Copyright | (c) 2015-2016 Brendan Hay <brendan.g.hay@gmail.com> |
---|---|
License | Mozilla Public License, v. 2.0. |
Maintainer | Brendan Hay <brendan.g.hay@gmail.com> |
Stability | provisional |
Portability | non-portable (GHC extensions) |
Safe Haskell | None |
Language | Haskell2010 |
Network.Google.Prelude
Description
Synopsis
- (++) :: [a] -> [a] -> [a]
- seq :: a -> b -> b
- filter :: (a -> Bool) -> [a] -> [a]
- zip :: [a] -> [b] -> [(a, b)]
- print :: Show a => a -> IO ()
- fst :: (a, b) -> a
- snd :: (a, b) -> b
- otherwise :: Bool
- map :: (a -> b) -> [a] -> [b]
- ($) :: (a -> b) -> a -> b
- fromIntegral :: (Integral a, Num b) => a -> b
- realToFrac :: (Real a, Fractional b) => a -> b
- class Bounded a where
- class Enum a where
- succ :: a -> a
- pred :: a -> a
- toEnum :: Int -> a
- fromEnum :: a -> Int
- enumFrom :: a -> [a]
- enumFromThen :: a -> a -> [a]
- enumFromTo :: a -> a -> [a]
- enumFromThenTo :: a -> a -> a -> [a]
- class Eq a where
- class Fractional a => Floating a where
- class Num a => Fractional a where
- (/) :: a -> a -> a
- recip :: a -> a
- fromRational :: Rational -> a
- class (Real a, Enum a) => Integral a where
- class Applicative m => Monad (m :: Type -> Type) where
- class Typeable a => Data a
- class Functor (f :: Type -> Type) where
- class Num a where
- class Eq a => Ord a where
- class Read a where
- class (Num a, Ord a) => Real a where
- toRational :: a -> Rational
- class (RealFrac a, Floating a) => RealFloat a where
- floatRadix :: a -> Integer
- floatDigits :: a -> Int
- floatRange :: a -> (Int, Int)
- decodeFloat :: a -> (Integer, Int)
- encodeFloat :: Integer -> Int -> a
- exponent :: a -> Int
- significand :: a -> a
- scaleFloat :: Int -> a -> a
- isNaN :: a -> Bool
- isInfinite :: a -> Bool
- isDenormalized :: a -> Bool
- isNegativeZero :: a -> Bool
- isIEEE :: a -> Bool
- atan2 :: a -> a -> a
- class (Real a, Fractional a) => RealFrac a where
- class Show a where
- class Typeable (a :: k)
- class Functor f => Applicative (f :: Type -> Type) where
- class Foldable (t :: Type -> Type) where
- foldMap :: Monoid m => (a -> m) -> t a -> m
- foldr :: (a -> b -> b) -> b -> t a -> b
- foldl :: (b -> a -> b) -> b -> t a -> b
- foldr1 :: (a -> a -> a) -> t a -> a
- foldl1 :: (a -> a -> a) -> t a -> a
- null :: t a -> Bool
- length :: t a -> Int
- elem :: Eq a => a -> t a -> Bool
- maximum :: Ord a => t a -> a
- minimum :: Ord a => t a -> a
- sum :: Num a => t a -> a
- class (Functor t, Foldable t) => Traversable (t :: Type -> Type) where
- traverse :: Applicative f => (a -> f b) -> t a -> f (t b)
- sequenceA :: Applicative f => t (f a) -> f (t a)
- mapM :: Monad m => (a -> m b) -> t a -> m (t b)
- sequence :: Monad m => t (m a) -> m (t a)
- class Generic a
- class Semigroup a where
- (<>) :: a -> a -> a
- class Semigroup a => Monoid a where
- data Bool
- data Char
- data Double
- data Float
- data Int
- data Int32
- data Int64
- data Integer
- data Natural
- data Maybe a
- data Ordering
- type Rational = Ratio Integer
- data IO a
- data Word8
- data Word32
- data Word64
- data Either a b
- type String = [Char]
- id :: a -> a
- either :: (a -> c) -> (b -> c) -> Either a b -> c
- data ByteString
- data Scientific
- (<$>) :: Functor f => (a -> b) -> f a -> f b
- class Hashable a where
- hashWithSalt :: Int -> a -> Int
- data Text
- data UTCTime
- data HashMap k v
- class ToJSON a where
- toJSON :: a -> Value
- toEncoding :: a -> Encoding
- toJSONList :: [a] -> Value
- toEncodingList :: [a] -> Encoding
- (.=) :: (KeyValue kv, ToJSON v) => Text -> v -> kv
- (.!=) :: Parser (Maybe a) -> a -> Parser a
- (.:?) :: FromJSON a => Object -> Text -> Parser (Maybe a)
- (.:) :: FromJSON a => Object -> Text -> Parser a
- withObject :: String -> (Object -> Parser a) -> Value -> Parser a
- class FromJSON a where
- object :: [Pair] -> Value
- emptyObject :: Value
- read :: Read a => String -> a
- readIO :: Read a => String -> IO a
- readLn :: Read a => IO a
- appendFile :: FilePath -> String -> IO ()
- writeFile :: FilePath -> String -> IO ()
- readFile :: FilePath -> IO String
- interact :: (String -> String) -> IO ()
- getContents :: IO String
- getLine :: IO String
- getChar :: IO Char
- putStrLn :: String -> IO ()
- putStr :: String -> IO ()
- putChar :: Char -> IO ()
- ioError :: IOError -> IO a
- type FilePath = String
- userError :: String -> IOError
- type IOError = IOException
- notElem :: (Foldable t, Eq a) => a -> t a -> Bool
- all :: Foldable t => (a -> Bool) -> t a -> Bool
- or :: Foldable t => t Bool -> Bool
- and :: Foldable t => t Bool -> Bool
- concatMap :: Foldable t => (a -> [b]) -> t a -> [b]
- concat :: Foldable t => t [a] -> [a]
- sequence_ :: (Foldable t, Monad m) => t (m a) -> m ()
- mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m ()
- unwords :: [String] -> String
- words :: String -> [String]
- unlines :: [String] -> String
- lines :: String -> [String]
- reads :: Read a => ReadS a
- asProxyTypeOf :: a -> proxy a -> a
- data Proxy (t :: k) :: forall k. k -> Type = Proxy
- data KProxy t = KProxy
- lex :: ReadS String
- readParen :: Bool -> ReadS a -> ReadS a
- type ReadS a = String -> [(a, String)]
- type family If (cond :: Bool) (tru :: k) (fls :: k) :: k where ...
- lcm :: Integral a => a -> a -> a
- gcd :: Integral a => a -> a -> a
- (^^) :: (Fractional a, Integral b) => a -> b -> a
- (^) :: (Num a, Integral b) => a -> b -> a
- odd :: Integral a => a -> Bool
- even :: Integral a => a -> Bool
- showParen :: Bool -> ShowS -> ShowS
- showString :: String -> ShowS
- showChar :: Char -> ShowS
- shows :: Show a => a -> ShowS
- type ShowS = String -> String
- unzip3 :: [(a, b, c)] -> ([a], [b], [c])
- unzip :: [(a, b)] -> ([a], [b])
- zipWith3 :: (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d]
- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
- zip3 :: [a] -> [b] -> [c] -> [(a, b, c)]
- (!!) :: [a] -> Int -> a
- lookup :: Eq a => a -> [(a, b)] -> Maybe b
- reverse :: [a] -> [a]
- break :: (a -> Bool) -> [a] -> ([a], [a])
- splitAt :: Int -> [a] -> ([a], [a])
- drop :: Int -> [a] -> [a]
- take :: Int -> [a] -> [a]
- dropWhile :: (a -> Bool) -> [a] -> [a]
- takeWhile :: (a -> Bool) -> [a] -> [a]
- cycle :: [a] -> [a]
- replicate :: Int -> a -> [a]
- repeat :: a -> [a]
- iterate :: (a -> a) -> a -> [a]
- scanr1 :: (a -> a -> a) -> [a] -> [a]
- scanr :: (a -> b -> b) -> b -> [a] -> [b]
- scanl1 :: (a -> a -> a) -> [a] -> [a]
- scanl :: (b -> a -> b) -> b -> [a] -> [b]
- init :: [a] -> [a]
- last :: [a] -> a
- tail :: [a] -> [a]
- head :: [a] -> a
- mapMaybe :: (a -> Maybe b) -> [a] -> [b]
- catMaybes :: [Maybe a] -> [a]
- listToMaybe :: [a] -> Maybe a
- maybeToList :: Maybe a -> [a]
- fromMaybe :: a -> Maybe a -> a
- fromJust :: Maybe a -> a
- isNothing :: Maybe a -> Bool
- isJust :: Maybe a -> Bool
- maybe :: b -> (a -> b) -> Maybe a -> b
- uncurry :: (a -> b -> c) -> (a, b) -> c
- curry :: ((a, b) -> c) -> a -> b -> c
- subtract :: Num a => a -> a -> a
- asTypeOf :: a -> a -> a
- until :: (a -> Bool) -> (a -> a) -> a -> a
- ($!) :: (a -> b) -> a -> b
- flip :: (a -> b -> c) -> b -> a -> c
- (.) :: (b -> c) -> (a -> b) -> a -> c
- const :: a -> b -> a
- (=<<) :: Monad m => (a -> m b) -> m a -> m b
- undefined :: HasCallStack => a
- errorWithoutStackTrace :: [Char] -> a
- error :: HasCallStack => [Char] -> a
- (&&) :: Bool -> Bool -> Bool
- (||) :: Bool -> Bool -> Bool
- not :: Bool -> Bool
- class ToHttpApiData a where
- toUrlPiece :: a -> Text
- toEncodedUrlPiece :: a -> Builder
- toHeader :: a -> ByteString
- toQueryParam :: a -> Text
- class FromHttpApiData a where
- parseUrlPiece :: Text -> Either Text a
- parseHeader :: ByteString -> Either Text a
- parseQueryParam :: Text -> Either Text a
- data URI = URI {}
- data RequestBody
- data HttpVersion = HttpVersion {}
- data StdMethod
- mapping :: (Functor f, Functor g) => AnIso s t a b -> Iso (f s) (g t) (f a) (g b)
- _Just :: Prism (Maybe a) (Maybe b) a b
- (#) :: AReview t b -> b -> t
- (^.) :: s -> Getting a s a -> a
- lens :: (s -> a) -> (s -> b -> t) -> Lens s t a b
- type Lens' s a = Lens s s a a
- allFieldLinks' :: (HasLink (ToServantApi routes), GenericServant routes (AsLink a), ToServant routes (AsLink a) ~ MkLink (ToServantApi routes) a) => (Link -> a) -> routes (AsLink a)
- allFieldLinks :: (HasLink (ToServantApi routes), GenericServant routes (AsLink Link), ToServant routes (AsLink Link) ~ MkLink (ToServantApi routes) Link) => routes (AsLink Link)
- fieldLink' :: (IsElem endpoint (ToServantApi routes), HasLink endpoint, GenericServant routes AsApi) => (Link -> a) -> (routes AsApi -> endpoint) -> MkLink endpoint a
- fieldLink :: (IsElem endpoint (ToServantApi routes), HasLink endpoint, GenericServant routes AsApi) => (routes AsApi -> endpoint) -> MkLink endpoint Link
- allLinks' :: HasLink api => (Link -> a) -> Proxy api -> MkLink api a
- allLinks :: HasLink api => Proxy api -> MkLink api Link
- safeLink' :: (IsElem endpoint api, HasLink endpoint) => (Link -> a) -> Proxy api -> Proxy endpoint -> MkLink endpoint a
- safeLink :: (IsElem endpoint api, HasLink endpoint) => Proxy api -> Proxy endpoint -> MkLink endpoint Link
- linkURI' :: LinkArrayElementStyle -> Link -> URI
- linkURI :: Link -> URI
- linkQueryParams :: Link -> [Param]
- linkSegments :: Link -> [String]
- data Param
- data LinkArrayElementStyle
- data AsLink a
- class HasLink (endpoint :: k) where
- type StreamGet = Stream GET 200
- type StreamPost = Stream POST 200
- type StreamBody = StreamBody' ([] :: [Type])
- data StreamBody' (mods :: [Type]) framing contentType a
- type SourceIO = SourceT IO
- class ToSourceIO chunk a | a -> chunk where
- toSourceIO :: a -> SourceIO chunk
- class FromSourceIO chunk a | a -> chunk where
- fromSourceIO :: SourceIO chunk -> a
- class FramingRender (strategy :: k) where
- framingRender :: Monad m => Proxy strategy -> (a -> ByteString) -> SourceT m a -> SourceT m ByteString
- class FramingUnrender (strategy :: k) where
- framingUnrender :: Monad m => Proxy strategy -> (ByteString -> Either String a) -> SourceT m ByteString -> SourceT m a
- data NoFraming
- data NewlineFraming
- data NetstringFraming
- data WithNamedContext (name :: Symbol) (subContext :: [Type]) subApi
- type family Endpoints api :: [Type] where ...
- type family IsElem' a s :: Constraint
- type family IsElem endpoint api :: Constraint where ...
- type family IsSubAPI sub api :: Constraint where ...
- type family AllIsElem (xs :: [Type]) api :: Constraint where ...
- type family IsIn endpoint api :: Constraint where ...
- type family IsStrictSubAPI sub api :: Constraint where ...
- type family AllIsIn (xs :: [Type]) api :: Constraint where ...
- type family MapSub (e :: k) (xs :: [Type]) :: [Type] where ...
- type family AppendList (xs :: [a]) (ys :: [a]) :: [a] where ...
- type family IsSubList (a :: [t]) (b :: [t]) :: Constraint where ...
- type Elem (e :: t) (es :: [t]) = ElemGo e es es
- type family ElemGo (e :: t) (es :: [t]) (orig :: t1) :: Constraint where ...
- type family Or a b :: Constraint where ...
- type family And a b :: Constraint where ...
- data Verb (method :: k1) (statusCode :: Nat) (contentTypes :: [Type]) a :: forall k1. k1 -> Nat -> [Type] -> Type -> Type
- type Get = Verb GET 200
- type Post = Verb POST 200
- type Put = Verb PUT 200
- type Delete = Verb DELETE 200
- type Patch = Verb PATCH 200
- type PostCreated = Verb POST 201
- type PutCreated = Verb PUT 201
- type GetAccepted = Verb GET 202
- type PostAccepted = Verb POST 202
- type DeleteAccepted = Verb DELETE 202
- type PatchAccepted = Verb PATCH 202
- type PutAccepted = Verb PUT 202
- type GetNonAuthoritative = Verb GET 203
- type PostNonAuthoritative = Verb POST 203
- type DeleteNonAuthoritative = Verb DELETE 203
- type PatchNonAuthoritative = Verb PATCH 203
- type PutNonAuthoritative = Verb PUT 203
- type GetNoContent = Verb GET 204
- type PostNoContent = Verb POST 204
- type DeleteNoContent = Verb DELETE 204
- type PatchNoContent = Verb PATCH 204
- type PutNoContent = Verb PUT 204
- type GetResetContent = Verb GET 205
- type PostResetContent = Verb POST 205
- type GetPartialContent = Verb GET 206
- class ReflectMethod (a :: k) where
- reflectMethod :: Proxy a -> Method
- data (path :: k) :> a :: forall k. k -> Type -> Type
- lookupResponseHeader :: HasResponseHeader h a headers => Headers headers r -> ResponseHeader h a
- noHeader :: AddHeader h v orig new => orig -> new
- addHeader :: AddHeader h v orig new => v -> orig -> new
- getHeadersHList :: Headers ls a -> HList ls
- pattern MissingHeader :: ResponseHeader sym a
- pattern UndecodableHeader :: ByteString -> ResponseHeader sym a
- data HList (a :: [Type]) where
- class BuildHeadersTo (hs :: [Type]) where
- buildHeadersTo :: [Header] -> HList hs
- class GetHeaders ls where
- getHeaders :: ls -> [Header]
- class AddHeader (h :: Symbol) v orig new | h v orig -> new, new -> h, new -> v, new -> orig
- class HasResponseHeader (h :: Symbol) a (headers :: [Type])
- type ReqBody = ReqBody' (Required ': (Strict ': ([] :: [Type])))
- data ReqBody' (mods :: [Type]) (contentTypes :: [Type]) a
- data RemoteHost
- data Raw
- type QueryParam = QueryParam' (Optional ': (Strict ': ([] :: [Type])))
- data QueryParam' (mods :: [Type]) (sym :: Symbol) a
- data QueryParams (sym :: Symbol) a
- data QueryFlag (sym :: Symbol)
- data Header' (mods :: [Type]) (sym :: Symbol) (a :: k) :: forall k. [Type] -> Symbol -> k -> Type
- data Required
- data Optional
- data Lenient
- data Strict
- data IsSecure
- data AuthProtect (tag :: k) :: forall k. k -> Type
- data EmptyAPI = EmptyAPI
- data Summary (sym :: Symbol)
- data Description (sym :: Symbol)
- data JSON
- data PlainText
- data FormUrlEncoded
- data OctetStream
- class Accept (ctype :: k) where
- contentType :: Proxy ctype -> MediaType
- contentTypes :: Proxy ctype -> NonEmpty MediaType
- class Accept ctype => MimeRender (ctype :: k) a where
- mimeRender :: Proxy ctype -> a -> ByteString
- class Accept ctype => MimeUnrender (ctype :: k) a where
- mimeUnrender :: Proxy ctype -> ByteString -> Either String a
- mimeUnrenderWithType :: Proxy ctype -> MediaType -> ByteString -> Either String a
- data NoContent = NoContent
- type Capture = Capture' ([] :: [Type])
- data Capture' (mods :: [Type]) (sym :: Symbol) a
- data CaptureAll (sym :: Symbol) a
- data BasicAuth (realm :: Symbol) userData
- data BasicAuthData = BasicAuthData {}
- data a :<|> b = a :<|> b
- type Vault = Vault RealWorld
- class SBoolI (b :: Bool) where
- data SBool (b :: Bool) where
- data TimeOfDay
- data Day
- newtype Textual a = Textual a
- type JSONValue = Value
- parseJSONObject :: FromJSON a => HashMap Text Value -> Parser a
- parseJSONText :: FromHttpApiData a => String -> Value -> Parser a
- toJSONText :: ToHttpApiData a => a -> Value
- newtype Bytes = Bytes {}
- _Bytes :: Iso' Bytes ByteString
- newtype Nat = Nat {}
- data GDuration
- newtype DateTime' = DateTime' {}
- data Date'
- data Time'
- _Time :: Iso' Time' TimeOfDay
- _Date :: Iso' Date' Day
- _DateTime :: Iso' DateTime' UTCTime
- _GDuration :: Iso' GDuration Scientific
- newtype GFieldMask = GFieldMask Text
- newtype Seconds = Seconds Int
- data MultipartRelated (cs :: [*]) m
- data CaptureMode (s :: Symbol) (m :: Symbol) a
- data Captures (s :: Symbol) a
- class GoogleClient fn where
- type Fn fn :: *
- buildClient :: Proxy fn -> Request -> Fn fn
- class GoogleRequest a where
- class Accept c => FromStream c a where
- fromStream :: Proxy c -> Stream -> ResourceT IO (Either (String, ByteString) a)
- class Accept c => ToBody c a where
- data GClient a = GClient {
- _cliAccept :: !(Maybe MediaType)
- _cliMethod :: !Method
- _cliCheck :: !(Status -> Bool)
- _cliService :: !ServiceConfig
- _cliRequest :: !Request
- _cliResponse :: !(Stream -> ResourceT IO (Either (String, ByteString) a))
- data Request = Request {
- _rqPath :: !Builder
- _rqQuery :: !(DList (ByteString, Maybe ByteString))
- _rqHeaders :: !(DList (HeaderName, ByteString))
- _rqBody :: ![Body]
- data Body = Body !MediaType !RequestBody
- data ServiceConfig = ServiceConfig {
- _svcId :: !ServiceId
- _svcHost :: !ByteString
- _svcPath :: !Builder
- _svcPort :: !Int
- _svcSecure :: !Bool
- _svcTimeout :: !(Maybe Seconds)
- class AsError a where
- data ServiceError = ServiceError' {
- _serviceId :: !ServiceId
- _serviceStatus :: !Status
- _serviceHeaders :: ![Header]
- _serviceBody :: !(Maybe ByteString)
- data SerializeError = SerializeError' {}
- data Error
- type Stream = ConduitM () ByteString (ResourceT IO) ()
- data MediaUpload a = MediaUpload a Body
- newtype MediaDownload a = MediaDownload a
- newtype GSecret = GSecret Text
- newtype ServiceId = ServiceId Text
- newtype ClientId = ClientId Text
- newtype RefreshToken = RefreshToken Text
- newtype AccessToken = AccessToken Text
- newtype OAuthScope = OAuthScope Text
- data Multipart = Multipart
- data AltMedia = AltMedia
- data AltJSON = AltJSON
- _Coerce :: (Coercible a b, Coercible b a) => Iso' a b
- _Default :: Monoid a => Iso' (Maybe a) a
- defaultService :: ServiceId -> ByteString -> ServiceConfig
- serviceHost :: Lens' ServiceConfig ByteString
- servicePort :: Lens' ServiceConfig Int
- servicePath :: Lens' ServiceConfig Builder
- serviceSecure :: Lens' ServiceConfig Bool
- serviceTimeout :: Lens' ServiceConfig (Maybe Seconds)
- bodyContentType :: Lens' Body MediaType
- appendPath :: Request -> Builder -> Request
- appendPaths :: ToHttpApiData a => Request -> [a] -> Request
- appendQuery :: Request -> ByteString -> Maybe Text -> Request
- appendHeader :: Request -> HeaderName -> Maybe Text -> Request
- setBody :: Request -> [Body] -> Request
- clientService :: Lens' (GClient a) ServiceConfig
- mime :: FromStream c a => Proxy c -> Method -> [Int] -> Request -> ServiceConfig -> GClient a
- discard :: Method -> [Int] -> Request -> ServiceConfig -> GClient ()
- gClient :: (Stream -> ResourceT IO (Either (String, ByteString) a)) -> Maybe MediaType -> Method -> [Int] -> Request -> ServiceConfig -> GClient a
- sinkLBS :: Stream -> ResourceT IO ByteString
- buildText :: ToHttpApiData a => a -> Builder
- buildSymbol :: forall n proxy. KnownSymbol n => proxy n -> Builder
- byteSymbol :: forall n proxy. KnownSymbol n => proxy n -> ByteString
- seconds :: Seconds -> Int
- microseconds :: Seconds -> Int
Documentation
(++) :: [a] -> [a] -> [a] infixr 5 #
Append two lists, i.e.,
[x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn] [x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]
If the first list is not finite, the result is the first list.
The value of seq a b
is bottom if a
is bottom, and
otherwise equal to b
. In other words, it evaluates the first
argument a
to weak head normal form (WHNF). seq
is usually
introduced to improve performance by avoiding unneeded laziness.
A note on evaluation order: the expression seq a b
does
not guarantee that a
will be evaluated before b
.
The only guarantee given by seq
is that the both a
and b
will be evaluated before seq
returns a value.
In particular, this means that b
may be evaluated before
a
. If you need to guarantee a specific order of evaluation,
you must use the function pseq
from the "parallel" package.
filter :: (a -> Bool) -> [a] -> [a] #
filter
, applied to a predicate and a list, returns the list of
those elements that satisfy the predicate; i.e.,
filter p xs = [ x | x <- xs, p x]
print :: Show a => a -> IO () #
The print
function outputs a value of any printable type to the
standard output device.
Printable types are those that are instances of class Show
; print
converts values to strings for output using the show
operation and
adds a newline.
For example, a program to print the first 20 integers and their powers of 2 could be written as:
main = print ([(n, 2^n) | n <- [0..19]])
map :: (a -> b) -> [a] -> [b] #
map
f xs
is the list obtained by applying f
to each element
of xs
, i.e.,
map f [x1, x2, ..., xn] == [f x1, f x2, ..., f xn] map f [x1, x2, ...] == [f x1, f x2, ...]
($) :: (a -> b) -> a -> b infixr 0 #
Application operator. This operator is redundant, since ordinary
application (f x)
means the same as (f
. However, $
x)$
has
low, right-associative binding precedence, so it sometimes allows
parentheses to be omitted; for example:
f $ g $ h x = f (g (h x))
It is also useful in higher-order situations, such as
,
or map
($
0) xs
.zipWith
($
) fs xs
Note that ($)
is levity-polymorphic in its result type, so that
foo $ True where foo :: Bool -> Int#
is well-typed
fromIntegral :: (Integral a, Num b) => a -> b #
general coercion from integral types
realToFrac :: (Real a, Fractional b) => a -> b #
general coercion to fractional types
The Bounded
class is used to name the upper and lower limits of a
type. Ord
is not a superclass of Bounded
since types that are not
totally ordered may also have upper and lower bounds.
The Bounded
class may be derived for any enumeration type;
minBound
is the first constructor listed in the data
declaration
and maxBound
is the last.
Bounded
may also be derived for single-constructor datatypes whose
constituent types are in Bounded
.
