nothing
Instances
Field5 (a, b, c, d, e) (a, b, c, d, e') e e' | |
Defined in Control.Lens.Tuple | |
Field5 (a, b, c, d, e, f) (a, b, c, d, e', f) e e' | |
Defined in Control.Lens.Tuple | |
Field5 (a, b, c, d, e, f, g) (a, b, c, d, e', f, g) e e' | |
Defined in Control.Lens.Tuple | |
Field5 (a, b, c, d, e, f, g, h) (a, b, c, d, e', f, g, h) e e' | |
Defined in Control.Lens.Tuple | |
Field5 (a, b, c, d, e, f, g, h, i) (a, b, c, d, e', f, g, h, i) e e' | |
Defined in Control.Lens.Tuple | |
Field5 (a, b, c, d, e, f, g, h, i, j) (a, b, c, d, e', f, g, h, i, j) e e' | |
Defined in Control.Lens.Tuple | |
Field5 (a, b, c, d, e, f, g, h, i, j, kk) (a, b, c, d, e', f, g, h, i, j, kk) e e' | |
Defined in Control.Lens.Tuple | |
Field5 (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c, d, e', f, g, h, i, j, kk, l) e e' | |
Defined in Control.Lens.Tuple | |
Field5 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d, e', f, g, h, i, j, kk, l, m) e e' | |
Defined in Control.Lens.Tuple | |
Field5 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e', f, g, h, i, j, kk, l, m, n) e e' | |
Defined in Control.Lens.Tuple | |
Field5 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o) e e' | |
Defined in Control.Lens.Tuple | |
Field5 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o, p) e e' | |
Defined in Control.Lens.Tuple | |
Field5 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o, p, q) e e' | |
Defined in Control.Lens.Tuple | |
Field5 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o, p, q, r) e e' | |
Defined in Control.Lens.Tuple | |
Field5 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o, p, q, r, s) e e' | |
Defined in Control.Lens.Tuple |
class Field6 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Provides access to the 6th element of a tuple.
Minimal complete definition
Nothing
Instances
Field6 (a, b, c, d, e, f) (a, b, c, d, e, f') f f' | |
Defined in Control.Lens.Tuple | |
Field6 (a, b, c, d, e, f, g) (a, b, c, d, e, f', g) f f' | |
Defined in Control.Lens.Tuple | |
Field6 (a, b, c, d, e, f, g, h) (a, b, c, d, e, f', g, h) f f' | |
Defined in Control.Lens.Tuple | |
Field6 (a, b, c, d, e, f, g, h, i) (a, b, c, d, e, f', g, h, i) f f' | |
Defined in Control.Lens.Tuple | |
Field6 (a, b, c, d, e, f, g, h, i, j) (a, b, c, d, e, f', g, h, i, j) f f' | |
Defined in Control.Lens.Tuple | |
Field6 (a, b, c, d, e, f, g, h, i, j, kk) (a, b, c, d, e, f', g, h, i, j, kk) f f' | |
Defined in Control.Lens.Tuple | |
Field6 (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c, d, e, f', g, h, i, j, kk, l) f f' | |
Defined in Control.Lens.Tuple | |
Field6 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d, e, f', g, h, i, j, kk, l, m) f f' | |
Defined in Control.Lens.Tuple | |
Field6 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e, f', g, h, i, j, kk, l, m, n) f f' | |
Defined in Control.Lens.Tuple | |
Field6 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o) f f' | |
Defined in Control.Lens.Tuple | |
Field6 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o, p) f f' | |
Defined in Control.Lens.Tuple | |
Field6 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o, p, q) f f' | |
Defined in Control.Lens.Tuple | |
Field6 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o, p, q, r) f f' | |
Defined in Control.Lens.Tuple | |
Field6 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o, p, q, r, s) f f' | |
Defined in Control.Lens.Tuple |
class Field7 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Provide access to the 7th field of a tuple.
Minimal complete definition
Nothing
Instances
Field7 (a, b, c, d, e, f, g) (a, b, c, d, e, f, g') g g' | |
Defined in Control.Lens.Tuple | |
Field7 (a, b, c, d, e, f, g, h) (a, b, c, d, e, f, g', h) g g' | |
Defined in Control.Lens.Tuple | |
Field7 (a, b, c, d, e, f, g, h, i) (a, b, c, d, e, f, g', h, i) g g' | |
Defined in Control.Lens.Tuple | |
Field7 (a, b, c, d, e, f, g, h, i, j) (a, b, c, d, e, f, g', h, i, j) g g' | |
Defined in Control.Lens.Tuple | |
Field7 (a, b, c, d, e, f, g, h, i, j, kk) (a, b, c, d, e, f, g', h, i, j, kk) g g' | |
Defined in Control.Lens.Tuple | |
Field7 (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c, d, e, f, g', h, i, j, kk, l) g g' | |
Defined in Control.Lens.Tuple | |
Field7 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d, e, f, g', h, i, j, kk, l, m) g g' | |
Defined in Control.Lens.Tuple | |
Field7 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e, f, g', h, i, j, kk, l, m, n) g g' | |
Defined in Control.Lens.Tuple | |
Field7 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o) g g' | |
Defined in Control.Lens.Tuple | |
Field7 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o, p) g g' | |
Defined in Control.Lens.Tuple | |
Field7 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o, p, q) g g' | |
Defined in Control.Lens.Tuple | |
Field7 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o, p, q, r) g g' | |
Defined in Control.Lens.Tuple | |
Field7 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o, p, q, r, s) g g' | |
Defined in Control.Lens.Tuple |
class Field8 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Provide access to the 8th field of a tuple.
Minimal complete definition
Nothing
Instances
Field8 (a, b, c, d, e, f, g, h) (a, b, c, d, e, f, g, h') h h' | |
Defined in Control.Lens.Tuple | |
Field8 (a, b, c, d, e, f, g, h, i) (a, b, c, d, e, f, g, h', i) h h' | |
Defined in Control.Lens.Tuple | |
Field8 (a, b, c, d, e, f, g, h, i, j) (a, b, c, d, e, f, g, h', i, j) h h' | |
Defined in Control.Lens.Tuple | |
Field8 (a, b, c, d, e, f, g, h, i, j, kk) (a, b, c, d, e, f, g, h', i, j, kk) h h' | |
Defined in Control.Lens.Tuple | |
Field8 (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c, d, e, f, g, h', i, j, kk, l) h h' | |
Defined in Control.Lens.Tuple | |
Field8 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d, e, f, g, h', i, j, kk, l, m) h h' | |
Defined in Control.Lens.Tuple | |
Field8 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e, f, g, h', i, j, kk, l, m, n) h h' | |
Defined in Control.Lens.Tuple | |
Field8 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o) h h' | |
Defined in Control.Lens.Tuple | |
Field8 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o, p) h h' | |
Defined in Control.Lens.Tuple | |
Field8 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o, p, q) h h' | |
Defined in Control.Lens.Tuple | |
Field8 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o, p, q, r) h h' | |
Defined in Control.Lens.Tuple | |
Field8 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o, p, q, r, s) h h' | |
Defined in Control.Lens.Tuple |
class Field9 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Provides access to the 9th field of a tuple.
Minimal complete definition
Nothing
Instances
Field9 (a, b, c, d, e, f, g, h, i) (a, b, c, d, e, f, g, h, i') i i' | |
Defined in Control.Lens.Tuple | |
Field9 (a, b, c, d, e, f, g, h, i, j) (a, b, c, d, e, f, g, h, i', j) i i' | |
Defined in Control.Lens.Tuple | |
Field9 (a, b, c, d, e, f, g, h, i, j, kk) (a, b, c, d, e, f, g, h, i', j, kk) i i' | |
Defined in Control.Lens.Tuple | |
Field9 (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c, d, e, f, g, h, i', j, kk, l) i i' | |
Defined in Control.Lens.Tuple | |
Field9 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d, e, f, g, h, i', j, kk, l, m) i i' | |
Defined in Control.Lens.Tuple | |
Field9 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e, f, g, h, i', j, kk, l, m, n) i i' | |
Defined in Control.Lens.Tuple | |
Field9 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o) i i' | |
Defined in Control.Lens.Tuple | |
Field9 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o, p) i i' | |
Defined in Control.Lens.Tuple | |
Field9 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o, p, q) i i' | |
Defined in Control.Lens.Tuple | |
Field9 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o, p, q, r) i i' | |
Defined in Control.Lens.Tuple | |
Field9 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o, p, q, r, s) i i' | |
Defined in Control.Lens.Tuple |
class Field10 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Provides access to the 10th field of a tuple.
Minimal complete definition
Nothing
Instances
Field10 (a, b, c, d, e, f, g, h, i, j) (a, b, c, d, e, f, g, h, i, j') j j' | |
Defined in Control.Lens.Tuple | |
Field10 (a, b, c, d, e, f, g, h, i, j, kk) (a, b, c, d, e, f, g, h, i, j', kk) j j' | |
Defined in Control.Lens.Tuple | |
Field10 (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c, d, e, f, g, h, i, j', kk, l) j j' | |
Defined in Control.Lens.Tuple | |
Field10 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d, e, f, g, h, i, j', kk, l, m) j j' | |
Defined in Control.Lens.Tuple | |
Field10 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e, f, g, h, i, j', kk, l, m, n) j j' | |
Defined in Control.Lens.Tuple | |
Field10 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o) j j' | |
Defined in Control.Lens.Tuple | |
Field10 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o, p) j j' | |
Defined in Control.Lens.Tuple | |
Field10 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o, p, q) j j' | |
Defined in Control.Lens.Tuple | |
Field10 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o, p, q, r) j j' | |
Defined in Control.Lens.Tuple | |
Field10 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o, p, q, r, s) j j' | |
Defined in Control.Lens.Tuple |
class Field11 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Provides access to the 11th field of a tuple.
Minimal complete definition
Nothing
Instances
Field11 (a, b, c, d, e, f, g, h, i, j, kk) (a, b, c, d, e, f, g, h, i, j, kk') kk kk' | |
Defined in Control.Lens.Tuple | |
Field11 (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c, d, e, f, g, h, i, j, kk', l) kk kk' | |
Defined in Control.Lens.Tuple | |
Field11 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d, e, f, g, h, i, j, kk', l, m) kk kk' | |
Defined in Control.Lens.Tuple | |
Field11 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e, f, g, h, i, j, kk', l, m, n) kk kk' | |
Defined in Control.Lens.Tuple | |
Field11 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o) kk kk' | |
Defined in Control.Lens.Tuple | |
Field11 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o, p) kk kk' | |
Defined in Control.Lens.Tuple | |
Field11 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o, p, q) kk kk' | |
Defined in Control.Lens.Tuple | |
Field11 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o, p, q, r) kk kk' | |
Defined in Control.Lens.Tuple | |
Field11 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o, p, q, r, s) kk kk' | |
Defined in Control.Lens.Tuple |
class Field12 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Provides access to the 12th field of a tuple.
Minimal complete definition
Nothing
Instances
Field12 (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c, d, e, f, g, h, i, j, kk, l') l l' | |
Defined in Control.Lens.Tuple | |
Field12 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d, e, f, g, h, i, j, kk, l', m) l l' | |
Defined in Control.Lens.Tuple | |
Field12 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e, f, g, h, i, j, kk, l', m, n) l l' | |
Defined in Control.Lens.Tuple | |
Field12 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o) l l' | |
Defined in Control.Lens.Tuple | |
Field12 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o, p) l l' | |
Defined in Control.Lens.Tuple | |
Field12 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o, p, q) l l' | |
Defined in Control.Lens.Tuple | |
Field12 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o, p, q, r) l l' | |
Defined in Control.Lens.Tuple | |
Field12 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o, p, q, r, s) l l' | |
Defined in Control.Lens.Tuple |
class Field13 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Provides access to the 13th field of a tuple.
Minimal complete definition
Nothing
Instances
Field13 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d, e, f, g, h, i, j, kk, l, m') m m' | |
Defined in Control.Lens.Tuple | |
Field13 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e, f, g, h, i, j, kk, l, m', n) m m' | |
Defined in Control.Lens.Tuple | |
Field13 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o) m m' | |
Defined in Control.Lens.Tuple | |
Field13 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o, p) m m' | |
Defined in Control.Lens.Tuple | |
Field13 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o, p, q) m m' | |
Defined in Control.Lens.Tuple | |
Field13 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o, p, q, r) m m' | |
Defined in Control.Lens.Tuple | |
Field13 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o, p, q, r, s) m m' | |
Defined in Control.Lens.Tuple |
class Field14 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Provides access to the 14th field of a tuple.
Minimal complete definition
Nothing
Instances
Field14 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n') n n' | |
Defined in Control.Lens.Tuple | |
Field14 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o) n n' | |
Defined in Control.Lens.Tuple | |
Field14 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o, p) n n' | |
Defined in Control.Lens.Tuple | |
Field14 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o, p, q) n n' | |
Defined in Control.Lens.Tuple | |
Field14 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o, p, q, r) n n' | |
Defined in Control.Lens.Tuple | |
Field14 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o, p, q, r, s) n n' | |
Defined in Control.Lens.Tuple |
class Field15 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Provides access to the 15th field of a tuple.
Minimal complete definition
Nothing
Instances
Field15 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o') o o' | |
Defined in Control.Lens.Tuple | |
Field15 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o', p) o o' | |
Defined in Control.Lens.Tuple | |
Field15 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o', p, q) o o' | |
Defined in Control.Lens.Tuple | |
Field15 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o', p, q, r) o o' | |
Defined in Control.Lens.Tuple | |
Field15 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o', p, q, r, s) o o' | |
Defined in Control.Lens.Tuple |
class Field16 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Provides access to the 16th field of a tuple.
Minimal complete definition
Nothing
Instances
Field16 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p') p p' | |
Defined in Control.Lens.Tuple | |
Field16 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p', q) p p' | |
Defined in Control.Lens.Tuple | |
Field16 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p', q, r) p p' | |
Defined in Control.Lens.Tuple | |
Field16 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p', q, r, s) p p' | |
Defined in Control.Lens.Tuple |
class Field17 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Provides access to the 17th field of a tuple.
Minimal complete definition
Nothing
Instances
Field17 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q') q q' | |
Defined in Control.Lens.Tuple | |
Field17 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q', r) q q' | |
Defined in Control.Lens.Tuple | |
Field17 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q', r, s) q q' | |
Defined in Control.Lens.Tuple |
class Field18 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Provides access to the 18th field of a tuple.
Minimal complete definition
Nothing
Instances
Field18 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r') r r' | |
Defined in Control.Lens.Tuple | |
Field18 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r', s) r r' | |
Defined in Control.Lens.Tuple |
class Field19 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Provides access to the 19th field of a tuple.
Minimal complete definition
Nothing
Instances
Field19 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s') s s' | |
Defined in Control.Lens.Tuple |
fusing :: Functor f => LensLike (Yoneda f) s t a b -> LensLike f s t a b #
Fuse a composition of lenses using Yoneda
to provide fmap
fusion.
In general, given a pair of lenses foo
and bar
fusing (foo.bar) = foo.bar
however, foo
and bar
are either going to fmap
internally or they are trivial.
fusing
exploits the Yoneda
lemma to merge these separate uses into a single fmap
.
This is particularly effective when the choice of functor f
is unknown at compile
time or when the Lens
foo.bar
in the above description is recursive or complex
enough to prevent inlining.
fusing
::Lens
s t a b ->Lens
s t a b
We can always retrieve a ()
from any type.
>>>
"hello"^.united
()
>>>
"hello" & united .~ ()
"hello"
(<#=) :: MonadState s m => ALens s s a b -> b -> m b infix 4 #
(#%%=) :: MonadState s m => ALens s s a b -> (a -> (r, b)) -> m r infix 4 #
(<#%=) :: MonadState s m => ALens s s a b -> (a -> b) -> m b infix 4 #
(#%=) :: MonadState s m => ALens s s a b -> (a -> b) -> m () infix 4 #
(#=) :: MonadState s m => ALens s s a b -> b -> m () infix 4 #
(<<%@=) :: MonadState s m => Over (Indexed i) ((,) a) s s a b -> (i -> a -> b) -> m a infix 4 #
Adjust the target of an IndexedLens
returning the old value, or
adjust all of the targets of an IndexedTraversal
within the current state, and
return a monoidal summary of the old values.
(<<%@=
) ::MonadState
s m =>IndexedLens
i s s a b -> (i -> a -> b) -> m a (<<%@=
) :: (MonadState
s m,Monoid
b) =>IndexedTraversal
i s s a b -> (i -> a -> b) -> m a
(<%@=) :: MonadState s m => Over (Indexed i) ((,) b) s s a b -> (i -> a -> b) -> m b infix 4 #
Adjust the target of an IndexedLens
returning the intermediate result, or
adjust all of the targets of an IndexedTraversal
within the current state, and
return a monoidal summary of the intermediate results.
(<%@=
) ::MonadState
s m =>IndexedLens
i s s a b -> (i -> a -> b) -> m b (<%@=
) :: (MonadState
s m,Monoid
b) =>IndexedTraversal
i s s a b -> (i -> a -> b) -> m b
(%%@=) :: MonadState s m => Over (Indexed i) ((,) r) s s a b -> (i -> a -> (r, b)) -> m r infix 4 #
Adjust the target of an IndexedLens
returning a supplementary result, or
adjust all of the targets of an IndexedTraversal
within the current state, and
return a monoidal summary of the supplementary results.
l%%@=
f ≡state
(l%%@~
f)
(%%@=
) ::MonadState
s m =>IndexedLens
i s s a b -> (i -> a -> (r, b)) -> s -> m r (%%@=
) :: (MonadState
s m,Monoid
r) =>IndexedTraversal
i s s a b -> (i -> a -> (r, b)) -> s -> m r
(%%@~) :: Over (Indexed i) f s t a b -> (i -> a -> f b) -> s -> f t infixr 4 #
Adjust the target of an IndexedLens
returning a supplementary result, or
adjust all of the targets of an IndexedTraversal
and return a monoidal summary
of the supplementary results and the answer.
(%%@~
) ≡withIndex
(%%@~
) ::Functor
f =>IndexedLens
i s t a b -> (i -> a -> f b) -> s -> f t (%%@~
) ::Applicative
f =>IndexedTraversal
i s t a b -> (i -> a -> f b) -> s -> f t
In particular, it is often useful to think of this function as having one of these even more restricted type signatures:
(%%@~
) ::IndexedLens
i s t a b -> (i -> a -> (r, b)) -> s -> (r, t) (%%@~
) ::Monoid
r =>IndexedTraversal
i s t a b -> (i -> a -> (r, b)) -> s -> (r, t)
(<<%@~) :: Over (Indexed i) ((,) a) s t a b -> (i -> a -> b) -> s -> (a, t) infixr 4 #
Adjust the target of an IndexedLens
returning the old value, or
adjust all of the targets of an IndexedTraversal
and return a monoidal summary
of the old values along with the answer.
(<<%@~
) ::IndexedLens
i s t a b -> (i -> a -> b) -> s -> (a, t) (<<%@~
) ::Monoid
a =>IndexedTraversal
i s t a b -> (i -> a -> b) -> s -> (a, t)
(<%@~) :: Over (Indexed i) ((,) b) s t a b -> (i -> a -> b) -> s -> (b, t) infixr 4 #
Adjust the target of an IndexedLens
returning the intermediate result, or
adjust all of the targets of an IndexedTraversal
and return a monoidal summary
along with the answer.
l<%~
f ≡ l<%@~
const
f
When you do not need access to the index then (<%~
) is more liberal in what it can accept.
If you do not need the intermediate result, you can use (%@~
) or even (%~
).
(<%@~
) ::IndexedLens
i s t a b -> (i -> a -> b) -> s -> (b, t) (<%@~
) ::Monoid
b =>IndexedTraversal
i s t a b -> (i -> a -> b) -> s -> (b, t)
(<<~) :: MonadState s m => ALens s s a b -> m b -> m b infixr 2 #
Run a monadic action, and set the target of Lens
to its result.
(<<~
) ::MonadState
s m =>Iso
s s a b -> m b -> m b (<<~
) ::MonadState
s m =>Lens
s s a b -> m b -> m b
NB: This is limited to taking an actual Lens
than admitting a Traversal
because
there are potential loss of state issues otherwise.
(<<<>=) :: (MonadState s m, Monoid r) => LensLike' ((,) r) s r -> r -> m r infix 4 #
Modify the target of a Lens
into your Monad'
s state by mappend
ing a value
and return the old value that was replaced.
When you do not need the result of the operation, (<>=
) is more flexible.
(<<<>=
) :: (MonadState
s m,Monoid
r) =>Lens'
s r -> r -> m r (<<<>=
) :: (MonadState
s m,Monoid
r) =>Iso'
s r -> r -> m r
(<<&&=) :: MonadState s m => LensLike' ((,) Bool) s Bool -> Bool -> m Bool infix 4 #
Modify the target of a Lens
into your Monad'
s state by taking its logical &&
with a value
and return the old value that was replaced.
When you do not need the result of the operation, (&&=
) is more flexible.
(<<&&=
) ::MonadState
s m =>Lens'
sBool
->Bool
-> mBool
(<<&&=
) ::MonadState
s m =>Iso'
sBool
->Bool
-> mBool
(<<||=) :: MonadState s m => LensLike' ((,) Bool) s Bool -> Bool -> m Bool infix 4 #
Modify the target of a Lens
into your Monad'
s state by taking its logical ||
with a value
and return the old value that was replaced.
When you do not need the result of the operation, (||=
) is more flexible.
(<<||=
) ::MonadState
s m =>Lens'
sBool
->Bool
-> mBool
(<<||=
) ::MonadState
s m =>Iso'
sBool
->Bool
-> mBool
(<<**=) :: (MonadState s m, Floating a) => LensLike' ((,) a) s a -> a -> m a infix 4 #
Modify the target of a Lens
into your Monad'
s state by raising it by an arbitrary power
and return the old value that was replaced.
When you do not need the result of the operation, (**=
) is more flexible.
(<<**=
) :: (MonadState
s m,Floating
a) =>Lens'
s a -> a -> m a (<<**=
) :: (MonadState
s m,Floating
a) =>Iso'
s a -> a -> m a
(<<^^=) :: (MonadState s m, Fractional a, Integral e) => LensLike' ((,) a) s a -> e -> m a infix 4 #
Modify the target of a Lens
into your Monad'
s state by raising it by an integral power
and return the old value that was replaced.
When you do not need the result of the operation, (^^=
) is more flexible.
(<<^^=
) :: (MonadState
s m,Fractional
a,Integral
e) =>Lens'
s a -> e -> m a (<<^^=
) :: (MonadState
s m,Fractional
a,Integral
e) =>Iso'
s a -> e -> m a
(<<^=) :: (MonadState s m, Num a, Integral e) => LensLike' ((,) a) s a -> e -> m a infix 4 #
Modify the target of a Lens
into your Monad'
s state by raising it by a non-negative power
and return the old value that was replaced.
When you do not need the result of the operation, (^=
) is more flexible.
(<<^=
) :: (MonadState
s m,Num
a,Integral
e) =>Lens'
s a -> e -> m a (<<^=
) :: (MonadState
s m,Num
a,Integral
e) =>Iso'
s a -> a -> m a
(<<//=) :: (MonadState s m, Fractional a) => LensLike' ((,) a) s a -> a -> m a infix 4 #
Modify the target of a Lens
into your Monad
s state by dividing by a value
and return the old value that was replaced.
When you do not need the result of the operation, (//=
) is more flexible.
(<<//=
) :: (MonadState
s m,Fractional
a) =>Lens'
s a -> a -> m a (<<//=
) :: (MonadState
s m,Fractional
a) =>Iso'
s a -> a -> m a
(<<*=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a infix 4 #
Modify the target of a Lens
into your Monad'
s state by multipling a value
and return the old value that was replaced.
When you do not need the result of the operation, (*=
) is more flexible.
(<<*=
) :: (MonadState
s m,Num
a) =>Lens'
s a -> a -> m a (<<*=
) :: (MonadState
s m,Num
a) =>Iso'
s a -> a -> m a
(<<-=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a infix 4 #
Modify the target of a Lens
into your Monad'
s state by subtracting a value
and return the old value that was replaced.
When you do not need the result of the operation, (-=
) is more flexible.
(<<-=
) :: (MonadState
s m,Num
a) =>Lens'
s a -> a -> m a (<<-=
) :: (MonadState
s m,Num
a) =>Iso'
s a -> a -> m a
(<<+=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a infix 4 #
Modify the target of a Lens
into your Monad'
s state by adding a value
and return the old value that was replaced.
When you do not need the result of the operation, (+=
) is more flexible.
