Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Fay.Compiler.Prelude
Description
Re-exports of base functionality. Note that this module is just used inside the compiler. It's not compiled to JavaScript. Based on the base-extended package (c) 2013 Simon Meier, licensed as BSD3.
Synopsis
- (++) :: [a] -> [a] -> [a]
- seq :: forall (r :: RuntimeRep) a (b :: TYPE r). a -> b -> b
- filter :: (a -> Bool) -> [a] -> [a]
- zip :: [a] -> [b] -> [(a, b)]
- print :: Show a => a -> IO ()
- fst :: (a, b) -> a
- snd :: (a, b) -> b
- otherwise :: Bool
- map :: (a -> b) -> [a] -> [b]
- ($) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b
- fromIntegral :: (Integral a, Num b) => a -> b
- realToFrac :: (Real a, Fractional b) => a -> b
- class Bounded a where
- class Enum a where
- succ :: a -> a
- pred :: a -> a
- toEnum :: Int -> a
- fromEnum :: a -> Int
- enumFrom :: a -> [a]
- enumFromThen :: a -> a -> [a]
- enumFromTo :: a -> a -> [a]
- enumFromThenTo :: a -> a -> a -> [a]
- class Eq a where
- class Fractional a => Floating a where
- class Num a => Fractional a where
- (/) :: a -> a -> a
- recip :: a -> a
- fromRational :: Rational -> a
- class (Real a, Enum a) => Integral a where
- class Applicative m => Monad (m :: Type -> Type) where
- class Functor (f :: Type -> Type) where
- class Num a where
- class Eq a => Ord a where
- class Read a where
- class (Num a, Ord a) => Real a where
- toRational :: a -> Rational
- class (RealFrac a, Floating a) => RealFloat a where
- floatRadix :: a -> Integer
- floatDigits :: a -> Int
- floatRange :: a -> (Int, Int)
- decodeFloat :: a -> (Integer, Int)
- encodeFloat :: Integer -> Int -> a
- exponent :: a -> Int
- significand :: a -> a
- scaleFloat :: Int -> a -> a
- isNaN :: a -> Bool
- isInfinite :: a -> Bool
- isDenormalized :: a -> Bool
- isNegativeZero :: a -> Bool
- isIEEE :: a -> Bool
- atan2 :: a -> a -> a
- class (Real a, Fractional a) => RealFrac a where
- class Show a where
- class Monad m => MonadFail (m :: Type -> Type) where
- class Functor f => Applicative (f :: Type -> Type) where
- class Foldable (t :: Type -> Type) where
- foldMap :: Monoid m => (a -> m) -> t a -> m
- foldr :: (a -> b -> b) -> b -> t a -> b
- foldl :: (b -> a -> b) -> b -> t a -> b
- foldr1 :: (a -> a -> a) -> t a -> a
- foldl1 :: (a -> a -> a) -> t a -> a
- null :: t a -> Bool
- length :: t a -> Int
- elem :: Eq a => a -> t a -> Bool
- maximum :: Ord a => t a -> a
- minimum :: Ord a => t a -> a
- sum :: Num a => t a -> a
- product :: Num a => t a -> a
- class (Functor t, Foldable t) => Traversable (t :: Type -> Type) where
- traverse :: Applicative f => (a -> f b) -> t a -> f (t b)
- sequenceA :: Applicative f => t (f a) -> f (t a)
- mapM :: Monad m => (a -> m b) -> t a -> m (t b)
- sequence :: Monad m => t (m a) -> m (t a)
- class Semigroup a where
- (<>) :: a -> a -> a
- class Semigroup a => Monoid a where
- data Bool
- data Char
- data Double
- data Float
- data Int
- data Integer
- data Maybe a
- data Ordering
- type Rational = Ratio Integer
- data IO a
- data Word
- data Either a b
- type String = [Char]
- (<$>) :: Functor f => (a -> b) -> f a -> f b
- const :: a -> b -> a
- (.) :: (b -> c) -> (a -> b) -> a -> c
- id :: a -> a
- type ShowS = String -> String
- read :: Read a => String -> a
- readIO :: Read a => String -> IO a
- readLn :: Read a => IO a
- appendFile :: FilePath -> String -> IO ()
- writeFile :: FilePath -> String -> IO ()
- readFile :: FilePath -> IO String
- interact :: (String -> String) -> IO ()
- getContents :: IO String
- getLine :: IO String
- getChar :: IO Char
- putStrLn :: String -> IO ()
- putStr :: String -> IO ()
- putChar :: Char -> IO ()
- ioError :: IOError -> IO a
- type FilePath = String
- userError :: String -> IOError
- type IOError = IOException
- notElem :: (Foldable t, Eq a) => a -> t a -> Bool
- all :: Foldable t => (a -> Bool) -> t a -> Bool
- any :: Foldable t => (a -> Bool) -> t a -> Bool
- or :: Foldable t => t Bool -> Bool
- and :: Foldable t => t Bool -> Bool
- concatMap :: Foldable t => (a -> [b]) -> t a -> [b]
- concat :: Foldable t => t [a] -> [a]
- sequence_ :: (Foldable t, Monad m) => t (m a) -> m ()
- mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m ()
- unwords :: [String] -> String
- words :: String -> [String]
- unlines :: [String] -> String
- lines :: String -> [String]
- reads :: Read a => ReadS a
- either :: (a -> c) -> (b -> c) -> Either a b -> c
- lex :: ReadS String
- readParen :: Bool -> ReadS a -> ReadS a
- type ReadS a = String -> [(a, String)]
- lcm :: Integral a => a -> a -> a
- gcd :: Integral a => a -> a -> a
- (^^) :: (Fractional a, Integral b) => a -> b -> a
- (^) :: (Num a, Integral b) => a -> b -> a
- odd :: Integral a => a -> Bool
- even :: Integral a => a -> Bool
- showParen :: Bool -> ShowS -> ShowS
- showString :: String -> ShowS
- showChar :: Char -> ShowS
- shows :: Show a => a -> ShowS
- unzip3 :: [(a, b, c)] -> ([a], [b], [c])
- unzip :: [(a, b)] -> ([a], [b])
- zipWith3 :: (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d]
- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
- zip3 :: [a] -> [b] -> [c] -> [(a, b, c)]
- (!!) :: [a] -> Int -> a
- lookup :: Eq a => a -> [(a, b)] -> Maybe b
- reverse :: [a] -> [a]
- break :: (a -> Bool) -> [a] -> ([a], [a])
- span :: (a -> Bool) -> [a] -> ([a], [a])
- splitAt :: Int -> [a] -> ([a], [a])
- drop :: Int -> [a] -> [a]
- take :: Int -> [a] -> [a]
- dropWhile :: (a -> Bool) -> [a] -> [a]
- takeWhile :: (a -> Bool) -> [a] -> [a]
- cycle :: [a] -> [a]
- replicate :: Int -> a -> [a]
- repeat :: a -> [a]
- iterate :: (a -> a) -> a -> [a]
- scanr1 :: (a -> a -> a) -> [a] -> [a]
- scanr :: (a -> b -> b) -> b -> [a] -> [b]
- scanl1 :: (a -> a -> a) -> [a] -> [a]
- scanl :: (b -> a -> b) -> b -> [a] -> [b]
- init :: [a] -> [a]
- last :: [a] -> a
- tail :: [a] -> [a]
- head :: [a] -> a
- maybe :: b -> (a -> b) -> Maybe a -> b
- uncurry :: (a -> b -> c) -> (a, b) -> c
- curry :: ((a, b) -> c) -> a -> b -> c
- subtract :: Num a => a -> a -> a
- asTypeOf :: a -> a -> a
- until :: (a -> Bool) -> (a -> a) -> a -> a
- ($!) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b
- flip :: (a -> b -> c) -> b -> a -> c
- (=<<) :: Monad m => (a -> m b) -> m a -> m b
- undefined :: forall (r :: RuntimeRep) (a :: TYPE r). HasCallStack => a
- errorWithoutStackTrace :: forall (r :: RuntimeRep) (a :: TYPE r). [Char] -> a
- error :: forall (r :: RuntimeRep) (a :: TYPE r). HasCallStack => [Char] -> a
- (&&) :: Bool -> Bool -> Bool
- (||) :: Bool -> Bool -> Bool
- not :: Bool -> Bool
- module Control.Applicative
- (&&&) :: Arrow a => a b c -> a b c' -> a b (c, c')
- second :: Arrow a => a b c -> a (d, b) (d, c)
- first :: Arrow a => a b c -> a (b, d) (c, d)
- (***) :: Arrow a => a b c -> a b' c' -> a (b, b') (c, c')
- (|||) :: ArrowChoice a => a b d -> a c d -> a (Either b c) d
- (+++) :: ArrowChoice a => a b c -> a b' c' -> a (Either b b') (Either c c')
- join :: Monad m => m (m a) -> m a
- class Applicative m => Monad (m :: Type -> Type) where
- class Functor (f :: Type -> Type) where
- class Monad m => MonadFail (m :: Type -> Type) where
- mapM :: (Traversable t, Monad m) => (a -> m b) -> t a -> m (t b)
- sequence :: (Traversable t, Monad m) => t (m a) -> m (t a)
- class (Alternative m, Monad m) => MonadPlus (m :: Type -> Type) where
- mfilter :: MonadPlus m => (a -> Bool) -> m a -> m a
- (<$!>) :: Monad m => (a -> b) -> m a -> m b
- unless :: Applicative f => Bool -> f () -> f ()
- replicateM_ :: Applicative m => Int -> m a -> m ()
- replicateM :: Applicative m => Int -> m a -> m [a]
- foldM_ :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m ()
- foldM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b
- zipWithM_ :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m ()
- zipWithM :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m [c]
- mapAndUnzipM :: Applicative m => (a -> m (b, c)) -> [a] -> m ([b], [c])
- forever :: Applicative f => f a -> f b
- (<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c
- (>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c
- filterM :: Applicative m => (a -> m Bool) -> [a] -> m [a]
- forM :: (Traversable t, Monad m) => t a -> (a -> m b) -> m (t b)
- msum :: (Foldable t, MonadPlus m) => t (m a) -> m a
- sequence_ :: (Foldable t, Monad m) => t (m a) -> m ()
- forM_ :: (Foldable t, Monad m) => t a -> (a -> m b) -> m ()
- mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m ()
- void :: Functor f => f a -> f ()
- ap :: Monad m => m (a -> b) -> m a -> m b
- liftM5 :: Monad m => (a1 -> a2 -> a3 -> a4 -> a5 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m a5 -> m r
- liftM4 :: Monad m => (a1 -> a2 -> a3 -> a4 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m r
- liftM3 :: Monad m => (a1 -> a2 -> a3 -> r) -> m a1 -> m a2 -> m a3 -> m r
- liftM2 :: Monad m => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r
- liftM :: Monad m => (a1 -> r) -> m a1 -> m r
- when :: Applicative f => Bool -> f () -> f ()
- (=<<) :: Monad m => (a -> m b) -> m a -> m b
- data Char
- toLower :: Char -> Char
- isSpace :: Char -> Bool
- isAlpha :: Char -> Bool
- isDigit :: Char -> Bool
- isSeparator :: Char -> Bool
- isNumber :: Char -> Bool
- isMark :: Char -> Bool
- isLetter :: Char -> Bool
- digitToInt :: Char -> Int
- readLitChar :: ReadS Char
- lexLitChar :: ReadS String
- toTitle :: Char -> Char
- toUpper :: Char -> Char
- isLower :: Char -> Bool
- isUpper :: Char -> Bool
- isPrint :: Char -> Bool
- isControl :: Char -> Bool
- isAlphaNum :: Char -> Bool
- isSymbol :: Char -> Bool
- isPunctuation :: Char -> Bool
- isHexDigit :: Char -> Bool
- isOctDigit :: Char -> Bool
- isAsciiUpper :: Char -> Bool
- isAsciiLower :: Char -> Bool
- isLatin1 :: Char -> Bool
- isAscii :: Char -> Bool
- generalCategory :: Char -> GeneralCategory
- chr :: Int -> Char
- intToDigit :: Int -> Char
- showLitChar :: Char -> ShowS
- ord :: Char -> Int
- class Typeable a => Data a where
- gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> a -> c a
- gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c a
- toConstr :: a -> Constr
- dataTypeOf :: a -> DataType
- dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c a)
- dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a)
- gmapT :: (forall b. Data b => b -> b) -> a -> a
- gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r
- gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r
- gmapQ :: (forall d. Data d => d -> u) -> a -> [u]
- gmapQi :: Int -> (forall d. Data d => d -> u) -> a -> u
- gmapM :: Monad m => (forall d. Data d => d -> m d) -> a -> m a
- gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> a -> m a
- gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> a -> m a
- class Typeable (a :: k)
- module Data.Either
- on :: (b -> b -> c) -> (a -> b) -> a -> a -> c
- module Data.List.Compat
- module Data.Maybe
- class Semigroup a => Monoid a where
- module Data.Ord
- module Data.Traversable
- module Safe
- anyM :: (Functor m, Applicative m, Monad m) => (a -> m Bool) -> [a] -> m Bool
- io :: MonadIO m => IO a -> m a
- readAllFromProcess :: FilePath -> [String] -> String -> IO (Either (String, String) (String, String))
Documentation
(++) :: [a] -> [a] -> [a] infixr 5 #
Append two lists, i.e.,
[x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn] [x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]
If the first list is not finite, the result is the first list.
seq :: forall (r :: RuntimeRep) a (b :: TYPE r). a -> b -> b infixr 0 #
The value of seq a b
is bottom if a
is bottom, and
otherwise equal to b
. In other words, it evaluates the first
argument a
to weak head normal form (WHNF). seq
is usually
introduced to improve performance by avoiding unneeded laziness.
A note on evaluation order: the expression seq a b
does
not guarantee that a
will be evaluated before b
.
The only guarantee given by seq
is that the both a
and b
will be evaluated before seq
returns a value.
In particular, this means that b
may be evaluated before
a
. If you need to guarantee a specific order of evaluation,
you must use the function pseq
from the "parallel" package.
filter :: (a -> Bool) -> [a] -> [a] #
\(\mathcal{O}(n)\). filter
, applied to a predicate and a list, returns
the list of those elements that satisfy the predicate; i.e.,
filter p xs = [ x | x <- xs, p x]
>>>
filter odd [1, 2, 3]
[1,3]
zip :: [a] -> [b] -> [(a, b)] #
\(\mathcal{O}(\min(m,n))\). zip
takes two lists and returns a list of
corresponding pairs.
zip [1, 2] ['a', 'b'] = [(1, 'a'), (2, 'b')]
If one input list is short, excess elements of the longer list are discarded:
zip [1] ['a', 'b'] = [(1, 'a')] zip [1, 2] ['a'] = [(1, 'a')]
zip
is right-lazy:
zip [] _|_ = [] zip _|_ [] = _|_
zip
is capable of list fusion, but it is restricted to its
first list argument and its resulting list.
print :: Show a => a -> IO () #
The print
function outputs a value of any printable type to the
standard output device.
Printable types are those that are instances of class Show
; print
converts values to strings for output using the show
operation and
adds a newline.
For example, a program to print the first 20 integers and their powers of 2 could be written as:
main = print ([(n, 2^n) | n <- [0..19]])
map :: (a -> b) -> [a] -> [b] #
\(\mathcal{O}(n)\). map
f xs
is the list obtained by applying f
to
each element of xs
, i.e.,
map f [x1, x2, ..., xn] == [f x1, f x2, ..., f xn] map f [x1, x2, ...] == [f x1, f x2, ...]
>>>
map (+1) [1, 2, 3]
($) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b infixr 0 #
Application operator. This operator is redundant, since ordinary
application (f x)
means the same as (f
. However, $
x)$
has
low, right-associative binding precedence, so it sometimes allows
parentheses to be omitted; for example:
f $ g $ h x = f (g (h x))
It is also useful in higher-order situations, such as
,
or map
($
0) xs
.zipWith
($
) fs xs
Note that (
is levity-polymorphic in its result type, so that
$
)foo
where $
Truefoo :: Bool -> Int#
is well-typed.
fromIntegral :: (Integral a, Num b) => a -> b #
general coercion from integral types
realToFrac :: (Real a, Fractional b) => a -> b #
general coercion to fractional types
The Bounded
class is used to name the upper and lower limits of a
type. Ord
is not a superclass of Bounded
since types that are not
totally ordered may also have upper and lower bounds.
The Bounded
class may be derived for any enumeration type;
minBound
is the first constructor listed in the data
declaration
and maxBound
is the last.
Bounded
may also be derived for single-constructor datatypes whose
constituent types are in Bounded
.
Instances
Bounded Bool | Since: base-2.1 |
Bounded Char | Since: base-2.1 |
Bounded Int | Since: base-2.1 |
Bounded Int8 | Since: base-2.1 |
Bounded Int16 | Since: base-2.1 |
Bounded Int32 | Since: base-2.1 |
Bounded Int64 | Since: base-2.1 |
Bounded Ordering | Since: base-2.1 |
Bounded Word | Since: base-2.1 |
Bounded Word8 | Since: base-2.1 |
Bounded Word16 | Since: base-2.1 |
Bounded Word32 | Since: base-2.1 |
Bounded Word64 | Since: base-2.1 |
Bounded VecCount | Since: base-4.10.0.0 |
Bounded VecElem | Since: base-4.10.0.0 |
Bounded () | Since: base-2.1 |
Bounded All | Since: base-2.1 |
Bounded Any | Since: base-2.1 |
Bounded Associativity | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Bounded SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Bounded SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Bounded DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Bounded WordPtr | |
Bounded IntPtr | |
Bounded GeneralCategory | Since: base-2.1 |
Defined in GHC.Unicode | |
Bounded FileType | |
Bounded XdgDirectory | |
Defined in System.Directory.Internal.Common | |
Bounded XdgDirectoryList | |
Defined in System.Directory.Internal.Common | |
Bounded Extension | |
Bounded KnownExtension | |
Defined in Language.Haskell.Exts.Extension | |
Bounded VarType | |
Bounded a => Bounded (Min a) | Since: base-4.9.0.0 |
Bounded a => Bounded (Max a) | Since: base-4.9.0.0 |
Bounded a => Bounded (First a) | Since: base-4.9.0.0 |
Bounded a => Bounded (Last a) | Since: base-4.9.0.0 |
Bounded m => Bounded (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup | |
Bounded a => Bounded (Identity a) | Since: base-4.9.0.0 |
Bounded a => Bounded (Dual a) | Since: base-2.1 |
Bounded a => Bounded (Sum a) | Since: base-2.1 |
Bounded a => Bounded (Product a) | Since: base-2.1 |
Bounded a => Bounded (Down a) | Since: base-4.14.0.0 |
(Bounded a, Bounded b) => Bounded (a, b) | Since: base-2.1 |
Bounded (Proxy t) | Since: base-4.7.0.0 |
(Bounded a, Bounded b) => Bounded (Pair a b) | |
(Bounded a, Bounded b, Bounded c) => Bounded (a, b, c) | Since: base-2.1 |
Bounded a => Bounded (Const a b) | Since: base-4.9.0.0 |
(Applicative f, Bounded a) => Bounded (Ap f a) | Since: base-4.12.0.0 |
Coercible a b => Bounded (Coercion a b) | Since: base-4.7.0.0 |
a ~ b => Bounded (a :~: b) | Since: base-4.7.0.0 |
Bounded b => Bounded (Tagged s b) | |
(Bounded a, Bounded b, Bounded c, Bounded d) => Bounded (a, b, c, d) | Since: base-2.1 |
a ~~ b => Bounded (a :~~: b) | Since: base-4.10.0.0 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e) => Bounded (a, b, c, d, e) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f) => Bounded (a, b, c, d, e, f) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g) => Bounded (a, b, c, d, e, f, g) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h) => Bounded (a, b, c, d, e, f, g, h) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i) => Bounded (a, b, c, d, e, f, g, h, i) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j) => Bounded (a, b, c, d, e, f, g, h, i, j) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k) => Bounded (a, b, c, d, e, f, g, h, i, j, k) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n, Bounded o) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | Since: base-2.1 |
Class Enum
defines operations on sequentially ordered types.
The enumFrom
... methods are used in Haskell's translation of
arithmetic sequences.
Instances of Enum
may be derived for any enumeration type (types
whose constructors have no fields). The nullary constructors are
assumed to be numbered left-to-right by fromEnum
from 0
through n-1
.
See Chapter 10 of the Haskell Report for more details.
For any type that is an instance of class Bounded
as well as Enum
,
the following should hold:
- The calls
andsucc
maxBound
should result in a runtime error.pred
minBound
fromEnum
andtoEnum
should give a runtime error if the result value is not representable in the result type. For example,
is an error.toEnum
7 ::Bool
enumFrom
andenumFromThen
should be defined with an implicit bound, thus:
enumFrom x = enumFromTo x maxBound enumFromThen x y = enumFromThenTo x y bound where bound | fromEnum y >= fromEnum x = maxBound | otherwise = minBound
Methods
the successor of a value. For numeric types, succ
adds 1.
the predecessor of a value. For numeric types, pred
subtracts 1.
Convert from an Int
.
Convert to an Int
.
It is implementation-dependent what fromEnum
returns when
applied to a value that is too large to fit in an Int
.
Used in Haskell's translation of [n..]
with [n..] = enumFrom n
,
a possible implementation being enumFrom n = n : enumFrom (succ n)
.
For example:
enumFrom 4 :: [Integer] = [4,5,6,7,...]
enumFrom 6 :: [Int] = [6,7,8,9,...,maxBound :: Int]
enumFromThen :: a -> a -> [a] #
Used in Haskell's translation of [n,n'..]
with [n,n'..] = enumFromThen n n'
, a possible implementation being
enumFromThen n n' = n : n' : worker (f x) (f x n')
,
worker s v = v : worker s (s v)
, x = fromEnum n' - fromEnum n
and
f n y
| n > 0 = f (n - 1) (succ y)
| n < 0 = f (n + 1) (pred y)
| otherwise = y
For example:
enumFromThen 4 6 :: [Integer] = [4,6,8,10...]
enumFromThen 6 2 :: [Int] = [6,2,-2,-6,...,minBound :: Int]
enumFromTo :: a -> a -> [a] #
Used in Haskell's translation of [n..m]
with
[n..m] = enumFromTo n m
, a possible implementation being
enumFromTo n m
| n <= m = n : enumFromTo (succ n) m
| otherwise = []
.
For example:
enumFromTo 6 10 :: [Int] = [6,7,8,9,10]
enumFromTo 42 1 :: [Integer] = []
enumFromThenTo :: a -> a -> a -> [a] #
Used in Haskell's translation of [n,n'..m]
with
[n,n'..m] = enumFromThenTo n n' m
, a possible implementation
being enumFromThenTo n n' m = worker (f x) (c x) n m
,
x = fromEnum n' - fromEnum n
, c x = bool (>=) ((x 0)
f n y
| n > 0 = f (n - 1) (succ y)
| n < 0 = f (n + 1) (pred y)
| otherwise = y
and
worker s c v m
| c v m = v : worker s c (s v) m
| otherwise = []
For example:
enumFromThenTo 4 2 -6 :: [Integer] = [4,2,0,-2,-4,-6]
enumFromThenTo 6 8 2 :: [Int] = []
Instances
The Eq
class defines equality (==
) and inequality (/=
).
All the basic datatypes exported by the Prelude are instances of Eq
,
and Eq
may be derived for any datatype whose constituents are also
instances of Eq
.
The Haskell Report defines no laws for Eq
. However, ==
is customarily
expected to implement an equivalence relationship where two values comparing
equal are indistinguishable by "public" functions, with a "public" function
being one not allowing to see implementation details. For example, for a
type representing non-normalised natural numbers modulo 100, a "public"
function doesn't make the difference between 1 and 201. It is expected to
have the following properties:
Instances
class Fractional a => Floating a where #
Trigonometric and hyperbolic functions and related functions.
The Haskell Report defines no laws for Floating
. However, (
, +
)(
and *
)exp
are customarily expected to define an exponential field and have
the following properties:
exp (a + b)
=exp a * exp b
exp (fromInteger 0)
=fromInteger 1
Minimal complete definition
pi, exp, log, sin, cos, asin, acos, atan, sinh, cosh, asinh, acosh, atanh
Instances
class Num a => Fractional a where #
Fractional numbers, supporting real division.
The Haskell Report defines no laws for Fractional
. However, (
and
+
)(
are customarily expected to define a division ring and have the
following properties:*
)
recip
gives the multiplicative inversex * recip x
=recip x * x
=fromInteger 1
Note that it isn't customarily expected that a type instance of
Fractional
implement a field. However, all instances in base
do.
Minimal complete definition
fromRational, (recip | (/))
Methods
Fractional division.
Reciprocal fraction.
fromRational :: Rational -> a #
Conversion from a Rational
(that is
).
A floating literal stands for an application of Ratio
Integer
fromRational
to a value of type Rational
, so such literals have type
(
.Fractional
a) => a
Instances
Fractional Scientific | WARNING:
|
Defined in Data.Scientific Methods (/) :: Scientific -> Scientific -> Scientific # recip :: Scientific -> Scientific # fromRational :: Rational -> Scientific # | |
Integral a => Fractional (Ratio a) | Since: base-2.0.1 |
RealFloat a => Fractional (Complex a) | Since: base-2.1 |
Fractional a => Fractional (Identity a) | Since: base-4.9.0.0 |
Fractional a => Fractional (Down a) | Since: base-4.14.0.0 |
Fractional a => Fractional (Const a b) | Since: base-4.9.0.0 |
Fractional a => Fractional (Tagged s a) | |
class (Real a, Enum a) => Integral a where #
Integral numbers, supporting integer division.
The Haskell Report defines no laws for Integral
. However, Integral
instances are customarily expected to define a Euclidean domain and have the
following properties for the div
/mod
and quot
/rem
pairs, given
suitable Euclidean functions f
and g
:
x
=y * quot x y + rem x y
withrem x y
=fromInteger 0
org (rem x y)
<g y
x
=y * div x y + mod x y
withmod x y
=fromInteger 0
orf (mod x y)
<f y
An example of a suitable Euclidean function, for Integer
's instance, is
abs
.
Methods
quot :: a -> a -> a infixl 7 #
integer division truncated toward zero
integer remainder, satisfying
(x `quot` y)*y + (x `rem` y) == x
integer division truncated toward negative infinity
conversion to Integer
Instances
Integral Int | Since: base-2.0.1 |
Integral Int8 | Since: base-2.1 |
Integral Int16 | Since: base-2.1 |
Integral Int32 | Since: base-2.1 |
Integral Int64 | Since: base-2.1 |
Integral Integer | Since: base-2.0.1 |
Defined in GHC.Real | |
Integral Natural | Since: base-4.8.0.0 |
Defined in GHC.Real | |
Integral Word | Since: base-2.1 |
Integral Word8 | Since: base-2.1 |
Integral Word16 | Since: base-2.1 |
Integral Word32 | Since: base-2.1 |
Integral Word64 | Since: base-2.1 |
Integral WordPtr | |
Defined in Foreign.Ptr | |
Integral IntPtr | |
Defined in Foreign.Ptr | |
Integral a => Integral (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Identity Methods quot :: Identity a -> Identity a -> Identity a # rem :: Identity a -> Identity a -> Identity a # div :: Identity a -> Identity a -> Identity a # mod :: Identity a -> Identity a -> Identity a # quotRem :: Identity a -> Identity a -> (Identity a, Identity a) # divMod :: Identity a -> Identity a -> (Identity a, Identity a) # | |
Integral a => Integral (Down a) | Since: base-4.14.0.0 |
Integral a => Integral (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods quot :: Const a b -> Const a b -> Const a b # rem :: Const a b -> Const a b -> Const a b # div :: Const a b -> Const a b -> Const a b # mod :: Const a b -> Const a b -> Const a b # quotRem :: Const a b -> Const a b -> (Const a b, Const a b) # divMod :: Const a b -> Const a b -> (Const a b, Const a b) # | |
Integral a => Integral (Tagged s a) | |
Defined in Data.Tagged Methods quot :: Tagged s a -> Tagged s a -> Tagged s a # rem :: Tagged s a -> Tagged s a -> Tagged s a # div :: Tagged s a -> Tagged s a -> Tagged s a # mod :: Tagged s a -> Tagged s a -> Tagged s a # quotRem :: Tagged s a -> Tagged s a -> (Tagged s a, Tagged s a) # divMod :: Tagged s a -> Tagged s a -> (Tagged s a, Tagged s a) # |
class Applicative m => Monad (m :: Type -> Type) where #
The Monad
class defines the basic operations over a monad,
a concept from a branch of mathematics known as category theory.
From the perspective of a Haskell programmer, however, it is best to
think of a monad as an abstract datatype of actions.
Haskell's do
expressions provide a convenient syntax for writing
monadic expressions.
Instances of Monad
should satisfy the following:
- Left identity
return
a>>=
k = k a- Right identity
m
>>=
return
= m- Associativity
m
>>=
(\x -> k x>>=
h) = (m>>=
k)>>=
h
Furthermore, the Monad
and Applicative
operations should relate as follows:
The above laws imply:
and that pure
and (<*>
) satisfy the applicative functor laws.
The instances of Monad
for lists, Maybe
and IO
defined in the Prelude satisfy these laws.
Minimal complete definition
Methods
(>>=) :: m a -> (a -> m b) -> m b infixl 1 #
Sequentially compose two actions, passing any value produced by the first as an argument to the second.
'as
' can be understood as the >>=
bsdo
expression
do a <- as bs a
(>>) :: m a -> m b -> m b infixl 1 #
Sequentially compose two actions, discarding any value produced by the first, like sequencing operators (such as the semicolon) in imperative languages.
'as
' can be understood as the >>
bsdo
expression
do as bs
Inject a value into the monadic type.
Instances
Monad [] | Since: base-2.1 |
Monad Maybe | Since: base-2.1 |
Monad IO | Since: base-2.1 |
Monad Par1 | Since: base-4.9.0.0 |
Monad Q | |
Monad IResult | |
Monad Result | |
Monad Parser | |
Monad Complex | Since: base-4.9.0.0 |
Monad Min | Since: base-4.9.0.0 |
Monad Max | Since: base-4.9.0.0 |
Monad First | Since: base-4.9.0.0 |
Monad Last | Since: base-4.9.0.0 |
Monad Option | Since: base-4.9.0.0 |
Monad Identity | Since: base-4.8.0.0 |
Monad STM | Since: base-4.3.0.0 |
Monad First | Since: base-4.8.0.0 |
Monad Last | Since: base-4.8.0.0 |
Monad Dual | Since: base-4.8.0.0 |
Monad Sum | Since: base-4.8.0.0 |
Monad Product | Since: base-4.8.0.0 |
Monad Down | Since: base-4.11.0.0 |
Monad ReadPrec | Since: base-2.1 |
Monad ReadP | Since: base-2.1 |
Monad NonEmpty | Since: base-4.9.0.0 |
Monad Put | |
Monad Tree | |
Monad Seq | |
Monad DNonEmpty | |
Monad DList | |
Monad P | |
Monad ParseResult | |
Defined in Language.Haskell.Exts.ParseMonad Methods (>>=) :: ParseResult a -> (a -> ParseResult b) -> ParseResult b # (>>) :: ParseResult a -> ParseResult b -> ParseResult b # return :: a -> ParseResult a # | |
Monad SmallArray | |
Defined in Data.Primitive.SmallArray Methods (>>=) :: SmallArray a -> (a -> SmallArray b) -> SmallArray b # (>>) :: SmallArray a -> SmallArray b -> SmallArray b # return :: a -> SmallArray a # | |
Monad Array | |
Monad Vector | |
Monad Id | |
Monad Box | |
Monad P | Since: base-2.1 |
Monad Fay Source # | |
Monad Compile Source # | |
Monad EP | |
Monad (Either e) | Since: base-4.4.0.0 |
Monad (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Monoid a => Monad ((,) a) | Since: base-4.9.0.0 |
Monad (ST s) | Since: base-2.1 |
Monad (Parser i) | |
Monad m => Monad (WrappedMonad m) | Since: base-4.7.0.0 |
Defined in Control.Applicative Methods (>>=) :: WrappedMonad m a -> (a -> WrappedMonad m b) -> WrappedMonad m b # (>>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b # return :: a -> WrappedMonad m a # | |
ArrowApply a => Monad (ArrowMonad a) | Since: base-2.1 |
Defined in Control.Arrow Methods (>>=) :: ArrowMonad a a0 -> (a0 -> ArrowMonad a b) -> ArrowMonad a b # (>>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b # return :: a0 -> ArrowMonad a a0 # | |
Monad (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Monad m => Monad (MaybeT m) | |
Monad (Lex r) | |
Monad m => Monad (ListT m) | |
Semigroup a => Monad (These a) | |
Semigroup a => Monad (These a) | |
Monad (DocM s) | |
Monad (SetM s) | |
Monad f => Monad (Rec1 f) | Since: base-4.9.0.0 |
(Monoid a, Monoid b) => Monad ((,,) a b) | Since: base-4.14.0.0 |
Monad m => Monad (Kleisli m a) | Since: base-4.14.0.0 |
Monad f => Monad (Ap f) | Since: base-4.12.0.0 |
Monad f => Monad (Alt f) | Since: base-4.8.0.0 |
Monad m => Monad (IdentityT m) | |
(Applicative f, Monad f) => Monad (WhenMissing f x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods (>>=) :: WhenMissing f x a -> (a -> WhenMissing f x b) -> WhenMissing f x b # (>>) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x b # return :: a -> WhenMissing f x a # | |
Monad m => Monad (ExceptT e m) | |
(Monad m, Error e) => Monad (ErrorT e m) | |
Monad m => Monad (ReaderT r m) | |
Monad m => Monad (StateT s m) | |
Monad m => Monad (StateT s m) | |
(Monoid w, Monad m) => Monad (WriterT w m) | |
(Monoid w, Monad m) => Monad (WriterT w m) | |
Monad (Tagged s) | |
Monad ((->) r :: Type -> Type) | Since: base-2.1 |
(Monad f, Monad g) => Monad (f :*: g) | Since: base-4.9.0.0 |
(Monoid a, Monoid b, Monoid c) => Monad ((,,,) a b c) | Since: base-4.14.0.0 |
(Monad f, Monad g) => Monad (Product f g) | Since: base-4.9.0.0 |
(Monad f, Applicative f) => Monad (WhenMatched f x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods (>>=) :: WhenMatched f x y a -> (a -> WhenMatched f x y b) -> WhenMatched f x y b # (>>) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y b # return :: a -> WhenMatched f x y a # | |
(Applicative f, Monad f) => Monad (WhenMissing f k x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods (>>=) :: WhenMissing f k x a -> (a -> WhenMissing f k x b) -> WhenMissing f k x b # (>>) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x b # return :: a -> WhenMissing f k x a # | |
Monad (ContT r m) | |
Monad (ParsecT s u m) | |
Monad f => Monad (M1 i c f) | Since: base-4.9.0.0 |
(Monad f, Applicative f) => Monad (WhenMatched f k x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods (>>=) :: WhenMatched f k x y a -> (a -> WhenMatched f k x y b) -> WhenMatched f k x y b # (>>) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y b # return :: a -> WhenMatched f k x y a # | |
(Monoid w, Monad m) => Monad (RWST r w s m) | |
(Monoid w, Monad m) => Monad (RWST r w s m) | |
class Functor (f :: Type -> Type) where #
A type f
is a Functor if it provides a function fmap
which, given any types a
and b
lets you apply any function from (a -> b)
to turn an f a
into an f b
, preserving the
structure of f
. Furthermore f
needs to adhere to the following:
Note, that the second law follows from the free theorem of the type fmap
and
the first law, so you need only check that the former condition holds.
Minimal complete definition
Methods
fmap :: (a -> b) -> f a -> f b #
Using ApplicativeDo
: '
' can be understood as
the fmap
f asdo
expression
do a <- as pure (f a)
with an inferred Functor
constraint.
Instances
Basic numeric class.
The Haskell Report defines no laws for Num
. However, (
and +
)(
are
customarily expected to define a ring and have the following properties:*
)
- Associativity of
(
+
) (x + y) + z
=x + (y + z)
- Commutativity of
(
+
) x + y
=y + x
is the additive identityfromInteger
0x + fromInteger 0
=x
negate
gives the additive inversex + negate x
=fromInteger 0
- Associativity of
(
*
) (x * y) * z
=x * (y * z)
is the multiplicative identityfromInteger
1x * fromInteger 1
=x
andfromInteger 1 * x
=x
- Distributivity of
(
with respect to*
)(
+
) a * (b + c)
=(a * b) + (a * c)
and(b + c) * a
=(b * a) + (c * a)
Note that it isn't customarily expected that a type instance of both Num
and Ord
implement an ordered ring. Indeed, in base
only Integer
and
Rational
do.
Methods
Unary negation.
Absolute value.
Sign of a number.
The functions abs
and signum
should satisfy the law:
abs x * signum x == x
For real numbers, the signum
is either -1
(negative), 0
(zero)
or 1
(positive).
fromInteger :: Integer -> a #
Conversion from an Integer
.
An integer literal represents the application of the function
fromInteger
to the appropriate value of type Integer
,
so such literals have type (
.Num
a) => a
Instances
Num Int | Since: base-2.1 |
Num Int8 | Since: base-2.1 |
Num Int16 | Since: base-2.1 |
Num Int32 | Since: base-2.1 |
Num Int64 | Since: base-2.1 |
Num Integer | Since: base-2.1 |
Num Natural | Note that Since: base-4.8.0.0 |
Num Word | Since: base-2.1 |
Num Word8 | Since: base-2.1 |
Num Word16 | Since: base-2.1 |
Num Word32 | Since: base-2.1 |
Num Word64 | Since: base-2.1 |
Num Scientific | WARNING: |
Defined in Data.Scientific Methods (+) :: Scientific -> Scientific -> Scientific # (-) :: Scientific -> Scientific -> Scientific # (*) :: Scientific -> Scientific -> Scientific # negate :: Scientific -> Scientific # abs :: Scientific -> Scientific # signum :: Scientific -> Scientific # fromInteger :: Integer -> Scientific # | |
Num Pos | |
Num WordPtr | |
Num IntPtr | |
Integral a => Num (Ratio a) | Since: base-2.0.1 |
RealFloat a => Num (Complex a) | Since: base-2.1 |
Num a => Num (Min a) | Since: base-4.9.0.0 |
Num a => Num (Max a) | Since: base-4.9.0.0 |
Num a => Num (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Identity | |
Num a => Num (Sum a) | Since: base-4.7.0.0 |
Num a => Num (Product a) | Since: base-4.7.0.0 |
Defined in Data.Semigroup.Internal | |
Num a => Num (Down a) | Since: base-4.11.0.0 |
Num a => Num (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
(Applicative f, Num a) => Num (Ap f a) | Since: base-4.12.0.0 |
Num (f a) => Num (Alt f a) | Since: base-4.8.0.0 |
Num a => Num (Tagged s a) | |
Defined in Data.Tagged |
The Ord
class is used for totally ordered datatypes.
Instances of Ord
can be derived for any user-defined datatype whose
constituent types are in Ord
. The declared order of the constructors in
the data declaration determines the ordering in derived Ord
instances. The
Ordering
datatype allows a single comparison to determine the precise
ordering of two objects.
The Haskell Report defines no laws for Ord
. However, <=
is customarily
expected to implement a non-strict partial order and have the following
properties:
- Transitivity
- if
x <= y && y <= z
=True
, thenx <= z
=True
- Reflexivity
x <= x
=True
- Antisymmetry
- if
x <= y && y <= x
=True
, thenx == y
=True
Note that the following operator interactions are expected to hold:
x >= y
=y <= x
x < y
=x <= y && x /= y
x > y
=y < x
x < y
=compare x y == LT
x > y
=compare x y == GT
x == y
=compare x y == EQ
min x y == if x <= y then x else y
=True
max x y == if x >= y then x else y
=True
Note that (7.) and (8.) do not require min
and max
to return either of
their arguments. The result is merely required to equal one of the
arguments in terms of (==)
.
Minimal complete definition: either compare
or <=
.
Using compare
can be more efficient for complex types.
Methods
compare :: a -> a -> Ordering #
(<) :: a -> a -> Bool infix 4 #
(<=) :: a -> a -> Bool infix 4 #
(>) :: a -> a -> Bool infix 4 #
Instances
Parsing of String
s, producing values.
Derived instances of Read
make the following assumptions, which
derived instances of Show
obey:
- If the constructor is defined to be an infix operator, then the
derived
Read
instance will parse only infix applications of the constructor (not the prefix form). - Associativity is not used to reduce the occurrence of parentheses, although precedence may be.
- If the constructor is defined using record syntax, the derived
Read
will parse only the record-syntax form, and furthermore, the fields must be given in the same order as the original declaration. - The derived
Read
instance allows arbitrary Haskell whitespace between tokens of the input string. Extra parentheses are also allowed.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Read
in Haskell 2010 is equivalent to
instance (Read a) => Read (Tree a) where readsPrec d r = readParen (d > app_prec) (\r -> [(Leaf m,t) | ("Leaf",s) <- lex r, (m,t) <- readsPrec (app_prec+1) s]) r ++ readParen (d > up_prec) (\r -> [(u:^:v,w) | (u,s) <- readsPrec (up_prec+1) r, (":^:",t) <- lex s, (v,w) <- readsPrec (up_prec+1) t]) r where app_prec = 10 up_prec = 5
Note that right-associativity of :^:
is unused.
The derived instance in GHC is equivalent to
instance (Read a) => Read (Tree a) where readPrec = parens $ (prec app_prec $ do Ident "Leaf" <- lexP m <- step readPrec return (Leaf m)) +++ (prec up_prec $ do u <- step readPrec Symbol ":^:" <- lexP v <- step readPrec return (u :^: v)) where app_prec = 10 up_prec = 5 readListPrec = readListPrecDefault
Why do both readsPrec
and readPrec
exist, and why does GHC opt to
implement readPrec
in derived Read
instances instead of readsPrec
?
The reason is that readsPrec
is based on the ReadS
type, and although
ReadS
is mentioned in the Haskell 2010 Report, it is not a very efficient
parser data structure.
readPrec
, on the other hand, is based on a much more efficient ReadPrec
datatype (a.k.a "new-style parsers"), but its definition relies on the use
of the RankNTypes
language extension. Therefore, readPrec
(and its
cousin, readListPrec
) are marked as GHC-only. Nevertheless, it is
recommended to use readPrec
instead of readsPrec
whenever possible
for the efficiency improvements it brings.
As mentioned above, derived Read
instances in GHC will implement
readPrec
instead of readsPrec
. The default implementations of
readsPrec
(and its cousin, readList
) will simply use readPrec
under
the hood. If you are writing a Read
instance by hand, it is recommended
to write it like so:
instanceRead
T wherereadPrec
= ...readListPrec
=readListPrecDefault
Methods
Arguments
:: Int | the operator precedence of the enclosing
context (a number from |
-> ReadS a |
attempts to parse a value from the front of the string, returning a list of (parsed value, remaining string) pairs. If there is no successful parse, the returned list is empty.
Derived instances of Read
and Show
satisfy the following:
That is, readsPrec
parses the string produced by
showsPrec
, and delivers the value that
showsPrec
started with.
Instances
Read Bool | Since: base-2.1 |
Read Char | Since: base-2.1 |
Read Double | Since: base-2.1 |
Read Float | Since: base-2.1 |
Read Int | Since: base-2.1 |
Read Int8 | Since: base-2.1 |
Read Int16 | Since: base-2.1 |
Read Int32 | Since: base-2.1 |
Read Int64 | Since: base-2.1 |
Read Integer | Since: base-2.1 |
Read Natural | Since: base-4.8.0.0 |
Read Ordering | Since: base-2.1 |
Read Word | Since: base-4.5.0.0 |
Read Word8 | Since: base-2.1 |
Read Word16 | Since: base-2.1 |
Read Word32 | Since: base-2.1 |
Read Word64 | Since: base-2.1 |
Read () | Since: base-2.1 |
Read Version | Since: base-2.1 |
Read ByteString | |
Defined in Data.ByteString.Internal Methods readsPrec :: Int -> ReadS ByteString # readList :: ReadS [ByteString] # readPrec :: ReadPrec ByteString # readListPrec :: ReadPrec [ByteString] # | |
Read ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods readsPrec :: Int -> ReadS ByteString # readList :: ReadS [ByteString] # readPrec :: ReadPrec ByteString # readListPrec :: ReadPrec [ByteString] # | |
Read Scientific | Supports the skipping of parentheses and whitespaces. Example: > read " ( (( -1.0e+3 ) ))" :: Scientific -1000.0 (Note: This |
Defined in Data.Scientific Methods readsPrec :: Int -> ReadS Scientific # readList :: ReadS [Scientific] # readPrec :: ReadPrec Scientific # readListPrec :: ReadPrec [Scientific] # | |
Read Value | |
Read DotNetTime | |
Defined in Data.Aeson.Types.Internal Methods readsPrec :: Int -> ReadS DotNetTime # readList :: ReadS [DotNetTime] # readPrec :: ReadPrec DotNetTime # readListPrec :: ReadPrec [DotNetTime] # | |
Read Void | Reading a Since: base-4.8.0.0 |
Read ExitCode | |
Read BufferMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types Methods readsPrec :: Int -> ReadS BufferMode # readList :: ReadS [BufferMode] # readPrec :: ReadPrec BufferMode # readListPrec :: ReadPrec [BufferMode] # | |
Read Newline | Since: base-4.3.0.0 |
Read NewlineMode | Since: base-4.3.0.0 |
Defined in GHC.IO.Handle.Types Methods readsPrec :: Int -> ReadS NewlineMode # readList :: ReadS [NewlineMode] # readPrec :: ReadPrec NewlineMode # readListPrec :: ReadPrec [NewlineMode] # | |
Read SeekMode | Since: base-4.2.0.0 |
Read All | Since: base-2.1 |
Read Any | Since: base-2.1 |
Read Fixity | Since: base-4.6.0.0 |
Read Associativity | Since: base-4.6.0.0 |
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS Associativity # readList :: ReadS [Associativity] # | |
Read SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS SourceUnpackedness # readList :: ReadS [SourceUnpackedness] # | |
Read SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS SourceStrictness # readList :: ReadS [SourceStrictness] # | |
Read DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS DecidedStrictness # readList :: ReadS [DecidedStrictness] # | |
Read WordPtr | |
Read IntPtr | |
Read IOMode | Since: base-4.2.0.0 |
Read Lexeme | Since: base-2.1 |
Read GeneralCategory | Since: base-2.1 |
Defined in GHC.Read Methods readsPrec :: Int -> ReadS GeneralCategory # readList :: ReadS [GeneralCategory] # | |
Read IntSet | |
Read FileType | |
Read Permissions | |
Defined in System.Directory.Internal.Common Methods readsPrec :: Int -> ReadS Permissions # readList :: ReadS [Permissions] # readPrec :: ReadPrec Permissions # readListPrec :: ReadPrec [Permissions] # | |
Read XdgDirectory | |
Defined in System.Directory.Internal.Common Methods readsPrec :: Int -> ReadS XdgDirectory # readList :: ReadS [XdgDirectory] # | |
Read XdgDirectoryList | |
Defined in System.Directory.Internal.Common Methods readsPrec :: Int -> ReadS XdgDirectoryList # readList :: ReadS [XdgDirectoryList] # | |
Read Language | |
Read Extension | |
Read KnownExtension | |
Defined in Language.Haskell.Exts.Extension Methods readsPrec :: Int -> ReadS KnownExtension # readList :: ReadS [KnownExtension] # | |
Read DatatypeVariant | |
Defined in Language.Haskell.TH.Datatype Methods readsPrec :: Int -> ReadS DatatypeVariant # readList :: ReadS [DatatypeVariant] # | |
Read DayOfWeek | |
Read UnpackedUUID | |
Read UUID | |
Read SerializeContext Source # | |
Defined in Fay.Types.FFI Methods readsPrec :: Int -> ReadS SerializeContext # readList :: ReadS [SerializeContext] # | |
Read a => Read [a] | Since: base-2.1 |
Read a => Read (Maybe a) | Since: base-2.1 |
(Integral a, Read a) => Read (Ratio a) | Since: base-2.1 |
Read p => Read (Par1 p) | Since: base-4.7.0.0 |
Read a => Read (Complex a) | Since: base-2.1 |
Read a => Read (Min a) | Since: base-4.9.0.0 |
Read a => Read (Max a) | Since: base-4.9.0.0 |
Read a => Read (First a) | Since: base-4.9.0.0 |
Read a => Read (Last a) | Since: base-4.9.0.0 |
Read m => Read (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods readsPrec :: Int -> ReadS (WrappedMonoid m) # readList :: ReadS [WrappedMonoid m] # readPrec :: ReadPrec (WrappedMonoid m) # readListPrec :: ReadPrec [WrappedMonoid m] # | |
Read a => Read (Option a) | Since: base-4.9.0.0 |
Read a => Read (ZipList a) | Since: base-4.7.0.0 |
Read a => Read (Identity a) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
Read a => Read (First a) | Since: base-2.1 |
Read a => Read (Last a) | Since: base-2.1 |
Read a => Read (Dual a) | Since: base-2.1 |
Read a => Read (Sum a) | Since: base-2.1 |
Read a => Read (Product a) | Since: base-2.1 |
Read a => Read (Down a) | This instance would be equivalent to the derived instances of the
Since: base-4.7.0.0 |
Read a => Read (NonEmpty a) | Since: base-4.11.0.0 |
Read e => Read (IntMap e) | |
Read vertex => Read (SCC vertex) | Since: containers-0.5.9 |
Read a => Read (Tree a) | |
Read a => Read (Seq a) | |
Read a => Read (ViewL a) | |
Read a => Read (ViewR a) | |
(Read a, Ord a) => Read (Set a) | |
Read1 f => Read (Fix f) | |
(Functor f, Read1 f) => Read (Mu f) | |
(Functor f, Read1 f) => Read (Nu f) | |
Read a => Read (DNonEmpty a) | |
Read a => Read (DList a) | |
Read a => Read (SmallArray a) | |
Defined in Data.Primitive.SmallArray Methods readsPrec :: Int -> ReadS (SmallArray a) # readList :: ReadS [SmallArray a] # readPrec :: ReadPrec (SmallArray a) # readListPrec :: ReadPrec [SmallArray a] # | |
Read a => Read (Array a) | |
Read a => Read (Maybe a) | |
(Eq a, Hashable a, Read a) => Read (HashSet a) | |
(Read a, Storable a) => Read (Vector a) | |
(Read a, Prim a) => Read (Vector a) | |
Read a => Read (Vector a) | |
(Read a, Read b) => Read (Either a b) | Since: base-3.0 |
Read (V1 p) | Since: base-4.9.0.0 |
Read (U1 p) | Since: base-4.9.0.0 |
(Read a, Read b) => Read (a, b) | Since: base-2.1 |
(Eq k, Hashable k, Read k, Read e) => Read (HashMap k e) | |
(Ord k, Read k, Read e) => Read (Map k e) | |
(Ix a, Read a, Read b) => Read (Array a b) | Since: base-2.1 |
(Read a, Read b) => Read (Arg a b) | Since: base-4.9.0.0 |
Read (Proxy t) | Since: base-4.7.0.0 |
(Read1 m, Read a) => Read (MaybeT m a) | |
(Read1 m, Read a) => Read (ListT m a) | |
(Read a, Read b) => Read (Pair a b) | |
(Read a, Read b) => Read (These a b) | |
(Read a, Read b) => Read (Either a b) | |
(Read a, Read b) => Read (These a b) | |
Read (f p) => Read (Rec1 f p) | Since: base-4.7.0.0 |
(Read a, Read b, Read c) => Read (a, b, c) | Since: base-2.1 |
Read a => Read (Const a b) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
Read (f a) => Read (Ap f a) | Since: base-4.12.0.0 |
Read (f a) => Read (Alt f a) | Since: base-4.8.0.0 |
Coercible a b => Read (Coercion a b) | Since: base-4.7.0.0 |
a ~ b => Read (a :~: b) | Since: base-4.7.0.0 |
(Read1 f, Read a) => Read (IdentityT f a) | |
(Read e, Read1 m, Read a) => Read (ExceptT e m a) | |
(Read e, Read1 m, Read a) => Read (ErrorT e m a) | |
(Read w, Read1 m, Read a) => Read (WriterT w m a) | |
(Read w, Read1 m, Read a) => Read (WriterT w m a) | |
Read b => Read (Tagged s b) | |
(Read1 f, Read1 g, Read a) => Read (These1 f g a) | |
Read c => Read (K1 i c p) | Since: base-4.7.0.0 |
(Read (f p), Read (g p)) => Read ((f :+: g) p) | Since: base-4.7.0.0 |
(Read (f p), Read (g p)) => Read ((f :*: g) p) | Since: base-4.7.0.0 |
(Read a, Read b, Read c, Read d) => Read (a, b, c, d) | Since: base-2.1 |
(Read1 f, Read1 g, Read a) => Read (Product f g a) | Since: base-4.9.0.0 |
(Read1 f, Read1 g, Read a) => Read (Sum f g a) | Since: base-4.9.0.0 |
a ~~ b => Read (a :~~: b) | Since: base-4.10.0.0 |
Read (f p) => Read (M1 i c f p) | Since: base-4.7.0.0 |
Read (f (g p)) => Read ((f :.: g) p) | Since: base-4.7.0.0 |
(Read a, Read b, Read c, Read d, Read e) => Read (a, b, c, d, e) | Since: base-2.1 |
(Read1 f, Read1 g, Read a) => Read (Compose f g a) | Since: base-4.9.0.0 |
Read (p b a) => Read (Flip p a b) | |
(Read a, Read b, Read c, Read d, Read e, Read f) => Read (a, b, c, d, e, f) | Since: base-2.1 |
(Read (p a b), Read (q a b)) => Read (Sum p q a b) | |
(Read (f a b), Read (g a b)) => Read (Product f g a b) | |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g) => Read (a, b, c, d, e, f, g) | Since: base-2.1 |
Read (f (p a b)) => Read (Tannen f p a b) | |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h) => Read (a, b, c, d, e, f, g, h) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i) => Read (a, b, c, d, e, f, g, h, i) | Since: base-2.1 |
Read (p (f a) (g b)) => Read (Biff p f g a b) | |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j) => Read (a, b, c, d, e, f, g, h, i, j) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k) => Read (a, b, c, d, e, f, g, h, i, j, k) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l) => Read (a, b, c, d, e, f, g, h, i, j, k, l) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n, Read o) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | Since: base-2.1 |
Defined in GHC.Read |
class (Num a, Ord a) => Real a where #
Methods
toRational :: a -> Rational #
the rational equivalent of its real argument with full precision
Instances
Real Int | Since: base-2.0.1 |
Defined in GHC.Real Methods toRational :: Int -> Rational # | |
Real Int8 | Since: base-2.1 |
Defined in GHC.Int Methods toRational :: Int8 -> Rational # | |
Real Int16 | Since: base-2.1 |
Defined in GHC.Int Methods toRational :: Int16 -> Rational # | |
Real Int32 | Since: base-2.1 |
Defined in GHC.Int Methods toRational :: Int32 -> Rational # | |
Real Int64 | Since: base-2.1 |
Defined in GHC.Int Methods toRational :: Int64 -> Rational # | |
Real Integer | Since: base-2.0.1 |
Defined in GHC.Real Methods toRational :: Integer -> Rational # | |
Real Natural | Since: base-4.8.0.0 |
Defined in GHC.Real Methods toRational :: Natural -> Rational # | |
Real Word | Since: base-2.1 |
Defined in GHC.Real Methods toRational :: Word -> Rational # | |
Real Word8 | Since: base-2.1 |
Defined in GHC.Word Methods toRational :: Word8 -> Rational # | |
Real Word16 | Since: base-2.1 |
Defined in GHC.Word Methods toRational :: Word16 -> Rational # | |
Real Word32 | Since: base-2.1 |
Defined in GHC.Word Methods toRational :: Word32 -> Rational # | |
Real Word64 | Since: base-2.1 |
Defined in GHC.Word Methods toRational :: Word64 -> Rational # | |
Real Scientific | WARNING: Avoid applying |
Defined in Data.Scientific Methods toRational :: Scientific -> Rational # | |
Real WordPtr | |
Defined in Foreign.Ptr Methods toRational :: WordPtr -> Rational # | |
Real IntPtr | |
Defined in Foreign.Ptr Methods toRational :: IntPtr -> Rational # | |
Integral a => Real (Ratio a) | Since: base-2.0.1 |
Defined in GHC.Real Methods toRational :: Ratio a -> Rational # | |
Real a => Real (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Identity Methods toRational :: Identity a -> Rational # | |
Real a => Real (Down a) | Since: base-4.14.0.0 |
Defined in Data.Ord Methods toRational :: Down a -> Rational # | |
Real a => Real (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods toRational :: Const a b -> Rational # | |
Real a => Real (Tagged s a) | |
Defined in Data.Tagged Methods toRational :: Tagged s a -> Rational # |
class (RealFrac a, Floating a) => RealFloat a where #
Efficient, machine-independent access to the components of a floating-point number.