Instances
Bounded Bool | Since: base-2.1 |
Bounded Char | Since: base-2.1 |
Bounded Int | Since: base-2.1 |
Bounded Int8 | Since: base-2.1 |
Bounded Int16 | Since: base-2.1 |
Bounded Int32 | Since: base-2.1 |
Bounded Int64 | Since: base-2.1 |
Bounded Ordering | Since: base-2.1 |
Bounded Word | Since: base-2.1 |
Bounded Word8 | Since: base-2.1 |
Bounded Word16 | Since: base-2.1 |
Bounded Word32 | Since: base-2.1 |
Bounded Word64 | Since: base-2.1 |
Bounded VecCount | Since: base-4.10.0.0 |
Bounded VecElem | Since: base-4.10.0.0 |
Bounded () | Since: base-2.1 |
Bounded All | Since: base-2.1 |
Bounded Any | Since: base-2.1 |
Bounded Associativity | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Bounded SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Bounded SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Bounded DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Bounded CChar | |
Bounded CSChar | |
Bounded CUChar | |
Bounded CShort | |
Bounded CUShort | |
Bounded CInt | |
Bounded CUInt | |
Bounded CLong | |
Bounded CULong | |
Bounded CLLong | |
Bounded CULLong | |
Bounded CBool | |
Bounded CPtrdiff | |
Bounded CSize | |
Bounded CWchar | |
Bounded CSigAtomic | |
Defined in Foreign.C.Types | |
Bounded CIntPtr | |
Bounded CUIntPtr | |
Bounded CIntMax | |
Bounded CUIntMax | |
Bounded WordPtr | |
Bounded IntPtr | |
Bounded GeneralCategory | Since: base-2.1 |
Defined in GHC.Unicode | |
Bounded UTF32_Invalid | |
Defined in Basement.String.Encoding.UTF32 | |
Bounded Encoding | |
Bounded Status | |
Bounded StdMethod | |
Bounded LinkArrayElementStyle | |
Defined in Servant.Links | |
Bounded EmptyAPI | |
Bounded Format | |
Bounded Method | |
Bounded CompressionStrategy | |
Defined in Codec.Compression.Zlib.Stream | |
Bounded Seconds Source # | |
Bounded a => Bounded (Min a) | Since: base-4.9.0.0 |
Bounded a => Bounded (Max a) | Since: base-4.9.0.0 |
Bounded a => Bounded (First a) | Since: base-4.9.0.0 |
Bounded a => Bounded (Last a) | Since: base-4.9.0.0 |
Bounded m => Bounded (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup | |
Bounded a => Bounded (Identity a) | Since: base-4.9.0.0 |
Bounded a => Bounded (Dual a) | Since: base-2.1 |
Bounded a => Bounded (Sum a) | Since: base-2.1 |
Bounded a => Bounded (Product a) | Since: base-2.1 |
(Bounded a, Bounded b) => Bounded (a, b) | Since: base-2.1 |
Bounded (Proxy t) | Since: base-4.7.0.0 |
(Bounded a, Bounded b) => Bounded (a :<|> b) | |
(Bounded a, Bounded b, Bounded c) => Bounded (a, b, c) | Since: base-2.1 |
Bounded a => Bounded (Const a b) | Since: base-4.9.0.0 |
(Applicative f, Bounded a) => Bounded (Ap f a) | Since: base-4.12.0.0 |
Coercible a b => Bounded (Coercion a b) | Since: base-4.7.0.0 |
a ~ b => Bounded (a :~: b) | Since: base-4.7.0.0 |
Bounded b => Bounded (Tagged s b) | |
(Bounded a, Bounded b, Bounded c, Bounded d) => Bounded (a, b, c, d) | Since: base-2.1 |
a ~~ b => Bounded (a :~~: b) | Since: base-4.10.0.0 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e) => Bounded (a, b, c, d, e) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f) => Bounded (a, b, c, d, e, f) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g) => Bounded (a, b, c, d, e, f, g) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h) => Bounded (a, b, c, d, e, f, g, h) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i) => Bounded (a, b, c, d, e, f, g, h, i) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j) => Bounded (a, b, c, d, e, f, g, h, i, j) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k) => Bounded (a, b, c, d, e, f, g, h, i, j, k) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n, Bounded o) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | Since: base-2.1 |
Class Enum
defines operations on sequentially ordered types.
The enumFrom
... methods are used in Haskell's translation of
arithmetic sequences.
Instances of Enum
may be derived for any enumeration type (types
whose constructors have no fields). The nullary constructors are
assumed to be numbered left-to-right by fromEnum
from 0
through n-1
.
See Chapter 10 of the Haskell Report for more details.
For any type that is an instance of class Bounded
as well as Enum
,
the following should hold:
- The calls
andsucc
maxBound
should result in a runtime error.pred
minBound
fromEnum
andtoEnum
should give a runtime error if the result value is not representable in the result type. For example,
is an error.toEnum
7 ::Bool
enumFrom
andenumFromThen
should be defined with an implicit bound, thus:
enumFrom x = enumFromTo x maxBound enumFromThen x y = enumFromThenTo x y bound where bound | fromEnum y >= fromEnum x = maxBound | otherwise = minBound
Methods
the successor of a value. For numeric types, succ
adds 1.
the predecessor of a value. For numeric types, pred
subtracts 1.
Convert from an Int
.
Convert to an Int
.
It is implementation-dependent what fromEnum
returns when
applied to a value that is too large to fit in an Int
.
Used in Haskell's translation of [n..]
with [n..] = enumFrom n
,
a possible implementation being enumFrom n = n : enumFrom (succ n)
.
For example:
enumFrom 4 :: [Integer] = [4,5,6,7,...]
enumFrom 6 :: [Int] = [6,7,8,9,...,maxBound :: Int]
enumFromThen :: a -> a -> [a] #
Used in Haskell's translation of [n,n'..]
with [n,n'..] = enumFromThen n n'
, a possible implementation being
enumFromThen n n' = n : n' : worker (f x) (f x n')
,
worker s v = v : worker s (s v)
, x = fromEnum n' - fromEnum n
and
f n y
| n > 0 = f (n - 1) (succ y)
| n < 0 = f (n + 1) (pred y)
| otherwise = y
For example:
enumFromThen 4 6 :: [Integer] = [4,6,8,10...]
enumFromThen 6 2 :: [Int] = [6,2,-2,-6,...,minBound :: Int]
enumFromTo :: a -> a -> [a] #
Used in Haskell's translation of [n..m]
with
[n..m] = enumFromTo n m
, a possible implementation being
enumFromTo n m
| n <= m = n : enumFromTo (succ n) m
| otherwise = []
.
For example:
enumFromTo 6 10 :: [Int] = [6,7,8,9,10]
enumFromTo 42 1 :: [Integer] = []
enumFromThenTo :: a -> a -> a -> [a] #
Used in Haskell's translation of [n,n'..m]
with
[n,n'..m] = enumFromThenTo n n' m
, a possible implementation
being enumFromThenTo n n' m = worker (f x) (c x) n m
,
x = fromEnum n' - fromEnum n
, c x = bool (>=) ((x 0)
f n y
| n > 0 = f (n - 1) (succ y)
| n < 0 = f (n + 1) (pred y)
| otherwise = y
and
worker s c v m
| c v m = v : worker s c (s v) m
| otherwise = []
For example:
enumFromThenTo 4 2 -6 :: [Integer] = [4,2,0,-2,-4,-6]
enumFromThenTo 6 8 2 :: [Int] = []
Instances
The Eq
class defines equality (==
) and inequality (/=
).
All the basic datatypes exported by the Prelude are instances of Eq
,
and Eq
may be derived for any datatype whose constituents are also
instances of Eq
.
The Haskell Report defines no laws for Eq
. However, ==
is customarily
expected to implement an equivalence relationship where two values comparing
equal are indistinguishable by "public" functions, with a "public" function
being one not allowing to see implementation details. For example, for a
type representing non-normalised natural numbers modulo 100, a "public"
function doesn't make the difference between 1 and 201. It is expected to
have the following properties:
Instances
class Fractional a => Floating a where #
Trigonometric and hyperbolic functions and related functions.
The Haskell Report defines no laws for Floating
. However, '(+)', '(*)'
and exp
are customarily expected to define an exponential field and have
the following properties:
exp (a + b)
= @exp a * exp bexp (fromInteger 0)
=fromInteger 1
Minimal complete definition
pi, exp, log, sin, cos, asin, acos, atan, sinh, cosh, asinh, acosh, atanh
Instances
class Num a => Fractional a where #
Fractional numbers, supporting real division.
The Haskell Report defines no laws for Fractional
. However, '(+)' and
'(*)' are customarily expected to define a division ring and have the
following properties:
recip
gives the multiplicative inversex * recip x
=recip x * x
=fromInteger 1
Note that it isn't customarily expected that a type instance of
Fractional
implement a field. However, all instances in base
do.
Minimal complete definition
fromRational, (recip | (/))
Methods
fractional division
reciprocal fraction
fromRational :: Rational -> a #
Conversion from a Rational
(that is
).
A floating literal stands for an application of Ratio
Integer
fromRational
to a value of type Rational
, so such literals have type
(
.Fractional
a) => a
Instances
class (Real a, Enum a) => Integral a where #
Integral numbers, supporting integer division.
The Haskell Report defines no laws for Integral
. However, Integral
instances are customarily expected to define a Euclidean domain and have the
following properties for the 'div'/'mod' and 'quot'/'rem' pairs, given
suitable Euclidean functions f
and g
:
x
=y * quot x y + rem x y
withrem x y
=fromInteger 0
org (rem x y)
<g y
x
=y * div x y + mod x y
withmod x y
=fromInteger 0
orf (mod x y)
<f y
An example of a suitable Euclidean function, for Integer
's instance, is
abs
.
Methods
quot :: a -> a -> a infixl 7 #
integer division truncated toward zero
integer remainder, satisfying
(x `quot` y)*y + (x `rem` y) == x
integer division truncated toward negative infinity
integer modulus, satisfying
(x `div` y)*y + (x `mod` y) == x
conversion to Integer
Instances
class Applicative m => Monad (m :: Type -> Type) where #
The Monad
class defines the basic operations over a monad,
a concept from a branch of mathematics known as category theory.
From the perspective of a Haskell programmer, however, it is best to
think of a monad as an abstract datatype of actions.
Haskell's do
expressions provide a convenient syntax for writing
monadic expressions.
Instances of Monad
should satisfy the following laws:
Furthermore, the Monad
and Applicative
operations should relate as follows:
The above laws imply:
and that pure
and (<*>
) satisfy the applicative functor laws.
The instances of Monad
for lists, Maybe
and IO
defined in the Prelude satisfy these laws.
Minimal complete definition
Methods
(>>=) :: m a -> (a -> m b) -> m b infixl 1 #
Sequentially compose two actions, passing any value produced by the first as an argument to the second.
(>>) :: m a -> m b -> m b infixl 1 #
Sequentially compose two actions, discarding any value produced by the first, like sequencing operators (such as the semicolon) in imperative languages.
Inject a value into the monadic type.
Fail with a message. This operation is not part of the
mathematical definition of a monad, but is invoked on pattern-match
failure in a do
expression.
As part of the MonadFail proposal (MFP), this function is moved
to its own class MonadFail
(see Control.Monad.Fail for more
details). The definition here will be removed in a future
release.
Instances
Monad [] | Since: base-2.1 |
Monad Maybe | Since: base-2.1 |
Monad IO | Since: base-2.1 |
Monad Par1 | Since: base-4.9.0.0 |
Monad Q | |
Monad IResult | |
Monad Result | |
Monad Parser | |
Monad Complex | Since: base-4.9.0.0 |
Monad Min | Since: base-4.9.0.0 |
Monad Max | Since: base-4.9.0.0 |
Monad First | Since: base-4.9.0.0 |
Monad Last | Since: base-4.9.0.0 |
Monad Option | Since: base-4.9.0.0 |
Monad Identity | Since: base-4.8.0.0 |
Monad First | Since: base-4.8.0.0 |
Monad Last | Since: base-4.8.0.0 |
Monad Dual | Since: base-4.8.0.0 |
Monad Sum | Since: base-4.8.0.0 |
Monad Product | Since: base-4.8.0.0 |
Monad Down | Since: base-4.11.0.0 |
Monad ReadPrec | Since: base-2.1 |
Monad ReadP | Since: base-2.1 |
Monad NonEmpty | Since: base-4.9.0.0 |
Monad Put | |
Monad Tree | |
Monad Seq | |
Monad DList | |
Monad Vector | |
Monad SmallArray | |
Defined in Data.Primitive.SmallArray Methods (>>=) :: SmallArray a -> (a -> SmallArray b) -> SmallArray b # (>>) :: SmallArray a -> SmallArray b -> SmallArray b # return :: a -> SmallArray a # fail :: String -> SmallArray a # | |
Monad Array | |
Monad Id | |
Monad Box | |
Monad Stream | |
Monad P | Since: base-2.1 |
Monad (Either e) | Since: base-4.4.0.0 |
Monad (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Monoid a => Monad ((,) a) | Since: base-4.9.0.0 |
Representable f => Monad (Co f) | |
Monad (Parser i) | |
Monad m => Monad (WrappedMonad m) | Since: base-4.7.0.0 |
Defined in Control.Applicative Methods (>>=) :: WrappedMonad m a -> (a -> WrappedMonad m b) -> WrappedMonad m b # (>>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b # return :: a -> WrappedMonad m a # fail :: String -> WrappedMonad m a # | |
ArrowApply a => Monad (ArrowMonad a) | Since: base-2.1 |
Defined in Control.Arrow Methods (>>=) :: ArrowMonad a a0 -> (a0 -> ArrowMonad a b) -> ArrowMonad a b # (>>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b # return :: a0 -> ArrowMonad a a0 # fail :: String -> ArrowMonad a a0 # | |
Monad (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Monad m => Monad (ResourceT m) | |
Alternative f => Monad (Cofree f) | |
Functor f => Monad (Free f) | |
Monad m => Monad (Yoneda m) | |
Monad (ReifiedGetter s) | |
Defined in Control.Lens.Reified Methods (>>=) :: ReifiedGetter s a -> (a -> ReifiedGetter s b) -> ReifiedGetter s b # (>>) :: ReifiedGetter s a -> ReifiedGetter s b -> ReifiedGetter s b # return :: a -> ReifiedGetter s a # fail :: String -> ReifiedGetter s a # | |
Monad (ReifiedFold s) | |
Defined in Control.Lens.Reified Methods (>>=) :: ReifiedFold s a -> (a -> ReifiedFold s b) -> ReifiedFold s b # (>>) :: ReifiedFold s a -> ReifiedFold s b -> ReifiedFold s b # return :: a -> ReifiedFold s a # fail :: String -> ReifiedFold s a # | |
(Monad (Rep p), Representable p) => Monad (Prep p) | |
Monad (IParser t) | |
Monad (SetM s) | |
Monad f => Monad (Rec1 f) | Since: base-4.9.0.0 |
Monad f => Monad (Ap f) | Since: base-4.12.0.0 |
Monad f => Monad (Alt f) | Since: base-4.8.0.0 |
(Applicative f, Monad f) => Monad (WhenMissing f x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods (>>=) :: WhenMissing f x a -> (a -> WhenMissing f x b) -> WhenMissing f x b # (>>) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x b # return :: a -> WhenMissing f x a # fail :: String -> WhenMissing f x a # | |
(Functor f, Monad m) => Monad (FreeT f m) | |
(Alternative f, Monad w) => Monad (CofreeT f w) | |
(Monad m, Error e) => Monad (ErrorT e m) | |
Monad (Indexed i a) | |
Monad (Tagged s) | |
Monad ((->) r :: Type -> Type) | Since: base-2.1 |
(Monad f, Monad g) => Monad (f :*: g) | Since: base-4.9.0.0 |
(Monad f, Monad g) => Monad (Product f g) | Since: base-4.9.0.0 |
Monad (Cokleisli w a) | |
Monad (ConduitT i o m) | |
(Monad f, Applicative f) => Monad (WhenMatched f x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods (>>=) :: WhenMatched f x y a -> (a -> WhenMatched f x y b) -> WhenMatched f x y b # (>>) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y b # return :: a -> WhenMatched f x y a # fail :: String -> WhenMatched f x y a # | |
(Applicative f, Monad f) => Monad (WhenMissing f k x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods (>>=) :: WhenMissing f k x a -> (a -> WhenMissing f k x b) -> WhenMissing f k x b # (>>) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x b # return :: a -> WhenMissing f k x a # fail :: String -> WhenMissing f k x a # | |
Monad f => Monad (M1 i c f) | Since: base-4.9.0.0 |
(Monad f, Applicative f) => Monad (WhenMatched f k x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods (>>=) :: WhenMatched f k x y a -> (a -> WhenMatched f k x y b) -> WhenMatched f k x y b # (>>) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y b # return :: a -> WhenMatched f k x y a # fail :: String -> WhenMatched f k x y a # | |
Monad state => Monad (Builder collection mutCollection step state err) | |
Defined in Basement.MutableBuilder Methods (>>=) :: Builder collection mutCollection step state err a -> (a -> Builder collection mutCollection step state err b) -> Builder collection mutCollection step state err b # (>>) :: Builder collection mutCollection step state err a -> Builder collection mutCollection step state err b -> Builder collection mutCollection step state err b # return :: a -> Builder collection mutCollection step state err a # fail :: String -> Builder collection mutCollection step state err a # | |
Monad m => Monad (Pipe l i o u m) | |
The Data
class comprehends a fundamental primitive gfoldl
for
folding over constructor applications, say terms. This primitive can
be instantiated in several ways to map over the immediate subterms
of a term; see the gmap
combinators later in this class. Indeed, a
generic programmer does not necessarily need to use the ingenious gfoldl
primitive but rather the intuitive gmap
combinators. The gfoldl
primitive is completed by means to query top-level constructors, to
turn constructor representations into proper terms, and to list all
possible datatype constructors. This completion allows us to serve
generic programming scenarios like read, show, equality, term generation.
The combinators gmapT
, gmapQ
, gmapM
, etc are all provided with
default definitions in terms of gfoldl
, leaving open the opportunity
to provide datatype-specific definitions.
(The inclusion of the gmap
combinators as members of class Data
allows the programmer or the compiler to derive specialised, and maybe
more efficient code per datatype. Note: gfoldl
is more higher-order
than the gmap
combinators. This is subject to ongoing benchmarking
experiments. It might turn out that the gmap
combinators will be
moved out of the class Data
.)
Conceptually, the definition of the gmap
combinators in terms of the
primitive gfoldl
requires the identification of the gfoldl
function
arguments. Technically, we also need to identify the type constructor
c
for the construction of the result type from the folded term type.
In the definition of gmapQ
x combinators, we use phantom type
constructors for the c
in the type of gfoldl
because the result type
of a query does not involve the (polymorphic) type of the term argument.
In the definition of gmapQl
we simply use the plain constant type
constructor because gfoldl
is left-associative anyway and so it is
readily suited to fold a left-associative binary operation over the
immediate subterms. In the definition of gmapQr, extra effort is
needed. We use a higher-order accumulation trick to mediate between
left-associative constructor application vs. right-associative binary
operation (e.g., (:)
). When the query is meant to compute a value
of type r
, then the result type withing generic folding is r -> r
.
So the result of folding is a function to which we finally pass the
right unit.
With the -XDeriveDataTypeable
option, GHC can generate instances of the
Data
class automatically. For example, given the declaration
data T a b = C1 a b | C2 deriving (Typeable, Data)
GHC will generate an instance that is equivalent to
instance (Data a, Data b) => Data (T a b) where gfoldl k z (C1 a b) = z C1 `k` a `k` b gfoldl k z C2 = z C2 gunfold k z c = case constrIndex c of 1 -> k (k (z C1)) 2 -> z C2 toConstr (C1 _ _) = con_C1 toConstr C2 = con_C2 dataTypeOf _ = ty_T con_C1 = mkConstr ty_T "C1" [] Prefix con_C2 = mkConstr ty_T "C2" [] Prefix ty_T = mkDataType "Module.T" [con_C1, con_C2]
This is suitable for datatypes that are exported transparently.