(<<+=
) :: (MonadState
s m,Num
a) =>Lens'
s a -> a -> m a (<<+=
) :: (MonadState
s m,Num
a) =>Iso'
s a -> a -> m a
(<<?=) :: MonadState s m => LensLike ((,) a) s s a (Maybe b) -> b -> m a infix 4 #
Replace the target of a Lens
into your Monad'
s state with Just
a user supplied
value and return the old value that was replaced.
When applied to a Traversal
, this will return a monoidal summary of all of the old values
present.
When you do not need the result of the operation, (?=
) is more flexible.
(<<?=
) ::MonadState
s m =>Lens
s t a (Maybe b) -> b -> m a (<<?=
) ::MonadState
s m =>Iso
s t a (Maybe b) -> b -> m a (<<?=
) :: (MonadState
s m,Monoid
a) =>Traversal
s t a (Maybe b) -> b -> m a
(<<.=) :: MonadState s m => LensLike ((,) a) s s a b -> b -> m a infix 4 #
Replace the target of a Lens
into your Monad'
s state with a user supplied
value and return the old value that was replaced.
When applied to a Traversal
, this will return a monoidal summary of all of the old values
present.
When you do not need the result of the operation, (.=
) is more flexible.
(<<.=
) ::MonadState
s m =>Lens'
s a -> a -> m a (<<.=
) ::MonadState
s m =>Iso'
s a -> a -> m a (<<.=
) :: (MonadState
s m,Monoid
a) =>Traversal'
s a -> a -> m a
(<<%=) :: (Strong p, MonadState s m) => Over p ((,) a) s s a b -> p a b -> m a infix 4 #
Modify the target of a Lens
into your Monad'
s state by a user supplied
function and return the old value that was replaced.
When applied to a Traversal
, this will return a monoidal summary of all of the old values
present.
When you do not need the result of the operation, (%=
) is more flexible.
(<<%=
) ::MonadState
s m =>Lens'
s a -> (a -> a) -> m a (<<%=
) ::MonadState
s m =>Iso'
s a -> (a -> a) -> m a (<<%=
) :: (MonadState
s m,Monoid
a) =>Traversal'
s a -> (a -> a) -> m a
(<<%=
) ::MonadState
s m =>LensLike
((,)a) s s a b -> (a -> b) -> m a
(<**=) :: (MonadState s m, Floating a) => LensLike' ((,) a) s a -> a -> m a infix 4 #
Raise the target of a floating-point valued Lens
into your Monad'
s
state to an arbitrary power and return the result.
When you do not need the result of the operation, (**=
) is more flexible.
(<**=
) :: (MonadState
s m,Floating
a) =>Lens'
s a -> a -> m a (<**=
) :: (MonadState
s m,Floating
a) =>Iso'
s a -> a -> m a
(<^^=) :: (MonadState s m, Fractional a, Integral e) => LensLike' ((,) a) s a -> e -> m a infix 4 #
Raise the target of a fractionally valued Lens
into your Monad'
s state
to an Integral
power and return the result.
When you do not need the result of the operation, (^^=
) is more flexible.
(<^^=
) :: (MonadState
s m,Fractional
b,Integral
e) =>Lens'
s a -> e -> m a (<^^=
) :: (MonadState
s m,Fractional
b,Integral
e) =>Iso'
s a -> e -> m a
(<^=) :: (MonadState s m, Num a, Integral e) => LensLike' ((,) a) s a -> e -> m a infix 4 #
Raise the target of a numerically valued Lens
into your Monad'
s state
to a non-negative Integral
power and return the result.
When you do not need the result of the operation, (^=
) is more flexible.
(<^=
) :: (MonadState
s m,Num
a,Integral
e) =>Lens'
s a -> e -> m a (<^=
) :: (MonadState
s m,Num
a,Integral
e) =>Iso'
s a -> e -> m a
(<//=) :: (MonadState s m, Fractional a) => LensLike' ((,) a) s a -> a -> m a infix 4 #
Divide the target of a fractionally valued Lens
into your Monad'
s state
and return the result.
When you do not need the result of the division, (//=
) is more flexible.
(<//=
) :: (MonadState
s m,Fractional
a) =>Lens'
s a -> a -> m a (<//=
) :: (MonadState
s m,Fractional
a) =>Iso'
s a -> a -> m a
(<*=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a infix 4 #
Multiply the target of a numerically valued Lens
into your Monad'
s
state and return the result.
When you do not need the result of the multiplication, (*=
) is more
flexible.
(<*=
) :: (MonadState
s m,Num
a) =>Lens'
s a -> a -> m a (<*=
) :: (MonadState
s m,Num
a) =>Iso'
s a -> a -> m a
(<-=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a infix 4 #
Subtract from the target of a numerically valued Lens
into your Monad'
s
state and return the result.
When you do not need the result of the subtraction, (-=
) is more
flexible.
(<-=
) :: (MonadState
s m,Num
a) =>Lens'
s a -> a -> m a (<-=
) :: (MonadState
s m,Num
a) =>Iso'
s a -> a -> m a
(<+=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a infix 4 #
Add to the target of a numerically valued Lens
into your Monad'
s state
and return the result.
When you do not need the result of the addition, (+=
) is more
flexible.
(<+=
) :: (MonadState
s m,Num
a) =>Lens'
s a -> a -> m a (<+=
) :: (MonadState
s m,Num
a) =>Iso'
s a -> a -> m a
(<%=) :: MonadState s m => LensLike ((,) b) s s a b -> (a -> b) -> m b infix 4 #
Modify the target of a Lens
into your Monad'
s state by a user supplied
function and return the result.
When applied to a Traversal
, it this will return a monoidal summary of all of the intermediate
results.
When you do not need the result of the operation, (%=
) is more flexible.
(<%=
) ::MonadState
s m =>Lens'
s a -> (a -> a) -> m a (<%=
) ::MonadState
s m =>Iso'
s a -> (a -> a) -> m a (<%=
) :: (MonadState
s m,Monoid
a) =>Traversal'
s a -> (a -> a) -> m a
(<<<>~) :: Monoid r => LensLike' ((,) r) s r -> r -> s -> (r, s) infixr 4 #
Modify the target of a monoidally valued Lens
by mappend
ing a new value and return the old value.
When you do not need the old value, (<>~
) is more flexible.
>>>
(Sum a,b) & _1 <<<>~ Sum c
(Sum {getSum = a},(Sum {getSum = a + c},b))
>>>
_2 <<<>~ ", 007" $ ("James", "Bond")
("Bond",("James","Bond, 007"))
(<<<>~
) ::Monoid
r =>Lens'
s r -> r -> s -> (r, s) (<<<>~
) ::Monoid
r =>Iso'
s r -> r -> s -> (r, s)
(<<&&~) :: LensLike' ((,) Bool) s Bool -> Bool -> s -> (Bool, s) infixr 4 #
Logically &&
the target of a Bool
-valued Lens
and return the old value.
When you do not need the old value, (&&~
) is more flexible.
>>>
(False,6) & _1 <<&&~ True
(False,(False,6))
>>>
("hello",True) & _2 <<&&~ False
(True,("hello",False))
(<<&&~
) ::Lens'
s Bool -> Bool -> s -> (Bool, s) (<<&&~
) ::Iso'
s Bool -> Bool -> s -> (Bool, s)
(<<||~) :: LensLike' ((,) Bool) s Bool -> Bool -> s -> (Bool, s) infixr 4 #
Logically ||
the target of a Bool
-valued Lens
and return the old value.
When you do not need the old value, (||~
) is more flexible.
>>>
(False,6) & _1 <<||~ True
(False,(True,6))
>>>
("hello",True) & _2 <<||~ False
(True,("hello",True))
(<<||~
) ::Lens'
sBool
->Bool
-> s -> (Bool
, s) (<<||~
) ::Iso'
sBool
->Bool
-> s -> (Bool
, s)
(<<**~) :: Floating a => LensLike' ((,) a) s a -> a -> s -> (a, s) infixr 4 #
Raise the target of a floating-point valued Lens
to an arbitrary power and return the old value.
When you do not need the old value, (**~
) is more flexible.
>>>
(a,b) & _1 <<**~ c
(a,(a**c,b))
>>>
(a,b) & _2 <<**~ c
(b,(a,b**c))
(<<**~
) ::Floating
a =>Lens'
s a -> a -> s -> (a, s) (<<**~
) ::Floating
a =>Iso'
s a -> a -> s -> (a, s)
(<<^^~) :: (Fractional a, Integral e) => LensLike' ((,) a) s a -> e -> s -> (a, s) infixr 4 #
Raise the target of a fractionally valued Lens
to an integral power and return the old value.
When you do not need the old value, (^^~
) is more flexible.
(<<^^~
) :: (Fractional
a,Integral
e) =>Lens'
s a -> e -> s -> (a, s) (<<^^~
) :: (Fractional
a,Integral
e) =>Iso'
s a -> e -> S -> (a, s)
(<<//~) :: Fractional a => LensLike' ((,) a) s a -> a -> s -> (a, s) infixr 4 #
Divide the target of a numerically valued Lens
and return the old value.
When you do not need the old value, (//~
) is more flexible.
>>>
(a,b) & _1 <<//~ c
(a,(a / c,b))
>>>
("Hawaii",10) & _2 <<//~ 2
(10.0,("Hawaii",5.0))
(<<//~
) :: Fractional a =>Lens'
s a -> a -> s -> (a, s) (<<//~
) :: Fractional a =>Iso'
s a -> a -> s -> (a, s)
(<<*~) :: Num a => LensLike' ((,) a) s a -> a -> s -> (a, s) infixr 4 #
Multiply the target of a numerically valued Lens
and return the old value.
When you do not need the old value, (-~
) is more flexible.
>>>
(a,b) & _1 <<*~ c
(a,(a * c,b))
>>>
(a,b) & _2 <<*~ c
(b,(a,b * c))
(<<*~
) ::Num
a =>Lens'
s a -> a -> s -> (a, s) (<<*~
) ::Num
a =>Iso'
s a -> a -> s -> (a, s)
(<<-~) :: Num a => LensLike' ((,) a) s a -> a -> s -> (a, s) infixr 4 #
Decrement the target of a numerically valued Lens
and return the old value.
When you do not need the old value, (-~
) is more flexible.
>>>
(a,b) & _1 <<-~ c
(a,(a - c,b))
>>>
(a,b) & _2 <<-~ c
(b,(a,b - c))
(<<-~
) ::Num
a =>Lens'
s a -> a -> s -> (a, s) (<<-~
) ::Num
a =>Iso'
s a -> a -> s -> (a, s)
(<<+~) :: Num a => LensLike' ((,) a) s a -> a -> s -> (a, s) infixr 4 #
Increment the target of a numerically valued Lens
and return the old value.
When you do not need the old value, (+~
) is more flexible.
>>>
(a,b) & _1 <<+~ c
(a,(a + c,b))
>>>
(a,b) & _2 <<+~ c
(b,(a,b + c))
(<<+~
) ::Num
a =>Lens'
s a -> a -> s -> (a, s) (<<+~
) ::Num
a =>Iso'
s a -> a -> s -> (a, s)
(<<?~) :: LensLike ((,) a) s t a (Maybe b) -> b -> s -> (a, t) infixr 4 #
Replace the target of a Lens
with a Just
value, but return the old value.
If you do not need the old value (?~
) is more flexible.
>>>
import Data.Map as Map
>>>
_2.at "hello" <<?~ "world" $ (42,Map.fromList [("goodnight","gracie")])
(Nothing,(42,fromList [("goodnight","gracie"),("hello","world")]))
(<<?~
) ::Iso
s t a (Maybe
b) -> b -> s -> (a, t) (<<?~
) ::Lens
s t a (Maybe
b) -> b -> s -> (a, t) (<<?~
) ::Traversal
s t a (Maybe
b) -> b -> s -> (a, t)
(<^^~) :: (Fractional a, Integral e) => LensLike ((,) a) s t a a -> e -> s -> (a, t) infixr 4 #
Raise the target of a fractionally valued Lens
to an Integral
power
and return the result.
When you do not need the result of the operation, (^^~
) is more flexible.
(<^^~
) :: (Fractional
a,Integral
e) =>Lens'
s a -> e -> s -> (a, s) (<^^~
) :: (Fractional
a,Integral
e) =>Iso'
s a -> e -> s -> (a, s)
(<//~) :: Fractional a => LensLike ((,) a) s t a a -> a -> s -> (a, t) infixr 4 #
Divide the target of a fractionally valued Lens
and return the result.
When you do not need the result of the division, (//~
) is more flexible.
(<//~
) ::Fractional
a =>Lens'
s a -> a -> s -> (a, s) (<//~
) ::Fractional
a =>Iso'
s a -> a -> s -> (a, s)
cloneIndexedLens :: AnIndexedLens i s t a b -> IndexedLens i s t a b #
Clone an IndexedLens
as an IndexedLens
with the same index.
cloneIndexPreservingLens :: ALens s t a b -> IndexPreservingLens s t a b #
Clone a Lens
as an IndexedPreservingLens
that just passes through whatever
index is on any IndexedLens
, IndexedFold
, IndexedGetter
or IndexedTraversal
it is composed with.
cloneLens :: ALens s t a b -> Lens s t a b #
Cloning a Lens
is one way to make sure you aren't given
something weaker, such as a Traversal
and can be
used as a way to pass around lenses that have to be monomorphic in f
.
Note: This only accepts a proper Lens
.
>>>
let example l x = set (cloneLens l) (x^.cloneLens l + 1) x in example _2 ("hello",1,"you")
("hello",2,"you")
locus :: IndexedComonadStore p => Lens (p a c s) (p b c s) a b #
This Lens
lets you view
the current pos
of any indexed
store comonad and seek
to a new position. This reduces the API
for working these instances to a single Lens
.
ipos
w ≡ w^.
locus
iseek
s w ≡ w&
locus
.~
siseeks
f w ≡ w&
locus
%~
f
locus
::Lens'
(Context'
a s) alocus
::Conjoined
p =>Lens'
(Pretext'
p a s) alocus
::Conjoined
p =>Lens'
(PretextT'
p g a s) a
alongside :: LensLike (AlongsideLeft f b') s t a b -> LensLike (AlongsideRight f t) s' t' a' b' -> LensLike f (s, s') (t, t') (a, a') (b, b') #
alongside
makes a Lens
from two other lenses or a Getter
from two other getters
by executing them on their respective halves of a product.
>>>
(Left a, Right b)^.alongside chosen chosen
(a,b)
>>>
(Left a, Right b) & alongside chosen chosen .~ (c,d)
(Left c,Right d)
alongside
::Lens
s t a b ->Lens
s' t' a' b' ->Lens
(s,s') (t,t') (a,a') (b,b')alongside
::Getter
s a ->Getter
s' a' ->Getter
(s,s') (a,a')
chosen :: IndexPreservingLens (Either a a) (Either b b) a b #
This is a Lens
that updates either side of an Either
, where both sides have the same type.
chosen
≡choosing
id
id
>>>
Left a^.chosen
a
>>>
Right a^.chosen
a
>>>
Right "hello"^.chosen
"hello"
>>>
Right a & chosen *~ b
Right (a * b)
chosen
::Lens
(Either
a a) (Either
b b) a bchosen
f (Left
a) =Left
<$>
f achosen
f (Right
a) =Right
<$>
f a
choosing :: Functor f => LensLike f s t a b -> LensLike f s' t' a b -> LensLike f (Either s s') (Either t t') a b #
Merge two lenses, getters, setters, folds or traversals.
chosen
≡choosing
id
id
choosing
::Getter
s a ->Getter
s' a ->Getter
(Either
s s') achoosing
::Fold
s a ->Fold
s' a ->Fold
(Either
s s') achoosing
::Lens'
s a ->Lens'
s' a ->Lens'
(Either
s s') achoosing
::Traversal'
s a ->Traversal'
s' a ->Traversal'
(Either
s s') achoosing
::Setter'
s a ->Setter'
s' a ->Setter'
(Either
s s') a
inside :: Corepresentable p => ALens s t a b -> Lens (p e s) (p e t) (p e a) (p e b) #
(??) :: Functor f => f (a -> b) -> a -> f b infixl 1 #
This is convenient to flip
argument order of composite functions defined as:
fab ?? a = fmap ($ a) fab
For the Functor
instance f = ((->) r)
you can reason about this function as if the definition was (
:??
) ≡ flip
>>>
(h ?? x) a
h a x
>>>
execState ?? [] $ modify (1:)
[1]
>>>
over _2 ?? ("hello","world") $ length
("hello",5)
>>>
over ?? length ?? ("hello","world") $ _2
("hello",5)
(%%=) :: MonadState s m => Over p ((,) r) s s a b -> p a (r, b) -> m r infix 4 #
Modify the target of a Lens
in the current state returning some extra
information of type r
or modify all targets of a
Traversal
in the current state, extracting extra
information of type r
and return a monoidal summary of the changes.
>>>
runState (_1 %%= \x -> (f x, g x)) (a,b)
(f a,(g a,b))
(%%=
) ≡ (state
.
)
It may be useful to think of (%%=
), instead, as having either of the
following more restricted type signatures:
(%%=
) ::MonadState
s m =>Iso
s s a b -> (a -> (r, b)) -> m r (%%=
) ::MonadState
s m =>Lens
s s a b -> (a -> (r, b)) -> m r (%%=
) :: (MonadState
s m,Monoid
r) =>Traversal
s s a b -> (a -> (r, b)) -> m r
(%%~) :: LensLike f s t a b -> (a -> f b) -> s -> f t infixr 4 #
(%%~
) can be used in one of two scenarios:
When applied to a Lens
, it can edit the target of the Lens
in a
structure, extracting a functorial result.
When applied to a Traversal
, it can edit the
targets of the traversals, extracting an applicative summary of its
actions.
>>>
[66,97,116,109,97,110] & each %%~ \a -> ("na", chr a)
("nananananana","Batman")
For all that the definition of this combinator is just:
(%%~
) ≡id
It may be beneficial to think about it as if it had these even more restricted types, however:
(%%~
) ::Functor
f =>Iso
s t a b -> (a -> f b) -> s -> f t (%%~
) ::Functor
f =>Lens
s t a b -> (a -> f b) -> s -> f t (%%~
) ::Applicative
f =>Traversal
s t a b -> (a -> f b) -> s -> f t
When applied to a Traversal
, it can edit the
targets of the traversals, extracting a supplemental monoidal summary
of its actions, by choosing f = ((,) m)
(%%~
) ::Iso
s t a b -> (a -> (r, b)) -> s -> (r, t) (%%~
) ::Lens
s t a b -> (a -> (r, b)) -> s -> (r, t) (%%~
) ::Monoid
m =>Traversal
s t a b -> (a -> (m, b)) -> s -> (m, t)
(&~) :: s -> State s a -> s infixl 1 #
This can be used to chain lens operations using op=
syntax
rather than op~
syntax for simple non-type-changing cases.
>>>
(10,20) & _1 .~ 30 & _2 .~ 40
(30,40)
>>>
(10,20) &~ do _1 .= 30; _2 .= 40
(30,40)
This does not support type-changing assignment, e.g.
>>>
(10,20) & _1 .~ "hello"
("hello",20)
ilens :: (s -> (i, a)) -> (s -> b -> t) -> IndexedLens i s t a b #
Build an IndexedLens
from a Getter
and
a Setter
.
iplens :: (s -> a) -> (s -> b -> t) -> IndexPreservingLens s t a b #
type AnIndexedLens i s t a b = Optical (Indexed i) ((->) :: Type -> Type -> Type) (Pretext (Indexed i) a b) s t a b #
When you see this as an argument to a function, it expects an IndexedLens
type AnIndexedLens' i s a = AnIndexedLens i s s a a #
typeAnIndexedLens'
=Simple
(AnIndexedLens
i)
imapOf :: AnIndexedSetter i s t a b -> (i -> a -> b) -> s -> t #
Map with index. (Deprecated alias for iover
).
When you do not need access to the index, then mapOf
is more liberal in what it can accept.
mapOf
l ≡imapOf
l.
const
imapOf
::IndexedSetter
i s t a b -> (i -> a -> b) -> s -> timapOf
::IndexedLens
i s t a b -> (i -> a -> b) -> s -> timapOf
::IndexedTraversal
i s t a b -> (i -> a -> b) -> s -> t
assignA :: Arrow p => ASetter s t a b -> p s b -> p s t #
Run an arrow command and use the output to set all the targets of
a Lens
, Setter
or Traversal
to the result.
assignA
can be used very similarly to (<~
), except that the type of
the object being modified can change; for example:
runKleisli action ((), (), ()) where action = assignA _1 (Kleisli (const getVal1)) >>> assignA _2 (Kleisli (const getVal2)) >>> assignA _3 (Kleisli (const getVal3)) getVal1 :: Either String Int getVal1 = ... getVal2 :: Either String Bool getVal2 = ... getVal3 :: Either String Char getVal3 = ...
has the type Either
String
(Int
, Bool
, Char
)
assignA
::Arrow
p =>Iso
s t a b -> p s b -> p s tassignA
::Arrow
p =>Lens
s t a b -> p s b -> p s tassignA
::Arrow
p =>Traversal
s t a b -> p s b -> p s tassignA
::Arrow
p =>Setter
s t a b -> p s b -> p s t
(.@=) :: MonadState s m => AnIndexedSetter i s s a b -> (i -> b) -> m () infix 4 #
Replace every target in the current state of an IndexedSetter
, IndexedLens
or IndexedTraversal
with access to the index.
When you do not need access to the index then (.=
) is more liberal in what it can accept.
l.=
b ≡ l.@=
const
b
(.@=
) ::MonadState
s m =>IndexedSetter
i s s a b -> (i -> b) -> m () (.@=
) ::MonadState
s m =>IndexedLens
i s s a b -> (i -> b) -> m () (.@=
) ::MonadState
s m =>IndexedTraversal
i s t a b -> (i -> b) -> m ()
imodifying :: MonadState s m => AnIndexedSetter i s s a b -> (i -> a -> b) -> m () #
This is an alias for (%@=
).
(%@=) :: MonadState s m => AnIndexedSetter i s s a b -> (i -> a -> b) -> m () infix 4 #
Adjust every target in the current state of an IndexedSetter
, IndexedLens
or IndexedTraversal
with access to the index.
When you do not need access to the index then (%=
) is more liberal in what it can accept.
l%=
f ≡ l%@=
const
f
(%@=
) ::MonadState
s m =>IndexedSetter
i s s a b -> (i -> a -> b) -> m () (%@=
) ::MonadState
s m =>IndexedLens
i s s a b -> (i -> a -> b) -> m () (%@=
) ::MonadState
s m =>IndexedTraversal
i s t a b -> (i -> a -> b) -> m ()
(.@~) :: AnIndexedSetter i s t a b -> (i -> b) -> s -> t infixr 4 #
Replace every target of an IndexedSetter
, IndexedLens
or IndexedTraversal
with access to the index.
(.@~
) ≡iset
When you do not need access to the index then (.~
) is more liberal in what it can accept.
l.~
b ≡ l.@~
const
b
(.@~
) ::IndexedSetter
i s t a b -> (i -> b) -> s -> t (.@~
) ::IndexedLens
i s t a b -> (i -> b) -> s -> t (.@~
) ::IndexedTraversal
i s t a b -> (i -> b) -> s -> t
(%@~) :: AnIndexedSetter i s t a b -> (i -> a -> b) -> s -> t infixr 4 #
Adjust every target of an IndexedSetter
, IndexedLens
or IndexedTraversal
with access to the index.
(%@~
) ≡iover
When you do not need access to the index then (%~
) is more liberal in what it can accept.
l%~
f ≡ l%@~
const
f
(%@~
) ::IndexedSetter
i s t a b -> (i -> a -> b) -> s -> t (%@~
) ::IndexedLens
i s t a b -> (i -> a -> b) -> s -> t (%@~
) ::IndexedTraversal
i s t a b -> (i -> a -> b) -> s -> t
isets :: ((i -> a -> b) -> s -> t) -> IndexedSetter i s t a b #
Build an IndexedSetter
from an imap
-like function.
Your supplied function f
is required to satisfy:
fid
≡id
f g.
f h ≡ f (g.
h)
Equational reasoning:
isets
.
iover
≡id
iover
.
isets
≡id
Another way to view isets
is that it takes a "semantic editor combinator"
which has been modified to carry an index and transforms it into a IndexedSetter
.
iset :: AnIndexedSetter i s t a b -> (i -> b) -> s -> t #
Set with index. Equivalent to iover
with the current value ignored.
When you do not need access to the index, then set
is more liberal in what it can accept.
set
l ≡iset
l.
const
iset
::IndexedSetter
i s t a b -> (i -> b) -> s -> tiset
::IndexedLens
i s t a b -> (i -> b) -> s -> tiset
::IndexedTraversal
i s t a b -> (i -> b) -> s -> t
iover :: AnIndexedSetter i s t a b -> (i -> a -> b) -> s -> t #
Map with index. This is an alias for imapOf
.