Minimal complete definition
floatRadix, floatDigits, floatRange, decodeFloat, encodeFloat, isNaN, isInfinite, isDenormalized, isNegativeZero, isIEEE
Methods
floatRadix :: a -> Integer #
a constant function, returning the radix of the representation
(often 2
)
floatDigits :: a -> Int #
a constant function, returning the number of digits of
floatRadix
in the significand
floatRange :: a -> (Int, Int) #
a constant function, returning the lowest and highest values the exponent may assume
decodeFloat :: a -> (Integer, Int) #
The function decodeFloat
applied to a real floating-point
number returns the significand expressed as an Integer
and an
appropriately scaled exponent (an Int
). If
yields decodeFloat
x(m,n)
, then x
is equal in value to m*b^^n
, where b
is the floating-point radix, and furthermore, either m
and n
are both zero or else b^(d-1) <=
, where abs
m < b^dd
is
the value of
.
In particular, floatDigits
x
. If the type
contains a negative zero, also decodeFloat
0 = (0,0)
.
The result of decodeFloat
(-0.0) = (0,0)
is unspecified if either of
decodeFloat
x
or isNaN
x
is isInfinite
xTrue
.
encodeFloat :: Integer -> Int -> a #
encodeFloat
performs the inverse of decodeFloat
in the
sense that for finite x
with the exception of -0.0
,
.
uncurry
encodeFloat
(decodeFloat
x) = x
is one of the two closest representable
floating-point numbers to encodeFloat
m nm*b^^n
(or ±Infinity
if overflow
occurs); usually the closer, but if m
contains too many bits,
the result may be rounded in the wrong direction.
exponent
corresponds to the second component of decodeFloat
.
and for finite nonzero exponent
0 = 0x
,
.
If exponent
x = snd (decodeFloat
x) + floatDigits
xx
is a finite floating-point number, it is equal in value to
, where significand
x * b ^^ exponent
xb
is the
floating-point radix.
The behaviour is unspecified on infinite or NaN
values.
significand :: a -> a #
The first component of decodeFloat
, scaled to lie in the open
interval (-1
,1
), either 0.0
or of absolute value >= 1/b
,
where b
is the floating-point radix.
The behaviour is unspecified on infinite or NaN
values.
scaleFloat :: Int -> a -> a #
multiplies a floating-point number by an integer power of the radix
True
if the argument is an IEEE "not-a-number" (NaN) value
isInfinite :: a -> Bool #
True
if the argument is an IEEE infinity or negative infinity
isDenormalized :: a -> Bool #
True
if the argument is too small to be represented in
normalized format
isNegativeZero :: a -> Bool #
True
if the argument is an IEEE negative zero
True
if the argument is an IEEE floating point number
a version of arctangent taking two real floating-point arguments.
For real floating x
and y
,
computes the angle
(from the positive x-axis) of the vector from the origin to the
point atan2
y x(x,y)
.
returns a value in the range [atan2
y x-pi
,
pi
]. It follows the Common Lisp semantics for the origin when
signed zeroes are supported.
, with atan2
y 1y
in a type
that is RealFloat
, should return the same value as
.
A default definition of atan
yatan2
is provided, but implementors
can provide a more accurate implementation.
Instances
class (Real a, Fractional a) => RealFrac a where #
Extracting components of fractions.
Minimal complete definition
Methods
properFraction :: Integral b => a -> (b, a) #
The function properFraction
takes a real fractional number x
and returns a pair (n,f)
such that x = n+f
, and:
n
is an integral number with the same sign asx
; andf
is a fraction with the same type and sign asx
, and with absolute value less than1
.
The default definitions of the ceiling
, floor
, truncate
and round
functions are in terms of properFraction
.
truncate :: Integral b => a -> b #
returns the integer nearest truncate
xx
between zero and x
round :: Integral b => a -> b #
returns the nearest integer to round
xx
;
the even integer if x
is equidistant between two integers
ceiling :: Integral b => a -> b #
returns the least integer not less than ceiling
xx
floor :: Integral b => a -> b #
returns the greatest integer not greater than floor
xx
Instances
RealFrac Scientific | WARNING: the methods of the |
Defined in Data.Scientific Methods properFraction :: Integral b => Scientific -> (b, Scientific) # truncate :: Integral b => Scientific -> b # round :: Integral b => Scientific -> b # ceiling :: Integral b => Scientific -> b # floor :: Integral b => Scientific -> b # | |
Integral a => RealFrac (Ratio a) | Since: base-2.0.1 |
RealFrac a => RealFrac (Identity a) | Since: base-4.9.0.0 |
RealFrac a => RealFrac (Down a) | Since: base-4.14.0.0 |
RealFrac a => RealFrac (Const a b) | Since: base-4.9.0.0 |
RealFrac a => RealFrac (Tagged s a) | |
Conversion of values to readable String
s.
Derived instances of Show
have the following properties, which
are compatible with derived instances of Read
:
- The result of
show
is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used. - If the constructor is defined to be an infix operator, then
showsPrec
will produce infix applications of the constructor. - the representation will be enclosed in parentheses if the
precedence of the top-level constructor in
x
is less thand
(associativity is ignored). Thus, ifd
is0
then the result is never surrounded in parentheses; ifd
is11
it is always surrounded in parentheses, unless it is an atomic expression. - If the constructor is defined using record syntax, then
show
will produce the record-syntax form, with the fields given in the same order as the original declaration.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Show
is equivalent to
instance (Show a) => Show (Tree a) where showsPrec d (Leaf m) = showParen (d > app_prec) $ showString "Leaf " . showsPrec (app_prec+1) m where app_prec = 10 showsPrec d (u :^: v) = showParen (d > up_prec) $ showsPrec (up_prec+1) u . showString " :^: " . showsPrec (up_prec+1) v where up_prec = 5
Note that right-associativity of :^:
is ignored. For example,
produces the stringshow
(Leaf 1 :^: Leaf 2 :^: Leaf 3)"Leaf 1 :^: (Leaf 2 :^: Leaf 3)"
.
Methods
Arguments
:: Int | the operator precedence of the enclosing
context (a number from |
-> a | the value to be converted to a |
-> ShowS |
Convert a value to a readable String
.
showsPrec
should satisfy the law
showsPrec d x r ++ s == showsPrec d x (r ++ s)
Derived instances of Read
and Show
satisfy the following:
That is, readsPrec
parses the string produced by
showsPrec
, and delivers the value that showsPrec
started with.
Instances
class Monad m => MonadFail (m :: Type -> Type) where #
When a value is bound in do
-notation, the pattern on the left
hand side of <-
might not match. In this case, this class
provides a function to recover.
A Monad
without a MonadFail
instance may only be used in conjunction
with pattern that always match, such as newtypes, tuples, data types with
only a single data constructor, and irrefutable patterns (~pat
).
Instances of MonadFail
should satisfy the following law: fail s
should
be a left zero for >>=
,
fail s >>= f = fail s
If your Monad
is also MonadPlus
, a popular definition is
fail _ = mzero
Since: base-4.9.0.0
Instances
class Functor f => Applicative (f :: Type -> Type) where #
A functor with application, providing operations to
A minimal complete definition must include implementations of pure
and of either <*>
or liftA2
. If it defines both, then they must behave
the same as their default definitions:
(<*>
) =liftA2
id
liftA2
f x y = f<$>
x<*>
y
Further, any definition must satisfy the following:
- Identity
pure
id
<*>
v = v- Composition
pure
(.)<*>
u<*>
v<*>
w = u<*>
(v<*>
w)- Homomorphism
pure
f<*>
pure
x =pure
(f x)- Interchange
u
<*>
pure
y =pure
($
y)<*>
u
The other methods have the following default definitions, which may be overridden with equivalent specialized implementations:
As a consequence of these laws, the Functor
instance for f
will satisfy
It may be useful to note that supposing
forall x y. p (q x y) = f x . g y
it follows from the above that
liftA2
p (liftA2
q u v) =liftA2
f u .liftA2
g v
If f
is also a Monad
, it should satisfy
(which implies that pure
and <*>
satisfy the applicative functor laws).
Methods
Lift a value.
(<*>) :: f (a -> b) -> f a -> f b infixl 4 #
Sequential application.
A few functors support an implementation of <*>
that is more
efficient than the default one.
Using ApplicativeDo
: 'fs
' can be understood as
the <*>
asdo
expression
do f <- fs a <- as pure (f a)
(*>) :: f a -> f b -> f b infixl 4 #
Sequence actions, discarding the value of the first argument.
'as
' can be understood as the *>
bsdo
expression
do as bs
This is a tad complicated for our ApplicativeDo
extension
which will give it a Monad
constraint. For an Applicative
constraint we write it of the form
do _ <- as b <- bs pure b
(<*) :: f a -> f b -> f a infixl 4 #
Sequence actions, discarding the value of the second argument.
Using ApplicativeDo
: 'as
' can be understood as
the <*
bsdo
expression
do a <- as bs pure a
Instances
Applicative [] | Since: base-2.1 |
Applicative Maybe | Since: base-2.1 |
Applicative IO | Since: base-2.1 |
Applicative Par1 | Since: base-4.9.0.0 |
Applicative Q | |
Applicative IResult | |
Applicative Result | |
Applicative Parser | |
Applicative Complex | Since: base-4.9.0.0 |
Applicative Min | Since: base-4.9.0.0 |
Applicative Max | Since: base-4.9.0.0 |
Applicative First | Since: base-4.9.0.0 |
Applicative Last | Since: base-4.9.0.0 |
Applicative Option | Since: base-4.9.0.0 |
Applicative ZipList | f <$> ZipList xs1 <*> ... <*> ZipList xsN = ZipList (zipWithN f xs1 ... xsN) where (\a b c -> stimes c [a, b]) <$> ZipList "abcd" <*> ZipList "567" <*> ZipList [1..] = ZipList (zipWith3 (\a b c -> stimes c [a, b]) "abcd" "567" [1..]) = ZipList {getZipList = ["a5","b6b6","c7c7c7"]} Since: base-2.1 |
Applicative Identity | Since: base-4.8.0.0 |
Applicative STM | Since: base-4.8.0.0 |
Applicative First | Since: base-4.8.0.0 |
Applicative Last | Since: base-4.8.0.0 |
Applicative Dual | Since: base-4.8.0.0 |
Applicative Sum | Since: base-4.8.0.0 |
Applicative Product | Since: base-4.8.0.0 |
Applicative Down | Since: base-4.11.0.0 |
Applicative ReadPrec | Since: base-4.6.0.0 |
Applicative ReadP | Since: base-4.6.0.0 |
Applicative NonEmpty | Since: base-4.9.0.0 |
Applicative Put | |
Applicative Tree | |
Applicative Seq | Since: containers-0.5.4 |
Applicative DNonEmpty | |
Defined in Data.DList.DNonEmpty.Internal | |
Applicative DList | |
Applicative P | |
Applicative ParseResult | |
Defined in Language.Haskell.Exts.ParseMonad Methods pure :: a -> ParseResult a # (<*>) :: ParseResult (a -> b) -> ParseResult a -> ParseResult b # liftA2 :: (a -> b -> c) -> ParseResult a -> ParseResult b -> ParseResult c # (*>) :: ParseResult a -> ParseResult b -> ParseResult b # (<*) :: ParseResult a -> ParseResult b -> ParseResult a # | |
Applicative SmallArray | |
Defined in Data.Primitive.SmallArray Methods pure :: a -> SmallArray a # (<*>) :: SmallArray (a -> b) -> SmallArray a -> SmallArray b # liftA2 :: (a -> b -> c) -> SmallArray a -> SmallArray b -> SmallArray c # (*>) :: SmallArray a -> SmallArray b -> SmallArray b # (<*) :: SmallArray a -> SmallArray b -> SmallArray a # | |
Applicative Array | |
Applicative Vector | |
Applicative Id | |
Applicative Box | |
Applicative P | Since: base-4.5.0.0 |
Applicative Fay Source # | |
Applicative Compile Source # | |
Applicative EP | |
Applicative (Either e) | Since: base-3.0 |
Applicative (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Monoid a => Applicative ((,) a) | For tuples, the ("hello ", (+15)) <*> ("world!", 2002) ("hello world!",2017) Since: base-2.1 |
Applicative (ST s) | Since: base-4.4.0.0 |
Applicative (Parser i) | |
Monad m => Applicative (WrappedMonad m) | Since: base-2.1 |
Defined in Control.Applicative Methods pure :: a -> WrappedMonad m a # (<*>) :: WrappedMonad m (a -> b) -> WrappedMonad m a -> WrappedMonad m b # liftA2 :: (a -> b -> c) -> WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m c # (*>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b # (<*) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m a # | |
Arrow a => Applicative (ArrowMonad a) | Since: base-4.6.0.0 |
Defined in Control.Arrow Methods pure :: a0 -> ArrowMonad a a0 # (<*>) :: ArrowMonad a (a0 -> b) -> ArrowMonad a a0 -> ArrowMonad a b # liftA2 :: (a0 -> b -> c) -> ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a c # (*>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b # (<*) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a a0 # | |
Applicative (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
(Functor m, Monad m) => Applicative (MaybeT m) | |
Applicative (Lex r) | |
Applicative m => Applicative (ListT m) | |
Semigroup a => Applicative (These a) | |
Semigroup a => Applicative (These a) | |
Applicative (DocM s) | |
Applicative (SetM s) | |
Applicative f => Applicative (Rec1 f) | Since: base-4.9.0.0 |
(Monoid a, Monoid b) => Applicative ((,,) a b) | Since: base-4.14.0.0 |
Arrow a => Applicative (WrappedArrow a b) | Since: base-2.1 |
Defined in Control.Applicative Methods pure :: a0 -> WrappedArrow a b a0 # (<*>) :: WrappedArrow a b (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 # liftA2 :: (a0 -> b0 -> c) -> WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b c # (*>) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b b0 # (<*) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 # | |
Applicative m => Applicative (Kleisli m a) | Since: base-4.14.0.0 |
Defined in Control.Arrow | |
Monoid m => Applicative (Const m :: Type -> Type) | Since: base-2.0.1 |
Applicative f => Applicative (Ap f) | Since: base-4.12.0.0 |
Applicative f => Applicative (Alt f) | Since: base-4.8.0.0 |
Applicative m => Applicative (IdentityT m) | |
Defined in Control.Monad.Trans.Identity | |
(Applicative f, Monad f) => Applicative (WhenMissing f x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods pure :: a -> WhenMissing f x a # (<*>) :: WhenMissing f x (a -> b) -> WhenMissing f x a -> WhenMissing f x b # liftA2 :: (a -> b -> c) -> WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x c # (*>) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x b # (<*) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x a # | |
(Functor m, Monad m) => Applicative (ExceptT e m) | |
Defined in Control.Monad.Trans.Except | |
(Functor m, Monad m) => Applicative (ErrorT e m) | |
Defined in Control.Monad.Trans.Error | |
Applicative m => Applicative (ReaderT r m) | |
Defined in Control.Monad.Trans.Reader | |
(Functor m, Monad m) => Applicative (StateT s m) | |
Defined in Control.Monad.Trans.State.Lazy | |
(Functor m, Monad m) => Applicative (StateT s m) | |
Defined in Control.Monad.Trans.State.Strict | |
(Monoid w, Applicative m) => Applicative (WriterT w m) | |
Defined in Control.Monad.Trans.Writer.Lazy | |
(Monoid w, Applicative m) => Applicative (WriterT w m) | |
Defined in Control.Monad.Trans.Writer.Strict | |
Applicative (Tagged s) | |
Applicative ((->) r :: Type -> Type) | Since: base-2.1 |
Monoid c => Applicative (K1 i c :: Type -> Type) | Since: base-4.12.0.0 |
(Applicative f, Applicative g) => Applicative (f :*: g) | Since: base-4.9.0.0 |
(Monoid a, Monoid b, Monoid c) => Applicative ((,,,) a b c) | Since: base-4.14.0.0 |
Defined in GHC.Base | |
(Applicative f, Applicative g) => Applicative (Product f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product | |
(Monad f, Applicative f) => Applicative (WhenMatched f x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods pure :: a -> WhenMatched f x y a # (<*>) :: WhenMatched f x y (a -> b) -> WhenMatched f x y a -> WhenMatched f x y b # liftA2 :: (a -> b -> c) -> WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y c # (*>) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y b # (<*) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y a # | |
(Applicative f, Monad f) => Applicative (WhenMissing f k x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods pure :: a -> WhenMissing f k x a # (<*>) :: WhenMissing f k x (a -> b) -> WhenMissing f k x a -> WhenMissing f k x b # liftA2 :: (a -> b -> c) -> WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x c # (*>) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x b # (<*) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x a # | |
Applicative (ContT r m) | |
Defined in Control.Monad.Trans.Cont | |
Applicative (ParsecT s u m) | |
Defined in Text.Parsec.Prim Methods pure :: a -> ParsecT s u m a # (<*>) :: ParsecT s u m (a -> b) -> ParsecT s u m a -> ParsecT s u m b # liftA2 :: (a -> b -> c) -> ParsecT s u m a -> ParsecT s u m b -> ParsecT s u m c # (*>) :: ParsecT s u m a -> ParsecT s u m b -> ParsecT s u m b # (<*) :: ParsecT s u m a -> ParsecT s u m b -> ParsecT s u m a # | |
Applicative f => Applicative (M1 i c f) | Since: base-4.9.0.0 |
(Applicative f, Applicative g) => Applicative (f :.: g) | Since: base-4.9.0.0 |
(Applicative f, Applicative g) => Applicative (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose | |
(Monad f, Applicative f) => Applicative (WhenMatched f k x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods pure :: a -> WhenMatched f k x y a # (<*>) :: WhenMatched f k x y (a -> b) -> WhenMatched f k x y a -> WhenMatched f k x y b # liftA2 :: (a -> b -> c) -> WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y c # (*>) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y b # (<*) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y a # | |
(Monoid w, Functor m, Monad m) => Applicative (RWST r w s m) | |
Defined in Control.Monad.Trans.RWS.Lazy | |
(Monoid w, Functor m, Monad m) => Applicative (RWST r w s m) | |
Defined in Control.Monad.Trans.RWS.Strict |
class Foldable (t :: Type -> Type) where #
Data structures that can be folded.
For example, given a data type
data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)
a suitable instance would be
instance Foldable Tree where foldMap f Empty = mempty foldMap f (Leaf x) = f x foldMap f (Node l k r) = foldMap f l `mappend` f k `mappend` foldMap f r
This is suitable even for abstract types, as the monoid is assumed
to satisfy the monoid laws. Alternatively, one could define foldr
:
instance Foldable Tree where foldr f z Empty = z foldr f z (Leaf x) = f x z foldr f z (Node l k r) = foldr f (f k (foldr f z r)) l
Foldable
instances are expected to satisfy the following laws:
foldr f z t = appEndo (foldMap (Endo . f) t ) z
foldl f z t = appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z
fold = foldMap id
length = getSum . foldMap (Sum . const 1)
sum
, product
, maximum
, and minimum
should all be essentially
equivalent to foldMap
forms, such as
sum = getSum . foldMap Sum
but may be less defined.
If the type is also a Functor
instance, it should satisfy
foldMap f = fold . fmap f
which implies that
foldMap f . fmap g = foldMap (f . g)
Methods
foldMap :: Monoid m => (a -> m) -> t a -> m #
Map each element of the structure to a monoid, and combine the results.
foldr :: (a -> b -> b) -> b -> t a -> b #
Right-associative fold of a structure.
In the case of lists, foldr
, when applied to a binary operator, a
starting value (typically the right-identity of the operator), and a
list, reduces the list using the binary operator, from right to left:
foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...)
Note that, since the head of the resulting expression is produced by
an application of the operator to the first element of the list,
foldr
can produce a terminating expression from an infinite list.
For a general Foldable
structure this should be semantically identical
to,
foldr f z =foldr
f z .toList
foldl :: (b -> a -> b) -> b -> t a -> b #
Left-associative fold of a structure.
In the case of lists, foldl
, when applied to a binary
operator, a starting value (typically the left-identity of the operator),
and a list, reduces the list using the binary operator, from left to
right:
foldl f z [x1, x2, ..., xn] == (...((z `f` x1) `f` x2) `f`...) `f` xn
Note that to produce the outermost application of the operator the
entire input list must be traversed. This means that foldl'
will
diverge if given an infinite list.
Also note that if you want an efficient left-fold, you probably want to
use foldl'
instead of foldl
. The reason for this is that latter does
not force the "inner" results (e.g. z `f` x1
in the above example)
before applying them to the operator (e.g. to (`f` x2)
). This results
in a thunk chain \(\mathcal{O}(n)\) elements long, which then must be
evaluated from the outside-in.
For a general Foldable
structure this should be semantically identical
to,
foldl f z =foldl
f z .toList
foldr1 :: (a -> a -> a) -> t a -> a #
A variant of foldr
that has no base case,
and thus may only be applied to non-empty structures.
foldr1
f =foldr1
f .toList
foldl1 :: (a -> a -> a) -> t a -> a #
A variant of foldl
that has no base case,
and thus may only be applied to non-empty structures.
foldl1
f =foldl1
f .toList
Test whether the structure is empty. The default implementation is optimized for structures that are similar to cons-lists, because there is no general way to do better.
Since: base-4.8.0.0
Returns the size/length of a finite structure as an Int
. The
default implementation is optimized for structures that are similar to
cons-lists, because there is no general way to do better.
Since: base-4.8.0.0
elem :: Eq a => a -> t a -> Bool infix 4 #
Does the element occur in the structure?
Since: base-4.8.0.0
maximum :: Ord a => t a -> a #
The largest element of a non-empty structure.
Since: base-4.8.0.0
minimum :: Ord a => t a -> a #
The least element of a non-empty structure.
Since: base-4.8.0.0
The sum
function computes the sum of the numbers of a structure.
Since: base-4.8.0.0
product :: Num a => t a -> a #
The product
function computes the product of the numbers of a
structure.
Since: base-4.8.0.0
Instances
Foldable [] | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => [m] -> m # foldMap :: Monoid m => (a -> m) -> [a] -> m # foldMap' :: Monoid m => (a -> m) -> [a] -> m # foldr :: (a -> b -> b) -> b -> [a] -> b # foldr' :: (a -> b -> b) -> b -> [a] -> b # foldl :: (b -> a -> b) -> b -> [a] -> b # foldl' :: (b -> a -> b) -> b -> [a] -> b # foldr1 :: (a -> a -> a) -> [a] -> a # foldl1 :: (a -> a -> a) -> [a] -> a # elem :: Eq a => a -> [a] -> Bool # maximum :: Ord a => [a] -> a # | |
Foldable Maybe | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldMap' :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |
Foldable Par1 | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Par1 m -> m # foldMap :: Monoid m => (a -> m) -> Par1 a -> m # foldMap' :: Monoid m => (a -> m) -> Par1 a -> m # foldr :: (a -> b -> b) -> b -> Par1 a -> b # foldr' :: (a -> b -> b) -> b -> Par1 a -> b # foldl :: (b -> a -> b) -> b -> Par1 a -> b # foldl' :: (b -> a -> b) -> b -> Par1 a -> b # foldr1 :: (a -> a -> a) -> Par1 a -> a # foldl1 :: (a -> a -> a) -> Par1 a -> a # elem :: Eq a => a -> Par1 a -> Bool # maximum :: Ord a => Par1 a -> a # | |
Foldable IResult | |
Defined in Data.Aeson.Types.Internal Methods fold :: Monoid m => IResult m -> m # foldMap :: Monoid m => (a -> m) -> IResult a -> m # foldMap' :: Monoid m => (a -> m) -> IResult a -> m # foldr :: (a -> b -> b) -> b -> IResult a -> b # foldr' :: (a -> b -> b) -> b -> IResult a -> b # foldl :: (b -> a -> b) -> b -> IResult a -> b # foldl' :: (b -> a -> b) -> b -> IResult a -> b # foldr1 :: (a -> a -> a) -> IResult a -> a # foldl1 :: (a -> a -> a) -> IResult a -> a # elem :: Eq a => a -> IResult a -> Bool # maximum :: Ord a => IResult a -> a # minimum :: Ord a => IResult a -> a # | |
Foldable Result | |
Defined in Data.Aeson.Types.Internal Methods fold :: Monoid m => Result m -> m # foldMap :: Monoid m => (a -> m) -> Result a -> m # foldMap' :: Monoid m => (a -> m) -> Result a -> m # foldr :: (a -> b -> b) -> b -> Result a -> b # foldr' :: (a -> b -> b) -> b -> Result a -> b # foldl :: (b -> a -> b) -> b -> Result a -> b # foldl' :: (b -> a -> b) -> b -> Result a -> b # foldr1 :: (a -> a -> a) -> Result a -> a # foldl1 :: (a -> a -> a) -> Result a -> a # elem :: Eq a => a -> Result a -> Bool # maximum :: Ord a => Result a -> a # minimum :: Ord a => Result a -> a # | |
Foldable Complex | Since: base-4.9.0.0 |
Defined in Data.Complex Methods fold :: Monoid m => Complex m -> m # foldMap :: Monoid m => (a -> m) -> Complex a -> m # foldMap' :: Monoid m => (a -> m) -> Complex a -> m # foldr :: (a -> b -> b) -> b -> Complex a -> b # foldr' :: (a -> b -> b) -> b -> Complex a -> b # foldl :: (b -> a -> b) -> b -> Complex a -> b # foldl' :: (b -> a -> b) -> b -> Complex a -> b # foldr1 :: (a -> a -> a) -> Complex a -> a # foldl1 :: (a -> a -> a) -> Complex a -> a # elem :: Eq a => a -> Complex a -> Bool # maximum :: Ord a => Complex a -> a # minimum :: Ord a => Complex a -> a # | |
Foldable Min | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Min m -> m # foldMap :: Monoid m => (a -> m) -> Min a -> m # foldMap' :: Monoid m => (a -> m) -> Min a -> m # foldr :: (a -> b -> b) -> b -> Min a -> b # foldr' :: (a -> b -> b) -> b -> Min a -> b # foldl :: (b -> a -> b) -> b -> Min a -> b # foldl' :: (b -> a -> b) -> b -> Min a -> b # foldr1 :: (a -> a -> a) -> Min a -> a # foldl1 :: (a -> a -> a) -> Min a -> a # elem :: Eq a => a -> Min a -> Bool # maximum :: Ord a => Min a -> a # | |
Foldable Max | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Max m -> m # foldMap :: Monoid m => (a -> m) -> Max a -> m # foldMap' :: Monoid m => (a -> m) -> Max a -> m # foldr :: (a -> b -> b) -> b -> Max a -> b # foldr' :: (a -> b -> b) -> b -> Max a -> b # foldl :: (b -> a -> b) -> b -> Max a -> b # foldl' :: (b -> a -> b) -> b -> Max a -> b # foldr1 :: (a -> a -> a) -> Max a -> a # foldl1 :: (a -> a -> a) -> Max a -> a # elem :: Eq a => a -> Max a -> Bool # maximum :: Ord a => Max a -> a # | |
Foldable First | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldMap' :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |
Foldable Last | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldMap' :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
Foldable Option | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Option m -> m # foldMap :: Monoid m => (a -> m) -> Option a -> m # foldMap' :: Monoid m => (a -> m) -> Option a -> m # foldr :: (a -> b -> b) -> b -> Option a -> b # foldr' :: (a -> b -> b) -> b -> Option a -> b # foldl :: (b -> a -> b) -> b -> Option a -> b # foldl' :: (b -> a -> b) -> b -> Option a -> b # foldr1 :: (a -> a -> a) -> Option a -> a # foldl1 :: (a -> a -> a) -> Option a -> a # elem :: Eq a => a -> Option a -> Bool # maximum :: Ord a => Option a -> a # minimum :: Ord a => Option a -> a # | |
Foldable ZipList | Since: base-4.9.0.0 |
Defined in Control.Applicative Methods fold :: Monoid m => ZipList m -> m # foldMap :: Monoid m => (a -> m) -> ZipList a -> m # foldMap' :: Monoid m => (a -> m) -> ZipList a -> m # foldr :: (a -> b -> b) -> b -> ZipList a -> b # foldr' :: (a -> b -> b) -> b -> ZipList a -> b # foldl :: (b -> a -> b) -> b -> ZipList a -> b # foldl' :: (b -> a -> b) -> b -> ZipList a -> b # foldr1 :: (a -> a -> a) -> ZipList a -> a # foldl1 :: (a -> a -> a) -> ZipList a -> a # elem :: Eq a => a -> ZipList a -> Bool # maximum :: Ord a => ZipList a -> a # minimum :: Ord a => ZipList a -> a # | |
Foldable Identity | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity Methods fold :: Monoid m => Identity m -> m # foldMap :: Monoid m => (a -> m) -> Identity a -> m # foldMap' :: Monoid m => (a -> m) -> Identity a -> m # foldr :: (a -> b -> b) -> b -> Identity a -> b # foldr' :: (a -> b -> b) -> b -> Identity a -> b # foldl :: (b -> a -> b) -> b -> Identity a -> b # foldl' :: (b -> a -> b) -> b -> Identity a -> b # foldr1 :: (a -> a -> a) -> Identity a -> a # foldl1 :: (a -> a -> a) -> Identity a -> a # elem :: Eq a => a -> Identity a -> Bool # maximum :: Ord a => Identity a -> a # minimum :: Ord a => Identity a -> a # | |
Foldable First | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldMap' :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |
Foldable Last | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldMap' :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
Foldable Dual | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Dual m -> m # foldMap :: Monoid m => (a -> m) -> Dual a -> m # foldMap' :: Monoid m => (a -> m) -> Dual a -> m # foldr :: (a -> b -> b) -> b -> Dual a -> b # foldr' :: (a -> b -> b) -> b -> Dual a -> b # foldl :: (b -> a -> b) -> b -> Dual a -> b # foldl' :: (b -> a -> b) -> b -> Dual a -> b # foldr1 :: (a -> a -> a) -> Dual a -> a # foldl1 :: (a -> a -> a) -> Dual a -> a # elem :: Eq a => a -> Dual a -> Bool # maximum :: Ord a => Dual a -> a # | |
Foldable Sum | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Sum m -> m # foldMap :: Monoid m => (a -> m) -> Sum a -> m # foldMap' :: Monoid m => (a -> m) -> Sum a -> m # foldr :: (a -> b -> b) -> b -> Sum a -> b # foldr' :: (a -> b -> b) -> b -> Sum a -> b # foldl :: (b -> a -> b) -> b -> Sum a -> b # foldl' :: (b -> a -> b) -> b -> Sum a -> b # foldr1 :: (a -> a -> a) -> Sum a -> a # foldl1 :: (a -> a -> a) -> Sum a -> a # elem :: Eq a => a -> Sum a -> Bool # maximum :: Ord a => Sum a -> a # | |
Foldable Product | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Product m -> m # foldMap :: Monoid m => (a -> m) -> Product a -> m # foldMap' :: Monoid m => (a -> m) -> Product a -> m # foldr :: (a -> b -> b) -> b -> Product a -> b # foldr' :: (a -> b -> b) -> b -> Product a -> b # foldl :: (b -> a -> b) -> b -> Product a -> b # foldl' :: (b -> a -> b) -> b -> Product a -> b # foldr1 :: (a -> a -> a) -> Product a -> a # foldl1 :: (a -> a -> a) -> Product a -> a # elem :: Eq a => a -> Product a -> Bool # maximum :: Ord a => Product a -> a # minimum :: Ord a => Product a -> a # | |
Foldable Down | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Down m -> m # foldMap :: Monoid m => (a -> m) -> Down a -> m # foldMap' :: Monoid m => (a -> m) -> Down a -> m # foldr :: (a -> b -> b) -> b -> Down a -> b # foldr' :: (a -> b -> b) -> b -> Down a -> b # foldl :: (b -> a -> b) -> b -> Down a -> b # foldl' :: (b -> a -> b) -> b -> Down a -> b # foldr1 :: (a -> a -> a) -> Down a -> a # foldl1 :: (a -> a -> a) -> Down a -> a # elem :: Eq a => a -> Down a -> Bool # maximum :: Ord a => Down a -> a # | |
Foldable NonEmpty | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => NonEmpty m -> m # foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m # foldMap' :: Monoid m => (a -> m) -> NonEmpty a -> m # foldr :: (a -> b -> b) -> b -> NonEmpty a -> b # foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b # foldl :: (b -> a -> b) -> b -> NonEmpty a -> b # foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b # foldr1 :: (a -> a -> a) -> NonEmpty a -> a # foldl1 :: (a -> a -> a) -> NonEmpty a -> a # elem :: Eq a => a -> NonEmpty a -> Bool # maximum :: Ord a => NonEmpty a -> a # minimum :: Ord a => NonEmpty a -> a # | |
Foldable IntMap | Folds in order of increasing key. |
Defined in Data.IntMap.Internal Methods fold :: Monoid m => IntMap m -> m # foldMap :: Monoid m => (a -> m) -> IntMap a -> m # foldMap' :: Monoid m => (a -> m) -> IntMap a -> m # foldr :: (a -> b -> b) -> b -> IntMap a -> b # foldr' :: (a -> b -> b) -> b -> IntMap a -> b # foldl :: (b -> a -> b) -> b -> IntMap a -> b # foldl' :: (b -> a -> b) -> b -> IntMap a -> b # foldr1 :: (a -> a -> a) -> IntMap a -> a # foldl1 :: (a -> a -> a) -> IntMap a -> a # elem :: Eq a => a -> IntMap a -> Bool # maximum :: Ord a => IntMap a -> a # minimum :: Ord a => IntMap a -> a # | |
Foldable SCC | Since: containers-0.5.9 |
Defined in Data.Graph Methods fold :: Monoid m => SCC m -> m # foldMap :: Monoid m => (a -> m) -> SCC a -> m # foldMap' :: Monoid m => (a -> m) -> SCC a -> m # foldr :: (a -> b -> b) -> b -> SCC a -> b # foldr' :: (a -> b -> b) -> b -> SCC a -> b # foldl :: (b -> a -> b) -> b -> SCC a -> b # foldl' :: (b -> a -> b) -> b -> SCC a -> b # foldr1 :: (a -> a -> a) -> SCC a -> a # foldl1 :: (a -> a -> a) -> SCC a -> a # elem :: Eq a => a -> SCC a -> Bool # maximum :: Ord a => SCC a -> a # | |
Foldable Tree | |
Defined in Data.Tree Methods fold :: Monoid m => Tree m -> m # foldMap :: Monoid m => (a -> m) -> Tree a -> m # foldMap' :: Monoid m => (a -> m) -> Tree a -> m # foldr :: (a -> b -> b) -> b -> Tree a -> b # foldr' :: (a -> b -> b) -> b -> Tree a -> b # foldl :: (b -> a -> b) -> b -> Tree a -> b # foldl' :: (b -> a -> b) -> b -> Tree a -> b # foldr1 :: (a -> a -> a) -> Tree a -> a # foldl1 :: (a -> a -> a) -> Tree a -> a # elem :: Eq a => a -> Tree a -> Bool # maximum :: Ord a => Tree a -> a # | |
Foldable Seq | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Seq m -> m # foldMap :: Monoid m => (a -> m) -> Seq a -> m # foldMap' :: Monoid m => (a -> m) -> Seq a -> m # foldr :: (a -> b -> b) -> b -> Seq a -> b # foldr' :: (a -> b -> b) -> b -> Seq a -> b # foldl :: (b -> a -> b) -> b -> Seq a -> b # foldl' :: (b -> a -> b) -> b -> Seq a -> b # foldr1 :: (a -> a -> a) -> Seq a -> a # foldl1 :: (a -> a -> a) -> Seq a -> a # elem :: Eq a => a -> Seq a -> Bool # maximum :: Ord a => Seq a -> a # | |
Foldable FingerTree | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => FingerTree m -> m # foldMap :: Monoid m => (a -> m) -> FingerTree a -> m # foldMap' :: Monoid m => (a -> m) -> FingerTree a -> m # foldr :: (a -> b -> b) -> b -> FingerTree a -> b # foldr' :: (a -> b -> b) -> b -> FingerTree a -> b # foldl :: (b -> a -> b) -> b -> FingerTree a -> b # foldl' :: (b -> a -> b) -> b -> FingerTree a -> b # foldr1 :: (a -> a -> a) -> FingerTree a -> a # foldl1 :: (a -> a -> a) -> FingerTree a -> a # toList :: FingerTree a -> [a] # null :: FingerTree a -> Bool # length :: FingerTree a -> Int # elem :: Eq a => a -> FingerTree a -> Bool # maximum :: Ord a => FingerTree a -> a # minimum :: Ord a => FingerTree a -> a # sum :: Num a => FingerTree a -> a # product :: Num a => FingerTree a -> a # | |
Foldable Digit | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Digit m -> m # foldMap :: Monoid m => (a -> m) -> Digit a -> m # foldMap' :: Monoid m => (a -> m) -> Digit a -> m # foldr :: (a -> b -> b) -> b -> Digit a -> b # foldr' :: (a -> b -> b) -> b -> Digit a -> b # foldl :: (b -> a -> b) -> b -> Digit a -> b # foldl' :: (b -> a -> b) -> b -> Digit a -> b # foldr1 :: (a -> a -> a) -> Digit a -> a # foldl1 :: (a -> a -> a) -> Digit a -> a # elem :: Eq a => a -> Digit a -> Bool # maximum :: Ord a => Digit a -> a # minimum :: Ord a => Digit a -> a # | |
Foldable Node | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Node m -> m # foldMap :: Monoid m => (a -> m) -> Node a -> m # foldMap' :: Monoid m => (a -> m) -> Node a -> m # foldr :: (a -> b -> b) -> b -> Node a -> b # foldr' :: (a -> b -> b) -> b -> Node a -> b # foldl :: (b -> a -> b) -> b -> Node a -> b # foldl' :: (b -> a -> b) -> b -> Node a -> b # foldr1 :: (a -> a -> a) -> Node a -> a # foldl1 :: (a -> a -> a) -> Node a -> a # elem :: Eq a => a -> Node a -> Bool # maximum :: Ord a => Node a -> a # | |
Foldable Elem | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Elem m -> m # foldMap :: Monoid m => (a -> m) -> Elem a -> m # foldMap' :: Monoid m => (a -> m) -> Elem a -> m # foldr :: (a -> b -> b) -> b -> Elem a -> b # foldr' :: (a -> b -> b) -> b -> Elem a -> b # foldl :: (b -> a -> b) -> b -> Elem a -> b # foldl' :: (b -> a -> b) -> b -> Elem a -> b # foldr1 :: (a -> a -> a) -> Elem a -> a # foldl1 :: (a -> a -> a) -> Elem a -> a # elem :: Eq a => a -> Elem a -> Bool # maximum :: Ord a => Elem a -> a # | |
Foldable ViewL | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => ViewL m -> m # foldMap :: Monoid m => (a -> m) -> ViewL a -> m # foldMap' :: Monoid m => (a -> m) -> ViewL a -> m # foldr :: (a -> b -> b) -> b -> ViewL a -> b # foldr' :: (a -> b -> b) -> b -> ViewL a -> b # foldl :: (b -> a -> b) -> b -> ViewL a -> b # foldl' :: (b -> a -> b) -> b -> ViewL a -> b # foldr1 :: (a -> a -> a) -> ViewL a -> a # foldl1 :: (a -> a -> a) -> ViewL a -> a # elem :: Eq a => a -> ViewL a -> Bool # maximum :: Ord a => ViewL a -> a # minimum :: Ord a => ViewL a -> a # | |
Foldable ViewR | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => ViewR m -> m # foldMap :: Monoid m => (a -> m) -> ViewR a -> m # foldMap' :: Monoid m => (a -> m) -> ViewR a -> m # foldr :: (a -> b -> b) -> b -> ViewR a -> b # foldr' :: (a -> b -> b) -> b -> ViewR a -> b # foldl :: (b -> a -> b) -> b -> ViewR a -> b # foldl' :: (b -> a -> b) -> b -> ViewR a -> b # foldr1 :: (a -> a -> a) -> ViewR a -> a # foldl1 :: (a -> a -> a) -> ViewR a -> a # elem :: Eq a => a -> ViewR a -> Bool # maximum :: Ord a => ViewR a -> a # minimum :: Ord a => ViewR a -> a # | |
Foldable Set | Folds in order of increasing key. |
Defined in Data.Set.Internal Methods fold :: Monoid m => Set m -> m # foldMap :: Monoid m => (a -> m) -> Set a -> m # foldMap' :: Monoid m => (a -> m) -> Set a -> m # foldr :: (a -> b -> b) -> b -> Set a -> b # foldr' :: (a -> b -> b) -> b -> Set a -> b # foldl :: (b -> a -> b) -> b -> Set a -> b # foldl' :: (b -> a -> b) -> b -> Set a -> b # foldr1 :: (a -> a -> a) -> Set a -> a # foldl1 :: (a -> a -> a) -> Set a -> a # elem :: Eq a => a -> Set a -> Bool # maximum :: Ord a => Set a -> a # | |
Foldable DNonEmpty | |
Defined in Data.DList.DNonEmpty.Internal Methods fold :: Monoid m => DNonEmpty m -> m # foldMap :: Monoid m => (a -> m) -> DNonEmpty a -> m # foldMap' :: Monoid m => (a -> m) -> DNonEmpty a -> m # foldr :: (a -> b -> b) -> b -> DNonEmpty a -> b # foldr' :: (a -> b -> b) -> b -> DNonEmpty a -> b # foldl :: (b -> a -> b) -> b -> DNonEmpty a -> b # foldl' :: (b -> a -> b) -> b -> DNonEmpty a -> b # foldr1 :: (a -> a -> a) -> DNonEmpty a -> a # foldl1 :: (a -> a -> a) -> DNonEmpty a -> a # toList :: DNonEmpty a -> [a] # length :: DNonEmpty a -> Int # elem :: Eq a => a -> DNonEmpty a -> Bool # maximum :: Ord a => DNonEmpty a -> a # minimum :: Ord a => DNonEmpty a -> a # | |
Foldable DList | |
Defined in Data.DList.Internal Methods fold :: Monoid m => DList m -> m # foldMap :: Monoid m => (a -> m) -> DList a -> m # foldMap' :: Monoid m => (a -> m) -> DList a -> m # foldr :: (a -> b -> b) -> b -> DList a -> b # foldr' :: (a -> b -> b) -> b -> DList a -> b # foldl :: (b -> a -> b) -> b -> DList a -> b # foldl' :: (b -> a -> b) -> b -> DList a -> b # foldr1 :: (a -> a -> a) -> DList a -> a # foldl1 :: (a -> a -> a) -> DList a -> a # elem :: Eq a => a -> DList a -> Bool # maximum :: Ord a => DList a -> a # minimum :: Ord a => DList a -> a # | |
Foldable Hashed | |
Defined in Data.Hashable.Class Methods fold :: Monoid m => Hashed m -> m # foldMap :: Monoid m => (a -> m) -> Hashed a -> m # foldMap' :: Monoid m => (a -> m) -> Hashed a -> m # foldr :: (a -> b -> b) -> b -> Hashed a -> b # foldr' :: (a -> b -> b) -> b -> Hashed a -> b # foldl :: (b -> a -> b) -> b -> Hashed a -> b # foldl' :: (b -> a -> b) -> b -> Hashed a -> b # foldr1 :: (a -> a -> a) -> Hashed a -> a # foldl1 :: (a -> a -> a) -> Hashed a -> a # elem :: Eq a => a -> Hashed a -> Bool # maximum :: Ord a => Hashed a -> a # minimum :: Ord a => Hashed a -> a # | |
Foldable ModuleName | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => ModuleName m -> m # foldMap :: Monoid m => (a -> m) -> ModuleName a -> m # foldMap' :: Monoid m => (a -> m) -> ModuleName a -> m # foldr :: (a -> b -> b) -> b -> ModuleName a -> b # foldr' :: (a -> b -> b) -> b -> ModuleName a -> b # foldl :: (b -> a -> b) -> b -> ModuleName a -> b # foldl' :: (b -> a -> b) -> b -> ModuleName a -> b # foldr1 :: (a -> a -> a) -> ModuleName a -> a # foldl1 :: (a -> a -> a) -> ModuleName a -> a # toList :: ModuleName a -> [a] # null :: ModuleName a -> Bool # length :: ModuleName a -> Int # elem :: Eq a => a -> ModuleName a -> Bool # maximum :: Ord a => ModuleName a -> a # minimum :: Ord a => ModuleName a -> a # sum :: Num a => ModuleName a -> a # product :: Num a => ModuleName a -> a # | |
Foldable SpecialCon | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => SpecialCon m -> m # foldMap :: Monoid m => (a -> m) -> SpecialCon a -> m # foldMap' :: Monoid m => (a -> m) -> SpecialCon a -> m # foldr :: (a -> b -> b) -> b -> SpecialCon a -> b # foldr' :: (a -> b -> b) -> b -> SpecialCon a -> b # foldl :: (b -> a -> b) -> b -> SpecialCon a -> b # foldl' :: (b -> a -> b) -> b -> SpecialCon a -> b # foldr1 :: (a -> a -> a) -> SpecialCon a -> a # foldl1 :: (a -> a -> a) -> SpecialCon a -> a # toList :: SpecialCon a -> [a] # null :: SpecialCon a -> Bool # length :: SpecialCon a -> Int # elem :: Eq a => a -> SpecialCon a -> Bool # maximum :: Ord a => SpecialCon a -> a # minimum :: Ord a => SpecialCon a -> a # sum :: Num a => SpecialCon a -> a # product :: Num a => SpecialCon a -> a # | |
Foldable QName | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => QName m -> m # foldMap :: Monoid m => (a -> m) -> QName a -> m # foldMap' :: Monoid m => (a -> m) -> QName a -> m # foldr :: (a -> b -> b) -> b -> QName a -> b # foldr' :: (a -> b -> b) -> b -> QName a -> b # foldl :: (b -> a -> b) -> b -> QName a -> b # foldl' :: (b -> a -> b) -> b -> QName a -> b # foldr1 :: (a -> a -> a) -> QName a -> a # foldl1 :: (a -> a -> a) -> QName a -> a # elem :: Eq a => a -> QName a -> Bool # maximum :: Ord a => QName a -> a # minimum :: Ord a => QName a -> a # | |
Foldable Name | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => Name m -> m # foldMap :: Monoid m => (a -> m) -> Name a -> m # foldMap' :: Monoid m => (a -> m) -> Name a -> m # foldr :: (a -> b -> b) -> b -> Name a -> b # foldr' :: (a -> b -> b) -> b -> Name a -> b # foldl :: (b -> a -> b) -> b -> Name a -> b # foldl' :: (b -> a -> b) -> b -> Name a -> b # foldr1 :: (a -> a -> a) -> Name a -> a # foldl1 :: (a -> a -> a) -> Name a -> a # elem :: Eq a => a -> Name a -> Bool # maximum :: Ord a => Name a -> a # | |
Foldable IPName | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => IPName m -> m # foldMap :: Monoid m => (a -> m) -> IPName a -> m # foldMap' :: Monoid m => (a -> m) -> IPName a -> m # foldr :: (a -> b -> b) -> b -> IPName a -> b # foldr' :: (a -> b -> b) -> b -> IPName a -> b # foldl :: (b -> a -> b) -> b -> IPName a -> b # foldl' :: (b -> a -> b) -> b -> IPName a -> b # foldr1 :: (a -> a -> a) -> IPName a -> a # foldl1 :: (a -> a -> a) -> IPName a -> a # elem :: Eq a => a -> IPName a -> Bool # maximum :: Ord a => IPName a -> a # minimum :: Ord a => IPName a -> a # | |
Foldable QOp | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => QOp m -> m # foldMap :: Monoid m => (a -> m) -> QOp a -> m # foldMap' :: Monoid m => (a -> m) -> QOp a -> m # foldr :: (a -> b -> b) -> b -> QOp a -> b # foldr' :: (a -> b -> b) -> b -> QOp a -> b # foldl :: (b -> a -> b) -> b -> QOp a -> b # foldl' :: (b -> a -> b) -> b -> QOp a -> b # foldr1 :: (a -> a -> a) -> QOp a -> a # foldl1 :: (a -> a -> a) -> QOp a -> a # elem :: Eq a => a -> QOp a -> Bool # maximum :: Ord a => QOp a -> a # | |
Foldable Op | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => Op m -> m # foldMap :: Monoid m => (a -> m) -> Op a -> m # foldMap' :: Monoid m => (a -> m) -> Op a -> m # foldr :: (a -> b -> b) -> b -> Op a -> b # foldr' :: (a -> b -> b) -> b -> Op a -> b # foldl :: (b -> a -> b) -> b -> Op a -> b # foldl' :: (b -> a -> b) -> b -> Op a -> b # foldr1 :: (a -> a -> a) -> Op a -> a # foldl1 :: (a -> a -> a) -> Op a -> a # elem :: Eq a => a -> Op a -> Bool # maximum :: Ord a => Op a -> a # | |
Foldable CName | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => CName m -> m # foldMap :: Monoid m => (a -> m) -> CName a -> m # foldMap' :: Monoid m => (a -> m) -> CName a -> m # foldr :: (a -> b -> b) -> b -> CName a -> b # foldr' :: (a -> b -> b) -> b -> CName a -> b # foldl :: (b -> a -> b) -> b -> CName a -> b # foldl' :: (b -> a -> b) -> b -> CName a -> b # foldr1 :: (a -> a -> a) -> CName a -> a # foldl1 :: (a -> a -> a) -> CName a -> a # elem :: Eq a => a -> CName a -> Bool # maximum :: Ord a => CName a -> a # minimum :: Ord a => CName a -> a # | |
Foldable Module | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => Module m -> m # foldMap :: Monoid m => (a -> m) -> Module a -> m # foldMap' :: Monoid m => (a -> m) -> Module a -> m # foldr :: (a -> b -> b) -> b -> Module a -> b # foldr' :: (a -> b -> b) -> b -> Module a -> b # foldl :: (b -> a -> b) -> b -> Module a -> b # foldl' :: (b -> a -> b) -> b -> Module a -> b # foldr1 :: (a -> a -> a) -> Module a -> a # foldl1 :: (a -> a -> a) -> Module a -> a # elem :: Eq a => a -> Module a -> Bool # maximum :: Ord a => Module a -> a # minimum :: Ord a => Module a -> a # | |
Foldable ModuleHead | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => ModuleHead m -> m # foldMap :: Monoid m => (a -> m) -> ModuleHead a -> m # foldMap' :: Monoid m => (a -> m) -> ModuleHead a -> m # foldr :: (a -> b -> b) -> b -> ModuleHead a -> b # foldr' :: (a -> b -> b) -> b -> ModuleHead a -> b # foldl :: (b -> a -> b) -> b -> ModuleHead a -> b # foldl' :: (b -> a -> b) -> b -> ModuleHead a -> b # foldr1 :: (a -> a -> a) -> ModuleHead a -> a # foldl1 :: (a -> a -> a) -> ModuleHead a -> a # toList :: ModuleHead a -> [a] # null :: ModuleHead a -> Bool # length :: ModuleHead a -> Int # elem :: Eq a => a -> ModuleHead a -> Bool # maximum :: Ord a => ModuleHead a -> a # minimum :: Ord a => ModuleHead a -> a # sum :: Num a => ModuleHead a -> a # product :: Num a => ModuleHead a -> a # | |
Foldable ExportSpecList | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => ExportSpecList m -> m # foldMap :: Monoid m => (a -> m) -> ExportSpecList a -> m # foldMap' :: Monoid m => (a -> m) -> ExportSpecList a -> m # foldr :: (a -> b -> b) -> b -> ExportSpecList a -> b # foldr' :: (a -> b -> b) -> b -> ExportSpecList a -> b # foldl :: (b -> a -> b) -> b -> ExportSpecList a -> b # foldl' :: (b -> a -> b) -> b -> ExportSpecList a -> b # foldr1 :: (a -> a -> a) -> ExportSpecList a -> a # foldl1 :: (a -> a -> a) -> ExportSpecList a -> a # toList :: ExportSpecList a -> [a] # null :: ExportSpecList a -> Bool # length :: ExportSpecList a -> Int # elem :: Eq a => a -> ExportSpecList a -> Bool # maximum :: Ord a => ExportSpecList a -> a # minimum :: Ord a => ExportSpecList a -> a # sum :: Num a => ExportSpecList a -> a # product :: Num a => ExportSpecList a -> a # | |
Foldable ExportSpec | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => ExportSpec m -> m # foldMap :: Monoid m => (a -> m) -> ExportSpec a -> m # foldMap' :: Monoid m => (a -> m) -> ExportSpec a -> m # foldr :: (a -> b -> b) -> b -> ExportSpec a -> b # foldr' :: (a -> b -> b) -> b -> ExportSpec a -> b # foldl :: (b -> a -> b) -> b -> ExportSpec a -> b # foldl' :: (b -> a -> b) -> b -> ExportSpec a -> b # foldr1 :: (a -> a -> a) -> ExportSpec a -> a # foldl1 :: (a -> a -> a) -> ExportSpec a -> a # toList :: ExportSpec a -> [a] # null :: ExportSpec a -> Bool # length :: ExportSpec a -> Int # elem :: Eq a => a -> ExportSpec a -> Bool # maximum :: Ord a => ExportSpec a -> a # minimum :: Ord a => ExportSpec a -> a # sum :: Num a => ExportSpec a -> a # product :: Num a => ExportSpec a -> a # | |
