Copyright | (c) Masahiro Sakai 2012-2013 |
---|---|
License | BSD-style |
Maintainer | masahiro.sakai@gmail.com |
Stability | provisional |
Portability | non-portable |
Safe Haskell | Safe-Inferred |
Language | Haskell2010 |
Extensions |
|
ToySolver.Data.Polynomial.GroebnerBasis
Contents
Description
Gröbner basis
References:
- Monomial order http://en.wikipedia.org/wiki/Monomial_order
- Gröbner basis http://en.wikipedia.org/wiki/Gr%C3%B6bner_basis
- グレブナー基底 http://d.hatena.ne.jp/keyword/%A5%B0%A5%EC%A5%D6%A5%CA%A1%BC%B4%F0%C4%EC
- Gröbner Bases and Buchberger’s Algorithm http://math.rice.edu/~cbruun/vigre/vigreHW6.pdf
- Docon http://www.haskell.org/docon/
Synopsis
- data Options = Options {}
- data Strategy
- basis :: forall k v. (Eq k, Fractional k, Ord k, Ord v) => MonomialOrder v -> [Polynomial k v] -> [Polynomial k v]
- basis' :: forall k v. (Eq k, Fractional k, Ord k, Ord v) => Options -> MonomialOrder v -> [Polynomial k v] -> [Polynomial k v]
- spolynomial :: (Eq k, Fractional k, Ord v) => MonomialOrder v -> Polynomial k v -> Polynomial k v -> Polynomial k v
- reduceGBasis :: forall k v. (Eq k, Ord k, Fractional k, Ord v) => MonomialOrder v -> [Polynomial k v] -> [Polynomial k v]
Options
Options for Gröbner Basis computation.
The default option can be obtained by def
.
Constructors
Options | |
Fields |
Constructors
NormalStrategy | |
SugarStrategy | sugar strategy (not implemented yet) |
Instances
Gröbner basis computation
basis :: forall k v. (Eq k, Fractional k, Ord k, Ord v) => MonomialOrder v -> [Polynomial k v] -> [Polynomial k v] Source #
basis' :: forall k v. (Eq k, Fractional k, Ord k, Ord v) => Options -> MonomialOrder v -> [Polynomial k v] -> [Polynomial k v] Source #
spolynomial :: (Eq k, Fractional k, Ord v) => MonomialOrder v -> Polynomial k v -> Polynomial k v -> Polynomial k v Source #
reduceGBasis :: forall k v. (Eq k, Ord k, Fractional k, Ord v) => MonomialOrder v -> [Polynomial k v] -> [Polynomial k v] Source #