When you do not need access to the index, then over
is more liberal in what it can accept.
over
l ≡iover
l.
const
iover
l ≡over
l.
Indexed
iover
::IndexedSetter
i s t a b -> (i -> a -> b) -> s -> tiover
::IndexedLens
i s t a b -> (i -> a -> b) -> s -> tiover
::IndexedTraversal
i s t a b -> (i -> a -> b) -> s -> t
ilocally :: MonadReader s m => AnIndexedSetter i s s a b -> (i -> a -> b) -> m r -> m r #
This is a generalization of locally
that allows one to make indexed
local
changes to a Reader
environment associated with the target of a
Setter
, Lens
, or Traversal
.
locally
l f ≡ilocally
l f . constilocally
l f ≡locally
l f .Indexed
ilocally :: MonadReader s m =>IndexedLens
s s a b -> (i -> a -> b) -> m r -> m r ilocally :: MonadReader s m =>IndexedTraversal
s s a b -> (i -> a -> b) -> m r -> m r ilocally :: MonadReader s m =>IndexedSetter
s s a b -> (i -> a -> b) -> m r -> m r
locally :: MonadReader s m => ASetter s s a b -> (a -> b) -> m r -> m r #
Modify the value of the Reader
environment associated with the target of a
Setter
, Lens
, or Traversal
.
locally
lid
a ≡ alocally
l f.
locally l g ≡locally
l (f.
g)
>>>
(1,1) & locally _1 (+1) (uncurry (+))
3
>>>
"," & locally ($) ("Hello" <>) (<> " world!")
"Hello, world!"
locally :: MonadReader s m =>Iso
s s a b -> (a -> b) -> m r -> m r locally :: MonadReader s m =>Lens
s s a b -> (a -> b) -> m r -> m r locally :: MonadReader s m =>Traversal
s s a b -> (a -> b) -> m r -> m r locally :: MonadReader s m =>Setter
s s a b -> (a -> b) -> m r -> m r
icensoring :: MonadWriter w m => IndexedSetter i w w u v -> (i -> u -> v) -> m a -> m a #
This is a generalization of censor
that allows you to censor
just a
portion of the resulting MonadWriter
, with access to the index of an
IndexedSetter
.
censoring :: MonadWriter w m => Setter w w u v -> (u -> v) -> m a -> m a #
This is a generalization of censor
that allows you to censor
just a
portion of the resulting MonadWriter
.
ipassing :: MonadWriter w m => IndexedSetter i w w u v -> m (a, i -> u -> v) -> m a #
This is a generalization of pass
that allows you to modify just a
portion of the resulting MonadWriter
with access to the index of an
IndexedSetter
.
passing :: MonadWriter w m => Setter w w u v -> m (a, u -> v) -> m a #
This is a generalization of pass
that allows you to modify just a
portion of the resulting MonadWriter
.
scribe :: (MonadWriter t m, Monoid s) => ASetter s t a b -> b -> m () #
Write to a fragment of a larger Writer
format.
(<>=) :: (MonadState s m, Monoid a) => ASetter' s a -> a -> m () infix 4 #
Modify the target(s) of a Lens'
, Iso
, Setter
or Traversal
by mappend
ing a value.
>>>
execState (do _1 <>= Sum c; _2 <>= Product d) (Sum a,Product b)
(Sum {getSum = a + c},Product {getProduct = b * d})
>>>
execState (both <>= "!!!") ("hello","world")
("hello!!!","world!!!")
(<>=
) :: (MonadState
s m,Monoid
a) =>Setter'
s a -> a -> m () (<>=
) :: (MonadState
s m,Monoid
a) =>Iso'
s a -> a -> m () (<>=
) :: (MonadState
s m,Monoid
a) =>Lens'
s a -> a -> m () (<>=
) :: (MonadState
s m,Monoid
a) =>Traversal'
s a -> a -> m ()
(<>~) :: Monoid a => ASetter s t a a -> a -> s -> t infixr 4 #
Modify the target of a monoidally valued by mappend
ing another value.
>>>
(Sum a,b) & _1 <>~ Sum c
(Sum {getSum = a + c},b)
>>>
(Sum a,Sum b) & both <>~ Sum c
(Sum {getSum = a + c},Sum {getSum = b + c})
>>>
both <>~ "!!!" $ ("hello","world")
("hello!!!","world!!!")
(<>~
) ::Monoid
a =>Setter
s t a a -> a -> s -> t (<>~
) ::Monoid
a =>Iso
s t a a -> a -> s -> t (<>~
) ::Monoid
a =>Lens
s t a a -> a -> s -> t (<>~
) ::Monoid
a =>Traversal
s t a a -> a -> s -> t
(<?=) :: MonadState s m => ASetter s s a (Maybe b) -> b -> m b infix 4 #
Set Just
a value with pass-through
This is useful for chaining assignment without round-tripping through your Monad
stack.
do x <-at
"foo"<?=
ninety_nine_bottles_of_beer_on_the_wall
If you do not need a copy of the intermediate result, then using l
will avoid unused binding warnings.?=
d
(<?=
) ::MonadState
s m =>Setter
s s a (Maybe
b) -> b -> m b (<?=
) ::MonadState
s m =>Iso
s s a (Maybe
b) -> b -> m b (<?=
) ::MonadState
s m =>Lens
s s a (Maybe
b) -> b -> m b (<?=
) ::MonadState
s m =>Traversal
s s a (Maybe
b) -> b -> m b
(<.=) :: MonadState s m => ASetter s s a b -> b -> m b infix 4 #
Set with pass-through
This is useful for chaining assignment without round-tripping through your Monad
stack.
do x <-_2
<.=
ninety_nine_bottles_of_beer_on_the_wall
If you do not need a copy of the intermediate result, then using l
will avoid unused binding warnings..=
d
(<.=
) ::MonadState
s m =>Setter
s s a b -> b -> m b (<.=
) ::MonadState
s m =>Iso
s s a b -> b -> m b (<.=
) ::MonadState
s m =>Lens
s s a b -> b -> m b (<.=
) ::MonadState
s m =>Traversal
s s a b -> b -> m b
(<~) :: MonadState s m => ASetter s s a b -> m b -> m () infixr 2 #
Run a monadic action, and set all of the targets of a Lens
, Setter
or Traversal
to its result.
(<~
) ::MonadState
s m =>Iso
s s a b -> m b -> m () (<~
) ::MonadState
s m =>Lens
s s a b -> m b -> m () (<~
) ::MonadState
s m =>Traversal
s s a b -> m b -> m () (<~
) ::MonadState
s m =>Setter
s s a b -> m b -> m ()
As a reasonable mnemonic, this lets you store the result of a monadic action in a Lens
rather than
in a local variable.
do foo <- bar ...
will store the result in a variable, while
do foo <~
bar
...
(||=) :: MonadState s m => ASetter' s Bool -> Bool -> m () infix 4 #
Modify the target(s) of a Lens'
, 'Iso, Setter
or Traversal
by taking their logical ||
with a value.
>>>
execState (do _1 ||= True; _2 ||= False; _3 ||= True; _4 ||= False) (True,True,False,False)
(True,True,True,False)
(||=
) ::MonadState
s m =>Setter'
sBool
->Bool
-> m () (||=
) ::MonadState
s m =>Iso'
sBool
->Bool
-> m () (||=
) ::MonadState
s m =>Lens'
sBool
->Bool
-> m () (||=
) ::MonadState
s m =>Traversal'
sBool
->Bool
-> m ()
(&&=) :: MonadState s m => ASetter' s Bool -> Bool -> m () infix 4 #
Modify the target(s) of a Lens'
, Iso
, Setter
or Traversal
by taking their logical &&
with a value.
>>>
execState (do _1 &&= True; _2 &&= False; _3 &&= True; _4 &&= False) (True,True,False,False)
(True,False,False,False)
(&&=
) ::MonadState
s m =>Setter'
sBool
->Bool
-> m () (&&=
) ::MonadState
s m =>Iso'
sBool
->Bool
-> m () (&&=
) ::MonadState
s m =>Lens'
sBool
->Bool
-> m () (&&=
) ::MonadState
s m =>Traversal'
sBool
->Bool
-> m ()
(**=) :: (MonadState s m, Floating a) => ASetter' s a -> a -> m () infix 4 #
Raise the target(s) of a numerically valued Lens
, Setter
or Traversal
to an arbitrary power
>>>
execState (do _1 **= c; _2 **= d) (a,b)
(a**c,b**d)
(**=
) :: (MonadState
s m,Floating
a) =>Setter'
s a -> a -> m () (**=
) :: (MonadState
s m,Floating
a) =>Iso'
s a -> a -> m () (**=
) :: (MonadState
s m,Floating
a) =>Lens'
s a -> a -> m () (**=
) :: (MonadState
s m,Floating
a) =>Traversal'
s a -> a -> m ()
(^^=) :: (MonadState s m, Fractional a, Integral e) => ASetter' s a -> e -> m () infix 4 #
Raise the target(s) of a numerically valued Lens
, Setter
or Traversal
to an integral power.
(^^=
) :: (MonadState
s m,Fractional
a,Integral
e) =>Setter'
s a -> e -> m () (^^=
) :: (MonadState
s m,Fractional
a,Integral
e) =>Iso'
s a -> e -> m () (^^=
) :: (MonadState
s m,Fractional
a,Integral
e) =>Lens'
s a -> e -> m () (^^=
) :: (MonadState
s m,Fractional
a,Integral
e) =>Traversal'
s a -> e -> m ()
(^=) :: (MonadState s m, Num a, Integral e) => ASetter' s a -> e -> m () infix 4 #
Raise the target(s) of a numerically valued Lens
, Setter
or Traversal
to a non-negative integral power.
(^=
) :: (MonadState
s m,Num
a,Integral
e) =>Setter'
s a -> e -> m () (^=
) :: (MonadState
s m,Num
a,Integral
e) =>Iso'
s a -> e -> m () (^=
) :: (MonadState
s m,Num
a,Integral
e) =>Lens'
s a -> e -> m () (^=
) :: (MonadState
s m,Num
a,Integral
e) =>Traversal'
s a -> e -> m ()
(//=) :: (MonadState s m, Fractional a) => ASetter' s a -> a -> m () infix 4 #
Modify the target(s) of a Lens'
, Iso
, Setter
or Traversal
by dividing by a value.
>>>
execState (do _1 //= c; _2 //= d) (a,b)
(a / c,b / d)
(//=
) :: (MonadState
s m,Fractional
a) =>Setter'
s a -> a -> m () (//=
) :: (MonadState
s m,Fractional
a) =>Iso'
s a -> a -> m () (//=
) :: (MonadState
s m,Fractional
a) =>Lens'
s a -> a -> m () (//=
) :: (MonadState
s m,Fractional
a) =>Traversal'
s a -> a -> m ()
(*=) :: (MonadState s m, Num a) => ASetter' s a -> a -> m () infix 4 #
Modify the target(s) of a Lens'
, Iso
, Setter
or Traversal
by multiplying by value.
>>>
execState (do _1 *= c; _2 *= d) (a,b)
(a * c,b * d)
(*=
) :: (MonadState
s m,Num
a) =>Setter'
s a -> a -> m () (*=
) :: (MonadState
s m,Num
a) =>Iso'
s a -> a -> m () (*=
) :: (MonadState
s m,Num
a) =>Lens'
s a -> a -> m () (*=
) :: (MonadState
s m,Num
a) =>Traversal'
s a -> a -> m ()
(-=) :: (MonadState s m, Num a) => ASetter' s a -> a -> m () infix 4 #
Modify the target(s) of a Lens'
, Iso
, Setter
or Traversal
by subtracting a value.
>>>
execState (do _1 -= c; _2 -= d) (a,b)
(a - c,b - d)
(-=
) :: (MonadState
s m,Num
a) =>Setter'
s a -> a -> m () (-=
) :: (MonadState
s m,Num
a) =>Iso'
s a -> a -> m () (-=
) :: (MonadState
s m,Num
a) =>Lens'
s a -> a -> m () (-=
) :: (MonadState
s m,Num
a) =>Traversal'
s a -> a -> m ()
(+=) :: (MonadState s m, Num a) => ASetter' s a -> a -> m () infix 4 #
Modify the target(s) of a Lens'
, Iso
, Setter
or Traversal
by adding a value.
Example:
fresh
::MonadState
Int
m => mInt
fresh
= doid
+=
1use
id
>>>
execState (do _1 += c; _2 += d) (a,b)
(a + c,b + d)
>>>
execState (do _1.at 1.non 0 += 10) (Map.fromList [(2,100)],"hello")
(fromList [(1,10),(2,100)],"hello")
(+=
) :: (MonadState
s m,Num
a) =>Setter'
s a -> a -> m () (+=
) :: (MonadState
s m,Num
a) =>Iso'
s a -> a -> m () (+=
) :: (MonadState
s m,Num
a) =>Lens'
s a -> a -> m () (+=
) :: (MonadState
s m,Num
a) =>Traversal'
s a -> a -> m ()
(?=) :: MonadState s m => ASetter s s a (Maybe b) -> b -> m () infix 4 #
Replace the target of a Lens
or all of the targets of a Setter
or Traversal
in our monadic
state with Just
a new value, irrespective of the old.
>>>
execState (do at 1 ?= a; at 2 ?= b) Map.empty
fromList [(1,a),(2,b)]
>>>
execState (do _1 ?= b; _2 ?= c) (Just a, Nothing)
(Just b,Just c)
(?=
) ::MonadState
s m =>Iso'
s (Maybe
a) -> a -> m () (?=
) ::MonadState
s m =>Lens'
s (Maybe
a) -> a -> m () (?=
) ::MonadState
s m =>Traversal'
s (Maybe
a) -> a -> m () (?=
) ::MonadState
s m =>Setter'
s (Maybe
a) -> a -> m ()
modifying :: MonadState s m => ASetter s s a b -> (a -> b) -> m () #
This is an alias for (%=
).
(%=) :: MonadState s m => ASetter s s a b -> (a -> b) -> m () infix 4 #
Map over the target of a Lens
or all of the targets of a Setter
or Traversal
in our monadic state.
>>>
execState (do _1 %= f;_2 %= g) (a,b)
(f a,g b)
>>>
execState (do both %= f) (a,b)
(f a,f b)
(%=
) ::MonadState
s m =>Iso'
s a -> (a -> a) -> m () (%=
) ::MonadState
s m =>Lens'
s a -> (a -> a) -> m () (%=
) ::MonadState
s m =>Traversal'
s a -> (a -> a) -> m () (%=
) ::MonadState
s m =>Setter'
s a -> (a -> a) -> m ()
(%=
) ::MonadState
s m =>ASetter
s s a b -> (a -> b) -> m ()
(.=) :: MonadState s m => ASetter s s a b -> b -> m () infix 4 #
Replace the target of a Lens
or all of the targets of a Setter
or Traversal
in our monadic state with a new value, irrespective of the
old.
This is an infix version of assign
.
>>>
execState (do _1 .= c; _2 .= d) (a,b)
(c,d)
>>>
execState (both .= c) (a,b)
(c,c)
(.=
) ::MonadState
s m =>Iso'
s a -> a -> m () (.=
) ::MonadState
s m =>Lens'
s a -> a -> m () (.=
) ::MonadState
s m =>Traversal'
s a -> a -> m () (.=
) ::MonadState
s m =>Setter'
s a -> a -> m ()
It puts the state in the monad or it gets the hose again.
assign :: MonadState s m => ASetter s s a b -> b -> m () #
Replace the target of a Lens
or all of the targets of a Setter
or Traversal
in our monadic
state with a new value, irrespective of the old.
This is an alias for (.=
).
>>>
execState (do assign _1 c; assign _2 d) (a,b)
(c,d)
>>>
execState (both .= c) (a,b)
(c,c)
assign
::MonadState
s m =>Iso'
s a -> a -> m ()assign
::MonadState
s m =>Lens'
s a -> a -> m ()assign
::MonadState
s m =>Traversal'
s a -> a -> m ()assign
::MonadState
s m =>Setter'
s a -> a -> m ()
(&&~) :: ASetter s t Bool Bool -> Bool -> s -> t infixr 4 #
Logically &&
the target(s) of a Bool
-valued Lens
or Setter
.
>>>
both &&~ True $ (False, True)
(False,True)
>>>
both &&~ False $ (False, True)
(False,False)
(&&~
) ::Setter'
sBool
->Bool
-> s -> s (&&~
) ::Iso'
sBool
->Bool
-> s -> s (&&~
) ::Lens'
sBool
->Bool
-> s -> s (&&~
) ::Traversal'
sBool
->Bool
-> s -> s
(||~) :: ASetter s t Bool Bool -> Bool -> s -> t infixr 4 #
Logically ||
the target(s) of a Bool
-valued Lens
or Setter
.
>>>
both ||~ True $ (False,True)
(True,True)
>>>
both ||~ False $ (False,True)
(False,True)
(||~
) ::Setter'
sBool
->Bool
-> s -> s (||~
) ::Iso'
sBool
->Bool
-> s -> s (||~
) ::Lens'
sBool
->Bool
-> s -> s (||~
) ::Traversal'
sBool
->Bool
-> s -> s
(**~) :: Floating a => ASetter s t a a -> a -> s -> t infixr 4 #
Raise the target(s) of a floating-point valued Lens
, Setter
or Traversal
to an arbitrary power.
>>>
(a,b) & _1 **~ c
(a**c,b)
>>>
(a,b) & both **~ c
(a**c,b**c)
>>>
_2 **~ 10 $ (3,2)
(3,1024.0)
(**~
) ::Floating
a =>Setter'
s a -> a -> s -> s (**~
) ::Floating
a =>Iso'
s a -> a -> s -> s (**~
) ::Floating
a =>Lens'
s a -> a -> s -> s (**~
) ::Floating
a =>Traversal'
s a -> a -> s -> s
(^^~) :: (Fractional a, Integral e) => ASetter s t a a -> e -> s -> t infixr 4 #
Raise the target(s) of a fractionally valued Lens
, Setter
or Traversal
to an integral power.
>>>
(1,2) & _2 ^^~ (-1)
(1,0.5)
(^^~
) :: (Fractional
a,Integral
e) =>Setter'
s a -> e -> s -> s (^^~
) :: (Fractional
a,Integral
e) =>Iso'
s a -> e -> s -> s (^^~
) :: (Fractional
a,Integral
e) =>Lens'
s a -> e -> s -> s (^^~
) :: (Fractional
a,Integral
e) =>Traversal'
s a -> e -> s -> s
(^~) :: (Num a, Integral e) => ASetter s t a a -> e -> s -> t infixr 4 #
Raise the target(s) of a numerically valued Lens
, Setter
or Traversal
to a non-negative integral power.
>>>
(1,3) & _2 ^~ 2
(1,9)
(^~
) :: (Num
a,Integral
e) =>Setter'
s a -> e -> s -> s (^~
) :: (Num
a,Integral
e) =>Iso'
s a -> e -> s -> s (^~
) :: (Num
a,Integral
e) =>Lens'
s a -> e -> s -> s (^~
) :: (Num
a,Integral
e) =>Traversal'
s a -> e -> s -> s
(//~) :: Fractional a => ASetter s t a a -> a -> s -> t infixr 4 #
Divide the target(s) of a numerically valued Lens
, Iso
, Setter
or Traversal
.
>>>
(a,b) & _1 //~ c
(a / c,b)
>>>
(a,b) & both //~ c
(a / c,b / c)
>>>
("Hawaii",10) & _2 //~ 2
("Hawaii",5.0)
(//~
) ::Fractional
a =>Setter'
s a -> a -> s -> s (//~
) ::Fractional
a =>Iso'
s a -> a -> s -> s (//~
) ::Fractional
a =>Lens'
s a -> a -> s -> s (//~
) ::Fractional
a =>Traversal'
s a -> a -> s -> s
(-~) :: Num a => ASetter s t a a -> a -> s -> t infixr 4 #
Decrement the target(s) of a numerically valued Lens
, Iso
, Setter
or Traversal
.
>>>
(a,b) & _1 -~ c
(a - c,b)
>>>
(a,b) & both -~ c
(a - c,b - c)
>>>
_1 -~ 2 $ (1,2)
(-1,2)
>>>
mapped.mapped -~ 1 $ [[4,5],[6,7]]
[[3,4],[5,6]]
(-~
) ::Num
a =>Setter'
s a -> a -> s -> s (-~
) ::Num
a =>Iso'
s a -> a -> s -> s (-~
) ::Num
a =>Lens'
s a -> a -> s -> s (-~
) ::Num
a =>Traversal'
s a -> a -> s -> s
(*~) :: Num a => ASetter s t a a -> a -> s -> t infixr 4 #
Multiply the target(s) of a numerically valued Lens
, Iso
, Setter
or Traversal
.
>>>
(a,b) & _1 *~ c
(a * c,b)
>>>
(a,b) & both *~ c
(a * c,b * c)
>>>
(1,2) & _2 *~ 4
(1,8)
>>>
Just 24 & mapped *~ 2
Just 48
(*~
) ::Num
a =>Setter'
s a -> a -> s -> s (*~
) ::Num
a =>Iso'
s a -> a -> s -> s (*~
) ::Num
a =>Lens'
s a -> a -> s -> s (*~
) ::Num
a =>Traversal'
s a -> a -> s -> s
(+~) :: Num a => ASetter s t a a -> a -> s -> t infixr 4 #
Increment the target(s) of a numerically valued Lens
, Setter
or Traversal
.
>>>
(a,b) & _1 +~ c
(a + c,b)
>>>
(a,b) & both +~ c
(a + c,b + c)
>>>
(1,2) & _2 +~ 1
(1,3)
>>>
[(a,b),(c,d)] & traverse.both +~ e
[(a + e,b + e),(c + e,d + e)]
(+~
) ::Num
a =>Setter'
s a -> a -> s -> s (+~
) ::Num
a =>Iso'
s a -> a -> s -> s (+~
) ::Num
a =>Lens'
s a -> a -> s -> s (+~
) ::Num
a =>Traversal'
s a -> a -> s -> s
(<?~) :: ASetter s t a (Maybe b) -> b -> s -> (b, t) infixr 4 #
Set to Just
a value with pass-through.
This is mostly present for consistency, but may be useful for for chaining assignments.
If you do not need a copy of the intermediate result, then using l
directly is a good idea.?~
d
>>>
import Data.Map as Map
>>>
_2.at "hello" <?~ "world" $ (42,Map.fromList [("goodnight","gracie")])
("world",(42,fromList [("goodnight","gracie"),("hello","world")]))
(<?~
) ::Setter
s t a (Maybe
b) -> b -> s -> (b, t) (<?~
) ::Iso
s t a (Maybe
b) -> b -> s -> (b, t) (<?~
) ::Lens
s t a (Maybe
b) -> b -> s -> (b, t) (<?~
) ::Traversal
s t a (Maybe
b) -> b -> s -> (b, t)
(<.~) :: ASetter s t a b -> b -> s -> (b, t) infixr 4 #
Set with pass-through.
This is mostly present for consistency, but may be useful for chaining assignments.
If you do not need a copy of the intermediate result, then using l
directly is a good idea..~
t
>>>
(a,b) & _1 <.~ c
(c,(c,b))
>>>
("good","morning","vietnam") & _3 <.~ "world"
("world",("good","morning","world"))
>>>
(42,Map.fromList [("goodnight","gracie")]) & _2.at "hello" <.~ Just "world"
(Just "world",(42,fromList [("goodnight","gracie"),("hello","world")]))
(<.~
) ::Setter
s t a b -> b -> s -> (b, t) (<.~
) ::Iso
s t a b -> b -> s -> (b, t) (<.~
) ::Lens
s t a b -> b -> s -> (b, t) (<.~
) ::Traversal
s t a b -> b -> s -> (b, t)
(?~) :: ASetter s t a (Maybe b) -> b -> s -> t infixr 4 #
Set the target of a Lens
, Traversal
or Setter
to Just
a value.
l?~
t ≡set
l (Just
t)
>>>
Nothing & id ?~ a
Just a
>>>
Map.empty & at 3 ?~ x
fromList [(3,x)]
?~
can be used type-changily:
>>>
('a', ('b', 'c')) & _2.both ?~ 'x'
('a',(Just 'x',Just 'x'))
(?~
) ::Setter
s t a (Maybe
b) -> b -> s -> t (?~
) ::Iso
s t a (Maybe
b) -> b -> s -> t (?~
) ::Lens
s t a (Maybe
b) -> b -> s -> t (?~
) ::Traversal
s t a (Maybe
b) -> b -> s -> t
(.~) :: ASetter s t a b -> b -> s -> t infixr 4 #
Replace the target of a Lens
or all of the targets of a Setter
or Traversal
with a constant value.