Foldable EWildcard | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => EWildcard m -> m # foldMap :: Monoid m => (a -> m) -> EWildcard a -> m # foldMap' :: Monoid m => (a -> m) -> EWildcard a -> m # foldr :: (a -> b -> b) -> b -> EWildcard a -> b # foldr' :: (a -> b -> b) -> b -> EWildcard a -> b # foldl :: (b -> a -> b) -> b -> EWildcard a -> b # foldl' :: (b -> a -> b) -> b -> EWildcard a -> b # foldr1 :: (a -> a -> a) -> EWildcard a -> a # foldl1 :: (a -> a -> a) -> EWildcard a -> a # toList :: EWildcard a -> [a] # length :: EWildcard a -> Int # elem :: Eq a => a -> EWildcard a -> Bool # maximum :: Ord a => EWildcard a -> a # minimum :: Ord a => EWildcard a -> a # | |
Foldable Namespace | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => Namespace m -> m # foldMap :: Monoid m => (a -> m) -> Namespace a -> m # foldMap' :: Monoid m => (a -> m) -> Namespace a -> m # foldr :: (a -> b -> b) -> b -> Namespace a -> b # foldr' :: (a -> b -> b) -> b -> Namespace a -> b # foldl :: (b -> a -> b) -> b -> Namespace a -> b # foldl' :: (b -> a -> b) -> b -> Namespace a -> b # foldr1 :: (a -> a -> a) -> Namespace a -> a # foldl1 :: (a -> a -> a) -> Namespace a -> a # toList :: Namespace a -> [a] # length :: Namespace a -> Int # elem :: Eq a => a -> Namespace a -> Bool # maximum :: Ord a => Namespace a -> a # minimum :: Ord a => Namespace a -> a # | |
Foldable ImportDecl | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => ImportDecl m -> m # foldMap :: Monoid m => (a -> m) -> ImportDecl a -> m # foldMap' :: Monoid m => (a -> m) -> ImportDecl a -> m # foldr :: (a -> b -> b) -> b -> ImportDecl a -> b # foldr' :: (a -> b -> b) -> b -> ImportDecl a -> b # foldl :: (b -> a -> b) -> b -> ImportDecl a -> b # foldl' :: (b -> a -> b) -> b -> ImportDecl a -> b # foldr1 :: (a -> a -> a) -> ImportDecl a -> a # foldl1 :: (a -> a -> a) -> ImportDecl a -> a # toList :: ImportDecl a -> [a] # null :: ImportDecl a -> Bool # length :: ImportDecl a -> Int # elem :: Eq a => a -> ImportDecl a -> Bool # maximum :: Ord a => ImportDecl a -> a # minimum :: Ord a => ImportDecl a -> a # sum :: Num a => ImportDecl a -> a # product :: Num a => ImportDecl a -> a # | |
Foldable ImportSpecList | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => ImportSpecList m -> m # foldMap :: Monoid m => (a -> m) -> ImportSpecList a -> m # foldMap' :: Monoid m => (a -> m) -> ImportSpecList a -> m # foldr :: (a -> b -> b) -> b -> ImportSpecList a -> b # foldr' :: (a -> b -> b) -> b -> ImportSpecList a -> b # foldl :: (b -> a -> b) -> b -> ImportSpecList a -> b # foldl' :: (b -> a -> b) -> b -> ImportSpecList a -> b # foldr1 :: (a -> a -> a) -> ImportSpecList a -> a # foldl1 :: (a -> a -> a) -> ImportSpecList a -> a # toList :: ImportSpecList a -> [a] # null :: ImportSpecList a -> Bool # length :: ImportSpecList a -> Int # elem :: Eq a => a -> ImportSpecList a -> Bool # maximum :: Ord a => ImportSpecList a -> a # minimum :: Ord a => ImportSpecList a -> a # sum :: Num a => ImportSpecList a -> a # product :: Num a => ImportSpecList a -> a # | |
Foldable ImportSpec | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => ImportSpec m -> m # foldMap :: Monoid m => (a -> m) -> ImportSpec a -> m # foldMap' :: Monoid m => (a -> m) -> ImportSpec a -> m # foldr :: (a -> b -> b) -> b -> ImportSpec a -> b # foldr' :: (a -> b -> b) -> b -> ImportSpec a -> b # foldl :: (b -> a -> b) -> b -> ImportSpec a -> b # foldl' :: (b -> a -> b) -> b -> ImportSpec a -> b # foldr1 :: (a -> a -> a) -> ImportSpec a -> a # foldl1 :: (a -> a -> a) -> ImportSpec a -> a # toList :: ImportSpec a -> [a] # null :: ImportSpec a -> Bool # length :: ImportSpec a -> Int # elem :: Eq a => a -> ImportSpec a -> Bool # maximum :: Ord a => ImportSpec a -> a # minimum :: Ord a => ImportSpec a -> a # sum :: Num a => ImportSpec a -> a # product :: Num a => ImportSpec a -> a # | |
Foldable Assoc | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => Assoc m -> m # foldMap :: Monoid m => (a -> m) -> Assoc a -> m # foldMap' :: Monoid m => (a -> m) -> Assoc a -> m # foldr :: (a -> b -> b) -> b -> Assoc a -> b # foldr' :: (a -> b -> b) -> b -> Assoc a -> b # foldl :: (b -> a -> b) -> b -> Assoc a -> b # foldl' :: (b -> a -> b) -> b -> Assoc a -> b # foldr1 :: (a -> a -> a) -> Assoc a -> a # foldl1 :: (a -> a -> a) -> Assoc a -> a # elem :: Eq a => a -> Assoc a -> Bool # maximum :: Ord a => Assoc a -> a # minimum :: Ord a => Assoc a -> a # | |
Foldable Decl | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => Decl m -> m # foldMap :: Monoid m => (a -> m) -> Decl a -> m # foldMap' :: Monoid m => (a -> m) -> Decl a -> m # foldr :: (a -> b -> b) -> b -> Decl a -> b # foldr' :: (a -> b -> b) -> b -> Decl a -> b # foldl :: (b -> a -> b) -> b -> Decl a -> b # foldl' :: (b -> a -> b) -> b -> Decl a -> b # foldr1 :: (a -> a -> a) -> Decl a -> a # foldl1 :: (a -> a -> a) -> Decl a -> a # elem :: Eq a => a -> Decl a -> Bool # maximum :: Ord a => Decl a -> a # | |
Foldable PatternSynDirection | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => PatternSynDirection m -> m # foldMap :: Monoid m => (a -> m) -> PatternSynDirection a -> m # foldMap' :: Monoid m => (a -> m) -> PatternSynDirection a -> m # foldr :: (a -> b -> b) -> b -> PatternSynDirection a -> b # foldr' :: (a -> b -> b) -> b -> PatternSynDirection a -> b # foldl :: (b -> a -> b) -> b -> PatternSynDirection a -> b # foldl' :: (b -> a -> b) -> b -> PatternSynDirection a -> b # foldr1 :: (a -> a -> a) -> PatternSynDirection a -> a # foldl1 :: (a -> a -> a) -> PatternSynDirection a -> a # toList :: PatternSynDirection a -> [a] # null :: PatternSynDirection a -> Bool # length :: PatternSynDirection a -> Int # elem :: Eq a => a -> PatternSynDirection a -> Bool # maximum :: Ord a => PatternSynDirection a -> a # minimum :: Ord a => PatternSynDirection a -> a # sum :: Num a => PatternSynDirection a -> a # product :: Num a => PatternSynDirection a -> a # | |
Foldable TypeEqn | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => TypeEqn m -> m # foldMap :: Monoid m => (a -> m) -> TypeEqn a -> m # foldMap' :: Monoid m => (a -> m) -> TypeEqn a -> m # foldr :: (a -> b -> b) -> b -> TypeEqn a -> b # foldr' :: (a -> b -> b) -> b -> TypeEqn a -> b # foldl :: (b -> a -> b) -> b -> TypeEqn a -> b # foldl' :: (b -> a -> b) -> b -> TypeEqn a -> b # foldr1 :: (a -> a -> a) -> TypeEqn a -> a # foldl1 :: (a -> a -> a) -> TypeEqn a -> a # elem :: Eq a => a -> TypeEqn a -> Bool # maximum :: Ord a => TypeEqn a -> a # minimum :: Ord a => TypeEqn a -> a # | |
Foldable Annotation | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => Annotation m -> m # foldMap :: Monoid m => (a -> m) -> Annotation a -> m # foldMap' :: Monoid m => (a -> m) -> Annotation a -> m # foldr :: (a -> b -> b) -> b -> Annotation a -> b # foldr' :: (a -> b -> b) -> b -> Annotation a -> b # foldl :: (b -> a -> b) -> b -> Annotation a -> b # foldl' :: (b -> a -> b) -> b -> Annotation a -> b # foldr1 :: (a -> a -> a) -> Annotation a -> a # foldl1 :: (a -> a -> a) -> Annotation a -> a # toList :: Annotation a -> [a] # null :: Annotation a -> Bool # length :: Annotation a -> Int # elem :: Eq a => a -> Annotation a -> Bool # maximum :: Ord a => Annotation a -> a # minimum :: Ord a => Annotation a -> a # sum :: Num a => Annotation a -> a # product :: Num a => Annotation a -> a # | |
Foldable BooleanFormula | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => BooleanFormula m -> m # foldMap :: Monoid m => (a -> m) -> BooleanFormula a -> m # foldMap' :: Monoid m => (a -> m) -> BooleanFormula a -> m # foldr :: (a -> b -> b) -> b -> BooleanFormula a -> b # foldr' :: (a -> b -> b) -> b -> BooleanFormula a -> b # foldl :: (b -> a -> b) -> b -> BooleanFormula a -> b # foldl' :: (b -> a -> b) -> b -> BooleanFormula a -> b # foldr1 :: (a -> a -> a) -> BooleanFormula a -> a # foldl1 :: (a -> a -> a) -> BooleanFormula a -> a # toList :: BooleanFormula a -> [a] # null :: BooleanFormula a -> Bool # length :: BooleanFormula a -> Int # elem :: Eq a => a -> BooleanFormula a -> Bool # maximum :: Ord a => BooleanFormula a -> a # minimum :: Ord a => BooleanFormula a -> a # sum :: Num a => BooleanFormula a -> a # product :: Num a => BooleanFormula a -> a # | |
Foldable Role | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => Role m -> m # foldMap :: Monoid m => (a -> m) -> Role a -> m # foldMap' :: Monoid m => (a -> m) -> Role a -> m # foldr :: (a -> b -> b) -> b -> Role a -> b # foldr' :: (a -> b -> b) -> b -> Role a -> b # foldl :: (b -> a -> b) -> b -> Role a -> b # foldl' :: (b -> a -> b) -> b -> Role a -> b # foldr1 :: (a -> a -> a) -> Role a -> a # foldl1 :: (a -> a -> a) -> Role a -> a # elem :: Eq a => a -> Role a -> Bool # maximum :: Ord a => Role a -> a # | |
Foldable DataOrNew | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => DataOrNew m -> m # foldMap :: Monoid m => (a -> m) -> DataOrNew a -> m # foldMap' :: Monoid m => (a -> m) -> DataOrNew a -> m # foldr :: (a -> b -> b) -> b -> DataOrNew a -> b # foldr' :: (a -> b -> b) -> b -> DataOrNew a -> b # foldl :: (b -> a -> b) -> b -> DataOrNew a -> b # foldl' :: (b -> a -> b) -> b -> DataOrNew a -> b # foldr1 :: (a -> a -> a) -> DataOrNew a -> a # foldl1 :: (a -> a -> a) -> DataOrNew a -> a # toList :: DataOrNew a -> [a] # length :: DataOrNew a -> Int # elem :: Eq a => a -> DataOrNew a -> Bool # maximum :: Ord a => DataOrNew a -> a # minimum :: Ord a => DataOrNew a -> a # | |
Foldable InjectivityInfo | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => InjectivityInfo m -> m # foldMap :: Monoid m => (a -> m) -> InjectivityInfo a -> m # foldMap' :: Monoid m => (a -> m) -> InjectivityInfo a -> m # foldr :: (a -> b -> b) -> b -> InjectivityInfo a -> b # foldr' :: (a -> b -> b) -> b -> InjectivityInfo a -> b # foldl :: (b -> a -> b) -> b -> InjectivityInfo a -> b # foldl' :: (b -> a -> b) -> b -> InjectivityInfo a -> b # foldr1 :: (a -> a -> a) -> InjectivityInfo a -> a # foldl1 :: (a -> a -> a) -> InjectivityInfo a -> a # toList :: InjectivityInfo a -> [a] # null :: InjectivityInfo a -> Bool # length :: InjectivityInfo a -> Int # elem :: Eq a => a -> InjectivityInfo a -> Bool # maximum :: Ord a => InjectivityInfo a -> a # minimum :: Ord a => InjectivityInfo a -> a # sum :: Num a => InjectivityInfo a -> a # product :: Num a => InjectivityInfo a -> a # | |
Foldable ResultSig | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => ResultSig m -> m # foldMap :: Monoid m => (a -> m) -> ResultSig a -> m # foldMap' :: Monoid m => (a -> m) -> ResultSig a -> m # foldr :: (a -> b -> b) -> b -> ResultSig a -> b # foldr' :: (a -> b -> b) -> b -> ResultSig a -> b # foldl :: (b -> a -> b) -> b -> ResultSig a -> b # foldl' :: (b -> a -> b) -> b -> ResultSig a -> b # foldr1 :: (a -> a -> a) -> ResultSig a -> a # foldl1 :: (a -> a -> a) -> ResultSig a -> a # toList :: ResultSig a -> [a] # length :: ResultSig a -> Int # elem :: Eq a => a -> ResultSig a -> Bool # maximum :: Ord a => ResultSig a -> a # minimum :: Ord a => ResultSig a -> a # | |
Foldable DeclHead | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => DeclHead m -> m # foldMap :: Monoid m => (a -> m) -> DeclHead a -> m # foldMap' :: Monoid m => (a -> m) -> DeclHead a -> m # foldr :: (a -> b -> b) -> b -> DeclHead a -> b # foldr' :: (a -> b -> b) -> b -> DeclHead a -> b # foldl :: (b -> a -> b) -> b -> DeclHead a -> b # foldl' :: (b -> a -> b) -> b -> DeclHead a -> b # foldr1 :: (a -> a -> a) -> DeclHead a -> a # foldl1 :: (a -> a -> a) -> DeclHead a -> a # elem :: Eq a => a -> DeclHead a -> Bool # maximum :: Ord a => DeclHead a -> a # minimum :: Ord a => DeclHead a -> a # | |
Foldable InstRule | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => InstRule m -> m # foldMap :: Monoid m => (a -> m) -> InstRule a -> m # foldMap' :: Monoid m => (a -> m) -> InstRule a -> m # foldr :: (a -> b -> b) -> b -> InstRule a -> b # foldr' :: (a -> b -> b) -> b -> InstRule a -> b # foldl :: (b -> a -> b) -> b -> InstRule a -> b # foldl' :: (b -> a -> b) -> b -> InstRule a -> b # foldr1 :: (a -> a -> a) -> InstRule a -> a # foldl1 :: (a -> a -> a) -> InstRule a -> a # elem :: Eq a => a -> InstRule a -> Bool # maximum :: Ord a => InstRule a -> a # minimum :: Ord a => InstRule a -> a # | |
Foldable InstHead | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => InstHead m -> m # foldMap :: Monoid m => (a -> m) -> InstHead a -> m # foldMap' :: Monoid m => (a -> m) -> InstHead a -> m # foldr :: (a -> b -> b) -> b -> InstHead a -> b # foldr' :: (a -> b -> b) -> b -> InstHead a -> b # foldl :: (b -> a -> b) -> b -> InstHead a -> b # foldl' :: (b -> a -> b) -> b -> InstHead a -> b # foldr1 :: (a -> a -> a) -> InstHead a -> a # foldl1 :: (a -> a -> a) -> InstHead a -> a # elem :: Eq a => a -> InstHead a -> Bool # maximum :: Ord a => InstHead a -> a # minimum :: Ord a => InstHead a -> a # | |
Foldable Deriving | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => Deriving m -> m # foldMap :: Monoid m => (a -> m) -> Deriving a -> m # foldMap' :: Monoid m => (a -> m) -> Deriving a -> m # foldr :: (a -> b -> b) -> b -> Deriving a -> b # foldr' :: (a -> b -> b) -> b -> Deriving a -> b # foldl :: (b -> a -> b) -> b -> Deriving a -> b # foldl' :: (b -> a -> b) -> b -> Deriving a -> b # foldr1 :: (a -> a -> a) -> Deriving a -> a # foldl1 :: (a -> a -> a) -> Deriving a -> a # elem :: Eq a => a -> Deriving a -> Bool # maximum :: Ord a => Deriving a -> a # minimum :: Ord a => Deriving a -> a # | |
Foldable DerivStrategy | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => DerivStrategy m -> m # foldMap :: Monoid m => (a -> m) -> DerivStrategy a -> m # foldMap' :: Monoid m => (a -> m) -> DerivStrategy a -> m # foldr :: (a -> b -> b) -> b -> DerivStrategy a -> b # foldr' :: (a -> b -> b) -> b -> DerivStrategy a -> b # foldl :: (b -> a -> b) -> b -> DerivStrategy a -> b # foldl' :: (b -> a -> b) -> b -> DerivStrategy a -> b # foldr1 :: (a -> a -> a) -> DerivStrategy a -> a # foldl1 :: (a -> a -> a) -> DerivStrategy a -> a # toList :: DerivStrategy a -> [a] # null :: DerivStrategy a -> Bool # length :: DerivStrategy a -> Int # elem :: Eq a => a -> DerivStrategy a -> Bool # maximum :: Ord a => DerivStrategy a -> a # minimum :: Ord a => DerivStrategy a -> a # sum :: Num a => DerivStrategy a -> a # product :: Num a => DerivStrategy a -> a # | |
Foldable Binds | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => Binds m -> m # foldMap :: Monoid m => (a -> m) -> Binds a -> m # foldMap' :: Monoid m => (a -> m) -> Binds a -> m # foldr :: (a -> b -> b) -> b -> Binds a -> b # foldr' :: (a -> b -> b) -> b -> Binds a -> b # foldl :: (b -> a -> b) -> b -> Binds a -> b # foldl' :: (b -> a -> b) -> b -> Binds a -> b # foldr1 :: (a -> a -> a) -> Binds a -> a # foldl1 :: (a -> a -> a) -> Binds a -> a # elem :: Eq a => a -> Binds a -> Bool # maximum :: Ord a => Binds a -> a # minimum :: Ord a => Binds a -> a # | |
Foldable IPBind | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => IPBind m -> m # foldMap :: Monoid m => (a -> m) -> IPBind a -> m # foldMap' :: Monoid m => (a -> m) -> IPBind a -> m # foldr :: (a -> b -> b) -> b -> IPBind a -> b # foldr' :: (a -> b -> b) -> b -> IPBind a -> b # foldl :: (b -> a -> b) -> b -> IPBind a -> b # foldl' :: (b -> a -> b) -> b -> IPBind a -> b # foldr1 :: (a -> a -> a) -> IPBind a -> a # foldl1 :: (a -> a -> a) -> IPBind a -> a # elem :: Eq a => a -> IPBind a -> Bool # maximum :: Ord a => IPBind a -> a # minimum :: Ord a => IPBind a -> a # | |
Foldable Match | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => Match m -> m # foldMap :: Monoid m => (a -> m) -> Match a -> m # foldMap' :: Monoid m => (a -> m) -> Match a -> m # foldr :: (a -> b -> b) -> b -> Match a -> b # foldr' :: (a -> b -> b) -> b -> Match a -> b # foldl :: (b -> a -> b) -> b -> Match a -> b # foldl' :: (b -> a -> b) -> b -> Match a -> b # foldr1 :: (a -> a -> a) -> Match a -> a # foldl1 :: (a -> a -> a) -> Match a -> a # elem :: Eq a => a -> Match a -> Bool # maximum :: Ord a => Match a -> a # minimum :: Ord a => Match a -> a # | |
Foldable QualConDecl | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => QualConDecl m -> m # foldMap :: Monoid m => (a -> m) -> QualConDecl a -> m # foldMap' :: Monoid m => (a -> m) -> QualConDecl a -> m # foldr :: (a -> b -> b) -> b -> QualConDecl a -> b # foldr' :: (a -> b -> b) -> b -> QualConDecl a -> b # foldl :: (b -> a -> b) -> b -> QualConDecl a -> b # foldl' :: (b -> a -> b) -> b -> QualConDecl a -> b # foldr1 :: (a -> a -> a) -> QualConDecl a -> a # foldl1 :: (a -> a -> a) -> QualConDecl a -> a # toList :: QualConDecl a -> [a] # null :: QualConDecl a -> Bool # length :: QualConDecl a -> Int # elem :: Eq a => a -> QualConDecl a -> Bool # maximum :: Ord a => QualConDecl a -> a # minimum :: Ord a => QualConDecl a -> a # sum :: Num a => QualConDecl a -> a # product :: Num a => QualConDecl a -> a # | |
Foldable ConDecl | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => ConDecl m -> m # foldMap :: Monoid m => (a -> m) -> ConDecl a -> m # foldMap' :: Monoid m => (a -> m) -> ConDecl a -> m # foldr :: (a -> b -> b) -> b -> ConDecl a -> b # foldr' :: (a -> b -> b) -> b -> ConDecl a -> b # foldl :: (b -> a -> b) -> b -> ConDecl a -> b # foldl' :: (b -> a -> b) -> b -> ConDecl a -> b # foldr1 :: (a -> a -> a) -> ConDecl a -> a # foldl1 :: (a -> a -> a) -> ConDecl a -> a # elem :: Eq a => a -> ConDecl a -> Bool # maximum :: Ord a => ConDecl a -> a # minimum :: Ord a => ConDecl a -> a # | |
Foldable FieldDecl | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => FieldDecl m -> m # foldMap :: Monoid m => (a -> m) -> FieldDecl a -> m # foldMap' :: Monoid m => (a -> m) -> FieldDecl a -> m # foldr :: (a -> b -> b) -> b -> FieldDecl a -> b # foldr' :: (a -> b -> b) -> b -> FieldDecl a -> b # foldl :: (b -> a -> b) -> b -> FieldDecl a -> b # foldl' :: (b -> a -> b) -> b -> FieldDecl a -> b # foldr1 :: (a -> a -> a) -> FieldDecl a -> a # foldl1 :: (a -> a -> a) -> FieldDecl a -> a # toList :: FieldDecl a -> [a] # length :: FieldDecl a -> Int # elem :: Eq a => a -> FieldDecl a -> Bool # maximum :: Ord a => FieldDecl a -> a # minimum :: Ord a => FieldDecl a -> a # | |
Foldable GadtDecl | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => GadtDecl m -> m # foldMap :: Monoid m => (a -> m) -> GadtDecl a -> m # foldMap' :: Monoid m => (a -> m) -> GadtDecl a -> m # foldr :: (a -> b -> b) -> b -> GadtDecl a -> b # foldr' :: (a -> b -> b) -> b -> GadtDecl a -> b # foldl :: (b -> a -> b) -> b -> GadtDecl a -> b # foldl' :: (b -> a -> b) -> b -> GadtDecl a -> b # foldr1 :: (a -> a -> a) -> GadtDecl a -> a # foldl1 :: (a -> a -> a) -> GadtDecl a -> a # elem :: Eq a => a -> GadtDecl a -> Bool # maximum :: Ord a => GadtDecl a -> a # minimum :: Ord a => GadtDecl a -> a # | |
Foldable ClassDecl | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => ClassDecl m -> m # foldMap :: Monoid m => (a -> m) -> ClassDecl a -> m # foldMap' :: Monoid m => (a -> m) -> ClassDecl a -> m # foldr :: (a -> b -> b) -> b -> ClassDecl a -> b # foldr' :: (a -> b -> b) -> b -> ClassDecl a -> b # foldl :: (b -> a -> b) -> b -> ClassDecl a -> b # foldl' :: (b -> a -> b) -> b -> ClassDecl a -> b # foldr1 :: (a -> a -> a) -> ClassDecl a -> a # foldl1 :: (a -> a -> a) -> ClassDecl a -> a # toList :: ClassDecl a -> [a] # length :: ClassDecl a -> Int # elem :: Eq a => a -> ClassDecl a -> Bool # maximum :: Ord a => ClassDecl a -> a # minimum :: Ord a => ClassDecl a -> a # | |
Foldable InstDecl | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => InstDecl m -> m # foldMap :: Monoid m => (a -> m) -> InstDecl a -> m # foldMap' :: Monoid m => (a -> m) -> InstDecl a -> m # foldr :: (a -> b -> b) -> b -> InstDecl a -> b # foldr' :: (a -> b -> b) -> b -> InstDecl a -> b # foldl :: (b -> a -> b) -> b -> InstDecl a -> b # foldl' :: (b -> a -> b) -> b -> InstDecl a -> b # foldr1 :: (a -> a -> a) -> InstDecl a -> a # foldl1 :: (a -> a -> a) -> InstDecl a -> a # elem :: Eq a => a -> InstDecl a -> Bool # maximum :: Ord a => InstDecl a -> a # minimum :: Ord a => InstDecl a -> a # | |
Foldable BangType | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => BangType m -> m # foldMap :: Monoid m => (a -> m) -> BangType a -> m # foldMap' :: Monoid m => (a -> m) -> BangType a -> m # foldr :: (a -> b -> b) -> b -> BangType a -> b # foldr' :: (a -> b -> b) -> b -> BangType a -> b # foldl :: (b -> a -> b) -> b -> BangType a -> b # foldl' :: (b -> a -> b) -> b -> BangType a -> b # foldr1 :: (a -> a -> a) -> BangType a -> a # foldl1 :: (a -> a -> a) -> BangType a -> a # elem :: Eq a => a -> BangType a -> Bool # maximum :: Ord a => BangType a -> a # minimum :: Ord a => BangType a -> a # | |
Foldable Unpackedness | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => Unpackedness m -> m # foldMap :: Monoid m => (a -> m) -> Unpackedness a -> m # foldMap' :: Monoid m => (a -> m) -> Unpackedness a -> m # foldr :: (a -> b -> b) -> b -> Unpackedness a -> b # foldr' :: (a -> b -> b) -> b -> Unpackedness a -> b # foldl :: (b -> a -> b) -> b -> Unpackedness a -> b # foldl' :: (b -> a -> b) -> b -> Unpackedness a -> b # foldr1 :: (a -> a -> a) -> Unpackedness a -> a # foldl1 :: (a -> a -> a) -> Unpackedness a -> a # toList :: Unpackedness a -> [a] # null :: Unpackedness a -> Bool # length :: Unpackedness a -> Int # elem :: Eq a => a -> Unpackedness a -> Bool # maximum :: Ord a => Unpackedness a -> a # minimum :: Ord a => Unpackedness a -> a # sum :: Num a => Unpackedness a -> a # product :: Num a => Unpackedness a -> a # | |
Foldable Rhs | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => Rhs m -> m # foldMap :: Monoid m => (a -> m) -> Rhs a -> m # foldMap' :: Monoid m => (a -> m) -> Rhs a -> m # foldr :: (a -> b -> b) -> b -> Rhs a -> b # foldr' :: (a -> b -> b) -> b -> Rhs a -> b # foldl :: (b -> a -> b) -> b -> Rhs a -> b # foldl' :: (b -> a -> b) -> b -> Rhs a -> b # foldr1 :: (a -> a -> a) -> Rhs a -> a # foldl1 :: (a -> a -> a) -> Rhs a -> a # elem :: Eq a => a -> Rhs a -> Bool # maximum :: Ord a => Rhs a -> a # | |
Foldable GuardedRhs | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => GuardedRhs m -> m # foldMap :: Monoid m => (a -> m) -> GuardedRhs a -> m # foldMap' :: Monoid m => (a -> m) -> GuardedRhs a -> m # foldr :: (a -> b -> b) -> b -> GuardedRhs a -> b # foldr' :: (a -> b -> b) -> b -> GuardedRhs a -> b # foldl :: (b -> a -> b) -> b -> GuardedRhs a -> b # foldl' :: (b -> a -> b) -> b -> GuardedRhs a -> b # foldr1 :: (a -> a -> a) -> GuardedRhs a -> a # foldl1 :: (a -> a -> a) -> GuardedRhs a -> a # toList :: GuardedRhs a -> [a] # null :: GuardedRhs a -> Bool # length :: GuardedRhs a -> Int # elem :: Eq a => a -> GuardedRhs a -> Bool # maximum :: Ord a => GuardedRhs a -> a # minimum :: Ord a => GuardedRhs a -> a # sum :: Num a => GuardedRhs a -> a # product :: Num a => GuardedRhs a -> a # | |
Foldable Type | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => Type m -> m # foldMap :: Monoid m => (a -> m) -> Type a -> m # foldMap' :: Monoid m => (a -> m) -> Type a -> m # foldr :: (a -> b -> b) -> b -> Type a -> b # foldr' :: (a -> b -> b) -> b -> Type a -> b # foldl :: (b -> a -> b) -> b -> Type a -> b # foldl' :: (b -> a -> b) -> b -> Type a -> b # foldr1 :: (a -> a -> a) -> Type a -> a # foldl1 :: (a -> a -> a) -> Type a -> a # elem :: Eq a => a -> Type a -> Bool # maximum :: Ord a => Type a -> a # | |
Foldable MaybePromotedName | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => MaybePromotedName m -> m # foldMap :: Monoid m => (a -> m) -> MaybePromotedName a -> m # foldMap' :: Monoid m => (a -> m) -> MaybePromotedName a -> m # foldr :: (a -> b -> b) -> b -> MaybePromotedName a -> b # foldr' :: (a -> b -> b) -> b -> MaybePromotedName a -> b # foldl :: (b -> a -> b) -> b -> MaybePromotedName a -> b # foldl' :: (b -> a -> b) -> b -> MaybePromotedName a -> b # foldr1 :: (a -> a -> a) -> MaybePromotedName a -> a # foldl1 :: (a -> a -> a) -> MaybePromotedName a -> a # toList :: MaybePromotedName a -> [a] # null :: MaybePromotedName a -> Bool # length :: MaybePromotedName a -> Int # elem :: Eq a => a -> MaybePromotedName a -> Bool # maximum :: Ord a => MaybePromotedName a -> a # minimum :: Ord a => MaybePromotedName a -> a # sum :: Num a => MaybePromotedName a -> a # product :: Num a => MaybePromotedName a -> a # | |
Foldable Promoted | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => Promoted m -> m # foldMap :: Monoid m => (a -> m) -> Promoted a -> m # foldMap' :: Monoid m => (a -> m) -> Promoted a -> m # foldr :: (a -> b -> b) -> b -> Promoted a -> b # foldr' :: (a -> b -> b) -> b -> Promoted a -> b # foldl :: (b -> a -> b) -> b -> Promoted a -> b # foldl' :: (b -> a -> b) -> b -> Promoted a -> b # foldr1 :: (a -> a -> a) -> Promoted a -> a # foldl1 :: (a -> a -> a) -> Promoted a -> a # elem :: Eq a => a -> Promoted a -> Bool # maximum :: Ord a => Promoted a -> a # minimum :: Ord a => Promoted a -> a # | |
Foldable TyVarBind | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => TyVarBind m -> m # foldMap :: Monoid m => (a -> m) -> TyVarBind a -> m # foldMap' :: Monoid m => (a -> m) -> TyVarBind a -> m # foldr :: (a -> b -> b) -> b -> TyVarBind a -> b # foldr' :: (a -> b -> b) -> b -> TyVarBind a -> b # foldl :: (b -> a -> b) -> b -> TyVarBind a -> b # foldl' :: (b -> a -> b) -> b -> TyVarBind a -> b # foldr1 :: (a -> a -> a) -> TyVarBind a -> a # foldl1 :: (a -> a -> a) -> TyVarBind a -> a # toList :: TyVarBind a -> [a] # length :: TyVarBind a -> Int # elem :: Eq a => a -> TyVarBind a -> Bool # maximum :: Ord a => TyVarBind a -> a # minimum :: Ord a => TyVarBind a -> a # | |
Foldable FunDep | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => FunDep m -> m # foldMap :: Monoid m => (a -> m) -> FunDep a -> m # foldMap' :: Monoid m => (a -> m) -> FunDep a -> m # foldr :: (a -> b -> b) -> b -> FunDep a -> b # foldr' :: (a -> b -> b) -> b -> FunDep a -> b # foldl :: (b -> a -> b) -> b -> FunDep a -> b # foldl' :: (b -> a -> b) -> b -> FunDep a -> b # foldr1 :: (a -> a -> a) -> FunDep a -> a # foldl1 :: (a -> a -> a) -> FunDep a -> a # elem :: Eq a => a -> FunDep a -> Bool # maximum :: Ord a => FunDep a -> a # minimum :: Ord a => FunDep a -> a # | |
Foldable Context | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => Context m -> m # foldMap :: Monoid m => (a -> m) -> Context a -> m # foldMap' :: Monoid m => (a -> m) -> Context a -> m # foldr :: (a -> b -> b) -> b -> Context a -> b # foldr' :: (a -> b -> b) -> b -> Context a -> b # foldl :: (b -> a -> b) -> b -> Context a -> b # foldl' :: (b -> a -> b) -> b -> Context a -> b # foldr1 :: (a -> a -> a) -> Context a -> a # foldl1 :: (a -> a -> a) -> Context a -> a # elem :: Eq a => a -> Context a -> Bool # maximum :: Ord a => Context a -> a # minimum :: Ord a => Context a -> a # | |
Foldable Asst | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => Asst m -> m # foldMap :: Monoid m => (a -> m) -> Asst a -> m # foldMap' :: Monoid m => (a -> m) -> Asst a -> m # foldr :: (a -> b -> b) -> b -> Asst a -> b # foldr' :: (a -> b -> b) -> b -> Asst a -> b # foldl :: (b -> a -> b) -> b -> Asst a -> b # foldl' :: (b -> a -> b) -> b -> Asst a -> b # foldr1 :: (a -> a -> a) -> Asst a -> a # foldl1 :: (a -> a -> a) -> Asst a -> a # elem :: Eq a => a -> Asst a -> Bool # maximum :: Ord a => Asst a -> a # | |
Foldable Literal | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => Literal m -> m # foldMap :: Monoid m => (a -> m) -> Literal a -> m # foldMap' :: Monoid m => (a -> m) -> Literal a -> m # foldr :: (a -> b -> b) -> b -> Literal a -> b # foldr' :: (a -> b -> b) -> b -> Literal a -> b # foldl :: (b -> a -> b) -> b -> Literal a -> b # foldl' :: (b -> a -> b) -> b -> Literal a -> b # foldr1 :: (a -> a -> a) -> Literal a -> a # foldl1 :: (a -> a -> a) -> Literal a -> a # elem :: Eq a => a -> Literal a -> Bool # maximum :: Ord a => Literal a -> a # minimum :: Ord a => Literal a -> a # | |
Foldable Sign | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => Sign m -> m # foldMap :: Monoid m => (a -> m) -> Sign a -> m # foldMap' :: Monoid m => (a -> m) -> Sign a -> m # foldr :: (a -> b -> b) -> b -> Sign a -> b # foldr' :: (a -> b -> b) -> b -> Sign a -> b # foldl :: (b -> a -> b) -> b -> Sign a -> b # foldl' :: (b -> a -> b) -> b -> Sign a -> b # foldr1 :: (a -> a -> a) -> Sign a -> a # foldl1 :: (a -> a -> a) -> Sign a -> a # elem :: Eq a => a -> Sign a -> Bool # maximum :: Ord a => Sign a -> a # | |
Foldable Exp | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => Exp m -> m # foldMap :: Monoid m => (a -> m) -> Exp a -> m # foldMap' :: Monoid m => (a -> m) -> Exp a -> m # foldr :: (a -> b -> b) -> b -> Exp a -> b # foldr' :: (a -> b -> b) -> b -> Exp a -> b # foldl :: (b -> a -> b) -> b -> Exp a -> b # foldl' :: (b -> a -> b) -> b -> Exp a -> b # foldr1 :: (a -> a -> a) -> Exp a -> a # foldl1 :: (a -> a -> a) -> Exp a -> a # elem :: Eq a => a -> Exp a -> Bool # maximum :: Ord a => Exp a -> a # | |
Foldable XName | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => XName m -> m # foldMap :: Monoid m => (a -> m) -> XName a -> m # foldMap' :: Monoid m => (a -> m) -> XName a -> m # foldr :: (a -> b -> b) -> b -> XName a -> b # foldr' :: (a -> b -> b) -> b -> XName a -> b # foldl :: (b -> a -> b) -> b -> XName a -> b # foldl' :: (b -> a -> b) -> b -> XName a -> b # foldr1 :: (a -> a -> a) -> XName a -> a # foldl1 :: (a -> a -> a) -> XName a -> a # elem :: Eq a => a -> XName a -> Bool # maximum :: Ord a => XName a -> a # minimum :: Ord a => XName a -> a # | |
Foldable XAttr | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => XAttr m -> m # foldMap :: Monoid m => (a -> m) -> XAttr a -> m # foldMap' :: Monoid m => (a -> m) -> XAttr a -> m # foldr :: (a -> b -> b) -> b -> XAttr a -> b # foldr' :: (a -> b -> b) -> b -> XAttr a -> b # foldl :: (b -> a -> b) -> b -> XAttr a -> b # foldl' :: (b -> a -> b) -> b -> XAttr a -> b # foldr1 :: (a -> a -> a) -> XAttr a -> a # foldl1 :: (a -> a -> a) -> XAttr a -> a # elem :: Eq a => a -> XAttr a -> Bool # maximum :: Ord a => XAttr a -> a # minimum :: Ord a => XAttr a -> a # | |
Foldable Bracket | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => Bracket m -> m # foldMap :: Monoid m => (a -> m) -> Bracket a -> m # foldMap' :: Monoid m => (a -> m) -> Bracket a -> m # foldr :: (a -> b -> b) -> b -> Bracket a -> b # foldr' :: (a -> b -> b) -> b -> Bracket a -> b # foldl :: (b -> a -> b) -> b -> Bracket a -> b # foldl' :: (b -> a -> b) -> b -> Bracket a -> b # foldr1 :: (a -> a -> a) -> Bracket a -> a # foldl1 :: (a -> a -> a) -> Bracket a -> a # elem :: Eq a => a -> Bracket a -> Bool # maximum :: Ord a => Bracket a -> a # minimum :: Ord a => Bracket a -> a # | |
Foldable Splice | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => Splice m -> m # foldMap :: Monoid m => (a -> m) -> Splice a -> m # foldMap' :: Monoid m => (a -> m) -> Splice a -> m # foldr :: (a -> b -> b) -> b -> Splice a -> b # foldr' :: (a -> b -> b) -> b -> Splice a -> b # foldl :: (b -> a -> b) -> b -> Splice a -> b # foldl' :: (b -> a -> b) -> b -> Splice a -> b # foldr1 :: (a -> a -> a) -> Splice a -> a # foldl1 :: (a -> a -> a) -> Splice a -> a # elem :: Eq a => a -> Splice a -> Bool # maximum :: Ord a => Splice a -> a # minimum :: Ord a => Splice a -> a # | |
Foldable Safety | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => Safety m -> m # foldMap :: Monoid m => (a -> m) -> Safety a -> m # foldMap' :: Monoid m => (a -> m) -> Safety a -> m # foldr :: (a -> b -> b) -> b -> Safety a -> b # foldr' :: (a -> b -> b) -> b -> Safety a -> b # foldl :: (b -> a -> b) -> b -> Safety a -> b # foldl' :: (b -> a -> b) -> b -> Safety a -> b # foldr1 :: (a -> a -> a) -> Safety a -> a # foldl1 :: (a -> a -> a) -> Safety a -> a # elem :: Eq a => a -> Safety a -> Bool # maximum :: Ord a => Safety a -> a # minimum :: Ord a => Safety a -> a # | |
Foldable CallConv | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => CallConv m -> m # foldMap :: Monoid m => (a -> m) -> CallConv a -> m # foldMap' :: Monoid m => (a -> m) -> CallConv a -> m # foldr :: (a -> b -> b) -> b -> CallConv a -> b # foldr' :: (a -> b -> b) -> b -> CallConv a -> b # foldl :: (b -> a -> b) -> b -> CallConv a -> b # foldl' :: (b -> a -> b) -> b -> CallConv a -> b # foldr1 :: (a -> a -> a) -> CallConv a -> a # foldl1 :: (a -> a -> a) -> CallConv a -> a # elem :: Eq a => a -> CallConv a -> Bool # maximum :: Ord a => CallConv a -> a # minimum :: Ord a => CallConv a -> a # | |
Foldable ModulePragma | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => ModulePragma m -> m # foldMap :: Monoid m => (a -> m) -> ModulePragma a -> m # foldMap' :: Monoid m => (a -> m) -> ModulePragma a -> m # foldr :: (a -> b -> b) -> b -> ModulePragma a -> b # foldr' :: (a -> b -> b) -> b -> ModulePragma a -> b # foldl :: (b -> a -> b) -> b -> ModulePragma a -> b # foldl' :: (b -> a -> b) -> b -> ModulePragma a -> b # foldr1 :: (a -> a -> a) -> ModulePragma a -> a # foldl1 :: (a -> a -> a) -> ModulePragma a -> a # toList :: ModulePragma a -> [a] # null :: ModulePragma a -> Bool # length :: ModulePragma a -> Int # elem :: Eq a => a -> ModulePragma a -> Bool # maximum :: Ord a => ModulePragma a -> a # minimum :: Ord a => ModulePragma a -> a # sum :: Num a => ModulePragma a -> a # product :: Num a => ModulePragma a -> a # | |
Foldable Overlap | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => Overlap m -> m # foldMap :: Monoid m => (a -> m) -> Overlap a -> m # foldMap' :: Monoid m => (a -> m) -> Overlap a -> m # foldr :: (a -> b -> b) -> b -> Overlap a -> b # foldr' :: (a -> b -> b) -> b -> Overlap a -> b # foldl :: (b -> a -> b) -> b -> Overlap a -> b # foldl' :: (b -> a -> b) -> b -> Overlap a -> b # foldr1 :: (a -> a -> a) -> Overlap a -> a # foldl1 :: (a -> a -> a) -> Overlap a -> a # elem :: Eq a => a -> Overlap a -> Bool # maximum :: Ord a => Overlap a -> a # minimum :: Ord a => Overlap a -> a # | |
Foldable Activation | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => Activation m -> m # foldMap :: Monoid m => (a -> m) -> Activation a -> m # foldMap' :: Monoid m => (a -> m) -> Activation a -> m # foldr :: (a -> b -> b) -> b -> Activation a -> b # foldr' :: (a -> b -> b) -> b -> Activation a -> b # foldl :: (b -> a -> b) -> b -> Activation a -> b # foldl' :: (b -> a -> b) -> b -> Activation a -> b # foldr1 :: (a -> a -> a) -> Activation a -> a # foldl1 :: (a -> a -> a) -> Activation a -> a # toList :: Activation a -> [a] # null :: Activation a -> Bool # length :: Activation a -> Int # elem :: Eq a => a -> Activation a -> Bool # maximum :: Ord a => Activation a -> a # minimum :: Ord a => Activation a -> a # sum :: Num a => Activation a -> a # product :: Num a => Activation a -> a # | |
Foldable Rule | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => Rule m -> m # foldMap :: Monoid m => (a -> m) -> Rule a -> m # foldMap' :: Monoid m => (a -> m) -> Rule a -> m # foldr :: (a -> b -> b) -> b -> Rule a -> b # foldr' :: (a -> b -> b) -> b -> Rule a -> b # foldl :: (b -> a -> b) -> b -> Rule a -> b # foldl' :: (b -> a -> b) -> b -> Rule a -> b # foldr1 :: (a -> a -> a) -> Rule a -> a # foldl1 :: (a -> a -> a) -> Rule a -> a # elem :: Eq a => a -> Rule a -> Bool # maximum :: Ord a => Rule a -> a # | |
Foldable RuleVar | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => RuleVar m -> m # foldMap :: Monoid m => (a -> m) -> RuleVar a -> m # foldMap' :: Monoid m => (a -> m) -> RuleVar a -> m # foldr :: (a -> b -> b) -> b -> RuleVar a -> b # foldr' :: (a -> b -> b) -> b -> RuleVar a -> b # foldl :: (b -> a -> b) -> b -> RuleVar a -> b # foldl' :: (b -> a -> b) -> b -> RuleVar a -> b # foldr1 :: (a -> a -> a) -> RuleVar a -> a # foldl1 :: (a -> a -> a) -> RuleVar a -> a # elem :: Eq a => a -> RuleVar a -> Bool # maximum :: Ord a => RuleVar a -> a # minimum :: Ord a => RuleVar a -> a # | |
Foldable WarningText | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => WarningText m -> m # foldMap :: Monoid m => (a -> m) -> WarningText a -> m # foldMap' :: Monoid m => (a -> m) -> WarningText a -> m # foldr :: (a -> b -> b) -> b -> WarningText a -> b # foldr' :: (a -> b -> b) -> b -> WarningText a -> b # foldl :: (b -> a -> b) -> b -> WarningText a -> b # foldl' :: (b -> a -> b) -> b -> WarningText a -> b # foldr1 :: (a -> a -> a) -> WarningText a -> a # foldl1 :: (a -> a -> a) -> WarningText a -> a # toList :: WarningText a -> [a] # null :: WarningText a -> Bool # length :: WarningText a -> Int # elem :: Eq a => a -> WarningText a -> Bool # maximum :: Ord a => WarningText a -> a # minimum :: Ord a => WarningText a -> a # sum :: Num a => WarningText a -> a # product :: Num a => WarningText a -> a # | |
Foldable Pat | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => Pat m -> m # foldMap :: Monoid m => (a -> m) -> Pat a -> m # foldMap' :: Monoid m => (a -> m) -> Pat a -> m # foldr :: (a -> b -> b) -> b -> Pat a -> b # foldr' :: (a -> b -> b) -> b -> Pat a -> b # foldl :: (b -> a -> b) -> b -> Pat a -> b # foldl' :: (b -> a -> b) -> b -> Pat a -> b # foldr1 :: (a -> a -> a) -> Pat a -> a # foldl1 :: (a -> a -> a) -> Pat a -> a # elem :: Eq a => a -> Pat a -> Bool # maximum :: Ord a => Pat a -> a # | |
Foldable PXAttr | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => PXAttr m -> m # foldMap :: Monoid m => (a -> m) -> PXAttr a -> m # foldMap' :: Monoid m => (a -> m) -> PXAttr a -> m # foldr :: (a -> b -> b) -> b -> PXAttr a -> b # foldr' :: (a -> b -> b) -> b -> PXAttr a -> b # foldl :: (b -> a -> b) -> b -> PXAttr a -> b # foldl' :: (b -> a -> b) -> b -> PXAttr a -> b # foldr1 :: (a -> a -> a) -> PXAttr a -> a # foldl1 :: (a -> a -> a) -> PXAttr a -> a # elem :: Eq a => a -> PXAttr a -> Bool # maximum :: Ord a => PXAttr a -> a # minimum :: Ord a => PXAttr a -> a # | |
Foldable RPatOp | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => RPatOp m -> m # foldMap :: Monoid m => (a -> m) -> RPatOp a -> m # foldMap' :: Monoid m => (a -> m) -> RPatOp a -> m # foldr :: (a -> b -> b) -> b -> RPatOp a -> b # foldr' :: (a -> b -> b) -> b -> RPatOp a -> b # foldl :: (b -> a -> b) -> b -> RPatOp a -> b # foldl' :: (b -> a -> b) -> b -> RPatOp a -> b # foldr1 :: (a -> a -> a) -> RPatOp a -> a # foldl1 :: (a -> a -> a) -> RPatOp a -> a # elem :: Eq a => a -> RPatOp a -> Bool # maximum :: Ord a => RPatOp a -> a # minimum :: Ord a => RPatOp a -> a # | |
Foldable RPat | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => RPat m -> m # foldMap :: Monoid m => (a -> m) -> RPat a -> m # foldMap' :: Monoid m => (a -> m) -> RPat a -> m # foldr :: (a -> b -> b) -> b -> RPat a -> b # foldr' :: (a -> b -> b) -> b -> RPat a -> b # foldl :: (b -> a -> b) -> b -> RPat a -> b # foldl' :: (b -> a -> b) -> b -> RPat a -> b # foldr1 :: (a -> a -> a) -> RPat a -> a # foldl1 :: (a -> a -> a) -> RPat a -> a # elem :: Eq a => a -> RPat a -> Bool # maximum :: Ord a => RPat a -> a # | |
Foldable PatField | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => PatField m -> m # foldMap :: Monoid m => (a -> m) -> PatField a -> m # foldMap' :: Monoid m => (a -> m) -> PatField a -> m # foldr :: (a -> b -> b) -> b -> PatField a -> b # foldr' :: (a -> b -> b) -> b -> PatField a -> b # foldl :: (b -> a -> b) -> b -> PatField a -> b # foldl' :: (b -> a -> b) -> b -> PatField a -> b # foldr1 :: (a -> a -> a) -> PatField a -> a # foldl1 :: (a -> a -> a) -> PatField a -> a # elem :: Eq a => a -> PatField a -> Bool # maximum :: Ord a => PatField a -> a # minimum :: Ord a => PatField a -> a # | |
Foldable Stmt | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => Stmt m -> m # foldMap :: Monoid m => (a -> m) -> Stmt a -> m # foldMap' :: Monoid m => (a -> m) -> Stmt a -> m # foldr :: (a -> b -> b) -> b -> Stmt a -> b # foldr' :: (a -> b -> b) -> b -> Stmt a -> b # foldl :: (b -> a -> b) -> b -> Stmt a -> b # foldl' :: (b -> a -> b) -> b -> Stmt a -> b # foldr1 :: (a -> a -> a) -> Stmt a -> a # foldl1 :: (a -> a -> a) -> Stmt a -> a # elem :: Eq a => a -> Stmt a -> Bool # maximum :: Ord a => Stmt a -> a # | |
Foldable QualStmt | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => QualStmt m -> m # foldMap :: Monoid m => (a -> m) -> QualStmt a -> m # foldMap' :: Monoid m => (a -> m) -> QualStmt a -> m # foldr :: (a -> b -> b) -> b -> QualStmt a -> b # foldr' :: (a -> b -> b) -> b -> QualStmt a -> b # foldl :: (b -> a -> b) -> b -> QualStmt a -> b # foldl' :: (b -> a -> b) -> b -> QualStmt a -> b # foldr1 :: (a -> a -> a) -> QualStmt a -> a # foldl1 :: (a -> a -> a) -> QualStmt a -> a # elem :: Eq a => a -> QualStmt a -> Bool # maximum :: Ord a => QualStmt a -> a # minimum :: Ord a => QualStmt a -> a # | |
Foldable FieldUpdate | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => FieldUpdate m -> m # foldMap :: Monoid m => (a -> m) -> FieldUpdate a -> m # foldMap' :: Monoid m => (a -> m) -> FieldUpdate a -> m # foldr :: (a -> b -> b) -> b -> FieldUpdate a -> b # foldr' :: (a -> b -> b) -> b -> FieldUpdate a -> b # foldl :: (b -> a -> b) -> b -> FieldUpdate a -> b # foldl' :: (b -> a -> b) -> b -> FieldUpdate a -> b # foldr1 :: (a -> a -> a) -> FieldUpdate a -> a # foldl1 :: (a -> a -> a) -> FieldUpdate a -> a # toList :: FieldUpdate a -> [a] # null :: FieldUpdate a -> Bool # length :: FieldUpdate a -> Int # elem :: Eq a => a -> FieldUpdate a -> Bool # maximum :: Ord a => FieldUpdate a -> a # minimum :: Ord a => FieldUpdate a -> a # sum :: Num a => FieldUpdate a -> a # product :: Num a => FieldUpdate a -> a # | |
Foldable Alt | |
Defined in Language.Haskell.Exts.Syntax Methods fold :: Monoid m => Alt m -> m # foldMap :: Monoid m => (a -> m) -> Alt a -> m # foldMap' :: Monoid m => (a -> m) -> Alt a -> m # foldr :: (a -> b -> b) -> b -> Alt a -> b # foldr' :: (a -> b -> b) -> b -> Alt a -> b # foldl :: (b -> a -> b) -> b -> Alt a -> b # foldl' :: (b -> a -> b) -> b -> Alt a -> b # foldr1 :: (a -> a -> a) -> Alt a -> a # foldl1 :: (a -> a -> a) -> Alt a -> a # elem :: Eq a => a -> Alt a -> Bool # maximum :: Ord a => Alt a -> a # | |
Foldable JavaScript | |
Defined in Language.ECMAScript3.Syntax Methods fold :: Monoid m => JavaScript m -> m # foldMap :: Monoid m => (a -> m) -> JavaScript a -> m # foldMap' :: Monoid m => (a -> m) -> JavaScript a -> m # foldr :: (a -> b -> b) -> b -> JavaScript a -> b # foldr' :: (a -> b -> b) -> b -> JavaScript a -> b # foldl :: (b -> a -> b) -> b -> JavaScript a -> b # foldl' :: (b -> a -> b) -> b -> JavaScript a -> b # foldr1 :: (a -> a -> a) -> JavaScript a -> a # foldl1 :: (a -> a -> a) -> JavaScript a -> a # toList :: JavaScript a -> [a] # null :: JavaScript a -> Bool # length :: JavaScript a -> Int # elem :: Eq a => a -> JavaScript a -> Bool # maximum :: Ord a => JavaScript a -> a # minimum :: Ord a => JavaScript a -> a # sum :: Num a => JavaScript a -> a # product :: Num a => JavaScript a -> a # | |
Foldable Id | |
Defined in Language.ECMAScript3.Syntax Methods fold :: Monoid m => Id m -> m # foldMap :: Monoid m => (a -> m) -> Id a -> m # foldMap' :: Monoid m => (a -> m) -> Id a -> m # foldr :: (a -> b -> b) -> b -> Id a -> b # foldr' :: (a -> b -> b) -> b -> Id a -> b # foldl :: (b -> a -> b) -> b -> Id a -> b # foldl' :: (b -> a -> b) -> b -> Id a -> b # foldr1 :: (a -> a -> a) -> Id a -> a # foldl1 :: (a -> a -> a) -> Id a -> a # elem :: Eq a => a -> Id a -> Bool # maximum :: Ord a => Id a -> a # | |
Foldable Prop | |
Defined in Language.ECMAScript3.Syntax Methods fold :: Monoid m => Prop m -> m # foldMap :: Monoid m => (a -> m) -> Prop a -> m # foldMap' :: Monoid m => (a -> m) -> Prop a -> m # foldr :: (a -> b -> b) -> b -> Prop a -> b # foldr' :: (a -> b -> b) -> b -> Prop a -> b # foldl :: (b -> a -> b) -> b -> Prop a -> b # foldl' :: (b -> a -> b) -> b -> Prop a -> b # foldr1 :: (a -> a -> a) -> Prop a -> a # foldl1 :: (a -> a -> a) -> Prop a -> a # elem :: Eq a => a -> Prop a -> Bool # maximum :: Ord a => Prop a -> a # | |
Foldable LValue | |
Defined in Language.ECMAScript3.Syntax Methods fold :: Monoid m => LValue m -> m # foldMap :: Monoid m => (a -> m) -> LValue a -> m # foldMap' :: Monoid m => (a -> m) -> LValue a -> m # foldr :: (a -> b -> b) -> b -> LValue a -> b # foldr' :: (a -> b -> b) -> b -> LValue a -> b # foldl :: (b -> a -> b) -> b -> LValue a -> b # foldl' :: (b -> a -> b) -> b -> LValue a -> b # foldr1 :: (a -> a -> a) -> LValue a -> a # foldl1 :: (a -> a -> a) -> LValue a -> a # elem :: Eq a => a -> LValue a -> Bool # maximum :: Ord a => LValue a -> a # minimum :: Ord a => LValue a -> a # | |
Foldable Expression | |
Defined in Language.ECMAScript3.Syntax Methods fold :: Monoid m => Expression m -> m # foldMap :: Monoid m => (a -> m) -> Expression a -> m # foldMap' :: Monoid m => (a -> m) -> Expression a -> m # foldr :: (a -> b -> b) -> b -> Expression a -> b # foldr' :: (a -> b -> b) -> b -> Expression a -> b # foldl :: (b -> a -> b) -> b -> Expression a -> b # foldl' :: (b -> a -> b) -> b -> Expression a -> b # foldr1 :: (a -> a -> a) -> Expression a -> a # foldl1 :: (a -> a -> a) -> Expression a -> a # toList :: Expression a -> [a] # null :: Expression a -> Bool # length :: Expression a -> Int # elem :: Eq a => a -> Expression a -> Bool # maximum :: Ord a => Expression a -> a # minimum :: Ord a => Expression a -> a # sum :: Num a => Expression a -> a # product :: Num a => Expression a -> a # | |
Foldable CaseClause | |
Defined in Language.ECMAScript3.Syntax Methods fold :: Monoid m => CaseClause m -> m # foldMap :: Monoid m => (a -> m) -> CaseClause a -> m # foldMap' :: Monoid m => (a -> m) -> CaseClause a -> m # foldr :: (a -> b -> b) -> b -> CaseClause a -> b # foldr' :: (a -> b -> b) -> b -> CaseClause a -> b # foldl :: (b -> a -> b) -> b -> CaseClause a -> b # foldl' :: (b -> a -> b) -> b -> CaseClause a -> b # foldr1 :: (a -> a -> a) -> CaseClause a -> a # foldl1 :: (a -> a -> a) -> CaseClause a -> a # toList :: CaseClause a -> [a] # null :: CaseClause a -> Bool # length :: CaseClause a -> Int # elem :: Eq a => a -> CaseClause a -> Bool # maximum :: Ord a => CaseClause a -> a # minimum :: Ord a => CaseClause a -> a # sum :: Num a => CaseClause a -> a # product :: Num a => CaseClause a -> a # | |
Foldable CatchClause | |
Defined in Language.ECMAScript3.Syntax Methods fold :: Monoid m => CatchClause m -> m # foldMap :: Monoid m => (a -> m) -> CatchClause a -> m # foldMap' :: Monoid m => (a -> m) -> CatchClause a -> m # foldr :: (a -> b -> b) -> b -> CatchClause a -> b # foldr' :: (a -> b -> b) -> b -> CatchClause a -> b # foldl :: (b -> a -> b) -> b -> CatchClause a -> b # foldl' :: (b -> a -> b) -> b -> CatchClause a -> b # foldr1 :: (a -> a -> a) -> CatchClause a -> a # foldl1 :: (a -> a -> a) -> CatchClause a -> a # toList :: CatchClause a -> [a] # null :: CatchClause a -> Bool # length :: CatchClause a -> Int # elem :: Eq a => a -> CatchClause a -> Bool # maximum :: Ord a => CatchClause a -> a # minimum :: Ord a => CatchClause a -> a # sum :: Num a => CatchClause a -> a # product :: Num a => CatchClause a -> a # | |
Foldable VarDecl | |
Defined in Language.ECMAScript3.Syntax Methods fold :: Monoid m => VarDecl m -> m # foldMap :: Monoid m => (a -> m) -> VarDecl a -> m # foldMap' :: Monoid m => (a -> m) -> VarDecl a -> m # foldr :: (a -> b -> b) -> b -> VarDecl a -> b # foldr' :: (a -> b -> b) -> b -> VarDecl a -> b # foldl :: (b -> a -> b) -> b -> VarDecl a -> b # foldl' :: (b -> a -> b) -> b -> VarDecl a -> b # foldr1 :: (a -> a -> a) -> VarDecl a -> a # foldl1 :: (a -> a -> a) -> VarDecl a -> a # elem :: Eq a => a -> VarDecl a -> Bool # maximum :: Ord a => VarDecl a -> a # minimum :: Ord a => VarDecl a -> a # | |
Foldable ForInit | |