Minimal complete definition
Instances
Data Bool | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bool -> c Bool # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bool # dataTypeOf :: Bool -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Bool) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bool) # gmapT :: (forall b. Data b => b -> b) -> Bool -> Bool # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r # gmapQ :: (forall d. Data d => d -> u) -> Bool -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Bool -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bool -> m Bool # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool # | |
Data Char | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Char -> c Char # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Char # dataTypeOf :: Char -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Char) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Char) # gmapT :: (forall b. Data b => b -> b) -> Char -> Char # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r # gmapQ :: (forall d. Data d => d -> u) -> Char -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Char -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Char -> m Char # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char # | |
Data Double | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Double -> c Double # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Double # toConstr :: Double -> Constr # dataTypeOf :: Double -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Double) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Double) # gmapT :: (forall b. Data b => b -> b) -> Double -> Double # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r # gmapQ :: (forall d. Data d => d -> u) -> Double -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Double -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Double -> m Double # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double # | |
Data Float | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Float -> c Float # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Float # dataTypeOf :: Float -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Float) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Float) # gmapT :: (forall b. Data b => b -> b) -> Float -> Float # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r # gmapQ :: (forall d. Data d => d -> u) -> Float -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Float -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Float -> m Float # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float # | |
Data Int | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int -> c Int # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int # dataTypeOf :: Int -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int) # gmapT :: (forall b. Data b => b -> b) -> Int -> Int # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r # gmapQ :: (forall d. Data d => d -> u) -> Int -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int -> m Int # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int # | |
Data Int8 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int8 -> c Int8 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int8 # dataTypeOf :: Int8 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int8) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int8) # gmapT :: (forall b. Data b => b -> b) -> Int8 -> Int8 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int8 -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int8 -> r # gmapQ :: (forall d. Data d => d -> u) -> Int8 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int8 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 # | |
Data Int16 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int16 -> c Int16 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int16 # dataTypeOf :: Int16 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int16) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int16) # gmapT :: (forall b. Data b => b -> b) -> Int16 -> Int16 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int16 -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int16 -> r # gmapQ :: (forall d. Data d => d -> u) -> Int16 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int16 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 # | |
Data Int32 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int32 -> c Int32 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int32 # dataTypeOf :: Int32 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int32) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int32) # gmapT :: (forall b. Data b => b -> b) -> Int32 -> Int32 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int32 -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int32 -> r # gmapQ :: (forall d. Data d => d -> u) -> Int32 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int32 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 # | |
Data Int64 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int64 -> c Int64 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int64 # dataTypeOf :: Int64 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int64) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int64) # gmapT :: (forall b. Data b => b -> b) -> Int64 -> Int64 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int64 -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int64 -> r # gmapQ :: (forall d. Data d => d -> u) -> Int64 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int64 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 # | |
Data Integer | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Integer -> c Integer # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Integer # toConstr :: Integer -> Constr # dataTypeOf :: Integer -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Integer) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Integer) # gmapT :: (forall b. Data b => b -> b) -> Integer -> Integer # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r # gmapQ :: (forall d. Data d => d -> u) -> Integer -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Integer -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Integer -> m Integer # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer # | |
Data Natural | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Natural -> c Natural # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Natural # toConstr :: Natural -> Constr # dataTypeOf :: Natural -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Natural) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Natural) # gmapT :: (forall b. Data b => b -> b) -> Natural -> Natural # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Natural -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Natural -> r # gmapQ :: (forall d. Data d => d -> u) -> Natural -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Natural -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Natural -> m Natural # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Natural -> m Natural # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Natural -> m Natural # | |
Data Ordering | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ordering -> c Ordering # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Ordering # toConstr :: Ordering -> Constr # dataTypeOf :: Ordering -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Ordering) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Ordering) # gmapT :: (forall b. Data b => b -> b) -> Ordering -> Ordering # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r # gmapQ :: (forall d. Data d => d -> u) -> Ordering -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ordering -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # | |
Data Word | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word -> c Word # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word # dataTypeOf :: Word -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word) # gmapT :: (forall b. Data b => b -> b) -> Word -> Word # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r # gmapQ :: (forall d. Data d => d -> u) -> Word -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word -> m Word # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word # | |
Data Word8 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word8 -> c Word8 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word8 # dataTypeOf :: Word8 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word8) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word8) # gmapT :: (forall b. Data b => b -> b) -> Word8 -> Word8 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word8 -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word8 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word8 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word8 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 # | |
Data Word16 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word16 -> c Word16 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word16 # toConstr :: Word16 -> Constr # dataTypeOf :: Word16 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word16) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word16) # gmapT :: (forall b. Data b => b -> b) -> Word16 -> Word16 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word16 -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word16 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word16 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word16 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 # | |
Data Word32 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word32 -> c Word32 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word32 # toConstr :: Word32 -> Constr # dataTypeOf :: Word32 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word32) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word32) # gmapT :: (forall b. Data b => b -> b) -> Word32 -> Word32 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word32 -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word32 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word32 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word32 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 # | |
Data Word64 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word64 -> c Word64 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word64 # toConstr :: Word64 -> Constr # dataTypeOf :: Word64 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word64) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word64) # gmapT :: (forall b. Data b => b -> b) -> Word64 -> Word64 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word64 -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word64 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word64 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word64 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 # | |
Data Exp | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Exp -> c Exp # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Exp # dataTypeOf :: Exp -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Exp) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Exp) # gmapT :: (forall b. Data b => b -> b) -> Exp -> Exp # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Exp -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Exp -> r # gmapQ :: (forall d. Data d => d -> u) -> Exp -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Exp -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Exp -> m Exp # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Exp -> m Exp # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Exp -> m Exp # | |
Data Match | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Match -> c Match # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Match # dataTypeOf :: Match -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Match) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Match) # gmapT :: (forall b. Data b => b -> b) -> Match -> Match # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Match -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Match -> r # gmapQ :: (forall d. Data d => d -> u) -> Match -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Match -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Match -> m Match # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Match -> m Match # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Match -> m Match # | |
Data Clause | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Clause -> c Clause # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Clause # toConstr :: Clause -> Constr # dataTypeOf :: Clause -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Clause) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Clause) # gmapT :: (forall b. Data b => b -> b) -> Clause -> Clause # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Clause -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Clause -> r # gmapQ :: (forall d. Data d => d -> u) -> Clause -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Clause -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Clause -> m Clause # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Clause -> m Clause # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Clause -> m Clause # | |
Data Pat | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Pat -> c Pat # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Pat # dataTypeOf :: Pat -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Pat) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Pat) # gmapT :: (forall b. Data b => b -> b) -> Pat -> Pat # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Pat -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Pat -> r # gmapQ :: (forall d. Data d => d -> u) -> Pat -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Pat -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Pat -> m Pat # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Pat -> m Pat # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Pat -> m Pat # | |
Data Type | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Type -> c Type # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Type # dataTypeOf :: Type -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Type) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Type) # gmapT :: (forall b. Data b => b -> b) -> Type -> Type # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Type -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Type -> r # gmapQ :: (forall d. Data d => d -> u) -> Type -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Type -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Type -> m Type # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Type -> m Type # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Type -> m Type # | |
Data Dec | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Dec -> c Dec # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Dec # dataTypeOf :: Dec -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Dec) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Dec) # gmapT :: (forall b. Data b => b -> b) -> Dec -> Dec # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Dec -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Dec -> r # gmapQ :: (forall d. Data d => d -> u) -> Dec -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Dec -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Dec -> m Dec # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Dec -> m Dec # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Dec -> m Dec # | |
Data Name | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Name -> c Name # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Name # dataTypeOf :: Name -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Name) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Name) # gmapT :: (forall b. Data b => b -> b) -> Name -> Name # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Name -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Name -> r # gmapQ :: (forall d. Data d => d -> u) -> Name -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Name -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Name -> m Name # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Name -> m Name # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Name -> m Name # | |
Data FunDep | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FunDep -> c FunDep # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c FunDep # toConstr :: FunDep -> Constr # dataTypeOf :: FunDep -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c FunDep) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c FunDep) # gmapT :: (forall b. Data b => b -> b) -> FunDep -> FunDep # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FunDep -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FunDep -> r # gmapQ :: (forall d. Data d => d -> u) -> FunDep -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> FunDep -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FunDep -> m FunDep # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FunDep -> m FunDep # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FunDep -> m FunDep # | |
Data InjectivityAnn | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> InjectivityAnn -> c InjectivityAnn # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c InjectivityAnn # toConstr :: InjectivityAnn -> Constr # dataTypeOf :: InjectivityAnn -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c InjectivityAnn) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c InjectivityAnn) # gmapT :: (forall b. Data b => b -> b) -> InjectivityAnn -> InjectivityAnn # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> InjectivityAnn -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> InjectivityAnn -> r # gmapQ :: (forall d. Data d => d -> u) -> InjectivityAnn -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> InjectivityAnn -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> InjectivityAnn -> m InjectivityAnn # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> InjectivityAnn -> m InjectivityAnn # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> InjectivityAnn -> m InjectivityAnn # | |
Data Overlap | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Overlap -> c Overlap # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Overlap # toConstr :: Overlap -> Constr # dataTypeOf :: Overlap -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Overlap) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Overlap) # gmapT :: (forall b. Data b => b -> b) -> Overlap -> Overlap # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Overlap -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Overlap -> r # gmapQ :: (forall d. Data d => d -> u) -> Overlap -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Overlap -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Overlap -> m Overlap # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Overlap -> m Overlap # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Overlap -> m Overlap # | |
Data () | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> () -> c () # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c () # dataTypeOf :: () -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ()) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ()) # gmapT :: (forall b. Data b => b -> b) -> () -> () # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> () -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> () -> r # gmapQ :: (forall d. Data d => d -> u) -> () -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> () -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> () -> m () # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> () -> m () # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> () -> m () # | |
Data Version | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Version -> c Version # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Version # toConstr :: Version -> Constr # dataTypeOf :: Version -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Version) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Version) # gmapT :: (forall b. Data b => b -> b) -> Version -> Version # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Version -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Version -> r # gmapQ :: (forall d. Data d => d -> u) -> Version -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Version -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Version -> m Version # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Version -> m Version # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Version -> m Version # | |
Data Con | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Con -> c Con # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Con # dataTypeOf :: Con -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Con) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Con) # gmapT :: (forall b. Data b => b -> b) -> Con -> Con # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Con -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Con -> r # gmapQ :: (forall d. Data d => d -> u) -> Con -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Con -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Con -> m Con # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Con -> m Con # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Con -> m Con # | |
Data ByteString | |
Defined in Data.ByteString.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ByteString -> c ByteString # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ByteString # toConstr :: ByteString -> Constr # dataTypeOf :: ByteString -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ByteString) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ByteString) # gmapT :: (forall b. Data b => b -> b) -> ByteString -> ByteString # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r # gmapQ :: (forall d. Data d => d -> u) -> ByteString -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ByteString -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # | |
Data ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ByteString -> c ByteString # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ByteString # toConstr :: ByteString -> Constr # dataTypeOf :: ByteString -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ByteString) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ByteString) # gmapT :: (forall b. Data b => b -> b) -> ByteString -> ByteString # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r # gmapQ :: (forall d. Data d => d -> u) -> ByteString -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ByteString -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # | |
Data Scientific | |
Defined in Data.Scientific Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Scientific -> c Scientific # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Scientific # toConstr :: Scientific -> Constr # dataTypeOf :: Scientific -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Scientific) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Scientific) # gmapT :: (forall b. Data b => b -> b) -> Scientific -> Scientific # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Scientific -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Scientific -> r # gmapQ :: (forall d. Data d => d -> u) -> Scientific -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Scientific -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Scientific -> m Scientific # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Scientific -> m Scientific # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Scientific -> m Scientific # | |
Data UTCTime | |
Defined in Data.Time.Clock.Internal.UTCTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> UTCTime -> c UTCTime # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c UTCTime # toConstr :: UTCTime -> Constr # dataTypeOf :: UTCTime -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c UTCTime) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c UTCTime) # gmapT :: (forall b. Data b => b -> b) -> UTCTime -> UTCTime # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> UTCTime -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> UTCTime -> r # gmapQ :: (forall d. Data d => d -> u) -> UTCTime -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> UTCTime -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> UTCTime -> m UTCTime # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> UTCTime -> m UTCTime # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> UTCTime -> m UTCTime # | |
Data Value | |
Defined in Data.Aeson.Types.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Value -> c Value # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Value # dataTypeOf :: Value -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Value) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Value) # gmapT :: (forall b. Data b => b -> b) -> Value -> Value # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Value -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Value -> r # gmapQ :: (forall d. Data d => d -> u) -> Value -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Value -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Value -> m Value # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Value -> m Value # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Value -> m Value # | |
Data Number | |
Defined in Data.Attoparsec.Number Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Number -> c Number # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Number # toConstr :: Number -> Constr # dataTypeOf :: Number -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Number) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Number) # gmapT :: (forall b. Data b => b -> b) -> Number -> Number # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Number -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Number -> r # gmapQ :: (forall d. Data d => d -> u) -> Number -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Number -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Number -> m Number # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Number -> m Number # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Number -> m Number # | |
Data Void | Since: base-4.8.0.0 |
Defined in Data.Void Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Void -> c Void # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Void # dataTypeOf :: Void -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Void) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Void) # gmapT :: (forall b. Data b => b -> b) -> Void -> Void # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r # gmapQ :: (forall d. Data d => d -> u) -> Void -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Void -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Void -> m Void # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void # | |
Data SpecConstrAnnotation | Since: base-4.3.0.0 |
Defined in GHC.Exts Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SpecConstrAnnotation -> c SpecConstrAnnotation # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SpecConstrAnnotation # toConstr :: SpecConstrAnnotation -> Constr # dataTypeOf :: SpecConstrAnnotation -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SpecConstrAnnotation) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SpecConstrAnnotation) # gmapT :: (forall b. Data b => b -> b) -> SpecConstrAnnotation -> SpecConstrAnnotation # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SpecConstrAnnotation -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SpecConstrAnnotation -> r # gmapQ :: (forall d. Data d => d -> u) -> SpecConstrAnnotation -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SpecConstrAnnotation -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SpecConstrAnnotation -> m SpecConstrAnnotation # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SpecConstrAnnotation -> m SpecConstrAnnotation # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SpecConstrAnnotation -> m SpecConstrAnnotation # | |
Data All | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> All -> c All # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c All # dataTypeOf :: All -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c All) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c All) # gmapT :: (forall b. Data b => b -> b) -> All -> All # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> All -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> All -> r # gmapQ :: (forall d. Data d => d -> u) -> All -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> All -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> All -> m All # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> All -> m All # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> All -> m All # | |
Data Any | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Any -> c Any # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Any # dataTypeOf :: Any -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Any) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Any) # gmapT :: (forall b. Data b => b -> b) -> Any -> Any # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Any -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Any -> r # gmapQ :: (forall d. Data d => d -> u) -> Any -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Any -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Any -> m Any # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Any -> m Any # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Any -> m Any # | |
Data Fixity | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Fixity -> c Fixity # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Fixity # toConstr :: Fixity -> Constr # dataTypeOf :: Fixity -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Fixity) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Fixity) # gmapT :: (forall b. Data b => b -> b) -> Fixity -> Fixity # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r # gmapQ :: (forall d. Data d => d -> u) -> Fixity -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Fixity -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # | |
Data Associativity | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Associativity -> c Associativity # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Associativity # toConstr :: Associativity -> Constr # dataTypeOf :: Associativity -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Associativity) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Associativity) # gmapT :: (forall b. Data b => b -> b) -> Associativity -> Associativity # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Associativity -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Associativity -> r # gmapQ :: (forall d. Data d => d -> u) -> Associativity -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Associativity -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Associativity -> m Associativity # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Associativity -> m Associativity # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Associativity -> m Associativity # | |
Data SourceUnpackedness | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceUnpackedness -> c SourceUnpackedness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceUnpackedness # toConstr :: SourceUnpackedness -> Constr # dataTypeOf :: SourceUnpackedness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourceUnpackedness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceUnpackedness) # gmapT :: (forall b. Data b => b -> b) -> SourceUnpackedness -> SourceUnpackedness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceUnpackedness -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceUnpackedness -> r # gmapQ :: (forall d. Data d => d -> u) -> SourceUnpackedness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceUnpackedness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # | |
Data SourceStrictness | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceStrictness -> c SourceStrictness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceStrictness # toConstr :: SourceStrictness -> Constr # dataTypeOf :: SourceStrictness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourceStrictness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceStrictness) # gmapT :: (forall b. Data b => b -> b) -> SourceStrictness -> SourceStrictness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceStrictness -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceStrictness -> r # gmapQ :: (forall d. Data d => d -> u) -> SourceStrictness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceStrictness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # | |
Data DecidedStrictness | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DecidedStrictness -> c DecidedStrictness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DecidedStrictness # toConstr :: DecidedStrictness -> Constr # dataTypeOf :: DecidedStrictness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DecidedStrictness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DecidedStrictness) # gmapT :: (forall b. Data b => b -> b) -> DecidedStrictness -> DecidedStrictness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DecidedStrictness -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DecidedStrictness -> r # gmapQ :: (forall d. Data d => d -> u) -> DecidedStrictness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DecidedStrictness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # | |
Data WordPtr | Since: base-4.11.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> WordPtr -> c WordPtr # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c WordPtr # toConstr :: WordPtr -> Constr # dataTypeOf :: WordPtr -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c WordPtr) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c WordPtr) # gmapT :: (forall b. Data b => b -> b) -> WordPtr -> WordPtr # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WordPtr -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WordPtr -> r # gmapQ :: (forall d. Data d => d -> u) -> WordPtr -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> WordPtr -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> WordPtr -> m WordPtr # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> WordPtr -> m WordPtr # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> WordPtr -> m WordPtr # | |
Data IntPtr | Since: base-4.11.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntPtr -> c IntPtr # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c IntPtr # toConstr :: IntPtr -> Constr # dataTypeOf :: IntPtr -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c IntPtr) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c IntPtr) # gmapT :: (forall b. Data b => b -> b) -> IntPtr -> IntPtr # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntPtr -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntPtr -> r # gmapQ :: (forall d. Data d => d -> u) -> IntPtr -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> IntPtr -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntPtr -> m IntPtr # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntPtr -> m IntPtr # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntPtr -> m IntPtr # | |
Data Encoding | |
Defined in Basement.String Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Encoding -> c Encoding # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Encoding # toConstr :: Encoding -> Constr # dataTypeOf :: Encoding -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Encoding) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Encoding) # gmapT :: (forall b. Data b => b -> b) -> Encoding -> Encoding # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Encoding -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Encoding -> r # gmapQ :: (forall d. Data d => d -> u) -> Encoding -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Encoding -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Encoding -> m Encoding # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Encoding -> m Encoding # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Encoding -> m Encoding # | |
Data String | |
Defined in Basement.UTF8.Base Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> String -> c String # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c String # toConstr :: String -> Constr # dataTypeOf :: String -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c String) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c String) # gmapT :: (forall b. Data b => b -> b) -> String -> String # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> String -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> String -> r # gmapQ :: (forall d. Data d => d -> u) -> String -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> String -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> String -> m String # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> String -> m String # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> String -> m String # | |
Data IntSet | |
Defined in Data.IntSet.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntSet -> c IntSet # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c IntSet # toConstr :: IntSet -> Constr # dataTypeOf :: IntSet -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c IntSet) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c IntSet) # gmapT :: (forall b. Data b => b -> b) -> IntSet -> IntSet # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntSet -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntSet -> r # gmapQ :: (forall d. Data d => d -> u) -> IntSet -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> IntSet -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet # | |
Data DiffTime | |
Defined in Data.Time.Clock.Internal.DiffTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DiffTime -> c DiffTime # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DiffTime # toConstr :: DiffTime -> Constr # dataTypeOf :: DiffTime -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DiffTime) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DiffTime) # gmapT :: (forall b. Data b => b -> b) -> DiffTime -> DiffTime # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DiffTime -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DiffTime -> r # gmapQ :: (forall d. Data d => d -> u) -> DiffTime -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DiffTime -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DiffTime -> m DiffTime # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DiffTime -> m DiffTime # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DiffTime -> m DiffTime # | |
Data URI | |
Defined in Network.URI Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> URI -> c URI # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c URI # dataTypeOf :: URI -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c URI) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c URI) # gmapT :: (forall b. Data b => b -> b) -> URI -> URI # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> URI -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> URI -> r # gmapQ :: (forall d. Data d => d -> u) -> URI -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> URI -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> URI -> m URI # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> URI -> m URI # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> URI -> m URI # | |
Data ByteRange | |
Defined in Network.HTTP.Types.Header Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ByteRange -> c ByteRange # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ByteRange # toConstr :: ByteRange -> Constr # dataTypeOf :: ByteRange -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ByteRange) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ByteRange) # gmapT :: (forall b. Data b => b -> b) -> ByteRange -> ByteRange # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ByteRange -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ByteRange -> r # gmapQ :: (forall d. Data d => d -> u) -> ByteRange -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ByteRange -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ByteRange -> m ByteRange # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteRange -> m ByteRange # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteRange -> m ByteRange # | |
Data TyVarBndr | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TyVarBndr -> c TyVarBndr # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TyVarBndr # toConstr :: TyVarBndr -> Constr # dataTypeOf :: TyVarBndr -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TyVarBndr) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TyVarBndr) # gmapT :: (forall b. Data b => b -> b) -> TyVarBndr -> TyVarBndr # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TyVarBndr -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TyVarBndr -> r # gmapQ :: (forall d. Data d => d -> u) -> TyVarBndr -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TyVarBndr -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TyVarBndr -> m TyVarBndr # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TyVarBndr -> m TyVarBndr # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TyVarBndr -> m TyVarBndr # | |
Data URIAuth | |
Defined in Network.URI Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> URIAuth -> c URIAuth # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c URIAuth # toConstr :: URIAuth -> Constr # dataTypeOf :: URIAuth -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c URIAuth) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c URIAuth) # gmapT :: (forall b. Data b => b -> b) -> URIAuth -> URIAuth # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> URIAuth -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> URIAuth -> r # gmapQ :: (forall d. Data d => d -> u) -> URIAuth -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> URIAuth -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> URIAuth -> m URIAuth # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> URIAuth -> m URIAuth # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> URIAuth -> m URIAuth # | |
Data ByteArray | |
Defined in Data.Primitive.ByteArray Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ByteArray -> c ByteArray # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ByteArray # toConstr :: ByteArray -> Constr # dataTypeOf :: ByteArray -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ByteArray) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ByteArray) # gmapT :: (forall b. Data b => b -> b) -> ByteArray -> ByteArray # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ByteArray -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ByteArray -> r # gmapQ :: (forall d. Data d => d -> u) -> ByteArray -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ByteArray -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ByteArray -> m ByteArray # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteArray -> m ByteArray # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteArray -> m ByteArray # | |
Data Addr | |