This is an infix version of set
, provided for consistency with (.=
).
f<$
a ≡mapped
.~
f$
a
>>>
(a,b,c,d) & _4 .~ e
(a,b,c,e)
>>>
(42,"world") & _1 .~ "hello"
("hello","world")
>>>
(a,b) & both .~ c
(c,c)
(.~
) ::Setter
s t a b -> b -> s -> t (.~
) ::Iso
s t a b -> b -> s -> t (.~
) ::Lens
s t a b -> b -> s -> t (.~
) ::Traversal
s t a b -> b -> s -> t
(%~) :: ASetter s t a b -> (a -> b) -> s -> t infixr 4 #
Modifies the target of a Lens
or all of the targets of a Setter
or
Traversal
with a user supplied function.
This is an infix version of over
.
fmap
f ≡mapped
%~
ffmapDefault
f ≡traverse
%~
f
>>>
(a,b,c) & _3 %~ f
(a,b,f c)
>>>
(a,b) & both %~ f
(f a,f b)
>>>
_2 %~ length $ (1,"hello")
(1,5)
>>>
traverse %~ f $ [a,b,c]
[f a,f b,f c]
>>>
traverse %~ even $ [1,2,3]
[False,True,False]
>>>
traverse.traverse %~ length $ [["hello","world"],["!!!"]]
[[5,5],[3]]
(%~
) ::Setter
s t a b -> (a -> b) -> s -> t (%~
) ::Iso
s t a b -> (a -> b) -> s -> t (%~
) ::Lens
s t a b -> (a -> b) -> s -> t (%~
) ::Traversal
s t a b -> (a -> b) -> s -> t
set' :: ASetter' s a -> a -> s -> s #
Replace the target of a Lens
or all of the targets of a Setter'
or Traversal
with a constant value, without changing its type.
This is a type restricted version of set
, which retains the type of the original.
>>>
set' mapped x [a,b,c,d]
[x,x,x,x]
>>>
set' _2 "hello" (1,"world")
(1,"hello")
>>>
set' mapped 0 [1,2,3,4]
[0,0,0,0]
Note: Attempting to adjust set'
a Fold
or Getter
will fail at compile time with an
relatively nice error message.
set'
::Setter'
s a -> a -> s -> sset'
::Iso'
s a -> a -> s -> sset'
::Lens'
s a -> a -> s -> sset'
::Traversal'
s a -> a -> s -> s
set :: ASetter s t a b -> b -> s -> t #
Replace the target of a Lens
or all of the targets of a Setter
or Traversal
with a constant value.
(<$
) ≡set
mapped
>>>
set _2 "hello" (1,())
(1,"hello")
>>>
set mapped () [1,2,3,4]
[(),(),(),()]
Note: Attempting to set
a Fold
or Getter
will fail at compile time with an
relatively nice error message.
set
::Setter
s t a b -> b -> s -> tset
::Iso
s t a b -> b -> s -> tset
::Lens
s t a b -> b -> s -> tset
::Traversal
s t a b -> b -> s -> t
over :: ASetter s t a b -> (a -> b) -> s -> t #
Modify the target of a Lens
or all the targets of a Setter
or Traversal
with a function.
fmap
≡over
mapped
fmapDefault
≡over
traverse
sets
.
over
≡id
over
.
sets
≡id
Given any valid Setter
l
, you can also rely on the law:
over
l f.
over
l g =over
l (f.
g)
e.g.
>>>
over mapped f (over mapped g [a,b,c]) == over mapped (f . g) [a,b,c]
True
Another way to view over
is to say that it transforms a Setter
into a
"semantic editor combinator".
>>>
over mapped f (Just a)
Just (f a)
>>>
over mapped (*10) [1,2,3]
[10,20,30]
>>>
over _1 f (a,b)
(f a,b)
>>>
over _1 show (10,20)
("10",20)
over
::Setter
s t a b -> (a -> b) -> s -> tover
::ASetter
s t a b -> (a -> b) -> s -> t
cloneIndexedSetter :: AnIndexedSetter i s t a b -> IndexedSetter i s t a b #
Clone an IndexedSetter
.
cloneIndexPreservingSetter :: ASetter s t a b -> IndexPreservingSetter s t a b #
Build an IndexPreservingSetter
from any Setter
.
sets :: (Profunctor p, Profunctor q, Settable f) => (p a b -> q s t) -> Optical p q f s t a b #
Build a Setter
, IndexedSetter
or IndexPreservingSetter
depending on your choice of Profunctor
.
sets
:: ((a -> b) -> s -> t) ->Setter
s t a b
setting :: ((a -> b) -> s -> t) -> IndexPreservingSetter s t a b #
Build an index-preserving Setter
from a map-like function.
Your supplied function f
is required to satisfy:
fid
≡id
f g.
f h ≡ f (g.
h)
Equational reasoning:
setting
.
over
≡id
over
.
setting
≡id
Another way to view sets
is that it takes a "semantic editor combinator"
and transforms it into a Setter
.
setting
:: ((a -> b) -> s -> t) ->Setter
s t a b
argument :: Profunctor p => Setter (p b r) (p a r) a b #
This Setter
can be used to map over the input of a Profunctor
.
The most common Profunctor
to use this with is (->)
.
>>>
(argument %~ f) g x
g (f x)
>>>
(argument %~ show) length [1,2,3]
7
>>>
(argument %~ f) h x y
h (f x) y
Map over the argument of the result of a function -- i.e., its second argument:
>>>
(mapped.argument %~ f) h x y
h x (f y)
argument
::Setter
(b -> r) (a -> r) a b
contramapped :: Contravariant f => Setter (f b) (f a) a b #
This Setter
can be used to map over all of the inputs to a Contravariant
.
contramap
≡over
contramapped
>>>
getPredicate (over contramapped (*2) (Predicate even)) 5
True
>>>
getOp (over contramapped (*5) (Op show)) 100
"500"
>>>
Prelude.map ($ 1) $ over (mapped . _Unwrapping' Op . contramapped) (*12) [(*2),(+1),(^3)]
[24,13,1728]
lifted :: Monad m => Setter (m a) (m b) a b #
This setter
can be used to modify all of the values in a Monad
.
You sometimes have to use this rather than mapped
-- due to
temporary insanity Functor
was not a superclass of Monad
until
GHC 7.10.
liftM
≡over
lifted
>>>
over lifted f [a,b,c]
[f a,f b,f c]
>>>
set lifted b (Just a)
Just b
If you want an IndexPreservingSetter
use
.setting
liftM
mapped :: Functor f => Setter (f a) (f b) a b #
This Setter
can be used to map over all of the values in a Functor
.
fmap
≡over
mapped
fmapDefault
≡over
traverse
(<$
) ≡set
mapped
>>>
over mapped f [a,b,c]
[f a,f b,f c]
>>>
over mapped (+1) [1,2,3]
[2,3,4]
>>>
set mapped x [a,b,c]
[x,x,x]
>>>
[[a,b],[c]] & mapped.mapped +~ x
[[a + x,b + x],[c + x]]
>>>
over (mapped._2) length [("hello","world"),("leaders","!!!")]
[("hello",5),("leaders",3)]
mapped
::Functor
f =>Setter
(f a) (f b) a b
If you want an IndexPreservingSetter
use
.setting
fmap
type ASetter s t a b = (a -> Identity b) -> s -> Identity t #
Running a Setter
instantiates it to a concrete type.
When consuming a setter directly to perform a mapping, you can use this type, but most user code will not need to use this type.
type AnIndexedSetter i s t a b = Indexed i a (Identity b) -> s -> Identity t #
Running an IndexedSetter
instantiates it to a concrete type.
When consuming a setter directly to perform a mapping, you can use this type, but most user code will not need to use this type.
type AnIndexedSetter' i s a = AnIndexedSetter i s s a a #
typeAnIndexedSetter'
i =Simple
(AnIndexedSetter
i)
type Setting (p :: Type -> Type -> Type) s t a b = p a (Identity b) -> s -> Identity t #
This is a convenient alias when defining highly polymorphic code that takes both
ASetter
and AnIndexedSetter
as appropriate. If a function takes this it is
expecting one of those two things based on context.
type Setting' (p :: Type -> Type -> Type) s a = Setting p s s a a #
This is a convenient alias when defining highly polymorphic code that takes both
ASetter'
and AnIndexedSetter'
as appropriate. If a function takes this it is
expecting one of those two things based on context.
type Lens s t a b = forall (f :: Type -> Type). Functor f => (a -> f b) -> s -> f t #
A Lens
is actually a lens family as described in
http://comonad.com/reader/2012/mirrored-lenses/.
With great power comes great responsibility and a Lens
is subject to the
three common sense Lens
laws:
1) You get back what you put in:
view
l (set
l v s) ≡ v
2) Putting back what you got doesn't change anything:
set
l (view
l s) s ≡ s
3) Setting twice is the same as setting once:
set
l v' (set
l v s) ≡set
l v' s
These laws are strong enough that the 4 type parameters of a Lens
cannot
vary fully independently. For more on how they interact, read the "Why is
it a Lens Family?" section of
http://comonad.com/reader/2012/mirrored-lenses/.
There are some emergent properties of these laws:
1)
must be injective for every set
l ss
This is a consequence of law #1
2)
must be surjective, because of law #2, which indicates that it is possible to obtain any set
lv
from some s
such that set
s v = s
3) Given just the first two laws you can prove a weaker form of law #3 where the values v
that you are setting match:
set
l v (set
l v s) ≡set
l v s
Every Lens
can be used directly as a Setter
or Traversal
.
You can also use a Lens
for Getting
as if it were a
Fold
or Getter
.
Since every Lens
is a valid Traversal
, the
Traversal
laws are required of any Lens
you create:
lpure
≡pure
fmap
(l f).
l g ≡getCompose
.
l (Compose
.
fmap
f.
g)
typeLens
s t a b = forall f.Functor
f =>LensLike
f s t a b
type IndexedLens i s t a b = forall (f :: Type -> Type) (p :: Type -> Type -> Type). (Indexable i p, Functor f) => p a (f b) -> s -> f t #
Every IndexedLens
is a valid Lens
and a valid IndexedTraversal
.
type IndexedLens' i s a = IndexedLens i s s a a #
typeIndexedLens'
i =Simple
(IndexedLens
i)
type IndexPreservingLens s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Functor f) => p a (f b) -> p s (f t) #
An IndexPreservingLens
leaves any index it is composed with alone.
type IndexPreservingLens' s a = IndexPreservingLens s s a a #
type Traversal s t a b = forall (f :: Type -> Type). Applicative f => (a -> f b) -> s -> f t #
A Traversal
can be used directly as a Setter
or a Fold
(but not as a Lens
) and provides
the ability to both read and update multiple fields, subject to some relatively weak Traversal
laws.
These have also been known as multilenses, but they have the signature and spirit of
traverse
::Traversable
f =>Traversal
(f a) (f b) a b
and the more evocative name suggests their application.
Most of the time the Traversal
you will want to use is just traverse
, but you can also pass any
Lens
or Iso
as a Traversal
, and composition of a Traversal
(or Lens
or Iso
) with a Traversal
(or Lens
or Iso
)
using (.
) forms a valid Traversal
.
The laws for a Traversal
t
follow from the laws for Traversable
as stated in "The Essence of the Iterator Pattern".
tpure
≡pure
fmap
(t f).
t g ≡getCompose
.
t (Compose
.
fmap
f.
g)
One consequence of this requirement is that a Traversal
needs to leave the same number of elements as a
candidate for subsequent Traversal
that it started with. Another testament to the strength of these laws
is that the caveat expressed in section 5.5 of the "Essence of the Iterator Pattern" about exotic
Traversable
instances that traverse
the same entry multiple times was actually already ruled out by the
second law in that same paper!
type Traversal' s a = Traversal s s a a #
typeTraversal'
=Simple
Traversal
type Traversal1 s t a b = forall (f :: Type -> Type). Apply f => (a -> f b) -> s -> f t #
type Traversal1' s a = Traversal1 s s a a #
type IndexedTraversal i s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Indexable i p, Applicative f) => p a (f b) -> s -> f t #
Every IndexedTraversal
is a valid Traversal
or
IndexedFold
.
The Indexed
constraint is used to allow an IndexedTraversal
to be used
directly as a Traversal
.
The Traversal
laws are still required to hold.
In addition, the index i
should satisfy the requirement that it stays
unchanged even when modifying the value a
, otherwise traversals like
indices
break the Traversal
laws.
type IndexedTraversal' i s a = IndexedTraversal i s s a a #
typeIndexedTraversal'
i =Simple
(IndexedTraversal
i)
type IndexedTraversal1 i s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Indexable i p, Apply f) => p a (f b) -> s -> f t #
type IndexedTraversal1' i s a = IndexedTraversal1 i s s a a #
type IndexPreservingTraversal s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Applicative f) => p a (f b) -> p s (f t) #
An IndexPreservingLens
leaves any index it is composed with alone.
type IndexPreservingTraversal' s a = IndexPreservingTraversal s s a a #
type IndexPreservingTraversal1 s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Apply f) => p a (f b) -> p s (f t) #
type IndexPreservingTraversal1' s a = IndexPreservingTraversal1 s s a a #
type Setter s t a b = forall (f :: Type -> Type). Settable f => (a -> f b) -> s -> f t #
The only LensLike
law that can apply to a Setter
l
is that
set
l y (set
l x a) ≡set
l y a
You can't view
a Setter
in general, so the other two laws are irrelevant.
However, two Functor
laws apply to a Setter
:
over
lid
≡id
over
l f.
over
l g ≡over
l (f.
g)
These can be stated more directly:
lpure
≡pure
l f.
untainted
.
l g ≡ l (f.
untainted
.
g)
You can compose a Setter
with a Lens
or a Traversal
using (.
) from the Prelude
and the result is always only a Setter
and nothing more.
>>>
over traverse f [a,b,c,d]
[f a,f b,f c,f d]
>>>
over _1 f (a,b)
(f a,b)
>>>
over (traverse._1) f [(a,b),(c,d)]
[(f a,b),(f c,d)]
>>>
over both f (a,b)
(f a,f b)
>>>
over (traverse.both) f [(a,b),(c,d)]
[(f a,f b),(f c,f d)]
type IndexedSetter i s t a b = forall (f :: Type -> Type) (p :: Type -> Type -> Type). (Indexable i p, Settable f) => p a (f b) -> s -> f t #
Every IndexedSetter
is a valid Setter
.
The Setter
laws are still required to hold.
type IndexedSetter' i s a = IndexedSetter i s s a a #
typeIndexedSetter'
i =Simple
(IndexedSetter
i)
type IndexPreservingSetter s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Settable f) => p a (f b) -> p s (f t) #
An IndexPreservingSetter
can be composed with a IndexedSetter
, IndexedTraversal
or IndexedLens
and leaves the index intact, yielding an IndexedSetter
.
type IndexPreservingSetter' s a = IndexPreservingSetter s s a a #
typeIndexedPreservingSetter'
i =Simple
IndexedPreservingSetter
type Iso s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Profunctor p, Functor f) => p a (f b) -> p s (f t) #
type Review t b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Choice p, Bifunctor p, Settable f) => Optic' p f t b #
type Prism s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Choice p, Applicative f) => p a (f b) -> p s (f t) #
A Prism
l
is a Traversal
that can also be turned
around with re
to obtain a Getter
in the
opposite direction.
There are three laws that a Prism
should satisfy:
First, if I re
or review
a value with a Prism
and then preview
or use (^?
), I will get it back:
preview
l (review
l b) ≡Just
b
Second, if you can extract a value a
using a Prism
l
from a value s
, then the value s
is completely described by l
and a
:
preview
l s ≡Just
a ⟹review
l a ≡ s
Third, if you get non-match t
, you can convert it result back to s
:
matching
l s ≡Left
t ⟹matching
l t ≡Left
s
The first two laws imply that the Traversal
laws hold for every Prism
and that we traverse
at most 1 element:
lengthOf
l x<=
1
It may help to think of this as a Iso
that can be partial in one direction.
Every Prism
is a valid Traversal
.
For example, you might have a
allows you to always
go from a Prism'
Integer
Natural
Natural
to an Integer
, and provide you with tools to check if an Integer
is
a Natural
and/or to edit one if it is.
nat
::Prism'
Integer
Natural
nat
=prism
toInteger
$
\ i -> if i<
0 thenLeft
i elseRight
(fromInteger
i)
Now we can ask if an Integer
is a Natural
.
>>>
5^?nat
Just 5
>>>
(-5)^?nat
Nothing
We can update the ones that are:
>>>
(-3,4) & both.nat *~ 2
(-3,8)
And we can then convert from a Natural
to an Integer
.
>>>
5 ^. re nat -- :: Natural
5
Similarly we can use a Prism
to traverse
the Left
half of an Either
:
>>>
Left "hello" & _Left %~ length
Left 5
or to construct an Either
:
>>>
5^.re _Left
Left 5
such that if you query it with the Prism
, you will get your original input back.
>>>
5^.re _Left ^? _Left
Just 5
Another interesting way to think of a Prism
is as the categorical dual of a Lens
-- a co-Lens
, so to speak. This is what permits the construction of outside
.
Note: Composition with a Prism
is index-preserving.
type Equality (s :: k1) (t :: k2) (a :: k1) (b :: k2) = forall k3 (p :: k1 -> k3 -> Type) (f :: k2 -> k3). p a (f b) -> p s (f t) #
A witness that (a ~ s, b ~ t)
.
Note: Composition with an Equality
is index-preserving.
type As (a :: k2) = Equality' a a #
Composable asTypeOf
. Useful for constraining excess
polymorphism, foo . (id :: As Int) . bar
.
type Getter s a = forall (f :: Type -> Type). (Contravariant f, Functor f) => (a -> f a) -> s -> f s #
A Getter
describes how to retrieve a single value in a way that can be
composed with other LensLike
constructions.
Unlike a Lens
a Getter
is read-only. Since a Getter
cannot be used to write back there are no Lens
laws that can be applied to
it. In fact, it is isomorphic to an arbitrary function from (s -> a)
.
Moreover, a Getter
can be used directly as a Fold
,
since it just ignores the Applicative
.
type IndexedGetter i s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Indexable i p, Contravariant f, Functor f) => p a (f a) -> s -> f s #
Every IndexedGetter
is a valid IndexedFold
and can be used for Getting
like a Getter
.
type IndexPreservingGetter s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Contravariant f, Functor f) => p a (f a) -> p s (f s) #
An IndexPreservingGetter
can be used as a Getter
, but when composed with an IndexedTraversal
,
IndexedFold
, or IndexedLens
yields an IndexedFold
, IndexedFold
or IndexedGetter
respectively.
type Fold s a = forall (f :: Type -> Type). (Contravariant f, Applicative f) => (a -> f a) -> s -> f s #
A Fold
describes how to retrieve multiple values in a way that can be composed
with other LensLike
constructions.
A
provides a structure with operations very similar to those of the Fold
s aFoldable
typeclass, see foldMapOf
and the other Fold
combinators.
By convention, if there exists a foo
method that expects a
, then there should be a
Foldable
(f a)fooOf
method that takes a
and a value of type Fold
s as
.
A Getter
is a legal Fold
that just ignores the supplied Monoid
.
Unlike a Traversal
a Fold
is read-only. Since a Fold
cannot be used to write back
there are no Lens
laws that apply.
type IndexedFold i s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Indexable i p, Contravariant f, Applicative f) => p a (f a) -> s -> f s #
Every IndexedFold
is a valid Fold
and can be used for Getting
.
type IndexPreservingFold s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Contravariant f, Applicative f) => p a (f a) -> p s (f s) #
An IndexPreservingFold
can be used as a Fold
, but when composed with an IndexedTraversal
,
IndexedFold
, or IndexedLens
yields an IndexedFold
respectively.
type Fold1 s a = forall (f :: Type -> Type). (Contravariant f, Apply f) => (a -> f a) -> s -> f s #
A relevant Fold (aka Fold1
) has one or more targets.
type IndexedFold1 i s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Indexable i p, Contravariant f, Apply f) => p a (f a) -> s -> f s #
type IndexPreservingFold1 s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Contravariant f, Apply f) => p a (f a) -> p s (f s) #
type Simple (f :: k -> k -> k1 -> k1 -> k2) (s :: k) (a :: k1) = f s s a a #
A Simple
Lens
, Simple
Traversal
, ... can
be used instead of a Lens
,Traversal
, ...
whenever the type variables don't change upon setting a value.
_imagPart
::Simple
Lens
(Complex
a) atraversed
::Simple
(IndexedTraversal
Int
) [a] a
Note: To use this alias in your own code with
or
LensLike
fSetter
, you may have to turn on LiberalTypeSynonyms
.
This is commonly abbreviated as a "prime" marker, e.g. Lens'
= Simple
Lens
.
type Optic (p :: k1 -> k -> Type) (f :: k2 -> k) (s :: k1) (t :: k2) (a :: k1) (b :: k2) = p a (f b) -> p s (f t) #
A valid Optic
l
should satisfy the laws:
lpure
≡pure
l (Procompose
f g) =Procompose
(l f) (l g)
This gives rise to the laws for Equality
, Iso
, Prism
, Lens
,
Traversal
, Traversal1
, Setter
, Fold
, Fold1
, and Getter
as well
along with their index-preserving variants.
typeLensLike
f s t a b =Optic
(->) f s t a b
type Optical (p :: k2 -> k -> Type) (q :: k1 -> k -> Type) (f :: k3 -> k) (s :: k1) (t :: k3) (a :: k2) (b :: k3) = p a (f b) -> q s (f t) #
type Optical' (p :: k1 -> k -> Type) (q :: k1 -> k -> Type) (f :: k1 -> k) (s :: k1) (a :: k1) = Optical p q f s s a a #
type LensLike (f :: k -> Type) s (t :: k) a (b :: k) = (a -> f b) -> s -> f t #
Many combinators that accept a Lens
can also accept a
Traversal
in limited situations.
They do so by specializing the type of Functor
that they require of the
caller.
If a function accepts a
for some LensLike
f s t a bFunctor
f
,
then they may be passed a Lens
.
Further, if f
is an Applicative
, they may also be passed a
Traversal
.
type IndexedLensLike i (f :: k -> Type) s (t :: k) a (b :: k) = forall (p :: Type -> Type -> Type). Indexable i p => p a (f b) -> s -> f t #
Convenient alias for constructing indexed lenses and their ilk.
type IndexedLensLike' i (f :: Type -> Type) s a = IndexedLensLike i f s s a a #
Convenient alias for constructing simple indexed lenses and their ilk.
type Over (p :: k -> Type -> Type) (f :: k1 -> Type) s (t :: k1) (a :: k) (b :: k1) = p a (f b) -> s -> f t #
This is a convenient alias for use when you need to consume either indexed or non-indexed lens-likes based on context.
class (Applicative f, Distributive f, Traversable f) => Settable (f :: Type -> Type) #
Minimal complete definition
Instances
Settable Identity | So you can pass our |
Defined in Control.Lens.Internal.Setter Methods untainted :: Identity a -> a # untaintedDot :: Profunctor p => p a (Identity b) -> p a b # taintedDot :: Profunctor p => p a b -> p a (Identity b) # | |
Settable f => Settable (Backwards f) | |
Defined in Control.Lens.Internal.Setter Methods untainted :: Backwards f a -> a # untaintedDot :: Profunctor p => p a (Backwards f b) -> p a b # taintedDot :: Profunctor p => p a b -> p a (Backwards f b) # | |
(Settable f, Settable g) => Settable (Compose f g) | |
Defined in Control.Lens.Internal.Setter Methods untainted :: Compose f g a -> a # untaintedDot :: Profunctor p => p a (Compose f g b) -> p a b # taintedDot :: Profunctor p => p a b -> p a (Compose f g b) # |
retagged :: (Profunctor p, Bifunctor p) => p a b -> p s b #
This is a profunctor used internally to implement Review
It plays a role similar to that of Accessor
or Const
do for Control.Lens.Getter
class (Profunctor p, Bifunctor p) => Reviewable (p :: Type -> Type -> Type) #
This class is provided mostly for backwards compatibility with lens 3.8, but it can also shorten type signatures.