Defined in Language.ECMAScript3.Syntax Methods fold :: Monoid m => ForInit m -> m # foldMap :: Monoid m => (a -> m) -> ForInit a -> m # foldMap' :: Monoid m => (a -> m) -> ForInit a -> m # foldr :: (a -> b -> b) -> b -> ForInit a -> b # foldr' :: (a -> b -> b) -> b -> ForInit a -> b # foldl :: (b -> a -> b) -> b -> ForInit a -> b # foldl' :: (b -> a -> b) -> b -> ForInit a -> b # foldr1 :: (a -> a -> a) -> ForInit a -> a # foldl1 :: (a -> a -> a) -> ForInit a -> a # elem :: Eq a => a -> ForInit a -> Bool # maximum :: Ord a => ForInit a -> a # minimum :: Ord a => ForInit a -> a # | |
Foldable ForInInit | |
Defined in Language.ECMAScript3.Syntax Methods fold :: Monoid m => ForInInit m -> m # foldMap :: Monoid m => (a -> m) -> ForInInit a -> m # foldMap' :: Monoid m => (a -> m) -> ForInInit a -> m # foldr :: (a -> b -> b) -> b -> ForInInit a -> b # foldr' :: (a -> b -> b) -> b -> ForInInit a -> b # foldl :: (b -> a -> b) -> b -> ForInInit a -> b # foldl' :: (b -> a -> b) -> b -> ForInInit a -> b # foldr1 :: (a -> a -> a) -> ForInInit a -> a # foldl1 :: (a -> a -> a) -> ForInInit a -> a # toList :: ForInInit a -> [a] # length :: ForInInit a -> Int # elem :: Eq a => a -> ForInInit a -> Bool # maximum :: Ord a => ForInInit a -> a # minimum :: Ord a => ForInInit a -> a # | |
Foldable Statement | |
Defined in Language.ECMAScript3.Syntax Methods fold :: Monoid m => Statement m -> m # foldMap :: Monoid m => (a -> m) -> Statement a -> m # foldMap' :: Monoid m => (a -> m) -> Statement a -> m # foldr :: (a -> b -> b) -> b -> Statement a -> b # foldr' :: (a -> b -> b) -> b -> Statement a -> b # foldl :: (b -> a -> b) -> b -> Statement a -> b # foldl' :: (b -> a -> b) -> b -> Statement a -> b # foldr1 :: (a -> a -> a) -> Statement a -> a # foldl1 :: (a -> a -> a) -> Statement a -> a # toList :: Statement a -> [a] # length :: Statement a -> Int # elem :: Eq a => a -> Statement a -> Bool # maximum :: Ord a => Statement a -> a # minimum :: Ord a => Statement a -> a # | |
Foldable SmallArray | |
Defined in Data.Primitive.SmallArray Methods fold :: Monoid m => SmallArray m -> m # foldMap :: Monoid m => (a -> m) -> SmallArray a -> m # foldMap' :: Monoid m => (a -> m) -> SmallArray a -> m # foldr :: (a -> b -> b) -> b -> SmallArray a -> b # foldr' :: (a -> b -> b) -> b -> SmallArray a -> b # foldl :: (b -> a -> b) -> b -> SmallArray a -> b # foldl' :: (b -> a -> b) -> b -> SmallArray a -> b # foldr1 :: (a -> a -> a) -> SmallArray a -> a # foldl1 :: (a -> a -> a) -> SmallArray a -> a # toList :: SmallArray a -> [a] # null :: SmallArray a -> Bool # length :: SmallArray a -> Int # elem :: Eq a => a -> SmallArray a -> Bool # maximum :: Ord a => SmallArray a -> a # minimum :: Ord a => SmallArray a -> a # sum :: Num a => SmallArray a -> a # product :: Num a => SmallArray a -> a # | |
Foldable Array | |
Defined in Data.Primitive.Array Methods fold :: Monoid m => Array m -> m # foldMap :: Monoid m => (a -> m) -> Array a -> m # foldMap' :: Monoid m => (a -> m) -> Array a -> m # foldr :: (a -> b -> b) -> b -> Array a -> b # foldr' :: (a -> b -> b) -> b -> Array a -> b # foldl :: (b -> a -> b) -> b -> Array a -> b # foldl' :: (b -> a -> b) -> b -> Array a -> b # foldr1 :: (a -> a -> a) -> Array a -> a # foldl1 :: (a -> a -> a) -> Array a -> a # elem :: Eq a => a -> Array a -> Bool # maximum :: Ord a => Array a -> a # minimum :: Ord a => Array a -> a # | |
Foldable Maybe | |
Defined in Data.Strict.Maybe Methods fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldMap' :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |
Foldable HashSet | |
Defined in Data.HashSet.Internal Methods fold :: Monoid m => HashSet m -> m # foldMap :: Monoid m => (a -> m) -> HashSet a -> m # foldMap' :: Monoid m => (a -> m) -> HashSet a -> m # foldr :: (a -> b -> b) -> b -> HashSet a -> b # foldr' :: (a -> b -> b) -> b -> HashSet a -> b # foldl :: (b -> a -> b) -> b -> HashSet a -> b # foldl' :: (b -> a -> b) -> b -> HashSet a -> b # foldr1 :: (a -> a -> a) -> HashSet a -> a # foldl1 :: (a -> a -> a) -> HashSet a -> a # elem :: Eq a => a -> HashSet a -> Bool # maximum :: Ord a => HashSet a -> a # minimum :: Ord a => HashSet a -> a # | |
Foldable Vector | |
Defined in Data.Vector Methods fold :: Monoid m => Vector m -> m # foldMap :: Monoid m => (a -> m) -> Vector a -> m # foldMap' :: Monoid m => (a -> m) -> Vector a -> m # foldr :: (a -> b -> b) -> b -> Vector a -> b # foldr' :: (a -> b -> b) -> b -> Vector a -> b # foldl :: (b -> a -> b) -> b -> Vector a -> b # foldl' :: (b -> a -> b) -> b -> Vector a -> b # foldr1 :: (a -> a -> a) -> Vector a -> a # foldl1 :: (a -> a -> a) -> Vector a -> a # elem :: Eq a => a -> Vector a -> Bool # maximum :: Ord a => Vector a -> a # minimum :: Ord a => Vector a -> a # | |
Foldable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Either a m -> m # foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # toList :: Either a a0 -> [a0] # length :: Either a a0 -> Int # elem :: Eq a0 => a0 -> Either a a0 -> Bool # maximum :: Ord a0 => Either a a0 -> a0 # minimum :: Ord a0 => Either a a0 -> a0 # | |
Foldable (V1 :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => V1 m -> m # foldMap :: Monoid m => (a -> m) -> V1 a -> m # foldMap' :: Monoid m => (a -> m) -> V1 a -> m # foldr :: (a -> b -> b) -> b -> V1 a -> b # foldr' :: (a -> b -> b) -> b -> V1 a -> b # foldl :: (b -> a -> b) -> b -> V1 a -> b # foldl' :: (b -> a -> b) -> b -> V1 a -> b # foldr1 :: (a -> a -> a) -> V1 a -> a # foldl1 :: (a -> a -> a) -> V1 a -> a # elem :: Eq a => a -> V1 a -> Bool # maximum :: Ord a => V1 a -> a # | |
Foldable (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => U1 m -> m # foldMap :: Monoid m => (a -> m) -> U1 a -> m # foldMap' :: Monoid m => (a -> m) -> U1 a -> m # foldr :: (a -> b -> b) -> b -> U1 a -> b # foldr' :: (a -> b -> b) -> b -> U1 a -> b # foldl :: (b -> a -> b) -> b -> U1 a -> b # foldl' :: (b -> a -> b) -> b -> U1 a -> b # foldr1 :: (a -> a -> a) -> U1 a -> a # foldl1 :: (a -> a -> a) -> U1 a -> a # elem :: Eq a => a -> U1 a -> Bool # maximum :: Ord a => U1 a -> a # | |
Foldable (UAddr :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UAddr m -> m # foldMap :: Monoid m => (a -> m) -> UAddr a -> m # foldMap' :: Monoid m => (a -> m) -> UAddr a -> m # foldr :: (a -> b -> b) -> b -> UAddr a -> b # foldr' :: (a -> b -> b) -> b -> UAddr a -> b # foldl :: (b -> a -> b) -> b -> UAddr a -> b # foldl' :: (b -> a -> b) -> b -> UAddr a -> b # foldr1 :: (a -> a -> a) -> UAddr a -> a # foldl1 :: (a -> a -> a) -> UAddr a -> a # elem :: Eq a => a -> UAddr a -> Bool # maximum :: Ord a => UAddr a -> a # minimum :: Ord a => UAddr a -> a # | |
Foldable (UChar :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UChar m -> m # foldMap :: Monoid m => (a -> m) -> UChar a -> m # foldMap' :: Monoid m => (a -> m) -> UChar a -> m # foldr :: (a -> b -> b) -> b -> UChar a -> b # foldr' :: (a -> b -> b) -> b -> UChar a -> b # foldl :: (b -> a -> b) -> b -> UChar a -> b # foldl' :: (b -> a -> b) -> b -> UChar a -> b # foldr1 :: (a -> a -> a) -> UChar a -> a # foldl1 :: (a -> a -> a) -> UChar a -> a # elem :: Eq a => a -> UChar a -> Bool # maximum :: Ord a => UChar a -> a # minimum :: Ord a => UChar a -> a # | |
Foldable (UDouble :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UDouble m -> m # foldMap :: Monoid m => (a -> m) -> UDouble a -> m # foldMap' :: Monoid m => (a -> m) -> UDouble a -> m # foldr :: (a -> b -> b) -> b -> UDouble a -> b # foldr' :: (a -> b -> b) -> b -> UDouble a -> b # foldl :: (b -> a -> b) -> b -> UDouble a -> b # foldl' :: (b -> a -> b) -> b -> UDouble a -> b # foldr1 :: (a -> a -> a) -> UDouble a -> a # foldl1 :: (a -> a -> a) -> UDouble a -> a # elem :: Eq a => a -> UDouble a -> Bool # maximum :: Ord a => UDouble a -> a # minimum :: Ord a => UDouble a -> a # | |
Foldable (UFloat :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UFloat m -> m # foldMap :: Monoid m => (a -> m) -> UFloat a -> m # foldMap' :: Monoid m => (a -> m) -> UFloat a -> m # foldr :: (a -> b -> b) -> b -> UFloat a -> b # foldr' :: (a -> b -> b) -> b -> UFloat a -> b # foldl :: (b -> a -> b) -> b -> UFloat a -> b # foldl' :: (b -> a -> b) -> b -> UFloat a -> b # foldr1 :: (a -> a -> a) -> UFloat a -> a # foldl1 :: (a -> a -> a) -> UFloat a -> a # elem :: Eq a => a -> UFloat a -> Bool # maximum :: Ord a => UFloat a -> a # minimum :: Ord a => UFloat a -> a # | |
Foldable (UInt :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UInt m -> m # foldMap :: Monoid m => (a -> m) -> UInt a -> m # foldMap' :: Monoid m => (a -> m) -> UInt a -> m # foldr :: (a -> b -> b) -> b -> UInt a -> b # foldr' :: (a -> b -> b) -> b -> UInt a -> b # foldl :: (b -> a -> b) -> b -> UInt a -> b # foldl' :: (b -> a -> b) -> b -> UInt a -> b # foldr1 :: (a -> a -> a) -> UInt a -> a # foldl1 :: (a -> a -> a) -> UInt a -> a # elem :: Eq a => a -> UInt a -> Bool # maximum :: Ord a => UInt a -> a # | |
Foldable (UWord :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UWord m -> m # foldMap :: Monoid m => (a -> m) -> UWord a -> m # foldMap' :: Monoid m => (a -> m) -> UWord a -> m # foldr :: (a -> b -> b) -> b -> UWord a -> b # foldr' :: (a -> b -> b) -> b -> UWord a -> b # foldl :: (b -> a -> b) -> b -> UWord a -> b # foldl' :: (b -> a -> b) -> b -> UWord a -> b # foldr1 :: (a -> a -> a) -> UWord a -> a # foldl1 :: (a -> a -> a) -> UWord a -> a # elem :: Eq a => a -> UWord a -> Bool # maximum :: Ord a => UWord a -> a # minimum :: Ord a => UWord a -> a # | |
Foldable ((,) a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (a, m) -> m # foldMap :: Monoid m => (a0 -> m) -> (a, a0) -> m # foldMap' :: Monoid m => (a0 -> m) -> (a, a0) -> m # foldr :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldr' :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldl :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldl' :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldr1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # foldl1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # elem :: Eq a0 => a0 -> (a, a0) -> Bool # maximum :: Ord a0 => (a, a0) -> a0 # minimum :: Ord a0 => (a, a0) -> a0 # | |
Foldable (HashMap k) | |
Defined in Data.HashMap.Internal Methods fold :: Monoid m => HashMap k m -> m # foldMap :: Monoid m => (a -> m) -> HashMap k a -> m # foldMap' :: Monoid m => (a -> m) -> HashMap k a -> m # foldr :: (a -> b -> b) -> b -> HashMap k a -> b # foldr' :: (a -> b -> b) -> b -> HashMap k a -> b # foldl :: (b -> a -> b) -> b -> HashMap k a -> b # foldl' :: (b -> a -> b) -> b -> HashMap k a -> b # foldr1 :: (a -> a -> a) -> HashMap k a -> a # foldl1 :: (a -> a -> a) -> HashMap k a -> a # toList :: HashMap k a -> [a] # length :: HashMap k a -> Int # elem :: Eq a => a -> HashMap k a -> Bool # maximum :: Ord a => HashMap k a -> a # minimum :: Ord a => HashMap k a -> a # | |
Foldable (Map k) | Folds in order of increasing key. |
Defined in Data.Map.Internal Methods fold :: Monoid m => Map k m -> m # foldMap :: Monoid m => (a -> m) -> Map k a -> m # foldMap' :: Monoid m => (a -> m) -> Map k a -> m # foldr :: (a -> b -> b) -> b -> Map k a -> b # foldr' :: (a -> b -> b) -> b -> Map k a -> b # foldl :: (b -> a -> b) -> b -> Map k a -> b # foldl' :: (b -> a -> b) -> b -> Map k a -> b # foldr1 :: (a -> a -> a) -> Map k a -> a # foldl1 :: (a -> a -> a) -> Map k a -> a # elem :: Eq a => a -> Map k a -> Bool # maximum :: Ord a => Map k a -> a # minimum :: Ord a => Map k a -> a # | |
Foldable (Array i) | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Array i m -> m # foldMap :: Monoid m => (a -> m) -> Array i a -> m # foldMap' :: Monoid m => (a -> m) -> Array i a -> m # foldr :: (a -> b -> b) -> b -> Array i a -> b # foldr' :: (a -> b -> b) -> b -> Array i a -> b # foldl :: (b -> a -> b) -> b -> Array i a -> b # foldl' :: (b -> a -> b) -> b -> Array i a -> b # foldr1 :: (a -> a -> a) -> Array i a -> a # foldl1 :: (a -> a -> a) -> Array i a -> a # elem :: Eq a => a -> Array i a -> Bool # maximum :: Ord a => Array i a -> a # minimum :: Ord a => Array i a -> a # | |
Foldable (Arg a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Arg a m -> m # foldMap :: Monoid m => (a0 -> m) -> Arg a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Arg a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Arg a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Arg a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Arg a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Arg a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 # elem :: Eq a0 => a0 -> Arg a a0 -> Bool # maximum :: Ord a0 => Arg a a0 -> a0 # minimum :: Ord a0 => Arg a a0 -> a0 # | |
Foldable (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Proxy m -> m # foldMap :: Monoid m => (a -> m) -> Proxy a -> m # foldMap' :: Monoid m => (a -> m) -> Proxy a -> m # foldr :: (a -> b -> b) -> b -> Proxy a -> b # foldr' :: (a -> b -> b) -> b -> Proxy a -> b # foldl :: (b -> a -> b) -> b -> Proxy a -> b # foldl' :: (b -> a -> b) -> b -> Proxy a -> b # foldr1 :: (a -> a -> a) -> Proxy a -> a # foldl1 :: (a -> a -> a) -> Proxy a -> a # elem :: Eq a => a -> Proxy a -> Bool # maximum :: Ord a => Proxy a -> a # minimum :: Ord a => Proxy a -> a # | |
Foldable f => Foldable (MaybeT f) | |
Defined in Control.Monad.Trans.Maybe Methods fold :: Monoid m => MaybeT f m -> m # foldMap :: Monoid m => (a -> m) -> MaybeT f a -> m # foldMap' :: Monoid m => (a -> m) -> MaybeT f a -> m # foldr :: (a -> b -> b) -> b -> MaybeT f a -> b # foldr' :: (a -> b -> b) -> b -> MaybeT f a -> b # foldl :: (b -> a -> b) -> b -> MaybeT f a -> b # foldl' :: (b -> a -> b) -> b -> MaybeT f a -> b # foldr1 :: (a -> a -> a) -> MaybeT f a -> a # foldl1 :: (a -> a -> a) -> MaybeT f a -> a # elem :: Eq a => a -> MaybeT f a -> Bool # maximum :: Ord a => MaybeT f a -> a # minimum :: Ord a => MaybeT f a -> a # | |
Foldable f => Foldable (ListT f) | |
Defined in Control.Monad.Trans.List Methods fold :: Monoid m => ListT f m -> m # foldMap :: Monoid m => (a -> m) -> ListT f a -> m # foldMap' :: Monoid m => (a -> m) -> ListT f a -> m # foldr :: (a -> b -> b) -> b -> ListT f a -> b # foldr' :: (a -> b -> b) -> b -> ListT f a -> b # foldl :: (b -> a -> b) -> b -> ListT f a -> b # foldl' :: (b -> a -> b) -> b -> ListT f a -> b # foldr1 :: (a -> a -> a) -> ListT f a -> a # foldl1 :: (a -> a -> a) -> ListT f a -> a # elem :: Eq a => a -> ListT f a -> Bool # maximum :: Ord a => ListT f a -> a # minimum :: Ord a => ListT f a -> a # | |
Foldable (Pair e) | |
Defined in Data.Strict.Tuple Methods fold :: Monoid m => Pair e m -> m # foldMap :: Monoid m => (a -> m) -> Pair e a -> m # foldMap' :: Monoid m => (a -> m) -> Pair e a -> m # foldr :: (a -> b -> b) -> b -> Pair e a -> b # foldr' :: (a -> b -> b) -> b -> Pair e a -> b # foldl :: (b -> a -> b) -> b -> Pair e a -> b # foldl' :: (b -> a -> b) -> b -> Pair e a -> b # foldr1 :: (a -> a -> a) -> Pair e a -> a # foldl1 :: (a -> a -> a) -> Pair e a -> a # elem :: Eq a => a -> Pair e a -> Bool # maximum :: Ord a => Pair e a -> a # minimum :: Ord a => Pair e a -> a # | |
Foldable (These a) | |
Defined in Data.Strict.These Methods fold :: Monoid m => These a m -> m # foldMap :: Monoid m => (a0 -> m) -> These a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> These a a0 -> m # foldr :: (a0 -> b -> b) -> b -> These a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> These a a0 -> b # foldl :: (b -> a0 -> b) -> b -> These a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> These a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> These a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> These a a0 -> a0 # toList :: These a a0 -> [a0] # elem :: Eq a0 => a0 -> These a a0 -> Bool # maximum :: Ord a0 => These a a0 -> a0 # minimum :: Ord a0 => These a a0 -> a0 # | |
Foldable (Either e) | |
Defined in Data.Strict.Either Methods fold :: Monoid m => Either e m -> m # foldMap :: Monoid m => (a -> m) -> Either e a -> m # foldMap' :: Monoid m => (a -> m) -> Either e a -> m # foldr :: (a -> b -> b) -> b -> Either e a -> b # foldr' :: (a -> b -> b) -> b -> Either e a -> b # foldl :: (b -> a -> b) -> b -> Either e a -> b # foldl' :: (b -> a -> b) -> b -> Either e a -> b # foldr1 :: (a -> a -> a) -> Either e a -> a # foldl1 :: (a -> a -> a) -> Either e a -> a # elem :: Eq a => a -> Either e a -> Bool # maximum :: Ord a => Either e a -> a # minimum :: Ord a => Either e a -> a # | |
Foldable (These a) | |
Defined in Data.These Methods fold :: Monoid m => These a m -> m # foldMap :: Monoid m => (a0 -> m) -> These a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> These a a0 -> m # foldr :: (a0 -> b -> b) -> b -> These a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> These a a0 -> b # foldl :: (b -> a0 -> b) -> b -> These a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> These a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> These a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> These a a0 -> a0 # toList :: These a a0 -> [a0] # elem :: Eq a0 => a0 -> These a a0 -> Bool # maximum :: Ord a0 => These a a0 -> a0 # minimum :: Ord a0 => These a a0 -> a0 # | |
Foldable f => Foldable (Rec1 f) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Rec1 f m -> m # foldMap :: Monoid m => (a -> m) -> Rec1 f a -> m # foldMap' :: Monoid m => (a -> m) -> Rec1 f a -> m # foldr :: (a -> b -> b) -> b -> Rec1 f a -> b # foldr' :: (a -> b -> b) -> b -> Rec1 f a -> b # foldl :: (b -> a -> b) -> b -> Rec1 f a -> b # foldl' :: (b -> a -> b) -> b -> Rec1 f a -> b # foldr1 :: (a -> a -> a) -> Rec1 f a -> a # foldl1 :: (a -> a -> a) -> Rec1 f a -> a # elem :: Eq a => a -> Rec1 f a -> Bool # maximum :: Ord a => Rec1 f a -> a # minimum :: Ord a => Rec1 f a -> a # | |
Foldable (Const m :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Functor.Const Methods fold :: Monoid m0 => Const m m0 -> m0 # foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldMap' :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldr :: (a -> b -> b) -> b -> Const m a -> b # foldr' :: (a -> b -> b) -> b -> Const m a -> b # foldl :: (b -> a -> b) -> b -> Const m a -> b # foldl' :: (b -> a -> b) -> b -> Const m a -> b # foldr1 :: (a -> a -> a) -> Const m a -> a # foldl1 :: (a -> a -> a) -> Const m a -> a # elem :: Eq a => a -> Const m a -> Bool # maximum :: Ord a => Const m a -> a # minimum :: Ord a => Const m a -> a # | |
Foldable f => Foldable (Ap f) | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Ap f m -> m # foldMap :: Monoid m => (a -> m) -> Ap f a -> m # foldMap' :: Monoid m => (a -> m) -> Ap f a -> m # foldr :: (a -> b -> b) -> b -> Ap f a -> b # foldr' :: (a -> b -> b) -> b -> Ap f a -> b # foldl :: (b -> a -> b) -> b -> Ap f a -> b # foldl' :: (b -> a -> b) -> b -> Ap f a -> b # foldr1 :: (a -> a -> a) -> Ap f a -> a # foldl1 :: (a -> a -> a) -> Ap f a -> a # elem :: Eq a => a -> Ap f a -> Bool # maximum :: Ord a => Ap f a -> a # | |
Foldable f => Foldable (Alt f) | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Alt f m -> m # foldMap :: Monoid m => (a -> m) -> Alt f a -> m # foldMap' :: Monoid m => (a -> m) -> Alt f a -> m # foldr :: (a -> b -> b) -> b -> Alt f a -> b # foldr' :: (a -> b -> b) -> b -> Alt f a -> b # foldl :: (b -> a -> b) -> b -> Alt f a -> b # foldl' :: (b -> a -> b) -> b -> Alt f a -> b # foldr1 :: (a -> a -> a) -> Alt f a -> a # foldl1 :: (a -> a -> a) -> Alt f a -> a # elem :: Eq a => a -> Alt f a -> Bool # maximum :: Ord a => Alt f a -> a # minimum :: Ord a => Alt f a -> a # | |
Foldable f => Foldable (IdentityT f) | |
Defined in Control.Monad.Trans.Identity Methods fold :: Monoid m => IdentityT f m -> m # foldMap :: Monoid m => (a -> m) -> IdentityT f a -> m # foldMap' :: Monoid m => (a -> m) -> IdentityT f a -> m # foldr :: (a -> b -> b) -> b -> IdentityT f a -> b # foldr' :: (a -> b -> b) -> b -> IdentityT f a -> b # foldl :: (b -> a -> b) -> b -> IdentityT f a -> b # foldl' :: (b -> a -> b) -> b -> IdentityT f a -> b # foldr1 :: (a -> a -> a) -> IdentityT f a -> a # foldl1 :: (a -> a -> a) -> IdentityT f a -> a # toList :: IdentityT f a -> [a] # null :: IdentityT f a -> Bool # length :: IdentityT f a -> Int # elem :: Eq a => a -> IdentityT f a -> Bool # maximum :: Ord a => IdentityT f a -> a # minimum :: Ord a => IdentityT f a -> a # | |
Foldable f => Foldable (ExceptT e f) | |
Defined in Control.Monad.Trans.Except Methods fold :: Monoid m => ExceptT e f m -> m # foldMap :: Monoid m => (a -> m) -> ExceptT e f a -> m # foldMap' :: Monoid m => (a -> m) -> ExceptT e f a -> m # foldr :: (a -> b -> b) -> b -> ExceptT e f a -> b # foldr' :: (a -> b -> b) -> b -> ExceptT e f a -> b # foldl :: (b -> a -> b) -> b -> ExceptT e f a -> b # foldl' :: (b -> a -> b) -> b -> ExceptT e f a -> b # foldr1 :: (a -> a -> a) -> ExceptT e f a -> a # foldl1 :: (a -> a -> a) -> ExceptT e f a -> a # toList :: ExceptT e f a -> [a] # null :: ExceptT e f a -> Bool # length :: ExceptT e f a -> Int # elem :: Eq a => a -> ExceptT e f a -> Bool # maximum :: Ord a => ExceptT e f a -> a # minimum :: Ord a => ExceptT e f a -> a # | |
Foldable f => Foldable (ErrorT e f) | |
Defined in Control.Monad.Trans.Error Methods fold :: Monoid m => ErrorT e f m -> m # foldMap :: Monoid m => (a -> m) -> ErrorT e f a -> m # foldMap' :: Monoid m => (a -> m) -> ErrorT e f a -> m # foldr :: (a -> b -> b) -> b -> ErrorT e f a -> b # foldr' :: (a -> b -> b) -> b -> ErrorT e f a -> b # foldl :: (b -> a -> b) -> b -> ErrorT e f a -> b # foldl' :: (b -> a -> b) -> b -> ErrorT e f a -> b # foldr1 :: (a -> a -> a) -> ErrorT e f a -> a # foldl1 :: (a -> a -> a) -> ErrorT e f a -> a # toList :: ErrorT e f a -> [a] # null :: ErrorT e f a -> Bool # length :: ErrorT e f a -> Int # elem :: Eq a => a -> ErrorT e f a -> Bool # maximum :: Ord a => ErrorT e f a -> a # minimum :: Ord a => ErrorT e f a -> a # | |
Foldable f => Foldable (WriterT w f) | |
Defined in Control.Monad.Trans.Writer.Lazy Methods fold :: Monoid m => WriterT w f m -> m # foldMap :: Monoid m => (a -> m) -> WriterT w f a -> m # foldMap' :: Monoid m => (a -> m) -> WriterT w f a -> m # foldr :: (a -> b -> b) -> b -> WriterT w f a -> b # foldr' :: (a -> b -> b) -> b -> WriterT w f a -> b # foldl :: (b -> a -> b) -> b -> WriterT w f a -> b # foldl' :: (b -> a -> b) -> b -> WriterT w f a -> b # foldr1 :: (a -> a -> a) -> WriterT w f a -> a # foldl1 :: (a -> a -> a) -> WriterT w f a -> a # toList :: WriterT w f a -> [a] # null :: WriterT w f a -> Bool # length :: WriterT w f a -> Int # elem :: Eq a => a -> WriterT w f a -> Bool # maximum :: Ord a => WriterT w f a -> a # minimum :: Ord a => WriterT w f a -> a # | |
Foldable f => Foldable (WriterT w f) | |
Defined in Control.Monad.Trans.Writer.Strict Methods fold :: Monoid m => WriterT w f m -> m # foldMap :: Monoid m => (a -> m) -> WriterT w f a -> m # foldMap' :: Monoid m => (a -> m) -> WriterT w f a -> m # foldr :: (a -> b -> b) -> b -> WriterT w f a -> b # foldr' :: (a -> b -> b) -> b -> WriterT w f a -> b # foldl :: (b -> a -> b) -> b -> WriterT w f a -> b # foldl' :: (b -> a -> b) -> b -> WriterT w f a -> b # foldr1 :: (a -> a -> a) -> WriterT w f a -> a # foldl1 :: (a -> a -> a) -> WriterT w f a -> a # toList :: WriterT w f a -> [a] # null :: WriterT w f a -> Bool # length :: WriterT w f a -> Int # elem :: Eq a => a -> WriterT w f a -> Bool # maximum :: Ord a => WriterT w f a -> a # minimum :: Ord a => WriterT w f a -> a # | |
Foldable (Tagged s) | |
Defined in Data.Tagged Methods fold :: Monoid m => Tagged s m -> m # foldMap :: Monoid m => (a -> m) -> Tagged s a -> m # foldMap' :: Monoid m => (a -> m) -> Tagged s a -> m # foldr :: (a -> b -> b) -> b -> Tagged s a -> b # foldr' :: (a -> b -> b) -> b -> Tagged s a -> b # foldl :: (b -> a -> b) -> b -> Tagged s a -> b # foldl' :: (b -> a -> b) -> b -> Tagged s a -> b # foldr1 :: (a -> a -> a) -> Tagged s a -> a # foldl1 :: (a -> a -> a) -> Tagged s a -> a # elem :: Eq a => a -> Tagged s a -> Bool # maximum :: Ord a => Tagged s a -> a # minimum :: Ord a => Tagged s a -> a # | |
(Foldable f, Foldable g) => Foldable (These1 f g) | |
Defined in Data.Functor.These Methods fold :: Monoid m => These1 f g m -> m # foldMap :: Monoid m => (a -> m) -> These1 f g a -> m # foldMap' :: Monoid m => (a -> m) -> These1 f g a -> m # foldr :: (a -> b -> b) -> b -> These1 f g a -> b # foldr' :: (a -> b -> b) -> b -> These1 f g a -> b # foldl :: (b -> a -> b) -> b -> These1 f g a -> b # foldl' :: (b -> a -> b) -> b -> These1 f g a -> b # foldr1 :: (a -> a -> a) -> These1 f g a -> a # foldl1 :: (a -> a -> a) -> These1 f g a -> a # toList :: These1 f g a -> [a] # null :: These1 f g a -> Bool # length :: These1 f g a -> Int # elem :: Eq a => a -> These1 f g a -> Bool # maximum :: Ord a => These1 f g a -> a # minimum :: Ord a => These1 f g a -> a # | |
Foldable (K1 i c :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => K1 i c m -> m # foldMap :: Monoid m => (a -> m) -> K1 i c a -> m # foldMap' :: Monoid m => (a -> m) -> K1 i c a -> m # foldr :: (a -> b -> b) -> b -> K1 i c a -> b # foldr' :: (a -> b -> b) -> b -> K1 i c a -> b # foldl :: (b -> a -> b) -> b -> K1 i c a -> b # foldl' :: (b -> a -> b) -> b -> K1 i c a -> b # foldr1 :: (a -> a -> a) -> K1 i c a -> a # foldl1 :: (a -> a -> a) -> K1 i c a -> a # elem :: Eq a => a -> K1 i c a -> Bool # maximum :: Ord a => K1 i c a -> a # minimum :: Ord a => K1 i c a -> a # | |
(Foldable f, Foldable g) => Foldable (f :+: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :+: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :+: g) a -> m # foldMap' :: Monoid m => (a -> m) -> (f :+: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldr1 :: (a -> a -> a) -> (f :+: g) a -> a # foldl1 :: (a -> a -> a) -> (f :+: g) a -> a # toList :: (f :+: g) a -> [a] # length :: (f :+: g) a -> Int # elem :: Eq a => a -> (f :+: g) a -> Bool # maximum :: Ord a => (f :+: g) a -> a # minimum :: Ord a => (f :+: g) a -> a # | |
(Foldable f, Foldable g) => Foldable (f :*: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :*: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :*: g) a -> m # foldMap' :: Monoid m => (a -> m) -> (f :*: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldr1 :: (a -> a -> a) -> (f :*: g) a -> a # foldl1 :: (a -> a -> a) -> (f :*: g) a -> a # toList :: (f :*: g) a -> [a] # length :: (f :*: g) a -> Int # elem :: Eq a => a -> (f :*: g) a -> Bool # maximum :: Ord a => (f :*: g) a -> a # minimum :: Ord a => (f :*: g) a -> a # | |
(Foldable f, Foldable g) => Foldable (Product f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product Methods fold :: Monoid m => Product f g m -> m # foldMap :: Monoid m => (a -> m) -> Product f g a -> m # foldMap' :: Monoid m => (a -> m) -> Product f g a -> m # foldr :: (a -> b -> b) -> b -> Product f g a -> b # foldr' :: (a -> b -> b) -> b -> Product f g a -> b # foldl :: (b -> a -> b) -> b -> Product f g a -> b # foldl' :: (b -> a -> b) -> b -> Product f g a -> b # foldr1 :: (a -> a -> a) -> Product f g a -> a # foldl1 :: (a -> a -> a) -> Product f g a -> a # toList :: Product f g a -> [a] # null :: Product f g a -> Bool # length :: Product f g a -> Int # elem :: Eq a => a -> Product f g a -> Bool # maximum :: Ord a => Product f g a -> a # minimum :: Ord a => Product f g a -> a # | |
(Foldable f, Foldable g) => Foldable (Sum f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Sum Methods fold :: Monoid m => Sum f g m -> m # foldMap :: Monoid m => (a -> m) -> Sum f g a -> m # foldMap' :: Monoid m => (a -> m) -> Sum f g a -> m # foldr :: (a -> b -> b) -> b -> Sum f g a -> b # foldr' :: (a -> b -> b) -> b -> Sum f g a -> b # foldl :: (b -> a -> b) -> b -> Sum f g a -> b # foldl' :: (b -> a -> b) -> b -> Sum f g a -> b # foldr1 :: (a -> a -> a) -> Sum f g a -> a # foldl1 :: (a -> a -> a) -> Sum f g a -> a # elem :: Eq a => a -> Sum f g a -> Bool # maximum :: Ord a => Sum f g a -> a # minimum :: Ord a => Sum f g a -> a # | |
Foldable f => Foldable (M1 i c f) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => M1 i c f m -> m # foldMap :: Monoid m => (a -> m) -> M1 i c f a -> m # foldMap' :: Monoid m => (a -> m) -> M1 i c f a -> m # foldr :: (a -> b -> b) -> b -> M1 i c f a -> b # foldr' :: (a -> b -> b) -> b -> M1 i c f a -> b # foldl :: (b -> a -> b) -> b -> M1 i c f a -> b # foldl' :: (b -> a -> b) -> b -> M1 i c f a -> b # foldr1 :: (a -> a -> a) -> M1 i c f a -> a # foldl1 :: (a -> a -> a) -> M1 i c f a -> a # elem :: Eq a => a -> M1 i c f a -> Bool # maximum :: Ord a => M1 i c f a -> a # minimum :: Ord a => M1 i c f a -> a # | |
(Foldable f, Foldable g) => Foldable (f :.: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :.: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :.: g) a -> m # foldMap' :: Monoid m => (a -> m) -> (f :.: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldr1 :: (a -> a -> a) -> (f :.: g) a -> a # foldl1 :: (a -> a -> a) -> (f :.: g) a -> a # toList :: (f :.: g) a -> [a] # length :: (f :.: g) a -> Int # elem :: Eq a => a -> (f :.: g) a -> Bool # maximum :: Ord a => (f :.: g) a -> a # minimum :: Ord a => (f :.: g) a -> a # | |
(Foldable f, Foldable g) => Foldable (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose Methods fold :: Monoid m => Compose f g m -> m # foldMap :: Monoid m => (a -> m) -> Compose f g a -> m # foldMap' :: Monoid m => (a -> m) -> Compose f g a -> m # foldr :: (a -> b -> b) -> b -> Compose f g a -> b # foldr' :: (a -> b -> b) -> b -> Compose f g a -> b # foldl :: (b -> a -> b) -> b -> Compose f g a -> b # foldl' :: (b -> a -> b) -> b -> Compose f g a -> b # foldr1 :: (a -> a -> a) -> Compose f g a -> a # foldl1 :: (a -> a -> a) -> Compose f g a -> a # toList :: Compose f g a -> [a] # null :: Compose f g a -> Bool # length :: Compose f g a -> Int # elem :: Eq a => a -> Compose f g a -> Bool # maximum :: Ord a => Compose f g a -> a # minimum :: Ord a => Compose f g a -> a # | |
Bifoldable p => Foldable (Flip p a) | |
Defined in Data.Bifunctor.Flip Methods fold :: Monoid m => Flip p a m -> m # foldMap :: Monoid m => (a0 -> m) -> Flip p a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Flip p a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Flip p a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Flip p a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Flip p a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Flip p a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Flip p a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Flip p a a0 -> a0 # toList :: Flip p a a0 -> [a0] # length :: Flip p a a0 -> Int # elem :: Eq a0 => a0 -> Flip p a a0 -> Bool # maximum :: Ord a0 => Flip p a a0 -> a0 # minimum :: Ord a0 => Flip p a a0 -> a0 # | |
(Foldable f, Bifoldable p) => Foldable (Tannen f p a) | |
Defined in Data.Bifunctor.Tannen Methods fold :: Monoid m => Tannen f p a m -> m # foldMap :: Monoid m => (a0 -> m) -> Tannen f p a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Tannen f p a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Tannen f p a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Tannen f p a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Tannen f p a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Tannen f p a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Tannen f p a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Tannen f p a a0 -> a0 # toList :: Tannen f p a a0 -> [a0] # null :: Tannen f p a a0 -> Bool # length :: Tannen f p a a0 -> Int # elem :: Eq a0 => a0 -> Tannen f p a a0 -> Bool # maximum :: Ord a0 => Tannen f p a a0 -> a0 # minimum :: Ord a0 => Tannen f p a a0 -> a0 # | |
(Bifoldable p, Foldable g) => Foldable (Biff p f g a) | |
Defined in Data.Bifunctor.Biff Methods fold :: Monoid m => Biff p f g a m -> m # foldMap :: Monoid m => (a0 -> m) -> Biff p f g a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Biff p f g a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Biff p f g a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Biff p f g a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Biff p f g a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Biff p f g a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Biff p f g a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Biff p f g a a0 -> a0 # toList :: Biff p f g a a0 -> [a0] # null :: Biff p f g a a0 -> Bool # length :: Biff p f g a a0 -> Int # elem :: Eq a0 => a0 -> Biff p f g a a0 -> Bool # maximum :: Ord a0 => Biff p f g a a0 -> a0 # minimum :: Ord a0 => Biff p f g a a0 -> a0 # |
class (Functor t, Foldable t) => Traversable (t :: Type -> Type) where #
Functors representing data structures that can be traversed from left to right.
A definition of traverse
must satisfy the following laws:
- Naturality
t .
for every applicative transformationtraverse
f =traverse
(t . f)t
- Identity
traverse
Identity
=Identity
- Composition
traverse
(Compose
.fmap
g . f) =Compose
.fmap
(traverse
g) .traverse
f
A definition of sequenceA
must satisfy the following laws:
- Naturality
t .
for every applicative transformationsequenceA
=sequenceA
.fmap
tt
- Identity
sequenceA
.fmap
Identity
=Identity
- Composition
sequenceA
.fmap
Compose
=Compose
.fmap
sequenceA
.sequenceA
where an applicative transformation is a function
t :: (Applicative f, Applicative g) => f a -> g a
preserving the Applicative
operations, i.e.
t (pure
x) =pure
x t (f<*>
x) = t f<*>
t x
and the identity functor Identity
and composition functors
Compose
are from Data.Functor.Identity and
Data.Functor.Compose.
A result of the naturality law is a purity law for traverse
traverse
pure
=pure
(The naturality law is implied by parametricity and thus so is the purity law [1, p15].)
Instances are similar to Functor
, e.g. given a data type
data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)
a suitable instance would be
instance Traversable Tree where traverse f Empty = pure Empty traverse f (Leaf x) = Leaf <$> f x traverse f (Node l k r) = Node <$> traverse f l <*> f k <*> traverse f r
This is suitable even for abstract types, as the laws for <*>
imply a form of associativity.
The superclass instances should satisfy the following:
- In the
Functor
instance,fmap
should be equivalent to traversal with the identity applicative functor (fmapDefault
). - In the
Foldable
instance,foldMap
should be equivalent to traversal with a constant applicative functor (foldMapDefault
).
References: [1] The Essence of the Iterator Pattern, Jeremy Gibbons and Bruno C. d. S. Oliveira
Methods
traverse :: Applicative f => (a -> f b) -> t a -> f (t b) #
Map each element of a structure to an action, evaluate these actions
from left to right, and collect the results. For a version that ignores
the results see traverse_
.
sequenceA :: Applicative f => t (f a) -> f (t a) #
Evaluate each action in the structure from left to right, and
collect the results. For a version that ignores the results
see sequenceA_
.
mapM :: Monad m => (a -> m b) -> t a -> m (t b) #
Map each element of a structure to a monadic action, evaluate
these actions from left to right, and collect the results. For
a version that ignores the results see mapM_
.
sequence :: Monad m => t (m a) -> m (t a) #
Evaluate each monadic action in the structure from left to
right, and collect the results. For a version that ignores the
results see sequence_
.
Instances
The class of semigroups (types with an associative binary operation).
Instances should satisfy the following:
Since: base-4.9.0.0
Instances
Semigroup Ordering | Since: base-4.9.0.0 |
Semigroup () | Since: base-4.9.0.0 |
Semigroup ByteString | |
Defined in Data.ByteString.Internal Methods (<>) :: ByteString -> ByteString -> ByteString # sconcat :: NonEmpty ByteString -> ByteString # stimes :: Integral b => b -> ByteString -> ByteString # | |
Semigroup ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods (<>) :: ByteString -> ByteString -> ByteString # sconcat :: NonEmpty ByteString -> ByteString # stimes :: Integral b => b -> ByteString -> ByteString # | |
Semigroup Builder | |
Semigroup Builder | |
Semigroup Series | |
Semigroup More | |
Semigroup Void | Since: base-4.9.0.0 |
Semigroup All | Since: base-4.9.0.0 |
Semigroup Any | Since: base-4.9.0.0 |
Semigroup IntSet | Since: containers-0.5.7 |
Semigroup Doc | |
Semigroup ByteArray | |
Semigroup Printer Source # | |
Semigroup PrintWriter Source # | |
Defined in Fay.Types.Printer Methods (<>) :: PrintWriter -> PrintWriter -> PrintWriter # sconcat :: NonEmpty PrintWriter -> PrintWriter # stimes :: Integral b => b -> PrintWriter -> PrintWriter # | |
Semigroup CompileWriter Source # | Simple concatenating instance. |
Defined in Fay.Types Methods (<>) :: CompileWriter -> CompileWriter -> CompileWriter # sconcat :: NonEmpty CompileWriter -> CompileWriter # stimes :: Integral b => b -> CompileWriter -> CompileWriter # | |
Semigroup [a] | Since: base-4.9.0.0 |
Semigroup a => Semigroup (Maybe a) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (IO a) | Since: base-4.10.0.0 |
Semigroup p => Semigroup (Par1 p) | Since: base-4.12.0.0 |
Semigroup (IResult a) | |
Semigroup (Result a) | |
Semigroup (Parser a) | |
Ord a => Semigroup (Min a) | Since: base-4.9.0.0 |
Ord a => Semigroup (Max a) | Since: base-4.9.0.0 |
Semigroup (First a) | Since: base-4.9.0.0 |
Semigroup (Last a) | Since: base-4.9.0.0 |
Monoid m => Semigroup (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods (<>) :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # sconcat :: NonEmpty (WrappedMonoid m) -> WrappedMonoid m # stimes :: Integral b => b -> WrappedMonoid m -> WrappedMonoid m # | |
Semigroup a => Semigroup (Option a) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (Identity a) | Since: base-4.9.0.0 |
Semigroup (First a) | Since: base-4.9.0.0 |
Semigroup (Last a) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (Dual a) | Since: base-4.9.0.0 |
Semigroup (Endo a) | Since: base-4.9.0.0 |
Num a => Semigroup (Sum a) | Since: base-4.9.0.0 |
Num a => Semigroup (Product a) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (Down a) | Since: base-4.11.0.0 |
Semigroup (NonEmpty a) | Since: base-4.9.0.0 |
Semigroup (IntMap a) | Since: containers-0.5.7 |
Semigroup (Seq a) | Since: containers-0.5.7 |
Ord a => Semigroup (Set a) | Since: containers-0.5.7 |
Semigroup (DNonEmpty a) | |
Semigroup (DList a) | |
Semigroup m => Semigroup (ParseResult m) | |
Defined in Language.Haskell.Exts.ParseMonad Methods (<>) :: ParseResult m -> ParseResult m -> ParseResult m # sconcat :: NonEmpty (ParseResult m) -> ParseResult m # stimes :: Integral b => b -> ParseResult m -> ParseResult m # | |
Semigroup (Doc a) | |
Semigroup (PrimArray a) | Since: primitive-0.6.4.0 |
Semigroup (SmallArray a) | Since: primitive-0.6.3.0 |
Defined in Data.Primitive.SmallArray Methods (<>) :: SmallArray a -> SmallArray a -> SmallArray a # sconcat :: NonEmpty (SmallArray a) -> SmallArray a # stimes :: Integral b => b -> SmallArray a -> SmallArray a # | |
Semigroup (Array a) | Since: primitive-0.6.3.0 |
Semigroup a => Semigroup (Maybe a) | |
(Hashable a, Eq a) => Semigroup (HashSet a) | O(n+m) To obtain good performance, the smaller set must be presented as the first argument. Examples
|
Storable a => Semigroup (Vector a) | |
Prim a => Semigroup (Vector a) | |
Semigroup (Vector a) | |
Semigroup (MergeSet a) | |
Semigroup b => Semigroup (a -> b) | Since: base-4.9.0.0 |
Semigroup (Either a b) | Since: base-4.9.0.0 |
Semigroup (V1 p) | Since: base-4.12.0.0 |
Semigroup (U1 p) | Since: base-4.12.0.0 |
(Semigroup a, Semigroup b) => Semigroup (a, b) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (ST s a) | Since: base-4.11.0.0 |
(Eq k, Hashable k) => Semigroup (HashMap k v) | If a key occurs in both maps, the mapping from the first will be the mapping in the result. Examples
|
Ord k => Semigroup (Map k v) | |
Semigroup (Parser i a) | |
Semigroup (Proxy s) | Since: base-4.9.0.0 |
(Semigroup a, Semigroup b) => Semigroup (Pair a b) | |
(Semigroup a, Semigroup b) => Semigroup (These a b) | |
Semigroup (Either a b) | |
(Semigroup a, Semigroup b) => Semigroup (These a b) | |
Semigroup (f p) => Semigroup (Rec1 f p) | Since: base-4.12.0.0 |
(Semigroup a, Semigroup b, Semigroup c) => Semigroup (a, b, c) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (Const a b) | Since: base-4.9.0.0 |
(Applicative f, Semigroup a) => Semigroup (Ap f a) | Since: base-4.12.0.0 |
Alternative f => Semigroup (Alt f a) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (Tagged s a) | |
Semigroup c => Semigroup (K1 i c p) | Since: base-4.12.0.0 |
(Semigroup (f p), Semigroup (g p)) => Semigroup ((f :*: g) p) | Since: base-4.12.0.0 |
(Semigroup a, Semigroup b, Semigroup c, Semigroup d) => Semigroup (a, b, c, d) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (ParsecT s u m a) | The (many $ char The above will parse a string like (many $ char Since: parsec-3.1.12 |
Semigroup (f p) => Semigroup (M1 i c f p) | Since: base-4.12.0.0 |
Semigroup (f (g p)) => Semigroup ((f :.: g) p) | Since: base-4.12.0.0 |
(Semigroup a, Semigroup b, Semigroup c, Semigroup d, Semigroup e) => Semigroup (a, b, c, d, e) | Since: base-4.9.0.0 |
class Semigroup a => Monoid a where #
The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following:
- Right identity
x
<>
mempty
= x- Left identity
mempty
<>
x = x- Associativity
x
(<>
(y<>
z) = (x<>
y)<>
zSemigroup
law)- Concatenation
mconcat
=foldr
(<>
)mempty
The method names refer to the monoid of lists under concatenation, but there are many other instances.
Some types can be viewed as a monoid in more than one way,
e.g. both addition and multiplication on numbers.
In such cases we often define newtype
s and make those instances
of Monoid
, e.g. Sum
and Product
.
NOTE: Semigroup
is a superclass of Monoid
since base-4.11.0.0.
Minimal complete definition
Methods
Identity of mappend
>>>
"Hello world" <> mempty
"Hello world"
An associative operation
NOTE: This method is redundant and has the default
implementation
since base-4.11.0.0.
Should it be implemented manually, since mappend
= (<>
)mappend
is a synonym for
(<>
), it is expected that the two functions are defined the same
way. In a future GHC release mappend
will be removed from Monoid
.
Fold a list using the monoid.
For most types, the default definition for mconcat
will be
used, but the function is included in the class definition so
that an optimized version can be provided for specific types.
>>>
mconcat ["Hello", " ", "Haskell", "!"]
"Hello Haskell!"
Instances
Monoid Ordering | Since: base-2.1 |
Monoid () | Since: base-2.1 |
Monoid ByteString | |
Defined in Data.ByteString.Internal Methods mempty :: ByteString # mappend :: ByteString -> ByteString -> ByteString # mconcat :: [ByteString] -> ByteString # | |
Monoid ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods mempty :: ByteString # mappend :: ByteString -> ByteString -> ByteString # mconcat :: [ByteString] -> ByteString # | |
Monoid Builder | |
Monoid Builder | |
Monoid Series | |
Monoid More | |
Monoid All | Since: base-2.1 |
Monoid Any | Since: base-2.1 |
Monoid IntSet | |
Monoid Doc | |
Monoid ByteArray | |
Monoid Printer Source # | |
Monoid PrintWriter Source # | Output concatenation |
Defined in Fay.Types.Printer Methods mempty :: PrintWriter # mappend :: PrintWriter -> PrintWriter -> PrintWriter # mconcat :: [PrintWriter] -> PrintWriter # | |
Monoid CompileWriter Source # | Simple concatenating instance. |
Defined in Fay.Types Methods mempty :: CompileWriter # mappend :: CompileWriter -> CompileWriter -> CompileWriter # mconcat :: [CompileWriter] -> CompileWriter # | |
Monoid [a] | Since: base-2.1 |
Semigroup a => Monoid (Maybe a) | Lift a semigroup into Since 4.11.0: constraint on inner Since: base-2.1 |
Monoid a => Monoid (IO a) | Since: base-4.9.0.0 |
Monoid p => Monoid (Par1 p) | Since: base-4.12.0.0 |
Monoid (IResult a) | |
Monoid (Result a) | |
Monoid (Parser a) | |
(Ord a, Bounded a) => Monoid (Min a) | Since: base-4.9.0.0 |
(Ord a, Bounded a) => Monoid (Max a) | Since: base-4.9.0.0 |
Monoid m => Monoid (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods mempty :: WrappedMonoid m # mappend :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # mconcat :: [WrappedMonoid m] -> WrappedMonoid m # | |
Semigroup a => Monoid (Option a) | Since: base-4.9.0.0 |
Monoid a => Monoid (Identity a) | Since: base-4.9.0.0 |
Monoid (First a) | Since: base-2.1 |
Monoid (Last a) | Since: base-2.1 |
Monoid a => Monoid (Dual a) | Since: base-2.1 |
Monoid (Endo a) | Since: base-2.1 |
Num a => Monoid (Sum a) | Since: base-2.1 |
Num a => Monoid (Product a) | Since: base-2.1 |
Monoid a => Monoid (Down a) | Since: base-4.11.0.0 |
Monoid (IntMap a) | |
Monoid (Seq a) | |
Ord a => Monoid (Set a) | |
Monoid (DList a) | |
(Monoid m, Semigroup m) => Monoid (ParseResult m) | |
Defined in Language.Haskell.Exts.ParseMonad Methods mempty :: ParseResult m # mappend :: ParseResult m -> ParseResult m -> ParseResult m # mconcat :: [ParseResult m] -> ParseResult m # | |
Monoid (Doc a) | |
Monoid (PrimArray a) | Since: primitive-0.6.4.0 |
Monoid (SmallArray a) | |
Defined in Data.Primitive.SmallArray Methods mempty :: SmallArray a # mappend :: SmallArray a -> SmallArray a -> SmallArray a # mconcat :: [SmallArray a] -> SmallArray a # | |
Monoid (Array a) | |
Semigroup a => Monoid (Maybe a) | |
(Hashable a, Eq a) => Monoid (HashSet a) | O(n+m) To obtain good performance, the smaller set must be presented as the first argument. Examples
|
Storable a => Monoid (Vector a) | |
Prim a => Monoid (Vector a) | |
Monoid (Vector a) | |
Monoid (MergeSet a) | |
Monoid b => Monoid (a -> b) | Since: base-2.1 |
Monoid (U1 p) | Since: base-4.12.0.0 |
(Monoid a, Monoid b) => Monoid (a, b) | Since: base-2.1 |
Monoid a => Monoid (ST s a) | Since: base-4.11.0.0 |
(Eq k, Hashable k) => Monoid (HashMap k v) | If a key occurs in both maps, the mapping from the first will be the mapping in the result. Examples
|
Ord k => Monoid (Map k v) | |
Monoid (Parser i a) | |
Monoid (Proxy s) | Since: base-4.7.0.0 |
(Monoid a, Monoid b) => Monoid (Pair a b) | |
Monoid (f p) => Monoid (Rec1 f p) | Since: base-4.12.0.0 |
(Monoid a, Monoid b, Monoid c) => Monoid (a, b, c) | Since: base-2.1 |
Monoid a => Monoid (Const a b) | Since: base-4.9.0.0 |
(Applicative f, Monoid a) => Monoid (Ap f a) | Since: base-4.12.0.0 |
Alternative f => Monoid (Alt f a) | Since: base-4.8.0.0 |
(Semigroup a, Monoid a) => Monoid (Tagged s a) | |
Monoid c => Monoid (K1 i c p) | Since: base-4.12.0.0 |
(Monoid (f p), Monoid (g p)) => Monoid ((f :*: g) p) | Since: base-4.12.0.0 |
(Monoid a, Monoid b, Monoid c, Monoid d) => Monoid (a, b, c, d) | Since: base-2.1 |
(Monoid a, Semigroup (ParsecT s u m a)) => Monoid (ParsecT s u m a) | The Since: parsec-3.1.12 |
Monoid (f p) => Monoid (M1 i c f p) | Since: base-4.12.0.0 |
Monoid (f (g p)) => Monoid ((f :.: g) p) | Since: base-4.12.0.0 |
(Monoid a, Monoid b, Monoid c, Monoid d, Monoid e) => Monoid (a, b, c, d, e) | Since: base-2.1 |
Instances
The character type Char
is an enumeration whose values represent
Unicode (or equivalently ISO/IEC 10646) code points (i.e. characters, see
http://www.unicode.org/ for details). This set extends the ISO 8859-1
(Latin-1) character set (the first 256 characters), which is itself an extension
of the ASCII character set (the first 128 characters). A character literal in
Haskell has type Char
.
To convert a Char
to or from the corresponding Int
value defined
by Unicode, use toEnum
and fromEnum
from the
Enum
class respectively (or equivalently ord
and
chr
).
Instances
Double-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE double-precision type.