Defined in Data.Primitive.Types Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Addr -> c Addr # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Addr # dataTypeOf :: Addr -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Addr) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Addr) # gmapT :: (forall b. Data b => b -> b) -> Addr -> Addr # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Addr -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Addr -> r # gmapQ :: (forall d. Data d => d -> u) -> Addr -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Addr -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Addr -> m Addr # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Addr -> m Addr # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Addr -> m Addr # | |
Data ModName | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ModName -> c ModName # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ModName # toConstr :: ModName -> Constr # dataTypeOf :: ModName -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ModName) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ModName) # gmapT :: (forall b. Data b => b -> b) -> ModName -> ModName # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ModName -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ModName -> r # gmapQ :: (forall d. Data d => d -> u) -> ModName -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ModName -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ModName -> m ModName # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ModName -> m ModName # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ModName -> m ModName # | |
Data PkgName | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PkgName -> c PkgName # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PkgName # toConstr :: PkgName -> Constr # dataTypeOf :: PkgName -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PkgName) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PkgName) # gmapT :: (forall b. Data b => b -> b) -> PkgName -> PkgName # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PkgName -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PkgName -> r # gmapQ :: (forall d. Data d => d -> u) -> PkgName -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PkgName -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PkgName -> m PkgName # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PkgName -> m PkgName # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PkgName -> m PkgName # | |
Data Module | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Module -> c Module # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Module # toConstr :: Module -> Constr # dataTypeOf :: Module -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Module) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Module) # gmapT :: (forall b. Data b => b -> b) -> Module -> Module # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Module -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Module -> r # gmapQ :: (forall d. Data d => d -> u) -> Module -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Module -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Module -> m Module # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Module -> m Module # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Module -> m Module # | |
Data OccName | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> OccName -> c OccName # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c OccName # toConstr :: OccName -> Constr # dataTypeOf :: OccName -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c OccName) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c OccName) # gmapT :: (forall b. Data b => b -> b) -> OccName -> OccName # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> OccName -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> OccName -> r # gmapQ :: (forall d. Data d => d -> u) -> OccName -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> OccName -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> OccName -> m OccName # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> OccName -> m OccName # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> OccName -> m OccName # | |
Data NameFlavour | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NameFlavour -> c NameFlavour # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c NameFlavour # toConstr :: NameFlavour -> Constr # dataTypeOf :: NameFlavour -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c NameFlavour) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c NameFlavour) # gmapT :: (forall b. Data b => b -> b) -> NameFlavour -> NameFlavour # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NameFlavour -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NameFlavour -> r # gmapQ :: (forall d. Data d => d -> u) -> NameFlavour -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> NameFlavour -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NameFlavour -> m NameFlavour # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NameFlavour -> m NameFlavour # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NameFlavour -> m NameFlavour # | |
Data NameSpace | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NameSpace -> c NameSpace # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c NameSpace # toConstr :: NameSpace -> Constr # dataTypeOf :: NameSpace -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c NameSpace) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c NameSpace) # gmapT :: (forall b. Data b => b -> b) -> NameSpace -> NameSpace # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NameSpace -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NameSpace -> r # gmapQ :: (forall d. Data d => d -> u) -> NameSpace -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> NameSpace -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NameSpace -> m NameSpace # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NameSpace -> m NameSpace # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NameSpace -> m NameSpace # | |
Data Loc | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Loc -> c Loc # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Loc # dataTypeOf :: Loc -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Loc) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Loc) # gmapT :: (forall b. Data b => b -> b) -> Loc -> Loc # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Loc -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Loc -> r # gmapQ :: (forall d. Data d => d -> u) -> Loc -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Loc -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Loc -> m Loc # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Loc -> m Loc # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Loc -> m Loc # | |
Data Info | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Info -> c Info # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Info # dataTypeOf :: Info -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Info) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Info) # gmapT :: (forall b. Data b => b -> b) -> Info -> Info # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Info -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Info -> r # gmapQ :: (forall d. Data d => d -> u) -> Info -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Info -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Info -> m Info # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Info -> m Info # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Info -> m Info # | |
Data ModuleInfo | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ModuleInfo -> c ModuleInfo # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ModuleInfo # toConstr :: ModuleInfo -> Constr # dataTypeOf :: ModuleInfo -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ModuleInfo) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ModuleInfo) # gmapT :: (forall b. Data b => b -> b) -> ModuleInfo -> ModuleInfo # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ModuleInfo -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ModuleInfo -> r # gmapQ :: (forall d. Data d => d -> u) -> ModuleInfo -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ModuleInfo -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ModuleInfo -> m ModuleInfo # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleInfo -> m ModuleInfo # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleInfo -> m ModuleInfo # | |
Data Fixity | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Fixity -> c Fixity # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Fixity # toConstr :: Fixity -> Constr # dataTypeOf :: Fixity -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Fixity) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Fixity) # gmapT :: (forall b. Data b => b -> b) -> Fixity -> Fixity # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r # gmapQ :: (forall d. Data d => d -> u) -> Fixity -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Fixity -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # | |
Data FixityDirection | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FixityDirection -> c FixityDirection # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c FixityDirection # toConstr :: FixityDirection -> Constr # dataTypeOf :: FixityDirection -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c FixityDirection) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c FixityDirection) # gmapT :: (forall b. Data b => b -> b) -> FixityDirection -> FixityDirection # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FixityDirection -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FixityDirection -> r # gmapQ :: (forall d. Data d => d -> u) -> FixityDirection -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> FixityDirection -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FixityDirection -> m FixityDirection # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FixityDirection -> m FixityDirection # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FixityDirection -> m FixityDirection # | |
Data Lit | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Lit -> c Lit # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Lit # dataTypeOf :: Lit -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Lit) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Lit) # gmapT :: (forall b. Data b => b -> b) -> Lit -> Lit # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Lit -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Lit -> r # gmapQ :: (forall d. Data d => d -> u) -> Lit -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Lit -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Lit -> m Lit # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Lit -> m Lit # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Lit -> m Lit # | |
Data Body | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Body -> c Body # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Body # dataTypeOf :: Body -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Body) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Body) # gmapT :: (forall b. Data b => b -> b) -> Body -> Body # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Body -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Body -> r # gmapQ :: (forall d. Data d => d -> u) -> Body -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Body -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Body -> m Body # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Body -> m Body # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Body -> m Body # | |
Data Guard | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Guard -> c Guard # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Guard # dataTypeOf :: Guard -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Guard) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Guard) # gmapT :: (forall b. Data b => b -> b) -> Guard -> Guard # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Guard -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Guard -> r # gmapQ :: (forall d. Data d => d -> u) -> Guard -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Guard -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Guard -> m Guard # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Guard -> m Guard # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Guard -> m Guard # | |
Data Stmt | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Stmt -> c Stmt # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Stmt # dataTypeOf :: Stmt -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Stmt) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Stmt) # gmapT :: (forall b. Data b => b -> b) -> Stmt -> Stmt # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Stmt -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Stmt -> r # gmapQ :: (forall d. Data d => d -> u) -> Stmt -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Stmt -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Stmt -> m Stmt # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Stmt -> m Stmt # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Stmt -> m Stmt # | |
Data Range | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Range -> c Range # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Range # dataTypeOf :: Range -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Range) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Range) # gmapT :: (forall b. Data b => b -> b) -> Range -> Range # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Range -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Range -> r # gmapQ :: (forall d. Data d => d -> u) -> Range -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Range -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Range -> m Range # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Range -> m Range # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Range -> m Range # | |
Data DerivClause | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DerivClause -> c DerivClause # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DerivClause # toConstr :: DerivClause -> Constr # dataTypeOf :: DerivClause -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DerivClause) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DerivClause) # gmapT :: (forall b. Data b => b -> b) -> DerivClause -> DerivClause # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DerivClause -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DerivClause -> r # gmapQ :: (forall d. Data d => d -> u) -> DerivClause -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DerivClause -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DerivClause -> m DerivClause # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DerivClause -> m DerivClause # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DerivClause -> m DerivClause # | |
Data DerivStrategy | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DerivStrategy -> c DerivStrategy # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DerivStrategy # toConstr :: DerivStrategy -> Constr # dataTypeOf :: DerivStrategy -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DerivStrategy) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DerivStrategy) # gmapT :: (forall b. Data b => b -> b) -> DerivStrategy -> DerivStrategy # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DerivStrategy -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DerivStrategy -> r # gmapQ :: (forall d. Data d => d -> u) -> DerivStrategy -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DerivStrategy -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DerivStrategy -> m DerivStrategy # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DerivStrategy -> m DerivStrategy # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DerivStrategy -> m DerivStrategy # | |
Data TypeFamilyHead | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TypeFamilyHead -> c TypeFamilyHead # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TypeFamilyHead # toConstr :: TypeFamilyHead -> Constr # dataTypeOf :: TypeFamilyHead -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TypeFamilyHead) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TypeFamilyHead) # gmapT :: (forall b. Data b => b -> b) -> TypeFamilyHead -> TypeFamilyHead # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TypeFamilyHead -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TypeFamilyHead -> r # gmapQ :: (forall d. Data d => d -> u) -> TypeFamilyHead -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TypeFamilyHead -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TypeFamilyHead -> m TypeFamilyHead # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TypeFamilyHead -> m TypeFamilyHead # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TypeFamilyHead -> m TypeFamilyHead # | |
Data TySynEqn | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TySynEqn -> c TySynEqn # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TySynEqn # toConstr :: TySynEqn -> Constr # dataTypeOf :: TySynEqn -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TySynEqn) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TySynEqn) # gmapT :: (forall b. Data b => b -> b) -> TySynEqn -> TySynEqn # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TySynEqn -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TySynEqn -> r # gmapQ :: (forall d. Data d => d -> u) -> TySynEqn -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TySynEqn -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TySynEqn -> m TySynEqn # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TySynEqn -> m TySynEqn # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TySynEqn -> m TySynEqn # | |
Data Foreign | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Foreign -> c Foreign # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Foreign # toConstr :: Foreign -> Constr # dataTypeOf :: Foreign -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Foreign) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Foreign) # gmapT :: (forall b. Data b => b -> b) -> Foreign -> Foreign # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Foreign -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Foreign -> r # gmapQ :: (forall d. Data d => d -> u) -> Foreign -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Foreign -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Foreign -> m Foreign # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Foreign -> m Foreign # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Foreign -> m Foreign # | |
Data Callconv | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Callconv -> c Callconv # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Callconv # toConstr :: Callconv -> Constr # dataTypeOf :: Callconv -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Callconv) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Callconv) # gmapT :: (forall b. Data b => b -> b) -> Callconv -> Callconv # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Callconv -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Callconv -> r # gmapQ :: (forall d. Data d => d -> u) -> Callconv -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Callconv -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Callconv -> m Callconv # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Callconv -> m Callconv # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Callconv -> m Callconv # | |
Data Safety | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Safety -> c Safety # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Safety # toConstr :: Safety -> Constr # dataTypeOf :: Safety -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Safety) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Safety) # gmapT :: (forall b. Data b => b -> b) -> Safety -> Safety # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Safety -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Safety -> r # gmapQ :: (forall d. Data d => d -> u) -> Safety -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Safety -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Safety -> m Safety # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Safety -> m Safety # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Safety -> m Safety # | |
Data Pragma | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Pragma -> c Pragma # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Pragma # toConstr :: Pragma -> Constr # dataTypeOf :: Pragma -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Pragma) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Pragma) # gmapT :: (forall b. Data b => b -> b) -> Pragma -> Pragma # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Pragma -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Pragma -> r # gmapQ :: (forall d. Data d => d -> u) -> Pragma -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Pragma -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Pragma -> m Pragma # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Pragma -> m Pragma # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Pragma -> m Pragma # | |
Data Inline | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Inline -> c Inline # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Inline # toConstr :: Inline -> Constr # dataTypeOf :: Inline -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Inline) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Inline) # gmapT :: (forall b. Data b => b -> b) -> Inline -> Inline # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Inline -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Inline -> r # gmapQ :: (forall d. Data d => d -> u) -> Inline -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Inline -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Inline -> m Inline # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Inline -> m Inline # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Inline -> m Inline # | |
Data RuleMatch | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> RuleMatch -> c RuleMatch # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c RuleMatch # toConstr :: RuleMatch -> Constr # dataTypeOf :: RuleMatch -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c RuleMatch) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c RuleMatch) # gmapT :: (forall b. Data b => b -> b) -> RuleMatch -> RuleMatch # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> RuleMatch -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> RuleMatch -> r # gmapQ :: (forall d. Data d => d -> u) -> RuleMatch -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> RuleMatch -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> RuleMatch -> m RuleMatch # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleMatch -> m RuleMatch # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleMatch -> m RuleMatch # | |
Data Phases | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Phases -> c Phases # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Phases # toConstr :: Phases -> Constr # dataTypeOf :: Phases -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Phases) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Phases) # gmapT :: (forall b. Data b => b -> b) -> Phases -> Phases # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Phases -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Phases -> r # gmapQ :: (forall d. Data d => d -> u) -> Phases -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Phases -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Phases -> m Phases # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Phases -> m Phases # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Phases -> m Phases # | |
Data RuleBndr | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> RuleBndr -> c RuleBndr # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c RuleBndr # toConstr :: RuleBndr -> Constr # dataTypeOf :: RuleBndr -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c RuleBndr) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c RuleBndr) # gmapT :: (forall b. Data b => b -> b) -> RuleBndr -> RuleBndr # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> RuleBndr -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> RuleBndr -> r # gmapQ :: (forall d. Data d => d -> u) -> RuleBndr -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> RuleBndr -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> RuleBndr -> m RuleBndr # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleBndr -> m RuleBndr # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleBndr -> m RuleBndr # | |
Data AnnTarget | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> AnnTarget -> c AnnTarget # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c AnnTarget # toConstr :: AnnTarget -> Constr # dataTypeOf :: AnnTarget -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c AnnTarget) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c AnnTarget) # gmapT :: (forall b. Data b => b -> b) -> AnnTarget -> AnnTarget # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> AnnTarget -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> AnnTarget -> r # gmapQ :: (forall d. Data d => d -> u) -> AnnTarget -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> AnnTarget -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> AnnTarget -> m AnnTarget # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnTarget -> m AnnTarget # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnTarget -> m AnnTarget # | |
Data SourceUnpackedness | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceUnpackedness -> c SourceUnpackedness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceUnpackedness # toConstr :: SourceUnpackedness -> Constr # dataTypeOf :: SourceUnpackedness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourceUnpackedness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceUnpackedness) # gmapT :: (forall b. Data b => b -> b) -> SourceUnpackedness -> SourceUnpackedness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceUnpackedness -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceUnpackedness -> r # gmapQ :: (forall d. Data d => d -> u) -> SourceUnpackedness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceUnpackedness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # | |
Data SourceStrictness | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceStrictness -> c SourceStrictness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceStrictness # toConstr :: SourceStrictness -> Constr # dataTypeOf :: SourceStrictness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourceStrictness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceStrictness) # gmapT :: (forall b. Data b => b -> b) -> SourceStrictness -> SourceStrictness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceStrictness -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceStrictness -> r # gmapQ :: (forall d. Data d => d -> u) -> SourceStrictness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceStrictness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # | |
Data DecidedStrictness | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DecidedStrictness -> c DecidedStrictness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DecidedStrictness # toConstr :: DecidedStrictness -> Constr # dataTypeOf :: DecidedStrictness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DecidedStrictness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DecidedStrictness) # gmapT :: (forall b. Data b => b -> b) -> DecidedStrictness -> DecidedStrictness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DecidedStrictness -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DecidedStrictness -> r # gmapQ :: (forall d. Data d => d -> u) -> DecidedStrictness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DecidedStrictness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # | |
Data Bang | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bang -> c Bang # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bang # dataTypeOf :: Bang -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Bang) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bang) # gmapT :: (forall b. Data b => b -> b) -> Bang -> Bang # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bang -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bang -> r # gmapQ :: (forall d. Data d => d -> u) -> Bang -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Bang -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bang -> m Bang # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bang -> m Bang # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bang -> m Bang # | |
Data PatSynDir | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PatSynDir -> c PatSynDir # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PatSynDir # toConstr :: PatSynDir -> Constr # dataTypeOf :: PatSynDir -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PatSynDir) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PatSynDir) # gmapT :: (forall b. Data b => b -> b) -> PatSynDir -> PatSynDir # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PatSynDir -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PatSynDir -> r # gmapQ :: (forall d. Data d => d -> u) -> PatSynDir -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PatSynDir -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PatSynDir -> m PatSynDir # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PatSynDir -> m PatSynDir # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PatSynDir -> m PatSynDir # | |
Data PatSynArgs | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PatSynArgs -> c PatSynArgs # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PatSynArgs # toConstr :: PatSynArgs -> Constr # dataTypeOf :: PatSynArgs -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PatSynArgs) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PatSynArgs) # gmapT :: (forall b. Data b => b -> b) -> PatSynArgs -> PatSynArgs # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PatSynArgs -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PatSynArgs -> r # gmapQ :: (forall d. Data d => d -> u) -> PatSynArgs -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PatSynArgs -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PatSynArgs -> m PatSynArgs # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PatSynArgs -> m PatSynArgs # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PatSynArgs -> m PatSynArgs # | |
Data FamilyResultSig | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FamilyResultSig -> c FamilyResultSig # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c FamilyResultSig # toConstr :: FamilyResultSig -> Constr # dataTypeOf :: FamilyResultSig -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c FamilyResultSig) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c FamilyResultSig) # gmapT :: (forall b. Data b => b -> b) -> FamilyResultSig -> FamilyResultSig # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FamilyResultSig -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FamilyResultSig -> r # gmapQ :: (forall d. Data d => d -> u) -> FamilyResultSig -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> FamilyResultSig -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FamilyResultSig -> m FamilyResultSig # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FamilyResultSig -> m FamilyResultSig # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FamilyResultSig -> m FamilyResultSig # | |
Data TyLit | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TyLit -> c TyLit # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TyLit # dataTypeOf :: TyLit -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TyLit) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TyLit) # gmapT :: (forall b. Data b => b -> b) -> TyLit -> TyLit # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TyLit -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TyLit -> r # gmapQ :: (forall d. Data d => d -> u) -> TyLit -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TyLit -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TyLit -> m TyLit # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TyLit -> m TyLit # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TyLit -> m TyLit # | |
Data Role | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Role -> c Role # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Role # dataTypeOf :: Role -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Role) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Role) # gmapT :: (forall b. Data b => b -> b) -> Role -> Role # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Role -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Role -> r # gmapQ :: (forall d. Data d => d -> u) -> Role -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Role -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Role -> m Role # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Role -> m Role # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Role -> m Role # | |
Data AnnLookup | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> AnnLookup -> c AnnLookup # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c AnnLookup # toConstr :: AnnLookup -> Constr # dataTypeOf :: AnnLookup -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c AnnLookup) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c AnnLookup) # gmapT :: (forall b. Data b => b -> b) -> AnnLookup -> AnnLookup # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> AnnLookup -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> AnnLookup -> r # gmapQ :: (forall d. Data d => d -> u) -> AnnLookup -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> AnnLookup -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> AnnLookup -> m AnnLookup # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnLookup -> m AnnLookup # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnLookup -> m AnnLookup # | |
Data DatatypeInfo | |
Defined in Language.Haskell.TH.Datatype Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DatatypeInfo -> c DatatypeInfo # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DatatypeInfo # toConstr :: DatatypeInfo -> Constr # dataTypeOf :: DatatypeInfo -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DatatypeInfo) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DatatypeInfo) # gmapT :: (forall b. Data b => b -> b) -> DatatypeInfo -> DatatypeInfo # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DatatypeInfo -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DatatypeInfo -> r # gmapQ :: (forall d. Data d => d -> u) -> DatatypeInfo -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DatatypeInfo -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DatatypeInfo -> m DatatypeInfo # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DatatypeInfo -> m DatatypeInfo # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DatatypeInfo -> m DatatypeInfo # | |
Data DatatypeVariant | |
Defined in Language.Haskell.TH.Datatype Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DatatypeVariant -> c DatatypeVariant # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DatatypeVariant # toConstr :: DatatypeVariant -> Constr # dataTypeOf :: DatatypeVariant -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DatatypeVariant) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DatatypeVariant) # gmapT :: (forall b. Data b => b -> b) -> DatatypeVariant -> DatatypeVariant # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DatatypeVariant -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DatatypeVariant -> r # gmapQ :: (forall d. Data d => d -> u) -> DatatypeVariant -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DatatypeVariant -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DatatypeVariant -> m DatatypeVariant # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DatatypeVariant -> m DatatypeVariant # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DatatypeVariant -> m DatatypeVariant # | |
Data ConstructorInfo | |
Defined in Language.Haskell.TH.Datatype Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ConstructorInfo -> c ConstructorInfo # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ConstructorInfo # toConstr :: ConstructorInfo -> Constr # dataTypeOf :: ConstructorInfo -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ConstructorInfo) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ConstructorInfo) # gmapT :: (forall b. Data b => b -> b) -> ConstructorInfo -> ConstructorInfo # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ConstructorInfo -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ConstructorInfo -> r # gmapQ :: (forall d. Data d => d -> u) -> ConstructorInfo -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ConstructorInfo -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ConstructorInfo -> m ConstructorInfo # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ConstructorInfo -> m ConstructorInfo # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ConstructorInfo -> m ConstructorInfo # | |
Data ConstructorVariant | |
Defined in Language.Haskell.TH.Datatype Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ConstructorVariant -> c ConstructorVariant # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ConstructorVariant # toConstr :: ConstructorVariant -> Constr # dataTypeOf :: ConstructorVariant -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ConstructorVariant) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ConstructorVariant) # gmapT :: (forall b. Data b => b -> b) -> ConstructorVariant -> ConstructorVariant # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ConstructorVariant -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ConstructorVariant -> r # gmapQ :: (forall d. Data d => d -> u) -> ConstructorVariant -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ConstructorVariant -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ConstructorVariant -> m ConstructorVariant # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ConstructorVariant -> m ConstructorVariant # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ConstructorVariant -> m ConstructorVariant # | |
Data FieldStrictness | |
Defined in Language.Haskell.TH.Datatype Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FieldStrictness -> c FieldStrictness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c FieldStrictness # toConstr :: FieldStrictness -> Constr # dataTypeOf :: FieldStrictness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c FieldStrictness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c FieldStrictness) # gmapT :: (forall b. Data b => b -> b) -> FieldStrictness -> FieldStrictness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FieldStrictness -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FieldStrictness -> r # gmapQ :: (forall d. Data d => d -> u) -> FieldStrictness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> FieldStrictness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FieldStrictness -> m FieldStrictness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FieldStrictness -> m FieldStrictness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FieldStrictness -> m FieldStrictness # | |
Data Unpackedness | |
Defined in Language.Haskell.TH.Datatype Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Unpackedness -> c Unpackedness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Unpackedness # toConstr :: Unpackedness -> Constr # dataTypeOf :: Unpackedness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Unpackedness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Unpackedness) # gmapT :: (forall b. Data b => b -> b) -> Unpackedness -> Unpackedness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Unpackedness -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Unpackedness -> r # gmapQ :: (forall d. Data d => d -> u) -> Unpackedness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Unpackedness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Unpackedness -> m Unpackedness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Unpackedness -> m Unpackedness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Unpackedness -> m Unpackedness # | |
Data Strictness | |
Defined in Language.Haskell.TH.Datatype Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Strictness -> c Strictness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Strictness # toConstr :: Strictness -> Constr # dataTypeOf :: Strictness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Strictness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Strictness) # gmapT :: (forall b. Data b => b -> b) -> Strictness -> Strictness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Strictness -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Strictness -> r # gmapQ :: (forall d. Data d => d -> u) -> Strictness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Strictness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Strictness -> m Strictness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Strictness -> m Strictness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Strictness -> m Strictness # | |
Data ZonedTime | |
Defined in Data.Time.LocalTime.Internal.ZonedTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ZonedTime -> c ZonedTime # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ZonedTime # toConstr :: ZonedTime -> Constr # dataTypeOf :: ZonedTime -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ZonedTime) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ZonedTime) # gmapT :: (forall b. Data b => b -> b) -> ZonedTime -> ZonedTime # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ZonedTime -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ZonedTime -> r # gmapQ :: (forall d. Data d => d -> u) -> ZonedTime -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ZonedTime -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ZonedTime -> m ZonedTime # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ZonedTime -> m ZonedTime # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ZonedTime -> m ZonedTime # | |
Data LocalTime | |
Defined in Data.Time.LocalTime.Internal.LocalTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LocalTime -> c LocalTime # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LocalTime # toConstr :: LocalTime -> Constr # dataTypeOf :: LocalTime -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c LocalTime) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LocalTime) # gmapT :: (forall b. Data b => b -> b) -> LocalTime -> LocalTime # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LocalTime -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LocalTime -> r # gmapQ :: (forall d. Data d => d -> u) -> LocalTime -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> LocalTime -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> LocalTime -> m LocalTime # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LocalTime -> m LocalTime # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LocalTime -> m LocalTime # | |
Data TimeOfDay | |
Defined in Data.Time.LocalTime.Internal.TimeOfDay Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TimeOfDay -> c TimeOfDay # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TimeOfDay # toConstr :: TimeOfDay -> Constr # dataTypeOf :: TimeOfDay -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TimeOfDay) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TimeOfDay) # gmapT :: (forall b. Data b => b -> b) -> TimeOfDay -> TimeOfDay # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TimeOfDay -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TimeOfDay -> r # gmapQ :: (forall d. Data d => d -> u) -> TimeOfDay -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TimeOfDay -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TimeOfDay -> m TimeOfDay # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TimeOfDay -> m TimeOfDay # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TimeOfDay -> m TimeOfDay # | |