Instances
(Profunctor p, Bifunctor p) => Reviewable p | |
Defined in Control.Lens.Internal.Review |
This provides a way to peek at the internal structure of a
Traversal
or IndexedTraversal
Instances
FunctorWithIndex i (Magma i t b) | |
Defined in Control.Lens.Indexed | |
FoldableWithIndex i (Magma i t b) | |
Defined in Control.Lens.Indexed Methods ifoldMap :: Monoid m => (i -> a -> m) -> Magma i t b a -> m # ifolded :: IndexedFold i (Magma i t b a) a # ifoldr :: (i -> a -> b0 -> b0) -> b0 -> Magma i t b a -> b0 # ifoldl :: (i -> b0 -> a -> b0) -> b0 -> Magma i t b a -> b0 # ifoldr' :: (i -> a -> b0 -> b0) -> b0 -> Magma i t b a -> b0 # ifoldl' :: (i -> b0 -> a -> b0) -> b0 -> Magma i t b a -> b0 # | |
TraversableWithIndex i (Magma i t b) | |
Defined in Control.Lens.Indexed Methods itraverse :: Applicative f => (i -> a -> f b0) -> Magma i t b a -> f (Magma i t b b0) # itraversed :: IndexedTraversal i (Magma i t b a) (Magma i t b b0) a b0 # | |
Functor (Magma i t b) | |
Foldable (Magma i t b) | |
Defined in Control.Lens.Internal.Magma Methods fold :: Monoid m => Magma i t b m -> m # foldMap :: Monoid m => (a -> m) -> Magma i t b a -> m # foldr :: (a -> b0 -> b0) -> b0 -> Magma i t b a -> b0 # foldr' :: (a -> b0 -> b0) -> b0 -> Magma i t b a -> b0 # foldl :: (b0 -> a -> b0) -> b0 -> Magma i t b a -> b0 # foldl' :: (b0 -> a -> b0) -> b0 -> Magma i t b a -> b0 # foldr1 :: (a -> a -> a) -> Magma i t b a -> a # foldl1 :: (a -> a -> a) -> Magma i t b a -> a # toList :: Magma i t b a -> [a] # null :: Magma i t b a -> Bool # length :: Magma i t b a -> Int # elem :: Eq a => a -> Magma i t b a -> Bool # maximum :: Ord a => Magma i t b a -> a # minimum :: Ord a => Magma i t b a -> a # | |
Traversable (Magma i t b) | |
Defined in Control.Lens.Internal.Magma | |
(Show i, Show a) => Show (Magma i t b a) | |
This data type represents a path-compressed copy of one level of a source data structure. We can safely use path-compression because we know the depth of the tree.
Path compression is performed by viewing a Level
as a PATRICIA trie of the
paths into the structure to leaves at a given depth, similar in many ways
to a IntMap
, but unlike a regular PATRICIA trie we do not need
to store the mask bits merely the depth of the fork.
One invariant of this structure is that underneath a Two
node you will not
find any Zero
nodes, so Zero
can only occur at the root.
Instances
FunctorWithIndex i (Level i) | |
Defined in Control.Lens.Indexed | |
FoldableWithIndex i (Level i) | |
TraversableWithIndex i (Level i) | |
Defined in Control.Lens.Indexed Methods itraverse :: Applicative f => (i -> a -> f b) -> Level i a -> f (Level i b) # itraversed :: IndexedTraversal i (Level i a) (Level i b) a b # | |
Functor (Level i) | |
Foldable (Level i) | |
Defined in Control.Lens.Internal.Level Methods fold :: Monoid m => Level i m -> m # foldMap :: Monoid m => (a -> m) -> Level i a -> m # foldr :: (a -> b -> b) -> b -> Level i a -> b # foldr' :: (a -> b -> b) -> b -> Level i a -> b # foldl :: (b -> a -> b) -> b -> Level i a -> b # foldl' :: (b -> a -> b) -> b -> Level i a -> b # foldr1 :: (a -> a -> a) -> Level i a -> a # foldl1 :: (a -> a -> a) -> Level i a -> a # elem :: Eq a => a -> Level i a -> Bool # maximum :: Ord a => Level i a -> a # minimum :: Ord a => Level i a -> a # | |
Traversable (Level i) | |
(Eq i, Eq a) => Eq (Level i a) | |
(Ord i, Ord a) => Ord (Level i a) | |
(Read i, Read a) => Read (Level i a) | |
(Show i, Show a) => Show (Level i a) | |
This class provides a generalized notion of list reversal extended to other containers.
Instances
Reversing ByteString | |
Defined in Control.Lens.Internal.Iso Methods reversing :: ByteString -> ByteString # | |
Reversing ByteString | |
Defined in Control.Lens.Internal.Iso Methods reversing :: ByteString -> ByteString # | |
Reversing Text | |
Defined in Control.Lens.Internal.Iso | |
Reversing Text | |
Defined in Control.Lens.Internal.Iso | |
Reversing [a] | |
Defined in Control.Lens.Internal.Iso | |
Reversing (NonEmpty a) | |
Defined in Control.Lens.Internal.Iso | |
Reversing (Seq a) | |
Defined in Control.Lens.Internal.Iso | |
Prim a => Reversing (Vector a) | |
Defined in Control.Lens.Internal.Iso | |
Storable a => Reversing (Vector a) | |
Defined in Control.Lens.Internal.Iso | |
Unbox a => Reversing (Vector a) | |
Defined in Control.Lens.Internal.Iso | |
Reversing (Vector a) | |
Defined in Control.Lens.Internal.Iso |
newtype Bazaar (p :: Type -> Type -> Type) a b t #
This is used to characterize a Traversal
.
a.k.a. indexed Cartesian store comonad, indexed Kleene store comonad, or an indexed FunList
.
http://twanvl.nl/blog/haskell/non-regular1
A Bazaar
is like a Traversal
that has already been applied to some structure.
Where a
holds an Context
a b ta
and a function from b
to
t
, a
holds Bazaar
a b tN
a
s and a function from N
b
s to t
, (where N
might be infinite).
Mnemonically, a Bazaar
holds many stores and you can easily add more.
This is a final encoding of Bazaar
.
Constructors
Bazaar | |
Fields
|
Instances
Profunctor p => Bizarre p (Bazaar p) | |
Defined in Control.Lens.Internal.Bazaar Methods bazaar :: Applicative f => p a (f b) -> Bazaar p a b t -> f t # | |
Corepresentable p => Sellable p (Bazaar p) | |
Defined in Control.Lens.Internal.Bazaar | |
IndexedFunctor (Bazaar p) | |
Defined in Control.Lens.Internal.Bazaar | |
Conjoined p => IndexedComonad (Bazaar p) | |
Functor (Bazaar p a b) | |
Applicative (Bazaar p a b) | |
Defined in Control.Lens.Internal.Bazaar Methods pure :: a0 -> Bazaar p a b a0 # (<*>) :: Bazaar p a b (a0 -> b0) -> Bazaar p a b a0 -> Bazaar p a b b0 # liftA2 :: (a0 -> b0 -> c) -> Bazaar p a b a0 -> Bazaar p a b b0 -> Bazaar p a b c # (*>) :: Bazaar p a b a0 -> Bazaar p a b b0 -> Bazaar p a b b0 # (<*) :: Bazaar p a b a0 -> Bazaar p a b b0 -> Bazaar p a b a0 # | |
(a ~ b, Conjoined p) => Comonad (Bazaar p a b) | |
(a ~ b, Conjoined p) => ComonadApply (Bazaar p a b) | |
Apply (Bazaar p a b) | |
Defined in Control.Lens.Internal.Bazaar |
newtype Bazaar1 (p :: Type -> Type -> Type) a b t #
This is used to characterize a Traversal
.
a.k.a. indexed Cartesian store comonad, indexed Kleene store comonad, or an indexed FunList
.
http://twanvl.nl/blog/haskell/non-regular1
A Bazaar1
is like a Traversal
that has already been applied to some structure.
Where a
holds an Context
a b ta
and a function from b
to
t
, a
holds Bazaar1
a b tN
a
s and a function from N
b
s to t
, (where N
might be infinite).
Mnemonically, a Bazaar1
holds many stores and you can easily add more.
This is a final encoding of Bazaar1
.
Constructors
Bazaar1 | |
Fields
|
Instances
Profunctor p => Bizarre1 p (Bazaar1 p) | |
Defined in Control.Lens.Internal.Bazaar | |
Corepresentable p => Sellable p (Bazaar1 p) | |
Defined in Control.Lens.Internal.Bazaar | |
IndexedFunctor (Bazaar1 p) | |
Defined in Control.Lens.Internal.Bazaar | |
Conjoined p => IndexedComonad (Bazaar1 p) | |
Functor (Bazaar1 p a b) | |
(a ~ b, Conjoined p) => Comonad (Bazaar1 p a b) | |
(a ~ b, Conjoined p) => ComonadApply (Bazaar1 p a b) | |
Apply (Bazaar1 p a b) | |
Defined in Control.Lens.Internal.Bazaar Methods (<.>) :: Bazaar1 p a b (a0 -> b0) -> Bazaar1 p a b a0 -> Bazaar1 p a b b0 # (.>) :: Bazaar1 p a b a0 -> Bazaar1 p a b b0 -> Bazaar1 p a b b0 # (<.) :: Bazaar1 p a b a0 -> Bazaar1 p a b b0 -> Bazaar1 p a b a0 # liftF2 :: (a0 -> b0 -> c) -> Bazaar1 p a b a0 -> Bazaar1 p a b b0 -> Bazaar1 p a b c # |
The indexed store can be used to characterize a Lens
and is used by cloneLens
.
is isomorphic to
Context
a b tnewtype
,
and to Context
a b t = Context
{ runContext :: forall f. Functor
f => (a -> f b) -> f t }exists s. (s,
.Lens
s t a b)
A Context
is like a Lens
that has already been applied to a some structure.
Constructors
Context (b -> t) a |
Instances
IndexedFunctor Context | |
Defined in Control.Lens.Internal.Context | |
IndexedComonad Context | |
IndexedComonadStore Context | |
a ~ b => ComonadStore a (Context a b) | |
Defined in Control.Lens.Internal.Context | |
Functor (Context a b) | |
a ~ b => Comonad (Context a b) | |
Sellable ((->) :: Type -> Type -> Type) Context | |
Defined in Control.Lens.Internal.Context |
asIndex :: (Indexable i p, Contravariant f, Functor f) => p i (f i) -> Indexed i s (f s) #
When composed with an IndexedFold
or IndexedTraversal
this yields an
(Indexed
) Fold
of the indices.
withIndex :: (Indexable i p, Functor f) => p (i, s) (f (j, t)) -> Indexed i s (f t) #
Fold a container with indices returning both the indices and the values.
The result is only valid to compose in a Traversal
, if you don't edit the
index as edits to the index have no effect.
>>>
[10, 20, 30] ^.. ifolded . withIndex
[(0,10),(1,20),(2,30)]
>>>
[10, 20, 30] ^.. ifolded . withIndex . alongside negated (re _Show)
[(0,"10"),(-1,"20"),(-2,"30")]
indexing64 :: Indexable Int64 p => ((a -> Indexing64 f b) -> s -> Indexing64 f t) -> p a (f b) -> s -> f t #
Transform a Traversal
into an IndexedTraversal
or
a Fold
into an IndexedFold
, etc.
This combinator is like indexing
except that it handles large traversals and folds gracefully.
indexing64
::Traversal
s t a b ->IndexedTraversal
Int64
s t a bindexing64
::Prism
s t a b ->IndexedTraversal
Int64
s t a bindexing64
::Lens
s t a b ->IndexedLens
Int64
s t a bindexing64
::Iso
s t a b ->IndexedLens
Int64
s t a bindexing64
::Fold
s a ->IndexedFold
Int64
s aindexing64
::Getter
s a ->IndexedGetter
Int64
s a
indexing64
::Indexable
Int64
p =>LensLike
(Indexing64
f) s t a b ->Over
p f s t a b
indexing :: Indexable Int p => ((a -> Indexing f b) -> s -> Indexing f t) -> p a (f b) -> s -> f t #
Transform a Traversal
into an IndexedTraversal
or
a Fold
into an IndexedFold
, etc.
indexing
::Traversal
s t a b ->IndexedTraversal
Int
s t a bindexing
::Prism
s t a b ->IndexedTraversal
Int
s t a bindexing
::Lens
s t a b ->IndexedLens
Int
s t a bindexing
::Iso
s t a b ->IndexedLens
Int
s t a bindexing
::Fold
s a ->IndexedFold
Int
s aindexing
::Getter
s a ->IndexedGetter
Int
s a
indexing
::Indexable
Int
p =>LensLike
(Indexing
f) s t a b ->Over
p f s t a b
class (Choice p, Corepresentable p, Comonad (Corep p), Traversable (Corep p), Strong p, Representable p, Monad (Rep p), MonadFix (Rep p), Distributive (Rep p), Costrong p, ArrowLoop p, ArrowApply p, ArrowChoice p, Closed p) => Conjoined (p :: Type -> Type -> Type) where #
This is a Profunctor
that is both Corepresentable
by f
and Representable
by g
such
that f
is left adjoint to g
. From this you can derive a lot of structure due
to the preservation of limits and colimits.
Minimal complete definition
Nothing
Methods
distrib :: Functor f => p a b -> p (f a) (f b) #
Conjoined
is strong enough to let us distribute every Conjoined
Profunctor
over every Haskell Functor
. This is effectively a
generalization of fmap
.
conjoined :: ((p ~ ((->) :: Type -> Type -> Type)) -> q (a -> b) r) -> q (p a b) r -> q (p a b) r #
This permits us to make a decision at an outermost point about whether or not we use an index.
Ideally any use of this function should be done in such a way so that you compute the same answer, but this cannot be enforced at the type level.
Instances
Conjoined ReifiedGetter | |
Defined in Control.Lens.Reified Methods distrib :: Functor f => ReifiedGetter a b -> ReifiedGetter (f a) (f b) # conjoined :: ((ReifiedGetter ~ (->)) -> q (a -> b) r) -> q (ReifiedGetter a b) r -> q (ReifiedGetter a b) r # | |
Conjoined (Indexed i) | |
Conjoined ((->) :: Type -> Type -> Type) | |
class Conjoined p => Indexable i (p :: Type -> Type -> Type) where #
This class permits overloading of function application for things that also admit a notion of a key or index.
A function with access to a index. This constructor may be useful when you need to store
an Indexable
in a container to avoid ImpredicativeTypes
.
index :: Indexed i a b -> i -> a -> b
Constructors
Indexed | |
Fields
|
Instances
data Traversed a (f :: Type -> Type) #
Used internally by traverseOf_
and the like.
The argument a
of the result should not be used!
Instances
Applicative f => Semigroup (Traversed a f) | |
Applicative f => Monoid (Traversed a f) | |
data Sequenced a (m :: Type -> Type) #
Used internally by mapM_
and the like.
The argument a
of the result should not be used!
See 4.16 Changelog entry for the explanation of "why not Apply f =>"?
class (Foldable1 t, Traversable t) => Traversable1 (t :: Type -> Type) where #
Instances
traverseBy :: Traversable t => (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> (a -> f b) -> t a -> f (t b) #
Traverse a container using its Traversable
instance using
explicitly provided Applicative
operations. This is like traverse
where the Applicative
instance can be manually specified.
sequenceBy :: Traversable t => (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> t (f a) -> f (t a) #
Sequence a container using its Traversable
instance using
explicitly provided Applicative
operations. This is like sequence
where the Applicative
instance can be manually specified.
class Profunctor p => Choice (p :: Type -> Type -> Type) where #
The generalization of Costar
of Functor
that is strong with respect
to Either
.
Note: This is also a notion of strength, except with regards to another monoidal structure that we can choose to equip Hask with: the cocartesian coproduct.
Methods
left' :: p a b -> p (Either a c) (Either b c) #
Laws:
left'
≡dimap
swapE swapE.
right'
where swapE ::Either
a b ->Either
b a swapE =either
Right
Left
rmap
Left
≡lmap
Left
.
left'
lmap
(right
f).
left'
≡rmap
(right
f).
left'
left'
.
left'
≡dimap
assocE unassocE.
left'
where assocE ::Either
(Either
a b) c ->Either
a (Either
b c) assocE (Left
(Left
a)) =Left
a assocE (Left
(Right
b)) =Right
(Left
b) assocE (Right
c) =Right
(Right
c) unassocE ::Either
a (Either
b c) ->Either
(Either
a b) c unassocE (Left
a) =Left
(Left
a) unassocE (Right
(Left
b)) =Left
(Right
b) unassocE (Right
(Right
c)) =Right
c
right' :: p a b -> p (Either c a) (Either c b) #
Laws:
right'
≡dimap
swapE swapE.
left'
where swapE ::Either
a b ->Either
b a swapE =either
Right
Left
rmap
Right
≡lmap
Right
.
right'
lmap
(left
f).
right'
≡rmap
(left
f).
right'
right'
.
right'
≡dimap
unassocE assocE.
right'
where assocE ::Either
(Either
a b) c ->Either
a (Either
b c) assocE (Left
(Left
a)) =Left
a assocE (Left
(Right
b)) =Right
(Left
b) assocE (Right
c) =Right
(Right
c) unassocE ::Either
a (Either
b c) ->Either
(Either
a b) c unassocE (Left
a) =Left
(Left
a) unassocE (Right
(Left
b)) =Left
(Right
b) unassocE (Right
(Right
c)) =Right
c
Instances
Arguments
:: MonadReader r m | |
=> (r -> a) | The selector function to apply to the environment. |
-> m a |
Retrieves a function of the current environment.
newtype ReaderT r (m :: k -> Type) (a :: k) :: forall k. Type -> (k -> Type) -> k -> Type #
The reader monad transformer, which adds a read-only environment to the given monad.
The return
function ignores the environment, while >>=
passes
the inherited environment to both subcomputations.
Constructors
ReaderT | |
Fields
|
Instances
class MonadTrans (t :: (Type -> Type) -> Type -> Type) where #
The class of monad transformers. Instances should satisfy the
following laws, which state that lift
is a monad transformation:
Methods
lift :: Monad m => m a -> t m a #
Lift a computation from the argument monad to the constructed monad.
Instances
class Monad m => MonadCont (m :: Type -> Type) where #
Methods
callCC :: ((a -> m b) -> m a) -> m a #
callCC
(call-with-current-continuation)
calls a function with the current continuation as its argument.
Provides an escape continuation mechanism for use with Continuation monads.
Escape continuations allow to abort the current computation and return
a value immediately.
They achieve a similar effect to throwError
and catchError
within an Error
monad.
Advantage of this function over calling return
is that it makes
the continuation explicit,
allowing more flexibility and better control
(see examples in Control.Monad.Cont).
The standard idiom used with callCC
is to provide a lambda-expression
to name the continuation. Then calling the named continuation anywhere
within its scope will escape from the computation,
even if it is many layers deep within nested computations.
Instances
MonadCont m => MonadCont (MaybeT m) | |
(Functor m, MonadCont m) => MonadCont (Free m) | |
MonadCont m => MonadCont (ListT m) | |
MonadCont m => MonadCont (ResourceT m) | |
MonadCont m => MonadCont (IdentityT m) | |
MonadCont m => MonadCont (ExceptT e m) | Since: mtl-2.2 |
(Functor f, MonadCont m) => MonadCont (FreeT f m) | |
(Error e, MonadCont m) => MonadCont (ErrorT e m) | |
MonadCont m => MonadCont (StateT s m) | |
MonadCont m => MonadCont (StateT s m) | |
(Monoid w, MonadCont m) => MonadCont (WriterT w m) | |
(Monoid w, MonadCont m) => MonadCont (WriterT w m) | |
(Stream s, MonadCont m) => MonadCont (ParsecT e s m) | |
MonadCont m => MonadCont (ReaderT r m) | |
MonadCont (ContT r m) | |
(Monoid w, MonadCont m) => MonadCont (RWST r w s m) | |
(Monoid w, MonadCont m) => MonadCont (RWST r w s m) | |
newtype ContT (r :: k) (m :: k -> Type) a :: forall k. k -> (k -> Type) -> Type -> Type #
The continuation monad transformer.
Can be used to add continuation handling to any type constructor:
the Monad
instance and most of the operations do not require m
to be a monad.
ContT
is not a functor on the category of monads, and many operations
cannot be lifted through it.
Instances
MonadReader r' m => MonadReader r' (ContT r m) | |
MonadState s m => MonadState s (ContT r m) | |
MonadTrans (ContT r) | |
Defined in Control.Monad.Trans.Cont | |
Monad (ContT r m) | |
Functor (ContT r m) | |
MonadFail m => MonadFail (ContT r m) | |
Defined in Control.Monad.Trans.Cont | |
Applicative (ContT r m) | |
Defined in Control.Monad.Trans.Cont | |
MonadIO m => MonadIO (ContT r m) | |
Defined in Control.Monad.Trans.Cont | |
MonadThrow m => MonadThrow (ContT r m) | |
Defined in Control.Monad.Catch | |
Apply (ContT r m) | |
MonadCont (ContT r m) | |
PrimMonad m => PrimMonad (ContT r m) | Since: primitive-0.6.3.0 |
MonadResource m => MonadResource (ContT r m) | |
Defined in Control.Monad.Trans.Resource.Internal Methods liftResourceT :: ResourceT IO a -> ContT r m a # | |
Bind (ContT r m) | |
Wrapped (ContT r m a) | |
t ~ ContT r' m' a' => Rewrapped (ContT r m a) t | |
Defined in Control.Lens.Wrapped | |
type PrimState (ContT r m) | |
Defined in Control.Monad.Primitive | |
type Unwrapped (ContT r m a) | |
Defined in Control.Lens.Wrapped |
type Cont r = ContT r Identity #
Continuation monad.
Cont r a
is a CPS ("continuation-passing style") computation that produces an
intermediate result of type a
within a CPS computation whose final result type
is r
.
The return
function simply creates a continuation which passes the value on.
The >>=
operator adds the bound function into the continuation chain.
cont :: ((a -> r) -> r) -> Cont r a #
Construct a continuation-passing computation from a function.
(The inverse of runCont
)
Arguments
:: Cont r a | continuation computation ( |
-> (a -> r) | the final continuation, which produces
the final result (often |
-> r |
The result of running a CPS computation with a given final continuation.
(The inverse of cont
)
Arguments
:: Reader r a | A |
-> r | An initial environment. |
-> a |
Runs a Reader
and extracts the final value from it.
(The inverse of reader
.)
class Monad m => PrimMonad (m :: Type -> Type) where #
Class of monads which can perform primitive state-transformer actions
Methods
primitive :: (State# (PrimState m) -> (#State# (PrimState m), a#)) -> m a #
Execute a primitive operation
Instances
PrimMonad IO | |
PrimMonad (ST s) | |
PrimMonad (ST s) | |
PrimMonad m => PrimMonad (MaybeT m) | |
PrimMonad m => PrimMonad (ListT m) | |
PrimMonad m => PrimMonad (ResourceT m) | |
PrimMonad (RIO env) | |
PrimMonad m => PrimMonad (IdentityT m) | |
PrimMonad m => PrimMonad (ExceptT e m) | |
(Error e, PrimMonad m) => PrimMonad (ErrorT e m) | |
PrimMonad m => PrimMonad (StateT s m) | |
PrimMonad m => PrimMonad (StateT s m) | |
(Monoid w, PrimMonad m) => PrimMonad (WriterT w m) | |
(Monoid w, PrimMonad m) => PrimMonad (WriterT w m) | |
(Monoid w, PrimMonad m) => PrimMonad (AccumT w m) | Since: primitive-0.6.3.0 |
PrimMonad m => PrimMonad (SelectT r m) | |
PrimMonad m => PrimMonad (ReaderT r m) | |
PrimMonad m => PrimMonad (ContT r m) | Since: primitive-0.6.3.0 |
(Monoid w, PrimMonad m) => PrimMonad (RWST r w s m) | |
(Monoid w, PrimMonad m) => PrimMonad (RWST r w s m) | |
withAcquire :: MonadUnliftIO m => Acquire a -> (a -> m b) -> m b #
Longer name for with
, in case with
is not obvious enough in context.
Since: resourcet-1.2.0
allocateAcquire :: MonadResource m => Acquire a -> m (ReleaseKey, a) #
Allocate a resource and register an action with the MonadResource
to
free the resource.
Since: resourcet-1.1.0
with :: MonadUnliftIO m => Acquire a -> (a -> m b) -> m b #
Allocate the given resource and provide it to the provided function. The
resource will be freed as soon as the inner block is exited, whether
normally or via an exception. This function is similar in function to
bracket
.
Since: resourcet-1.1.0
Arguments
:: IO a | acquire the resource |
-> (a -> ReleaseType -> IO ()) | free the resource |
-> Acquire a |
Same as mkAcquire
, but the cleanup function will be informed of how
cleanup was initiated. This allows you to distinguish, for example, between
normal and exceptional exits.
Since: resourcet-1.1.2
Create an Acquire
value using the given allocate and free functions.
Since: resourcet-1.1.0
data ReleaseType #
The way in which a release is called.