Instances
Eq Double | Note that due to the presence of
Also note that
|
Floating Double | Since: base-2.1 |
Data Double | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Double -> c Double # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Double # toConstr :: Double -> Constr # dataTypeOf :: Double -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Double) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Double) # gmapT :: (forall b. Data b => b -> b) -> Double -> Double # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r # gmapQ :: (forall d. Data d => d -> u) -> Double -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Double -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Double -> m Double # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double # | |
Ord Double | Note that due to the presence of
Also note that, due to the same,
|
Read Double | Since: base-2.1 |
RealFloat Double | Since: base-2.1 |
Defined in GHC.Float Methods floatRadix :: Double -> Integer # floatDigits :: Double -> Int # floatRange :: Double -> (Int, Int) # decodeFloat :: Double -> (Integer, Int) # encodeFloat :: Integer -> Int -> Double # significand :: Double -> Double # scaleFloat :: Int -> Double -> Double # isInfinite :: Double -> Bool # isDenormalized :: Double -> Bool # isNegativeZero :: Double -> Bool # | |
Hashable Double | Note: prior to The Since: hashable-1.3.0.0 |
Defined in Data.Hashable.Class | |
ToJSON Double | |
Defined in Data.Aeson.Types.ToJSON | |
ToJSONKey Double | |
Defined in Data.Aeson.Types.ToJSON | |
FromJSON Double | |
FromJSONKey Double | |
Defined in Data.Aeson.Types.FromJSON | |
PrintfArg Double | Since: base-2.1 |
Defined in Text.Printf | |
Storable Double | Since: base-2.1 |
Default Double | |
Defined in Data.Default.Class | |
NFData Double | |
Defined in Control.DeepSeq | |
Prim Double | |
Defined in Data.Primitive.Types Methods alignment# :: Double -> Int# # indexByteArray# :: ByteArray# -> Int# -> Double # readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Double #) # writeByteArray# :: MutableByteArray# s -> Int# -> Double -> State# s -> State# s # setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Double -> State# s -> State# s # indexOffAddr# :: Addr# -> Int# -> Double # readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Double #) # writeOffAddr# :: Addr# -> Int# -> Double -> State# s -> State# s # setOffAddr# :: Addr# -> Int# -> Int# -> Double -> State# s -> State# s # | |
UniformRange Double | |
Defined in System.Random.Internal | |
Unbox Double | |
Defined in Data.Vector.Unboxed.Base | |
Lift Double | |
Vector Vector Double | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: PrimMonad m => Mutable Vector (PrimState m) Double -> m (Vector Double) # basicUnsafeThaw :: PrimMonad m => Vector Double -> m (Mutable Vector (PrimState m) Double) # basicLength :: Vector Double -> Int # basicUnsafeSlice :: Int -> Int -> Vector Double -> Vector Double # basicUnsafeIndexM :: Monad m => Vector Double -> Int -> m Double # basicUnsafeCopy :: PrimMonad m => Mutable Vector (PrimState m) Double -> Vector Double -> m () # | |
MVector MVector Double | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Double -> Int # basicUnsafeSlice :: Int -> Int -> MVector s Double -> MVector s Double # basicOverlaps :: MVector s Double -> MVector s Double -> Bool # basicUnsafeNew :: PrimMonad m => Int -> m (MVector (PrimState m) Double) # basicInitialize :: PrimMonad m => MVector (PrimState m) Double -> m () # basicUnsafeReplicate :: PrimMonad m => Int -> Double -> m (MVector (PrimState m) Double) # basicUnsafeRead :: PrimMonad m => MVector (PrimState m) Double -> Int -> m Double # basicUnsafeWrite :: PrimMonad m => MVector (PrimState m) Double -> Int -> Double -> m () # basicClear :: PrimMonad m => MVector (PrimState m) Double -> m () # basicSet :: PrimMonad m => MVector (PrimState m) Double -> Double -> m () # basicUnsafeCopy :: PrimMonad m => MVector (PrimState m) Double -> MVector (PrimState m) Double -> m () # basicUnsafeMove :: PrimMonad m => MVector (PrimState m) Double -> MVector (PrimState m) Double -> m () # basicUnsafeGrow :: PrimMonad m => MVector (PrimState m) Double -> Int -> m (MVector (PrimState m) Double) # | |
Generic1 (URec Double :: k -> Type) | Since: base-4.9.0.0 |
Foldable (UDouble :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UDouble m -> m # foldMap :: Monoid m => (a -> m) -> UDouble a -> m # foldMap' :: Monoid m => (a -> m) -> UDouble a -> m # foldr :: (a -> b -> b) -> b -> UDouble a -> b # foldr' :: (a -> b -> b) -> b -> UDouble a -> b # foldl :: (b -> a -> b) -> b -> UDouble a -> b # foldl' :: (b -> a -> b) -> b -> UDouble a -> b # foldr1 :: (a -> a -> a) -> UDouble a -> a # foldl1 :: (a -> a -> a) -> UDouble a -> a # elem :: Eq a => a -> UDouble a -> Bool # maximum :: Ord a => UDouble a -> a # minimum :: Ord a => UDouble a -> a # | |
Traversable (UDouble :: Type -> Type) | Since: base-4.9.0.0 |
Functor (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
Eq (URec Double p) | Since: base-4.9.0.0 |
Ord (URec Double p) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: URec Double p -> URec Double p -> Ordering # (<) :: URec Double p -> URec Double p -> Bool # (<=) :: URec Double p -> URec Double p -> Bool # (>) :: URec Double p -> URec Double p -> Bool # (>=) :: URec Double p -> URec Double p -> Bool # | |
Show (URec Double p) | Since: base-4.9.0.0 |
Generic (URec Double p) | Since: base-4.9.0.0 |
newtype Vector Double | |
data URec Double (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
newtype MVector s Double | |
type Rep1 (URec Double :: k -> Type) | |
Defined in GHC.Generics | |
type Rep (URec Double p) | |
Defined in GHC.Generics |
Single-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE single-precision type.
Instances
Eq Float | Note that due to the presence of
Also note that
|
Floating Float | Since: base-2.1 |
Data Float | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Float -> c Float # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Float # dataTypeOf :: Float -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Float) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Float) # gmapT :: (forall b. Data b => b -> b) -> Float -> Float # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r # gmapQ :: (forall d. Data d => d -> u) -> Float -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Float -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Float -> m Float # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float # | |
Ord Float | Note that due to the presence of
Also note that, due to the same,
|
Read Float | Since: base-2.1 |
RealFloat Float | Since: base-2.1 |
Defined in GHC.Float Methods floatRadix :: Float -> Integer # floatDigits :: Float -> Int # floatRange :: Float -> (Int, Int) # decodeFloat :: Float -> (Integer, Int) # encodeFloat :: Integer -> Int -> Float # significand :: Float -> Float # scaleFloat :: Int -> Float -> Float # isInfinite :: Float -> Bool # isDenormalized :: Float -> Bool # isNegativeZero :: Float -> Bool # | |
Hashable Float | Note: prior to The Since: hashable-1.3.0.0 |
Defined in Data.Hashable.Class | |
ToJSON Float | |
Defined in Data.Aeson.Types.ToJSON | |
ToJSONKey Float | |
Defined in Data.Aeson.Types.ToJSON | |
FromJSON Float | |
FromJSONKey Float | |
Defined in Data.Aeson.Types.FromJSON | |
PrintfArg Float | Since: base-2.1 |
Defined in Text.Printf | |
Storable Float | Since: base-2.1 |
Default Float | |
Defined in Data.Default.Class | |
NFData Float | |
Defined in Control.DeepSeq | |
Prim Float | |
Defined in Data.Primitive.Types Methods alignment# :: Float -> Int# # indexByteArray# :: ByteArray# -> Int# -> Float # readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Float #) # writeByteArray# :: MutableByteArray# s -> Int# -> Float -> State# s -> State# s # setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Float -> State# s -> State# s # indexOffAddr# :: Addr# -> Int# -> Float # readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Float #) # writeOffAddr# :: Addr# -> Int# -> Float -> State# s -> State# s # setOffAddr# :: Addr# -> Int# -> Int# -> Float -> State# s -> State# s # | |
UniformRange Float | |
Defined in System.Random.Internal | |
Unbox Float | |
Defined in Data.Vector.Unboxed.Base | |
Lift Float | |
Vector Vector Float | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: PrimMonad m => Mutable Vector (PrimState m) Float -> m (Vector Float) # basicUnsafeThaw :: PrimMonad m => Vector Float -> m (Mutable Vector (PrimState m) Float) # basicLength :: Vector Float -> Int # basicUnsafeSlice :: Int -> Int -> Vector Float -> Vector Float # basicUnsafeIndexM :: Monad m => Vector Float -> Int -> m Float # basicUnsafeCopy :: PrimMonad m => Mutable Vector (PrimState m) Float -> Vector Float -> m () # | |
MVector MVector Float | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Float -> Int # basicUnsafeSlice :: Int -> Int -> MVector s Float -> MVector s Float # basicOverlaps :: MVector s Float -> MVector s Float -> Bool # basicUnsafeNew :: PrimMonad m => Int -> m (MVector (PrimState m) Float) # basicInitialize :: PrimMonad m => MVector (PrimState m) Float -> m () # basicUnsafeReplicate :: PrimMonad m => Int -> Float -> m (MVector (PrimState m) Float) # basicUnsafeRead :: PrimMonad m => MVector (PrimState m) Float -> Int -> m Float # basicUnsafeWrite :: PrimMonad m => MVector (PrimState m) Float -> Int -> Float -> m () # basicClear :: PrimMonad m => MVector (PrimState m) Float -> m () # basicSet :: PrimMonad m => MVector (PrimState m) Float -> Float -> m () # basicUnsafeCopy :: PrimMonad m => MVector (PrimState m) Float -> MVector (PrimState m) Float -> m () # basicUnsafeMove :: PrimMonad m => MVector (PrimState m) Float -> MVector (PrimState m) Float -> m () # basicUnsafeGrow :: PrimMonad m => MVector (PrimState m) Float -> Int -> m (MVector (PrimState m) Float) # | |
Generic1 (URec Float :: k -> Type) | Since: base-4.9.0.0 |
Foldable (UFloat :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UFloat m -> m # foldMap :: Monoid m => (a -> m) -> UFloat a -> m # foldMap' :: Monoid m => (a -> m) -> UFloat a -> m # foldr :: (a -> b -> b) -> b -> UFloat a -> b # foldr' :: (a -> b -> b) -> b -> UFloat a -> b # foldl :: (b -> a -> b) -> b -> UFloat a -> b # foldl' :: (b -> a -> b) -> b -> UFloat a -> b # foldr1 :: (a -> a -> a) -> UFloat a -> a # foldl1 :: (a -> a -> a) -> UFloat a -> a # elem :: Eq a => a -> UFloat a -> Bool # maximum :: Ord a => UFloat a -> a # minimum :: Ord a => UFloat a -> a # | |
Traversable (UFloat :: Type -> Type) | Since: base-4.9.0.0 |
Functor (URec Float :: Type -> Type) | Since: base-4.9.0.0 |
Eq (URec Float p) | |
Ord (URec Float p) | |
Defined in GHC.Generics | |
Show (URec Float p) | |
Generic (URec Float p) | |
newtype Vector Float | |
data URec Float (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
newtype MVector s Float | |
type Rep1 (URec Float :: k -> Type) | |
Defined in GHC.Generics | |
type Rep (URec Float p) | |
Defined in GHC.Generics |
A fixed-precision integer type with at least the range [-2^29 .. 2^29-1]
.
The exact range for a given implementation can be determined by using
minBound
and maxBound
from the Bounded
class.
Instances
Bounded Int | Since: base-2.1 |
Enum Int | Since: base-2.1 |
Eq Int | |
Integral Int | Since: base-2.0.1 |
Data Int | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int -> c Int # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int # dataTypeOf :: Int -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int) # gmapT :: (forall b. Data b => b -> b) -> Int -> Int # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r # gmapQ :: (forall d. Data d => d -> u) -> Int -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int -> m Int # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int # | |
Num Int | Since: base-2.1 |
Ord Int | |
Read Int | Since: base-2.1 |
Real Int | Since: base-2.0.1 |
Defined in GHC.Real Methods toRational :: Int -> Rational # | |
Show Int | Since: base-2.1 |
Ix Int | Since: base-2.1 |
Hashable Int | |
Defined in Data.Hashable.Class | |
ToJSON Int | |
Defined in Data.Aeson.Types.ToJSON | |
ToJSONKey Int | |
Defined in Data.Aeson.Types.ToJSON | |
FromJSON Int | |
FromJSONKey Int | |
Defined in Data.Aeson.Types.FromJSON | |
PrintfArg Int | Since: base-2.1 |
Defined in Text.Printf | |
Storable Int | Since: base-2.1 |
Defined in Foreign.Storable | |
Default Int | |
Defined in Data.Default.Class | |
NFData Int | |
Defined in Control.DeepSeq | |
Prim Int | |
Defined in Data.Primitive.Types Methods alignment# :: Int -> Int# # indexByteArray# :: ByteArray# -> Int# -> Int # readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Int #) # writeByteArray# :: MutableByteArray# s -> Int# -> Int -> State# s -> State# s # setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Int -> State# s -> State# s # indexOffAddr# :: Addr# -> Int# -> Int # readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Int #) # writeOffAddr# :: Addr# -> Int# -> Int -> State# s -> State# s # setOffAddr# :: Addr# -> Int# -> Int# -> Int -> State# s -> State# s # | |
Uniform Int | |
Defined in System.Random.Internal Methods uniformM :: StatefulGen g m => g -> m Int # | |
UniformRange Int | |
Defined in System.Random.Internal | |
ToText Int | |
Defined in Text.Shakespeare.Text | |
ByteSource Int | |
Defined in Data.UUID.Types.Internal.Builder | |
Unbox Int | |
Defined in Data.Vector.Unboxed.Base | |
Lift Int | |
Vector Vector Int | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: PrimMonad m => Mutable Vector (PrimState m) Int -> m (Vector Int) # basicUnsafeThaw :: PrimMonad m => Vector Int -> m (Mutable Vector (PrimState m) Int) # basicLength :: Vector Int -> Int # basicUnsafeSlice :: Int -> Int -> Vector Int -> Vector Int # basicUnsafeIndexM :: Monad m => Vector Int -> Int -> m Int # basicUnsafeCopy :: PrimMonad m => Mutable Vector (PrimState m) Int -> Vector Int -> m () # | |
MVector MVector Int | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Int -> Int # basicUnsafeSlice :: Int -> Int -> MVector s Int -> MVector s Int # basicOverlaps :: MVector s Int -> MVector s Int -> Bool # basicUnsafeNew :: PrimMonad m => Int -> m (MVector (PrimState m) Int) # basicInitialize :: PrimMonad m => MVector (PrimState m) Int -> m () # basicUnsafeReplicate :: PrimMonad m => Int -> Int -> m (MVector (PrimState m) Int) # basicUnsafeRead :: PrimMonad m => MVector (PrimState m) Int -> Int -> m Int # basicUnsafeWrite :: PrimMonad m => MVector (PrimState m) Int -> Int -> Int -> m () # basicClear :: PrimMonad m => MVector (PrimState m) Int -> m () # basicSet :: PrimMonad m => MVector (PrimState m) Int -> Int -> m () # basicUnsafeCopy :: PrimMonad m => MVector (PrimState m) Int -> MVector (PrimState m) Int -> m () # basicUnsafeMove :: PrimMonad m => MVector (PrimState m) Int -> MVector (PrimState m) Int -> m () # basicUnsafeGrow :: PrimMonad m => MVector (PrimState m) Int -> Int -> m (MVector (PrimState m) Int) # | |
Generic1 (URec Int :: k -> Type) | Since: base-4.9.0.0 |
Foldable (UInt :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UInt m -> m # foldMap :: Monoid m => (a -> m) -> UInt a -> m # foldMap' :: Monoid m => (a -> m) -> UInt a -> m # foldr :: (a -> b -> b) -> b -> UInt a -> b # foldr' :: (a -> b -> b) -> b -> UInt a -> b # foldl :: (b -> a -> b) -> b -> UInt a -> b # foldl' :: (b -> a -> b) -> b -> UInt a -> b # foldr1 :: (a -> a -> a) -> UInt a -> a # foldl1 :: (a -> a -> a) -> UInt a -> a # elem :: Eq a => a -> UInt a -> Bool # maximum :: Ord a => UInt a -> a # | |
Traversable (UInt :: Type -> Type) | Since: base-4.9.0.0 |
Functor (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
Eq (URec Int p) | Since: base-4.9.0.0 |
Ord (URec Int p) | Since: base-4.9.0.0 |
Show (URec Int p) | Since: base-4.9.0.0 |
Generic (URec Int p) | Since: base-4.9.0.0 |
newtype Vector Int | |
data URec Int (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
type ByteSink Int g | |
Defined in Data.UUID.Types.Internal.Builder type ByteSink Int g = Takes4Bytes g | |
newtype MVector s Int | |
type Rep1 (URec Int :: k -> Type) | |
Defined in GHC.Generics | |
type Rep (URec Int p) | |
Defined in GHC.Generics |
Arbitrary precision integers. In contrast with fixed-size integral types
such as Int
, the Integer
type represents the entire infinite range of
integers.
For more information about this type's representation, see the comments in its implementation.
Instances
Enum Integer | Since: base-2.1 |
Eq Integer | |
Integral Integer | Since: base-2.0.1 |
Defined in GHC.Real | |
Data Integer | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Integer -> c Integer # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Integer # toConstr :: Integer -> Constr # dataTypeOf :: Integer -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Integer) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Integer) # gmapT :: (forall b. Data b => b -> b) -> Integer -> Integer # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r # gmapQ :: (forall d. Data d => d -> u) -> Integer -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Integer -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Integer -> m Integer # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer # | |
Num Integer | Since: base-2.1 |
Ord Integer | |
Read Integer | Since: base-2.1 |
Real Integer | Since: base-2.0.1 |
Defined in GHC.Real Methods toRational :: Integer -> Rational # | |
Show Integer | Since: base-2.1 |
Ix Integer | Since: base-2.1 |
Defined in GHC.Ix | |
Hashable Integer | |
Defined in Data.Hashable.Class | |
ToJSON Integer | |
Defined in Data.Aeson.Types.ToJSON | |
ToJSONKey Integer | |
Defined in Data.Aeson.Types.ToJSON | |
FromJSON Integer | This instance includes a bounds check to prevent maliciously
large inputs to fill up the memory of the target system. You can
newtype |
FromJSONKey Integer | |
Defined in Data.Aeson.Types.FromJSON Methods | |
PrintfArg Integer | Since: base-2.1 |
Defined in Text.Printf | |
Default Integer | |
Defined in Data.Default.Class | |
NFData Integer | |
Defined in Control.DeepSeq | |
UniformRange Integer | |
Defined in System.Random.Internal | |
Lift Integer | |
The Maybe
type encapsulates an optional value. A value of type
either contains a value of type Maybe
aa
(represented as
),
or it is empty (represented as Just
aNothing
). Using Maybe
is a good way to
deal with errors or exceptional cases without resorting to drastic
measures such as error
.
The Maybe
type is also a monad. It is a simple kind of error
monad, where all errors are represented by Nothing
. A richer
error monad can be built using the Either
type.
Instances
Monad Maybe | Since: base-2.1 |
Functor Maybe | Since: base-2.1 |
MonadFix Maybe | Since: base-2.1 |
Defined in Control.Monad.Fix | |
MonadFail Maybe | Since: base-4.9.0.0 |
Defined in Control.Monad.Fail | |
Applicative Maybe | Since: base-2.1 |
Foldable Maybe | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldMap' :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |
Traversable Maybe | Since: base-2.1 |
ToJSON1 Maybe | |
Defined in Data.Aeson.Types.ToJSON Methods liftToJSON :: (a -> Value) -> ([a] -> Value) -> Maybe a -> Value # liftToJSONList :: (a -> Value) -> ([a] -> Value) -> [Maybe a] -> Value # liftToEncoding :: (a -> Encoding) -> ([a] -> Encoding) -> Maybe a -> Encoding # liftToEncodingList :: (a -> Encoding) -> ([a] -> Encoding) -> [Maybe a] -> Encoding # | |
FromJSON1 Maybe | |
Alternative Maybe | Since: base-2.1 |
MonadPlus Maybe | Since: base-2.1 |
Eq1 Maybe | Since: base-4.9.0.0 |
Ord1 Maybe | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Read1 Maybe | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Show1 Maybe | Since: base-4.9.0.0 |
NFData1 Maybe | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Hashable1 Maybe | |
Defined in Data.Hashable.Class | |
MonadError () Maybe | Since: mtl-2.2.2 |
Defined in Control.Monad.Error.Class | |
(Selector s, GToJSON' enc arity (K1 i (Maybe a) :: Type -> Type), KeyValuePair enc pairs, Monoid pairs) => RecordToPairs enc pairs arity (S1 s (K1 i (Maybe a) :: Type -> Type)) | |
Defined in Data.Aeson.Types.ToJSON | |
Lift a => Lift (Maybe a :: Type) | |
(Selector s, FromJSON a) => RecordFromJSON' arity (S1 s (K1 i (Maybe a) :: Type -> Type)) | |
Defined in Data.Aeson.Types.FromJSON | |
Eq a => Eq (Maybe a) | Since: base-2.1 |
Data a => Data (Maybe a) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Maybe a -> c (Maybe a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Maybe a) # toConstr :: Maybe a -> Constr # dataTypeOf :: Maybe a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Maybe a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Maybe a)) # gmapT :: (forall b. Data b => b -> b) -> Maybe a -> Maybe a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r # gmapQ :: (forall d. Data d => d -> u) -> Maybe a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Maybe a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # | |
Ord a => Ord (Maybe a) | Since: base-2.1 |
Read a => Read (Maybe a) | Since: base-2.1 |
Show a => Show (Maybe a) | Since: base-2.1 |
Generic (Maybe a) | Since: base-4.6.0.0 |
Semigroup a => Semigroup (Maybe a) | Since: base-4.9.0.0 |
Semigroup a => Monoid (Maybe a) | Lift a semigroup into Since 4.11.0: constraint on inner Since: base-2.1 |
Hashable a => Hashable (Maybe a) | |
Defined in Data.Hashable.Class | |
ToJSON a => ToJSON (Maybe a) | |
Defined in Data.Aeson.Types.ToJSON | |
FromJSON a => FromJSON (Maybe a) | |
Default (Maybe a) | |
Defined in Data.Default.Class | |
NFData a => NFData (Maybe a) | |
Defined in Control.DeepSeq | |
SingKind a => SingKind (Maybe a) | Since: base-4.9.0.0 |
Defined in GHC.Generics Associated Types type DemoteRep (Maybe a) | |
Generic1 Maybe | Since: base-4.6.0.0 |
SingI ('Nothing :: Maybe a) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
SingI a2 => SingI ('Just a2 :: Maybe a1) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (Maybe a) | |
Defined in GHC.Generics | |
type DemoteRep (Maybe a) | |
Defined in GHC.Generics | |
data Sing (b :: Maybe a) | |
type Rep1 Maybe | |
Instances
Bounded Ordering | Since: base-2.1 |
Enum Ordering | Since: base-2.1 |
Eq Ordering | |
Data Ordering | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ordering -> c Ordering # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Ordering # toConstr :: Ordering -> Constr # dataTypeOf :: Ordering -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Ordering) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Ordering) # gmapT :: (forall b. Data b => b -> b) -> Ordering -> Ordering # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r # gmapQ :: (forall d. Data d => d -> u) -> Ordering -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ordering -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # | |
Ord Ordering | |
Defined in GHC.Classes | |
Read Ordering | Since: base-2.1 |
Show Ordering | Since: base-2.1 |
Ix Ordering | Since: base-2.1 |
Defined in GHC.Ix Methods range :: (Ordering, Ordering) -> [Ordering] # index :: (Ordering, Ordering) -> Ordering -> Int # unsafeIndex :: (Ordering, Ordering) -> Ordering -> Int # inRange :: (Ordering, Ordering) -> Ordering -> Bool # rangeSize :: (Ordering, Ordering) -> Int # unsafeRangeSize :: (Ordering, Ordering) -> Int # | |
Generic Ordering | Since: base-4.6.0.0 |
Semigroup Ordering | Since: base-4.9.0.0 |
Monoid Ordering | Since: base-2.1 |
Hashable Ordering | |
Defined in Data.Hashable.Class | |
ToJSON Ordering | |
Defined in Data.Aeson.Types.ToJSON | |
FromJSON Ordering | |
Default Ordering | |
Defined in Data.Default.Class | |
NFData Ordering | |
Defined in Control.DeepSeq | |
type Rep Ordering | |
A value of type
is a computation which, when performed,
does some I/O before returning a value of type IO
aa
.
There is really only one way to "perform" an I/O action: bind it to
Main.main
in your program. When your program is run, the I/O will
be performed. It isn't possible to perform I/O from an arbitrary
function, unless that function is itself in the IO
monad and called
at some point, directly or indirectly, from Main.main
.
IO
is a monad, so IO
actions can be combined using either the do-notation
or the >>
and >>=
operations from the Monad
class.
Instances
Instances
The Either
type represents values with two possibilities: a value of
type
is either Either
a b
or Left
a
.Right
b
The Either
type is sometimes used to represent a value which is
either correct or an error; by convention, the Left
constructor is
used to hold an error value and the Right
constructor is used to
hold a correct value (mnemonic: "right" also means "correct").
Examples
The type
is the type of values which can be either
a Either
String
Int
String
or an Int
. The Left
constructor can be used only on
String
s, and the Right
constructor can be used only on Int
s:
>>>
let s = Left "foo" :: Either String Int
>>>
s
Left "foo">>>
let n = Right 3 :: Either String Int
>>>
n
Right 3>>>
:type s
s :: Either String Int>>>
:type n
n :: Either String Int
The fmap
from our Functor
instance will ignore Left
values, but
will apply the supplied function to values contained in a Right
:
>>>
let s = Left "foo" :: Either String Int
>>>
let n = Right 3 :: Either String Int
>>>
fmap (*2) s
Left "foo">>>
fmap (*2) n
Right 6
The Monad
instance for Either
allows us to chain together multiple
actions which may fail, and fail overall if any of the individual
steps failed. First we'll write a function that can either parse an
Int
from a Char
, or fail.
>>>
import Data.Char ( digitToInt, isDigit )
>>>
:{
let parseEither :: Char -> Either String Int parseEither c | isDigit c = Right (digitToInt c) | otherwise = Left "parse error">>>
:}
The following should work, since both '1'
and '2'
can be
parsed as Int
s.
>>>
:{
let parseMultiple :: Either String Int parseMultiple = do x <- parseEither '1' y <- parseEither '2' return (x + y)>>>
:}
>>>
parseMultiple
Right 3
But the following should fail overall, since the first operation where
we attempt to parse 'm'
as an Int
will fail:
>>>
:{
let parseMultiple :: Either String Int parseMultiple = do x <- parseEither 'm' y <- parseEither '2' return (x + y)>>>
:}
>>>
parseMultiple
Left "parse error"
Instances
ToJSON2 Either | |
Defined in Data.Aeson.Types.ToJSON Methods liftToJSON2 :: (a -> Value) -> ([a] -> Value) -> (b -> Value) -> ([b] -> Value) -> Either a b -> Value # liftToJSONList2 :: (a -> Value) -> ([a] -> Value) -> (b -> Value) -> ([b] -> Value) -> [Either a b] -> Value # liftToEncoding2 :: (a -> Encoding) -> ([a] -> Encoding) -> (b -> Encoding) -> ([b] -> Encoding) -> Either a b -> Encoding # liftToEncodingList2 :: (a -> Encoding) -> ([a] -> Encoding) -> (b -> Encoding) -> ([b] -> Encoding) -> [Either a b] -> Encoding # | |
FromJSON2 Either | |
Defined in Data.Aeson.Types.FromJSON | |
Bifunctor Either | Since: base-4.8.0.0 |
Bitraversable Either | Since: base-4.10.0.0 |
Defined in Data.Bitraversable Methods bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Either a b -> f (Either c d) # | |
Bifoldable Either | Since: base-4.10.0.0 |
Eq2 Either | Since: base-4.9.0.0 |
Ord2 Either | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Read2 Either | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes Methods liftReadsPrec2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (Either a b) # liftReadList2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> ReadS [Either a b] # liftReadPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec (Either a b) # liftReadListPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec [Either a b] # | |
Show2 Either | Since: base-4.9.0.0 |
NFData2 Either | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Hashable2 Either | |
Defined in Data.Hashable.Class | |
MonadError e (Either e) | |
Defined in Control.Monad.Error.Class | |
(Lift a, Lift b) => Lift (Either a b :: Type) | |
Monad (Either e) | Since: base-4.4.0.0 |
Functor (Either a) | Since: base-3.0 |
MonadFix (Either e) | Since: base-4.3.0.0 |
Defined in Control.Monad.Fix | |
Applicative (Either e) | Since: base-3.0 |
Foldable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Either a m -> m # foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # toList :: Either a a0 -> [a0] # length :: Either a a0 -> Int # elem :: Eq a0 => a0 -> Either a a0 -> Bool # maximum :: Ord a0 => Either a a0 -> a0 # minimum :: Ord a0 => Either a a0 -> a0 # | |
Traversable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Traversable | |
ToJSON a => ToJSON1 (Either a) | |
Defined in Data.Aeson.Types.ToJSON Methods liftToJSON :: (a0 -> Value) -> ([a0] -> Value) -> Either a a0 -> Value # liftToJSONList :: (a0 -> Value) -> ([a0] -> Value) -> [Either a a0] -> Value # liftToEncoding :: (a0 -> Encoding) -> ([a0] -> Encoding) -> Either a a0 -> Encoding # liftToEncodingList :: (a0 -> Encoding) -> ([a0] -> Encoding) -> [Either a a0] -> Encoding # | |
FromJSON a => FromJSON1 (Either a) | |
Eq a => Eq1 (Either a) | Since: base-4.9.0.0 |
Ord a => Ord1 (Either a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Read a => Read1 (Either a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes Methods liftReadsPrec :: (Int -> ReadS a0) -> ReadS [a0] -> Int -> ReadS (Either a a0) # liftReadList :: (Int -> ReadS a0) -> ReadS [a0] -> ReadS [Either a a0] # liftReadPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec (Either a a0) # liftReadListPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec [Either a a0] # | |
Show a => Show1 (Either a) | Since: base-4.9.0.0 |
NFData a => NFData1 (Either a) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Hashable a => Hashable1 (Either a) | |
Defined in Data.Hashable.Class | |
Generic1 (Either a :: Type -> Type) | Since: base-4.6.0.0 |
(Eq a, Eq b) => Eq (Either a b) | Since: base-2.1 |
(Data a, Data b) => Data (Either a b) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Either a b -> c (Either a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Either a b) # toConstr :: Either a b -> Constr # dataTypeOf :: Either a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Either a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Either a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Either a b -> Either a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Either a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Either a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # | |
(Ord a, Ord b) => Ord (Either a b) | Since: base-2.1 |
(Read a, Read b) => Read (Either a b) | Since: base-3.0 |
(Show a, Show b) => Show (Either a b) | Since: base-3.0 |
Generic (Either a b) | Since: base-4.6.0.0 |
Semigroup (Either a b) | Since: base-4.9.0.0 |
(Hashable a, Hashable b) => Hashable (Either a b) | |
Defined in Data.Hashable.Class | |
(ToJSON a, ToJSON b) => ToJSON (Either a b) | |
Defined in Data.Aeson.Types.ToJSON | |
(FromJSON a, FromJSON b) => FromJSON (Either a b) | |
(NFData a, NFData b) => NFData (Either a b) | |
Defined in Control.DeepSeq | |
type Rep1 (Either a :: Type -> Type) | |
Defined in GHC.Generics type Rep1 (Either a :: Type -> Type) = D1 ('MetaData "Either" "Data.Either" "base" 'False) (C1 ('MetaCons "Left" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :+: C1 ('MetaCons "Right" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1)) | |
type Rep (Either a b) | |
Defined in GHC.Generics type Rep (Either a b) = D1 ('MetaData "Either" "Data.Either" "base" 'False) (C1 ('MetaCons "Left" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :+: C1 ('MetaCons "Right" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b))) |
(<$>) :: Functor f => (a -> b) -> f a -> f b infixl 4 #
An infix synonym for fmap
.
The name of this operator is an allusion to $
.
Note the similarities between their types:
($) :: (a -> b) -> a -> b (<$>) :: Functor f => (a -> b) -> f a -> f b
Whereas $
is function application, <$>
is function
application lifted over a Functor
.
Examples
Convert from a
to a Maybe
Int
using Maybe
String
show
:
>>>
show <$> Nothing
Nothing>>>
show <$> Just 3
Just "3"
Convert from an
to an
Either
Int
Int
Either
Int
String
using show
:
>>>
show <$> Left 17
Left 17>>>
show <$> Right 17
Right "17"
Double each element of a list:
>>>
(*2) <$> [1,2,3]
[2,4,6]
Apply even
to the second element of a pair:
>>>
even <$> (2,2)
(2,True)
const x
is a unary function which evaluates to x
for all inputs.
>>>
const 42 "hello"
42
>>>
map (const 42) [0..3]
[42,42,42,42]
read :: Read a => String -> a #
The read
function reads input from a string, which must be
completely consumed by the input process. read
fails with an error
if the
parse is unsuccessful, and it is therefore discouraged from being used in
real applications. Use readMaybe
or readEither
for safe alternatives.
>>>
read "123" :: Int
123
>>>
read "hello" :: Int
*** Exception: Prelude.read: no parse
appendFile :: FilePath -> String -> IO () #
The computation appendFile
file str
function appends the string str
,
to the file file
.
Note that writeFile
and appendFile
write a literal string
to a file. To write a value of any printable type, as with print
,
use the show
function to convert the value to a string first.
main = appendFile "squares" (show [(x,x*x) | x <- [0,0.1..2]])
writeFile :: FilePath -> String -> IO () #
The computation writeFile
file str
function writes the string str
,
to the file file
.
readFile :: FilePath -> IO String #
The readFile
function reads a file and
returns the contents of the file as a string.
The file is read lazily, on demand, as with getContents
.
interact :: (String -> String) -> IO () #
The interact
function takes a function of type String->String
as its argument. The entire input from the standard input device is
passed to this function as its argument, and the resulting string is
output on the standard output device.
getContents :: IO String #
The getContents
operation returns all user input as a single string,
which is read lazily as it is needed
(same as hGetContents
stdin
).
File and directory names are values of type String
, whose precise
meaning is operating system dependent. Files can be opened, yielding a
handle which can then be used to operate on the contents of that file.
type IOError = IOException #
all :: Foldable t => (a -> Bool) -> t a -> Bool #
Determines whether all elements of the structure satisfy the predicate.
any :: Foldable t => (a -> Bool) -> t a -> Bool #
Determines whether any element of the structure satisfies the predicate.
concatMap :: Foldable t => (a -> [b]) -> t a -> [b] #
Map a function over all the elements of a container and concatenate the resulting lists.
concat :: Foldable t => t [a] -> [a] #
The concatenation of all the elements of a container of lists.
sequence_ :: (Foldable t, Monad m) => t (m a) -> m () #
Evaluate each monadic action in the structure from left to right,
and ignore the results. For a version that doesn't ignore the
results see sequence
.
As of base 4.8.0.0, sequence_
is just sequenceA_
, specialized
to Monad
.
words
breaks a string up into a list of words, which were delimited
by white space.
>>>
words "Lorem ipsum\ndolor"
["Lorem","ipsum","dolor"]
lines
breaks a string up into a list of strings at newline
characters. The resulting strings do not contain newlines.
Note that after splitting the string at newline characters, the last part of the string is considered a line even if it doesn't end with a newline. For example,
>>>
lines ""
[]
>>>
lines "\n"
[""]
>>>
lines "one"
["one"]
>>>
lines "one\n"
["one"]
>>>
lines "one\n\n"
["one",""]
>>>
lines "one\ntwo"
["one","two"]
>>>
lines "one\ntwo\n"
["one","two"]
Thus
contains at least as many elements as newlines in lines
ss
.
either :: (a -> c) -> (b -> c) -> Either a b -> c #
Case analysis for the Either
type.
If the value is
, apply the first function to Left
aa
;
if it is
, apply the second function to Right
bb
.
Examples
We create two values of type
, one using the
Either
String
Int
Left
constructor and another using the Right
constructor. Then
we apply "either" the length
function (if we have a String
)
or the "times-two" function (if we have an Int
):
>>>
let s = Left "foo" :: Either String Int
>>>
let n = Right 3 :: Either String Int
>>>
either length (*2) s
3>>>
either length (*2) n
6
The lex
function reads a single lexeme from the input, discarding
initial white space, and returning the characters that constitute the
lexeme. If the input string contains only white space, lex
returns a
single successful `lexeme' consisting of the empty string. (Thus
.) If there is no legal lexeme at the
beginning of the input string, lex
"" = [("","")]lex
fails (i.e. returns []
).
This lexer is not completely faithful to the Haskell lexical syntax in the following respects:
- Qualified names are not handled properly
- Octal and hexadecimal numerics are not recognized as a single token
- Comments are not treated properly
lcm :: Integral a => a -> a -> a #
is the smallest positive integer that both lcm
x yx
and y
divide.
gcd :: Integral a => a -> a -> a #
is the non-negative factor of both gcd
x yx
and y
of which
every common factor of x
and y
is also a factor; for example
, gcd
4 2 = 2
, gcd
(-4) 6 = 2
= gcd
0 44
.
= gcd
0 00
.
(That is, the common divisor that is "greatest" in the divisibility
preordering.)
Note: Since for signed fixed-width integer types,
,
the result may be negative if one of the arguments is abs
minBound
< 0
(and
necessarily is if the other is minBound
0
or
) for such types.minBound
(^^) :: (Fractional a, Integral b) => a -> b -> a infixr 8 #
raise a number to an integral power
showString :: String -> ShowS #
utility function converting a String
to a show function that
simply prepends the string unchanged.
utility function converting a Char
to a show function that
simply prepends the character unchanged.
unzip :: [(a, b)] -> ([a], [b]) #
unzip
transforms a list of pairs into a list of first components
and a list of second components.
zipWith :: (a -> b -> c) -> [a] -> [b] -> [c] #
\(\mathcal{O}(\min(m,n))\). zipWith
generalises zip
by zipping with the
function given as the first argument, instead of a tupling function. For
example,
is applied to two lists to produce the list of
corresponding sums:zipWith
(+)
>>>
zipWith (+) [1, 2, 3] [4, 5, 6]
[5,7,9]
zipWith
is right-lazy:
zipWith f [] _|_ = []
zipWith
is capable of list fusion, but it is restricted to its
first list argument and its resulting list.
(!!) :: [a] -> Int -> a infixl 9 #
List index (subscript) operator, starting from 0.
It is an instance of the more general genericIndex
,
which takes an index of any integral type.
lookup :: Eq a => a -> [(a, b)] -> Maybe b #
\(\mathcal{O}(n)\). lookup
key assocs
looks up a key in an association
list.
>>>
lookup 2 [(1, "first"), (2, "second"), (3, "third")]
Just "second"
break :: (a -> Bool) -> [a] -> ([a], [a]) #
break
, applied to a predicate p
and a list xs
, returns a tuple where
first element is longest prefix (possibly empty) of xs
of elements that
do not satisfy p
and second element is the remainder of the list:
break (> 3) [1,2,3,4,1,2,3,4] == ([1,2,3],[4,1,2,3,4]) break (< 9) [1,2,3] == ([],[1,2,3]) break (> 9) [1,2,3] == ([1,2,3],[])
span :: (a -> Bool) -> [a] -> ([a], [a]) #
span
, applied to a predicate p
and a list xs
, returns a tuple where
first element is longest prefix (possibly empty) of xs
of elements that
satisfy p
and second element is the remainder of the list:
span (< 3) [1,2,3,4,1,2,3,4] == ([1,2],[3,4,1,2,3,4]) span (< 9) [1,2,3] == ([1,2,3],[]) span (< 0) [1,2,3] == ([],[1,2,3])
splitAt :: Int -> [a] -> ([a], [a]) #
splitAt
n xs
returns a tuple where first element is xs
prefix of
length n
and second element is the remainder of the list:
splitAt 6 "Hello World!" == ("Hello ","World!") splitAt 3 [1,2,3,4,5] == ([1,2,3],[4,5]) splitAt 1 [1,2,3] == ([1],[2,3]) splitAt 3 [1,2,3] == ([1,2,3],[]) splitAt 4 [1,2,3] == ([1,2,3],[]) splitAt 0 [1,2,3] == ([],[1,2,3]) splitAt (-1) [1,2,3] == ([],[1,2,3])
It is equivalent to (
when take
n xs, drop
n xs)n
is not _|_
(splitAt _|_ xs = _|_
).
splitAt
is an instance of the more general genericSplitAt
,
in which n
may be of any integral type.
drop
n xs
returns the suffix of xs
after the first n
elements, or []
if n >
:length
xs
drop 6 "Hello World!" == "World!" drop 3 [1,2,3,4,5] == [4,5] drop 3 [1,2] == [] drop 3 [] == [] drop (-1) [1,2] == [1,2] drop 0 [1,2] == [1,2]
It is an instance of the more general genericDrop
,
in which n
may be of any integral type.
take
n
, applied to a list xs
, returns the prefix of xs
of length n
, or xs
itself if n >
:length
xs
take 5 "Hello World!" == "Hello" take 3 [1,2,3,4,5] == [1,2,3] take 3 [1,2] == [1,2] take 3 [] == [] take (-1) [1,2] == [] take 0 [1,2] == []
It is an instance of the more general genericTake
,
in which n
may be of any integral type.
takeWhile :: (a -> Bool) -> [a] -> [a] #
takeWhile
, applied to a predicate p
and a list xs
, returns the
longest prefix (possibly empty) of xs
of elements that satisfy p
:
takeWhile (< 3) [1,2,3,4,1,2,3,4] == [1,2] takeWhile (< 9) [1,2,3] == [1,2,3] takeWhile (< 0) [1,2,3] == []
cycle
ties a finite list into a circular one, or equivalently,
the infinite repetition of the original list. It is the identity
on infinite lists.
replicate :: Int -> a -> [a] #
replicate
n x
is a list of length n
with x
the value of
every element.
It is an instance of the more general genericReplicate
,
in which n
may be of any integral type.
\(\mathcal{O}(n)\). Return all the elements of a list except the last one. The list must be non-empty.
\(\mathcal{O}(n)\). Extract the last element of a list, which must be finite and non-empty.
\(\mathcal{O}(1)\). Extract the elements after the head of a list, which must be non-empty.
maybe :: b -> (a -> b) -> Maybe a -> b #
The maybe
function takes a default value, a function, and a Maybe
value. If the Maybe
value is Nothing
, the function returns the
default value. Otherwise, it applies the function to the value inside
the Just
and returns the result.
Examples
Basic usage:
>>>
maybe False odd (Just 3)
True
>>>
maybe False odd Nothing
False
Read an integer from a string using readMaybe
. If we succeed,
return twice the integer; that is, apply (*2)
to it. If instead
we fail to parse an integer, return 0
by default:
>>>
import Text.Read ( readMaybe )
>>>
maybe 0 (*2) (readMaybe "5")
10>>>
maybe 0 (*2) (readMaybe "")
0
Apply show
to a Maybe Int
. If we have Just n
, we want to show
the underlying Int
n
. But if we have Nothing
, we return the
empty string instead of (for example) "Nothing":
>>>
maybe "" show (Just 5)
"5">>>
maybe "" show Nothing
""
uncurry :: (a -> b -> c) -> (a, b) -> c #
uncurry
converts a curried function to a function on pairs.
Examples
>>>
uncurry (+) (1,2)
3
>>>
uncurry ($) (show, 1)
"1"
>>>
map (uncurry max) [(1,2), (3,4), (6,8)]
[2,4,8]
until :: (a -> Bool) -> (a -> a) -> a -> a #
yields the result of applying until
p ff
until p
holds.
($!) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b infixr 0 #
Strict (call-by-value) application operator. It takes a function and an argument, evaluates the argument to weak head normal form (WHNF), then calls the function with that value.
flip :: (a -> b -> c) -> b -> a -> c #
takes its (first) two arguments in the reverse order of flip
ff
.
>>>
flip (++) "hello" "world"
"worldhello"
(=<<) :: Monad m => (a -> m b) -> m a -> m b infixr 1 #
Same as >>=
, but with the arguments interchanged.
undefined :: forall (r :: RuntimeRep) (a :: TYPE r). HasCallStack => a #
errorWithoutStackTrace :: forall (r :: RuntimeRep) (a :: TYPE r). [Char] -> a #
A variant of error
that does not produce a stack trace.
Since: base-4.9.0.0
error :: forall (r :: RuntimeRep) (a :: TYPE r). HasCallStack => [Char] -> a #
error
stops execution and displays an error message.
Control modules
module Control.Applicative
(&&&) :: Arrow a => a b c -> a b c' -> a b (c, c') infixr 3 #
Fanout: send the input to both argument arrows and combine their output.
The default definition may be overridden with a more efficient version if desired.
second :: Arrow a => a b c -> a (d, b) (d, c) #
A mirror image of first
.
The default definition may be overridden with a more efficient version if desired.
first :: Arrow a => a b c -> a (b, d) (c, d) #
Send the first component of the input through the argument arrow, and copy the rest unchanged to the output.
(***) :: Arrow a => a b c -> a b' c' -> a (b, b') (c, c') infixr 3 #
Split the input between the two argument arrows and combine their output. Note that this is in general not a functor.
The default definition may be overridden with a more efficient version if desired.
(|||) :: ArrowChoice a => a b d -> a c d -> a (Either b c) d infixr 2 #
Fanin: Split the input between the two argument arrows and merge their outputs.
The default definition may be overridden with a more efficient version if desired.
(+++) :: ArrowChoice a => a b c -> a b' c' -> a (Either b b') (Either c c') infixr 2 #
Split the input between the two argument arrows, retagging and merging their outputs. Note that this is in general not a functor.
The default definition may be overridden with a more efficient version if desired.
join :: Monad m => m (m a) -> m a #
The join
function is the conventional monad join operator. It
is used to remove one level of monadic structure, projecting its
bound argument into the outer level.
'
' can be understood as the join
bssdo
expression
do bs <- bss bs
Examples
A common use of join
is to run an IO
computation returned from
an STM
transaction, since STM
transactions
can't perform IO
directly. Recall that
atomically
:: STM a -> IO a
is used to run STM
transactions atomically. So, by
specializing the types of atomically
and join
to
atomically
:: STM (IO b) -> IO (IO b)join
:: IO (IO b) -> IO b
we can compose them as
join
.atomically
:: STM (IO b) -> IO b
class Applicative m => Monad (m :: Type -> Type) where #
The Monad
class defines the basic operations over a monad,
a concept from a branch of mathematics known as category theory.
From the perspective of a Haskell programmer, however, it is best to
think of a monad as an abstract datatype of actions.
Haskell's do
expressions provide a convenient syntax for writing
monadic expressions.
Instances of Monad
should satisfy the following:
- Left identity
return
a>>=
k = k a- Right identity
m
>>=
return
= m- Associativity
m
>>=
(\x -> k x>>=
h) = (m>>=
k)>>=
h
Furthermore, the Monad
and Applicative
operations should relate as follows:
The above laws imply:
and that pure
and (<*>
) satisfy the applicative functor laws.
The instances of Monad
for lists, Maybe
and IO
defined in the Prelude satisfy these laws.
Minimal complete definition
Methods
(>>=) :: m a -> (a -> m b) -> m b infixl 1 #
Sequentially compose two actions, passing any value produced by the first as an argument to the second.
'as
' can be understood as the >>=
bsdo
expression
do a <- as bs a
(>>) :: m a -> m b -> m b infixl 1 #
Sequentially compose two actions, discarding any value produced by the first, like sequencing operators (such as the semicolon) in imperative languages.
'as
' can be understood as the >>
bsdo
expression
do as bs
Inject a value into the monadic type.
Instances
Monad [] | Since: base-2.1 |
Monad Maybe | Since: base-2.1 |
Monad IO | Since: base-2.1 |
Monad Par1 | Since: base-4.9.0.0 |
Monad Q | |
Monad IResult | |
Monad Result | |
Monad Parser | |
Monad Complex | Since: base-4.9.0.0 |
Monad Min | Since: base-4.9.0.0 |
Monad Max | Since: base-4.9.0.0 |
Monad First | Since: base-4.9.0.0 |
Monad Last | Since: base-4.9.0.0 |
Monad Option | Since: base-4.9.0.0 |
Monad Identity | Since: base-4.8.0.0 |
Monad STM | Since: base-4.3.0.0 |
Monad First | Since: base-4.8.0.0 |
Monad Last | Since: base-4.8.0.0 |
Monad Dual | Since: base-4.8.0.0 |
Monad Sum | Since: base-4.8.0.0 |
Monad Product | Since: base-4.8.0.0 |
Monad Down | Since: base-4.11.0.0 |
Monad ReadPrec | Since: base-2.1 |
Monad ReadP | Since: base-2.1 |
Monad NonEmpty | Since: base-4.9.0.0 |
Monad Put | |
Monad Tree | |
Monad Seq | |
Monad DNonEmpty | |
Monad DList | |
Monad P | |
Monad ParseResult | |
Defined in Language.Haskell.Exts.ParseMonad Methods (>>=) :: ParseResult a -> (a -> ParseResult b) -> ParseResult b # (>>) :: ParseResult a -> ParseResult b -> ParseResult b # return :: a -> ParseResult a # | |
Monad SmallArray | |
Defined in Data.Primitive.SmallArray Methods (>>=) :: SmallArray a -> (a -> SmallArray b) -> SmallArray b # (>>) :: SmallArray a -> SmallArray b -> SmallArray b # return :: a -> SmallArray a # | |
Monad Array | |
Monad Vector | |
Monad Id | |
Monad Box | |
Monad P | Since: base-2.1 |
Monad Fay Source # | |
Monad Compile Source # | |
Monad EP | |
Monad (Either e) | Since: base-4.4.0.0 |
Monad (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Monoid a => Monad ((,) a) | Since: base-4.9.0.0 |
Monad (ST s) | Since: base-2.1 |
Monad (Parser i) | |
Monad m => Monad (WrappedMonad m) | Since: base-4.7.0.0 |
Defined in Control.Applicative Methods (>>=) :: WrappedMonad m a -> (a -> WrappedMonad m b) -> WrappedMonad m b # (>>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b # return :: a -> WrappedMonad m a # | |
ArrowApply a => Monad (ArrowMonad a) | Since: base-2.1 |
Defined in Control.Arrow Methods (>>=) :: ArrowMonad a a0 -> (a0 -> ArrowMonad a b) -> ArrowMonad a b # (>>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b # return :: a0 -> ArrowMonad a a0 # | |
Monad (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Monad m => Monad (MaybeT m) | |
Monad (Lex r) | |
Monad m => Monad (ListT m) | |
Semigroup a => Monad (These a) | |
Semigroup a => Monad (These a) | |
Monad (DocM s) | |
Monad (SetM s) | |
Monad f => Monad (Rec1 f) | Since: base-4.9.0.0 |
(Monoid a, Monoid b) => Monad ((,,) a b) | Since: base-4.14.0.0 |
Monad m => Monad (Kleisli m a) | Since: base-4.14.0.0 |
Monad f => Monad (Ap f) | Since: base-4.12.0.0 |
Monad f => Monad (Alt f) | Since: base-4.8.0.0 |
Monad m => Monad (IdentityT m) | |
(Applicative f, Monad f) => Monad (WhenMissing f x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods (>>=) :: WhenMissing f x a -> (a -> WhenMissing f x b) -> WhenMissing f x b # (>>) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x b # return :: a -> WhenMissing f x a # | |
Monad m => Monad (ExceptT e m) | |
(Monad m, Error e) => Monad (ErrorT e m) | |
Monad m => Monad (ReaderT r m) | |
Monad m => Monad (StateT s m) | |
Monad m => Monad (StateT s m) | |
(Monoid w, Monad m) => Monad (WriterT w m) | |
(Monoid w, Monad m) => Monad (WriterT w m) | |
Monad (Tagged s) | |
Monad ((->) r :: Type -> Type) | Since: base-2.1 |
(Monad f, Monad g) => Monad (f :*: g) | Since: base-4.9.0.0 |
(Monoid a, Monoid b, Monoid c) => Monad ((,,,) a b c) | Since: base-4.14.0.0 |
(Monad f, Monad g) => Monad (Product f g) | Since: base-4.9.0.0 |
(Monad f, Applicative f) => Monad (WhenMatched f x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods (>>=) :: WhenMatched f x y a -> (a -> WhenMatched f x y b) -> WhenMatched f x y b # (>>) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y b # return :: a -> WhenMatched f x y a # | |
(Applicative f, Monad f) => Monad (WhenMissing f k x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods (>>=) :: WhenMissing f k x a -> (a -> WhenMissing f k x b) -> WhenMissing f k x b # (>>) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x b # return :: a -> WhenMissing f k x a # | |
Monad (ContT r m) | |
Monad (ParsecT s u m) | |
Monad f => Monad (M1 i c f) | Since: base-4.9.0.0 |
(Monad f, Applicative f) => Monad (WhenMatched f k x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods (>>=) :: WhenMatched f k x y a -> (a -> WhenMatched f k x y b) -> WhenMatched f k x y b # (>>) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y b # return :: a -> WhenMatched f k x y a # | |
(Monoid w, Monad m) => Monad (RWST r w s m) | |
(Monoid w, Monad m) => Monad (RWST r w s m) | |
class Functor (f :: Type -> Type) where #
A type f
is a Functor if it provides a function fmap
which, given any types a
and b
lets you apply any function from (a -> b)
to turn an f a
into an f b
, preserving the
structure of f
. Furthermore f
needs to adhere to the following:
Note, that the second law follows from the free theorem of the type fmap
and
the first law, so you need only check that the former condition holds.
Minimal complete definition
Methods
fmap :: (a -> b) -> f a -> f b #
Using ApplicativeDo
: '
' can be understood as
the fmap
f asdo
expression
do a <- as pure (f a)
with an inferred Functor
constraint.
Instances
class Monad m => MonadFail (m :: Type -> Type) where #
When a value is bound in do
-notation, the pattern on the left
hand side of <-
might not match. In this case, this class
provides a function to recover.
A Monad
without a MonadFail
instance may only be used in conjunction
with pattern that always match, such as newtypes, tuples, data types with
only a single data constructor, and irrefutable patterns (~pat
).
Instances of MonadFail
should satisfy the following law: fail s
should
be a left zero for >>=
,
fail s >>= f = fail s
If your Monad
is also MonadPlus
, a popular definition is
fail _ = mzero
Since: base-4.9.0.0
Instances
mapM :: (Traversable t, Monad m) => (a -> m b) -> t a -> m (t b) #
Map each element of a structure to a monadic action, evaluate
these actions from left to right, and collect the results. For
a version that ignores the results see mapM_
.
sequence :: (Traversable t, Monad m) => t (m a) -> m (t a) #
Evaluate each monadic action in the structure from left to
right, and collect the results. For a version that ignores the
results see sequence_
.
class (Alternative m, Monad m) => MonadPlus (m :: Type -> Type) where #
Monads that also support choice and failure.
Minimal complete definition
Nothing
Methods
The identity of mplus
. It should also satisfy the equations
mzero >>= f = mzero v >> mzero = mzero
The default definition is
mzero = empty
An associative operation. The default definition is
mplus = (<|>
)
Instances
unless :: Applicative f => Bool -> f () -> f () #
The reverse of when
.
replicateM_ :: Applicative m => Int -> m a -> m () #
Like replicateM
, but discards the result.
replicateM :: Applicative m => Int -> m a -> m [a] #
performs the action replicateM
n actn
times,
gathering the results.
Using ApplicativeDo
: '
' can be understood as
the replicateM
5 asdo
expression
do a1 <- as a2 <- as a3 <- as a4 <- as a5 <- as pure [a1,a2,a3,a4,a5]
Note the Applicative
constraint.
foldM_ :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m () #
Like foldM
, but discards the result.
foldM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b #
The foldM
function is analogous to foldl
, except that its result is
encapsulated in a monad. Note that foldM
works from left-to-right over
the list arguments. This could be an issue where (
and the `folded
function' are not commutative.>>
)
foldM f a1 [x1, x2, ..., xm] == do a2 <- f a1 x1 a3 <- f a2 x2 ... f am xm
If right-to-left evaluation is required, the input list should be reversed.
zipWithM_ :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m () #
zipWithM :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m [c] #
mapAndUnzipM :: Applicative m => (a -> m (b, c)) -> [a] -> m ([b], [c]) #
The mapAndUnzipM
function maps its first argument over a list, returning
the result as a pair of lists. This function is mainly used with complicated
data structures or a state monad.
forever :: Applicative f => f a -> f b #
Repeat an action indefinitely.
Using ApplicativeDo
: '
' can be understood as the
pseudo-forever
asdo
expression
do as as ..
with as
repeating.
Examples
A common use of forever
is to process input from network sockets,
Handle
s, and channels
(e.g. MVar
and
Chan
).
For example, here is how we might implement an echo
server, using
forever
both to listen for client connections on a network socket
and to echo client input on client connection handles:
echoServer :: Socket -> IO () echoServer socket =forever
$ do client <- accept socketforkFinally
(echo client) (\_ -> hClose client) where echo :: Handle -> IO () echo client =forever
$ hGetLine client >>= hPutStrLn client
(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c infixr 1 #
Left-to-right composition of Kleisli arrows.
'(bs
' can be understood as the >=>
cs) ado
expression
do b <- bs a cs b
filterM :: Applicative m => (a -> m Bool) -> [a] -> m [a] #
This generalizes the list-based filter
function.
forM :: (Traversable t, Monad m) => t a -> (a -> m b) -> m (t b) #
sequence_ :: (Foldable t, Monad m) => t (m a) -> m () #
Evaluate each monadic action in the structure from left to right,
and ignore the results. For a version that doesn't ignore the
results see sequence
.
As of base 4.8.0.0, sequence_
is just sequenceA_
, specialized
to Monad
.
void :: Functor f => f a -> f () #
discards or ignores the result of evaluation, such
as the return value of an void
valueIO
action.
Using ApplicativeDo
: '
' can be understood as the
void
asdo
expression
do as pure ()
with an inferred Functor
constraint.