Data TimeZone | |
Defined in Data.Time.LocalTime.Internal.TimeZone Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TimeZone -> c TimeZone # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TimeZone # toConstr :: TimeZone -> Constr # dataTypeOf :: TimeZone -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TimeZone) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TimeZone) # gmapT :: (forall b. Data b => b -> b) -> TimeZone -> TimeZone # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TimeZone -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TimeZone -> r # gmapQ :: (forall d. Data d => d -> u) -> TimeZone -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TimeZone -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TimeZone -> m TimeZone # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TimeZone -> m TimeZone # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TimeZone -> m TimeZone # | |
Data UniversalTime | |
Defined in Data.Time.Clock.Internal.UniversalTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> UniversalTime -> c UniversalTime # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c UniversalTime # toConstr :: UniversalTime -> Constr # dataTypeOf :: UniversalTime -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c UniversalTime) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c UniversalTime) # gmapT :: (forall b. Data b => b -> b) -> UniversalTime -> UniversalTime # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> UniversalTime -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> UniversalTime -> r # gmapQ :: (forall d. Data d => d -> u) -> UniversalTime -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> UniversalTime -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> UniversalTime -> m UniversalTime # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> UniversalTime -> m UniversalTime # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> UniversalTime -> m UniversalTime # | |
Data NominalDiffTime | |
Defined in Data.Time.Clock.Internal.NominalDiffTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NominalDiffTime -> c NominalDiffTime # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c NominalDiffTime # toConstr :: NominalDiffTime -> Constr # dataTypeOf :: NominalDiffTime -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c NominalDiffTime) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c NominalDiffTime) # gmapT :: (forall b. Data b => b -> b) -> NominalDiffTime -> NominalDiffTime # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NominalDiffTime -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NominalDiffTime -> r # gmapQ :: (forall d. Data d => d -> u) -> NominalDiffTime -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> NominalDiffTime -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NominalDiffTime -> m NominalDiffTime # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NominalDiffTime -> m NominalDiffTime # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NominalDiffTime -> m NominalDiffTime # | |
Data Day | |
Defined in Data.Time.Calendar.Days Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Day -> c Day # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Day # dataTypeOf :: Day -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Day) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Day) # gmapT :: (forall b. Data b => b -> b) -> Day -> Day # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Day -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Day -> r # gmapQ :: (forall d. Data d => d -> u) -> Day -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Day -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Day -> m Day # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Day -> m Day # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Day -> m Day # | |
Data UUID | |
Defined in Data.UUID.Types.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> UUID -> c UUID # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c UUID # dataTypeOf :: UUID -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c UUID) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c UUID) # gmapT :: (forall b. Data b => b -> b) -> UUID -> UUID # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> UUID -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> UUID -> r # gmapQ :: (forall d. Data d => d -> u) -> UUID -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> UUID -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> UUID -> m UUID # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> UUID -> m UUID # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> UUID -> m UUID # | |
Data Bytes Source # | |
Defined in Network.Google.Data.Bytes Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bytes -> c Bytes # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bytes # dataTypeOf :: Bytes -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Bytes) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bytes) # gmapT :: (forall b. Data b => b -> b) -> Bytes -> Bytes # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bytes -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bytes -> r # gmapQ :: (forall d. Data d => d -> u) -> Bytes -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Bytes -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bytes -> m Bytes # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bytes -> m Bytes # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bytes -> m Bytes # | |
Data Nat Source # | |
Defined in Network.Google.Data.Numeric Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Nat -> c Nat # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Nat # dataTypeOf :: Nat -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Nat) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Nat) # gmapT :: (forall b. Data b => b -> b) -> Nat -> Nat # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Nat -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Nat -> r # gmapQ :: (forall d. Data d => d -> u) -> Nat -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Nat -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Nat -> m Nat # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Nat -> m Nat # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Nat -> m Nat # | |
Data GDuration Source # | |
Defined in Network.Google.Data.Time Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> GDuration -> c GDuration # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c GDuration # toConstr :: GDuration -> Constr # dataTypeOf :: GDuration -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c GDuration) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c GDuration) # gmapT :: (forall b. Data b => b -> b) -> GDuration -> GDuration # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> GDuration -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> GDuration -> r # gmapQ :: (forall d. Data d => d -> u) -> GDuration -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> GDuration -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> GDuration -> m GDuration # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> GDuration -> m GDuration # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> GDuration -> m GDuration # | |
Data DateTime' Source # | |
Defined in Network.Google.Data.Time Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DateTime' -> c DateTime' # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DateTime' # toConstr :: DateTime' -> Constr # dataTypeOf :: DateTime' -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DateTime') # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DateTime') # gmapT :: (forall b. Data b => b -> b) -> DateTime' -> DateTime' # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DateTime' -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DateTime' -> r # gmapQ :: (forall d. Data d => d -> u) -> DateTime' -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DateTime' -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DateTime' -> m DateTime' # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DateTime' -> m DateTime' # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DateTime' -> m DateTime' # | |
Data Date' Source # | |
Defined in Network.Google.Data.Time Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Date' -> c Date' # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Date' # dataTypeOf :: Date' -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Date') # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Date') # gmapT :: (forall b. Data b => b -> b) -> Date' -> Date' # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Date' -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Date' -> r # gmapQ :: (forall d. Data d => d -> u) -> Date' -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Date' -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Date' -> m Date' # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Date' -> m Date' # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Date' -> m Date' # | |
Data Time' Source # | |
Defined in Network.Google.Data.Time Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Time' -> c Time' # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Time' # dataTypeOf :: Time' -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Time') # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Time') # gmapT :: (forall b. Data b => b -> b) -> Time' -> Time' # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Time' -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Time' -> r # gmapQ :: (forall d. Data d => d -> u) -> Time' -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Time' -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Time' -> m Time' # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Time' -> m Time' # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Time' -> m Time' # | |
Data GFieldMask Source # | |
Defined in Network.Google.Types Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> GFieldMask -> c GFieldMask # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c GFieldMask # toConstr :: GFieldMask -> Constr # dataTypeOf :: GFieldMask -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c GFieldMask) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c GFieldMask) # gmapT :: (forall b. Data b => b -> b) -> GFieldMask -> GFieldMask # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> GFieldMask -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> GFieldMask -> r # gmapQ :: (forall d. Data d => d -> u) -> GFieldMask -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> GFieldMask -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> GFieldMask -> m GFieldMask # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> GFieldMask -> m GFieldMask # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> GFieldMask -> m GFieldMask # | |
Data Seconds Source # | |
Defined in Network.Google.Types Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Seconds -> c Seconds # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Seconds # toConstr :: Seconds -> Constr # dataTypeOf :: Seconds -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Seconds) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Seconds) # gmapT :: (forall b. Data b => b -> b) -> Seconds -> Seconds # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Seconds -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Seconds -> r # gmapQ :: (forall d. Data d => d -> u) -> Seconds -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Seconds -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Seconds -> m Seconds # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Seconds -> m Seconds # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Seconds -> m Seconds # | |
Data a => Data [a] | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> [a] -> c [a] # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c [a] # dataTypeOf :: [a] -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c [a]) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c [a]) # gmapT :: (forall b. Data b => b -> b) -> [a] -> [a] # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> [a] -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> [a] -> r # gmapQ :: (forall d. Data d => d -> u) -> [a] -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> [a] -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> [a] -> m [a] # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> [a] -> m [a] # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> [a] -> m [a] # | |
Data a => Data (Maybe a) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Maybe a -> c (Maybe a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Maybe a) # toConstr :: Maybe a -> Constr # dataTypeOf :: Maybe a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Maybe a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Maybe a)) # gmapT :: (forall b. Data b => b -> b) -> Maybe a -> Maybe a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r # gmapQ :: (forall d. Data d => d -> u) -> Maybe a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Maybe a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # | |
(Data a, Integral a) => Data (Ratio a) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ratio a -> c (Ratio a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ratio a) # toConstr :: Ratio a -> Constr # dataTypeOf :: Ratio a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Ratio a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ratio a)) # gmapT :: (forall b. Data b => b -> b) -> Ratio a -> Ratio a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ratio a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ratio a -> r # gmapQ :: (forall d. Data d => d -> u) -> Ratio a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ratio a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) # | |
Data a => Data (Ptr a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ptr a -> c (Ptr a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ptr a) # dataTypeOf :: Ptr a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Ptr a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ptr a)) # gmapT :: (forall b. Data b => b -> b) -> Ptr a -> Ptr a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ptr a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ptr a -> r # gmapQ :: (forall d. Data d => d -> u) -> Ptr a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ptr a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) # | |
Data p => Data (Par1 p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Par1 p -> c (Par1 p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Par1 p) # toConstr :: Par1 p -> Constr # dataTypeOf :: Par1 p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Par1 p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Par1 p)) # gmapT :: (forall b. Data b => b -> b) -> Par1 p -> Par1 p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Par1 p -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Par1 p -> r # gmapQ :: (forall d. Data d => d -> u) -> Par1 p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Par1 p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Par1 p -> m (Par1 p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Par1 p -> m (Par1 p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Par1 p -> m (Par1 p) # | |
Data a => Data (ForeignPtr a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ForeignPtr a -> c (ForeignPtr a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ForeignPtr a) # toConstr :: ForeignPtr a -> Constr # dataTypeOf :: ForeignPtr a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ForeignPtr a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ForeignPtr a)) # gmapT :: (forall b. Data b => b -> b) -> ForeignPtr a -> ForeignPtr a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ForeignPtr a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ForeignPtr a -> r # gmapQ :: (forall d. Data d => d -> u) -> ForeignPtr a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ForeignPtr a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ForeignPtr a -> m (ForeignPtr a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignPtr a -> m (ForeignPtr a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignPtr a -> m (ForeignPtr a) # | |
Data a => Data (Complex a) | Since: base-2.1 |
Defined in Data.Complex Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Complex a -> c (Complex a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Complex a) # toConstr :: Complex a -> Constr # dataTypeOf :: Complex a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Complex a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Complex a)) # gmapT :: (forall b. Data b => b -> b) -> Complex a -> Complex a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Complex a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Complex a -> r # gmapQ :: (forall d. Data d => d -> u) -> Complex a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Complex a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Complex a -> m (Complex a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Complex a -> m (Complex a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Complex a -> m (Complex a) # | |
Typeable a => Data (Fixed a) | Since: base-4.1.0.0 |
Defined in Data.Fixed Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Fixed a -> c (Fixed a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Fixed a) # toConstr :: Fixed a -> Constr # dataTypeOf :: Fixed a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Fixed a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Fixed a)) # gmapT :: (forall b. Data b => b -> b) -> Fixed a -> Fixed a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Fixed a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Fixed a -> r # gmapQ :: (forall d. Data d => d -> u) -> Fixed a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Fixed a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Fixed a -> m (Fixed a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixed a -> m (Fixed a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixed a -> m (Fixed a) # | |
Data a => Data (Min a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Min a -> c (Min a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Min a) # dataTypeOf :: Min a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Min a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Min a)) # gmapT :: (forall b. Data b => b -> b) -> Min a -> Min a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Min a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Min a -> r # gmapQ :: (forall d. Data d => d -> u) -> Min a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Min a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Min a -> m (Min a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Min a -> m (Min a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Min a -> m (Min a) # | |
Data a => Data (Max a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Max a -> c (Max a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Max a) # dataTypeOf :: Max a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Max a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Max a)) # gmapT :: (forall b. Data b => b -> b) -> Max a -> Max a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Max a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Max a -> r # gmapQ :: (forall d. Data d => d -> u) -> Max a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Max a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Max a -> m (Max a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Max a -> m (Max a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Max a -> m (Max a) # | |
Data a => Data (First a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> First a -> c (First a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (First a) # toConstr :: First a -> Constr # dataTypeOf :: First a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (First a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (First a)) # gmapT :: (forall b. Data b => b -> b) -> First a -> First a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r # gmapQ :: (forall d. Data d => d -> u) -> First a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> First a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> First a -> m (First a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) # | |
Data a => Data (Last a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Last a -> c (Last a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Last a) # toConstr :: Last a -> Constr # dataTypeOf :: Last a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Last a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Last a)) # gmapT :: (forall b. Data b => b -> b) -> Last a -> Last a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r # gmapQ :: (forall d. Data d => d -> u) -> Last a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Last a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # | |
Data m => Data (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> WrappedMonoid m -> c (WrappedMonoid m) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (WrappedMonoid m) # toConstr :: WrappedMonoid m -> Constr # dataTypeOf :: WrappedMonoid m -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (WrappedMonoid m)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (WrappedMonoid m)) # gmapT :: (forall b. Data b => b -> b) -> WrappedMonoid m -> WrappedMonoid m # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonoid m -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonoid m -> r # gmapQ :: (forall d. Data d => d -> u) -> WrappedMonoid m -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> WrappedMonoid m -> u # gmapM :: Monad m0 => (forall d. Data d => d -> m0 d) -> WrappedMonoid m -> m0 (WrappedMonoid m) # gmapMp :: MonadPlus m0 => (forall d. Data d => d -> m0 d) -> WrappedMonoid m -> m0 (WrappedMonoid m) # gmapMo :: MonadPlus m0 => (forall d. Data d => d -> m0 d) -> WrappedMonoid m -> m0 (WrappedMonoid m) # | |
Data a => Data (Option a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Option a -> c (Option a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Option a) # toConstr :: Option a -> Constr # dataTypeOf :: Option a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Option a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Option a)) # gmapT :: (forall b. Data b => b -> b) -> Option a -> Option a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Option a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Option a -> r # gmapQ :: (forall d. Data d => d -> u) -> Option a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Option a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Option a -> m (Option a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Option a -> m (Option a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Option a -> m (Option a) # | |
Data a => Data (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Identity a -> c (Identity a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Identity a) # toConstr :: Identity a -> Constr # dataTypeOf :: Identity a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Identity a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Identity a)) # gmapT :: (forall b. Data b => b -> b) -> Identity a -> Identity a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Identity a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Identity a -> r # gmapQ :: (forall d. Data d => d -> u) -> Identity a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Identity a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Identity a -> m (Identity a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Identity a -> m (Identity a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Identity a -> m (Identity a) # | |
Data a => Data (First a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> First a -> c (First a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (First a) # toConstr :: First a -> Constr # dataTypeOf :: First a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (First a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (First a)) # gmapT :: (forall b. Data b => b -> b) -> First a -> First a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r # gmapQ :: (forall d. Data d => d -> u) -> First a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> First a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> First a -> m (First a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) # | |
Data a => Data (Last a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Last a -> c (Last a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Last a) # toConstr :: Last a -> Constr # dataTypeOf :: Last a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Last a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Last a)) # gmapT :: (forall b. Data b => b -> b) -> Last a -> Last a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r # gmapQ :: (forall d. Data d => d -> u) -> Last a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Last a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # | |
Data a => Data (Dual a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Dual a -> c (Dual a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Dual a) # toConstr :: Dual a -> Constr # dataTypeOf :: Dual a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Dual a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Dual a)) # gmapT :: (forall b. Data b => b -> b) -> Dual a -> Dual a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Dual a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Dual a -> r # gmapQ :: (forall d. Data d => d -> u) -> Dual a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Dual a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) # | |
Data a => Data (Sum a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Sum a -> c (Sum a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Sum a) # dataTypeOf :: Sum a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Sum a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Sum a)) # gmapT :: (forall b. Data b => b -> b) -> Sum a -> Sum a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Sum a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Sum a -> r # gmapQ :: (forall d. Data d => d -> u) -> Sum a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Sum a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) # | |
Data a => Data (Product a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Product a -> c (Product a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Product a) # toConstr :: Product a -> Constr # dataTypeOf :: Product a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Product a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Product a)) # gmapT :: (forall b. Data b => b -> b) -> Product a -> Product a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Product a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Product a -> r # gmapQ :: (forall d. Data d => d -> u) -> Product a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Product a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) # | |
Data a => Data (Down a) | Since: base-4.12.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Down a -> c (Down a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Down a) # toConstr :: Down a -> Constr # dataTypeOf :: Down a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Down a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Down a)) # gmapT :: (forall b. Data b => b -> b) -> Down a -> Down a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Down a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Down a -> r # gmapQ :: (forall d. Data d => d -> u) -> Down a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Down a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Down a -> m (Down a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Down a -> m (Down a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Down a -> m (Down a) # | |
Data a => Data (NonEmpty a) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NonEmpty a -> c (NonEmpty a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (NonEmpty a) # toConstr :: NonEmpty a -> Constr # dataTypeOf :: NonEmpty a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (NonEmpty a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (NonEmpty a)) # gmapT :: (forall b. Data b => b -> b) -> NonEmpty a -> NonEmpty a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NonEmpty a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NonEmpty a -> r # gmapQ :: (forall d. Data d => d -> u) -> NonEmpty a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> NonEmpty a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) # | |
Data ty => Data (UArray ty) | |
Defined in Basement.UArray.Base Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> UArray ty -> c (UArray ty) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (UArray ty) # toConstr :: UArray ty -> Constr # dataTypeOf :: UArray ty -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (UArray ty)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (UArray ty)) # gmapT :: (forall b. Data b => b -> b) -> UArray ty -> UArray ty # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> UArray ty -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> UArray ty -> r # gmapQ :: (forall d. Data d => d -> u) -> UArray ty -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> UArray ty -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> UArray ty -> m (UArray ty) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> UArray ty -> m (UArray ty) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> UArray ty -> m (UArray ty) # | |
Data ty => Data (Block ty) | |
Defined in Basement.Block.Base Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Block ty -> c (Block ty) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Block ty) # toConstr :: Block ty -> Constr # dataTypeOf :: Block ty -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Block ty)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Block ty)) # gmapT :: (forall b. Data b => b -> b) -> Block ty -> Block ty # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Block ty -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Block ty -> r # gmapQ :: (forall d. Data d => d -> u) -> Block ty -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Block ty -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Block ty -> m (Block ty) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Block ty -> m (Block ty) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Block ty -> m (Block ty) # | |
Data s => Data (CI s) | |
Defined in Data.CaseInsensitive.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> CI s -> c (CI s) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (CI s) # dataTypeOf :: CI s -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (CI s)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (CI s)) # gmapT :: (forall b. Data b => b -> b) -> CI s -> CI s # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> CI s -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> CI s -> r # gmapQ :: (forall d. Data d => d -> u) -> CI s -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> CI s -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> CI s -> m (CI s) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> CI s -> m (CI s) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> CI s -> m (CI s) # | |
Data a => Data (IntMap a) | |
Defined in Data.IntMap.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntMap a -> c (IntMap a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (IntMap a) # toConstr :: IntMap a -> Constr # dataTypeOf :: IntMap a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (IntMap a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (IntMap a)) # gmapT :: (forall b. Data b => b -> b) -> IntMap a -> IntMap a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntMap a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntMap a -> r # gmapQ :: (forall d. Data d => d -> u) -> IntMap a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> IntMap a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) # | |
Data vertex => Data (SCC vertex) | Since: containers-0.5.9 |
Defined in Data.Graph Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SCC vertex -> c (SCC vertex) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (SCC vertex) # toConstr :: SCC vertex -> Constr # dataTypeOf :: SCC vertex -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (SCC vertex)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (SCC vertex)) # gmapT :: (forall b. Data b => b -> b) -> SCC vertex -> SCC vertex # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SCC vertex -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SCC vertex -> r # gmapQ :: (forall d. Data d => d -> u) -> SCC vertex -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SCC vertex -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SCC vertex -> m (SCC vertex) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SCC vertex -> m (SCC vertex) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SCC vertex -> m (SCC vertex) # | |
Data a => Data (Tree a) | |
Defined in Data.Tree Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Tree a -> c (Tree a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Tree a) # toConstr :: Tree a -> Constr # dataTypeOf :: Tree a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Tree a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Tree a)) # gmapT :: (forall b. Data b => b -> b) -> Tree a -> Tree a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Tree a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Tree a -> r # gmapQ :: (forall d. Data d => d -> u) -> Tree a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Tree a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Tree a -> m (Tree a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Tree a -> m (Tree a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Tree a -> m (Tree a) # | |
Data a => Data (Seq a) | |
Defined in Data.Sequence.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Seq a -> c (Seq a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Seq a) # dataTypeOf :: Seq a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Seq a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Seq a)) # gmapT :: (forall b. Data b => b -> b) -> Seq a -> Seq a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Seq a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Seq a -> r # gmapQ :: (forall d. Data d => d -> u) -> Seq a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Seq a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) # | |
Data a => Data (ViewL a) | |
Defined in Data.Sequence.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ViewL a -> c (ViewL a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ViewL a) # toConstr :: ViewL a -> Constr # dataTypeOf :: ViewL a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ViewL a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ViewL a)) # gmapT :: (forall b. Data b => b -> b) -> ViewL a -> ViewL a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ViewL a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ViewL a -> r # gmapQ :: (forall d. Data d => d -> u) -> ViewL a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ViewL a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ViewL a -> m (ViewL a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ViewL a -> m (ViewL a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ViewL a -> m (ViewL a) # | |
Data a => Data (ViewR a) | |
Defined in Data.Sequence.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ViewR a -> c (ViewR a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ViewR a) # toConstr :: ViewR a -> Constr # dataTypeOf :: ViewR a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ViewR a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ViewR a)) # gmapT :: (forall b. Data b => b -> b) -> ViewR a -> ViewR a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ViewR a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ViewR a -> r # gmapQ :: (forall d. Data d => d -> u) -> ViewR a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ViewR a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ViewR a -> m (ViewR a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ViewR a -> m (ViewR a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ViewR a -> m (ViewR a) # | |
(Data a, Ord a) => Data (Set a) | |
Defined in Data.Set.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Set a -> c (Set a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Set a) # dataTypeOf :: Set a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Set a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Set a)) # gmapT :: (forall b. Data b => b -> b) -> Set a -> Set a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Set a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Set a -> r # gmapQ :: (forall d. Data d => d -> u) -> Set a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Set a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # | |
Data a => Data (LenientData a) | |
Defined in Web.Internal.HttpApiData Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LenientData a -> c (LenientData a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (LenientData a) # toConstr :: LenientData a -> Constr # dataTypeOf :: LenientData a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (LenientData a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (LenientData a)) # gmapT :: (forall b. Data b => b -> b) -> LenientData a -> LenientData a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LenientData a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LenientData a -> r # gmapQ :: (forall d. Data d => d -> u) -> LenientData a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> LenientData a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> LenientData a -> m (LenientData a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LenientData a -> m (LenientData a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LenientData a -> m (LenientData a) # | |
(Data a, Prim a) => Data (Vector a) | |
Defined in Data.Vector.Primitive Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Vector a -> c (Vector a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Vector a) # toConstr :: Vector a -> Constr # dataTypeOf :: Vector a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Vector a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Vector a)) # gmapT :: (forall b. Data b => b -> b) -> Vector a -> Vector a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQ :: (forall d. Data d => d -> u) -> Vector a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Vector a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # | |
(Data a, Storable a) => Data (Vector a) | |
Defined in Data.Vector.Storable Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Vector a -> c (Vector a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Vector a) # toConstr :: Vector a -> Constr # dataTypeOf :: Vector a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Vector a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Vector a)) # gmapT :: (forall b. Data b => b -> b) -> Vector a -> Vector a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQ :: (forall d. Data d => d -> u) -> Vector a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Vector a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # | |
(Data a, Unbox a) => Data (Vector a) | |
Defined in Data.Vector.Unboxed.Base Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Vector a -> c (Vector a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Vector a) # toConstr :: Vector a -> Constr # dataTypeOf :: Vector a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Vector a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Vector a)) # gmapT :: (forall b. Data b => b -> b) -> Vector a -> Vector a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQ :: (forall d. Data d => d -> u) -> Vector a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Vector a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # | |
(Data a, Eq a, Hashable a) => Data (HashSet a) | |
Defined in Data.HashSet.Base Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> HashSet a -> c (HashSet a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (HashSet a) # toConstr :: HashSet a -> Constr # dataTypeOf :: HashSet a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (HashSet a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (HashSet a)) # gmapT :: (forall b. Data b => b -> b) -> HashSet a -> HashSet a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> HashSet a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> HashSet a -> r # gmapQ :: (forall d. Data d => d -> u) -> HashSet a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> HashSet a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> HashSet a -> m (HashSet a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> HashSet a -> m (HashSet a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> HashSet a -> m (HashSet a) # | |
Data a => Data (Vector a) | |
Defined in Data.Vector Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Vector a -> c (Vector a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Vector a) # toConstr :: Vector a -> Constr # dataTypeOf :: Vector a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Vector a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Vector a)) # gmapT :: (forall b. Data b => b -> b) -> Vector a -> Vector a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQ :: (forall d. Data d => d -> u) -> Vector a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Vector a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # | |
Data mono => Data (NonNull mono) | |
Defined in Data.NonNull Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NonNull mono -> c (NonNull mono) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (NonNull mono) # toConstr :: NonNull mono -> Constr # dataTypeOf :: NonNull mono -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (NonNull mono)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (NonNull mono)) # gmapT :: (forall b. Data b => b -> b) -> NonNull mono -> NonNull mono # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NonNull mono -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NonNull mono -> r # gmapQ :: (forall d. Data d => d -> u) -> NonNull mono -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> NonNull mono -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NonNull mono -> m (NonNull mono) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NonNull mono -> m (NonNull mono) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NonNull mono -> m (NonNull mono) # | |
Typeable s => Data (MutableByteArray s) | |