Since: resourcet-1.1.2
Constructors
ReleaseEarly | |
ReleaseNormal | |
ReleaseException |
Instances
A method for acquiring a scarce resource, providing the means of freeing
it when no longer needed. This data type provides
Functor
/Applicative
/Monad
instances for composing different resources
together. You can allocate these resources using either the bracket
pattern (via with
) or using ResourceT
(via allocateAcquire
).
This concept was originally introduced by Gabriel Gonzalez and described at: http://www.haskellforall.com/2013/06/the-resource-applicative.html. The implementation in this package is slightly different, due to taking a different approach to async exception safety.
Since: resourcet-1.1.0
Instances
Monad Acquire | |
Functor Acquire | |
Applicative Acquire | |
MonadIO Acquire | |
Defined in Data.Acquire.Internal |
class MonadIO m => MonadUnliftIO (m :: Type -> Type) where #
Monads which allow their actions to be run in IO
.
While MonadIO
allows an IO
action to be lifted into another
monad, this class captures the opposite concept: allowing you to
capture the monadic context. Note that, in order to meet the laws
given below, the intuition is that a monad must have no monadic
state, but may have monadic context. This essentially limits
MonadUnliftIO
to ReaderT
and IdentityT
transformers on top of
IO
.
Laws. For any value u
returned by askUnliftIO
, it must meet the
monad transformer laws as reformulated for MonadUnliftIO
:
unliftIO u . return = return
unliftIO u (m >>= f) = unliftIO u m >>= unliftIO u . f
Instances of MonadUnliftIO
must also satisfy the idempotency law:
askUnliftIO >>= \u -> (liftIO . unliftIO u) m = m
This law showcases two properties. First, askUnliftIO
doesn't change
the monadic context, and second, liftIO . unliftIO u
is equivalent to
id
IF called in the same monadic context as askUnliftIO
.
Since: unliftio-core-0.1.0.0
Methods
withRunInIO :: ((forall a. m a -> IO a) -> IO b) -> m b #
Convenience function for capturing the monadic context and running an IO
action with a runner function. The runner function is used to run a monadic
action m
in IO
.
Since: unliftio-core-0.1.0.0
Instances
MonadUnliftIO IO | |
Defined in Control.Monad.IO.Unlift | |
MonadUnliftIO m => MonadUnliftIO (ResourceT m) | Since: resourcet-1.1.10 |
Defined in Control.Monad.Trans.Resource.Internal | |
MonadUnliftIO (RIO env) | |
Defined in RIO.Prelude.RIO | |
MonadUnliftIO m => MonadUnliftIO (IdentityT m) | |
Defined in Control.Monad.IO.Unlift | |
MonadUnliftIO m => MonadUnliftIO (ReaderT r m) | |
Defined in Control.Monad.IO.Unlift |
getChanContents :: MonadIO m => Chan a -> m [a] #
Lifted getChanContents
.
Since: unliftio-0.1.0.0
writeList2Chan :: MonadIO m => Chan a -> [a] -> m () #
Lifted writeList2Chan
.
Since: unliftio-0.1.0.0
data StringException #
Exception type thrown by throwString
.
Note that the second field of the data constructor depends on GHC/base version. For base 4.9 and GHC 8.0 and later, the second field is a call stack. Previous versions of GHC and base do not support call stacks, and the field is simply unit (provided to make pattern matching across GHC versions easier).
Since: unliftio-0.1.0.0
Constructors
StringException String CallStack |
Instances
Show StringException | Since: unliftio-0.1.0.0 |
Defined in UnliftIO.Exception Methods showsPrec :: Int -> StringException -> ShowS # show :: StringException -> String # showList :: [StringException] -> ShowS # | |
Exception StringException | Since: unliftio-0.1.0.0 |
Defined in UnliftIO.Exception Methods toException :: StringException -> SomeException # |
data AsyncExceptionWrapper where #
Wrap up a synchronous exception to be treated as an asynchronous exception.
This is intended to be created via toAsyncException
.
Since: unliftio-0.1.0.0
Constructors
AsyncExceptionWrapper :: forall e. Exception e => e -> AsyncExceptionWrapper |
Instances
Show AsyncExceptionWrapper | Since: unliftio-0.1.0.0 |
Defined in UnliftIO.Exception Methods showsPrec :: Int -> AsyncExceptionWrapper -> ShowS # show :: AsyncExceptionWrapper -> String # showList :: [AsyncExceptionWrapper] -> ShowS # | |
Exception AsyncExceptionWrapper | Since: unliftio-0.1.0.0 |
Defined in UnliftIO.Exception |
data SyncExceptionWrapper where #
Wrap up an asynchronous exception to be treated as a synchronous exception.
This is intended to be created via toSyncException
.
Since: unliftio-0.1.0.0
Constructors
SyncExceptionWrapper :: forall e. Exception e => e -> SyncExceptionWrapper |
Instances
Show SyncExceptionWrapper | Since: unliftio-0.1.0.0 |
Defined in UnliftIO.Exception Methods showsPrec :: Int -> SyncExceptionWrapper -> ShowS # show :: SyncExceptionWrapper -> String # showList :: [SyncExceptionWrapper] -> ShowS # | |
Exception SyncExceptionWrapper | Since: unliftio-0.1.0.0 |
Defined in UnliftIO.Exception Methods toException :: SyncExceptionWrapper -> SomeException # fromException :: SomeException -> Maybe SyncExceptionWrapper # |
catch :: (MonadUnliftIO m, Exception e) => m a -> (e -> m a) -> m a #
Unlifted catch
, but will not catch asynchronous exceptions.
Since: unliftio-0.1.0.0
catchIO :: MonadUnliftIO m => m a -> (IOException -> m a) -> m a #
catch
specialized to only catching IOException
s.
Since: unliftio-0.1.0.0
catchAny :: MonadUnliftIO m => m a -> (SomeException -> m a) -> m a #
catch
specialized to catch all synchronous exception.
Since: unliftio-0.1.0.0
catchDeep :: (MonadUnliftIO m, Exception e, NFData a) => m a -> (e -> m a) -> m a #
Same as catch
, but fully force evaluation of the result value
to find all impure exceptions.
Since: unliftio-0.1.0.0
catchAnyDeep :: (NFData a, MonadUnliftIO m) => m a -> (SomeException -> m a) -> m a #
catchDeep
specialized to catch all synchronous exception.
Since: unliftio-0.1.0.0
catchJust :: (MonadUnliftIO m, Exception e) => (e -> Maybe b) -> m a -> (b -> m a) -> m a #
handle :: (MonadUnliftIO m, Exception e) => (e -> m a) -> m a -> m a #
Flipped version of catch
.
Since: unliftio-0.1.0.0
handleIO :: MonadUnliftIO m => (IOException -> m a) -> m a -> m a #
handle
specialized to only catching IOException
s.
Since: unliftio-0.1.0.0
handleAny :: MonadUnliftIO m => (SomeException -> m a) -> m a -> m a #
Flipped version of catchAny
.
Since: unliftio-0.1.0.0
handleDeep :: (MonadUnliftIO m, Exception e, NFData a) => (e -> m a) -> m a -> m a #
Flipped version of catchDeep
.
Since: unliftio-0.1.0.0
handleAnyDeep :: (MonadUnliftIO m, NFData a) => (SomeException -> m a) -> m a -> m a #
Flipped version of catchAnyDeep
.
Since: unliftio-0.1.0.0
handleJust :: (MonadUnliftIO m, Exception e) => (e -> Maybe b) -> (b -> m a) -> m a -> m a #
Flipped catchJust
.
Since: unliftio-0.1.0.0
try :: (MonadUnliftIO m, Exception e) => m a -> m (Either e a) #
Unlifted try
, but will not catch asynchronous exceptions.
Since: unliftio-0.1.0.0
tryIO :: MonadUnliftIO m => m a -> m (Either IOException a) #
try
specialized to only catching IOException
s.
Since: unliftio-0.1.0.0
tryAny :: MonadUnliftIO m => m a -> m (Either SomeException a) #
try
specialized to catch all synchronous exceptions.
Since: unliftio-0.1.0.0
tryDeep :: (MonadUnliftIO m, Exception e, NFData a) => m a -> m (Either e a) #
Same as try
, but fully force evaluation of the result value
to find all impure exceptions.
Since: unliftio-0.1.0.0
tryAnyDeep :: (MonadUnliftIO m, NFData a) => m a -> m (Either SomeException a) #
tryDeep
specialized to catch all synchronous exceptions.
Since: unliftio-0.1.0.0
tryJust :: (MonadUnliftIO m, Exception e) => (e -> Maybe b) -> m a -> m (Either b a) #
A variant of try
that takes an exception predicate to select
which exceptions are caught.
Since: unliftio-0.1.0.0
pureTry :: a -> Either SomeException a #
Evaluate the value to WHNF and catch any synchronous exceptions.
The expression may still have bottom values within it; you may
instead want to use pureTryDeep
.
Since: unliftio-0.2.2.0
pureTryDeep :: NFData a => a -> Either SomeException a #
Evaluate the value to NF and catch any synchronous exceptions.
Since: unliftio-0.2.2.0
catches :: MonadUnliftIO m => m a -> [Handler m a] -> m a #
Same as upstream catches
, but will not catch
asynchronous exceptions.
Since: unliftio-0.1.0.0
catchesDeep :: (MonadUnliftIO m, NFData a) => m a -> [Handler m a] -> m a #
Same as catches
, but fully force evaluation of the result value
to find all impure exceptions.
Since: unliftio-0.1.0.0
evaluateDeep :: (MonadIO m, NFData a) => a -> m a #
bracket :: MonadUnliftIO m => m a -> (a -> m b) -> (a -> m c) -> m c #
Async safe version of bracket
.
Since: unliftio-0.1.0.0
bracket_ :: MonadUnliftIO m => m a -> m b -> m c -> m c #
Async safe version of bracket_
.
Since: unliftio-0.1.0.0
bracketOnError :: MonadUnliftIO m => m a -> (a -> m b) -> (a -> m c) -> m c #
Async safe version of bracketOnError
.
Since: unliftio-0.1.0.0
bracketOnError_ :: MonadUnliftIO m => m a -> m b -> m c -> m c #
A variant of bracketOnError
where the return value from the first
computation is not required.
Since: unliftio-0.1.0.0
finally :: MonadUnliftIO m => m a -> m b -> m a #
Async safe version of finally
.
Since: unliftio-0.1.0.0
withException :: (MonadUnliftIO m, Exception e) => m a -> (e -> m b) -> m a #
Like onException
, but provides the handler the thrown
exception.
Since: unliftio-0.1.0.0
onException :: MonadUnliftIO m => m a -> m b -> m a #
Async safe version of onException
.
Since: unliftio-0.1.0.0
throwIO :: (MonadIO m, Exception e) => e -> m a #
Synchronously throw the given exception.
Since: unliftio-0.1.0.0
toSyncException :: Exception e => e -> SomeException #
Convert an exception into a synchronous exception.
For synchronous exceptions, this is the same as toException
.
For asynchronous exceptions, this will wrap up the exception with
SyncExceptionWrapper
.
Since: unliftio-0.1.0.0
toAsyncException :: Exception e => e -> SomeException #
Convert an exception into an asynchronous exception.
For asynchronous exceptions, this is the same as toException
.
For synchronous exceptions, this will wrap up the exception with
AsyncExceptionWrapper
.
Since: unliftio-0.1.0.0
isSyncException :: Exception e => e -> Bool #
Check if the given exception is synchronous.
Since: unliftio-0.1.0.0
isAsyncException :: Exception e => e -> Bool #
Check if the given exception is asynchronous.
Since: unliftio-0.1.0.0
mask :: MonadUnliftIO m => ((forall a. m a -> m a) -> m b) -> m b #
Unlifted version of mask
.
Since: unliftio-0.1.0.0
uninterruptibleMask :: MonadUnliftIO m => ((forall a. m a -> m a) -> m b) -> m b #
Unlifted version of uninterruptibleMask
.
Since: unliftio-0.1.0.0
mask_ :: MonadUnliftIO m => m a -> m a #
Unlifted version of mask_
.
Since: unliftio-0.1.0.0
uninterruptibleMask_ :: MonadUnliftIO m => m a -> m a #
Unlifted version of uninterruptibleMask_
.
Since: unliftio-0.1.0.0
throwString :: (MonadIO m, HasCallStack) => String -> m a #
A convenience function for throwing a user error. This is useful for cases where it would be too high a burden to define your own exception type.
This throws an exception of type StringException
. When GHC
supports it (base 4.9 and GHC 8.0 and onward), it includes a call
stack.
Since: unliftio-0.1.0.0
stringException :: HasCallStack -> String -> StringException #
Smart constructor for a StringException
that deals with the
call stack.
Since: unliftio-0.1.0.0
throwTo :: (Exception e, MonadIO m) => ThreadId -> e -> m () #
Throw an asynchronous exception to another thread.
Synchronously typed exceptions will be wrapped into an
AsyncExceptionWrapper
, see
https://github.com/fpco/safe-exceptions#determining-sync-vs-async.
It's usually a better idea to use the UnliftIO.Async module, see https://github.com/fpco/safe-exceptions#quickstart.
Since: unliftio-0.1.0.0
impureThrow :: Exception e => e -> a #
Generate a pure value which, when forced, will synchronously throw the given exception.
Generally it's better to avoid using this function and instead use throwIO
,
see https://github.com/fpco/safe-exceptions#quickstart.
Since: unliftio-0.1.0.0
fromEither :: (Exception e, MonadIO m) => Either e a -> m a #
fromEitherIO :: (Exception e, MonadIO m) => IO (Either e a) -> m a #
Same as fromEither
, but works on an IO
-wrapped Either
.
Since: unliftio-0.1.0.0
fromEitherM :: (Exception e, MonadIO m) => m (Either e a) -> m a #
Same as fromEither
, but works on an m
-wrapped Either
.
Since: unliftio-0.1.0.0
withFile :: MonadUnliftIO m => FilePath -> IOMode -> (Handle -> m a) -> m a #
Unlifted version of withFile
.
Since: unliftio-0.1.0.0
hSetFileSize :: MonadIO m => Handle -> Integer -> m () #
Lifted version of hSetFileSize
Since: unliftio-0.2.1.0
hSetBuffering :: MonadIO m => Handle -> BufferMode -> m () #
Lifted version of hSetBuffering
Since: unliftio-0.2.1.0
hGetBuffering :: MonadIO m => Handle -> m BufferMode #
Lifted version of hGetBuffering
Since: unliftio-0.2.1.0
hSeek :: MonadIO m => Handle -> SeekMode -> Integer -> m () #
Lifted version of hSeek
Since: unliftio-0.2.1.0
hIsReadable :: MonadIO m => Handle -> m Bool #
Lifted version of hIsReadable
Since: unliftio-0.2.1.0
hIsWritable :: MonadIO m => Handle -> m Bool #
Lifted version of hIsWritable
Since: unliftio-0.2.1.0
hIsSeekable :: MonadIO m => Handle -> m Bool #
Lifted version of hIsSeekable
Since: unliftio-0.2.1.0
hIsTerminalDevice :: MonadIO m => Handle -> m Bool #
Lifted version of hIsTerminalDevice
Since: unliftio-0.2.1.0
hWaitForInput :: MonadIO m => Handle -> Int -> m Bool #
Lifted version of hWaitForInput
Since: unliftio-0.2.1.0
getMonotonicTime :: MonadIO m => m Double #
Get the number of seconds which have passed since an arbitrary starting time, useful for calculating runtime in a program.
Since: unliftio-0.2.3.0
writeIORef :: MonadIO m => IORef a -> a -> m () #
Lifted writeIORef
.
Since: unliftio-0.1.0.0
modifyIORef :: MonadIO m => IORef a -> (a -> a) -> m () #
Lifted modifyIORef
.
Since: unliftio-0.1.0.0
modifyIORef' :: MonadIO m => IORef a -> (a -> a) -> m () #
Lifted modifyIORef'
.
Since: unliftio-0.1.0.0
atomicModifyIORef :: MonadIO m => IORef a -> (a -> (a, b)) -> m b #
Lifted atomicModifyIORef
.
Since: unliftio-0.1.0.0
atomicModifyIORef' :: MonadIO m => IORef a -> (a -> (a, b)) -> m b #
Lifted atomicModifyIORef'
.
Since: unliftio-0.1.0.0
atomicWriteIORef :: MonadIO m => IORef a -> a -> m () #
Lifted atomicWriteIORef
.
Since: unliftio-0.1.0.0
mkWeakIORef :: MonadUnliftIO m => IORef a -> m () -> m (Weak (IORef a)) #
Unlifted mkWeakIORef
.
Since: unliftio-0.1.0.0
data ConcException #
Things that can go wrong in the structure of a Conc
. These are
programmer errors.
Since: unliftio-0.2.9.0
Constructors
EmptyWithNoAlternative |
Instances
data Conc (m :: Type -> Type) a #
A more efficient alternative to Concurrently
, which reduces the
number of threads that need to be forked. For more information, see
FIXME link to blog post
. This is provided as a separate type to
Concurrently
as it has a slightly different API.
Use the conc
function to construct values of type Conc
, and
runConc
to execute the composed actions. You can use the
Applicative
instance to run different actions and wait for all of
them to complete, or the Alternative
instance to wait for the
first thread to complete.
In the event of a runtime exception thrown by any of the children
threads, or an asynchronous exception received in the parent
thread, all threads will be killed with an AsyncCancelled
exception and the original exception rethrown. If multiple
exceptions are generated by different threads, there are no
guarantees on which exception will end up getting rethrown.
For many common use cases, you may prefer using helper functions in
this module like mapConcurrently
.
There are some intentional differences in behavior to
Concurrently
:
- Children threads are always launched in an unmasked state, not the inherited state of the parent thread.
Note that it is a programmer error to use the Alternative
instance in such a way that there are no alternatives to an empty,
e.g. runConc (empty | empty)
. In such a case, a ConcException
will be thrown. If there was an Alternative
in the standard
libraries without empty
, this library would use it instead.
Since: unliftio-0.2.9.0
Instances
Functor m => Functor (Conc m) | |
MonadUnliftIO m => Applicative (Conc m) | Since: unliftio-0.2.9.0 |
MonadUnliftIO m => Alternative (Conc m) | Since: unliftio-0.2.9.0 |
(MonadUnliftIO m, Semigroup a) => Semigroup (Conc m a) | Since: unliftio-0.2.9.0 |
(Monoid a, MonadUnliftIO m) => Monoid (Conc m a) | Since: unliftio-0.2.9.0 |
newtype Concurrently (m :: Type -> Type) a #
Unlifted Concurrently
.
Since: unliftio-0.1.0.0
Constructors
Concurrently | |
Fields
|
Instances
Monad m => Functor (Concurrently m) | Since: unliftio-0.1.0.0 |
Defined in UnliftIO.Internals.Async Methods fmap :: (a -> b) -> Concurrently m a -> Concurrently m b # (<$) :: a -> Concurrently m b -> Concurrently m a # | |
MonadUnliftIO m => Applicative (Concurrently m) | Since: unliftio-0.1.0.0 |
Defined in UnliftIO.Internals.Async Methods pure :: a -> Concurrently m a # (<*>) :: Concurrently m (a -> b) -> Concurrently m a -> Concurrently m b # liftA2 :: (a -> b -> c) -> Concurrently m a -> Concurrently m b -> Concurrently m c # (*>) :: Concurrently m a -> Concurrently m b -> Concurrently m b # (<*) :: Concurrently m a -> Concurrently m b -> Concurrently m a # | |
MonadUnliftIO m => Alternative (Concurrently m) | Composing two unlifted Since: unliftio-0.1.0.0 |
Defined in UnliftIO.Internals.Async Methods empty :: Concurrently m a # (<|>) :: Concurrently m a -> Concurrently m a -> Concurrently m a # some :: Concurrently m a -> Concurrently m [a] # many :: Concurrently m a -> Concurrently m [a] # | |
(MonadUnliftIO m, Semigroup a) => Semigroup (Concurrently m a) | Only defined by Since: unliftio-0.1.0.0 |
Defined in UnliftIO.Internals.Async Methods (<>) :: Concurrently m a -> Concurrently m a -> Concurrently m a # sconcat :: NonEmpty (Concurrently m a) -> Concurrently m a # stimes :: Integral b => b -> Concurrently m a -> Concurrently m a # | |
(Semigroup a, Monoid a, MonadUnliftIO m) => Monoid (Concurrently m a) | Since: unliftio-0.1.0.0 |
Defined in UnliftIO.Internals.Async Methods mempty :: Concurrently m a # mappend :: Concurrently m a -> Concurrently m a -> Concurrently m a # mconcat :: [Concurrently m a] -> Concurrently m a # |
async :: MonadUnliftIO m => m a -> m (Async a) #
Unlifted async
.
Since: unliftio-0.1.0.0
asyncBound :: MonadUnliftIO m => m a -> m (Async a) #
Unlifted asyncBound
.
Since: unliftio-0.1.0.0
asyncWithUnmask :: MonadUnliftIO m => ((forall b. m b -> m b) -> m a) -> m (Async a) #
Unlifted asyncWithUnmask
.
Since: unliftio-0.1.0.0
asyncOnWithUnmask :: MonadUnliftIO m => Int -> ((forall b. m b -> m b) -> m a) -> m (Async a) #
Unlifted asyncOnWithUnmask
.
Since: unliftio-0.1.0.0
withAsync :: MonadUnliftIO m => m a -> (Async a -> m b) -> m b #
Unlifted withAsync
.
Since: unliftio-0.1.0.0
withAsyncBound :: MonadUnliftIO m => m a -> (Async a -> m b) -> m b #
Unlifted withAsyncBound
.
Since: unliftio-0.1.0.0
withAsyncOn :: MonadUnliftIO m => Int -> m a -> (Async a -> m b) -> m b #
Unlifted withAsyncOn
.
Since: unliftio-0.1.0.0
withAsyncWithUnmask :: MonadUnliftIO m => ((forall c. m c -> m c) -> m a) -> (Async a -> m b) -> m b #
Unlifted withAsyncWithUnmask
.
Since: unliftio-0.1.0.0
withAsyncOnWithUnmask :: MonadUnliftIO m => Int -> ((forall c. m c -> m c) -> m a) -> (Async a -> m b) -> m b #
Unlifted withAsyncOnWithMask
.
Since: unliftio-0.1.0.0
poll :: MonadIO m => Async a -> m (Maybe (Either SomeException a)) #
Lifted poll
.
Since: unliftio-0.1.0.0
waitCatch :: MonadIO m => Async a -> m (Either SomeException a) #
Lifted waitCatch
.
Since: unliftio-0.1.0.0
uninterruptibleCancel :: MonadIO m => Async a -> m () #
Lifted uninterruptibleCancel
.
Since: unliftio-0.1.0.0
cancelWith :: (Exception e, MonadIO m) => Async a -> e -> m () #
Lifted cancelWith
. Additionally uses toAsyncException
to
ensure async exception safety.
Since: unliftio-0.1.0.0
waitAnyCatch :: MonadIO m => [Async a] -> m (Async a, Either SomeException a) #
Lifted waitAnyCatch
.
Since: unliftio-0.1.0.0
waitAnyCancel :: MonadIO m => [Async a] -> m (Async a, a) #
Lifted waitAnyCancel
.
Since: unliftio-0.1.0.0
waitAnyCatchCancel :: MonadIO m => [Async a] -> m (Async a, Either SomeException a) #
Lifted waitAnyCatchCancel
.
Since: unliftio-0.1.0.0
waitEither :: MonadIO m => Async a -> Async b -> m (Either a b) #
Lifted waitEither
.
Since: unliftio-0.1.0.0
waitEitherCatch :: MonadIO m => Async a -> Async b -> m (Either (Either SomeException a) (Either SomeException b)) #
Lifted waitEitherCatch
.
Since: unliftio-0.1.0.0
waitEitherCancel :: MonadIO m => Async a -> Async b -> m (Either a b) #
Lifted waitEitherCancel
.
Since: unliftio-0.1.0.0
waitEitherCatchCancel :: MonadIO m => Async a -> Async b -> m (Either (Either SomeException a) (Either SomeException b)) #
Lifted waitEitherCatchCancel
.
Since: unliftio-0.1.0.0
waitEither_ :: MonadIO m => Async a -> Async b -> m () #
Lifted waitEither_
.
Since: unliftio-0.1.0.0
race :: MonadUnliftIO m => m a -> m b -> m (Either a b) #
Unlifted race
.
Since: unliftio-0.1.0.0
race_ :: MonadUnliftIO m => m a -> m b -> m () #
Unlifted race_
.
Since: unliftio-0.1.0.0
concurrently :: MonadUnliftIO m => m a -> m b -> m (a, b) #
Unlifted concurrently
.
Since: unliftio-0.1.0.0
concurrently_ :: MonadUnliftIO m => m a -> m b -> m () #
Unlifted concurrently_
.