Examples
Replace the contents of a
with unit:Maybe
Int
>>>
void Nothing
Nothing>>>
void (Just 3)
Just ()
Replace the contents of an
with unit, resulting in an Either
Int
Int
:Either
Int
()
>>>
void (Left 8675309)
Left 8675309>>>
void (Right 8675309)
Right ()
Replace every element of a list with unit:
>>>
void [1,2,3]
[(),(),()]
Replace the second element of a pair with unit:
>>>
void (1,2)
(1,())
Discard the result of an IO
action:
>>>
mapM print [1,2]
1 2 [(),()]>>>
void $ mapM print [1,2]
1 2
liftM5 :: Monad m => (a1 -> a2 -> a3 -> a4 -> a5 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m a5 -> m r #
Promote a function to a monad, scanning the monadic arguments from
left to right (cf. liftM2
).
liftM4 :: Monad m => (a1 -> a2 -> a3 -> a4 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m r #
Promote a function to a monad, scanning the monadic arguments from
left to right (cf. liftM2
).
liftM3 :: Monad m => (a1 -> a2 -> a3 -> r) -> m a1 -> m a2 -> m a3 -> m r #
Promote a function to a monad, scanning the monadic arguments from
left to right (cf. liftM2
).
liftM2 :: Monad m => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r #
Promote a function to a monad, scanning the monadic arguments from left to right. For example,
liftM2 (+) [0,1] [0,2] = [0,2,1,3] liftM2 (+) (Just 1) Nothing = Nothing
when :: Applicative f => Bool -> f () -> f () #
Conditional execution of Applicative
expressions. For example,
when debug (putStrLn "Debugging")
will output the string Debugging
if the Boolean value debug
is True
, and otherwise do nothing.
(=<<) :: Monad m => (a -> m b) -> m a -> m b infixr 1 #
Same as >>=
, but with the arguments interchanged.
Data modules
The character type Char
is an enumeration whose values represent
Unicode (or equivalently ISO/IEC 10646) code points (i.e. characters, see
http://www.unicode.org/ for details). This set extends the ISO 8859-1
(Latin-1) character set (the first 256 characters), which is itself an extension
of the ASCII character set (the first 128 characters). A character literal in
Haskell has type Char
.
To convert a Char
to or from the corresponding Int
value defined
by Unicode, use toEnum
and fromEnum
from the
Enum
class respectively (or equivalently ord
and
chr
).
Instances
Convert a letter to the corresponding lower-case letter, if any. Any other character is returned unchanged.
Returns True
for any Unicode space character, and the control
characters \t
, \n
, \r
, \f
, \v
.
Selects alphabetic Unicode characters (lower-case, upper-case and
title-case letters, plus letters of caseless scripts and modifiers letters).
This function is equivalent to isLetter
.
isSeparator :: Char -> Bool #
Selects Unicode space and separator characters.
This function returns True
if its argument has one of the
following GeneralCategory
s, or False
otherwise:
These classes are defined in the Unicode Character Database, part of the Unicode standard. The same document defines what is and is not a "Separator".
Examples
Basic usage:
>>>
isSeparator 'a'
False>>>
isSeparator '6'
False>>>
isSeparator ' '
True
Warning: newlines and tab characters are not considered separators.
>>>
isSeparator '\n'
False>>>
isSeparator '\t'
False
But some more exotic characters are (like HTML's
):
>>>
isSeparator '\160'
True
Selects Unicode numeric characters, including digits from various scripts, Roman numerals, et cetera.
This function returns True
if its argument has one of the
following GeneralCategory
s, or False
otherwise:
These classes are defined in the Unicode Character Database, part of the Unicode standard. The same document defines what is and is not a "Number".
Examples
Basic usage:
>>>
isNumber 'a'
False>>>
isNumber '%'
False>>>
isNumber '3'
True
ASCII '0'
through '9'
are all numbers:
>>>
and $ map isNumber ['0'..'9']
True
Unicode Roman numerals are "numbers" as well:
>>>
isNumber 'Ⅸ'
True
Selects Unicode mark characters, for example accents and the like, which combine with preceding characters.
This function returns True
if its argument has one of the
following GeneralCategory
s, or False
otherwise:
These classes are defined in the Unicode Character Database, part of the Unicode standard. The same document defines what is and is not a "Mark".
Examples
Basic usage:
>>>
isMark 'a'
False>>>
isMark '0'
False
Combining marks such as accent characters usually need to follow another character before they become printable:
>>>
map isMark "ò"
[False,True]
Puns are not necessarily supported:
>>>
isMark '✓'
False
Selects alphabetic Unicode characters (lower-case, upper-case and
title-case letters, plus letters of caseless scripts and
modifiers letters). This function is equivalent to
isAlpha
.
This function returns True
if its argument has one of the
following GeneralCategory
s, or False
otherwise:
These classes are defined in the Unicode Character Database, part of the Unicode standard. The same document defines what is and is not a "Letter".
Examples
Basic usage:
>>>
isLetter 'a'
True>>>
isLetter 'A'
True>>>
isLetter 'λ'
True>>>
isLetter '0'
False>>>
isLetter '%'
False>>>
isLetter '♥'
False>>>
isLetter '\31'
False
Ensure that isLetter
and isAlpha
are equivalent.
>>>
let chars = [(chr 0)..]
>>>
let letters = map isLetter chars
>>>
let alphas = map isAlpha chars
>>>
letters == alphas
True
digitToInt :: Char -> Int #
Convert a single digit Char
to the corresponding Int
. This
function fails unless its argument satisfies isHexDigit
, but
recognises both upper- and lower-case hexadecimal digits (that
is, '0'
..'9'
, 'a'
..'f'
, 'A'
..'F'
).
Examples
Characters '0'
through '9'
are converted properly to
0..9
:
>>>
map digitToInt ['0'..'9']
[0,1,2,3,4,5,6,7,8,9]
Both upper- and lower-case 'A'
through 'F'
are converted
as well, to 10..15
.
>>>
map digitToInt ['a'..'f']
[10,11,12,13,14,15]>>>
map digitToInt ['A'..'F']
[10,11,12,13,14,15]
Anything else throws an exception:
>>>
digitToInt 'G'
*** Exception: Char.digitToInt: not a digit 'G'>>>
digitToInt '♥'
*** Exception: Char.digitToInt: not a digit '\9829'
readLitChar :: ReadS Char #
Read a string representation of a character, using Haskell source-language escape conventions, and convert it to the character that it encodes. For example:
readLitChar "\\nHello" = [('\n', "Hello")]
lexLitChar :: ReadS String #
Read a string representation of a character, using Haskell source-language escape conventions. For example:
lexLitChar "\\nHello" = [("\\n", "Hello")]
Convert a letter to the corresponding title-case or upper-case letter, if any. (Title case differs from upper case only for a small number of ligature letters.) Any other character is returned unchanged.
Convert a letter to the corresponding upper-case letter, if any. Any other character is returned unchanged.
Selects upper-case or title-case alphabetic Unicode characters (letters). Title case is used by a small number of letter ligatures like the single-character form of Lj.
Selects printable Unicode characters (letters, numbers, marks, punctuation, symbols and spaces).
Selects control characters, which are the non-printing characters of the Latin-1 subset of Unicode.
isAlphaNum :: Char -> Bool #
Selects alphabetic or numeric Unicode characters.
Note that numeric digits outside the ASCII range, as well as numeric
characters which aren't digits, are selected by this function but not by
isDigit
. Such characters may be part of identifiers but are not used by
the printer and reader to represent numbers.
Selects Unicode symbol characters, including mathematical and currency symbols.
This function returns True
if its argument has one of the
following GeneralCategory
s, or False
otherwise:
These classes are defined in the Unicode Character Database, part of the Unicode standard. The same document defines what is and is not a "Symbol".
Examples
Basic usage:
>>>
isSymbol 'a'
False>>>
isSymbol '6'
False>>>
isSymbol '='
True
The definition of "math symbol" may be a little counter-intuitive depending on one's background:
>>>
isSymbol '+'
True>>>
isSymbol '-'
False
isPunctuation :: Char -> Bool #
Selects Unicode punctuation characters, including various kinds of connectors, brackets and quotes.
This function returns True
if its argument has one of the
following GeneralCategory
s, or False
otherwise:
ConnectorPunctuation
DashPunctuation
OpenPunctuation
ClosePunctuation
InitialQuote
FinalQuote
OtherPunctuation
These classes are defined in the Unicode Character Database, part of the Unicode standard. The same document defines what is and is not a "Punctuation".
Examples
Basic usage:
>>>
isPunctuation 'a'
False>>>
isPunctuation '7'
False>>>
isPunctuation '♥'
False>>>
isPunctuation '"'
True>>>
isPunctuation '?'
True>>>
isPunctuation '—'
True
isHexDigit :: Char -> Bool #
Selects ASCII hexadecimal digits,
i.e. '0'
..'9'
, 'a'
..'f'
, 'A'
..'F'
.
isOctDigit :: Char -> Bool #
Selects ASCII octal digits, i.e. '0'
..'7'
.
isAsciiUpper :: Char -> Bool #
isAsciiLower :: Char -> Bool #
Selects the first 256 characters of the Unicode character set, corresponding to the ISO 8859-1 (Latin-1) character set.
Selects the first 128 characters of the Unicode character set, corresponding to the ASCII character set.
generalCategory :: Char -> GeneralCategory #
The Unicode general category of the character. This relies on the
Enum
instance of GeneralCategory
, which must remain in the
same order as the categories are presented in the Unicode
standard.
Examples
Basic usage:
>>>
generalCategory 'a'
LowercaseLetter>>>
generalCategory 'A'
UppercaseLetter>>>
generalCategory '0'
DecimalNumber>>>
generalCategory '%'
OtherPunctuation>>>
generalCategory '♥'
OtherSymbol>>>
generalCategory '\31'
Control>>>
generalCategory ' '
Space
intToDigit :: Int -> Char #
showLitChar :: Char -> ShowS #
Convert a character to a string using only printable characters, using Haskell source-language escape conventions. For example:
showLitChar '\n' s = "\\n" ++ s
class Typeable a => Data a where #
The Data
class comprehends a fundamental primitive gfoldl
for
folding over constructor applications, say terms. This primitive can
be instantiated in several ways to map over the immediate subterms
of a term; see the gmap
combinators later in this class. Indeed, a
generic programmer does not necessarily need to use the ingenious gfoldl
primitive but rather the intuitive gmap
combinators. The gfoldl
primitive is completed by means to query top-level constructors, to
turn constructor representations into proper terms, and to list all
possible datatype constructors. This completion allows us to serve
generic programming scenarios like read, show, equality, term generation.
The combinators gmapT
, gmapQ
, gmapM
, etc are all provided with
default definitions in terms of gfoldl
, leaving open the opportunity
to provide datatype-specific definitions.
(The inclusion of the gmap
combinators as members of class Data
allows the programmer or the compiler to derive specialised, and maybe
more efficient code per datatype. Note: gfoldl
is more higher-order
than the gmap
combinators. This is subject to ongoing benchmarking
experiments. It might turn out that the gmap
combinators will be
moved out of the class Data
.)
Conceptually, the definition of the gmap
combinators in terms of the
primitive gfoldl
requires the identification of the gfoldl
function
arguments. Technically, we also need to identify the type constructor
c
for the construction of the result type from the folded term type.
In the definition of gmapQ
x combinators, we use phantom type
constructors for the c
in the type of gfoldl
because the result type
of a query does not involve the (polymorphic) type of the term argument.
In the definition of gmapQl
we simply use the plain constant type
constructor because gfoldl
is left-associative anyway and so it is
readily suited to fold a left-associative binary operation over the
immediate subterms. In the definition of gmapQr, extra effort is
needed. We use a higher-order accumulation trick to mediate between
left-associative constructor application vs. right-associative binary
operation (e.g., (:)
). When the query is meant to compute a value
of type r
, then the result type withing generic folding is r -> r
.
So the result of folding is a function to which we finally pass the
right unit.
With the -XDeriveDataTypeable
option, GHC can generate instances of the
Data
class automatically. For example, given the declaration
data T a b = C1 a b | C2 deriving (Typeable, Data)
GHC will generate an instance that is equivalent to
instance (Data a, Data b) => Data (T a b) where gfoldl k z (C1 a b) = z C1 `k` a `k` b gfoldl k z C2 = z C2 gunfold k z c = case constrIndex c of 1 -> k (k (z C1)) 2 -> z C2 toConstr (C1 _ _) = con_C1 toConstr C2 = con_C2 dataTypeOf _ = ty_T con_C1 = mkConstr ty_T "C1" [] Prefix con_C2 = mkConstr ty_T "C2" [] Prefix ty_T = mkDataType "Module.T" [con_C1, con_C2]
This is suitable for datatypes that are exported transparently.
Minimal complete definition
Methods
Arguments
:: (forall d b. Data d => c (d -> b) -> d -> c b) | defines how nonempty constructor applications are folded. It takes the folded tail of the constructor application and its head, i.e., an immediate subterm, and combines them in some way. |
-> (forall g. g -> c g) | defines how the empty constructor application is folded, like the neutral / start element for list folding. |
-> a | structure to be folded. |
-> c a | result, with a type defined in terms of |
Left-associative fold operation for constructor applications.
The type of gfoldl
is a headache, but operationally it is a simple
generalisation of a list fold.
The default definition for gfoldl
is
, which is
suitable for abstract datatypes with no substructures.const
id
gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c a #
Unfolding constructor applications
Obtaining the constructor from a given datum. For proper terms, this is meant to be the top-level constructor. Primitive datatypes are here viewed as potentially infinite sets of values (i.e., constructors).
dataTypeOf :: a -> DataType #
The outer type constructor of the type
dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c a) #
Mediate types and unary type constructors.
In Data
instances of the form
instance (Data a, ...) => Data (T a)
dataCast1
should be defined as gcast1
.
The default definition is
, which is appropriate
for instances of other forms.const
Nothing
dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a) #
Mediate types and binary type constructors.
In Data
instances of the form
instance (Data a, Data b, ...) => Data (T a b)
dataCast2
should be defined as gcast2
.
The default definition is
, which is appropriate
for instances of other forms.const
Nothing
gmapT :: (forall b. Data b => b -> b) -> a -> a #
A generic transformation that maps over the immediate subterms
The default definition instantiates the type constructor c
in the
type of gfoldl
to an identity datatype constructor, using the
isomorphism pair as injection and projection.
gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r #
A generic query with a left-associative binary operator
gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r #
A generic query with a right-associative binary operator
gmapQ :: (forall d. Data d => d -> u) -> a -> [u] #
A generic query that processes the immediate subterms and returns a list of results. The list is given in the same order as originally specified in the declaration of the data constructors.
gmapQi :: Int -> (forall d. Data d => d -> u) -> a -> u #
A generic query that processes one child by index (zero-based)
gmapM :: Monad m => (forall d. Data d => d -> m d) -> a -> m a #
A generic monadic transformation that maps over the immediate subterms
The default definition instantiates the type constructor c
in
the type of gfoldl
to the monad datatype constructor, defining
injection and projection using return
and >>=
.
gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> a -> m a #
Transformation of at least one immediate subterm does not fail
gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> a -> m a #
Transformation of one immediate subterm with success
Instances
Data Bool | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bool -> c Bool # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bool # dataTypeOf :: Bool -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Bool) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bool) # gmapT :: (forall b. Data b => b -> b) -> Bool -> Bool # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r # gmapQ :: (forall d. Data d => d -> u) -> Bool -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Bool -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bool -> m Bool # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool # | |
Data Char | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Char -> c Char # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Char # dataTypeOf :: Char -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Char) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Char) # gmapT :: (forall b. Data b => b -> b) -> Char -> Char # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r # gmapQ :: (forall d. Data d => d -> u) -> Char -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Char -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Char -> m Char # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char # | |
Data Double | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Double -> c Double # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Double # toConstr :: Double -> Constr # dataTypeOf :: Double -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Double) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Double) # gmapT :: (forall b. Data b => b -> b) -> Double -> Double # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r # gmapQ :: (forall d. Data d => d -> u) -> Double -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Double -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Double -> m Double # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double # | |
Data Float | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Float -> c Float # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Float # dataTypeOf :: Float -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Float) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Float) # gmapT :: (forall b. Data b => b -> b) -> Float -> Float # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r # gmapQ :: (forall d. Data d => d -> u) -> Float -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Float -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Float -> m Float # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float # | |
Data Int | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int -> c Int # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int # dataTypeOf :: Int -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int) # gmapT :: (forall b. Data b => b -> b) -> Int -> Int # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r # gmapQ :: (forall d. Data d => d -> u) -> Int -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int -> m Int # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int # | |
Data Int8 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int8 -> c Int8 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int8 # dataTypeOf :: Int8 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int8) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int8) # gmapT :: (forall b. Data b => b -> b) -> Int8 -> Int8 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int8 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int8 -> r # gmapQ :: (forall d. Data d => d -> u) -> Int8 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int8 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 # | |
Data Int16 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int16 -> c Int16 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int16 # dataTypeOf :: Int16 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int16) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int16) # gmapT :: (forall b. Data b => b -> b) -> Int16 -> Int16 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int16 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int16 -> r # gmapQ :: (forall d. Data d => d -> u) -> Int16 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int16 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 # | |
Data Int32 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int32 -> c Int32 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int32 # dataTypeOf :: Int32 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int32) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int32) # gmapT :: (forall b. Data b => b -> b) -> Int32 -> Int32 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int32 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int32 -> r # gmapQ :: (forall d. Data d => d -> u) -> Int32 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int32 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 # | |
Data Int64 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int64 -> c Int64 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int64 # dataTypeOf :: Int64 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int64) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int64) # gmapT :: (forall b. Data b => b -> b) -> Int64 -> Int64 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int64 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int64 -> r # gmapQ :: (forall d. Data d => d -> u) -> Int64 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int64 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 # | |
Data Integer | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Integer -> c Integer # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Integer # toConstr :: Integer -> Constr # dataTypeOf :: Integer -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Integer) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Integer) # gmapT :: (forall b. Data b => b -> b) -> Integer -> Integer # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r # gmapQ :: (forall d. Data d => d -> u) -> Integer -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Integer -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Integer -> m Integer # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer # | |
Data Natural | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Natural -> c Natural # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Natural # toConstr :: Natural -> Constr # dataTypeOf :: Natural -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Natural) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Natural) # gmapT :: (forall b. Data b => b -> b) -> Natural -> Natural # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Natural -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Natural -> r # gmapQ :: (forall d. Data d => d -> u) -> Natural -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Natural -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Natural -> m Natural # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Natural -> m Natural # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Natural -> m Natural # | |
Data Ordering | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ordering -> c Ordering # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Ordering # toConstr :: Ordering -> Constr # dataTypeOf :: Ordering -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Ordering) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Ordering) # gmapT :: (forall b. Data b => b -> b) -> Ordering -> Ordering # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r # gmapQ :: (forall d. Data d => d -> u) -> Ordering -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ordering -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # | |
Data Word | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word -> c Word # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word # dataTypeOf :: Word -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word) # gmapT :: (forall b. Data b => b -> b) -> Word -> Word # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r # gmapQ :: (forall d. Data d => d -> u) -> Word -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word -> m Word # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word # | |
Data Word8 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word8 -> c Word8 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word8 # dataTypeOf :: Word8 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word8) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word8) # gmapT :: (forall b. Data b => b -> b) -> Word8 -> Word8 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word8 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word8 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word8 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word8 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 # | |
Data Word16 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word16 -> c Word16 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word16 # toConstr :: Word16 -> Constr # dataTypeOf :: Word16 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word16) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word16) # gmapT :: (forall b. Data b => b -> b) -> Word16 -> Word16 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word16 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word16 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word16 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word16 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 # | |
Data Word32 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word32 -> c Word32 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word32 # toConstr :: Word32 -> Constr # dataTypeOf :: Word32 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word32) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word32) # gmapT :: (forall b. Data b => b -> b) -> Word32 -> Word32 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word32 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word32 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word32 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word32 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 # | |
Data Word64 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word64 -> c Word64 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word64 # toConstr :: Word64 -> Constr # dataTypeOf :: Word64 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word64) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word64) # gmapT :: (forall b. Data b => b -> b) -> Word64 -> Word64 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word64 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word64 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word64 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word64 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 # | |
Data Exp | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Exp -> c Exp # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Exp # dataTypeOf :: Exp -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Exp) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Exp) # gmapT :: (forall b. Data b => b -> b) -> Exp -> Exp # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Exp -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Exp -> r # gmapQ :: (forall d. Data d => d -> u) -> Exp -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Exp -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Exp -> m Exp # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Exp -> m Exp # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Exp -> m Exp # | |
Data Match | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Match -> c Match # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Match # dataTypeOf :: Match -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Match) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Match) # gmapT :: (forall b. Data b => b -> b) -> Match -> Match # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Match -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Match -> r # gmapQ :: (forall d. Data d => d -> u) -> Match -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Match -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Match -> m Match # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Match -> m Match # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Match -> m Match # | |
Data Clause | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Clause -> c Clause # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Clause # toConstr :: Clause -> Constr # dataTypeOf :: Clause -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Clause) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Clause) # gmapT :: (forall b. Data b => b -> b) -> Clause -> Clause # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Clause -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Clause -> r # gmapQ :: (forall d. Data d => d -> u) -> Clause -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Clause -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Clause -> m Clause # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Clause -> m Clause # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Clause -> m Clause # | |
Data Pat | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Pat -> c Pat # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Pat # dataTypeOf :: Pat -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Pat) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Pat) # gmapT :: (forall b. Data b => b -> b) -> Pat -> Pat # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Pat -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Pat -> r # gmapQ :: (forall d. Data d => d -> u) -> Pat -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Pat -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Pat -> m Pat # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Pat -> m Pat # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Pat -> m Pat # | |
Data Type | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Type -> c Type # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Type # dataTypeOf :: Type -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Type) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Type) # gmapT :: (forall b. Data b => b -> b) -> Type -> Type # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Type -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Type -> r # gmapQ :: (forall d. Data d => d -> u) -> Type -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Type -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Type -> m Type # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Type -> m Type # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Type -> m Type # | |
Data Dec | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Dec -> c Dec # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Dec # dataTypeOf :: Dec -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Dec) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Dec) # gmapT :: (forall b. Data b => b -> b) -> Dec -> Dec # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Dec -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Dec -> r # gmapQ :: (forall d. Data d => d -> u) -> Dec -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Dec -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Dec -> m Dec # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Dec -> m Dec # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Dec -> m Dec # | |
Data Name | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Name -> c Name # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Name # dataTypeOf :: Name -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Name) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Name) # gmapT :: (forall b. Data b => b -> b) -> Name -> Name # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Name -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Name -> r # gmapQ :: (forall d. Data d => d -> u) -> Name -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Name -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Name -> m Name # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Name -> m Name # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Name -> m Name # | |
Data FunDep | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FunDep -> c FunDep # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c FunDep # toConstr :: FunDep -> Constr # dataTypeOf :: FunDep -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c FunDep) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c FunDep) # gmapT :: (forall b. Data b => b -> b) -> FunDep -> FunDep # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FunDep -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FunDep -> r # gmapQ :: (forall d. Data d => d -> u) -> FunDep -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> FunDep -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FunDep -> m FunDep # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FunDep -> m FunDep # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FunDep -> m FunDep # | |
Data InjectivityAnn | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> InjectivityAnn -> c InjectivityAnn # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c InjectivityAnn # toConstr :: InjectivityAnn -> Constr # dataTypeOf :: InjectivityAnn -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c InjectivityAnn) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c InjectivityAnn) # gmapT :: (forall b. Data b => b -> b) -> InjectivityAnn -> InjectivityAnn # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> InjectivityAnn -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> InjectivityAnn -> r # gmapQ :: (forall d. Data d => d -> u) -> InjectivityAnn -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> InjectivityAnn -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> InjectivityAnn -> m InjectivityAnn # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> InjectivityAnn -> m InjectivityAnn # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> InjectivityAnn -> m InjectivityAnn # | |
Data Overlap | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Overlap -> c Overlap # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Overlap # toConstr :: Overlap -> Constr # dataTypeOf :: Overlap -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Overlap) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Overlap) # gmapT :: (forall b. Data b => b -> b) -> Overlap -> Overlap # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Overlap -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Overlap -> r # gmapQ :: (forall d. Data d => d -> u) -> Overlap -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Overlap -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Overlap -> m Overlap # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Overlap -> m Overlap # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Overlap -> m Overlap # | |
Data () | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> () -> c () # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c () # dataTypeOf :: () -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ()) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ()) # gmapT :: (forall b. Data b => b -> b) -> () -> () # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> () -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> () -> r # gmapQ :: (forall d. Data d => d -> u) -> () -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> () -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> () -> m () # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> () -> m () # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> () -> m () # | |
Data Version | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Version -> c Version # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Version # toConstr :: Version -> Constr # dataTypeOf :: Version -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Version) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Version) # gmapT :: (forall b. Data b => b -> b) -> Version -> Version # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Version -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Version -> r # gmapQ :: (forall d. Data d => d -> u) -> Version -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Version -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Version -> m Version # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Version -> m Version # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Version -> m Version # | |
Data ByteString | |
Defined in Data.ByteString.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ByteString -> c ByteString # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ByteString # toConstr :: ByteString -> Constr # dataTypeOf :: ByteString -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ByteString) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ByteString) # gmapT :: (forall b. Data b => b -> b) -> ByteString -> ByteString # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r # gmapQ :: (forall d. Data d => d -> u) -> ByteString -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ByteString -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # | |
Data ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ByteString -> c ByteString # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ByteString # toConstr :: ByteString -> Constr # dataTypeOf :: ByteString -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ByteString) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ByteString) # gmapT :: (forall b. Data b => b -> b) -> ByteString -> ByteString # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r # gmapQ :: (forall d. Data d => d -> u) -> ByteString -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ByteString -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # | |
Data Scientific | |
Defined in Data.Scientific Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Scientific -> c Scientific # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Scientific # toConstr :: Scientific -> Constr # dataTypeOf :: Scientific -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Scientific) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Scientific) # gmapT :: (forall b. Data b => b -> b) -> Scientific -> Scientific # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Scientific -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Scientific -> r # gmapQ :: (forall d. Data d => d -> u) -> Scientific -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Scientific -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Scientific -> m Scientific # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Scientific -> m Scientific # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Scientific -> m Scientific # | |
Data UTCTime | |
Defined in Data.Time.Clock.Internal.UTCTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> UTCTime -> c UTCTime # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c UTCTime # toConstr :: UTCTime -> Constr # dataTypeOf :: UTCTime -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c UTCTime) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c UTCTime) # gmapT :: (forall b. Data b => b -> b) -> UTCTime -> UTCTime # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> UTCTime -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> UTCTime -> r # gmapQ :: (forall d. Data d => d -> u) -> UTCTime -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> UTCTime -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> UTCTime -> m UTCTime # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> UTCTime -> m UTCTime # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> UTCTime -> m UTCTime # | |
Data Value | |
Defined in Data.Aeson.Types.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Value -> c Value # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Value # dataTypeOf :: Value -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Value) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Value) # gmapT :: (forall b. Data b => b -> b) -> Value -> Value # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Value -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Value -> r # gmapQ :: (forall d. Data d => d -> u) -> Value -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Value -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Value -> m Value # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Value -> m Value # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Value -> m Value # | |
Data Void | Since: base-4.8.0.0 |
Defined in Data.Void Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Void -> c Void # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Void # dataTypeOf :: Void -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Void) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Void) # gmapT :: (forall b. Data b => b -> b) -> Void -> Void # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r # gmapQ :: (forall d. Data d => d -> u) -> Void -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Void -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Void -> m Void # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void # | |
Data SpecConstrAnnotation | Since: base-4.3.0.0 |
Defined in GHC.Exts Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SpecConstrAnnotation -> c SpecConstrAnnotation # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SpecConstrAnnotation # toConstr :: SpecConstrAnnotation -> Constr # dataTypeOf :: SpecConstrAnnotation -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SpecConstrAnnotation) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SpecConstrAnnotation) # gmapT :: (forall b. Data b => b -> b) -> SpecConstrAnnotation -> SpecConstrAnnotation # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SpecConstrAnnotation -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SpecConstrAnnotation -> r # gmapQ :: (forall d. Data d => d -> u) -> SpecConstrAnnotation -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SpecConstrAnnotation -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SpecConstrAnnotation -> m SpecConstrAnnotation # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SpecConstrAnnotation -> m SpecConstrAnnotation # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SpecConstrAnnotation -> m SpecConstrAnnotation # | |
Data All | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> All -> c All # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c All # dataTypeOf :: All -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c All) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c All) # gmapT :: (forall b. Data b => b -> b) -> All -> All # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> All -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> All -> r # gmapQ :: (forall d. Data d => d -> u) -> All -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> All -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> All -> m All # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> All -> m All # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> All -> m All # | |
Data Any | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Any -> c Any # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Any # dataTypeOf :: Any -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Any) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Any) # gmapT :: (forall b. Data b => b -> b) -> Any -> Any # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Any -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Any -> r # gmapQ :: (forall d. Data d => d -> u) -> Any -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Any -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Any -> m Any # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Any -> m Any # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Any -> m Any # | |
Data Fixity | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Fixity -> c Fixity # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Fixity # toConstr :: Fixity -> Constr # dataTypeOf :: Fixity -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Fixity) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Fixity) # gmapT :: (forall b. Data b => b -> b) -> Fixity -> Fixity # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r # gmapQ :: (forall d. Data d => d -> u) -> Fixity -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Fixity -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # | |
Data Associativity | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Associativity -> c Associativity # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Associativity # toConstr :: Associativity -> Constr # dataTypeOf :: Associativity -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Associativity) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Associativity) # gmapT :: (forall b. Data b => b -> b) -> Associativity -> Associativity # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Associativity -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Associativity -> r # gmapQ :: (forall d. Data d => d -> u) -> Associativity -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Associativity -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Associativity -> m Associativity # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Associativity -> m Associativity # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Associativity -> m Associativity # | |
Data SourceUnpackedness | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceUnpackedness -> c SourceUnpackedness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceUnpackedness # toConstr :: SourceUnpackedness -> Constr # dataTypeOf :: SourceUnpackedness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourceUnpackedness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceUnpackedness) # gmapT :: (forall b. Data b => b -> b) -> SourceUnpackedness -> SourceUnpackedness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceUnpackedness -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceUnpackedness -> r # gmapQ :: (forall d. Data d => d -> u) -> SourceUnpackedness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceUnpackedness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # | |
Data SourceStrictness | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceStrictness -> c SourceStrictness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceStrictness # toConstr :: SourceStrictness -> Constr # dataTypeOf :: SourceStrictness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourceStrictness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceStrictness) # gmapT :: (forall b. Data b => b -> b) -> SourceStrictness -> SourceStrictness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceStrictness -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceStrictness -> r # gmapQ :: (forall d. Data d => d -> u) -> SourceStrictness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceStrictness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # | |
Data DecidedStrictness | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DecidedStrictness -> c DecidedStrictness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DecidedStrictness # toConstr :: DecidedStrictness -> Constr # dataTypeOf :: DecidedStrictness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DecidedStrictness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DecidedStrictness) # gmapT :: (forall b. Data b => b -> b) -> DecidedStrictness -> DecidedStrictness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DecidedStrictness -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DecidedStrictness -> r # gmapQ :: (forall d. Data d => d -> u) -> DecidedStrictness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DecidedStrictness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # | |
Data WordPtr | Since: base-4.11.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> WordPtr -> c WordPtr # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c WordPtr # toConstr :: WordPtr -> Constr # dataTypeOf :: WordPtr -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c WordPtr) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c WordPtr) # gmapT :: (forall b. Data b => b -> b) -> WordPtr -> WordPtr # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WordPtr -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WordPtr -> r # gmapQ :: (forall d. Data d => d -> u) -> WordPtr -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> WordPtr -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> WordPtr -> m WordPtr # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> WordPtr -> m WordPtr # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> WordPtr -> m WordPtr # | |
Data IntPtr | Since: base-4.11.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntPtr -> c IntPtr # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c IntPtr # toConstr :: IntPtr -> Constr # dataTypeOf :: IntPtr -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c IntPtr) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c IntPtr) # gmapT :: (forall b. Data b => b -> b) -> IntPtr -> IntPtr # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntPtr -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntPtr -> r # gmapQ :: (forall d. Data d => d -> u) -> IntPtr -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> IntPtr -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntPtr -> m IntPtr # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntPtr -> m IntPtr # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntPtr -> m IntPtr # | |
Data IntSet | |
Defined in Data.IntSet.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntSet -> c IntSet # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c IntSet # toConstr :: IntSet -> Constr # dataTypeOf :: IntSet -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c IntSet) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c IntSet) # gmapT :: (forall b. Data b => b -> b) -> IntSet -> IntSet # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntSet -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntSet -> r # gmapQ :: (forall d. Data d => d -> u) -> IntSet -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> IntSet -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet # | |
Data Comment | |
Defined in Language.Haskell.Exts.Comments Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Comment -> c Comment # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Comment # toConstr :: Comment -> Constr # dataTypeOf :: Comment -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Comment) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Comment) # gmapT :: (forall b. Data b => b -> b) -> Comment -> Comment # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Comment -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Comment -> r # gmapQ :: (forall d. Data d => d -> u) -> Comment -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Comment -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Comment -> m Comment # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Comment -> m Comment # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Comment -> m Comment # | |
Data UnknownPragma | |
Defined in Language.Haskell.Exts.Comments Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> UnknownPragma -> c UnknownPragma # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c UnknownPragma # toConstr :: UnknownPragma -> Constr # dataTypeOf :: UnknownPragma -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c UnknownPragma) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c UnknownPragma) # gmapT :: (forall b. Data b => b -> b) -> UnknownPragma -> UnknownPragma # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> UnknownPragma -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> UnknownPragma -> r # gmapQ :: (forall d. Data d => d -> u) -> UnknownPragma -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> UnknownPragma -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> UnknownPragma -> m UnknownPragma # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> UnknownPragma -> m UnknownPragma # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> UnknownPragma -> m UnknownPragma # | |
Data Fixity | |
Defined in Language.Haskell.Exts.Fixity Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Fixity -> c Fixity # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Fixity # toConstr :: Fixity -> Constr # dataTypeOf :: Fixity -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Fixity) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Fixity) # gmapT :: (forall b. Data b => b -> b) -> Fixity -> Fixity # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r # gmapQ :: (forall d. Data d => d -> u) -> Fixity -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Fixity -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # | |
Data Boxed | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Boxed -> c Boxed # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Boxed # dataTypeOf :: Boxed -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Boxed) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Boxed) # gmapT :: (forall b. Data b => b -> b) -> Boxed -> Boxed # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Boxed -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Boxed -> r # gmapQ :: (forall d. Data d => d -> u) -> Boxed -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Boxed -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Boxed -> m Boxed # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Boxed -> m Boxed # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Boxed -> m Boxed # | |
Data Tool | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Tool -> c Tool # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Tool # dataTypeOf :: Tool -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Tool) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Tool) # gmapT :: (forall b. Data b => b -> b) -> Tool -> Tool # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Tool -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Tool -> r # gmapQ :: (forall d. Data d => d -> u) -> Tool -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Tool -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Tool -> m Tool # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Tool -> m Tool # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Tool -> m Tool # | |
Data SrcLoc | |
Defined in Language.Haskell.Exts.SrcLoc Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SrcLoc -> c SrcLoc # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SrcLoc # toConstr :: SrcLoc -> Constr # dataTypeOf :: SrcLoc -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SrcLoc) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SrcLoc) # gmapT :: (forall b. Data b => b -> b) -> SrcLoc -> SrcLoc # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SrcLoc -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SrcLoc -> r # gmapQ :: (forall d. Data d => d -> u) -> SrcLoc -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SrcLoc -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SrcLoc -> m SrcLoc # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SrcLoc -> m SrcLoc # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SrcLoc -> m SrcLoc # | |
Data SrcSpan | |
Defined in Language.Haskell.Exts.SrcLoc Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SrcSpan -> c SrcSpan # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SrcSpan # toConstr :: SrcSpan -> Constr # dataTypeOf :: SrcSpan -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SrcSpan) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SrcSpan) # gmapT :: (forall b. Data b => b -> b) -> SrcSpan -> SrcSpan # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SrcSpan -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SrcSpan -> r # gmapQ :: (forall d. Data d => d -> u) -> SrcSpan -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SrcSpan -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SrcSpan -> m SrcSpan # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SrcSpan -> m SrcSpan # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SrcSpan -> m SrcSpan # | |
Data SrcSpanInfo | |
Defined in Language.Haskell.Exts.SrcLoc Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SrcSpanInfo -> c SrcSpanInfo # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SrcSpanInfo # toConstr :: SrcSpanInfo -> Constr # dataTypeOf :: SrcSpanInfo -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SrcSpanInfo) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SrcSpanInfo) # gmapT :: (forall b. Data b => b -> b) -> SrcSpanInfo -> SrcSpanInfo # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SrcSpanInfo -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SrcSpanInfo -> r # gmapQ :: (forall d. Data d => d -> u) -> SrcSpanInfo -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SrcSpanInfo -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SrcSpanInfo -> m SrcSpanInfo # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SrcSpanInfo -> m SrcSpanInfo # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SrcSpanInfo -> m SrcSpanInfo # | |
Data Language | |
Defined in Language.Haskell.Exts.Extension Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Language -> c Language # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Language # toConstr :: Language -> Constr # dataTypeOf :: Language -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Language) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Language) # gmapT :: (forall b. Data b => b -> b) -> Language -> Language # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Language -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Language -> r # gmapQ :: (forall d. Data d => d -> u) -> Language -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Language -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Language -> m Language # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Language -> m Language # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Language -> m Language # | |
Data KnownExtension | |
Defined in Language.Haskell.Exts.Extension Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> KnownExtension -> c KnownExtension # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c KnownExtension # toConstr :: KnownExtension -> Constr # dataTypeOf :: KnownExtension -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c KnownExtension) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c KnownExtension) # gmapT :: (forall b. Data b => b -> b) -> KnownExtension -> KnownExtension # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> KnownExtension -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> KnownExtension -> r # gmapQ :: (forall d. Data d => d -> u) -> KnownExtension -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> KnownExtension -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> KnownExtension -> m KnownExtension # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> KnownExtension -> m KnownExtension # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> KnownExtension -> m KnownExtension # | |
Data InfixOp | |
Defined in Language.ECMAScript3.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> InfixOp -> c InfixOp # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c InfixOp # toConstr :: InfixOp -> Constr # dataTypeOf :: InfixOp -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c InfixOp) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c InfixOp) # gmapT :: (forall b. Data b => b -> b) -> InfixOp -> InfixOp # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> InfixOp -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> InfixOp -> r # gmapQ :: (forall d. Data d => d -> u) -> InfixOp -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> InfixOp -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> InfixOp -> m InfixOp # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> InfixOp -> m InfixOp # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> InfixOp -> m InfixOp # | |
Data AssignOp | |
Defined in Language.ECMAScript3.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> AssignOp -> c AssignOp # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c AssignOp # toConstr :: AssignOp -> Constr # dataTypeOf :: AssignOp -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c AssignOp) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c AssignOp) # gmapT :: (forall b. Data b => b -> b) -> AssignOp -> AssignOp # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> AssignOp -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> AssignOp -> r # gmapQ :: (forall d. Data d => d -> u) -> AssignOp -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> AssignOp -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> AssignOp -> m AssignOp # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> AssignOp -> m AssignOp # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> AssignOp -> m AssignOp # | |
Data UnaryAssignOp | |
Defined in Language.ECMAScript3.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> UnaryAssignOp -> c UnaryAssignOp # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c UnaryAssignOp # toConstr :: UnaryAssignOp -> Constr # dataTypeOf :: UnaryAssignOp -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c UnaryAssignOp) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c UnaryAssignOp) # gmapT :: (forall b. Data b => b -> b) -> UnaryAssignOp -> UnaryAssignOp # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> UnaryAssignOp -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> UnaryAssignOp -> r # gmapQ :: (forall d. Data d => d -> u) -> UnaryAssignOp -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> UnaryAssignOp -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> UnaryAssignOp -> m UnaryAssignOp # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> UnaryAssignOp -> m UnaryAssignOp # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> UnaryAssignOp -> m UnaryAssignOp # | |
Data PrefixOp | |
Defined in Language.ECMAScript3.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PrefixOp -> c PrefixOp # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PrefixOp # toConstr :: PrefixOp -> Constr # dataTypeOf :: PrefixOp -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PrefixOp) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PrefixOp) # gmapT :: (forall b. Data b => b -> b) -> PrefixOp -> PrefixOp # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PrefixOp -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PrefixOp -> r # gmapQ :: (forall d. Data d => d -> u) -> PrefixOp -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PrefixOp -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PrefixOp -> m PrefixOp # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PrefixOp -> m PrefixOp # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PrefixOp -> m PrefixOp # | |
Data SourcePos | |
Defined in Text.Parsec.Pos Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourcePos -> c SourcePos # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourcePos # toConstr :: SourcePos -> Constr # dataTypeOf :: SourcePos -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourcePos) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourcePos) # gmapT :: (forall b. Data b => b -> b) -> SourcePos -> SourcePos # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourcePos -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourcePos -> r # gmapQ :: (forall d. Data d => d -> u) -> SourcePos -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourcePos -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourcePos -> m SourcePos # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourcePos -> m SourcePos # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourcePos -> m SourcePos # | |
Data ByteArray | |
Defined in Data.Primitive.ByteArray Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ByteArray -> c ByteArray # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ByteArray # toConstr :: ByteArray -> Constr # dataTypeOf :: ByteArray -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ByteArray) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ByteArray) # gmapT :: (forall b. Data b => b -> b) -> ByteArray -> ByteArray # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ByteArray -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ByteArray -> r # gmapQ :: (forall d. Data d => d -> u) -> ByteArray -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ByteArray -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ByteArray -> m ByteArray # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteArray -> m ByteArray # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteArray -> m ByteArray # | |
Data VarType | |
Defined in Text.Shakespeare Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> VarType -> c VarType # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c VarType # toConstr :: VarType -> Constr # dataTypeOf :: VarType -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c VarType) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c VarType) # gmapT :: (forall b. Data b => b -> b) -> VarType -> VarType # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> VarType -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> VarType -> r # gmapQ :: (forall d. Data d => d -> u) -> VarType -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> VarType -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> VarType -> m VarType # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> VarType -> m VarType # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> VarType -> m VarType # | |
Data ModName | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ModName -> c ModName # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ModName # toConstr :: ModName -> Constr # dataTypeOf :: ModName -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ModName) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ModName) # gmapT :: (forall b. Data b => b -> b) -> ModName -> ModName # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ModName -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ModName -> r # gmapQ :: (forall d. Data d => d -> u) -> ModName -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ModName -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ModName -> m ModName # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ModName -> m ModName # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ModName -> m ModName # | |
Data PkgName | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PkgName -> c PkgName # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PkgName # toConstr :: PkgName -> Constr # dataTypeOf :: PkgName -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PkgName) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PkgName) # gmapT :: (forall b. Data b => b -> b) -> PkgName -> PkgName # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PkgName -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PkgName -> r # gmapQ :: (forall d. Data d => d -> u) -> PkgName -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PkgName -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PkgName -> m PkgName # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PkgName -> m PkgName # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PkgName -> m PkgName # | |
Data Module | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Module -> c Module # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Module # toConstr :: Module -> Constr # dataTypeOf :: Module -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Module) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Module) # gmapT :: (forall b. Data b => b -> b) -> Module -> Module # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Module -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Module -> r # gmapQ :: (forall d. Data d => d -> u) -> Module -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Module -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Module -> m Module # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Module -> m Module # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Module -> m Module # | |
Data OccName | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> OccName -> c OccName # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c OccName # toConstr :: OccName -> Constr # dataTypeOf :: OccName -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c OccName) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c OccName) # gmapT :: (forall b. Data b => b -> b) -> OccName -> OccName # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> OccName -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> OccName -> r # gmapQ :: (forall d. Data d => d -> u) -> OccName -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> OccName -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> OccName -> m OccName # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> OccName -> m OccName # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> OccName -> m OccName # | |
Data NameFlavour | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NameFlavour -> c NameFlavour # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c NameFlavour # toConstr :: NameFlavour -> Constr # dataTypeOf :: NameFlavour -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c NameFlavour) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c NameFlavour) # gmapT :: (forall b. Data b => b -> b) -> NameFlavour -> NameFlavour # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NameFlavour -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NameFlavour -> r # gmapQ :: (forall d. Data d => d -> u) -> NameFlavour -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> NameFlavour -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NameFlavour -> m NameFlavour # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NameFlavour -> m NameFlavour # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NameFlavour -> m NameFlavour # | |
Data NameSpace | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NameSpace -> c NameSpace # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c NameSpace # toConstr :: NameSpace -> Constr # dataTypeOf :: NameSpace -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c NameSpace) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c NameSpace) # gmapT :: (forall b. Data b => b -> b) -> NameSpace -> NameSpace # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NameSpace -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NameSpace -> r # gmapQ :: (forall d. Data d => d -> u) -> NameSpace -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> NameSpace -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NameSpace -> m NameSpace # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NameSpace -> m NameSpace # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NameSpace -> m NameSpace # | |
Data Loc | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Loc -> c Loc # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Loc # dataTypeOf :: Loc -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Loc) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Loc) # gmapT :: (forall b. Data b => b -> b) -> Loc -> Loc # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Loc -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Loc -> r # gmapQ :: (forall d. Data d => d -> u) -> Loc -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Loc -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Loc -> m Loc # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Loc -> m Loc # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Loc -> m Loc # | |
Data Info | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Info -> c Info # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Info # dataTypeOf :: Info -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Info) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Info) # gmapT :: (forall b. Data b => b -> b) -> Info -> Info # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Info -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Info -> r # gmapQ :: (forall d. Data d => d -> u) -> Info -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Info -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Info -> m Info # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Info -> m Info # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Info -> m Info # | |
Data ModuleInfo | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ModuleInfo -> c ModuleInfo # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ModuleInfo # toConstr :: ModuleInfo -> Constr # dataTypeOf :: ModuleInfo -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ModuleInfo) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ModuleInfo) # gmapT :: (forall b. Data b => b -> b) -> ModuleInfo -> ModuleInfo # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ModuleInfo -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ModuleInfo -> r # gmapQ :: (forall d. Data d => d -> u) -> ModuleInfo -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ModuleInfo -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ModuleInfo -> m ModuleInfo # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleInfo -> m ModuleInfo # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleInfo -> m ModuleInfo # | |
Data Fixity | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Fixity -> c Fixity # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Fixity # toConstr :: Fixity -> Constr # dataTypeOf :: Fixity -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Fixity) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Fixity) # gmapT :: (forall b. Data b => b -> b) -> Fixity -> Fixity # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r # gmapQ :: (forall d. Data d => d -> u) -> Fixity -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Fixity -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # | |
Data FixityDirection | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FixityDirection -> c FixityDirection # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c FixityDirection # toConstr :: FixityDirection -> Constr # dataTypeOf :: FixityDirection -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c FixityDirection) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c FixityDirection) # gmapT :: (forall b. Data b => b -> b) -> FixityDirection -> FixityDirection # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FixityDirection -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FixityDirection -> r # gmapQ :: (forall d. Data d => d -> u) -> FixityDirection -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> FixityDirection -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FixityDirection -> m FixityDirection # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FixityDirection -> m FixityDirection # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FixityDirection -> m FixityDirection # | |
Data Lit | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Lit -> c Lit # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Lit # dataTypeOf :: Lit -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Lit) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Lit) # gmapT :: (forall b. Data b => b -> b) -> Lit -> Lit # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Lit -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Lit -> r # gmapQ :: (forall d. Data d => d -> u) -> Lit -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Lit -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Lit -> m Lit # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Lit -> m Lit # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Lit -> m Lit # | |
Data Bytes | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bytes -> c Bytes # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bytes # dataTypeOf :: Bytes -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Bytes) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bytes) # gmapT :: (forall b. Data b => b -> b) -> Bytes -> Bytes # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bytes -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bytes -> r # gmapQ :: (forall d. Data d => d -> u) -> Bytes -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Bytes -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bytes -> m Bytes # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bytes -> m Bytes # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bytes -> m Bytes # | |
Data Body | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Body -> c Body # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Body # dataTypeOf :: Body -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Body) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Body) # gmapT :: (forall b. Data b => b -> b) -> Body -> Body # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Body -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Body -> r # gmapQ :: (forall d. Data d => d -> u) -> Body -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Body -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Body -> m Body # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Body -> m Body # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Body -> m Body # | |
Data Guard | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Guard -> c Guard # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Guard # dataTypeOf :: Guard -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Guard) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Guard) # gmapT :: (forall b. Data b => b -> b) -> Guard -> Guard # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Guard -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Guard -> r # gmapQ :: (forall d. Data d => d -> u) -> Guard -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Guard -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Guard -> m Guard # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Guard -> m Guard # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Guard -> m Guard # | |
Data Stmt | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Stmt -> c Stmt # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Stmt # dataTypeOf :: Stmt -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Stmt) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Stmt) # gmapT :: (forall b. Data b => b -> b) -> Stmt -> Stmt # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Stmt -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Stmt -> r # gmapQ :: (forall d. Data d => d -> u) -> Stmt -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Stmt -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Stmt -> m Stmt # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Stmt -> m Stmt # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Stmt -> m Stmt # | |
Data Range | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Range -> c Range # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Range # dataTypeOf :: Range -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Range) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Range) # gmapT :: (forall b. Data b => b -> b) -> Range -> Range # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Range -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Range -> r # gmapQ :: (forall d. Data d => d -> u) -> Range -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Range -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Range -> m Range # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Range -> m Range # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Range -> m Range # | |
Data DerivClause | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DerivClause -> c DerivClause # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DerivClause # toConstr :: DerivClause -> Constr # dataTypeOf :: DerivClause -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DerivClause) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DerivClause) # gmapT :: (forall b. Data b => b -> b) -> DerivClause -> DerivClause # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DerivClause -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DerivClause -> r # gmapQ :: (forall d. Data d => d -> u) -> DerivClause -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DerivClause -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DerivClause -> m DerivClause # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DerivClause -> m DerivClause # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DerivClause -> m DerivClause # | |
Data DerivStrategy | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DerivStrategy -> c DerivStrategy # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DerivStrategy # toConstr :: DerivStrategy -> Constr # dataTypeOf :: DerivStrategy -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DerivStrategy) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DerivStrategy) # gmapT :: (forall b. Data b => b -> b) -> DerivStrategy -> DerivStrategy # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DerivStrategy -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DerivStrategy -> r # gmapQ :: (forall d. Data d => d -> u) -> DerivStrategy -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DerivStrategy -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DerivStrategy -> m DerivStrategy # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DerivStrategy -> m DerivStrategy # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DerivStrategy -> m DerivStrategy # | |
Data TypeFamilyHead | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TypeFamilyHead -> c TypeFamilyHead # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TypeFamilyHead # toConstr :: TypeFamilyHead -> Constr # dataTypeOf :: TypeFamilyHead -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TypeFamilyHead) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TypeFamilyHead) # gmapT :: (forall b. Data b => b -> b) -> TypeFamilyHead -> TypeFamilyHead # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TypeFamilyHead -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TypeFamilyHead -> r # gmapQ :: (forall d. Data d => d -> u) -> TypeFamilyHead -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TypeFamilyHead -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TypeFamilyHead -> m TypeFamilyHead # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TypeFamilyHead -> m TypeFamilyHead # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TypeFamilyHead -> m TypeFamilyHead # | |
Data TySynEqn | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TySynEqn -> c TySynEqn # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TySynEqn # toConstr :: TySynEqn -> Constr # dataTypeOf :: TySynEqn -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TySynEqn) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TySynEqn) # gmapT :: (forall b. Data b => b -> b) -> TySynEqn -> TySynEqn # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TySynEqn -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TySynEqn -> r # gmapQ :: (forall d. Data d => d -> u) -> TySynEqn -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TySynEqn -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TySynEqn -> m TySynEqn # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TySynEqn -> m TySynEqn # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TySynEqn -> m TySynEqn # | |
Data Foreign | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Foreign -> c Foreign # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Foreign # toConstr :: Foreign -> Constr # dataTypeOf :: Foreign -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Foreign) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Foreign) # gmapT :: (forall b. Data b => b -> b) -> Foreign -> Foreign # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Foreign -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Foreign -> r # gmapQ :: (forall d. Data d => d -> u) -> Foreign -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Foreign -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Foreign -> m Foreign # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Foreign -> m Foreign # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Foreign -> m Foreign # | |
Data Callconv | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Callconv -> c Callconv # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Callconv # toConstr :: Callconv -> Constr # dataTypeOf :: Callconv -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Callconv) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Callconv) # gmapT :: (forall b. Data b => b -> b) -> Callconv -> Callconv # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Callconv -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Callconv -> r # gmapQ :: (forall d. Data d => d -> u) -> Callconv -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Callconv -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Callconv -> m Callconv # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Callconv -> m Callconv # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Callconv -> m Callconv # | |
Data Safety | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Safety -> c Safety # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Safety # toConstr :: Safety -> Constr # dataTypeOf :: Safety -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Safety) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Safety) # gmapT :: (forall b. Data b => b -> b) -> Safety -> Safety # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Safety -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Safety -> r # gmapQ :: (forall d. Data d => d -> u) -> Safety -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Safety -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Safety -> m Safety # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Safety -> m Safety # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Safety -> m Safety # | |
Data Pragma | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Pragma -> c Pragma # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Pragma # toConstr :: Pragma -> Constr # dataTypeOf :: Pragma -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Pragma) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Pragma) # gmapT :: (forall b. Data b => b -> b) -> Pragma -> Pragma # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Pragma -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Pragma -> r # gmapQ :: (forall d. Data d => d -> u) -> Pragma -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Pragma -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Pragma -> m Pragma # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Pragma -> m Pragma # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Pragma -> m Pragma # | |
Data Inline | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Inline -> c Inline # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Inline # toConstr :: Inline -> Constr # dataTypeOf :: Inline -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Inline) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Inline) # gmapT :: (forall b. Data b => b -> b) -> Inline -> Inline # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Inline -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Inline -> r # gmapQ :: (forall d. Data d => d -> u) -> Inline -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Inline -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Inline -> m Inline # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Inline -> m Inline # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Inline -> m Inline # | |
Data RuleMatch | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> RuleMatch -> c RuleMatch # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c RuleMatch # toConstr :: RuleMatch -> Constr # dataTypeOf :: RuleMatch -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c RuleMatch) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c RuleMatch) # gmapT :: (forall b. Data b => b -> b) -> RuleMatch -> RuleMatch # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> RuleMatch -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> RuleMatch -> r # gmapQ :: (forall d. Data d => d -> u) -> RuleMatch -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> RuleMatch -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> RuleMatch -> m RuleMatch # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleMatch -> m RuleMatch # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleMatch -> m RuleMatch # | |
Data Phases | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Phases -> c Phases # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Phases # toConstr :: Phases -> Constr # dataTypeOf :: Phases -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Phases) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Phases) # gmapT :: (forall b. Data b => b -> b) -> Phases -> Phases # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Phases -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Phases -> r # gmapQ :: (forall d. Data d => d -> u) -> Phases -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Phases -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Phases -> m Phases # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Phases -> m Phases # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Phases -> m Phases # | |
Data RuleBndr | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> RuleBndr -> c RuleBndr # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c RuleBndr # toConstr :: RuleBndr -> Constr # dataTypeOf :: RuleBndr -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c RuleBndr) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c RuleBndr) # gmapT :: (forall b. Data b => b -> b) -> RuleBndr -> RuleBndr # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> RuleBndr -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> RuleBndr -> r # gmapQ :: (forall d. Data d => d -> u) -> RuleBndr -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> RuleBndr -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> RuleBndr -> m RuleBndr # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleBndr -> m RuleBndr # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleBndr -> m RuleBndr # | |