Defined in Data.Primitive.ByteArray Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> MutableByteArray s -> c (MutableByteArray s) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (MutableByteArray s) # toConstr :: MutableByteArray s -> Constr # dataTypeOf :: MutableByteArray s -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (MutableByteArray s)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (MutableByteArray s)) # gmapT :: (forall b. Data b => b -> b) -> MutableByteArray s -> MutableByteArray s # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> MutableByteArray s -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> MutableByteArray s -> r # gmapQ :: (forall d. Data d => d -> u) -> MutableByteArray s -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> MutableByteArray s -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> MutableByteArray s -> m (MutableByteArray s) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> MutableByteArray s -> m (MutableByteArray s) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> MutableByteArray s -> m (MutableByteArray s) # | |
Data a => Data (SmallArray a) | |
Defined in Data.Primitive.SmallArray Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SmallArray a -> c (SmallArray a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (SmallArray a) # toConstr :: SmallArray a -> Constr # dataTypeOf :: SmallArray a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (SmallArray a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (SmallArray a)) # gmapT :: (forall b. Data b => b -> b) -> SmallArray a -> SmallArray a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SmallArray a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SmallArray a -> r # gmapQ :: (forall d. Data d => d -> u) -> SmallArray a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SmallArray a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SmallArray a -> m (SmallArray a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SmallArray a -> m (SmallArray a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SmallArray a -> m (SmallArray a) # | |
Data a => Data (Array a) | |
Defined in Data.Primitive.Array Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Array a -> c (Array a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Array a) # toConstr :: Array a -> Constr # dataTypeOf :: Array a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Array a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Array a)) # gmapT :: (forall b. Data b => b -> b) -> Array a -> Array a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Array a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Array a -> r # gmapQ :: (forall d. Data d => d -> u) -> Array a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Array a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Array a -> m (Array a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Array a -> m (Array a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Array a -> m (Array a) # | |
Data a => Data (Textual a) Source # | |
Defined in Network.Google.Data.JSON Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Textual a -> c (Textual a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Textual a) # toConstr :: Textual a -> Constr # dataTypeOf :: Textual a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Textual a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Textual a)) # gmapT :: (forall b. Data b => b -> b) -> Textual a -> Textual a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Textual a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Textual a -> r # gmapQ :: (forall d. Data d => d -> u) -> Textual a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Textual a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Textual a -> m (Textual a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Textual a -> m (Textual a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Textual a -> m (Textual a) # | |
(Data a, Data b) => Data (Either a b) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Either a b -> c (Either a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Either a b) # toConstr :: Either a b -> Constr # dataTypeOf :: Either a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Either a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Either a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Either a b -> Either a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Either a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Either a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # | |
Data p => Data (V1 p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> V1 p -> c (V1 p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (V1 p) # dataTypeOf :: V1 p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (V1 p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (V1 p)) # gmapT :: (forall b. Data b => b -> b) -> V1 p -> V1 p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> V1 p -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> V1 p -> r # gmapQ :: (forall d. Data d => d -> u) -> V1 p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> V1 p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) # | |
Data p => Data (U1 p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> U1 p -> c (U1 p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (U1 p) # dataTypeOf :: U1 p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (U1 p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (U1 p)) # gmapT :: (forall b. Data b => b -> b) -> U1 p -> U1 p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> U1 p -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> U1 p -> r # gmapQ :: (forall d. Data d => d -> u) -> U1 p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> U1 p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> U1 p -> m (U1 p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> U1 p -> m (U1 p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> U1 p -> m (U1 p) # | |
(Data a, Data b) => Data (a, b) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> (a, b) -> c (a, b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a, b) # toConstr :: (a, b) -> Constr # dataTypeOf :: (a, b) -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (a, b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (a, b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b) -> (a, b) # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a, b) -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a, b) -> r # gmapQ :: (forall d. Data d => d -> u) -> (a, b) -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (a, b) -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a, b) -> m (a, b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a, b) -> m (a, b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a, b) -> m (a, b) # | |
(Data k, Data v, Eq k, Hashable k) => Data (HashMap k v) | |
Defined in Data.HashMap.Base Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> HashMap k v -> c (HashMap k v) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (HashMap k v) # toConstr :: HashMap k v -> Constr # dataTypeOf :: HashMap k v -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (HashMap k v)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (HashMap k v)) # gmapT :: (forall b. Data b => b -> b) -> HashMap k v -> HashMap k v # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> HashMap k v -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> HashMap k v -> r # gmapQ :: (forall d. Data d => d -> u) -> HashMap k v -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> HashMap k v -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> HashMap k v -> m (HashMap k v) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> HashMap k v -> m (HashMap k v) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> HashMap k v -> m (HashMap k v) # | |
(Data k, Data a, Ord k) => Data (Map k a) | |
Defined in Data.Map.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Map k a -> c (Map k a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Map k a) # toConstr :: Map k a -> Constr # dataTypeOf :: Map k a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Map k a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Map k a)) # gmapT :: (forall b. Data b => b -> b) -> Map k a -> Map k a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Map k a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Map k a -> r # gmapQ :: (forall d. Data d => d -> u) -> Map k a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Map k a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) # | |
(Data a, Data b, Ix a) => Data (Array a b) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Array a b -> c (Array a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Array a b) # toConstr :: Array a b -> Constr # dataTypeOf :: Array a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Array a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Array a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Array a b -> Array a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Array a b -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Array a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Array a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Array a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Array a b -> m (Array a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Array a b -> m (Array a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Array a b -> m (Array a b) # | |
(Data a, Data b) => Data (Arg a b) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Arg a b -> c (Arg a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Arg a b) # toConstr :: Arg a b -> Constr # dataTypeOf :: Arg a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Arg a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Arg a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Arg a b -> Arg a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Arg a b -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Arg a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Arg a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Arg a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Arg a b -> m (Arg a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Arg a b -> m (Arg a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Arg a b -> m (Arg a b) # | |
Data t => Data (Proxy t) | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Proxy t -> c (Proxy t) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Proxy t) # toConstr :: Proxy t -> Constr # dataTypeOf :: Proxy t -> DataType # dataCast1 :: Typeable t0 => (forall d. Data d => c (t0 d)) -> Maybe (c (Proxy t)) # dataCast2 :: Typeable t0 => (forall d e. (Data d, Data e) => c (t0 d e)) -> Maybe (c (Proxy t)) # gmapT :: (forall b. Data b => b -> b) -> Proxy t -> Proxy t # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Proxy t -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Proxy t -> r # gmapQ :: (forall d. Data d => d -> u) -> Proxy t -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Proxy t -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) # | |
(Typeable f, Data (f (Cofree f a)), Data a) => Data (Cofree f a) | |
Defined in Control.Comonad.Cofree Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Cofree f a -> c (Cofree f a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Cofree f a) # toConstr :: Cofree f a -> Constr # dataTypeOf :: Cofree f a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Cofree f a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Cofree f a)) # gmapT :: (forall b. Data b => b -> b) -> Cofree f a -> Cofree f a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Cofree f a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Cofree f a -> r # gmapQ :: (forall d. Data d => d -> u) -> Cofree f a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Cofree f a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Cofree f a -> m (Cofree f a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Cofree f a -> m (Cofree f a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Cofree f a -> m (Cofree f a) # | |
(Typeable f, Data (f (Free f a)), Data a) => Data (Free f a) | |
Defined in Control.Monad.Free Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Free f a -> c (Free f a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Free f a) # toConstr :: Free f a -> Constr # dataTypeOf :: Free f a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Free f a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Free f a)) # gmapT :: (forall b. Data b => b -> b) -> Free f a -> Free f a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Free f a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Free f a -> r # gmapQ :: (forall d. Data d => d -> u) -> Free f a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Free f a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Free f a -> m (Free f a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Free f a -> m (Free f a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Free f a -> m (Free f a) # | |
(Typeable s, Typeable a) => Data (SmallMutableArray s a) | |
Defined in Data.Primitive.SmallArray Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SmallMutableArray s a -> c (SmallMutableArray s a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (SmallMutableArray s a) # toConstr :: SmallMutableArray s a -> Constr # dataTypeOf :: SmallMutableArray s a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (SmallMutableArray s a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (SmallMutableArray s a)) # gmapT :: (forall b. Data b => b -> b) -> SmallMutableArray s a -> SmallMutableArray s a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SmallMutableArray s a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SmallMutableArray s a -> r # gmapQ :: (forall d. Data d => d -> u) -> SmallMutableArray s a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SmallMutableArray s a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SmallMutableArray s a -> m (SmallMutableArray s a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SmallMutableArray s a -> m (SmallMutableArray s a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SmallMutableArray s a -> m (SmallMutableArray s a) # | |
(Typeable s, Typeable a) => Data (MutableArray s a) | |
Defined in Data.Primitive.Array Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> MutableArray s a -> c (MutableArray s a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (MutableArray s a) # toConstr :: MutableArray s a -> Constr # dataTypeOf :: MutableArray s a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (MutableArray s a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (MutableArray s a)) # gmapT :: (forall b. Data b => b -> b) -> MutableArray s a -> MutableArray s a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> MutableArray s a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> MutableArray s a -> r # gmapQ :: (forall d. Data d => d -> u) -> MutableArray s a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> MutableArray s a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> MutableArray s a -> m (MutableArray s a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> MutableArray s a -> m (MutableArray s a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> MutableArray s a -> m (MutableArray s a) # | |
(Data (f p), Typeable f, Data p) => Data (Rec1 f p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Rec1 f p -> c (Rec1 f p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Rec1 f p) # toConstr :: Rec1 f p -> Constr # dataTypeOf :: Rec1 f p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Rec1 f p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Rec1 f p)) # gmapT :: (forall b. Data b => b -> b) -> Rec1 f p -> Rec1 f p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Rec1 f p -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Rec1 f p -> r # gmapQ :: (forall d. Data d => d -> u) -> Rec1 f p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Rec1 f p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Rec1 f p -> m (Rec1 f p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Rec1 f p -> m (Rec1 f p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Rec1 f p -> m (Rec1 f p) # | |
(Data a, Data b, Data c) => Data (a, b, c) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c0 (d -> b0) -> d -> c0 b0) -> (forall g. g -> c0 g) -> (a, b, c) -> c0 (a, b, c) # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c) # toConstr :: (a, b, c) -> Constr # dataTypeOf :: (a, b, c) -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (a, b, c)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (a, b, c)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c) -> (a, b, c) # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a, b, c) -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a, b, c) -> r # gmapQ :: (forall d. Data d => d -> u) -> (a, b, c) -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (a, b, c) -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a, b, c) -> m (a, b, c) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a, b, c) -> m (a, b, c) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a, b, c) -> m (a, b, c) # | |
(Typeable k, Data a, Typeable b) => Data (Const a b) | Since: base-4.10.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Const a b -> c (Const a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Const a b) # toConstr :: Const a b -> Constr # dataTypeOf :: Const a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Const a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Const a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Const a b -> Const a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Const a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Const a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # | |
(Data (f a), Data a, Typeable f) => Data (Ap f a) | Since: base-4.12.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ap f a -> c (Ap f a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ap f a) # toConstr :: Ap f a -> Constr # dataTypeOf :: Ap f a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Ap f a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ap f a)) # gmapT :: (forall b. Data b => b -> b) -> Ap f a -> Ap f a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ap f a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ap f a -> r # gmapQ :: (forall d. Data d => d -> u) -> Ap f a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ap f a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ap f a -> m (Ap f a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ap f a -> m (Ap f a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ap f a -> m (Ap f a) # | |
(Data (f a), Data a, Typeable f) => Data (Alt f a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Alt f a -> c (Alt f a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Alt f a) # toConstr :: Alt f a -> Constr # dataTypeOf :: Alt f a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Alt f a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Alt f a)) # gmapT :: (forall b. Data b => b -> b) -> Alt f a -> Alt f a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Alt f a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Alt f a -> r # gmapQ :: (forall d. Data d => d -> u) -> Alt f a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Alt f a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Alt f a -> m (Alt f a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Alt f a -> m (Alt f a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Alt f a -> m (Alt f a) # | |
(Coercible a b, Data a, Data b) => Data (Coercion a b) | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Coercion a b -> c (Coercion a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Coercion a b) # toConstr :: Coercion a b -> Constr # dataTypeOf :: Coercion a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Coercion a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Coercion a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Coercion a b -> Coercion a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Coercion a b -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Coercion a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Coercion a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Coercion a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Coercion a b -> m (Coercion a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Coercion a b -> m (Coercion a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Coercion a b -> m (Coercion a b) # | |
(a ~ b, Data a) => Data (a :~: b) | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> (a :~: b) -> c (a :~: b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a :~: b) # toConstr :: (a :~: b) -> Constr # dataTypeOf :: (a :~: b) -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (a :~: b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (a :~: b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a :~: b) -> a :~: b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a :~: b) -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a :~: b) -> r # gmapQ :: (forall d. Data d => d -> u) -> (a :~: b) -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (a :~: b) -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) # | |
(Typeable f, Typeable a, Typeable b, Data a, Data (f b), Data b) => Data (CofreeF f a b) | |
Defined in Control.Comonad.Trans.Cofree Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> CofreeF f a b -> c (CofreeF f a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (CofreeF f a b) # toConstr :: CofreeF f a b -> Constr # dataTypeOf :: CofreeF f a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (CofreeF f a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (CofreeF f a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> CofreeF f a b -> CofreeF f a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> CofreeF f a b -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> CofreeF f a b -> r # gmapQ :: (forall d. Data d => d -> u) -> CofreeF f a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> CofreeF f a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> CofreeF f a b -> m (CofreeF f a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> CofreeF f a b -> m (CofreeF f a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> CofreeF f a b -> m (CofreeF f a b) # | |
(Typeable f, Typeable w, Typeable a, Data (w (CofreeF f a (CofreeT f w a))), Data a) => Data (CofreeT f w a) | |
Defined in Control.Comonad.Trans.Cofree Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> CofreeT f w a -> c (CofreeT f w a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (CofreeT f w a) # toConstr :: CofreeT f w a -> Constr # dataTypeOf :: CofreeT f w a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (CofreeT f w a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (CofreeT f w a)) # gmapT :: (forall b. Data b => b -> b) -> CofreeT f w a -> CofreeT f w a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> CofreeT f w a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> CofreeT f w a -> r # gmapQ :: (forall d. Data d => d -> u) -> CofreeT f w a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> CofreeT f w a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> CofreeT f w a -> m (CofreeT f w a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> CofreeT f w a -> m (CofreeT f w a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> CofreeT f w a -> m (CofreeT f w a) # | |
(Data s, Data b) => Data (Tagged s b) | |
Defined in Data.Tagged Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Tagged s b -> c (Tagged s b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Tagged s b) # toConstr :: Tagged s b -> Constr # dataTypeOf :: Tagged s b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Tagged s b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Tagged s b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Tagged s b -> Tagged s b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Tagged s b -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Tagged s b -> r # gmapQ :: (forall d. Data d => d -> u) -> Tagged s b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Tagged s b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Tagged s b -> m (Tagged s b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Tagged s b -> m (Tagged s b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Tagged s b -> m (Tagged s b) # | |
(Typeable i, Data p, Data c) => Data (K1 i c p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c0 (d -> b) -> d -> c0 b) -> (forall g. g -> c0 g) -> K1 i c p -> c0 (K1 i c p) # gunfold :: (forall b r. Data b => c0 (b -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (K1 i c p) # toConstr :: K1 i c p -> Constr # dataTypeOf :: K1 i c p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (K1 i c p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (K1 i c p)) # gmapT :: (forall b. Data b => b -> b) -> K1 i c p -> K1 i c p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> K1 i c p -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> K1 i c p -> r # gmapQ :: (forall d. Data d => d -> u) -> K1 i c p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> K1 i c p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> K1 i c p -> m (K1 i c p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> K1 i c p -> m (K1 i c p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> K1 i c p -> m (K1 i c p) # | |
(Typeable f, Typeable g, Data p, Data (f p), Data (g p)) => Data ((f :+: g) p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (f :+: g) p -> c ((f :+: g) p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :+: g) p) # toConstr :: (f :+: g) p -> Constr # dataTypeOf :: (f :+: g) p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ((f :+: g) p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :+: g) p)) # gmapT :: (forall b. Data b => b -> b) -> (f :+: g) p -> (f :+: g) p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :+: g) p -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :+: g) p -> r # gmapQ :: (forall d. Data d => d -> u) -> (f :+: g) p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :+: g) p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) # | |
(Typeable f, Typeable g, Data p, Data (f p), Data (g p)) => Data ((f :*: g) p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (f :*: g) p -> c ((f :*: g) p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :*: g) p) # toConstr :: (f :*: g) p -> Constr # dataTypeOf :: (f :*: g) p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ((f :*: g) p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :*: g) p)) # gmapT :: (forall b. Data b => b -> b) -> (f :*: g) p -> (f :*: g) p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :*: g) p -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :*: g) p -> r # gmapQ :: (forall d. Data d => d -> u) -> (f :*: g) p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :*: g) p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) # | |
(Data a, Data b, Data c, Data d) => Data (a, b, c, d) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d0 b0. Data d0 => c0 (d0 -> b0) -> d0 -> c0 b0) -> (forall g. g -> c0 g) -> (a, b, c, d) -> c0 (a, b, c, d) # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c, d) # toConstr :: (a, b, c, d) -> Constr # dataTypeOf :: (a, b, c, d) -> DataType # dataCast1 :: Typeable t => (forall d0. Data d0 => c0 (t d0)) -> Maybe (c0 (a, b, c, d)) # dataCast2 :: Typeable t => (forall d0 e. (Data d0, Data e) => c0 (t d0 e)) -> Maybe (c0 (a, b, c, d)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c, d) -> (a, b, c, d) # gmapQl :: (r -> r' -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d) -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d) -> r # gmapQ :: (forall d0. Data d0 => d0 -> u) -> (a, b, c, d) -> [u] # gmapQi :: Int -> (forall d0. Data d0 => d0 -> u) -> (a, b, c, d) -> u # gmapM :: Monad m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d) -> m (a, b, c, d) # gmapMp :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d) -> m (a, b, c, d) # gmapMo :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d) -> m (a, b, c, d) # | |
(Typeable a, Typeable f, Typeable g, Typeable k, Data (f a), Data (g a)) => Data (Product f g a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> Product f g a -> c (Product f g a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Product f g a) # toConstr :: Product f g a -> Constr # dataTypeOf :: Product f g a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Product f g a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Product f g a)) # gmapT :: (forall b. Data b => b -> b) -> Product f g a -> Product f g a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Product f g a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Product f g a -> r # gmapQ :: (forall d. Data d => d -> u) -> Product f g a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Product f g a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Product f g a -> m (Product f g a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Product f g a -> m (Product f g a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Product f g a -> m (Product f g a) # | |
(Typeable a, Typeable f, Typeable g, Typeable k, Data (f a), Data (g a)) => Data (Sum f g a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Sum Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> Sum f g a -> c (Sum f g a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Sum f g a) # toConstr :: Sum f g a -> Constr # dataTypeOf :: Sum f g a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Sum f g a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Sum f g a)) # gmapT :: (forall b. Data b => b -> b) -> Sum f g a -> Sum f g a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Sum f g a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Sum f g a -> r # gmapQ :: (forall d. Data d => d -> u) -> Sum f g a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Sum f g a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Sum f g a -> m (Sum f g a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum f g a -> m (Sum f g a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum f g a -> m (Sum f g a) # | |
(Typeable i, Typeable j, Typeable a, Typeable b, a ~~ b) => Data (a :~~: b) | Since: base-4.10.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> (a :~~: b) -> c (a :~~: b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a :~~: b) # toConstr :: (a :~~: b) -> Constr # dataTypeOf :: (a :~~: b) -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (a :~~: b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (a :~~: b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a :~~: b) -> a :~~: b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a :~~: b) -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a :~~: b) -> r # gmapQ :: (forall d. Data d => d -> u) -> (a :~~: b) -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (a :~~: b) -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a :~~: b) -> m (a :~~: b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~~: b) -> m (a :~~: b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~~: b) -> m (a :~~: b) # | |
(Data p, Data (f p), Typeable c, Typeable i, Typeable f) => Data (M1 i c f p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c0 (d -> b) -> d -> c0 b) -> (forall g. g -> c0 g) -> M1 i c f p -> c0 (M1 i c f p) # gunfold :: (forall b r. Data b => c0 (b -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (M1 i c f p) # toConstr :: M1 i c f p -> Constr # dataTypeOf :: M1 i c f p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (M1 i c f p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (M1 i c f p)) # gmapT :: (forall b. Data b => b -> b) -> M1 i c f p -> M1 i c f p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> M1 i c f p -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> M1 i c f p -> r # gmapQ :: (forall d. Data d => d -> u) -> M1 i c f p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> M1 i c f p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> M1 i c f p -> m (M1 i c f p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> M1 i c f p -> m (M1 i c f p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> M1 i c f p -> m (M1 i c f p) # | |
(Typeable f, Typeable g, Data p, Data (f (g p))) => Data ((f :.: g) p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (f :.: g) p -> c ((f :.: g) p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :.: g) p) # toConstr :: (f :.: g) p -> Constr # dataTypeOf :: (f :.: g) p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ((f :.: g) p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :.: g) p)) # gmapT :: (forall b. Data b => b -> b) -> (f :.: g) p -> (f :.: g) p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :.: g) p -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :.: g) p -> r # gmapQ :: (forall d. Data d => d -> u) -> (f :.: g) p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :.: g) p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :.: g) p -> m ((f :.: g) p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :.: g) p -> m ((f :.: g) p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :.: g) p -> m ((f :.: g) p) # | |
(Data a, Data b, Data c, Data d, Data e) => Data (a, b, c, d, e) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d0 b0. Data d0 => c0 (d0 -> b0) -> d0 -> c0 b0) -> (forall g. g -> c0 g) -> (a, b, c, d, e) -> c0 (a, b, c, d, e) # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c, d, e) # toConstr :: (a, b, c, d, e) -> Constr # dataTypeOf :: (a, b, c, d, e) -> DataType # dataCast1 :: Typeable t => (forall d0. Data d0 => c0 (t d0)) -> Maybe (c0 (a, b, c, d, e)) # dataCast2 :: Typeable t => (forall d0 e0. (Data d0, Data e0) => c0 (t d0 e0)) -> Maybe (c0 (a, b, c, d, e)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c, d, e) -> (a, b, c, d, e) # gmapQl :: (r -> r' -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e) -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e) -> r # gmapQ :: (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e) -> [u] # gmapQi :: Int -> (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e) -> u # gmapM :: Monad m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e) -> m (a, b, c, d, e) # gmapMp :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e) -> m (a, b, c, d, e) # gmapMo :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e) -> m (a, b, c, d, e) # | |
(Typeable a, Typeable f, Typeable g, Typeable k1, Typeable k2, Data (f (g a))) => Data (Compose f g a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> Compose f g a -> c (Compose f g a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Compose f g a) # toConstr :: Compose f g a -> Constr # dataTypeOf :: Compose f g a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Compose f g a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Compose f g a)) # gmapT :: (forall b. Data b => b -> b) -> Compose f g a -> Compose f g a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Compose f g a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Compose f g a -> r # gmapQ :: (forall d. Data d => d -> u) -> Compose f g a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Compose f g a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Compose f g a -> m (Compose f g a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Compose f g a -> m (Compose f g a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Compose f g a -> m (Compose f g a) # | |
(Data a, Data b, Data c, Data d, Data e, Data f) => Data (a, b, c, d, e, f) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d0 b0. Data d0 => c0 (d0 -> b0) -> d0 -> c0 b0) -> (forall g. g -> c0 g) -> (a, b, c, d, e, f) -> c0 (a, b, c, d, e, f) # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c, d, e, f) # toConstr :: (a, b, c, d, e, f) -> Constr # dataTypeOf :: (a, b, c, d, e, f) -> DataType # dataCast1 :: Typeable t => (forall d0. Data d0 => c0 (t d0)) -> Maybe (c0 (a, b, c, d, e, f)) # dataCast2 :: Typeable t => (forall d0 e0. (Data d0, Data e0) => c0 (t d0 e0)) -> Maybe (c0 (a, b, c, d, e, f)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) # gmapQl :: (r -> r' -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e, f) -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e, f) -> r # gmapQ :: (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e, f) -> [u] # gmapQi :: Int -> (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e, f) -> u # gmapM :: Monad m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f) -> m (a, b, c, d, e, f) # gmapMp :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f) -> m (a, b, c, d, e, f) # gmapMo :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f) -> m (a, b, c, d, e, f) # | |
(Data a, Data b, Data c, Data d, Data e, Data f, Data g) => Data (a, b, c, d, e, f, g) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d0 b0. Data d0 => c0 (d0 -> b0) -> d0 -> c0 b0) -> (forall g0. g0 -> c0 g0) -> (a, b, c, d, e, f, g) -> c0 (a, b, c, d, e, f, g) # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c, d, e, f, g) # toConstr :: (a, b, c, d, e, f, g) -> Constr # dataTypeOf :: (a, b, c, d, e, f, g) -> DataType # dataCast1 :: Typeable t => (forall d0. Data d0 => c0 (t d0)) -> Maybe (c0 (a, b, c, d, e, f, g)) # dataCast2 :: Typeable t => (forall d0 e0. (Data d0, Data e0) => c0 (t d0 e0)) -> Maybe (c0 (a, b, c, d, e, f, g)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) # gmapQl :: (r -> r' -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e, f, g) -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e, f, g) -> r # gmapQ :: (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e, f, g) -> [u] # gmapQi :: Int -> (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e, f, g) -> u # gmapM :: Monad m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f, g) -> m (a, b, c, d, e, f, g) # gmapMp :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f, g) -> m (a, b, c, d, e, f, g) # gmapMo :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f, g) -> m (a, b, c, d, e, f, g) # |
class Functor (f :: Type -> Type) where #
The Functor
class is used for types that can be mapped over.
Instances of Functor
should satisfy the following laws:
fmap id == id fmap (f . g) == fmap f . fmap g
The instances of Functor
for lists, Maybe
and IO
satisfy these laws.
Minimal complete definition
Instances
Basic numeric class.
The Haskell Report defines no laws for Num
. However, '(+)' and '(*)' are
customarily expected to define a ring and have the following properties:
- Associativity of (+)
(x + y) + z
=x + (y + z)
- Commutativity of (+)
x + y
=y + x
fromInteger 0
is the additive identityx + fromInteger 0
=x
negate
gives the additive inversex + negate x
=fromInteger 0
- Associativity of (*)
(x * y) * z
=x * (y * z)
fromInteger 1
is the multiplicative identityx * fromInteger 1
=x
andfromInteger 1 * x
=x
- Distributivity of (*) with respect to (+)
a * (b + c)
=(a * b) + (a * c)
and(b + c) * a
=(b * a) + (c * a)
Note that it isn't customarily expected that a type instance of both Num
and Ord
implement an ordered ring. Indeed, in base
only Integer
and
Rational
do.
Methods
Unary negation.
Absolute value.
Sign of a number.
The functions abs
and signum
should satisfy the law:
abs x * signum x == x
For real numbers, the signum
is either -1
(negative), 0
(zero)
or 1
(positive).
fromInteger :: Integer -> a #
Conversion from an Integer
.
An integer literal represents the application of the function
fromInteger
to the appropriate value of type Integer
,
so such literals have type (
.Num
a) => a
Instances
The Ord
class is used for totally ordered datatypes.
Instances of Ord
can be derived for any user-defined datatype whose
constituent types are in Ord
. The declared order of the constructors in
the data declaration determines the ordering in derived Ord
instances. The
Ordering
datatype allows a single comparison to determine the precise
ordering of two objects.
The Haskell Report defines no laws for Ord
. However, <=
is customarily
expected to implement a non-strict partial order and have the following
properties:
- Transitivity
- if
x <= y && y <= z
=True
, thenx <= z
=True
- Reflexivity
x <= x
=True
- Antisymmetry
- if
x <= y && y <= x
=True
, thenx == y
=True
Note that the following operator interactions are expected to hold:
x >= y
=y <= x
x < y
=x <= y && x /= y
x > y
=y < x
x < y
=compare x y == LT
x > y
=compare x y == GT
x == y
=compare x y == EQ
min x y == if x <= y then x else y
=True
max x y == if x >= y then x else y
=True
Minimal complete definition: either compare
or <=
.
Using compare
can be more efficient for complex types.
Methods
compare :: a -> a -> Ordering #
(<) :: a -> a -> Bool infix 4 #
(<=) :: a -> a -> Bool infix 4 #
(>) :: a -> a -> Bool infix 4 #
Instances
Parsing of String
s, producing values.
Derived instances of Read
make the following assumptions, which
derived instances of Show
obey:
- If the constructor is defined to be an infix operator, then the
derived
Read
instance will parse only infix applications of the constructor (not the prefix form). - Associativity is not used to reduce the occurrence of parentheses, although precedence may be.
- If the constructor is defined using record syntax, the derived
Read
will parse only the record-syntax form, and furthermore, the fields must be given in the same order as the original declaration. - The derived
Read
instance allows arbitrary Haskell whitespace between tokens of the input string. Extra parentheses are also allowed.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Read
in Haskell 2010 is equivalent to
instance (Read a) => Read (Tree a) where readsPrec d r = readParen (d > app_prec) (\r -> [(Leaf m,t) | ("Leaf",s) <- lex r, (m,t) <- readsPrec (app_prec+1) s]) r ++ readParen (d > up_prec) (\r -> [(u:^:v,w) | (u,s) <- readsPrec (up_prec+1) r, (":^:",t) <- lex s, (v,w) <- readsPrec (up_prec+1) t]) r where app_prec = 10 up_prec = 5
Note that right-associativity of :^:
is unused.
The derived instance in GHC is equivalent to
instance (Read a) => Read (Tree a) where readPrec = parens $ (prec app_prec $ do Ident "Leaf" <- lexP m <- step readPrec return (Leaf m)) +++ (prec up_prec $ do u <- step readPrec Symbol ":^:" <- lexP v <- step readPrec return (u :^: v)) where app_prec = 10 up_prec = 5 readListPrec = readListPrecDefault
Why do both readsPrec
and readPrec
exist, and why does GHC opt to
implement readPrec
in derived Read
instances instead of readsPrec
?
The reason is that readsPrec
is based on the ReadS
type, and although
ReadS
is mentioned in the Haskell 2010 Report, it is not a very efficient
parser data structure.
readPrec
, on the other hand, is based on a much more efficient ReadPrec
datatype (a.k.a "new-style parsers"), but its definition relies on the use
of the RankNTypes
language extension. Therefore, readPrec
(and its
cousin, readListPrec
) are marked as GHC-only. Nevertheless, it is
recommended to use readPrec
instead of readsPrec
whenever possible
for the efficiency improvements it brings.
As mentioned above, derived Read
instances in GHC will implement
readPrec
instead of readsPrec
. The default implementations of
readsPrec
(and its cousin, readList
) will simply use readPrec
under
the hood. If you are writing a Read
instance by hand, it is recommended
to write it like so:
instanceRead
T wherereadPrec
= ...readListPrec
=readListPrecDefault
Methods
Arguments
:: Int | the operator precedence of the enclosing
context (a number from |
-> ReadS a |
attempts to parse a value from the front of the string, returning a list of (parsed value, remaining string) pairs. If there is no successful parse, the returned list is empty.
Derived instances of Read
and Show
satisfy the following:
That is, readsPrec
parses the string produced by
showsPrec
, and delivers the value that
showsPrec
started with.