Since: unliftio-0.1.0.0
forConcurrently :: (MonadUnliftIO m, Traversable t) => t a -> (a -> m b) -> m (t b) #
Similar to mapConcurrently
but with arguments flipped
Since: unliftio-0.1.0.0
forConcurrently_ :: (MonadUnliftIO m, Foldable f) => f a -> (a -> m b) -> m () #
Similar to mapConcurrently_
but with arguments flipped
Since: unliftio-0.1.0.0
replicateConcurrently :: MonadUnliftIO m => Int -> m b -> m [b] #
Unlifted replicateConcurrently
.
Since: unliftio-0.1.0.0
replicateConcurrently_ :: (Applicative m, MonadUnliftIO m) => Int -> m a -> m () #
Unlifted replicateConcurrently_
.
Since: unliftio-0.1.0.0
mapConcurrently :: (MonadUnliftIO m, Traversable t) => (a -> m b) -> t a -> m (t b) #
Executes a Traversable
container of items concurrently, it uses the Flat
type internally.
Since: unliftio-0.1.0.0
mapConcurrently_ :: (MonadUnliftIO m, Foldable f) => (a -> m b) -> f a -> m () #
Executes a Traversable
container of items concurrently, it uses the Flat
type internally. This function ignores the results.
Since: unliftio-0.1.0.0
Construct a value of type Conc
from an action. Compose these
values using the typeclass instances (most commonly Applicative
and Alternative
) and then run with runConc
.
Since: unliftio-0.2.9.0
runConc :: MonadUnliftIO m => Conc m a -> m a #
Run a Conc
value on multiple threads.
Since: unliftio-0.2.9.0
Arguments
:: (MonadUnliftIO m, Traversable t) | |
=> Int | Max. number of threads. Should not be less than 1. |
-> (a -> m b) | |
-> t a | |
-> m (t b) |
Like mapConcurrently
from async, but instead of one thread per
element, it does pooling from a set of threads. This is useful in
scenarios where resource consumption is bounded and for use cases
where too many concurrent tasks aren't allowed.
Example usage
import Say action :: Int -> IO Int action n = do tid <- myThreadId sayString $ show tid threadDelay (2 * 10^6) -- 2 seconds return n main :: IO () main = do yx <- pooledMapConcurrentlyN 5 (\x -> action x) [1..5] print yx
On executing you can see that five threads have been spawned:
$ ./pool ThreadId 36 ThreadId 38 ThreadId 40 ThreadId 42 ThreadId 44 [1,2,3,4,5]
Let's modify the above program such that there are less threads than the number of items in the list:
import Say action :: Int -> IO Int action n = do tid <- myThreadId sayString $ show tid threadDelay (2 * 10^6) -- 2 seconds return n main :: IO () main = do yx <- pooledMapConcurrentlyN 3 (\x -> action x) [1..5] print yx
On executing you can see that only three threads are active totally:
$ ./pool ThreadId 35 ThreadId 37 ThreadId 39 ThreadId 35 ThreadId 39 [1,2,3,4,5]
Since: unliftio-0.2.10
pooledMapConcurrently :: (MonadUnliftIO m, Traversable t) => (a -> m b) -> t a -> m (t b) #
Similar to pooledMapConcurrentlyN
but with number of threads
set from getNumCapabilities
. Usually this is useful for CPU bound
tasks.
Since: unliftio-0.2.10
Arguments
:: (MonadUnliftIO m, Traversable t) | |
=> Int | Max. number of threads. Should not be less than 1. |
-> t a | |
-> (a -> m b) | |
-> m (t b) |
Similar to pooledMapConcurrentlyN
but with flipped arguments.
Since: unliftio-0.2.10
pooledForConcurrently :: (MonadUnliftIO m, Traversable t) => t a -> (a -> m b) -> m (t b) #
Similar to pooledForConcurrentlyN
but with number of threads
set from getNumCapabilities
. Usually this is useful for CPU bound
tasks.
Since: unliftio-0.2.10
Arguments
:: (MonadUnliftIO m, Foldable f) | |
=> Int | Max. number of threads. Should not be less than 1. |
-> (a -> m b) | |
-> f a | |
-> m () |
Like pooledMapConcurrentlyN
but with the return value
discarded.
Since: unliftio-0.2.10
pooledMapConcurrently_ :: (MonadUnliftIO m, Foldable f) => (a -> m b) -> f a -> m () #
Like pooledMapConcurrently
but with the return value discarded.
Since: unliftio-0.2.10
pooledForConcurrently_ :: (MonadUnliftIO m, Foldable f) => f a -> (a -> m b) -> m () #
Like pooledMapConcurrently_
but with flipped arguments.
Since: unliftio-0.2.10
Arguments
:: (MonadUnliftIO m, Foldable t) | |
=> Int | Max. number of threads. Should not be less than 1. |
-> t a | |
-> (a -> m b) | |
-> m () |
Like pooledMapConcurrentlyN_
but with flipped arguments.
Since: unliftio-0.2.10
pooledReplicateConcurrentlyN #
Arguments
:: MonadUnliftIO m | |
=> Int | Max. number of threads. Should not be less than 1. |
-> Int | Number of times to perform the action. |
-> m a | |
-> m [a] |
Pooled version of replicateConcurrently
. Performs the action in
the pooled threads.
Since: unliftio-0.2.10
Arguments
:: MonadUnliftIO m | |
=> Int | Number of times to perform the action. |
-> m a | |
-> m [a] |
Similar to pooledReplicateConcurrentlyN
but with number of
threads set from getNumCapabilities
. Usually this is useful for
CPU bound tasks.
Since: unliftio-0.2.10
pooledReplicateConcurrentlyN_ #
Arguments
:: MonadUnliftIO m | |
=> Int | Max. number of threads. Should not be less than 1. |
-> Int | Number of times to perform the action. |
-> m a | |
-> m () |
Pooled version of replicateConcurrently_
. Performs the action in
the pooled threads.
Since: unliftio-0.2.10
pooledReplicateConcurrently_ #
Arguments
:: MonadUnliftIO m | |
=> Int | Number of times to perform the action. |
-> m a | |
-> m () |
Similar to pooledReplicateConcurrently_
but with number of
threads set from getNumCapabilities
. Usually this is useful for
CPU bound tasks.
Since: unliftio-0.2.10
newEmptyMVar :: MonadIO m => m (MVar a) #
Lifted newEmptyMVar
.
Since: unliftio-0.1.0.0
tryTakeMVar :: MonadIO m => MVar a -> m (Maybe a) #
Lifted tryTakeMVar
.
Since: unliftio-0.1.0.0
tryPutMVar :: MonadIO m => MVar a -> a -> m Bool #
Lifted tryPutMVar
.
Since: unliftio-0.1.0.0
isEmptyMVar :: MonadIO m => MVar a -> m Bool #
Lifted isEmptyMVar
.
Since: unliftio-0.1.0.0
tryReadMVar :: MonadIO m => MVar a -> m (Maybe a) #
Lifted tryReadMVar
.
Since: unliftio-0.1.0.0
withMVar :: MonadUnliftIO m => MVar a -> (a -> m b) -> m b #
Unlifted withMVar
.
Since: unliftio-0.1.0.0
withMVarMasked :: MonadUnliftIO m => MVar a -> (a -> m b) -> m b #
Unlifted withMVarMasked
.
Since: unliftio-0.1.0.0
modifyMVar_ :: MonadUnliftIO m => MVar a -> (a -> m a) -> m () #
Unlifted modifyMVar_
.
Since: unliftio-0.1.0.0
modifyMVar :: MonadUnliftIO m => MVar a -> (a -> m (a, b)) -> m b #
Unlifted modifyMVar
.
Since: unliftio-0.1.0.0
modifyMVarMasked_ :: MonadUnliftIO m => MVar a -> (a -> m a) -> m () #
Unlifted modifyMVarMasked_
.
Since: unliftio-0.1.0.0
modifyMVarMasked :: MonadUnliftIO m => MVar a -> (a -> m (a, b)) -> m b #
Unlifted modifyMVarMasked
.
Since: unliftio-0.1.0.0
mkWeakMVar :: MonadUnliftIO m => MVar a -> m () -> m (Weak (MVar a)) #
Unlifted mkWeakMVar
.
Since: unliftio-0.1.0.0
A "run once" value, with results saved. Extract the value with
runMemoized
. For single-threaded usage, you can use memoizeRef
to
create a value. If you need guarantees that only one thread will run the
action at a time, use memoizeMVar
.
Note that this type provides a Show
instance for convenience, but not
useful information can be provided.
Since: unliftio-0.2.8.0
runMemoized :: MonadIO m => Memoized a -> m a #
Extract a value from a Memoized
, running an action if no cached value is
available.
Since: unliftio-0.2.8.0
memoizeRef :: MonadUnliftIO m => m a -> m (Memoized a) #
Create a new Memoized
value using an IORef
under the surface. Note that
the action may be run in multiple threads simultaneously, so this may not be
thread safe (depending on the underlying action). Consider using
memoizeMVar
.
Since: unliftio-0.2.8.0
memoizeMVar :: MonadUnliftIO m => m a -> m (Memoized a) #
Same as memoizeRef
, but uses an MVar
to ensure that an action is
only run once, even in a multithreaded application.
Since: unliftio-0.2.8.0
atomically :: MonadIO m => STM a -> m a #
Lifted version of atomically
Since: unliftio-0.2.1.0
readTVarIO :: MonadIO m => TVar a -> m a #
Lifted version of readTVarIO
Since: unliftio-0.2.1.0
registerDelay :: MonadIO m => Int -> m (TVar Bool) #
Lifted version of registerDelay
Since: unliftio-0.2.1.0
mkWeakTVar :: MonadUnliftIO m => TVar a -> m () -> m (Weak (TVar a)) #
Lifted version of mkWeakTVar
Since: unliftio-0.2.1.0
newTMVarIO :: MonadIO m => a -> m (TMVar a) #
Lifted version of newTMVarIO
Since: unliftio-0.2.1.0
newEmptyTMVarIO :: MonadIO m => m (TMVar a) #
Lifted version of newEmptyTMVarIO
Since: unliftio-0.2.1.0
mkWeakTMVar :: MonadUnliftIO m => TMVar a -> m () -> m (Weak (TMVar a)) #
Lifted version of mkWeakTMVar
Since: unliftio-0.2.1.0
newTChanIO :: MonadIO m => m (TChan a) #
Lifted version of newTChanIO
Since: unliftio-0.2.1.0
newBroadcastTChanIO :: MonadIO m => m (TChan a) #
Lifted version of newBroadcastTChanIO
Since: unliftio-0.2.1.0
newTQueueIO :: MonadIO m => m (TQueue a) #
Lifted version of newTQueueIO
Since: unliftio-0.2.1.0
newTBQueueIO :: MonadIO m => Natural -> m (TBQueue a) #
Lifted version of newTBQueueIO
Since: unliftio-0.2.1.0
Arguments
:: MonadUnliftIO m | |
=> String | File name template. See |
-> (FilePath -> Handle -> m a) | Callback that can use the file |
-> m a |
Create and use a temporary file in the system standard temporary directory.
Behaves exactly the same as withTempFile
, except that the parent temporary directory
will be that returned by getCanonicalTemporaryDirectory
.
Since: unliftio-0.1.0.0
Arguments
:: MonadUnliftIO m | |
=> String | Directory name template. See |
-> (FilePath -> m a) | Callback that can use the directory. |
-> m a |
Create and use a temporary directory in the system standard temporary directory.
Behaves exactly the same as withTempDirectory
, except that the parent temporary directory
will be that returned by getCanonicalTemporaryDirectory
.
Since: unliftio-0.1.0.0
Arguments
:: MonadUnliftIO m | |
=> FilePath | Temp dir to create the file in. |
-> String | File name template. See |
-> (FilePath -> Handle -> m a) | Callback that can use the file. |
-> m a |
Use a temporary filename that doesn't already exist.
Creates a new temporary file inside the given directory, making use of the template. The temp file is deleted after use. For example:
withTempFile "src" "sdist." $ \tmpFile hFile -> do ...
The tmpFile
will be file in the given directory, e.g.
src/sdist.342
.
Since: unliftio-0.1.0.0
Arguments
:: MonadUnliftIO m | |
=> FilePath | Temp directory to create the directory in. |
-> String | Directory name template. See |
-> (FilePath -> m a) | Callback that can use the directory. |
-> m a |
Create and use a temporary directory.
Creates a new temporary directory inside the given directory, making use of the template. The temp directory is deleted after use. For example:
withTempDirectory "src" "sdist." $ \tmpDir -> do ...
The tmpDir
will be a new subdirectory of the given directory, e.g.
src/sdist.342
.
Since: unliftio-0.1.0.0
Arguments
:: MonadUnliftIO n | |
=> (n b -> m b) | The wrapper, for instance |
-> (forall a. m a -> n a) | The inverse, for instance |
-> ((forall a. m a -> IO a) -> IO b) | The actual function to invoke |
-> m b |
A helper function for implementing MonadUnliftIO
instances.
Useful for the common case where you want to simply delegate to the
underlying transformer.
Example
newtype AppT m a = AppT { unAppT :: ReaderT Int (ResourceT m) a } deriving (Functor, Applicative, Monad, MonadIO) -- Unfortunately, deriving MonadUnliftIO does not work. instance MonadUnliftIO m => MonadUnliftIO (AppT m) where withRunInIO = wrappedWithRunInIO AppT unAppT
Since: unliftio-core-0.1.2.0
toIO :: MonadUnliftIO m => m a -> m (IO a) #
Convert an action in m
to an action in IO
.
Since: unliftio-core-0.1.0.0
withUnliftIO :: MonadUnliftIO m => (UnliftIO m -> IO a) -> m a #
Convenience function for capturing the monadic context and running
an IO
action. The UnliftIO
newtype wrapper is rarely needed, so
prefer withRunInIO
to this function.
Since: unliftio-core-0.1.0.0
askRunInIO :: MonadUnliftIO m => m (m a -> IO a) #
Same as askUnliftIO
, but returns a monomorphic function
instead of a polymorphic newtype wrapper. If you only need to apply
the transformation on one concrete type, this function can be more
convenient.
Since: unliftio-core-0.1.0.0
askUnliftIO :: MonadUnliftIO m => m (UnliftIO m) #
Capture the current monadic context, providing the ability to
run monadic actions in IO
.
See UnliftIO
for an explanation of why we need a helper
datatype here.
Prior to version 0.2.0.0 of this library, this was a method in the
MonadUnliftIO
type class. It was moved out due to
https://github.com/fpco/unliftio/issues/55.
Since: unliftio-core-0.1.0.0
newtype UnliftIO (m :: Type -> Type) #
The ability to run any monadic action m a
as IO a
.
This is more precisely a natural transformation. We need to new
datatype (instead of simply using a forall
) due to lack of
support in GHC for impredicative types.
Since: unliftio-core-0.1.0.0
TBQueue
is an abstract type representing a bounded FIFO channel.
Since: stm-2.4
Builds and returns a new instance of TBQueue
.
writeTBQueue :: TBQueue a -> a -> STM () #
Write a value to a TBQueue
; blocks if the queue is full.
readTBQueue :: TBQueue a -> STM a #
Read the next value from the TBQueue
.
tryReadTBQueue :: TBQueue a -> STM (Maybe a) #
A version of readTBQueue
which does not retry. Instead it
returns Nothing
if no value is available.
peekTBQueue :: TBQueue a -> STM a #
Get the next value from the TBQueue
without removing it,
retrying if the channel is empty.
tryPeekTBQueue :: TBQueue a -> STM (Maybe a) #
A version of peekTBQueue
which does not retry. Instead it
returns Nothing
if no value is available.
unGetTBQueue :: TBQueue a -> a -> STM () #
Put a data item back onto a channel, where it will be the next item read. Blocks if the queue is full.
isFullTBQueue :: TBQueue a -> STM Bool #
TChan
is an abstract type representing an unbounded FIFO channel.
newBroadcastTChan :: STM (TChan a) #
Create a write-only TChan
. More precisely, readTChan
will retry
even after items have been written to the channel. The only way to read
a broadcast channel is to duplicate it with dupTChan
.
Consider a server that broadcasts messages to clients:
serve :: TChan Message -> Client -> IO loop serve broadcastChan client = do myChan <- dupTChan broadcastChan forever $ do message <- readTChan myChan send client message
The problem with using newTChan
to create the broadcast channel is that if
it is only written to and never read, items will pile up in memory. By
using newBroadcastTChan
to create the broadcast channel, items can be
garbage collected after clients have seen them.
Since: stm-2.4
writeTChan :: TChan a -> a -> STM () #
Write a value to a TChan
.
tryReadTChan :: TChan a -> STM (Maybe a) #
A version of readTChan
which does not retry. Instead it
returns Nothing
if no value is available.
Since: stm-2.3
peekTChan :: TChan a -> STM a #
Get the next value from the TChan
without removing it,
retrying if the channel is empty.
Since: stm-2.3
tryPeekTChan :: TChan a -> STM (Maybe a) #
A version of peekTChan
which does not retry. Instead it
returns Nothing
if no value is available.
Since: stm-2.3
dupTChan :: TChan a -> STM (TChan a) #
Duplicate a TChan
: the duplicate channel begins empty, but data written to
either channel from then on will be available from both. Hence this creates
a kind of broadcast channel, where data written by anyone is seen by
everyone else.
unGetTChan :: TChan a -> a -> STM () #
Put a data item back onto a channel, where it will be the next item read.
cloneTChan :: TChan a -> STM (TChan a) #
Clone a TChan
: similar to dupTChan, but the cloned channel starts with the
same content available as the original channel.
Since: stm-2.4
A TMVar
is a synchronising variable, used
for communication between concurrent threads. It can be thought of
as a box, which may be empty or full.
newEmptyTMVar :: STM (TMVar a) #
Create a TMVar
which is initially empty.
tryTakeTMVar :: TMVar a -> STM (Maybe a) #
A version of takeTMVar
that does not retry
. The tryTakeTMVar
function returns Nothing
if the TMVar
was empty, or
if
the Just
aTMVar
was full with contents a
. After tryTakeTMVar
, the
TMVar
is left empty.
tryPutTMVar :: TMVar a -> a -> STM Bool #
tryReadTMVar :: TMVar a -> STM (Maybe a) #
A version of readTMVar
which does not retry. Instead it
returns Nothing
if no value is available.
Since: stm-2.3
TQueue
is an abstract type representing an unbounded FIFO channel.
Since: stm-2.4
writeTQueue :: TQueue a -> a -> STM () #
Write a value to a TQueue
.
readTQueue :: TQueue a -> STM a #
Read the next value from the TQueue
.
tryReadTQueue :: TQueue a -> STM (Maybe a) #
A version of readTQueue
which does not retry. Instead it
returns Nothing
if no value is available.
peekTQueue :: TQueue a -> STM a #
Get the next value from the TQueue
without removing it,
retrying if the channel is empty.
tryPeekTQueue :: TQueue a -> STM (Maybe a) #
A version of peekTQueue
which does not retry. Instead it
returns Nothing
if no value is available.
unGetTQueue :: TQueue a -> a -> STM () #
Put a data item back onto a channel, where it will be the next item read.
modifyTVar :: TVar a -> (a -> a) -> STM () #
Mutate the contents of a TVar
. N.B., this version is
non-strict.
Since: stm-2.3
modifyTVar' :: TVar a -> (a -> a) -> STM () #
Strict version of modifyTVar
.
Since: stm-2.3
traceDisplayStack :: Display a => a -> b -> b #
Since: rio-0.1.0.0
traceDisplayMarkerIO :: (Display a, MonadIO m) => a -> m () #
Since: rio-0.1.0.0
traceDisplayMarker :: Display a => a -> b -> b #
Since: rio-0.1.0.0
traceDisplayEventIO :: (Display a, MonadIO m) => a -> m () #
Since: rio-0.1.0.0
traceDisplayEvent :: Display a => a -> b -> b #
Since: rio-0.1.0.0
traceDisplayM :: (Display a, Applicative f) => a -> f () #
Since: rio-0.1.0.0
traceDisplayIO :: (Display a, MonadIO m) => a -> m () #
Since: rio-0.1.0.0
traceDisplayId :: Display a => a -> a #
Since: rio-0.1.0.0
traceDisplay :: Display a => a -> b -> b #
Since: rio-0.1.0.0
traceShowStack :: Show a => a -> b -> b #
Since: rio-0.1.0.0
traceShowMarkerIO :: (Show a, MonadIO m) => a -> m () #
Since: rio-0.1.0.0
traceShowMarker :: Show a => a -> b -> b #
Since: rio-0.1.0.0
traceShowEventIO :: (Show a, MonadIO m) => a -> m () #
Since: rio-0.1.0.0
traceShowEvent :: Show a => a -> b -> b #
Since: rio-0.1.0.0
traceShowM :: (Show a, Applicative f) => a -> f () #
Since: rio-0.1.0.0
traceShowIO :: (Show a, MonadIO m) => a -> m () #
Since: rio-0.1.0.0
traceShowId :: Show a => a -> a #
Since: rio-0.1.0.0
traceStack :: Text -> a -> a #
Since: rio-0.1.0.0
traceMarkerIO :: MonadIO m => Text -> m () #
Since: rio-0.1.0.0
traceMarker :: Text -> a -> a #
Since: rio-0.1.0.0
traceEventIO :: MonadIO m => Text -> m () #
Since: rio-0.1.0.0
traceEvent :: Text -> a -> a #
Since: rio-0.1.0.0
traceM :: Applicative f => Text -> f () #
Since: rio-0.1.0.0
runSimpleApp :: MonadIO m => RIO SimpleApp a -> m a #
Run with a default configured SimpleApp
, consisting of:
- Logging to stderr
- If the
RIO_VERBOSE
environment variable is set, turns on verbose logging - Default process context
Since: rio-0.1.3.0
mkSimpleApp :: MonadIO m => LogFunc -> Maybe ProcessContext -> m SimpleApp #
Constructor for SimpleApp
. In case when ProcessContext
is not supplied
mkDefaultProcessContext
will be used to create it.
Since: rio-0.1.14.0
A simple, non-customizable environment type for RIO
, which
provides common functionality. If it's insufficient for your needs,
define your own, custom App
data type.
Since: rio-0.1.3.0
Instances
HasProcessContext SimpleApp | |
Defined in RIO.Prelude.Simple Methods | |
HasLogFunc SimpleApp | |
newUnboxedSomeRef :: (MonadIO m, Unbox a) => a -> m (SomeRef a) #
create a new unboxed SomeRef
Since: rio-0.1.4.0
newSomeRef :: MonadIO m => a -> m (SomeRef a) #
create a new boxed SomeRef
Since: rio-0.1.4.0
modifySomeRef :: MonadIO m => SomeRef a -> (a -> a) -> m () #
Modify a SomeRef This function is subject to change due to the lack of atomic operations
Since: rio-0.1.4.0
writeSomeRef :: MonadIO m => SomeRef a -> a -> m () #
Write to a SomeRef
Since: rio-0.1.4.0
readSomeRef :: MonadIO m => SomeRef a -> m a #
Read from a SomeRef
Since: rio-0.1.4.0
mapRIO :: (outer -> inner) -> RIO inner a -> RIO outer a #
Lift one RIO env to another.
Since: rio-0.1.13.0
liftRIO :: (MonadIO m, MonadReader env m) => RIO env a -> m a #
Abstract RIO
to an arbitrary MonadReader
instance, which can handle IO.
Since: rio-0.0.1.0
runRIO :: MonadIO m => env -> RIO env a -> m a #
Using the environment run in IO the action that requires that environment.
Since: rio-0.0.1.0
The Reader+IO monad. This is different from a ReaderT
because:
- It's not a transformer, it hardcodes IO for simpler usage and error messages.
- Instances of typeclasses like
MonadLogger
are implemented using classes defined on the environment, instead of using an underlying monad.