Data AnnTarget | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> AnnTarget -> c AnnTarget # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c AnnTarget # toConstr :: AnnTarget -> Constr # dataTypeOf :: AnnTarget -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c AnnTarget) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c AnnTarget) # gmapT :: (forall b. Data b => b -> b) -> AnnTarget -> AnnTarget # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> AnnTarget -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> AnnTarget -> r # gmapQ :: (forall d. Data d => d -> u) -> AnnTarget -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> AnnTarget -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> AnnTarget -> m AnnTarget # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnTarget -> m AnnTarget # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnTarget -> m AnnTarget # | |
Data SourceUnpackedness | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceUnpackedness -> c SourceUnpackedness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceUnpackedness # toConstr :: SourceUnpackedness -> Constr # dataTypeOf :: SourceUnpackedness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourceUnpackedness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceUnpackedness) # gmapT :: (forall b. Data b => b -> b) -> SourceUnpackedness -> SourceUnpackedness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceUnpackedness -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceUnpackedness -> r # gmapQ :: (forall d. Data d => d -> u) -> SourceUnpackedness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceUnpackedness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # | |
Data SourceStrictness | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceStrictness -> c SourceStrictness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceStrictness # toConstr :: SourceStrictness -> Constr # dataTypeOf :: SourceStrictness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourceStrictness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceStrictness) # gmapT :: (forall b. Data b => b -> b) -> SourceStrictness -> SourceStrictness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceStrictness -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceStrictness -> r # gmapQ :: (forall d. Data d => d -> u) -> SourceStrictness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceStrictness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # | |
Data DecidedStrictness | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DecidedStrictness -> c DecidedStrictness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DecidedStrictness # toConstr :: DecidedStrictness -> Constr # dataTypeOf :: DecidedStrictness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DecidedStrictness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DecidedStrictness) # gmapT :: (forall b. Data b => b -> b) -> DecidedStrictness -> DecidedStrictness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DecidedStrictness -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DecidedStrictness -> r # gmapQ :: (forall d. Data d => d -> u) -> DecidedStrictness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DecidedStrictness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # | |
Data Con | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Con -> c Con # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Con # dataTypeOf :: Con -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Con) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Con) # gmapT :: (forall b. Data b => b -> b) -> Con -> Con # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Con -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Con -> r # gmapQ :: (forall d. Data d => d -> u) -> Con -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Con -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Con -> m Con # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Con -> m Con # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Con -> m Con # | |
Data Bang | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bang -> c Bang # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bang # dataTypeOf :: Bang -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Bang) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bang) # gmapT :: (forall b. Data b => b -> b) -> Bang -> Bang # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bang -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bang -> r # gmapQ :: (forall d. Data d => d -> u) -> Bang -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Bang -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bang -> m Bang # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bang -> m Bang # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bang -> m Bang # | |
Data PatSynDir | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PatSynDir -> c PatSynDir # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PatSynDir # toConstr :: PatSynDir -> Constr # dataTypeOf :: PatSynDir -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PatSynDir) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PatSynDir) # gmapT :: (forall b. Data b => b -> b) -> PatSynDir -> PatSynDir # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PatSynDir -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PatSynDir -> r # gmapQ :: (forall d. Data d => d -> u) -> PatSynDir -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PatSynDir -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PatSynDir -> m PatSynDir # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PatSynDir -> m PatSynDir # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PatSynDir -> m PatSynDir # | |
Data PatSynArgs | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PatSynArgs -> c PatSynArgs # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PatSynArgs # toConstr :: PatSynArgs -> Constr # dataTypeOf :: PatSynArgs -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PatSynArgs) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PatSynArgs) # gmapT :: (forall b. Data b => b -> b) -> PatSynArgs -> PatSynArgs # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PatSynArgs -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PatSynArgs -> r # gmapQ :: (forall d. Data d => d -> u) -> PatSynArgs -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PatSynArgs -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PatSynArgs -> m PatSynArgs # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PatSynArgs -> m PatSynArgs # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PatSynArgs -> m PatSynArgs # | |
Data TyVarBndr | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TyVarBndr -> c TyVarBndr # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TyVarBndr # toConstr :: TyVarBndr -> Constr # dataTypeOf :: TyVarBndr -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TyVarBndr) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TyVarBndr) # gmapT :: (forall b. Data b => b -> b) -> TyVarBndr -> TyVarBndr # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TyVarBndr -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TyVarBndr -> r # gmapQ :: (forall d. Data d => d -> u) -> TyVarBndr -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TyVarBndr -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TyVarBndr -> m TyVarBndr # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TyVarBndr -> m TyVarBndr # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TyVarBndr -> m TyVarBndr # | |
Data FamilyResultSig | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FamilyResultSig -> c FamilyResultSig # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c FamilyResultSig # toConstr :: FamilyResultSig -> Constr # dataTypeOf :: FamilyResultSig -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c FamilyResultSig) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c FamilyResultSig) # gmapT :: (forall b. Data b => b -> b) -> FamilyResultSig -> FamilyResultSig # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FamilyResultSig -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FamilyResultSig -> r # gmapQ :: (forall d. Data d => d -> u) -> FamilyResultSig -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> FamilyResultSig -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FamilyResultSig -> m FamilyResultSig # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FamilyResultSig -> m FamilyResultSig # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FamilyResultSig -> m FamilyResultSig # | |
Data TyLit | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TyLit -> c TyLit # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TyLit # dataTypeOf :: TyLit -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TyLit) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TyLit) # gmapT :: (forall b. Data b => b -> b) -> TyLit -> TyLit # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TyLit -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TyLit -> r # gmapQ :: (forall d. Data d => d -> u) -> TyLit -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TyLit -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TyLit -> m TyLit # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TyLit -> m TyLit # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TyLit -> m TyLit # | |
Data Role | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Role -> c Role # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Role # dataTypeOf :: Role -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Role) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Role) # gmapT :: (forall b. Data b => b -> b) -> Role -> Role # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Role -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Role -> r # gmapQ :: (forall d. Data d => d -> u) -> Role -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Role -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Role -> m Role # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Role -> m Role # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Role -> m Role # | |
Data AnnLookup | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> AnnLookup -> c AnnLookup # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c AnnLookup # toConstr :: AnnLookup -> Constr # dataTypeOf :: AnnLookup -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c AnnLookup) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c AnnLookup) # gmapT :: (forall b. Data b => b -> b) -> AnnLookup -> AnnLookup # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> AnnLookup -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> AnnLookup -> r # gmapQ :: (forall d. Data d => d -> u) -> AnnLookup -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> AnnLookup -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> AnnLookup -> m AnnLookup # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnLookup -> m AnnLookup # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnLookup -> m AnnLookup # | |
Data DatatypeInfo | |
Defined in Language.Haskell.TH.Datatype Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DatatypeInfo -> c DatatypeInfo # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DatatypeInfo # toConstr :: DatatypeInfo -> Constr # dataTypeOf :: DatatypeInfo -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DatatypeInfo) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DatatypeInfo) # gmapT :: (forall b. Data b => b -> b) -> DatatypeInfo -> DatatypeInfo # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DatatypeInfo -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DatatypeInfo -> r # gmapQ :: (forall d. Data d => d -> u) -> DatatypeInfo -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DatatypeInfo -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DatatypeInfo -> m DatatypeInfo # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DatatypeInfo -> m DatatypeInfo # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DatatypeInfo -> m DatatypeInfo # | |
Data DatatypeVariant | |
Defined in Language.Haskell.TH.Datatype Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DatatypeVariant -> c DatatypeVariant # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DatatypeVariant # toConstr :: DatatypeVariant -> Constr # dataTypeOf :: DatatypeVariant -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DatatypeVariant) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DatatypeVariant) # gmapT :: (forall b. Data b => b -> b) -> DatatypeVariant -> DatatypeVariant # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DatatypeVariant -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DatatypeVariant -> r # gmapQ :: (forall d. Data d => d -> u) -> DatatypeVariant -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DatatypeVariant -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DatatypeVariant -> m DatatypeVariant # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DatatypeVariant -> m DatatypeVariant # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DatatypeVariant -> m DatatypeVariant # | |
Data ConstructorInfo | |
Defined in Language.Haskell.TH.Datatype Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ConstructorInfo -> c ConstructorInfo # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ConstructorInfo # toConstr :: ConstructorInfo -> Constr # dataTypeOf :: ConstructorInfo -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ConstructorInfo) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ConstructorInfo) # gmapT :: (forall b. Data b => b -> b) -> ConstructorInfo -> ConstructorInfo # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ConstructorInfo -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ConstructorInfo -> r # gmapQ :: (forall d. Data d => d -> u) -> ConstructorInfo -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ConstructorInfo -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ConstructorInfo -> m ConstructorInfo # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ConstructorInfo -> m ConstructorInfo # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ConstructorInfo -> m ConstructorInfo # | |
Data ConstructorVariant | |
Defined in Language.Haskell.TH.Datatype Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ConstructorVariant -> c ConstructorVariant # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ConstructorVariant # toConstr :: ConstructorVariant -> Constr # dataTypeOf :: ConstructorVariant -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ConstructorVariant) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ConstructorVariant) # gmapT :: (forall b. Data b => b -> b) -> ConstructorVariant -> ConstructorVariant # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ConstructorVariant -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ConstructorVariant -> r # gmapQ :: (forall d. Data d => d -> u) -> ConstructorVariant -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ConstructorVariant -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ConstructorVariant -> m ConstructorVariant # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ConstructorVariant -> m ConstructorVariant # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ConstructorVariant -> m ConstructorVariant # | |
Data FieldStrictness | |
Defined in Language.Haskell.TH.Datatype Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FieldStrictness -> c FieldStrictness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c FieldStrictness # toConstr :: FieldStrictness -> Constr # dataTypeOf :: FieldStrictness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c FieldStrictness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c FieldStrictness) # gmapT :: (forall b. Data b => b -> b) -> FieldStrictness -> FieldStrictness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FieldStrictness -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FieldStrictness -> r # gmapQ :: (forall d. Data d => d -> u) -> FieldStrictness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> FieldStrictness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FieldStrictness -> m FieldStrictness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FieldStrictness -> m FieldStrictness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FieldStrictness -> m FieldStrictness # | |
Data Unpackedness | |
Defined in Language.Haskell.TH.Datatype Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Unpackedness -> c Unpackedness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Unpackedness # toConstr :: Unpackedness -> Constr # dataTypeOf :: Unpackedness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Unpackedness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Unpackedness) # gmapT :: (forall b. Data b => b -> b) -> Unpackedness -> Unpackedness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Unpackedness -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Unpackedness -> r # gmapQ :: (forall d. Data d => d -> u) -> Unpackedness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Unpackedness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Unpackedness -> m Unpackedness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Unpackedness -> m Unpackedness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Unpackedness -> m Unpackedness # | |
Data Strictness | |
Defined in Language.Haskell.TH.Datatype Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Strictness -> c Strictness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Strictness # toConstr :: Strictness -> Constr # dataTypeOf :: Strictness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Strictness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Strictness) # gmapT :: (forall b. Data b => b -> b) -> Strictness -> Strictness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Strictness -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Strictness -> r # gmapQ :: (forall d. Data d => d -> u) -> Strictness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Strictness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Strictness -> m Strictness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Strictness -> m Strictness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Strictness -> m Strictness # | |
Data Specificity | |
Defined in Language.Haskell.TH.Datatype.TyVarBndr Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Specificity -> c Specificity # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Specificity # toConstr :: Specificity -> Constr # dataTypeOf :: Specificity -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Specificity) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Specificity) # gmapT :: (forall b. Data b => b -> b) -> Specificity -> Specificity # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Specificity -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Specificity -> r # gmapQ :: (forall d. Data d => d -> u) -> Specificity -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Specificity -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Specificity -> m Specificity # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Specificity -> m Specificity # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Specificity -> m Specificity # | |
Data ZonedTime | |
Defined in Data.Time.LocalTime.Internal.ZonedTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ZonedTime -> c ZonedTime # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ZonedTime # toConstr :: ZonedTime -> Constr # dataTypeOf :: ZonedTime -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ZonedTime) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ZonedTime) # gmapT :: (forall b. Data b => b -> b) -> ZonedTime -> ZonedTime # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ZonedTime -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ZonedTime -> r # gmapQ :: (forall d. Data d => d -> u) -> ZonedTime -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ZonedTime -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ZonedTime -> m ZonedTime # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ZonedTime -> m ZonedTime # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ZonedTime -> m ZonedTime # | |
Data LocalTime | |
Defined in Data.Time.LocalTime.Internal.LocalTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LocalTime -> c LocalTime # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LocalTime # toConstr :: LocalTime -> Constr # dataTypeOf :: LocalTime -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c LocalTime) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LocalTime) # gmapT :: (forall b. Data b => b -> b) -> LocalTime -> LocalTime # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LocalTime -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LocalTime -> r # gmapQ :: (forall d. Data d => d -> u) -> LocalTime -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> LocalTime -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> LocalTime -> m LocalTime # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LocalTime -> m LocalTime # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LocalTime -> m LocalTime # | |
Data UUID | |
Defined in Data.UUID.Types.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> UUID -> c UUID # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c UUID # dataTypeOf :: UUID -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c UUID) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c UUID) # gmapT :: (forall b. Data b => b -> b) -> UUID -> UUID # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> UUID -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> UUID -> r # gmapQ :: (forall d. Data d => d -> u) -> UUID -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> UUID -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> UUID -> m UUID # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> UUID -> m UUID # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> UUID -> m UUID # | |
Data a => Data [a] | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> [a] -> c [a] # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c [a] # dataTypeOf :: [a] -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c [a]) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c [a]) # gmapT :: (forall b. Data b => b -> b) -> [a] -> [a] # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> [a] -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> [a] -> r # gmapQ :: (forall d. Data d => d -> u) -> [a] -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> [a] -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> [a] -> m [a] # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> [a] -> m [a] # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> [a] -> m [a] # | |
Data a => Data (Maybe a) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Maybe a -> c (Maybe a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Maybe a) # toConstr :: Maybe a -> Constr # dataTypeOf :: Maybe a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Maybe a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Maybe a)) # gmapT :: (forall b. Data b => b -> b) -> Maybe a -> Maybe a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r # gmapQ :: (forall d. Data d => d -> u) -> Maybe a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Maybe a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # | |
(Data a, Integral a) => Data (Ratio a) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ratio a -> c (Ratio a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ratio a) # toConstr :: Ratio a -> Constr # dataTypeOf :: Ratio a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Ratio a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ratio a)) # gmapT :: (forall b. Data b => b -> b) -> Ratio a -> Ratio a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ratio a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ratio a -> r # gmapQ :: (forall d. Data d => d -> u) -> Ratio a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ratio a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) # | |
Data a => Data (Ptr a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ptr a -> c (Ptr a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ptr a) # dataTypeOf :: Ptr a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Ptr a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ptr a)) # gmapT :: (forall b. Data b => b -> b) -> Ptr a -> Ptr a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ptr a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ptr a -> r # gmapQ :: (forall d. Data d => d -> u) -> Ptr a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ptr a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) # | |
Data p => Data (Par1 p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Par1 p -> c (Par1 p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Par1 p) # toConstr :: Par1 p -> Constr # dataTypeOf :: Par1 p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Par1 p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Par1 p)) # gmapT :: (forall b. Data b => b -> b) -> Par1 p -> Par1 p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Par1 p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Par1 p -> r # gmapQ :: (forall d. Data d => d -> u) -> Par1 p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Par1 p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Par1 p -> m (Par1 p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Par1 p -> m (Par1 p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Par1 p -> m (Par1 p) # | |
Data a => Data (ForeignPtr a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ForeignPtr a -> c (ForeignPtr a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ForeignPtr a) # toConstr :: ForeignPtr a -> Constr # dataTypeOf :: ForeignPtr a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ForeignPtr a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ForeignPtr a)) # gmapT :: (forall b. Data b => b -> b) -> ForeignPtr a -> ForeignPtr a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ForeignPtr a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ForeignPtr a -> r # gmapQ :: (forall d. Data d => d -> u) -> ForeignPtr a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ForeignPtr a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ForeignPtr a -> m (ForeignPtr a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignPtr a -> m (ForeignPtr a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignPtr a -> m (ForeignPtr a) # | |
Data a => Data (Complex a) | Since: base-2.1 |
Defined in Data.Complex Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Complex a -> c (Complex a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Complex a) # toConstr :: Complex a -> Constr # dataTypeOf :: Complex a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Complex a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Complex a)) # gmapT :: (forall b. Data b => b -> b) -> Complex a -> Complex a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Complex a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Complex a -> r # gmapQ :: (forall d. Data d => d -> u) -> Complex a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Complex a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Complex a -> m (Complex a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Complex a -> m (Complex a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Complex a -> m (Complex a) # | |
Data a => Data (Min a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Min a -> c (Min a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Min a) # dataTypeOf :: Min a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Min a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Min a)) # gmapT :: (forall b. Data b => b -> b) -> Min a -> Min a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Min a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Min a -> r # gmapQ :: (forall d. Data d => d -> u) -> Min a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Min a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Min a -> m (Min a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Min a -> m (Min a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Min a -> m (Min a) # | |
Data a => Data (Max a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Max a -> c (Max a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Max a) # dataTypeOf :: Max a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Max a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Max a)) # gmapT :: (forall b. Data b => b -> b) -> Max a -> Max a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Max a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Max a -> r # gmapQ :: (forall d. Data d => d -> u) -> Max a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Max a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Max a -> m (Max a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Max a -> m (Max a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Max a -> m (Max a) # | |
Data a => Data (First a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> First a -> c (First a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (First a) # toConstr :: First a -> Constr # dataTypeOf :: First a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (First a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (First a)) # gmapT :: (forall b. Data b => b -> b) -> First a -> First a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r # gmapQ :: (forall d. Data d => d -> u) -> First a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> First a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> First a -> m (First a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) # | |
Data a => Data (Last a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Last a -> c (Last a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Last a) # toConstr :: Last a -> Constr # dataTypeOf :: Last a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Last a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Last a)) # gmapT :: (forall b. Data b => b -> b) -> Last a -> Last a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r # gmapQ :: (forall d. Data d => d -> u) -> Last a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Last a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # | |
Data m => Data (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> WrappedMonoid m -> c (WrappedMonoid m) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (WrappedMonoid m) # toConstr :: WrappedMonoid m -> Constr # dataTypeOf :: WrappedMonoid m -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (WrappedMonoid m)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (WrappedMonoid m)) # gmapT :: (forall b. Data b => b -> b) -> WrappedMonoid m -> WrappedMonoid m # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonoid m -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonoid m -> r # gmapQ :: (forall d. Data d => d -> u) -> WrappedMonoid m -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> WrappedMonoid m -> u # gmapM :: Monad m0 => (forall d. Data d => d -> m0 d) -> WrappedMonoid m -> m0 (WrappedMonoid m) # gmapMp :: MonadPlus m0 => (forall d. Data d => d -> m0 d) -> WrappedMonoid m -> m0 (WrappedMonoid m) # gmapMo :: MonadPlus m0 => (forall d. Data d => d -> m0 d) -> WrappedMonoid m -> m0 (WrappedMonoid m) # | |
Data a => Data (Option a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Option a -> c (Option a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Option a) # toConstr :: Option a -> Constr # dataTypeOf :: Option a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Option a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Option a)) # gmapT :: (forall b. Data b => b -> b) -> Option a -> Option a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Option a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Option a -> r # gmapQ :: (forall d. Data d => d -> u) -> Option a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Option a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Option a -> m (Option a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Option a -> m (Option a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Option a -> m (Option a) # | |
Data a => Data (ZipList a) | Since: base-4.14.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ZipList a -> c (ZipList a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ZipList a) # toConstr :: ZipList a -> Constr # dataTypeOf :: ZipList a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ZipList a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ZipList a)) # gmapT :: (forall b. Data b => b -> b) -> ZipList a -> ZipList a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ZipList a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ZipList a -> r # gmapQ :: (forall d. Data d => d -> u) -> ZipList a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ZipList a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ZipList a -> m (ZipList a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ZipList a -> m (ZipList a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ZipList a -> m (ZipList a) # | |
Data a => Data (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Identity a -> c (Identity a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Identity a) # toConstr :: Identity a -> Constr # dataTypeOf :: Identity a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Identity a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Identity a)) # gmapT :: (forall b. Data b => b -> b) -> Identity a -> Identity a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Identity a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Identity a -> r # gmapQ :: (forall d. Data d => d -> u) -> Identity a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Identity a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Identity a -> m (Identity a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Identity a -> m (Identity a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Identity a -> m (Identity a) # | |
Data a => Data (First a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> First a -> c (First a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (First a) # toConstr :: First a -> Constr # dataTypeOf :: First a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (First a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (First a)) # gmapT :: (forall b. Data b => b -> b) -> First a -> First a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r # gmapQ :: (forall d. Data d => d -> u) -> First a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> First a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> First a -> m (First a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) # | |
Data a => Data (Last a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Last a -> c (Last a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Last a) # toConstr :: Last a -> Constr # dataTypeOf :: Last a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Last a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Last a)) # gmapT :: (forall b. Data b => b -> b) -> Last a -> Last a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r # gmapQ :: (forall d. Data d => d -> u) -> Last a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Last a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # | |
Data a => Data (Dual a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Dual a -> c (Dual a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Dual a) # toConstr :: Dual a -> Constr # dataTypeOf :: Dual a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Dual a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Dual a)) # gmapT :: (forall b. Data b => b -> b) -> Dual a -> Dual a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Dual a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Dual a -> r # gmapQ :: (forall d. Data d => d -> u) -> Dual a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Dual a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) # | |
Data a => Data (Sum a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Sum a -> c (Sum a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Sum a) # dataTypeOf :: Sum a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Sum a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Sum a)) # gmapT :: (forall b. Data b => b -> b) -> Sum a -> Sum a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Sum a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Sum a -> r # gmapQ :: (forall d. Data d => d -> u) -> Sum a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Sum a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) # | |
Data a => Data (Product a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Product a -> c (Product a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Product a) # toConstr :: Product a -> Constr # dataTypeOf :: Product a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Product a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Product a)) # gmapT :: (forall b. Data b => b -> b) -> Product a -> Product a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Product a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Product a -> r # gmapQ :: (forall d. Data d => d -> u) -> Product a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Product a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) # | |
Data a => Data (Down a) | Since: base-4.12.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Down a -> c (Down a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Down a) # toConstr :: Down a -> Constr # dataTypeOf :: Down a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Down a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Down a)) # gmapT :: (forall b. Data b => b -> b) -> Down a -> Down a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Down a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Down a -> r # gmapQ :: (forall d. Data d => d -> u) -> Down a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Down a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Down a -> m (Down a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Down a -> m (Down a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Down a -> m (Down a) # | |
Data a => Data (NonEmpty a) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NonEmpty a -> c (NonEmpty a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (NonEmpty a) # toConstr :: NonEmpty a -> Constr # dataTypeOf :: NonEmpty a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (NonEmpty a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (NonEmpty a)) # gmapT :: (forall b. Data b => b -> b) -> NonEmpty a -> NonEmpty a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NonEmpty a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NonEmpty a -> r # gmapQ :: (forall d. Data d => d -> u) -> NonEmpty a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> NonEmpty a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) # | |
Data a => Data (IntMap a) | |
Defined in Data.IntMap.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntMap a -> c (IntMap a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (IntMap a) # toConstr :: IntMap a -> Constr # dataTypeOf :: IntMap a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (IntMap a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (IntMap a)) # gmapT :: (forall b. Data b => b -> b) -> IntMap a -> IntMap a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntMap a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntMap a -> r # gmapQ :: (forall d. Data d => d -> u) -> IntMap a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> IntMap a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) # | |
Data vertex => Data (SCC vertex) | Since: containers-0.5.9 |
Defined in Data.Graph Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SCC vertex -> c (SCC vertex) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (SCC vertex) # toConstr :: SCC vertex -> Constr # dataTypeOf :: SCC vertex -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (SCC vertex)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (SCC vertex)) # gmapT :: (forall b. Data b => b -> b) -> SCC vertex -> SCC vertex # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SCC vertex -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SCC vertex -> r # gmapQ :: (forall d. Data d => d -> u) -> SCC vertex -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SCC vertex -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SCC vertex -> m (SCC vertex) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SCC vertex -> m (SCC vertex) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SCC vertex -> m (SCC vertex) # | |
Data a => Data (Tree a) | |
Defined in Data.Tree Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Tree a -> c (Tree a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Tree a) # toConstr :: Tree a -> Constr # dataTypeOf :: Tree a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Tree a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Tree a)) # gmapT :: (forall b. Data b => b -> b) -> Tree a -> Tree a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Tree a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Tree a -> r # gmapQ :: (forall d. Data d => d -> u) -> Tree a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Tree a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Tree a -> m (Tree a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Tree a -> m (Tree a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Tree a -> m (Tree a) # | |
Data a => Data (Seq a) | |
Defined in Data.Sequence.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Seq a -> c (Seq a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Seq a) # dataTypeOf :: Seq a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Seq a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Seq a)) # gmapT :: (forall b. Data b => b -> b) -> Seq a -> Seq a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Seq a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Seq a -> r # gmapQ :: (forall d. Data d => d -> u) -> Seq a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Seq a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) # | |
Data a => Data (ViewL a) | |
Defined in Data.Sequence.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ViewL a -> c (ViewL a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ViewL a) # toConstr :: ViewL a -> Constr # dataTypeOf :: ViewL a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ViewL a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ViewL a)) # gmapT :: (forall b. Data b => b -> b) -> ViewL a -> ViewL a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ViewL a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ViewL a -> r # gmapQ :: (forall d. Data d => d -> u) -> ViewL a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ViewL a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ViewL a -> m (ViewL a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ViewL a -> m (ViewL a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ViewL a -> m (ViewL a) # | |
Data a => Data (ViewR a) | |
Defined in Data.Sequence.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ViewR a -> c (ViewR a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ViewR a) # toConstr :: ViewR a -> Constr # dataTypeOf :: ViewR a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ViewR a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ViewR a)) # gmapT :: (forall b. Data b => b -> b) -> ViewR a -> ViewR a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ViewR a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ViewR a -> r # gmapQ :: (forall d. Data d => d -> u) -> ViewR a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ViewR a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ViewR a -> m (ViewR a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ViewR a -> m (ViewR a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ViewR a -> m (ViewR a) # | |
(Data a, Ord a) => Data (Set a) | |
Defined in Data.Set.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Set a -> c (Set a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Set a) # dataTypeOf :: Set a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Set a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Set a)) # gmapT :: (forall b. Data b => b -> b) -> Set a -> Set a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Set a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Set a -> r # gmapQ :: (forall d. Data d => d -> u) -> Set a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Set a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # | |
(Typeable f, Data (f (Fix f))) => Data (Fix f) | |
Defined in Data.Fix Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Fix f -> c (Fix f) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Fix f) # dataTypeOf :: Fix f -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Fix f)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Fix f)) # gmapT :: (forall b. Data b => b -> b) -> Fix f -> Fix f # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Fix f -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Fix f -> r # gmapQ :: (forall d. Data d => d -> u) -> Fix f -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Fix f -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Fix f -> m (Fix f) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Fix f -> m (Fix f) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Fix f -> m (Fix f) # | |
Data l => Data (PragmasAndModuleName l) | |
Defined in Language.Haskell.Exts.Parser Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PragmasAndModuleName l -> c (PragmasAndModuleName l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (PragmasAndModuleName l) # toConstr :: PragmasAndModuleName l -> Constr # dataTypeOf :: PragmasAndModuleName l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (PragmasAndModuleName l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (PragmasAndModuleName l)) # gmapT :: (forall b. Data b => b -> b) -> PragmasAndModuleName l -> PragmasAndModuleName l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PragmasAndModuleName l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PragmasAndModuleName l -> r # gmapQ :: (forall d. Data d => d -> u) -> PragmasAndModuleName l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PragmasAndModuleName l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PragmasAndModuleName l -> m (PragmasAndModuleName l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PragmasAndModuleName l -> m (PragmasAndModuleName l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PragmasAndModuleName l -> m (PragmasAndModuleName l) # | |
Data l => Data (PragmasAndModuleHead l) | |
Defined in Language.Haskell.Exts.Parser Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PragmasAndModuleHead l -> c (PragmasAndModuleHead l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (PragmasAndModuleHead l) # toConstr :: PragmasAndModuleHead l -> Constr # dataTypeOf :: PragmasAndModuleHead l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (PragmasAndModuleHead l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (PragmasAndModuleHead l)) # gmapT :: (forall b. Data b => b -> b) -> PragmasAndModuleHead l -> PragmasAndModuleHead l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PragmasAndModuleHead l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PragmasAndModuleHead l -> r # gmapQ :: (forall d. Data d => d -> u) -> PragmasAndModuleHead l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PragmasAndModuleHead l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PragmasAndModuleHead l -> m (PragmasAndModuleHead l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PragmasAndModuleHead l -> m (PragmasAndModuleHead l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PragmasAndModuleHead l -> m (PragmasAndModuleHead l) # | |
Data l => Data (ModuleHeadAndImports l) | |
Defined in Language.Haskell.Exts.Parser Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ModuleHeadAndImports l -> c (ModuleHeadAndImports l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ModuleHeadAndImports l) # toConstr :: ModuleHeadAndImports l -> Constr # dataTypeOf :: ModuleHeadAndImports l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ModuleHeadAndImports l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ModuleHeadAndImports l)) # gmapT :: (forall b. Data b => b -> b) -> ModuleHeadAndImports l -> ModuleHeadAndImports l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ModuleHeadAndImports l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ModuleHeadAndImports l -> r # gmapQ :: (forall d. Data d => d -> u) -> ModuleHeadAndImports l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ModuleHeadAndImports l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ModuleHeadAndImports l -> m (ModuleHeadAndImports l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleHeadAndImports l -> m (ModuleHeadAndImports l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleHeadAndImports l -> m (ModuleHeadAndImports l) # | |
Data a => Data (NonGreedy a) | |
Defined in Language.Haskell.Exts.Parser Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NonGreedy a -> c (NonGreedy a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (NonGreedy a) # toConstr :: NonGreedy a -> Constr # dataTypeOf :: NonGreedy a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (NonGreedy a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (NonGreedy a)) # gmapT :: (forall b. Data b => b -> b) -> NonGreedy a -> NonGreedy a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NonGreedy a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NonGreedy a -> r # gmapQ :: (forall d. Data d => d -> u) -> NonGreedy a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> NonGreedy a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NonGreedy a -> m (NonGreedy a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NonGreedy a -> m (NonGreedy a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NonGreedy a -> m (NonGreedy a) # | |
Data a => Data (ListOf a) | |
Defined in Language.Haskell.Exts.Parser Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ListOf a -> c (ListOf a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ListOf a) # toConstr :: ListOf a -> Constr # dataTypeOf :: ListOf a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ListOf a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ListOf a)) # gmapT :: (forall b. Data b => b -> b) -> ListOf a -> ListOf a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ListOf a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ListOf a -> r # gmapQ :: (forall d. Data d => d -> u) -> ListOf a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ListOf a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ListOf a -> m (ListOf a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ListOf a -> m (ListOf a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ListOf a -> m (ListOf a) # | |
Data l => Data (ModuleName l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ModuleName l -> c (ModuleName l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ModuleName l) # toConstr :: ModuleName l -> Constr # dataTypeOf :: ModuleName l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ModuleName l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ModuleName l)) # gmapT :: (forall b. Data b => b -> b) -> ModuleName l -> ModuleName l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ModuleName l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ModuleName l -> r # gmapQ :: (forall d. Data d => d -> u) -> ModuleName l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ModuleName l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ModuleName l -> m (ModuleName l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleName l -> m (ModuleName l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleName l -> m (ModuleName l) # | |
Data l => Data (SpecialCon l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SpecialCon l -> c (SpecialCon l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (SpecialCon l) # toConstr :: SpecialCon l -> Constr # dataTypeOf :: SpecialCon l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (SpecialCon l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (SpecialCon l)) # gmapT :: (forall b. Data b => b -> b) -> SpecialCon l -> SpecialCon l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SpecialCon l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SpecialCon l -> r # gmapQ :: (forall d. Data d => d -> u) -> SpecialCon l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SpecialCon l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SpecialCon l -> m (SpecialCon l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SpecialCon l -> m (SpecialCon l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SpecialCon l -> m (SpecialCon l) # | |
Data l => Data (QName l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> QName l -> c (QName l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (QName l) # toConstr :: QName l -> Constr # dataTypeOf :: QName l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (QName l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (QName l)) # gmapT :: (forall b. Data b => b -> b) -> QName l -> QName l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> QName l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> QName l -> r # gmapQ :: (forall d. Data d => d -> u) -> QName l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> QName l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> QName l -> m (QName l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> QName l -> m (QName l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> QName l -> m (QName l) # | |
Data l => Data (Name l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Name l -> c (Name l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Name l) # toConstr :: Name l -> Constr # dataTypeOf :: Name l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Name l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Name l)) # gmapT :: (forall b. Data b => b -> b) -> Name l -> Name l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Name l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Name l -> r # gmapQ :: (forall d. Data d => d -> u) -> Name l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Name l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Name l -> m (Name l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Name l -> m (Name l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Name l -> m (Name l) # | |
Data l => Data (IPName l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IPName l -> c (IPName l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (IPName l) # toConstr :: IPName l -> Constr # dataTypeOf :: IPName l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (IPName l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (IPName l)) # gmapT :: (forall b. Data b => b -> b) -> IPName l -> IPName l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IPName l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IPName l -> r # gmapQ :: (forall d. Data d => d -> u) -> IPName l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> IPName l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IPName l -> m (IPName l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IPName l -> m (IPName l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IPName l -> m (IPName l) # | |
Data l => Data (QOp l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> QOp l -> c (QOp l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (QOp l) # dataTypeOf :: QOp l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (QOp l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (QOp l)) # gmapT :: (forall b. Data b => b -> b) -> QOp l -> QOp l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> QOp l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> QOp l -> r # gmapQ :: (forall d. Data d => d -> u) -> QOp l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> QOp l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> QOp l -> m (QOp l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> QOp l -> m (QOp l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> QOp l -> m (QOp l) # | |
Data l => Data (Op l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Op l -> c (Op l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Op l) # dataTypeOf :: Op l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Op l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Op l)) # gmapT :: (forall b. Data b => b -> b) -> Op l -> Op l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Op l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Op l -> r # gmapQ :: (forall d. Data d => d -> u) -> Op l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Op l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Op l -> m (Op l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Op l -> m (Op l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Op l -> m (Op l) # | |
Data l => Data (CName l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> CName l -> c (CName l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (CName l) # toConstr :: CName l -> Constr # dataTypeOf :: CName l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (CName l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (CName l)) # gmapT :: (forall b. Data b => b -> b) -> CName l -> CName l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> CName l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> CName l -> r # gmapQ :: (forall d. Data d => d -> u) -> CName l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> CName l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> CName l -> m (CName l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> CName l -> m (CName l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> CName l -> m (CName l) # | |
Data l => Data (Module l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Module l -> c (Module l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Module l) # toConstr :: Module l -> Constr # dataTypeOf :: Module l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Module l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Module l)) # gmapT :: (forall b. Data b => b -> b) -> Module l -> Module l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Module l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Module l -> r # gmapQ :: (forall d. Data d => d -> u) -> Module l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Module l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Module l -> m (Module l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Module l -> m (Module l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Module l -> m (Module l) # | |
Data l => Data (ModuleHead l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ModuleHead l -> c (ModuleHead l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ModuleHead l) # toConstr :: ModuleHead l -> Constr # dataTypeOf :: ModuleHead l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ModuleHead l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ModuleHead l)) # gmapT :: (forall b. Data b => b -> b) -> ModuleHead l -> ModuleHead l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ModuleHead l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ModuleHead l -> r # gmapQ :: (forall d. Data d => d -> u) -> ModuleHead l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ModuleHead l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ModuleHead l -> m (ModuleHead l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleHead l -> m (ModuleHead l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleHead l -> m (ModuleHead l) # | |
Data l => Data (ExportSpecList l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ExportSpecList l -> c (ExportSpecList l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ExportSpecList l) # toConstr :: ExportSpecList l -> Constr # dataTypeOf :: ExportSpecList l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ExportSpecList l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ExportSpecList l)) # gmapT :: (forall b. Data b => b -> b) -> ExportSpecList l -> ExportSpecList l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ExportSpecList l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ExportSpecList l -> r # gmapQ :: (forall d. Data d => d -> u) -> ExportSpecList l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ExportSpecList l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ExportSpecList l -> m (ExportSpecList l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ExportSpecList l -> m (ExportSpecList l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ExportSpecList l -> m (ExportSpecList l) # | |
Data l => Data (ExportSpec l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ExportSpec l -> c (ExportSpec l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ExportSpec l) # toConstr :: ExportSpec l -> Constr # dataTypeOf :: ExportSpec l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ExportSpec l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ExportSpec l)) # gmapT :: (forall b. Data b => b -> b) -> ExportSpec l -> ExportSpec l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ExportSpec l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ExportSpec l -> r # gmapQ :: (forall d. Data d => d -> u) -> ExportSpec l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ExportSpec l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ExportSpec l -> m (ExportSpec l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ExportSpec l -> m (ExportSpec l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ExportSpec l -> m (ExportSpec l) # | |
Data l => Data (EWildcard l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> EWildcard l -> c (EWildcard l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (EWildcard l) # toConstr :: EWildcard l -> Constr # dataTypeOf :: EWildcard l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (EWildcard l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (EWildcard l)) # gmapT :: (forall b. Data b => b -> b) -> EWildcard l -> EWildcard l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> EWildcard l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> EWildcard l -> r # gmapQ :: (forall d. Data d => d -> u) -> EWildcard l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> EWildcard l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> EWildcard l -> m (EWildcard l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> EWildcard l -> m (EWildcard l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> EWildcard l -> m (EWildcard l) # | |
Data l => Data (Namespace l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Namespace l -> c (Namespace l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Namespace l) # toConstr :: Namespace l -> Constr # dataTypeOf :: Namespace l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Namespace l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Namespace l)) # gmapT :: (forall b. Data b => b -> b) -> Namespace l -> Namespace l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Namespace l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Namespace l -> r # gmapQ :: (forall d. Data d => d -> u) -> Namespace l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Namespace l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Namespace l -> m (Namespace l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Namespace l -> m (Namespace l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Namespace l -> m (Namespace l) # | |
Data l => Data (ImportDecl l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ImportDecl l -> c (ImportDecl l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ImportDecl l) # toConstr :: ImportDecl l -> Constr # dataTypeOf :: ImportDecl l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ImportDecl l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ImportDecl l)) # gmapT :: (forall b. Data b => b -> b) -> ImportDecl l -> ImportDecl l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ImportDecl l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ImportDecl l -> r # gmapQ :: (forall d. Data d => d -> u) -> ImportDecl l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ImportDecl l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ImportDecl l -> m (ImportDecl l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ImportDecl l -> m (ImportDecl l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ImportDecl l -> m (ImportDecl l) # | |
Data l => Data (ImportSpecList l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ImportSpecList l -> c (ImportSpecList l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ImportSpecList l) # toConstr :: ImportSpecList l -> Constr # dataTypeOf :: ImportSpecList l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ImportSpecList l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ImportSpecList l)) # gmapT :: (forall b. Data b => b -> b) -> ImportSpecList l -> ImportSpecList l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ImportSpecList l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ImportSpecList l -> r # gmapQ :: (forall d. Data d => d -> u) -> ImportSpecList l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ImportSpecList l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ImportSpecList l -> m (ImportSpecList l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ImportSpecList l -> m (ImportSpecList l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ImportSpecList l -> m (ImportSpecList l) # | |
Data l => Data (ImportSpec l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ImportSpec l -> c (ImportSpec l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ImportSpec l) # toConstr :: ImportSpec l -> Constr # dataTypeOf :: ImportSpec l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ImportSpec l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ImportSpec l)) # gmapT :: (forall b. Data b => b -> b) -> ImportSpec l -> ImportSpec l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ImportSpec l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ImportSpec l -> r # gmapQ :: (forall d. Data d => d -> u) -> ImportSpec l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ImportSpec l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ImportSpec l -> m (ImportSpec l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ImportSpec l -> m (ImportSpec l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ImportSpec l -> m (ImportSpec l) # | |
Data l => Data (Assoc l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Assoc l -> c (Assoc l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Assoc l) # toConstr :: Assoc l -> Constr # dataTypeOf :: Assoc l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Assoc l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Assoc l)) # gmapT :: (forall b. Data b => b -> b) -> Assoc l -> Assoc l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Assoc l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Assoc l -> r # gmapQ :: (forall d. Data d => d -> u) -> Assoc l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Assoc l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Assoc l -> m (Assoc l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Assoc l -> m (Assoc l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Assoc l -> m (Assoc l) # | |
Data l => Data (Decl l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Decl l -> c (Decl l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Decl l) # toConstr :: Decl l -> Constr # dataTypeOf :: Decl l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Decl l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Decl l)) # gmapT :: (forall b. Data b => b -> b) -> Decl l -> Decl l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Decl l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Decl l -> r # gmapQ :: (forall d. Data d => d -> u) -> Decl l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Decl l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Decl l -> m (Decl l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Decl l -> m (Decl l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Decl l -> m (Decl l) # | |
Data l => Data (PatternSynDirection l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PatternSynDirection l -> c (PatternSynDirection l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (PatternSynDirection l) # toConstr :: PatternSynDirection l -> Constr # dataTypeOf :: PatternSynDirection l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (PatternSynDirection l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (PatternSynDirection l)) # gmapT :: (forall b. Data b => b -> b) -> PatternSynDirection l -> PatternSynDirection l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PatternSynDirection l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PatternSynDirection l -> r # gmapQ :: (forall d. Data d => d -> u) -> PatternSynDirection l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PatternSynDirection l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PatternSynDirection l -> m (PatternSynDirection l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PatternSynDirection l -> m (PatternSynDirection l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PatternSynDirection l -> m (PatternSynDirection l) # | |
Data l => Data (TypeEqn l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TypeEqn l -> c (TypeEqn l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (TypeEqn l) # toConstr :: TypeEqn l -> Constr # dataTypeOf :: TypeEqn l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (TypeEqn l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (TypeEqn l)) # gmapT :: (forall b. Data b => b -> b) -> TypeEqn l -> TypeEqn l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TypeEqn l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TypeEqn l -> r # gmapQ :: (forall d. Data d => d -> u) -> TypeEqn l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TypeEqn l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TypeEqn l -> m (TypeEqn l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TypeEqn l -> m (TypeEqn l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TypeEqn l -> m (TypeEqn l) # | |
Data l => Data (Annotation l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Annotation l -> c (Annotation l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Annotation l) # toConstr :: Annotation l -> Constr # dataTypeOf :: Annotation l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Annotation l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Annotation l)) # gmapT :: (forall b. Data b => b -> b) -> Annotation l -> Annotation l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Annotation l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Annotation l -> r # gmapQ :: (forall d. Data d => d -> u) -> Annotation l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Annotation l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Annotation l -> m (Annotation l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Annotation l -> m (Annotation l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Annotation l -> m (Annotation l) # | |
Data l => Data (BooleanFormula l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> BooleanFormula l -> c (BooleanFormula l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (BooleanFormula l) # toConstr :: BooleanFormula l -> Constr # dataTypeOf :: BooleanFormula l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (BooleanFormula l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (BooleanFormula l)) # gmapT :: (forall b. Data b => b -> b) -> BooleanFormula l -> BooleanFormula l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> BooleanFormula l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> BooleanFormula l -> r # gmapQ :: (forall d. Data d => d -> u) -> BooleanFormula l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> BooleanFormula l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> BooleanFormula l -> m (BooleanFormula l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> BooleanFormula l -> m (BooleanFormula l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> BooleanFormula l -> m (BooleanFormula l) # | |
Data l => Data (Role l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Role l -> c (Role l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Role l) # toConstr :: Role l -> Constr # dataTypeOf :: Role l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Role l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Role l)) # gmapT :: (forall b. Data b => b -> b) -> Role l -> Role l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Role l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Role l -> r # gmapQ :: (forall d. Data d => d -> u) -> Role l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Role l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Role l -> m (Role l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Role l -> m (Role l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Role l -> m (Role l) # | |
Data l => Data (DataOrNew l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DataOrNew l -> c (DataOrNew l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (DataOrNew l) # toConstr :: DataOrNew l -> Constr # dataTypeOf :: DataOrNew l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (DataOrNew l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (DataOrNew l)) # gmapT :: (forall b. Data b => b -> b) -> DataOrNew l -> DataOrNew l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DataOrNew l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DataOrNew l -> r # gmapQ :: (forall d. Data d => d -> u) -> DataOrNew l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DataOrNew l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DataOrNew l -> m (DataOrNew l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DataOrNew l -> m (DataOrNew l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DataOrNew l -> m (DataOrNew l) # | |
Data l => Data (InjectivityInfo l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> InjectivityInfo l -> c (InjectivityInfo l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (InjectivityInfo l) # toConstr :: InjectivityInfo l -> Constr # dataTypeOf :: InjectivityInfo l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (InjectivityInfo l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (InjectivityInfo l)) # gmapT :: (forall b. Data b => b -> b) -> InjectivityInfo l -> InjectivityInfo l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> InjectivityInfo l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> InjectivityInfo l -> r # gmapQ :: (forall d. Data d => d -> u) -> InjectivityInfo l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> InjectivityInfo l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> InjectivityInfo l -> m (InjectivityInfo l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> InjectivityInfo l -> m (InjectivityInfo l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> InjectivityInfo l -> m (InjectivityInfo l) # | |
Data l => Data (ResultSig l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ResultSig l -> c (ResultSig l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ResultSig l) # toConstr :: ResultSig l -> Constr # dataTypeOf :: ResultSig l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ResultSig l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ResultSig l)) # gmapT :: (forall b. Data b => b -> b) -> ResultSig l -> ResultSig l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ResultSig l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ResultSig l -> r # gmapQ :: (forall d. Data d => d -> u) -> ResultSig l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ResultSig l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ResultSig l -> m (ResultSig l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ResultSig l -> m (ResultSig l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ResultSig l -> m (ResultSig l) # | |
Data l => Data (DeclHead l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DeclHead l -> c (DeclHead l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (DeclHead l) # toConstr :: DeclHead l -> Constr # dataTypeOf :: DeclHead l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (DeclHead l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (DeclHead l)) # gmapT :: (forall b. Data b => b -> b) -> DeclHead l -> DeclHead l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DeclHead l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DeclHead l -> r # gmapQ :: (forall d. Data d => d -> u) -> DeclHead l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DeclHead l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DeclHead l -> m (DeclHead l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DeclHead l -> m (DeclHead l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DeclHead l -> m (DeclHead l) # | |
Data l => Data (InstRule l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> InstRule l -> c (InstRule l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (InstRule l) # toConstr :: InstRule l -> Constr # dataTypeOf :: InstRule l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (InstRule l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (InstRule l)) # gmapT :: (forall b. Data b => b -> b) -> InstRule l -> InstRule l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> InstRule l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> InstRule l -> r # gmapQ :: (forall d. Data d => d -> u) -> InstRule l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> InstRule l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> InstRule l -> m (InstRule l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> InstRule l -> m (InstRule l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> InstRule l -> m (InstRule l) # | |
Data l => Data (InstHead l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> InstHead l -> c (InstHead l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (InstHead l) # toConstr :: InstHead l -> Constr # dataTypeOf :: InstHead l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (InstHead l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (InstHead l)) # gmapT :: (forall b. Data b => b -> b) -> InstHead l -> InstHead l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> InstHead l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> InstHead l -> r # gmapQ :: (forall d. Data d => d -> u) -> InstHead l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> InstHead l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> InstHead l -> m (InstHead l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> InstHead l -> m (InstHead l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> InstHead l -> m (InstHead l) # | |
Data l => Data (Deriving l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Deriving l -> c (Deriving l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Deriving l) # toConstr :: Deriving l -> Constr # dataTypeOf :: Deriving l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Deriving l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Deriving l)) # gmapT :: (forall b. Data b => b -> b) -> Deriving l -> Deriving l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Deriving l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Deriving l -> r # gmapQ :: (forall d. Data d => d -> u) -> Deriving l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Deriving l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Deriving l -> m (Deriving l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Deriving l -> m (Deriving l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Deriving l -> m (Deriving l) # | |
Data l => Data (DerivStrategy l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DerivStrategy l -> c (DerivStrategy l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (DerivStrategy l) # toConstr :: DerivStrategy l -> Constr # dataTypeOf :: DerivStrategy l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (DerivStrategy l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (DerivStrategy l)) # gmapT :: (forall b. Data b => b -> b) -> DerivStrategy l -> DerivStrategy l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DerivStrategy l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DerivStrategy l -> r # gmapQ :: (forall d. Data d => d -> u) -> DerivStrategy l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DerivStrategy l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DerivStrategy l -> m (DerivStrategy l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DerivStrategy l -> m (DerivStrategy l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DerivStrategy l -> m (DerivStrategy l) # | |
Data l => Data (Binds l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Binds l -> c (Binds l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Binds l) # toConstr :: Binds l -> Constr # dataTypeOf :: Binds l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Binds l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Binds l)) # gmapT :: (forall b. Data b => b -> b) -> Binds l -> Binds l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Binds l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Binds l -> r # gmapQ :: (forall d. Data d => d -> u) -> Binds l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Binds l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Binds l -> m (Binds l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Binds l -> m (Binds l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Binds l -> m (Binds l) # | |
Data l => Data (IPBind l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IPBind l -> c (IPBind l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (IPBind l) # toConstr :: IPBind l -> Constr # dataTypeOf :: IPBind l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (IPBind l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (IPBind l)) # gmapT :: (forall b. Data b => b -> b) -> IPBind l -> IPBind l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IPBind l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IPBind l -> r # gmapQ :: (forall d. Data d => d -> u) -> IPBind l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> IPBind l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IPBind l -> m (IPBind l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IPBind l -> m (IPBind l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IPBind l -> m (IPBind l) # | |
Data l => Data (Match l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Match l -> c (Match l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Match l) # toConstr :: Match l -> Constr # dataTypeOf :: Match l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Match l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Match l)) # gmapT :: (forall b. Data b => b -> b) -> Match l -> Match l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Match l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Match l -> r # gmapQ :: (forall d. Data d => d -> u) -> Match l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Match l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Match l -> m (Match l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Match l -> m (Match l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Match l -> m (Match l) # | |
Data l => Data (QualConDecl l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> QualConDecl l -> c (QualConDecl l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (QualConDecl l) # toConstr :: QualConDecl l -> Constr # dataTypeOf :: QualConDecl l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (QualConDecl l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (QualConDecl l)) # gmapT :: (forall b. Data b => b -> b) -> QualConDecl l -> QualConDecl l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> QualConDecl l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> QualConDecl l -> r # gmapQ :: (forall d. Data d => d -> u) -> QualConDecl l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> QualConDecl l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> QualConDecl l -> m (QualConDecl l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> QualConDecl l -> m (QualConDecl l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> QualConDecl l -> m (QualConDecl l) # | |
Data l => Data (ConDecl l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ConDecl l -> c (ConDecl l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ConDecl l) # toConstr :: ConDecl l -> Constr # dataTypeOf :: ConDecl l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ConDecl l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ConDecl l)) # gmapT :: (forall b. Data b => b -> b) -> ConDecl l -> ConDecl l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ConDecl l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ConDecl l -> r # gmapQ :: (forall d. Data d => d -> u) -> ConDecl l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ConDecl l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ConDecl l -> m (ConDecl l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ConDecl l -> m (ConDecl l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ConDecl l -> m (ConDecl l) # | |
Data l => Data (FieldDecl l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FieldDecl l -> c (FieldDecl l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (FieldDecl l) # toConstr :: FieldDecl l -> Constr # dataTypeOf :: FieldDecl l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (FieldDecl l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (FieldDecl l)) # gmapT :: (forall b. Data b => b -> b) -> FieldDecl l -> FieldDecl l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FieldDecl l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FieldDecl l -> r # gmapQ :: (forall d. Data d => d -> u) -> FieldDecl l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> FieldDecl l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FieldDecl l -> m (FieldDecl l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FieldDecl l -> m (FieldDecl l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FieldDecl l -> m (FieldDecl l) # | |
Data l => Data (GadtDecl l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> GadtDecl l -> c (GadtDecl l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (GadtDecl l) # toConstr :: GadtDecl l -> Constr # dataTypeOf :: GadtDecl l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (GadtDecl l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (GadtDecl l)) # gmapT :: (forall b. Data b => b -> b) -> GadtDecl l -> GadtDecl l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> GadtDecl l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> GadtDecl l -> r # gmapQ :: (forall d. Data d => d -> u) -> GadtDecl l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> GadtDecl l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> GadtDecl l -> m (GadtDecl l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> GadtDecl l -> m (GadtDecl l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> GadtDecl l -> m (GadtDecl l) # | |
Data l => Data (ClassDecl l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ClassDecl l -> c (ClassDecl l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ClassDecl l) # toConstr :: ClassDecl l -> Constr # dataTypeOf :: ClassDecl l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ClassDecl l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ClassDecl l)) # gmapT :: (forall b. Data b => b -> b) -> ClassDecl l -> ClassDecl l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ClassDecl l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ClassDecl l -> r # gmapQ :: (forall d. Data d => d -> u) -> ClassDecl l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ClassDecl l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ClassDecl l -> m (ClassDecl l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ClassDecl l -> m (ClassDecl l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ClassDecl l -> m (ClassDecl l) # | |
Data l => Data (InstDecl l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> InstDecl l -> c (InstDecl l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (InstDecl l) # toConstr :: InstDecl l -> Constr # dataTypeOf :: InstDecl l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (InstDecl l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (InstDecl l)) # gmapT :: (forall b. Data b => b -> b) -> InstDecl l -> InstDecl l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> InstDecl l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> InstDecl l -> r # gmapQ :: (forall d. Data d => d -> u) -> InstDecl l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> InstDecl l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> InstDecl l -> m (InstDecl l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> InstDecl l -> m (InstDecl l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> InstDecl l -> m (InstDecl l) # | |
Data l => Data (BangType l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> BangType l -> c (BangType l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (BangType l) # toConstr :: BangType l -> Constr # dataTypeOf :: BangType l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (BangType l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (BangType l)) # gmapT :: (forall b. Data b => b -> b) -> BangType l -> BangType l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> BangType l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> BangType l -> r # gmapQ :: (forall d. Data d => d -> u) -> BangType l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> BangType l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> BangType l -> m (BangType l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> BangType l -> m (BangType l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> BangType l -> m (BangType l) # | |
Data l => Data (Unpackedness l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Unpackedness l -> c (Unpackedness l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Unpackedness l) # toConstr :: Unpackedness l -> Constr # dataTypeOf :: Unpackedness l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Unpackedness l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Unpackedness l)) # gmapT :: (forall b. Data b => b -> b) -> Unpackedness l -> Unpackedness l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Unpackedness l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Unpackedness l -> r # gmapQ :: (forall d. Data d => d -> u) -> Unpackedness l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Unpackedness l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Unpackedness l -> m (Unpackedness l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Unpackedness l -> m (Unpackedness l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Unpackedness l -> m (Unpackedness l) # | |