Instances
Read Bool | Since: base-2.1 |
Read Char | Since: base-2.1 |
Read Double | Since: base-2.1 |
Read Float | Since: base-2.1 |
Read Int | Since: base-2.1 |
Read Int8 | Since: base-2.1 |
Read Int16 | Since: base-2.1 |
Read Int32 | Since: base-2.1 |
Read Int64 | Since: base-2.1 |
Read Integer | Since: base-2.1 |
Read Natural | Since: base-4.8.0.0 |
Read Ordering | Since: base-2.1 |
Read Word | Since: base-4.5.0.0 |
Read Word8 | Since: base-2.1 |
Read Word16 | Since: base-2.1 |
Read Word32 | Since: base-2.1 |
Read Word64 | Since: base-2.1 |
Read () | Since: base-2.1 |
Read Version | Since: base-2.1 |
Read ByteString | |
Defined in Data.ByteString.Internal Methods readsPrec :: Int -> ReadS ByteString # readList :: ReadS [ByteString] # readPrec :: ReadPrec ByteString # readListPrec :: ReadPrec [ByteString] # | |
Read ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods readsPrec :: Int -> ReadS ByteString # readList :: ReadS [ByteString] # readPrec :: ReadPrec ByteString # readListPrec :: ReadPrec [ByteString] # | |
Read Scientific | Supports the skipping of parentheses and whitespaces. Example: > read " ( (( -1.0e+3 ) ))" :: Scientific -1000.0 (Note: This |
Defined in Data.Scientific Methods readsPrec :: Int -> ReadS Scientific # readList :: ReadS [Scientific] # readPrec :: ReadPrec Scientific # readListPrec :: ReadPrec [Scientific] # | |
Read Value | |
Read DotNetTime | |
Defined in Data.Aeson.Types.Internal Methods readsPrec :: Int -> ReadS DotNetTime # readList :: ReadS [DotNetTime] # readPrec :: ReadPrec DotNetTime # readListPrec :: ReadPrec [DotNetTime] # | |
Read Void | Reading a Since: base-4.8.0.0 |
Read ExitCode | |
Read All | Since: base-2.1 |
Read Any | Since: base-2.1 |
Read Fixity | Since: base-4.6.0.0 |
Read Associativity | Since: base-4.6.0.0 |
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS Associativity # readList :: ReadS [Associativity] # | |
Read SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS SourceUnpackedness # readList :: ReadS [SourceUnpackedness] # | |
Read SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS SourceStrictness # readList :: ReadS [SourceStrictness] # | |
Read DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS DecidedStrictness # readList :: ReadS [DecidedStrictness] # | |
Read SomeSymbol | Since: base-4.7.0.0 |
Defined in GHC.TypeLits Methods readsPrec :: Int -> ReadS SomeSymbol # readList :: ReadS [SomeSymbol] # readPrec :: ReadPrec SomeSymbol # readListPrec :: ReadPrec [SomeSymbol] # | |
Read SomeNat | Since: base-4.7.0.0 |
Read CChar | |
Read CSChar | |
Read CUChar | |
Read CShort | |
Read CUShort | |
Read CInt | |
Read CUInt | |
Read CLong | |
Read CULong | |
Read CLLong | |
Read CULLong | |
Read CBool | |
Read CFloat | |
Read CDouble | |
Read CPtrdiff | |
Read CSize | |
Read CWchar | |
Read CSigAtomic | |
Defined in Foreign.C.Types Methods readsPrec :: Int -> ReadS CSigAtomic # readList :: ReadS [CSigAtomic] # readPrec :: ReadPrec CSigAtomic # readListPrec :: ReadPrec [CSigAtomic] # | |
Read CClock | |
Read CTime | |
Read CUSeconds | |
Read CSUSeconds | |
Defined in Foreign.C.Types Methods readsPrec :: Int -> ReadS CSUSeconds # readList :: ReadS [CSUSeconds] # readPrec :: ReadPrec CSUSeconds # readListPrec :: ReadPrec [CSUSeconds] # | |
Read CIntPtr | |
Read CUIntPtr | |
Read CIntMax | |
Read CUIntMax | |
Read WordPtr | |
Read IntPtr | |
Read Lexeme | Since: base-2.1 |
Read GeneralCategory | Since: base-2.1 |
Defined in GHC.Read Methods readsPrec :: Int -> ReadS GeneralCategory # readList :: ReadS [GeneralCategory] # | |
Read IntSet | |
Read Form | |
Read Cookie | |
Read CookieJar | |
Read Proxy | |
Read StdMethod | |
Read AddrInfoFlag | |
Defined in Network.Socket.Info Methods readsPrec :: Int -> ReadS AddrInfoFlag # readList :: ReadS [AddrInfoFlag] # | |
Read NameInfoFlag | |
Defined in Network.Socket.Info Methods readsPrec :: Int -> ReadS NameInfoFlag # readList :: ReadS [NameInfoFlag] # | |
Read FPFormat | |
Read IsSecure | |
Read AcceptHeader | |
Defined in Servant.API.ContentTypes Methods readsPrec :: Int -> ReadS AcceptHeader # readList :: ReadS [AcceptHeader] # | |
Read NoContent | |
Read DatatypeVariant | |
Defined in Language.Haskell.TH.Datatype Methods readsPrec :: Int -> ReadS DatatypeVariant # readList :: ReadS [DatatypeVariant] # | |
Read UnpackedUUID | |
Read UUID | |
Read DictionaryHash | |
Read Bytes Source # | |
Read Nat Source # | |
Read GDuration Source # | |
Read DateTime' Source # | |
Read Date' Source # | |
Read Time' Source # | |
Read GFieldMask Source # | |
Defined in Network.Google.Types Methods readsPrec :: Int -> ReadS GFieldMask # readList :: ReadS [GFieldMask] # readPrec :: ReadPrec GFieldMask # readListPrec :: ReadPrec [GFieldMask] # | |
Read Seconds Source # | |
Read GSecret Source # | |
Read ServiceId Source # | |
Read ClientId Source # | |
Read RefreshToken Source # | |
Defined in Network.Google.Types Methods readsPrec :: Int -> ReadS RefreshToken # readList :: ReadS [RefreshToken] # | |
Read AccessToken Source # | |
Defined in Network.Google.Types Methods readsPrec :: Int -> ReadS AccessToken # readList :: ReadS [AccessToken] # readPrec :: ReadPrec AccessToken # readListPrec :: ReadPrec [AccessToken] # | |
Read OAuthScope Source # | |
Defined in Network.Google.Types Methods readsPrec :: Int -> ReadS OAuthScope # readList :: ReadS [OAuthScope] # readPrec :: ReadPrec OAuthScope # readListPrec :: ReadPrec [OAuthScope] # | |
Read Multipart Source # | |
Read AltMedia Source # | |
Read AltJSON Source # | |
Read a => Read [a] | Since: base-2.1 |
Read a => Read (Maybe a) | Since: base-2.1 |
(Integral a, Read a) => Read (Ratio a) | Since: base-2.1 |
Read p => Read (Par1 p) | Since: base-4.7.0.0 |
Read a => Read (Complex a) | Since: base-2.1 |
HasResolution a => Read (Fixed a) | Since: base-4.3.0.0 |
Read a => Read (Min a) | Since: base-4.9.0.0 |
Read a => Read (Max a) | Since: base-4.9.0.0 |
Read a => Read (First a) | Since: base-4.9.0.0 |
Read a => Read (Last a) | Since: base-4.9.0.0 |
Read m => Read (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods readsPrec :: Int -> ReadS (WrappedMonoid m) # readList :: ReadS [WrappedMonoid m] # readPrec :: ReadPrec (WrappedMonoid m) # readListPrec :: ReadPrec [WrappedMonoid m] # | |
Read a => Read (Option a) | Since: base-4.9.0.0 |
Read a => Read (ZipList a) | Since: base-4.7.0.0 |
Read a => Read (Identity a) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
Read a => Read (First a) | Since: base-2.1 |
Read a => Read (Last a) | Since: base-2.1 |
Read a => Read (Dual a) | Since: base-2.1 |
Read a => Read (Sum a) | Since: base-2.1 |
Read a => Read (Product a) | Since: base-2.1 |
Read a => Read (Down a) | Since: base-4.7.0.0 |
Read a => Read (NonEmpty a) | Since: base-4.11.0.0 |
(Read s, FoldCase s) => Read (CI s) | |
Read e => Read (IntMap e) | |
Read vertex => Read (SCC vertex) | Since: containers-0.5.9 |
Read a => Read (Tree a) | |
Read a => Read (Seq a) | |
Read a => Read (ViewL a) | |
Read a => Read (ViewR a) | |
(Read a, Ord a) => Read (Set a) | |
Read a => Read (DList a) | |
Read a => Read (LenientData a) | |
Defined in Web.Internal.HttpApiData Methods readsPrec :: Int -> ReadS (LenientData a) # readList :: ReadS [LenientData a] # readPrec :: ReadPrec (LenientData a) # readListPrec :: ReadPrec [LenientData a] # | |
(Read a, Prim a) => Read (Vector a) | |
(Read a, Storable a) => Read (Vector a) | |
(Eq a, Hashable a, Read a) => Read (HashSet a) | |
Read a => Read (Vector a) | |
Read mono => Read (NonNull mono) | |
Read a => Read (SmallArray a) | |
Defined in Data.Primitive.SmallArray Methods readsPrec :: Int -> ReadS (SmallArray a) # readList :: ReadS [SmallArray a] # readPrec :: ReadPrec (SmallArray a) # readListPrec :: ReadPrec [SmallArray a] # | |
Read a => Read (Array a) | |
Read a => Read (Textual a) Source # | |
(Read a, Read b) => Read (Either a b) | Since: base-3.0 |
Read (V1 p) | Since: base-4.9.0.0 |
Read (U1 p) | Since: base-4.9.0.0 |
(Read a, Read b) => Read (a, b) | Since: base-2.1 |
(Eq k, Hashable k, Read k, Read e) => Read (HashMap k e) | |
(Ord k, Read k, Read e) => Read (Map k e) | |
(Ix a, Read a, Read b) => Read (Array a b) | Since: base-2.1 |
(Read a, Read b) => Read (Arg a b) | Since: base-4.9.0.0 |
Read (Proxy t) | Since: base-4.7.0.0 |
(Read1 f, Read a) => Read (Cofree f a) | |
(Read1 f, Read a) => Read (Free f a) | |
(Functor f, Read (f a)) => Read (Yoneda f a) | |
(Read i, Read a) => Read (Level i a) | |
Read (f p) => Read (Rec1 f p) | Since: base-4.7.0.0 |
(Read a, Read b, Read c) => Read (a, b, c) | Since: base-2.1 |
Read a => Read (Const a b) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
Read (f a) => Read (Ap f a) | Since: base-4.12.0.0 |
Read (f a) => Read (Alt f a) | Since: base-4.8.0.0 |
Coercible a b => Read (Coercion a b) | Since: base-4.7.0.0 |
a ~ b => Read (a :~: b) | Since: base-4.7.0.0 |
Read (p a a) => Read (Join p a) | |
Read (p (Fix p a) a) => Read (Fix p a) | |
(Read a, Read (f b)) => Read (FreeF f a b) | |
(Read1 f, Read1 m, Read a) => Read (FreeT f m a) | |
(Read a, Read (f b)) => Read (CofreeF f a b) | |
Read (w (CofreeF f a (CofreeT f w a))) => Read (CofreeT f w a) | |
(Read e, Read1 m, Read a) => Read (ErrorT e m a) | |
Read b => Read (Tagged s b) | |
Read c => Read (K1 i c p) | Since: base-4.7.0.0 |
(Read (f p), Read (g p)) => Read ((f :+: g) p) | Since: base-4.7.0.0 |
(Read (f p), Read (g p)) => Read ((f :*: g) p) | Since: base-4.7.0.0 |
(Read a, Read b, Read c, Read d) => Read (a, b, c, d) | Since: base-2.1 |
(Read1 f, Read1 g, Read a) => Read (Product f g a) | Since: base-4.9.0.0 |
(Read1 f, Read1 g, Read a) => Read (Sum f g a) | Since: base-4.9.0.0 |
a ~~ b => Read (a :~~: b) | Since: base-4.10.0.0 |
Read (f p) => Read (M1 i c f p) | Since: base-4.7.0.0 |
Read (f (g p)) => Read ((f :.: g) p) | Since: base-4.7.0.0 |
(Read a, Read b, Read c, Read d, Read e) => Read (a, b, c, d, e) | Since: base-2.1 |
(Read1 f, Read1 g, Read a) => Read (Compose f g a) | Since: base-4.9.0.0 |
Read (p a b) => Read (WrappedBifunctor p a b) | |
Defined in Data.Bifunctor.Wrapped Methods readsPrec :: Int -> ReadS (WrappedBifunctor p a b) # readList :: ReadS [WrappedBifunctor p a b] # readPrec :: ReadPrec (WrappedBifunctor p a b) # readListPrec :: ReadPrec [WrappedBifunctor p a b] # | |
Read (g b) => Read (Joker g a b) | |
Read (p b a) => Read (Flip p a b) | |
Read (f a) => Read (Clown f a b) | |
(Read a, Read b, Read c, Read d, Read e, Read f) => Read (a, b, c, d, e, f) | Since: base-2.1 |
(Read (p a b), Read (q a b)) => Read (Sum p q a b) | |
(Read (f a b), Read (g a b)) => Read (Product f g a b) | |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g) => Read (a, b, c, d, e, f, g) | Since: base-2.1 |
Read (f (p a b)) => Read (Tannen f p a b) | |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h) => Read (a, b, c, d, e, f, g, h) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i) => Read (a, b, c, d, e, f, g, h, i) | Since: base-2.1 |
Read (p (f a) (g b)) => Read (Biff p f g a b) | |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j) => Read (a, b, c, d, e, f, g, h, i, j) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k) => Read (a, b, c, d, e, f, g, h, i, j, k) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l) => Read (a, b, c, d, e, f, g, h, i, j, k, l) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n, Read o) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | Since: base-2.1 |
Defined in GHC.Read |
class (Num a, Ord a) => Real a where #
Methods
toRational :: a -> Rational #
the rational equivalent of its real argument with full precision
Instances
class (RealFrac a, Floating a) => RealFloat a where #
Efficient, machine-independent access to the components of a floating-point number.
Minimal complete definition
floatRadix, floatDigits, floatRange, decodeFloat, encodeFloat, isNaN, isInfinite, isDenormalized, isNegativeZero, isIEEE
Methods
floatRadix :: a -> Integer #
a constant function, returning the radix of the representation
(often 2
)
floatDigits :: a -> Int #
a constant function, returning the number of digits of
floatRadix
in the significand
floatRange :: a -> (Int, Int) #
a constant function, returning the lowest and highest values the exponent may assume
decodeFloat :: a -> (Integer, Int) #
The function decodeFloat
applied to a real floating-point
number returns the significand expressed as an Integer
and an
appropriately scaled exponent (an Int
). If
yields decodeFloat
x(m,n)
, then x
is equal in value to m*b^^n
, where b
is the floating-point radix, and furthermore, either m
and n
are both zero or else b^(d-1) <=
, where abs
m < b^dd
is
the value of
.
In particular, floatDigits
x
. If the type
contains a negative zero, also decodeFloat
0 = (0,0)
.
The result of decodeFloat
(-0.0) = (0,0)
is unspecified if either of
decodeFloat
x
or isNaN
x
is isInfinite
xTrue
.
encodeFloat :: Integer -> Int -> a #
encodeFloat
performs the inverse of decodeFloat
in the
sense that for finite x
with the exception of -0.0
,
.
uncurry
encodeFloat
(decodeFloat
x) = x
is one of the two closest representable
floating-point numbers to encodeFloat
m nm*b^^n
(or ±Infinity
if overflow
occurs); usually the closer, but if m
contains too many bits,
the result may be rounded in the wrong direction.
exponent
corresponds to the second component of decodeFloat
.
and for finite nonzero exponent
0 = 0x
,
.
If exponent
x = snd (decodeFloat
x) + floatDigits
xx
is a finite floating-point number, it is equal in value to
, where significand
x * b ^^ exponent
xb
is the
floating-point radix.
The behaviour is unspecified on infinite or NaN
values.
significand :: a -> a #
The first component of decodeFloat
, scaled to lie in the open
interval (-1
,1
), either 0.0
or of absolute value >= 1/b
,
where b
is the floating-point radix.
The behaviour is unspecified on infinite or NaN
values.
scaleFloat :: Int -> a -> a #
multiplies a floating-point number by an integer power of the radix
True
if the argument is an IEEE "not-a-number" (NaN) value
isInfinite :: a -> Bool #
True
if the argument is an IEEE infinity or negative infinity
isDenormalized :: a -> Bool #
True
if the argument is too small to be represented in
normalized format
isNegativeZero :: a -> Bool #
True
if the argument is an IEEE negative zero
True
if the argument is an IEEE floating point number
a version of arctangent taking two real floating-point arguments.
For real floating x
and y
,
computes the angle
(from the positive x-axis) of the vector from the origin to the
point atan2
y x(x,y)
.
returns a value in the range [atan2
y x-pi
,
pi
]. It follows the Common Lisp semantics for the origin when
signed zeroes are supported.
, with atan2
y 1y
in a type
that is RealFloat
, should return the same value as
.
A default definition of atan
yatan2
is provided, but implementors
can provide a more accurate implementation.
Instances
class (Real a, Fractional a) => RealFrac a where #
Extracting components of fractions.
Minimal complete definition
Methods
properFraction :: Integral b => a -> (b, a) #
The function properFraction
takes a real fractional number x
and returns a pair (n,f)
such that x = n+f
, and:
n
is an integral number with the same sign asx
; andf
is a fraction with the same type and sign asx
, and with absolute value less than1
.
The default definitions of the ceiling
, floor
, truncate
and round
functions are in terms of properFraction
.
truncate :: Integral b => a -> b #
returns the integer nearest truncate
xx
between zero and x
round :: Integral b => a -> b #
returns the nearest integer to round
xx
;
the even integer if x
is equidistant between two integers
ceiling :: Integral b => a -> b #
returns the least integer not less than ceiling
xx
floor :: Integral b => a -> b #
returns the greatest integer not greater than floor
xx
Instances
RealFrac Scientific | WARNING: the methods of the |
Defined in Data.Scientific Methods properFraction :: Integral b => Scientific -> (b, Scientific) # truncate :: Integral b => Scientific -> b # round :: Integral b => Scientific -> b # ceiling :: Integral b => Scientific -> b # floor :: Integral b => Scientific -> b # | |
RealFrac Number | |
RealFrac CFloat | |
RealFrac CDouble | |
RealFrac DiffTime | |
RealFrac NominalDiffTime | |
Defined in Data.Time.Clock.Internal.NominalDiffTime Methods properFraction :: Integral b => NominalDiffTime -> (b, NominalDiffTime) # truncate :: Integral b => NominalDiffTime -> b # round :: Integral b => NominalDiffTime -> b # ceiling :: Integral b => NominalDiffTime -> b # floor :: Integral b => NominalDiffTime -> b # | |
Integral a => RealFrac (Ratio a) | Since: base-2.0.1 |
HasResolution a => RealFrac (Fixed a) | Since: base-2.1 |
RealFrac a => RealFrac (Identity a) | Since: base-4.9.0.0 |
RealFrac a => RealFrac (Const a b) | Since: base-4.9.0.0 |
RealFrac a => RealFrac (Tagged s a) | |
Conversion of values to readable String
s.
Derived instances of Show
have the following properties, which
are compatible with derived instances of Read
:
- The result of
show
is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used. - If the constructor is defined to be an infix operator, then
showsPrec
will produce infix applications of the constructor. - the representation will be enclosed in parentheses if the
precedence of the top-level constructor in
x
is less thand
(associativity is ignored). Thus, ifd
is0
then the result is never surrounded in parentheses; ifd
is11
it is always surrounded in parentheses, unless it is an atomic expression. - If the constructor is defined using record syntax, then
show
will produce the record-syntax form, with the fields given in the same order as the original declaration.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Show
is equivalent to
instance (Show a) => Show (Tree a) where showsPrec d (Leaf m) = showParen (d > app_prec) $ showString "Leaf " . showsPrec (app_prec+1) m where app_prec = 10 showsPrec d (u :^: v) = showParen (d > up_prec) $ showsPrec (up_prec+1) u . showString " :^: " . showsPrec (up_prec+1) v where up_prec = 5
Note that right-associativity of :^:
is ignored. For example,
produces the stringshow
(Leaf 1 :^: Leaf 2 :^: Leaf 3)"Leaf 1 :^: (Leaf 2 :^: Leaf 3)"
.
Methods
Arguments
:: Int | the operator precedence of the enclosing
context (a number from |
-> a | the value to be converted to a |
-> ShowS |
Convert a value to a readable String
.
showsPrec
should satisfy the law
showsPrec d x r ++ s == showsPrec d x (r ++ s)
Derived instances of Read
and Show
satisfy the following:
That is, readsPrec
parses the string produced by
showsPrec
, and delivers the value that showsPrec
started with.
Instances
The class Typeable
allows a concrete representation of a type to
be calculated.
Minimal complete definition
typeRep#
class Functor f => Applicative (f :: Type -> Type) where #
A functor with application, providing operations to
A minimal complete definition must include implementations of pure
and of either <*>
or liftA2
. If it defines both, then they must behave
the same as their default definitions:
(<*>
) =liftA2
id
liftA2
f x y = f<$>
x<*>
y
Further, any definition must satisfy the following:
- identity
pure
id
<*>
v = v- composition
pure
(.)<*>
u<*>
v<*>
w = u<*>
(v<*>
w)- homomorphism
pure
f<*>
pure
x =pure
(f x)- interchange
u
<*>
pure
y =pure
($
y)<*>
u
The other methods have the following default definitions, which may be overridden with equivalent specialized implementations:
As a consequence of these laws, the Functor
instance for f
will satisfy
It may be useful to note that supposing
forall x y. p (q x y) = f x . g y
it follows from the above that
liftA2
p (liftA2
q u v) =liftA2
f u .liftA2
g v
If f
is also a Monad
, it should satisfy
(which implies that pure
and <*>
satisfy the applicative functor laws).
Methods
Lift a value.
(<*>) :: f (a -> b) -> f a -> f b infixl 4 #
Sequential application.
A few functors support an implementation of <*>
that is more
efficient than the default one.
(*>) :: f a -> f b -> f b infixl 4 #
Sequence actions, discarding the value of the first argument.
(<*) :: f a -> f b -> f a infixl 4 #
Sequence actions, discarding the value of the second argument.