Instances
MonadReader env (RIO env) | |
HasStateRef s env => MonadState s (RIO env) | |
(Monoid w, HasWriteRef w env) => MonadWriter w (RIO env) | |
Monad (RIO env) | |
Functor (RIO env) | |
Applicative (RIO env) | |
MonadIO (RIO env) | |
Defined in RIO.Prelude.RIO | |
MonadThrow (RIO env) | |
Defined in RIO.Prelude.RIO | |
PrimMonad (RIO env) | |
MonadUnliftIO (RIO env) | |
Defined in RIO.Prelude.RIO | |
(HasAppEnv e, HasAppCfg e, HasLogFunc e) => MonadKIO (RIO e) Source # | |
Defined in KMonad.App | |
Semigroup a => Semigroup (RIO env a) | |
Monoid a => Monoid (RIO env a) | |
type PrimState (RIO env) | |
Defined in RIO.Prelude.RIO |
Abstraction over how to read from and write to a mutable reference
Since: rio-0.1.4.0
Instances
HasStateRef a (SomeRef a) | Identity state reference where the SomeRef is the env Since: rio-0.1.4.0 |
HasWriteRef a (SomeRef a) | Identity write reference where the SomeRef is the env Since: rio-0.1.4.0 |
class HasStateRef s env | env -> s where #
Environment values with stateful capabilities to SomeRef
Since: rio-0.1.4.0
Instances
HasStateRef a (SomeRef a) | Identity state reference where the SomeRef is the env Since: rio-0.1.4.0 |
class HasWriteRef w env | env -> w where #
Environment values with writing capabilities to SomeRef
Since: rio-0.1.4.0
Instances
HasWriteRef a (SomeRef a) | Identity write reference where the SomeRef is the env Since: rio-0.1.4.0 |
modifyURef :: (PrimMonad m, Unbox a) => URef (PrimState m) a -> (a -> a) -> m () #
Modify a value in a URef
. Note that this action is strict, and
will force evaluation of the result value.
Since: rio-0.0.2.0
writeURef :: (PrimMonad m, Unbox a) => URef (PrimState m) a -> a -> m () #
Write a value into a URef
. Note that this action is strict, and
will force evalution of the value.
Since: rio-0.0.2.0
readURef :: (PrimMonad m, Unbox a) => URef (PrimState m) a -> m a #
Read the value in a URef
Since: rio-0.0.2.0
newURef :: (PrimMonad m, Unbox a) => a -> m (URef (PrimState m) a) #
Create a new URef
Since: rio-0.0.2.0
An unboxed reference. This works like an IORef
, but the data is
stored in a bytearray instead of a heap object, avoiding
significant allocation overhead in some cases. For a concrete
example, see this Stack Overflow question:
https://stackoverflow.com/questions/27261813/why-is-my-little-stref-int-require-allocating-gigabytes.
The first parameter is the state token type, the same as would be
used for the ST
monad. If you're using an IO
-based monad, you
can use the convenience IOURef
type synonym instead.
Since: rio-0.0.2.0
freezeDeque :: (Vector v a, PrimMonad m) => Deque (Mutable v) (PrimState m) a -> m (v a) #
Yield an immutable copy of the underlying mutable vector. The difference from dequeToVector
is that the the copy will be performed with a more efficient memcpy
, rather than element by
element. The downside is that the resulting vector type must be the one that corresponds to the
mutable one that is used in the Deque
.
Example
>>>
:set -XTypeApplications
>>>
import qualified RIO.Vector.Unboxed as U
>>>
d <- newDeque @U.MVector @Int
>>>
mapM_ (pushFrontDeque d) [0..10]
>>>
freezeDeque @U.Vector d
[10,9,8,7,6,5,4,3,2,1,0]
Since: rio-0.1.9.0
dequeToVector :: (Vector v' a, MVector v a, PrimMonad m) => Deque v (PrimState m) a -> m (v' a) #
Convert to an immutable vector of any type. If resulting pure vector corresponds to the mutable
one used by the Deque
, it will be more efficient to use freezeDeque
instead.
Example
>>>
:set -XTypeApplications
>>>
import qualified RIO.Vector.Unboxed as U
>>>
import qualified RIO.Vector.Storable as S
>>>
d <- newDeque @U.MVector @Int
>>>
mapM_ (pushFrontDeque d) [0..10]
>>>
dequeToVector @S.Vector d
[10,9,8,7,6,5,4,3,2,1,0]
Since: rio-0.1.9.0
foldrDeque :: (MVector v a, PrimMonad m) => (a -> acc -> m acc) -> acc -> Deque v (PrimState m) a -> m acc #
foldlDeque :: (MVector v a, PrimMonad m) => (acc -> a -> m acc) -> acc -> Deque v (PrimState m) a -> m acc #
pushBackDeque :: (MVector v a, PrimMonad m) => Deque v (PrimState m) a -> a -> m () #
Push a new value to the end of the Deque
Since: rio-0.1.9.0
pushFrontDeque :: (MVector v a, PrimMonad m) => Deque v (PrimState m) a -> a -> m () #
Push a new value to the beginning of the Deque
Since: rio-0.1.9.0
popBackDeque :: (MVector v a, PrimMonad m) => Deque v (PrimState m) a -> m (Maybe a) #
Pop the first value from the end of the Deque
Since: rio-0.1.9.0
popFrontDeque :: (MVector v a, PrimMonad m) => Deque v (PrimState m) a -> m (Maybe a) #
Pop the first value from the beginning of the Deque
Since: rio-0.1.9.0
getDequeSize :: PrimMonad m => Deque v (PrimState m) a -> m Int #
O(1) - Get the number of elements that is currently in the Deque
Since: rio-0.1.9.0
newDeque :: (MVector v a, PrimMonad m) => m (Deque v (PrimState m) a) #
Create a new, empty Deque
Since: rio-0.1.9.0
asBDeque :: BDeque s a -> BDeque s a #
Helper function to assist with type inference, forcing usage of a boxed vector.
Since: rio-0.1.9.0
asSDeque :: SDeque s a -> SDeque s a #
Helper function to assist with type inference, forcing usage of a storable vector.
Since: rio-0.1.9.0
asUDeque :: UDeque s a -> UDeque s a #
Helper function to assist with type inference, forcing usage of an unboxed vector.
Since: rio-0.1.9.0
data Deque (v :: Type -> Type -> Type) s a #
A double-ended queue supporting any underlying vector type and any monad.
This implements a circular double-ended queue with exponential growth.
Since: rio-0.1.9.0
readFileUtf8 :: MonadIO m => FilePath -> m Text #
Read a file in UTF8 encoding, throwing an exception on invalid character encoding.
This function will use OS-specific line ending handling.
writeFileBinary :: MonadIO m => FilePath -> ByteString -> m () #
readFileBinary :: MonadIO m => FilePath -> m ByteString #
hPutBuilder :: MonadIO m => Handle -> Builder -> m () #
writeFileUtf8 :: MonadIO m => FilePath -> Text -> m () #
Write a file in UTF8 encoding
This function will use OS-specific line ending handling.
withLazyFileUtf8 :: MonadUnliftIO m => FilePath -> (Text -> m a) -> m a #
Lazily read a file in UTF8 encoding.
Since: rio-0.1.13
withLazyFile :: MonadUnliftIO m => FilePath -> (ByteString -> m a) -> m a #
Lazily get the contents of a file. Unlike readFile
, this
ensures that if an exception is thrown, the file handle is closed
immediately.
gLogFuncClassic :: (HasLogLevel msg, HasLogSource msg, Display msg) => LogFunc -> GLogFunc msg #
glog :: (MonadIO m, HasCallStack, HasGLogFunc env, MonadReader env m) => GMsg env -> m () #
Log a value generically.
Since: rio-0.1.13.0
mkGLogFunc :: (CallStack -> msg -> IO ()) -> GLogFunc msg #
Make a custom generic logger. With this you could, for example, write to a database or a log digestion service. For example:
mkGLogFunc (\stack msg -> send (Data.Aeson.encode (JsonLog stack msg)))
Since: rio-0.1.13.0
contramapGLogFunc :: (a -> b) -> GLogFunc b -> GLogFunc a #
contramapMaybeGLogFunc :: (a -> Maybe b) -> GLogFunc b -> GLogFunc a #
A vesion of contramapMaybeGLogFunc
which supports filering.
Since: rio-0.1.13.0
noLogging :: (HasLogFunc env, MonadReader env m) => m a -> m a #
Disable logging capabilities in a given sub-routine
Intended to skip logging in general purpose implementations, where secrets might be logged accidently.
Since: rio-0.1.5.0
logFuncAccentColorsL :: HasLogFunc env => SimpleGetter env (Int -> Utf8Builder) #
What accent colors, indexed by Int
, is the log func configured to use?
Intended for use by code which wants to optionally add additional color to its log messages.
Since: rio-0.1.18.0
logFuncSecondaryColorL :: HasLogFunc env => SimpleGetter env Utf8Builder #
What color is the log func configured to use for secondary content?
Intended for use by code which wants to optionally add additional color to its log messages.
Since: rio-0.1.18.0
logFuncLogLevelColorsL :: HasLogFunc env => SimpleGetter env (LogLevel -> Utf8Builder) #
What color is the log func configured to use for each LogLevel
?
Intended for use by code which wants to optionally add additional color to its log messages.
Since: rio-0.1.18.0
logFuncUseColorL :: HasLogFunc env => SimpleGetter env Bool #
Is the log func configured to use color output?
Intended for use by code which wants to optionally add additional color to its log messages.
Since: rio-0.1.0.0
displayCallStack :: CallStack -> Utf8Builder #
Convert a CallStack
value into a Utf8Builder
indicating
the first source location.
TODO Consider showing the entire call stack instead.
Since: rio-0.0.0.0
setLogFormat :: (Utf8Builder -> Utf8Builder) -> LogOptions -> LogOptions #
setLogUseLoc :: Bool -> LogOptions -> LogOptions #
Arguments
:: (Int -> Utf8Builder) | This should be a total function. |
-> LogOptions | |
-> LogOptions |
setLogSecondaryColor :: Utf8Builder -> LogOptions -> LogOptions #
ANSI color codes for secondary content in the log output.
Default: "\ESC[90m" -- Bright black (gray)
Since: rio-0.1.18.0
setLogLevelColors :: (LogLevel -> Utf8Builder) -> LogOptions -> LogOptions #
ANSI color codes for LogLevel
in the log output.
Default: LevelDebug
= "\ESC[32m" -- Green
LevelInfo
= "\ESC[34m" -- Blue
LevelWarn
= "\ESC[33m" -- Yellow
LevelError
= "\ESC[31m" -- Red
LevelOther
_ = "\ESC[35m" -- Magenta
Since: rio-0.1.18.0
setLogUseColor :: Bool -> LogOptions -> LogOptions #
setLogUseTime :: Bool -> LogOptions -> LogOptions #
setLogTerminal :: Bool -> LogOptions -> LogOptions #
Do we treat output as a terminal. If True
, we will enabled
sticky logging functionality.
Default: checks if the Handle
provided to logOptionsHandle
is a
terminal with hIsTerminalDevice
.
Since: rio-0.0.0.0
setLogVerboseFormatIO :: IO Bool -> LogOptions -> LogOptions #
Refer to setLogVerboseFormat
. This modifier allows to alter the verbose
format value dynamically at runtime.
Default: follows the value of the verbose flag.
Since: rio-0.1.3.0
setLogVerboseFormat :: Bool -> LogOptions -> LogOptions #
Use the verbose format for printing log messages.
Default: follows the value of the verbose flag.
Since: rio-0.0.0.0
setLogMinLevelIO :: IO LogLevel -> LogOptions -> LogOptions #
Refer to setLogMinLevel
. This modifier allows to alter the verbose format
value dynamically at runtime.
Default: in verbose mode, LevelDebug
. Otherwise, LevelInfo
.
Since: rio-0.1.3.0
setLogMinLevel :: LogLevel -> LogOptions -> LogOptions #
Set the minimum log level. Messages below this level will not be printed.
Default: in verbose mode, LevelDebug
. Otherwise, LevelInfo
.
Since: rio-0.0.0.0
withLogFunc :: MonadUnliftIO m => LogOptions -> (LogFunc -> m a) -> m a #
Given a LogOptions
value, run the given function with the
specified LogFunc
. A common way to use this function is:
let isVerbose = False -- get from the command line instead logOptions' <- logOptionsHandle stderr isVerbose let logOptions = setLogUseTime True logOptions' withLogFunc logOptions $ \lf -> do let app = App -- application specific environment { appLogFunc = lf , appOtherStuff = ... } runRIO app $ do logInfo "Starting app" myApp
Since: rio-0.0.0.0
newLogFunc :: (MonadIO n, MonadIO m) => LogOptions -> n (LogFunc, m ()) #
Given a LogOptions
value, returns both a new LogFunc
and a sub-routine that
disposes it.
Intended for use if you want to deal with the teardown of LogFunc
yourself,
otherwise prefer the withLogFunc
function instead.
Since: rio-0.1.3.0
Arguments
:: MonadIO m | |
=> Handle | |
-> Bool | Verbose Flag |
-> m LogOptions |
Create a LogOptions
value from the given Handle
and whether
to perform verbose logging or not. Individiual settings can be
overridden using appropriate set
functions.
When Verbose Flag is True
, the following happens:
setLogVerboseFormat
is called withTrue
setLogUseColor
is called withTrue
(except on Windows)setLogUseLoc
is called withTrue
setLogUseTime
is called withTrue
setLogMinLevel
is called withDebug
log level
Since: rio-0.0.0.0
logOptionsMemory :: MonadIO m => m (IORef Builder, LogOptions) #
Create a LogOptions
value which will store its data in
memory. This is primarily intended for testing purposes. This will
return both a LogOptions
value and an IORef
containing the
resulting Builder
value.
This will default to non-verbose settings and assume there is a
terminal attached. These assumptions can be overridden using the
appropriate set
functions.
Since: rio-0.0.0.0
logStickyDone :: (MonadIO m, HasCallStack, MonadReader env m, HasLogFunc env) => Utf8Builder -> m () #
This will print out the given message with a newline and disable
any further stickiness of the line until a new call to logSticky
happens.
Since: rio-0.0.0.0
logSticky :: (MonadIO m, HasCallStack, MonadReader env m, HasLogFunc env) => Utf8Builder -> m () #
Write a "sticky" line to the terminal. Any subsequent lines will
overwrite this one, and that same line will be repeated below
again. In other words, the line sticks at the bottom of the output
forever. Running this function again will replace the sticky line
with a new sticky line. When you want to get rid of the sticky
line, run logStickyDone
.
Note that not all LogFunc
implementations will support sticky
messages as described. However, the withLogFunc
implementation
provided by this module does.
Since: rio-0.0.0.0
Arguments
:: (MonadIO m, MonadReader env m, HasLogFunc env, HasCallStack) | |
=> Text | level |
-> LogSource | |
-> Utf8Builder | |
-> m () |
Log a message with the specified textual level and the given source.
Since: rio-0.0.0.0
logErrorS :: (MonadIO m, MonadReader env m, HasLogFunc env, HasCallStack) => LogSource -> Utf8Builder -> m () #
Log an error level message with the given source.
Since: rio-0.0.0.0
logWarnS :: (MonadIO m, MonadReader env m, HasLogFunc env, HasCallStack) => LogSource -> Utf8Builder -> m () #
Log a warn level message with the given source.
Since: rio-0.0.0.0
logInfoS :: (MonadIO m, MonadReader env m, HasLogFunc env, HasCallStack) => LogSource -> Utf8Builder -> m () #
Log an info level message with the given source.
Since: rio-0.0.0.0
logDebugS :: (MonadIO m, MonadReader env m, HasLogFunc env, HasCallStack) => LogSource -> Utf8Builder -> m () #
Log a debug level message with the given source.
Since: rio-0.0.0.0
Arguments
:: (MonadIO m, MonadReader env m, HasLogFunc env, HasCallStack) | |
=> Text | level |
-> Utf8Builder | |
-> m () |
Log a message with the specified textual level and no source.
Since: rio-0.0.0.0
logError :: (MonadIO m, MonadReader env m, HasLogFunc env, HasCallStack) => Utf8Builder -> m () #
Log an error level message with no source.
Since: rio-0.0.0.0
logWarn :: (MonadIO m, MonadReader env m, HasLogFunc env, HasCallStack) => Utf8Builder -> m () #
Log a warn level message with no source.
Since: rio-0.0.0.0
logInfo :: (MonadIO m, MonadReader env m, HasLogFunc env, HasCallStack) => Utf8Builder -> m () #
Log an info level message with no source.
Since: rio-0.0.0.0
logDebug :: (MonadIO m, MonadReader env m, HasLogFunc env, HasCallStack) => Utf8Builder -> m () #
Log a debug level message with no source.
Since: rio-0.0.0.0
logGeneric :: (MonadIO m, MonadReader env m, HasLogFunc env, HasCallStack) => LogSource -> LogLevel -> Utf8Builder -> m () #
Generic, basic function for creating other logging functions.
Since: rio-0.0.0.0
mkLogFunc :: (CallStack -> LogSource -> LogLevel -> Utf8Builder -> IO ()) -> LogFunc #
Create a LogFunc
from the given function.
Since: rio-0.0.0.0
The log level of a message.
Since: rio-0.0.0.0
Constructors
LevelDebug | |
LevelInfo | |
LevelWarn | |
LevelError | |
LevelOther !Text |
Where in the application a log message came from. Used for display purposes only.
Since: rio-0.0.0.0
class HasLogFunc env where #
Environment values with a logging function.
Since: rio-0.0.0.0
Instances
HasLogFunc SimpleApp | |
HasLogFunc LoggedProcessContext | |
Defined in RIO.Process Methods | |
HasLogFunc LogFunc | |
A logging function, wrapped in a newtype for better error messages.
An implementation may choose any behavior of this value it wishes, including printing to standard output or no action at all.
Since: rio-0.0.0.0
data LogOptions #
Configuration for how to create a LogFunc
. Intended to be used
with the withLogFunc
function.
Since: rio-0.0.0.0
class HasGLogFunc env where #
An app is capable of generic logging if it implements this.
Since: rio-0.1.13.0
A generic logger of some type msg
.
Your GLocFunc
can re-use the existing classical logging framework
of RIO, and/or implement additional transforms,
filters. Alternatively, you may log to a JSON source in a database,
or anywhere else as needed. You can decide how to log levels or
severities based on the constructors in your type. You will
normally determine this in your main app entry point.
Since: rio-0.1.13.0
Instances
Contravariant GLogFunc | Use this instance to wrap sub-loggers via The Since: rio-0.1.13.0 |
Semigroup (GLogFunc msg) | Perform both sets of actions per log entry. Since: rio-0.1.13.0 |
Monoid (GLogFunc msg) |
Since: rio-0.1.13.0 |
HasGLogFunc (GLogFunc msg) | Quick way to run a RIO that only has a logger in its environment. Since: rio-0.1.13.0 |
type GMsg (GLogFunc msg) | |
Defined in RIO.Prelude.Logger |
class HasLogLevel msg where #
Level, if any, of your logs. If unknown, use LogOther
. Use for
your generic log data types that want to sit inside the classic log
framework.
Since: rio-0.1.13.0
Methods
getLogLevel :: msg -> LogLevel #
class HasLogSource msg where #
Source of a log. This can be whatever you want. Use for your generic log data types that want to sit inside the classic log framework.
Since: rio-0.1.13.0
Methods
getLogSource :: msg -> LogSource #
decodeUtf8Lenient :: ByteString -> Text #
yieldThread :: MonadIO m => m () #
toStrictBytes :: LByteString -> ByteString #
type LByteString = ByteString #
Helper function to force an action to run in IO
. Especially
useful for overly general contexts, like hspec tests.
Since: rio-0.1.3.0
foldMapM :: (Monad m, Monoid w, Foldable t) => (a -> m w) -> t a -> m w #
Extend foldMap
to allow side effects.
Internally, this is implemented using a strict left fold. This is used for
performance reasons. It also necessitates that this function has a Monad
constraint and not just an Applicative
constraint. For more information,
see
https://github.com/commercialhaskell/rio/pull/99#issuecomment-394179757.
Since: rio-0.1.3.0
mapMaybeA :: Applicative f => (a -> f (Maybe b)) -> [a] -> f [b] #
Applicative mapMaybe
.
exitSuccess :: MonadIO m => m a #
Lifted version of "System.Exit.exitSuccess".
@since 0.1.9.0.
exitFailure :: MonadIO m => m a #
Lifted version of "System.Exit.exitFailure".
@since 0.1.9.0.
writeFileUtf8Builder :: MonadIO m => FilePath -> Utf8Builder -> m () #
Write the given Utf8Builder
value to a file.
Since: rio-0.1.0.0
utf8BuilderToLazyText :: Utf8Builder -> Text #
Convert a Utf8Builder
value into a lazy Text
.
Since: rio-0.1.0.0
utf8BuilderToText :: Utf8Builder -> Text #
Convert a Utf8Builder
value into a strict Text
.
Since: rio-0.1.0.0
displayBytesUtf8 :: ByteString -> Utf8Builder #
Convert a ByteString
into a Utf8Builder
.
NOTE This function performs no checks to ensure that the data is, in fact, UTF8 encoded. If you provide non-UTF8 data, later functions may fail.
Since: rio-0.1.0.0
displayShow :: Show a => a -> Utf8Builder #
Use the Show
instance for a value to convert it to a
Utf8Builder
.
Since: rio-0.1.0.0
newtype Utf8Builder #
A builder of binary data, with the invariant that the underlying data is supposed to be UTF-8 encoded.
Since: rio-0.1.0.0
Constructors
Utf8Builder | |
Fields |
Instances
IsString Utf8Builder | Since: rio-0.1.0.0 |
Defined in RIO.Prelude.Display Methods fromString :: String -> Utf8Builder # | |
Semigroup Utf8Builder | |
Defined in RIO.Prelude.Display Methods (<>) :: Utf8Builder -> Utf8Builder -> Utf8Builder # sconcat :: NonEmpty Utf8Builder -> Utf8Builder # stimes :: Integral b => b -> Utf8Builder -> Utf8Builder # | |
Monoid Utf8Builder | |
Defined in RIO.Prelude.Display Methods mempty :: Utf8Builder # mappend :: Utf8Builder -> Utf8Builder -> Utf8Builder # mconcat :: [Utf8Builder] -> Utf8Builder # | |
Display Utf8Builder | Since: rio-0.1.0.0 |
Defined in RIO.Prelude.Display |
A typeclass for values which can be converted to a
Utf8Builder
. The intention of this typeclass is to provide a
human-friendly display of the data.
Since: rio-0.1.0.0
Minimal complete definition
Instances
withBinaryFile :: MonadUnliftIO m => FilePath -> IOMode -> (Handle -> m a) -> m a #
Unlifted version of withBinaryFile
.
Since: unliftio-0.1.0.0
myThreadId :: MonadIO m => m ThreadId #
Lifted version of myThreadId
.
Since: unliftio-0.1.1.0
threadDelay :: MonadIO m => Int -> m () #
Lifted version of threadDelay
.
Since: unliftio-0.1.1.0
threadWaitRead :: MonadIO m => Fd -> m () #
Lifted version of threadWaitRead
.
Since: unliftio-0.1.1.0
threadWaitWrite :: MonadIO m => Fd -> m () #
Lifted version of threadWaitWrite
.
Since: unliftio-0.1.1.0
isCurrentThreadBound :: MonadIO m => m Bool #
Lifted version of isCurrentThreadBound
.
Since: unliftio-0.1.1.0
data UnicodeException #
An exception type for representing Unicode encoding errors.
Constructors
DecodeError String (Maybe Word8) | Could not decode a byte sequence because it was invalid under the given encoding, or ran out of input in mid-decode. |
EncodeError String (Maybe Char) | Tried to encode a character that could not be represented under the given encoding, or ran out of input in mid-encode. |
Instances
Eq UnicodeException | |
Defined in Data.Text.Encoding.Error Methods (==) :: UnicodeException -> UnicodeException -> Bool # (/=) :: UnicodeException -> UnicodeException -> Bool # | |
Show UnicodeException | |
Defined in Data.Text.Encoding.Error Methods showsPrec :: Int -> UnicodeException -> ShowS # show :: UnicodeException -> String # showList :: [UnicodeException] -> ShowS # | |
Exception UnicodeException | |
Defined in Data.Text.Encoding.Error Methods toException :: UnicodeException -> SomeException # | |
NFData UnicodeException | |
Defined in Data.Text.Encoding.Error Methods rnf :: UnicodeException -> () # |
lenientDecode :: OnDecodeError #
Replace an invalid input byte with the Unicode replacement character U+FFFD.
decodeUtf8With :: OnDecodeError -> ByteString -> Text #
Decode a ByteString
containing UTF-8 encoded text.
NOTE: The replacement character returned by OnDecodeError
MUST be within the BMP plane; surrogate code points will
automatically be remapped to the replacement char U+FFFD
(since 0.11.3.0), whereas code points beyond the BMP will throw an
error
(since 1.2.3.1); For earlier versions of text
using
those unsupported code points would result in undefined behavior.
decodeUtf8' :: ByteString -> Either UnicodeException Text #
Decode a ByteString
containing UTF-8 encoded text.
If the input contains any invalid UTF-8 data, the relevant exception will be returned, otherwise the decoded text.
encodeUtf8Builder :: Text -> Builder #
Encode text to a ByteString Builder
using UTF-8 encoding.
Since: text-1.1.0.0
encodeUtf8 :: Text -> ByteString #
Encode text using UTF-8 encoding.