Data l => Data (Rhs l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Rhs l -> c (Rhs l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Rhs l) # dataTypeOf :: Rhs l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Rhs l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Rhs l)) # gmapT :: (forall b. Data b => b -> b) -> Rhs l -> Rhs l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Rhs l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Rhs l -> r # gmapQ :: (forall d. Data d => d -> u) -> Rhs l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Rhs l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Rhs l -> m (Rhs l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Rhs l -> m (Rhs l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Rhs l -> m (Rhs l) # | |
Data l => Data (GuardedRhs l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> GuardedRhs l -> c (GuardedRhs l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (GuardedRhs l) # toConstr :: GuardedRhs l -> Constr # dataTypeOf :: GuardedRhs l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (GuardedRhs l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (GuardedRhs l)) # gmapT :: (forall b. Data b => b -> b) -> GuardedRhs l -> GuardedRhs l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> GuardedRhs l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> GuardedRhs l -> r # gmapQ :: (forall d. Data d => d -> u) -> GuardedRhs l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> GuardedRhs l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> GuardedRhs l -> m (GuardedRhs l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> GuardedRhs l -> m (GuardedRhs l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> GuardedRhs l -> m (GuardedRhs l) # | |
Data l => Data (Type l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Type l -> c (Type l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Type l) # toConstr :: Type l -> Constr # dataTypeOf :: Type l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Type l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Type l)) # gmapT :: (forall b. Data b => b -> b) -> Type l -> Type l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Type l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Type l -> r # gmapQ :: (forall d. Data d => d -> u) -> Type l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Type l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Type l -> m (Type l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Type l -> m (Type l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Type l -> m (Type l) # | |
Data l => Data (MaybePromotedName l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> MaybePromotedName l -> c (MaybePromotedName l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (MaybePromotedName l) # toConstr :: MaybePromotedName l -> Constr # dataTypeOf :: MaybePromotedName l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (MaybePromotedName l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (MaybePromotedName l)) # gmapT :: (forall b. Data b => b -> b) -> MaybePromotedName l -> MaybePromotedName l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> MaybePromotedName l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> MaybePromotedName l -> r # gmapQ :: (forall d. Data d => d -> u) -> MaybePromotedName l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> MaybePromotedName l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> MaybePromotedName l -> m (MaybePromotedName l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> MaybePromotedName l -> m (MaybePromotedName l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> MaybePromotedName l -> m (MaybePromotedName l) # | |
Data l => Data (Promoted l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Promoted l -> c (Promoted l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Promoted l) # toConstr :: Promoted l -> Constr # dataTypeOf :: Promoted l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Promoted l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Promoted l)) # gmapT :: (forall b. Data b => b -> b) -> Promoted l -> Promoted l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Promoted l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Promoted l -> r # gmapQ :: (forall d. Data d => d -> u) -> Promoted l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Promoted l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Promoted l -> m (Promoted l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Promoted l -> m (Promoted l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Promoted l -> m (Promoted l) # | |
Data l => Data (TyVarBind l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TyVarBind l -> c (TyVarBind l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (TyVarBind l) # toConstr :: TyVarBind l -> Constr # dataTypeOf :: TyVarBind l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (TyVarBind l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (TyVarBind l)) # gmapT :: (forall b. Data b => b -> b) -> TyVarBind l -> TyVarBind l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TyVarBind l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TyVarBind l -> r # gmapQ :: (forall d. Data d => d -> u) -> TyVarBind l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TyVarBind l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TyVarBind l -> m (TyVarBind l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TyVarBind l -> m (TyVarBind l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TyVarBind l -> m (TyVarBind l) # | |
Data l => Data (FunDep l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FunDep l -> c (FunDep l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (FunDep l) # toConstr :: FunDep l -> Constr # dataTypeOf :: FunDep l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (FunDep l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (FunDep l)) # gmapT :: (forall b. Data b => b -> b) -> FunDep l -> FunDep l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FunDep l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FunDep l -> r # gmapQ :: (forall d. Data d => d -> u) -> FunDep l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> FunDep l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FunDep l -> m (FunDep l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FunDep l -> m (FunDep l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FunDep l -> m (FunDep l) # | |
Data l => Data (Context l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Context l -> c (Context l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Context l) # toConstr :: Context l -> Constr # dataTypeOf :: Context l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Context l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Context l)) # gmapT :: (forall b. Data b => b -> b) -> Context l -> Context l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Context l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Context l -> r # gmapQ :: (forall d. Data d => d -> u) -> Context l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Context l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Context l -> m (Context l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Context l -> m (Context l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Context l -> m (Context l) # | |
Data l => Data (Asst l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Asst l -> c (Asst l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Asst l) # toConstr :: Asst l -> Constr # dataTypeOf :: Asst l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Asst l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Asst l)) # gmapT :: (forall b. Data b => b -> b) -> Asst l -> Asst l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Asst l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Asst l -> r # gmapQ :: (forall d. Data d => d -> u) -> Asst l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Asst l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Asst l -> m (Asst l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Asst l -> m (Asst l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Asst l -> m (Asst l) # | |
Data l => Data (Literal l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Literal l -> c (Literal l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Literal l) # toConstr :: Literal l -> Constr # dataTypeOf :: Literal l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Literal l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Literal l)) # gmapT :: (forall b. Data b => b -> b) -> Literal l -> Literal l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Literal l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Literal l -> r # gmapQ :: (forall d. Data d => d -> u) -> Literal l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Literal l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Literal l -> m (Literal l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Literal l -> m (Literal l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Literal l -> m (Literal l) # | |
Data l => Data (Sign l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Sign l -> c (Sign l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Sign l) # toConstr :: Sign l -> Constr # dataTypeOf :: Sign l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Sign l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Sign l)) # gmapT :: (forall b. Data b => b -> b) -> Sign l -> Sign l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Sign l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Sign l -> r # gmapQ :: (forall d. Data d => d -> u) -> Sign l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Sign l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Sign l -> m (Sign l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Sign l -> m (Sign l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Sign l -> m (Sign l) # | |
Data l => Data (Exp l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Exp l -> c (Exp l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Exp l) # dataTypeOf :: Exp l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Exp l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Exp l)) # gmapT :: (forall b. Data b => b -> b) -> Exp l -> Exp l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Exp l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Exp l -> r # gmapQ :: (forall d. Data d => d -> u) -> Exp l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Exp l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Exp l -> m (Exp l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Exp l -> m (Exp l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Exp l -> m (Exp l) # | |
Data l => Data (XName l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> XName l -> c (XName l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (XName l) # toConstr :: XName l -> Constr # dataTypeOf :: XName l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (XName l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (XName l)) # gmapT :: (forall b. Data b => b -> b) -> XName l -> XName l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> XName l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> XName l -> r # gmapQ :: (forall d. Data d => d -> u) -> XName l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> XName l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> XName l -> m (XName l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> XName l -> m (XName l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> XName l -> m (XName l) # | |
Data l => Data (XAttr l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> XAttr l -> c (XAttr l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (XAttr l) # toConstr :: XAttr l -> Constr # dataTypeOf :: XAttr l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (XAttr l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (XAttr l)) # gmapT :: (forall b. Data b => b -> b) -> XAttr l -> XAttr l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> XAttr l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> XAttr l -> r # gmapQ :: (forall d. Data d => d -> u) -> XAttr l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> XAttr l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> XAttr l -> m (XAttr l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> XAttr l -> m (XAttr l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> XAttr l -> m (XAttr l) # | |
Data l => Data (Bracket l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bracket l -> c (Bracket l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Bracket l) # toConstr :: Bracket l -> Constr # dataTypeOf :: Bracket l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Bracket l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Bracket l)) # gmapT :: (forall b. Data b => b -> b) -> Bracket l -> Bracket l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bracket l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bracket l -> r # gmapQ :: (forall d. Data d => d -> u) -> Bracket l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Bracket l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bracket l -> m (Bracket l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bracket l -> m (Bracket l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bracket l -> m (Bracket l) # | |
Data l => Data (Splice l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Splice l -> c (Splice l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Splice l) # toConstr :: Splice l -> Constr # dataTypeOf :: Splice l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Splice l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Splice l)) # gmapT :: (forall b. Data b => b -> b) -> Splice l -> Splice l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Splice l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Splice l -> r # gmapQ :: (forall d. Data d => d -> u) -> Splice l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Splice l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Splice l -> m (Splice l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Splice l -> m (Splice l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Splice l -> m (Splice l) # | |
Data l => Data (Safety l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Safety l -> c (Safety l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Safety l) # toConstr :: Safety l -> Constr # dataTypeOf :: Safety l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Safety l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Safety l)) # gmapT :: (forall b. Data b => b -> b) -> Safety l -> Safety l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Safety l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Safety l -> r # gmapQ :: (forall d. Data d => d -> u) -> Safety l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Safety l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Safety l -> m (Safety l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Safety l -> m (Safety l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Safety l -> m (Safety l) # | |
Data l => Data (CallConv l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> CallConv l -> c (CallConv l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (CallConv l) # toConstr :: CallConv l -> Constr # dataTypeOf :: CallConv l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (CallConv l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (CallConv l)) # gmapT :: (forall b. Data b => b -> b) -> CallConv l -> CallConv l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> CallConv l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> CallConv l -> r # gmapQ :: (forall d. Data d => d -> u) -> CallConv l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> CallConv l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> CallConv l -> m (CallConv l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> CallConv l -> m (CallConv l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> CallConv l -> m (CallConv l) # | |
Data l => Data (ModulePragma l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ModulePragma l -> c (ModulePragma l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ModulePragma l) # toConstr :: ModulePragma l -> Constr # dataTypeOf :: ModulePragma l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ModulePragma l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ModulePragma l)) # gmapT :: (forall b. Data b => b -> b) -> ModulePragma l -> ModulePragma l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ModulePragma l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ModulePragma l -> r # gmapQ :: (forall d. Data d => d -> u) -> ModulePragma l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ModulePragma l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ModulePragma l -> m (ModulePragma l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ModulePragma l -> m (ModulePragma l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ModulePragma l -> m (ModulePragma l) # | |
Data l => Data (Overlap l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Overlap l -> c (Overlap l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Overlap l) # toConstr :: Overlap l -> Constr # dataTypeOf :: Overlap l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Overlap l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Overlap l)) # gmapT :: (forall b. Data b => b -> b) -> Overlap l -> Overlap l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Overlap l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Overlap l -> r # gmapQ :: (forall d. Data d => d -> u) -> Overlap l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Overlap l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Overlap l -> m (Overlap l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Overlap l -> m (Overlap l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Overlap l -> m (Overlap l) # | |
Data l => Data (Activation l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Activation l -> c (Activation l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Activation l) # toConstr :: Activation l -> Constr # dataTypeOf :: Activation l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Activation l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Activation l)) # gmapT :: (forall b. Data b => b -> b) -> Activation l -> Activation l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Activation l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Activation l -> r # gmapQ :: (forall d. Data d => d -> u) -> Activation l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Activation l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Activation l -> m (Activation l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Activation l -> m (Activation l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Activation l -> m (Activation l) # | |
Data l => Data (Rule l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Rule l -> c (Rule l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Rule l) # toConstr :: Rule l -> Constr # dataTypeOf :: Rule l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Rule l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Rule l)) # gmapT :: (forall b. Data b => b -> b) -> Rule l -> Rule l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Rule l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Rule l -> r # gmapQ :: (forall d. Data d => d -> u) -> Rule l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Rule l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Rule l -> m (Rule l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Rule l -> m (Rule l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Rule l -> m (Rule l) # | |
Data l => Data (RuleVar l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> RuleVar l -> c (RuleVar l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (RuleVar l) # toConstr :: RuleVar l -> Constr # dataTypeOf :: RuleVar l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (RuleVar l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (RuleVar l)) # gmapT :: (forall b. Data b => b -> b) -> RuleVar l -> RuleVar l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> RuleVar l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> RuleVar l -> r # gmapQ :: (forall d. Data d => d -> u) -> RuleVar l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> RuleVar l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> RuleVar l -> m (RuleVar l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleVar l -> m (RuleVar l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleVar l -> m (RuleVar l) # | |
Data l => Data (WarningText l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> WarningText l -> c (WarningText l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (WarningText l) # toConstr :: WarningText l -> Constr # dataTypeOf :: WarningText l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (WarningText l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (WarningText l)) # gmapT :: (forall b. Data b => b -> b) -> WarningText l -> WarningText l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WarningText l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WarningText l -> r # gmapQ :: (forall d. Data d => d -> u) -> WarningText l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> WarningText l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> WarningText l -> m (WarningText l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> WarningText l -> m (WarningText l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> WarningText l -> m (WarningText l) # | |
Data l => Data (Pat l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Pat l -> c (Pat l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Pat l) # dataTypeOf :: Pat l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Pat l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Pat l)) # gmapT :: (forall b. Data b => b -> b) -> Pat l -> Pat l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Pat l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Pat l -> r # gmapQ :: (forall d. Data d => d -> u) -> Pat l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Pat l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Pat l -> m (Pat l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Pat l -> m (Pat l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Pat l -> m (Pat l) # | |
Data l => Data (PXAttr l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PXAttr l -> c (PXAttr l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (PXAttr l) # toConstr :: PXAttr l -> Constr # dataTypeOf :: PXAttr l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (PXAttr l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (PXAttr l)) # gmapT :: (forall b. Data b => b -> b) -> PXAttr l -> PXAttr l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PXAttr l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PXAttr l -> r # gmapQ :: (forall d. Data d => d -> u) -> PXAttr l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PXAttr l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PXAttr l -> m (PXAttr l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PXAttr l -> m (PXAttr l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PXAttr l -> m (PXAttr l) # | |
Data l => Data (RPatOp l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> RPatOp l -> c (RPatOp l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (RPatOp l) # toConstr :: RPatOp l -> Constr # dataTypeOf :: RPatOp l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (RPatOp l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (RPatOp l)) # gmapT :: (forall b. Data b => b -> b) -> RPatOp l -> RPatOp l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> RPatOp l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> RPatOp l -> r # gmapQ :: (forall d. Data d => d -> u) -> RPatOp l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> RPatOp l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> RPatOp l -> m (RPatOp l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> RPatOp l -> m (RPatOp l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> RPatOp l -> m (RPatOp l) # | |
Data l => Data (RPat l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> RPat l -> c (RPat l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (RPat l) # toConstr :: RPat l -> Constr # dataTypeOf :: RPat l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (RPat l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (RPat l)) # gmapT :: (forall b. Data b => b -> b) -> RPat l -> RPat l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> RPat l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> RPat l -> r # gmapQ :: (forall d. Data d => d -> u) -> RPat l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> RPat l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> RPat l -> m (RPat l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> RPat l -> m (RPat l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> RPat l -> m (RPat l) # | |
Data l => Data (PatField l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PatField l -> c (PatField l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (PatField l) # toConstr :: PatField l -> Constr # dataTypeOf :: PatField l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (PatField l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (PatField l)) # gmapT :: (forall b. Data b => b -> b) -> PatField l -> PatField l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PatField l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PatField l -> r # gmapQ :: (forall d. Data d => d -> u) -> PatField l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PatField l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PatField l -> m (PatField l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PatField l -> m (PatField l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PatField l -> m (PatField l) # | |
Data l => Data (Stmt l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Stmt l -> c (Stmt l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Stmt l) # toConstr :: Stmt l -> Constr # dataTypeOf :: Stmt l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Stmt l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Stmt l)) # gmapT :: (forall b. Data b => b -> b) -> Stmt l -> Stmt l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Stmt l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Stmt l -> r # gmapQ :: (forall d. Data d => d -> u) -> Stmt l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Stmt l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Stmt l -> m (Stmt l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Stmt l -> m (Stmt l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Stmt l -> m (Stmt l) # | |
Data l => Data (QualStmt l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> QualStmt l -> c (QualStmt l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (QualStmt l) # toConstr :: QualStmt l -> Constr # dataTypeOf :: QualStmt l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (QualStmt l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (QualStmt l)) # gmapT :: (forall b. Data b => b -> b) -> QualStmt l -> QualStmt l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> QualStmt l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> QualStmt l -> r # gmapQ :: (forall d. Data d => d -> u) -> QualStmt l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> QualStmt l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> QualStmt l -> m (QualStmt l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> QualStmt l -> m (QualStmt l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> QualStmt l -> m (QualStmt l) # | |
Data l => Data (FieldUpdate l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FieldUpdate l -> c (FieldUpdate l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (FieldUpdate l) # toConstr :: FieldUpdate l -> Constr # dataTypeOf :: FieldUpdate l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (FieldUpdate l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (FieldUpdate l)) # gmapT :: (forall b. Data b => b -> b) -> FieldUpdate l -> FieldUpdate l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FieldUpdate l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FieldUpdate l -> r # gmapQ :: (forall d. Data d => d -> u) -> FieldUpdate l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> FieldUpdate l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FieldUpdate l -> m (FieldUpdate l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FieldUpdate l -> m (FieldUpdate l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FieldUpdate l -> m (FieldUpdate l) # | |
Data l => Data (Alt l) | |
Defined in Language.Haskell.Exts.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Alt l -> c (Alt l) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Alt l) # dataTypeOf :: Alt l -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Alt l)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Alt l)) # gmapT :: (forall b. Data b => b -> b) -> Alt l -> Alt l # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Alt l -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Alt l -> r # gmapQ :: (forall d. Data d => d -> u) -> Alt l -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Alt l -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Alt l -> m (Alt l) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Alt l -> m (Alt l) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Alt l -> m (Alt l) # | |
Data a => Data (JavaScript a) | |
Defined in Language.ECMAScript3.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> JavaScript a -> c (JavaScript a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (JavaScript a) # toConstr :: JavaScript a -> Constr # dataTypeOf :: JavaScript a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (JavaScript a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (JavaScript a)) # gmapT :: (forall b. Data b => b -> b) -> JavaScript a -> JavaScript a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> JavaScript a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> JavaScript a -> r # gmapQ :: (forall d. Data d => d -> u) -> JavaScript a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> JavaScript a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> JavaScript a -> m (JavaScript a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> JavaScript a -> m (JavaScript a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> JavaScript a -> m (JavaScript a) # | |
Data a => Data (Id a) | |
Defined in Language.ECMAScript3.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Id a -> c (Id a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Id a) # dataTypeOf :: Id a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Id a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Id a)) # gmapT :: (forall b. Data b => b -> b) -> Id a -> Id a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Id a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Id a -> r # gmapQ :: (forall d. Data d => d -> u) -> Id a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Id a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Id a -> m (Id a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Id a -> m (Id a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Id a -> m (Id a) # | |
Data a => Data (Prop a) | |
Defined in Language.ECMAScript3.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Prop a -> c (Prop a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Prop a) # toConstr :: Prop a -> Constr # dataTypeOf :: Prop a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Prop a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Prop a)) # gmapT :: (forall b. Data b => b -> b) -> Prop a -> Prop a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Prop a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Prop a -> r # gmapQ :: (forall d. Data d => d -> u) -> Prop a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Prop a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Prop a -> m (Prop a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Prop a -> m (Prop a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Prop a -> m (Prop a) # | |
Data a => Data (LValue a) | |
Defined in Language.ECMAScript3.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LValue a -> c (LValue a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (LValue a) # toConstr :: LValue a -> Constr # dataTypeOf :: LValue a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (LValue a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (LValue a)) # gmapT :: (forall b. Data b => b -> b) -> LValue a -> LValue a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LValue a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LValue a -> r # gmapQ :: (forall d. Data d => d -> u) -> LValue a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> LValue a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> LValue a -> m (LValue a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LValue a -> m (LValue a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LValue a -> m (LValue a) # | |
Data a => Data (Expression a) | |
Defined in Language.ECMAScript3.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Expression a -> c (Expression a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Expression a) # toConstr :: Expression a -> Constr # dataTypeOf :: Expression a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Expression a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Expression a)) # gmapT :: (forall b. Data b => b -> b) -> Expression a -> Expression a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Expression a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Expression a -> r # gmapQ :: (forall d. Data d => d -> u) -> Expression a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Expression a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Expression a -> m (Expression a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Expression a -> m (Expression a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Expression a -> m (Expression a) # | |
Data a => Data (CaseClause a) | |
Defined in Language.ECMAScript3.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> CaseClause a -> c (CaseClause a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (CaseClause a) # toConstr :: CaseClause a -> Constr # dataTypeOf :: CaseClause a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (CaseClause a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (CaseClause a)) # gmapT :: (forall b. Data b => b -> b) -> CaseClause a -> CaseClause a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> CaseClause a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> CaseClause a -> r # gmapQ :: (forall d. Data d => d -> u) -> CaseClause a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> CaseClause a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> CaseClause a -> m (CaseClause a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> CaseClause a -> m (CaseClause a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> CaseClause a -> m (CaseClause a) # | |
Data a => Data (CatchClause a) | |
Defined in Language.ECMAScript3.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> CatchClause a -> c (CatchClause a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (CatchClause a) # toConstr :: CatchClause a -> Constr # dataTypeOf :: CatchClause a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (CatchClause a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (CatchClause a)) # gmapT :: (forall b. Data b => b -> b) -> CatchClause a -> CatchClause a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> CatchClause a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> CatchClause a -> r # gmapQ :: (forall d. Data d => d -> u) -> CatchClause a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> CatchClause a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> CatchClause a -> m (CatchClause a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> CatchClause a -> m (CatchClause a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> CatchClause a -> m (CatchClause a) # | |
Data a => Data (VarDecl a) | |
Defined in Language.ECMAScript3.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> VarDecl a -> c (VarDecl a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (VarDecl a) # toConstr :: VarDecl a -> Constr # dataTypeOf :: VarDecl a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (VarDecl a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (VarDecl a)) # gmapT :: (forall b. Data b => b -> b) -> VarDecl a -> VarDecl a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> VarDecl a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> VarDecl a -> r # gmapQ :: (forall d. Data d => d -> u) -> VarDecl a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> VarDecl a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> VarDecl a -> m (VarDecl a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> VarDecl a -> m (VarDecl a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> VarDecl a -> m (VarDecl a) # | |
Data a => Data (ForInit a) | |
Defined in Language.ECMAScript3.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ForInit a -> c (ForInit a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ForInit a) # toConstr :: ForInit a -> Constr # dataTypeOf :: ForInit a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ForInit a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ForInit a)) # gmapT :: (forall b. Data b => b -> b) -> ForInit a -> ForInit a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ForInit a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ForInit a -> r # gmapQ :: (forall d. Data d => d -> u) -> ForInit a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ForInit a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ForInit a -> m (ForInit a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ForInit a -> m (ForInit a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ForInit a -> m (ForInit a) # | |
Data a => Data (ForInInit a) | |
Defined in Language.ECMAScript3.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ForInInit a -> c (ForInInit a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ForInInit a) # toConstr :: ForInInit a -> Constr # dataTypeOf :: ForInInit a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ForInInit a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ForInInit a)) # gmapT :: (forall b. Data b => b -> b) -> ForInInit a -> ForInInit a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ForInInit a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ForInInit a -> r # gmapQ :: (forall d. Data d => d -> u) -> ForInInit a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ForInInit a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ForInInit a -> m (ForInInit a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ForInInit a -> m (ForInInit a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ForInInit a -> m (ForInInit a) # | |
Data a => Data (Statement a) | |
Defined in Language.ECMAScript3.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Statement a -> c (Statement a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Statement a) # toConstr :: Statement a -> Constr # dataTypeOf :: Statement a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Statement a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Statement a)) # gmapT :: (forall b. Data b => b -> b) -> Statement a -> Statement a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Statement a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Statement a -> r # gmapQ :: (forall d. Data d => d -> u) -> Statement a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Statement a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Statement a -> m (Statement a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Statement a -> m (Statement a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Statement a -> m (Statement a) # | |
Typeable s => Data (MutableByteArray s) | |
Defined in Data.Primitive.ByteArray Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> MutableByteArray s -> c (MutableByteArray s) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (MutableByteArray s) # toConstr :: MutableByteArray s -> Constr # dataTypeOf :: MutableByteArray s -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (MutableByteArray s)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (MutableByteArray s)) # gmapT :: (forall b. Data b => b -> b) -> MutableByteArray s -> MutableByteArray s # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> MutableByteArray s -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> MutableByteArray s -> r # gmapQ :: (forall d. Data d => d -> u) -> MutableByteArray s -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> MutableByteArray s -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> MutableByteArray s -> m (MutableByteArray s) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> MutableByteArray s -> m (MutableByteArray s) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> MutableByteArray s -> m (MutableByteArray s) # | |
Data a => Data (SmallArray a) | |
Defined in Data.Primitive.SmallArray Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SmallArray a -> c (SmallArray a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (SmallArray a) # toConstr :: SmallArray a -> Constr # dataTypeOf :: SmallArray a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (SmallArray a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (SmallArray a)) # gmapT :: (forall b. Data b => b -> b) -> SmallArray a -> SmallArray a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SmallArray a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SmallArray a -> r # gmapQ :: (forall d. Data d => d -> u) -> SmallArray a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SmallArray a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SmallArray a -> m (SmallArray a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SmallArray a -> m (SmallArray a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SmallArray a -> m (SmallArray a) # | |
Data a => Data (Array a) | |
Defined in Data.Primitive.Array Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Array a -> c (Array a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Array a) # toConstr :: Array a -> Constr # dataTypeOf :: Array a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Array a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Array a)) # gmapT :: (forall b. Data b => b -> b) -> Array a -> Array a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Array a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Array a -> r # gmapQ :: (forall d. Data d => d -> u) -> Array a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Array a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Array a -> m (Array a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Array a -> m (Array a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Array a -> m (Array a) # | |
Data a => Data (Maybe a) | |
Defined in Data.Strict.Maybe Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Maybe a -> c (Maybe a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Maybe a) # toConstr :: Maybe a -> Constr # dataTypeOf :: Maybe a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe0 (c (Maybe a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe0 (c (Maybe a)) # gmapT :: (forall b. Data b => b -> b) -> Maybe a -> Maybe a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r # gmapQ :: (forall d. Data d => d -> u) -> Maybe a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Maybe a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # | |
(Data a, Eq a, Hashable a) => Data (HashSet a) | |
Defined in Data.HashSet.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> HashSet a -> c (HashSet a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (HashSet a) # toConstr :: HashSet a -> Constr # dataTypeOf :: HashSet a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (HashSet a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (HashSet a)) # gmapT :: (forall b. Data b => b -> b) -> HashSet a -> HashSet a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> HashSet a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> HashSet a -> r # gmapQ :: (forall d. Data d => d -> u) -> HashSet a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> HashSet a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> HashSet a -> m (HashSet a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> HashSet a -> m (HashSet a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> HashSet a -> m (HashSet a) # | |
(Data a, Unbox a) => Data (Vector a) | |
Defined in Data.Vector.Unboxed.Base Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Vector a -> c (Vector a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Vector a) # toConstr :: Vector a -> Constr # dataTypeOf :: Vector a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Vector a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Vector a)) # gmapT :: (forall b. Data b => b -> b) -> Vector a -> Vector a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQ :: (forall d. Data d => d -> u) -> Vector a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Vector a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # | |
(Data a, Storable a) => Data (Vector a) | |
Defined in Data.Vector.Storable Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Vector a -> c (Vector a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Vector a) # toConstr :: Vector a -> Constr # dataTypeOf :: Vector a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Vector a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Vector a)) # gmapT :: (forall b. Data b => b -> b) -> Vector a -> Vector a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQ :: (forall d. Data d => d -> u) -> Vector a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Vector a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # | |
(Data a, Prim a) => Data (Vector a) | |
Defined in Data.Vector.Primitive Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Vector a -> c (Vector a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Vector a) # toConstr :: Vector a -> Constr # dataTypeOf :: Vector a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Vector a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Vector a)) # gmapT :: (forall b. Data b => b -> b) -> Vector a -> Vector a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQ :: (forall d. Data d => d -> u) -> Vector a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Vector a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # | |
Data a => Data (Vector a) | |
Defined in Data.Vector Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Vector a -> c (Vector a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Vector a) # toConstr :: Vector a -> Constr # dataTypeOf :: Vector a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Vector a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Vector a)) # gmapT :: (forall b. Data b => b -> b) -> Vector a -> Vector a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQ :: (forall d. Data d => d -> u) -> Vector a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Vector a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # | |
(Data a, Data b) => Data (Either a b) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Either a b -> c (Either a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Either a b) # toConstr :: Either a b -> Constr # dataTypeOf :: Either a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Either a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Either a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Either a b -> Either a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Either a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Either a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # | |
Data p => Data (V1 p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> V1 p -> c (V1 p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (V1 p) # dataTypeOf :: V1 p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (V1 p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (V1 p)) # gmapT :: (forall b. Data b => b -> b) -> V1 p -> V1 p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> V1 p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> V1 p -> r # gmapQ :: (forall d. Data d => d -> u) -> V1 p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> V1 p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) # | |
Data p => Data (U1 p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> U1 p -> c (U1 p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (U1 p) # dataTypeOf :: U1 p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (U1 p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (U1 p)) # gmapT :: (forall b. Data b => b -> b) -> U1 p -> U1 p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> U1 p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> U1 p -> r # gmapQ :: (forall d. Data d => d -> u) -> U1 p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> U1 p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> U1 p -> m (U1 p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> U1 p -> m (U1 p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> U1 p -> m (U1 p) # | |
(Data a, Data b) => Data (a, b) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> (a, b) -> c (a, b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a, b) # toConstr :: (a, b) -> Constr # dataTypeOf :: (a, b) -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (a, b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (a, b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b) -> (a, b) # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a, b) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a, b) -> r # gmapQ :: (forall d. Data d => d -> u) -> (a, b) -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (a, b) -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a, b) -> m (a, b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a, b) -> m (a, b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a, b) -> m (a, b) # | |
(Data k, Data v, Eq k, Hashable k) => Data (HashMap k v) | |
Defined in Data.HashMap.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> HashMap k v -> c (HashMap k v) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (HashMap k v) # toConstr :: HashMap k v -> Constr # dataTypeOf :: HashMap k v -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (HashMap k v)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (HashMap k v)) # gmapT :: (forall b. Data b => b -> b) -> HashMap k v -> HashMap k v # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> HashMap k v -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> HashMap k v -> r # gmapQ :: (forall d. Data d => d -> u) -> HashMap k v -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> HashMap k v -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> HashMap k v -> m (HashMap k v) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> HashMap k v -> m (HashMap k v) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> HashMap k v -> m (HashMap k v) # | |
(Data k, Data a, Ord k) => Data (Map k a) | |
Defined in Data.Map.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Map k a -> c (Map k a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Map k a) # toConstr :: Map k a -> Constr # dataTypeOf :: Map k a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Map k a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Map k a)) # gmapT :: (forall b. Data b => b -> b) -> Map k a -> Map k a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Map k a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Map k a -> r # gmapQ :: (forall d. Data d => d -> u) -> Map k a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Map k a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) # | |
(Data a, Data b, Ix a) => Data (Array a b) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Array a b -> c (Array a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Array a b) # toConstr :: Array a b -> Constr # dataTypeOf :: Array a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Array a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Array a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Array a b -> Array a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Array a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Array a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Array a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Array a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Array a b -> m (Array a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Array a b -> m (Array a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Array a b -> m (Array a b) # | |
(Data a, Data b) => Data (Arg a b) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Arg a b -> c (Arg a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Arg a b) # toConstr :: Arg a b -> Constr # dataTypeOf :: Arg a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Arg a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Arg a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Arg a b -> Arg a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Arg a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Arg a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Arg a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Arg a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Arg a b -> m (Arg a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Arg a b -> m (Arg a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Arg a b -> m (Arg a b) # | |
(Typeable m, Typeable a, Data (m a)) => Data (WrappedMonad m a) | Since: base-4.14.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> WrappedMonad m a -> c (WrappedMonad m a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (WrappedMonad m a) # toConstr :: WrappedMonad m a -> Constr # dataTypeOf :: WrappedMonad m a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (WrappedMonad m a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (WrappedMonad m a)) # gmapT :: (forall b. Data b => b -> b) -> WrappedMonad m a -> WrappedMonad m a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonad m a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonad m a -> r # gmapQ :: (forall d. Data d => d -> u) -> WrappedMonad m a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> WrappedMonad m a -> u # gmapM :: Monad m0 => (forall d. Data d => d -> m0 d) -> WrappedMonad m a -> m0 (WrappedMonad m a) # gmapMp :: MonadPlus m0 => (forall d. Data d => d -> m0 d) -> WrappedMonad m a -> m0 (WrappedMonad m a) # gmapMo :: MonadPlus m0 => (forall d. Data d => d -> m0 d) -> WrappedMonad m a -> m0 (WrappedMonad m a) # | |
Data t => Data (Proxy t) | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Proxy t -> c (Proxy t) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Proxy t) # toConstr :: Proxy t -> Constr # dataTypeOf :: Proxy t -> DataType # dataCast1 :: Typeable t0 => (forall d. Data d => c (t0 d)) -> Maybe (c (Proxy t)) # dataCast2 :: Typeable t0 => (forall d e. (Data d, Data e) => c (t0 d e)) -> Maybe (c (Proxy t)) # gmapT :: (forall b. Data b => b -> b) -> Proxy t -> Proxy t # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Proxy t -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Proxy t -> r # gmapQ :: (forall d. Data d => d -> u) -> Proxy t -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Proxy t -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) # | |
(Typeable s, Typeable a) => Data (SmallMutableArray s a) | |
Defined in Data.Primitive.SmallArray Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SmallMutableArray s a -> c (SmallMutableArray s a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (SmallMutableArray s a) # toConstr :: SmallMutableArray s a -> Constr # dataTypeOf :: SmallMutableArray s a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (SmallMutableArray s a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (SmallMutableArray s a)) # gmapT :: (forall b. Data b => b -> b) -> SmallMutableArray s a -> SmallMutableArray s a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SmallMutableArray s a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SmallMutableArray s a -> r # gmapQ :: (forall d. Data d => d -> u) -> SmallMutableArray s a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SmallMutableArray s a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SmallMutableArray s a -> m (SmallMutableArray s a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SmallMutableArray s a -> m (SmallMutableArray s a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SmallMutableArray s a -> m (SmallMutableArray s a) # | |
(Typeable s, Typeable a) => Data (MutableArray s a) | |
Defined in Data.Primitive.Array Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> MutableArray s a -> c (MutableArray s a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (MutableArray s a) # toConstr :: MutableArray s a -> Constr # dataTypeOf :: MutableArray s a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (MutableArray s a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (MutableArray s a)) # gmapT :: (forall b. Data b => b -> b) -> MutableArray s a -> MutableArray s a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> MutableArray s a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> MutableArray s a -> r # gmapQ :: (forall d. Data d => d -> u) -> MutableArray s a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> MutableArray s a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> MutableArray s a -> m (MutableArray s a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> MutableArray s a -> m (MutableArray s a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> MutableArray s a -> m (MutableArray s a) # | |
(Data a, Data b) => Data (Pair a b) | |
Defined in Data.Strict.Tuple Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Pair a b -> c (Pair a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Pair a b) # toConstr :: Pair a b -> Constr # dataTypeOf :: Pair a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Pair a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Pair a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Pair a b -> Pair a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Pair a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Pair a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Pair a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Pair a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Pair a b -> m (Pair a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Pair a b -> m (Pair a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Pair a b -> m (Pair a b) # | |
(Data a, Data b) => Data (These a b) | |
Defined in Data.Strict.These Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> These a b -> c (These a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (These a b) # toConstr :: These a b -> Constr # dataTypeOf :: These a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (These a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (These a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> These a b -> These a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> These a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> These a b -> r # gmapQ :: (forall d. Data d => d -> u) -> These a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> These a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> These a b -> m (These a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> These a b -> m (These a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> These a b -> m (These a b) # | |
(Data a, Data b) => Data (Either a b) | |
Defined in Data.Strict.Either Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Either a b -> c (Either a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Either a b) # toConstr :: Either a b -> Constr # dataTypeOf :: Either a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Either a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Either a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Either a b -> Either a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Either a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Either a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # | |
(Data a, Data b) => Data (These a b) | |
Defined in Data.These Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> These a b -> c (These a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (These a b) # toConstr :: These a b -> Constr # dataTypeOf :: These a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (These a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (These a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> These a b -> These a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> These a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> These a b -> r # gmapQ :: (forall d. Data d => d -> u) -> These a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> These a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> These a b -> m (These a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> These a b -> m (These a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> These a b -> m (These a b) # | |
(Data (f p), Typeable f, Data p) => Data (Rec1 f p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Rec1 f p -> c (Rec1 f p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Rec1 f p) # toConstr :: Rec1 f p -> Constr # dataTypeOf :: Rec1 f p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Rec1 f p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Rec1 f p)) # gmapT :: (forall b. Data b => b -> b) -> Rec1 f p -> Rec1 f p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Rec1 f p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Rec1 f p -> r # gmapQ :: (forall d. Data d => d -> u) -> Rec1 f p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Rec1 f p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Rec1 f p -> m (Rec1 f p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Rec1 f p -> m (Rec1 f p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Rec1 f p -> m (Rec1 f p) # | |
(Data a, Data b, Data c) => Data (a, b, c) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c0 (d -> b0) -> d -> c0 b0) -> (forall g. g -> c0 g) -> (a, b, c) -> c0 (a, b, c) # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c) # toConstr :: (a, b, c) -> Constr # dataTypeOf :: (a, b, c) -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (a, b, c)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (a, b, c)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c) -> (a, b, c) # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a, b, c) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a, b, c) -> r # gmapQ :: (forall d. Data d => d -> u) -> (a, b, c) -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (a, b, c) -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a, b, c) -> m (a, b, c) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a, b, c) -> m (a, b, c) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a, b, c) -> m (a, b, c) # | |
(Typeable a, Typeable b, Typeable c, Data (a b c)) => Data (WrappedArrow a b c) | Since: base-4.14.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c0 (d -> b0) -> d -> c0 b0) -> (forall g. g -> c0 g) -> WrappedArrow a b c -> c0 (WrappedArrow a b c) # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (WrappedArrow a b c) # toConstr :: WrappedArrow a b c -> Constr # dataTypeOf :: WrappedArrow a b c -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (WrappedArrow a b c)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (WrappedArrow a b c)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> WrappedArrow a b c -> WrappedArrow a b c # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WrappedArrow a b c -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WrappedArrow a b c -> r # gmapQ :: (forall d. Data d => d -> u) -> WrappedArrow a b c -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> WrappedArrow a b c -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> WrappedArrow a b c -> m (WrappedArrow a b c) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> WrappedArrow a b c -> m (WrappedArrow a b c) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> WrappedArrow a b c -> m (WrappedArrow a b c) # | |
(Typeable k, Data a, Typeable b) => Data (Const a b) | Since: base-4.10.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Const a b -> c (Const a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Const a b) # toConstr :: Const a b -> Constr # dataTypeOf :: Const a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Const a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Const a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Const a b -> Const a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Const a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Const a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # | |
(Data (f a), Data a, Typeable f) => Data (Ap f a) | Since: base-4.12.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ap f a -> c (Ap f a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ap f a) # toConstr :: Ap f a -> Constr # dataTypeOf :: Ap f a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Ap f a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ap f a)) # gmapT :: (forall b. Data b => b -> b) -> Ap f a -> Ap f a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ap f a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ap f a -> r # gmapQ :: (forall d. Data d => d -> u) -> Ap f a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ap f a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ap f a -> m (Ap f a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ap f a -> m (Ap f a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ap f a -> m (Ap f a) # | |
(Data (f a), Data a, Typeable f) => Data (Alt f a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Alt f a -> c (Alt f a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Alt f a) # toConstr :: Alt f a -> Constr # dataTypeOf :: Alt f a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Alt f a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Alt f a)) # gmapT :: (forall b. Data b => b -> b) -> Alt f a -> Alt f a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Alt f a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Alt f a -> r # gmapQ :: (forall d. Data d => d -> u) -> Alt f a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Alt f a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Alt f a -> m (Alt f a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Alt f a -> m (Alt f a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Alt f a -> m (Alt f a) # | |
(Coercible a b, Data a, Data b) => Data (Coercion a b) | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Coercion a b -> c (Coercion a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Coercion a b) # toConstr :: Coercion a b -> Constr # dataTypeOf :: Coercion a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Coercion a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Coercion a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Coercion a b -> Coercion a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Coercion a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Coercion a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Coercion a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Coercion a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Coercion a b -> m (Coercion a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Coercion a b -> m (Coercion a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Coercion a b -> m (Coercion a b) # | |
(a ~ b, Data a) => Data (a :~: b) | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> (a :~: b) -> c (a :~: b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a :~: b) # toConstr :: (a :~: b) -> Constr # dataTypeOf :: (a :~: b) -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (a :~: b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (a :~: b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a :~: b) -> a :~: b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a :~: b) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a :~: b) -> r # gmapQ :: (forall d. Data d => d -> u) -> (a :~: b) -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (a :~: b) -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) # | |
(Data s, Data b) => Data (Tagged s b) | |
Defined in Data.Tagged Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Tagged s b -> c (Tagged s b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Tagged s b) # toConstr :: Tagged s b -> Constr # dataTypeOf :: Tagged s b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Tagged s b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Tagged s b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Tagged s b -> Tagged s b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Tagged s b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Tagged s b -> r # gmapQ :: (forall d. Data d => d -> u) -> Tagged s b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Tagged s b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Tagged s b -> m (Tagged s b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Tagged s b -> m (Tagged s b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Tagged s b -> m (Tagged s b) # | |
(Typeable f, Typeable g, Typeable a, Data (f a), Data (g a)) => Data (These1 f g a) | |
Defined in Data.Functor.These Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> These1 f g a -> c (These1 f g a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (These1 f g a) # toConstr :: These1 f g a -> Constr # dataTypeOf :: These1 f g a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (These1 f g a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (These1 f g a)) # gmapT :: (forall b. Data b => b -> b) -> These1 f g a -> These1 f g a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> These1 f g a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> These1 f g a -> r # gmapQ :: (forall d. Data d => d -> u) -> These1 f g a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> These1 f g a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> These1 f g a -> m (These1 f g a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> These1 f g a -> m (These1 f g a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> These1 f g a -> m (These1 f g a) # | |
(Typeable i, Data p, Data c) => Data (K1 i c p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c0 (d -> b) -> d -> c0 b) -> (forall g. g -> c0 g) -> K1 i c p -> c0 (K1 i c p) # gunfold :: (forall b r. Data b => c0 (b -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (K1 i c p) # toConstr :: K1 i c p -> Constr # dataTypeOf :: K1 i c p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (K1 i c p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (K1 i c p)) # gmapT :: (forall b. Data b => b -> b) -> K1 i c p -> K1 i c p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> K1 i c p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> K1 i c p -> r # gmapQ :: (forall d. Data d => d -> u) -> K1 i c p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> K1 i c p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> K1 i c p -> m (K1 i c p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> K1 i c p -> m (K1 i c p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> K1 i c p -> m (K1 i c p) # | |
(Typeable f, Typeable g, Data p, Data (f p), Data (g p)) => Data ((f :+: g) p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (f :+: g) p -> c ((f :+: g) p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :+: g) p) # toConstr :: (f :+: g) p -> Constr # dataTypeOf :: (f :+: g) p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ((f :+: g) p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :+: g) p)) # gmapT :: (forall b. Data b => b -> b) -> (f :+: g) p -> (f :+: g) p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :+: g) p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :+: g) p -> r # gmapQ :: (forall d. Data d => d -> u) -> (f :+: g) p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :+: g) p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) # | |
(Typeable f, Typeable g, Data p, Data (f p), Data (g p)) => Data ((f :*: g) p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (f :*: g) p -> c ((f :*: g) p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :*: g) p) # toConstr :: (f :*: g) p -> Constr # dataTypeOf :: (f :*: g) p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ((f :*: g) p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :*: g) p)) # gmapT :: (forall b. Data b => b -> b) -> (f :*: g) p -> (f :*: g) p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :*: g) p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :*: g) p -> r # gmapQ :: (forall d. Data d => d -> u) -> (f :*: g) p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :*: g) p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) # | |
(Data a, Data b, Data c, Data d) => Data (a, b, c, d) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d0 b0. Data d0 => c0 (d0 -> b0) -> d0 -> c0 b0) -> (forall g. g -> c0 g) -> (a, b, c, d) -> c0 (a, b, c, d) # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c, d) # toConstr :: (a, b, c, d) -> Constr # dataTypeOf :: (a, b, c, d) -> DataType # dataCast1 :: Typeable t => (forall d0. Data d0 => c0 (t d0)) -> Maybe (c0 (a, b, c, d)) # dataCast2 :: Typeable t => (forall d0 e. (Data d0, Data e) => c0 (t d0 e)) -> Maybe (c0 (a, b, c, d)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c, d) -> (a, b, c, d) # gmapQl :: (r -> r' -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d) -> r # gmapQ :: (forall d0. Data d0 => d0 -> u) -> (a, b, c, d) -> [u] # gmapQi :: Int -> (forall d0. Data d0 => d0 -> u) -> (a, b, c, d) -> u # gmapM :: Monad m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d) -> m (a, b, c, d) # gmapMp :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d) -> m (a, b, c, d) # gmapMo :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d) -> m (a, b, c, d) # | |
(Typeable a, Typeable f, Typeable g, Typeable k, Data (f a), Data (g a)) => Data (Product f g a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> Product f g a -> c (Product f g a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Product f g a) # toConstr :: Product f g a -> Constr # dataTypeOf :: Product f g a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Product f g a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Product f g a)) # gmapT :: (forall b. Data b => b -> b) -> Product f g a -> Product f g a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Product f g a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Product f g a -> r # gmapQ :: (forall d. Data d => d -> u) -> Product f g a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Product f g a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Product f g a -> m (Product f g a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Product f g a -> m (Product f g a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Product f g a -> m (Product f g a) # | |
(Typeable a, Typeable f, Typeable g, Typeable k, Data (f a), Data (g a)) => Data (Sum f g a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Sum Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> Sum f g a -> c (Sum f g a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Sum f g a) # toConstr :: Sum f g a -> Constr # dataTypeOf :: Sum f g a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Sum f g a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Sum f g a)) # gmapT :: (forall b. Data b => b -> b) -> Sum f g a -> Sum f g a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Sum f g a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Sum f g a -> r # gmapQ :: (forall d. Data d => d -> u) -> Sum f g a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Sum f g a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Sum f g a -> m (Sum f g a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum f g a -> m (Sum f g a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum f g a -> m (Sum f g a) # | |
(Typeable i, Typeable j, Typeable a, Typeable b, a ~~ b) => Data (a :~~: b) | Since: base-4.10.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> (a :~~: b) -> c (a :~~: b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a :~~: b) # toConstr :: (a :~~: b) -> Constr # dataTypeOf :: (a :~~: b) -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (a :~~: b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (a :~~: b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a :~~: b) -> a :~~: b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a :~~: b) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a :~~: b) -> r # gmapQ :: (forall d. Data d => d -> u) -> (a :~~: b) -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (a :~~: b) -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a :~~: b) -> m (a :~~: b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~~: b) -> m (a :~~: b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~~: b) -> m (a :~~: b) # | |
(Data p, Data (f p), Typeable c, Typeable i, Typeable f) => Data (M1 i c f p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c0 (d -> b) -> d -> c0 b) -> (forall g. g -> c0 g) -> M1 i c f p -> c0 (M1 i c f p) # gunfold :: (forall b r. Data b => c0 (b -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (M1 i c f p) # toConstr :: M1 i c f p -> Constr # dataTypeOf :: M1 i c f p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (M1 i c f p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (M1 i c f p)) # gmapT :: (forall b. Data b => b -> b) -> M1 i c f p -> M1 i c f p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> M1 i c f p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> M1 i c f p -> r # gmapQ :: (forall d. Data d => d -> u) -> M1 i c f p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> M1 i c f p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> M1 i c f p -> m (M1 i c f p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> M1 i c f p -> m (M1 i c f p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> M1 i c f p -> m (M1 i c f p) # | |
(Typeable f, Typeable g, Data p, Data (f (g p))) => Data ((f :.: g) p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (f :.: g) p -> c ((f :.: g) p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :.: g) p) # toConstr :: (f :.: g) p -> Constr # dataTypeOf :: (f :.: g) p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ((f :.: g) p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :.: g) p)) # gmapT :: (forall b. Data b => b -> b) -> (f :.: g) p -> (f :.: g) p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :.: g) p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :.: g) p -> r # gmapQ :: (forall d. Data d => d -> u) -> (f :.: g) p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :.: g) p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :.: g) p -> m ((f :.: g) p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :.: g) p -> m ((f :.: g) p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :.: g) p -> m ((f :.: g) p) # | |
(Data a, Data b, Data c, Data d, Data e) => Data (a, b, c, d, e) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d0 b0. Data d0 => c0 (d0 -> b0) -> d0 -> c0 b0) -> (forall g. g -> c0 g) -> (a, b, c, d, e) -> c0 (a, b, c, d, e) # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c, d, e) # toConstr :: (a, b, c, d, e) -> Constr # dataTypeOf :: (a, b, c, d, e) -> DataType # dataCast1 :: Typeable t => (forall d0. Data d0 => c0 (t d0)) -> Maybe (c0 (a, b, c, d, e)) # dataCast2 :: Typeable t => (forall d0 e0. (Data d0, Data e0) => c0 (t d0 e0)) -> Maybe (c0 (a, b, c, d, e)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c, d, e) -> (a, b, c, d, e) # gmapQl :: (r -> r' -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e) -> r # gmapQ :: (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e) -> [u] # gmapQi :: Int -> (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e) -> u # gmapM :: Monad m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e) -> m (a, b, c, d, e) # gmapMp :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e) -> m (a, b, c, d, e) # gmapMo :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e) -> m (a, b, c, d, e) # | |
(Typeable a, Typeable f, Typeable g, Typeable k1, Typeable k2, Data (f (g a))) => Data (Compose f g a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> Compose f g a -> c (Compose f g a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Compose f g a) # toConstr :: Compose f g a -> Constr # dataTypeOf :: Compose f g a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Compose f g a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Compose f g a)) # gmapT :: (forall b. Data b => b -> b) -> Compose f g a -> Compose f g a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Compose f g a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Compose f g a -> r # gmapQ :: (forall d. Data d => d -> u) -> Compose f g a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Compose f g a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Compose f g a -> m (Compose f g a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Compose f g a -> m (Compose f g a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Compose f g a -> m (Compose f g a) # | |
(Data a, Data b, Data c, Data d, Data e, Data f) => Data (a, b, c, d, e, f) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d0 b0. Data d0 => c0 (d0 -> b0) -> d0 -> c0 b0) -> (forall g. g -> c0 g) -> (a, b, c, d, e, f) -> c0 (a, b, c, d, e, f) # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c, d, e, f) # toConstr :: (a, b, c, d, e, f) -> Constr # dataTypeOf :: (a, b, c, d, e, f) -> DataType # dataCast1 :: Typeable t => (forall d0. Data d0 => c0 (t d0)) -> Maybe (c0 (a, b, c, d, e, f)) # dataCast2 :: Typeable t => (forall d0 e0. (Data d0, Data e0) => c0 (t d0 e0)) -> Maybe (c0 (a, b, c, d, e, f)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) # gmapQl :: (r -> r' -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e, f) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e, f) -> r # gmapQ :: (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e, f) -> [u] # gmapQi :: Int -> (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e, f) -> u # gmapM :: Monad m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f) -> m (a, b, c, d, e, f) # gmapMp :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f) -> m (a, b, c, d, e, f) # gmapMo :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f) -> m (a, b, c, d, e, f) # | |
(Data a, Data b, Data c, Data d, Data e, Data f, Data g) => Data (a, b, c, d, e, f, g) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d0 b0. Data d0 => c0 (d0 -> b0) -> d0 -> c0 b0) -> (forall g0. g0 -> c0 g0) -> (a, b, c, d, e, f, g) -> c0 (a, b, c, d, e, f, g) # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c, d, e, f, g) # toConstr :: (a, b, c, d, e, f, g) -> Constr # dataTypeOf :: (a, b, c, d, e, f, g) -> DataType # dataCast1 :: Typeable t => (forall d0. Data d0 => c0 (t d0)) -> Maybe (c0 (a, b, c, d, e, f, g)) # dataCast2 :: Typeable t => (forall d0 e0. (Data d0, Data e0) => c0 (t d0 e0)) -> Maybe (c0 (a, b, c, d, e, f, g)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) # gmapQl :: (r -> r' -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e, f, g) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e, f, g) -> r # gmapQ :: (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e, f, g) -> [u] # gmapQi :: Int -> (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e, f, g) -> u # gmapM :: Monad m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f, g) -> m (a, b, c, d, e, f, g) # gmapMp :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f, g) -> m (a, b, c, d, e, f, g) # gmapMo :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f, g) -> m (a, b, c, d, e, f, g) # |
The class Typeable
allows a concrete representation of a type to
be calculated.
Minimal complete definition
typeRep#
module Data.Either
module Data.List.Compat
module Data.Maybe
class Semigroup a => Monoid a where #
The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following:
- Right identity
x
<>
mempty
= x- Left identity
mempty
<>
x = x- Associativity
x
(<>
(y<>
z) = (x<>
y)<>
zSemigroup
law)- Concatenation
mconcat
=foldr
(<>
)mempty
The method names refer to the monoid of lists under concatenation, but there are many other instances.
Some types can be viewed as a monoid in more than one way,
e.g. both addition and multiplication on numbers.
In such cases we often define newtype
s and make those instances
of Monoid
, e.g. Sum
and Product
.
NOTE: Semigroup
is a superclass of Monoid
since base-4.11.0.0.
Minimal complete definition
Methods
Identity of mappend
>>>
"Hello world" <> mempty
"Hello world"
An associative operation
NOTE: This method is redundant and has the default
implementation
since base-4.11.0.0.
Should it be implemented manually, since mappend
= (<>
)mappend
is a synonym for
(<>
), it is expected that the two functions are defined the same
way. In a future GHC release mappend
will be removed from Monoid
.
Fold a list using the monoid.
For most types, the default definition for mconcat
will be
used, but the function is included in the class definition so
that an optimized version can be provided for specific types.
>>>
mconcat ["Hello", " ", "Haskell", "!"]
"Hello Haskell!"
Instances
Monoid Ordering | Since: base-2.1 |
Monoid () | Since: base-2.1 |
Monoid ByteString | |
Defined in Data.ByteString.Internal Methods mempty :: ByteString # mappend :: ByteString -> ByteString -> ByteString # mconcat :: [ByteString] -> ByteString # | |
Monoid ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods mempty :: ByteString # mappend :: ByteString -> ByteString -> ByteString # mconcat :: [ByteString] -> ByteString # | |
Monoid Builder | |
Monoid Builder | |
Monoid Series | |
Monoid More | |
Monoid All | Since: base-2.1 |
Monoid Any | Since: base-2.1 |
Monoid IntSet | |
Monoid Doc | |
Monoid ByteArray | |
Monoid Printer Source # | |
Monoid PrintWriter Source # | Output concatenation |
Defined in Fay.Types.Printer Methods mempty :: PrintWriter # mappend :: PrintWriter -> PrintWriter -> PrintWriter # mconcat :: [PrintWriter] -> PrintWriter # | |
Monoid CompileWriter Source # | Simple concatenating instance. |
Defined in Fay.Types Methods mempty :: CompileWriter # mappend :: CompileWriter -> CompileWriter -> CompileWriter # mconcat :: [CompileWriter] -> CompileWriter # | |
Monoid [a] | Since: base-2.1 |
Semigroup a => Monoid (Maybe a) | Lift a semigroup into Since 4.11.0: constraint on inner Since: base-2.1 |
Monoid a => Monoid (IO a) | Since: base-4.9.0.0 |
Monoid p => Monoid (Par1 p) | Since: base-4.12.0.0 |
Monoid (IResult a) | |
Monoid (Result a) | |
Monoid (Parser a) | |
(Ord a, Bounded a) => Monoid (Min a) | Since: base-4.9.0.0 |
(Ord a, Bounded a) => Monoid (Max a) | Since: base-4.9.0.0 |
Monoid m => Monoid (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods mempty :: WrappedMonoid m # mappend :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # mconcat :: [WrappedMonoid m] -> WrappedMonoid m # | |
Semigroup a => Monoid (Option a) | Since: base-4.9.0.0 |
Monoid a => Monoid (Identity a) | Since: base-4.9.0.0 |
Monoid (First a) | Since: base-2.1 |
Monoid (Last a) | Since: base-2.1 |
Monoid a => Monoid (Dual a) | Since: base-2.1 |
Monoid (Endo a) | Since: base-2.1 |
Num a => Monoid (Sum a) | Since: base-2.1 |
Num a => Monoid (Product a) | Since: base-2.1 |
Monoid a => Monoid (Down a) | Since: base-4.11.0.0 |
Monoid (IntMap a) | |
Monoid (Seq a) | |
Ord a => Monoid (Set a) | |
Monoid (DList a) | |
(Monoid m, Semigroup m) => Monoid (ParseResult m) | |
Defined in Language.Haskell.Exts.ParseMonad Methods mempty :: ParseResult m # mappend :: ParseResult m -> ParseResult m -> ParseResult m # mconcat :: [ParseResult m] -> ParseResult m # | |
Monoid (Doc a) | |
Monoid (PrimArray a) | Since: primitive-0.6.4.0 |
Monoid (SmallArray a) | |
Defined in Data.Primitive.SmallArray Methods mempty :: SmallArray a # mappend :: SmallArray a -> SmallArray a -> SmallArray a # mconcat :: [SmallArray a] -> SmallArray a # | |
Monoid (Array a) | |
Semigroup a => Monoid (Maybe a) | |
(Hashable a, Eq a) => Monoid (HashSet a) | O(n+m) To obtain good performance, the smaller set must be presented as the first argument. Examples
|
Storable a => Monoid (Vector a) | |
Prim a => Monoid (Vector a) | |
Monoid (Vector a) | |
Monoid (MergeSet a) | |
Monoid b => Monoid (a -> b) | Since: base-2.1 |
Monoid (U1 p) | Since: base-4.12.0.0 |
(Monoid a, Monoid b) => Monoid (a, b) | Since: base-2.1 |
Monoid a => Monoid (ST s a) | Since: base-4.11.0.0 |
(Eq k, Hashable k) => Monoid (HashMap k v) | If a key occurs in both maps, the mapping from the first will be the mapping in the result. Examples
|
Ord k => Monoid (Map k v) | |
Monoid (Parser i a) | |
Monoid (Proxy s) | Since: base-4.7.0.0 |
(Monoid a, Monoid b) => Monoid (Pair a b) | |
Monoid (f p) => Monoid (Rec1 f p) | Since: base-4.12.0.0 |
(Monoid a, Monoid b, Monoid c) => Monoid (a, b, c) | Since: base-2.1 |
Monoid a => Monoid (Const a b) | Since: base-4.9.0.0 |
(Applicative f, Monoid a) => Monoid (Ap f a) | Since: base-4.12.0.0 |
Alternative f => Monoid (Alt f a) | Since: base-4.8.0.0 |
(Semigroup a, Monoid a) => Monoid (Tagged s a) | |
Monoid c => Monoid (K1 i c p) | Since: base-4.12.0.0 |
(Monoid (f p), Monoid (g p)) => Monoid ((f :*: g) p) | Since: base-4.12.0.0 |
(Monoid a, Monoid b, Monoid c, Monoid d) => Monoid (a, b, c, d) | Since: base-2.1 |
(Monoid a, Semigroup (ParsecT s u m a)) => Monoid (ParsecT s u m a) | The Since: parsec-3.1.12 |
Monoid (f p) => Monoid (M1 i c f p) | Since: base-4.12.0.0 |
Monoid (f (g p)) => Monoid ((f :.: g) p) | Since: base-4.12.0.0 |
(Monoid a, Monoid b, Monoid c, Monoid d, Monoid e) => Monoid (a, b, c, d, e) | Since: base-2.1 |
module Data.Ord
module Data.Traversable
Safe
module Safe