Instances
Applicative [] | Since: base-2.1 |
Applicative Maybe | Since: base-2.1 |
Applicative IO | Since: base-2.1 |
Applicative Par1 | Since: base-4.9.0.0 |
Applicative Q | |
Applicative IResult | |
Applicative Result | |
Applicative Parser | |
Applicative Complex | Since: base-4.9.0.0 |
Applicative Min | Since: base-4.9.0.0 |
Applicative Max | Since: base-4.9.0.0 |
Applicative First | Since: base-4.9.0.0 |
Applicative Last | Since: base-4.9.0.0 |
Applicative Option | Since: base-4.9.0.0 |
Applicative ZipList | f '<$>' 'ZipList' xs1 '<*>' ... '<*>' 'ZipList' xsN = 'ZipList' (zipWithN f xs1 ... xsN) where (\a b c -> stimes c [a, b]) <$> ZipList "abcd" <*> ZipList "567" <*> ZipList [1..] = ZipList (zipWith3 (\a b c -> stimes c [a, b]) "abcd" "567" [1..]) = ZipList {getZipList = ["a5","b6b6","c7c7c7"]} Since: base-2.1 |
Applicative Identity | Since: base-4.8.0.0 |
Applicative First | Since: base-4.8.0.0 |
Applicative Last | Since: base-4.8.0.0 |
Applicative Dual | Since: base-4.8.0.0 |
Applicative Sum | Since: base-4.8.0.0 |
Applicative Product | Since: base-4.8.0.0 |
Applicative Down | Since: base-4.11.0.0 |
Applicative ReadPrec | Since: base-4.6.0.0 |
Applicative ReadP | Since: base-4.6.0.0 |
Applicative NonEmpty | Since: base-4.9.0.0 |
Applicative Put | |
Applicative Tree | |
Applicative Seq | Since: containers-0.5.4 |
Applicative DList | |
Applicative Vector | |
Applicative SmallArray | |
Defined in Data.Primitive.SmallArray Methods pure :: a -> SmallArray a # (<*>) :: SmallArray (a -> b) -> SmallArray a -> SmallArray b # liftA2 :: (a -> b -> c) -> SmallArray a -> SmallArray b -> SmallArray c # (*>) :: SmallArray a -> SmallArray b -> SmallArray b # (<*) :: SmallArray a -> SmallArray b -> SmallArray a # | |
Applicative Array | |
Applicative Id | |
Applicative Box | |
Applicative Stream | |
Applicative P | Since: base-4.5.0.0 |
Applicative (Either e) | Since: base-3.0 |
Applicative (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Monoid a => Applicative ((,) a) | For tuples, the ("hello ", (+15)) <*> ("world!", 2002) ("hello world!",2017) Since: base-2.1 |
Representable f => Applicative (Co f) | |
Applicative (Parser i) | |
Monad m => Applicative (WrappedMonad m) | Since: base-2.1 |
Defined in Control.Applicative Methods pure :: a -> WrappedMonad m a # (<*>) :: WrappedMonad m (a -> b) -> WrappedMonad m a -> WrappedMonad m b # liftA2 :: (a -> b -> c) -> WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m c # (*>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b # (<*) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m a # | |
Arrow a => Applicative (ArrowMonad a) | Since: base-4.6.0.0 |
Defined in Control.Arrow Methods pure :: a0 -> ArrowMonad a a0 # (<*>) :: ArrowMonad a (a0 -> b) -> ArrowMonad a a0 -> ArrowMonad a b # liftA2 :: (a0 -> b -> c) -> ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a c # (*>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b # (<*) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a a0 # | |
Applicative (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Monad m => Applicative (ZipSource m) | |
Defined in Data.Conduit.Internal.Conduit | |
Applicative m => Applicative (ResourceT m) | |
Defined in Control.Monad.Trans.Resource.Internal | |
Alternative f => Applicative (Cofree f) | |
Functor f => Applicative (Free f) | |
Applicative f => Applicative (Yoneda f) | |
Applicative (ReifiedGetter s) | |
Defined in Control.Lens.Reified Methods pure :: a -> ReifiedGetter s a # (<*>) :: ReifiedGetter s (a -> b) -> ReifiedGetter s a -> ReifiedGetter s b # liftA2 :: (a -> b -> c) -> ReifiedGetter s a -> ReifiedGetter s b -> ReifiedGetter s c # (*>) :: ReifiedGetter s a -> ReifiedGetter s b -> ReifiedGetter s b # (<*) :: ReifiedGetter s a -> ReifiedGetter s b -> ReifiedGetter s a # | |
Applicative (ReifiedFold s) | |
Defined in Control.Lens.Reified Methods pure :: a -> ReifiedFold s a # (<*>) :: ReifiedFold s (a -> b) -> ReifiedFold s a -> ReifiedFold s b # liftA2 :: (a -> b -> c) -> ReifiedFold s a -> ReifiedFold s b -> ReifiedFold s c # (*>) :: ReifiedFold s a -> ReifiedFold s b -> ReifiedFold s b # (<*) :: ReifiedFold s a -> ReifiedFold s b -> ReifiedFold s a # | |
Applicative f => Applicative (Indexing f) | |
Defined in Control.Lens.Internal.Indexed | |
Applicative f => Applicative (Indexing64 f) | |
Defined in Control.Lens.Internal.Indexed Methods pure :: a -> Indexing64 f a # (<*>) :: Indexing64 f (a -> b) -> Indexing64 f a -> Indexing64 f b # liftA2 :: (a -> b -> c) -> Indexing64 f a -> Indexing64 f b -> Indexing64 f c # (*>) :: Indexing64 f a -> Indexing64 f b -> Indexing64 f b # (<*) :: Indexing64 f a -> Indexing64 f b -> Indexing64 f a # | |
(Applicative (Rep p), Representable p) => Applicative (Prep p) | |
Applicative (IParser t) | |
Applicative (SetM s) | |
Applicative f => Applicative (Rec1 f) | Since: base-4.9.0.0 |
Arrow a => Applicative (WrappedArrow a b) | Since: base-2.1 |
Defined in Control.Applicative Methods pure :: a0 -> WrappedArrow a b a0 # (<*>) :: WrappedArrow a b (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 # liftA2 :: (a0 -> b0 -> c) -> WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b c # (*>) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b b0 # (<*) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 # | |
Monoid m => Applicative (Const m :: Type -> Type) | Since: base-2.0.1 |
Applicative f => Applicative (Ap f) | Since: base-4.12.0.0 |
Applicative f => Applicative (Alt f) | Since: base-4.8.0.0 |
Biapplicative p => Applicative (Join p) | |
Biapplicative p => Applicative (Fix p) | |
Monad m => Applicative (ZipSink i m) | |
Defined in Data.Conduit.Internal.Conduit | |
(Applicative f, Monad f) => Applicative (WhenMissing f x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods pure :: a -> WhenMissing f x a # (<*>) :: WhenMissing f x (a -> b) -> WhenMissing f x a -> WhenMissing f x b # liftA2 :: (a -> b -> c) -> WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x c # (*>) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x b # (<*) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x a # | |
(Functor f, Monad m) => Applicative (FreeT f m) | |
Defined in Control.Monad.Trans.Free | |
(Alternative f, Applicative w) => Applicative (CofreeT f w) | |
Defined in Control.Comonad.Trans.Cofree | |
(Applicative f, Applicative g) => Applicative (Day f g) | |
(Functor m, Monad m) => Applicative (ErrorT e m) | |
Defined in Control.Monad.Trans.Error | |
Applicative (Mafic a b) | |
Defined in Control.Lens.Internal.Magma | |
Applicative (Flows i b) | This is an illegal |
Defined in Control.Lens.Internal.Level | |
Applicative (Indexed i a) | |
Defined in Control.Lens.Internal.Indexed | |
Applicative (Tagged s) | |
Applicative (Mag a b) | |
Monoid m => Applicative (Holes t m) | |
Applicative ((->) a :: Type -> Type) | Since: base-2.1 |
Monoid c => Applicative (K1 i c :: Type -> Type) | Since: base-4.12.0.0 |
(Applicative f, Applicative g) => Applicative (f :*: g) | Since: base-4.9.0.0 |
(Applicative f, Applicative g) => Applicative (Product f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product | |
Applicative (Cokleisli w a) | |
Defined in Control.Comonad Methods pure :: a0 -> Cokleisli w a a0 # (<*>) :: Cokleisli w a (a0 -> b) -> Cokleisli w a a0 -> Cokleisli w a b # liftA2 :: (a0 -> b -> c) -> Cokleisli w a a0 -> Cokleisli w a b -> Cokleisli w a c # (*>) :: Cokleisli w a a0 -> Cokleisli w a b -> Cokleisli w a b # (<*) :: Cokleisli w a a0 -> Cokleisli w a b -> Cokleisli w a a0 # | |
Applicative (ConduitT i o m) | |
Defined in Data.Conduit.Internal.Conduit Methods pure :: a -> ConduitT i o m a # (<*>) :: ConduitT i o m (a -> b) -> ConduitT i o m a -> ConduitT i o m b # liftA2 :: (a -> b -> c) -> ConduitT i o m a -> ConduitT i o m b -> ConduitT i o m c # (*>) :: ConduitT i o m a -> ConduitT i o m b -> ConduitT i o m b # (<*) :: ConduitT i o m a -> ConduitT i o m b -> ConduitT i o m a # | |
Monad m => Applicative (ZipConduit i o m) | |
Defined in Data.Conduit.Internal.Conduit Methods pure :: a -> ZipConduit i o m a # (<*>) :: ZipConduit i o m (a -> b) -> ZipConduit i o m a -> ZipConduit i o m b # liftA2 :: (a -> b -> c) -> ZipConduit i o m a -> ZipConduit i o m b -> ZipConduit i o m c # (*>) :: ZipConduit i o m a -> ZipConduit i o m b -> ZipConduit i o m b # (<*) :: ZipConduit i o m a -> ZipConduit i o m b -> ZipConduit i o m a # | |
(Monad f, Applicative f) => Applicative (WhenMatched f x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods pure :: a -> WhenMatched f x y a # (<*>) :: WhenMatched f x y (a -> b) -> WhenMatched f x y a -> WhenMatched f x y b # liftA2 :: (a -> b -> c) -> WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y c # (*>) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y b # (<*) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y a # | |
(Applicative f, Monad f) => Applicative (WhenMissing f k x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods pure :: a -> WhenMissing f k x a # (<*>) :: WhenMissing f k x (a -> b) -> WhenMissing f k x a -> WhenMissing f k x b # liftA2 :: (a -> b -> c) -> WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x c # (*>) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x b # (<*) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x a # | |
Applicative (Molten i a b) | |
Defined in Control.Lens.Internal.Magma Methods pure :: a0 -> Molten i a b a0 # (<*>) :: Molten i a b (a0 -> b0) -> Molten i a b a0 -> Molten i a b b0 # liftA2 :: (a0 -> b0 -> c) -> Molten i a b a0 -> Molten i a b b0 -> Molten i a b c # (*>) :: Molten i a b a0 -> Molten i a b b0 -> Molten i a b b0 # (<*) :: Molten i a b a0 -> Molten i a b b0 -> Molten i a b a0 # | |
Applicative (Bazaar p a b) | |
Defined in Control.Lens.Internal.Bazaar Methods pure :: a0 -> Bazaar p a b a0 # (<*>) :: Bazaar p a b (a0 -> b0) -> Bazaar p a b a0 -> Bazaar p a b b0 # liftA2 :: (a0 -> b0 -> c) -> Bazaar p a b a0 -> Bazaar p a b b0 -> Bazaar p a b c # (*>) :: Bazaar p a b a0 -> Bazaar p a b b0 -> Bazaar p a b b0 # (<*) :: Bazaar p a b a0 -> Bazaar p a b b0 -> Bazaar p a b a0 # | |
Applicative f => Applicative (M1 i c f) | Since: base-4.9.0.0 |
(Applicative f, Applicative g) => Applicative (f :.: g) | Since: base-4.9.0.0 |
(Applicative f, Applicative g) => Applicative (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose | |
(Monad f, Applicative f) => Applicative (WhenMatched f k x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods pure :: a -> WhenMatched f k x y a # (<*>) :: WhenMatched f k x y (a -> b) -> WhenMatched f k x y a -> WhenMatched f k x y b # liftA2 :: (a -> b -> c) -> WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y c # (*>) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y b # (<*) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y a # | |
Applicative (TakingWhile p f a b) | |
Defined in Control.Lens.Internal.Magma Methods pure :: a0 -> TakingWhile p f a b a0 # (<*>) :: TakingWhile p f a b (a0 -> b0) -> TakingWhile p f a b a0 -> TakingWhile p f a b b0 # liftA2 :: (a0 -> b0 -> c) -> TakingWhile p f a b a0 -> TakingWhile p f a b b0 -> TakingWhile p f a b c # (*>) :: TakingWhile p f a b a0 -> TakingWhile p f a b b0 -> TakingWhile p f a b b0 # (<*) :: TakingWhile p f a b a0 -> TakingWhile p f a b b0 -> TakingWhile p f a b a0 # | |
Applicative (BazaarT p g a b) | |
Defined in Control.Lens.Internal.Bazaar Methods pure :: a0 -> BazaarT p g a b a0 # (<*>) :: BazaarT p g a b (a0 -> b0) -> BazaarT p g a b a0 -> BazaarT p g a b b0 # liftA2 :: (a0 -> b0 -> c) -> BazaarT p g a b a0 -> BazaarT p g a b b0 -> BazaarT p g a b c # (*>) :: BazaarT p g a b a0 -> BazaarT p g a b b0 -> BazaarT p g a b b0 # (<*) :: BazaarT p g a b a0 -> BazaarT p g a b b0 -> BazaarT p g a b a0 # | |
Reifies s (ReifiedApplicative f) => Applicative (ReflectedApplicative f s) | |
Defined in Data.Reflection Methods pure :: a -> ReflectedApplicative f s a # (<*>) :: ReflectedApplicative f s (a -> b) -> ReflectedApplicative f s a -> ReflectedApplicative f s b # liftA2 :: (a -> b -> c) -> ReflectedApplicative f s a -> ReflectedApplicative f s b -> ReflectedApplicative f s c # (*>) :: ReflectedApplicative f s a -> ReflectedApplicative f s b -> ReflectedApplicative f s b # (<*) :: ReflectedApplicative f s a -> ReflectedApplicative f s b -> ReflectedApplicative f s a # | |
Monad state => Applicative (Builder collection mutCollection step state err) | |
Defined in Basement.MutableBuilder Methods pure :: a -> Builder collection mutCollection step state err a # (<*>) :: Builder collection mutCollection step state err (a -> b) -> Builder collection mutCollection step state err a -> Builder collection mutCollection step state err b # liftA2 :: (a -> b -> c) -> Builder collection mutCollection step state err a -> Builder collection mutCollection step state err b -> Builder collection mutCollection step state err c # (*>) :: Builder collection mutCollection step state err a -> Builder collection mutCollection step state err b -> Builder collection mutCollection step state err b # (<*) :: Builder collection mutCollection step state err a -> Builder collection mutCollection step state err b -> Builder collection mutCollection step state err a # | |
Monad m => Applicative (Pipe l i o u m) | |
Defined in Data.Conduit.Internal.Pipe Methods pure :: a -> Pipe l i o u m a # (<*>) :: Pipe l i o u m (a -> b) -> Pipe l i o u m a -> Pipe l i o u m b # liftA2 :: (a -> b -> c) -> Pipe l i o u m a -> Pipe l i o u m b -> Pipe l i o u m c # (*>) :: Pipe l i o u m a -> Pipe l i o u m b -> Pipe l i o u m b # (<*) :: Pipe l i o u m a -> Pipe l i o u m b -> Pipe l i o u m a # |
class Foldable (t :: Type -> Type) where #
Data structures that can be folded.
For example, given a data type
data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)
a suitable instance would be
instance Foldable Tree where foldMap f Empty = mempty foldMap f (Leaf x) = f x foldMap f (Node l k r) = foldMap f l `mappend` f k `mappend` foldMap f r
This is suitable even for abstract types, as the monoid is assumed
to satisfy the monoid laws. Alternatively, one could define foldr
:
instance Foldable Tree where foldr f z Empty = z foldr f z (Leaf x) = f x z foldr f z (Node l k r) = foldr f (f k (foldr f z r)) l
Foldable
instances are expected to satisfy the following laws:
foldr f z t = appEndo (foldMap (Endo . f) t ) z
foldl f z t = appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z
fold = foldMap id
length = getSum . foldMap (Sum . const 1)
sum
, product
, maximum
, and minimum
should all be essentially
equivalent to foldMap
forms, such as
sum = getSum . foldMap Sum
but may be less defined.
If the type is also a Functor
instance, it should satisfy
foldMap f = fold . fmap f
which implies that
foldMap f . fmap g = foldMap (f . g)
Methods
foldMap :: Monoid m => (a -> m) -> t a -> m #
Map each element of the structure to a monoid, and combine the results.
foldr :: (a -> b -> b) -> b -> t a -> b #
Right-associative fold of a structure.
In the case of lists, foldr
, when applied to a binary operator, a
starting value (typically the right-identity of the operator), and a
list, reduces the list using the binary operator, from right to left:
foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...)
Note that, since the head of the resulting expression is produced by
an application of the operator to the first element of the list,
foldr
can produce a terminating expression from an infinite list.
For a general Foldable
structure this should be semantically identical
to,
foldr f z =foldr
f z .toList
foldl :: (b -> a -> b) -> b -> t a -> b #
Left-associative fold of a structure.
In the case of lists, foldl
, when applied to a binary
operator, a starting value (typically the left-identity of the operator),
and a list, reduces the list using the binary operator, from left to
right:
foldl f z [x1, x2, ..., xn] == (...((z `f` x1) `f` x2) `f`...) `f` xn
Note that to produce the outermost application of the operator the
entire input list must be traversed. This means that foldl'
will
diverge if given an infinite list.
Also note that if you want an efficient left-fold, you probably want to
use foldl'
instead of foldl
. The reason for this is that latter does
not force the "inner" results (e.g. z
in the above example)
before applying them to the operator (e.g. to f
x1(
). This results
in a thunk chain f
x2)O(n)
elements long, which then must be evaluated from
the outside-in.
For a general Foldable
structure this should be semantically identical
to,
foldl f z =foldl
f z .toList
foldr1 :: (a -> a -> a) -> t a -> a #
A variant of foldr
that has no base case,
and thus may only be applied to non-empty structures.
foldr1
f =foldr1
f .toList
foldl1 :: (a -> a -> a) -> t a -> a #
A variant of foldl
that has no base case,
and thus may only be applied to non-empty structures.
foldl1
f =foldl1
f .toList
Test whether the structure is empty. The default implementation is optimized for structures that are similar to cons-lists, because there is no general way to do better.
Returns the size/length of a finite structure as an Int
. The
default implementation is optimized for structures that are similar to
cons-lists, because there is no general way to do better.
elem :: Eq a => a -> t a -> Bool infix 4 #
Does the element occur in the structure?
maximum :: Ord a => t a -> a #
The largest element of a non-empty structure.
minimum :: Ord a => t a -> a #
The least element of a non-empty structure.
The sum
function computes the sum of the numbers of a structure.
Instances
Foldable [] | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => [m] -> m # foldMap :: Monoid m => (a -> m) -> [a] -> m # foldr :: (a -> b -> b) -> b -> [a] -> b # foldr' :: (a -> b -> b) -> b -> [a] -> b # foldl :: (b -> a -> b) -> b -> [a] -> b # foldl' :: (b -> a -> b) -> b -> [a] -> b # foldr1 :: (a -> a -> a) -> [a] -> a # foldl1 :: (a -> a -> a) -> [a] -> a # elem :: Eq a => a -> [a] -> Bool # maximum :: Ord a => [a] -> a # | |
Foldable Maybe | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |
Foldable Par1 | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Par1 m -> m # foldMap :: Monoid m => (a -> m) -> Par1 a -> m # foldr :: (a -> b -> b) -> b -> Par1 a -> b # foldr' :: (a -> b -> b) -> b -> Par1 a -> b # foldl :: (b -> a -> b) -> b -> Par1 a -> b # foldl' :: (b -> a -> b) -> b -> Par1 a -> b # foldr1 :: (a -> a -> a) -> Par1 a -> a # foldl1 :: (a -> a -> a) -> Par1 a -> a # elem :: Eq a => a -> Par1 a -> Bool # maximum :: Ord a => Par1 a -> a # | |
Foldable IResult | |
Defined in Data.Aeson.Types.Internal Methods fold :: Monoid m => IResult m -> m # foldMap :: Monoid m => (a -> m) -> IResult a -> m # foldr :: (a -> b -> b) -> b -> IResult a -> b # foldr' :: (a -> b -> b) -> b -> IResult a -> b # foldl :: (b -> a -> b) -> b -> IResult a -> b # foldl' :: (b -> a -> b) -> b -> IResult a -> b # foldr1 :: (a -> a -> a) -> IResult a -> a # foldl1 :: (a -> a -> a) -> IResult a -> a # elem :: Eq a => a -> IResult a -> Bool # maximum :: Ord a => IResult a -> a # minimum :: Ord a => IResult a -> a # | |
Foldable Result | |
Defined in Data.Aeson.Types.Internal Methods fold :: Monoid m => Result m -> m # foldMap :: Monoid m => (a -> m) -> Result a -> m # foldr :: (a -> b -> b) -> b -> Result a -> b # foldr' :: (a -> b -> b) -> b -> Result a -> b # foldl :: (b -> a -> b) -> b -> Result a -> b # foldl' :: (b -> a -> b) -> b -> Result a -> b # foldr1 :: (a -> a -> a) -> Result a -> a # foldl1 :: (a -> a -> a) -> Result a -> a # elem :: Eq a => a -> Result a -> Bool # maximum :: Ord a => Result a -> a # minimum :: Ord a => Result a -> a # | |
Foldable Complex | Since: base-4.9.0.0 |
Defined in Data.Complex Methods fold :: Monoid m => Complex m -> m # foldMap :: Monoid m => (a -> m) -> Complex a -> m # foldr :: (a -> b -> b) -> b -> Complex a -> b # foldr' :: (a -> b -> b) -> b -> Complex a -> b # foldl :: (b -> a -> b) -> b -> Complex a -> b # foldl' :: (b -> a -> b) -> b -> Complex a -> b # foldr1 :: (a -> a -> a) -> Complex a -> a # foldl1 :: (a -> a -> a) -> Complex a -> a # elem :: Eq a => a -> Complex a -> Bool # maximum :: Ord a => Complex a -> a # minimum :: Ord a => Complex a -> a # | |
Foldable Min | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Min m -> m # foldMap :: Monoid m => (a -> m) -> Min a -> m # foldr :: (a -> b -> b) -> b -> Min a -> b # foldr' :: (a -> b -> b) -> b -> Min a -> b # foldl :: (b -> a -> b) -> b -> Min a -> b # foldl' :: (b -> a -> b) -> b -> Min a -> b # foldr1 :: (a -> a -> a) -> Min a -> a # foldl1 :: (a -> a -> a) -> Min a -> a # elem :: Eq a => a -> Min a -> Bool # maximum :: Ord a => Min a -> a # | |
Foldable Max | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Max m -> m # foldMap :: Monoid m => (a -> m) -> Max a -> m # foldr :: (a -> b -> b) -> b -> Max a -> b # foldr' :: (a -> b -> b) -> b -> Max a -> b # foldl :: (b -> a -> b) -> b -> Max a -> b # foldl' :: (b -> a -> b) -> b -> Max a -> b # foldr1 :: (a -> a -> a) -> Max a -> a # foldl1 :: (a -> a -> a) -> Max a -> a # elem :: Eq a => a -> Max a -> Bool # maximum :: Ord a => Max a -> a # | |
Foldable First | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |
Foldable Last | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
Foldable Option | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Option m -> m # foldMap :: Monoid m => (a -> m) -> Option a -> m # foldr :: (a -> b -> b) -> b -> Option a -> b # foldr' :: (a -> b -> b) -> b -> Option a -> b # foldl :: (b -> a -> b) -> b -> Option a -> b # foldl' :: (b -> a -> b) -> b -> Option a -> b # foldr1 :: (a -> a -> a) -> Option a -> a # foldl1 :: (a -> a -> a) -> Option a -> a # elem :: Eq a => a -> Option a -> Bool # maximum :: Ord a => Option a -> a # minimum :: Ord a => Option a -> a # | |
Foldable ZipList | Since: base-4.9.0.0 |
Defined in Control.Applicative Methods fold :: Monoid m => ZipList m -> m # foldMap :: Monoid m => (a -> m) -> ZipList a -> m # foldr :: (a -> b -> b) -> b -> ZipList a -> b # foldr' :: (a -> b -> b) -> b -> ZipList a -> b # foldl :: (b -> a -> b) -> b -> ZipList a -> b # foldl' :: (b -> a -> b) -> b -> ZipList a -> b # foldr1 :: (a -> a -> a) -> ZipList a -> a # foldl1 :: (a -> a -> a) -> ZipList a -> a # elem :: Eq a => a -> ZipList a -> Bool # maximum :: Ord a => ZipList a -> a # minimum :: Ord a => ZipList a -> a # | |
Foldable Identity | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity Methods fold :: Monoid m => Identity m -> m # foldMap :: Monoid m => (a -> m) -> Identity a -> m # foldr :: (a -> b -> b) -> b -> Identity a -> b # foldr' :: (a -> b -> b) -> b -> Identity a -> b # foldl :: (b -> a -> b) -> b -> Identity a -> b # foldl' :: (b -> a -> b) -> b -> Identity a -> b # foldr1 :: (a -> a -> a) -> Identity a -> a # foldl1 :: (a -> a -> a) -> Identity a -> a # elem :: Eq a => a -> Identity a -> Bool # maximum :: Ord a => Identity a -> a # minimum :: Ord a => Identity a -> a # | |
Foldable First | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |
Foldable Last | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
Foldable Dual | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Dual m -> m # foldMap :: Monoid m => (a -> m) -> Dual a -> m # foldr :: (a -> b -> b) -> b -> Dual a -> b # foldr' :: (a -> b -> b) -> b -> Dual a -> b # foldl :: (b -> a -> b) -> b -> Dual a -> b # foldl' :: (b -> a -> b) -> b -> Dual a -> b # foldr1 :: (a -> a -> a) -> Dual a -> a # foldl1 :: (a -> a -> a) -> Dual a -> a # elem :: Eq a => a -> Dual a -> Bool # maximum :: Ord a => Dual a -> a # | |
Foldable Sum | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Sum m -> m # foldMap :: Monoid m => (a -> m) -> Sum a -> m # foldr :: (a -> b -> b) -> b -> Sum a -> b # foldr' :: (a -> b -> b) -> b -> Sum a -> b # foldl :: (b -> a -> b) -> b -> Sum a -> b # foldl' :: (b -> a -> b) -> b -> Sum a -> b # foldr1 :: (a -> a -> a) -> Sum a -> a # foldl1 :: (a -> a -> a) -> Sum a -> a # elem :: Eq a => a -> Sum a -> Bool # maximum :: Ord a => Sum a -> a # | |
Foldable Product | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Product m -> m # foldMap :: Monoid m => (a -> m) -> Product a -> m # foldr :: (a -> b -> b) -> b -> Product a -> b # foldr' :: (a -> b -> b) -> b -> Product a -> b # foldl :: (b -> a -> b) -> b -> Product a -> b # foldl' :: (b -> a -> b) -> b -> Product a -> b # foldr1 :: (a -> a -> a) -> Product a -> a # foldl1 :: (a -> a -> a) -> Product a -> a # elem :: Eq a => a -> Product a -> Bool # maximum :: Ord a => Product a -> a # minimum :: Ord a => Product a -> a # | |
Foldable Down | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Down m -> m # foldMap :: Monoid m => (a -> m) -> Down a -> m # foldr :: (a -> b -> b) -> b -> Down a -> b # foldr' :: (a -> b -> b) -> b -> Down a -> b # foldl :: (b -> a -> b) -> b -> Down a -> b # foldl' :: (b -> a -> b) -> b -> Down a -> b # foldr1 :: (a -> a -> a) -> Down a -> a # foldl1 :: (a -> a -> a) -> Down a -> a # elem :: Eq a => a -> Down a -> Bool # maximum :: Ord a => Down a -> a # | |
Foldable NonEmpty | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => NonEmpty m -> m # foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m # foldr :: (a -> b -> b) -> b -> NonEmpty a -> b # foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b # foldl :: (b -> a -> b) -> b -> NonEmpty a -> b # foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b # foldr1 :: (a -> a -> a) -> NonEmpty a -> a # foldl1 :: (a -> a -> a) -> NonEmpty a -> a # elem :: Eq a => a -> NonEmpty a -> Bool # maximum :: Ord a => NonEmpty a -> a # minimum :: Ord a => NonEmpty a -> a # | |
Foldable IntMap | |
Defined in Data.IntMap.Internal Methods fold :: Monoid m => IntMap m -> m # foldMap :: Monoid m => (a -> m) -> IntMap a -> m # foldr :: (a -> b -> b) -> b -> IntMap a -> b # foldr' :: (a -> b -> b) -> b -> IntMap a -> b # foldl :: (b -> a -> b) -> b -> IntMap a -> b # foldl' :: (b -> a -> b) -> b -> IntMap a -> b # foldr1 :: (a -> a -> a) -> IntMap a -> a # foldl1 :: (a -> a -> a) -> IntMap a -> a # elem :: Eq a => a -> IntMap a -> Bool # maximum :: Ord a => IntMap a -> a # minimum :: Ord a => IntMap a -> a # | |
Foldable SCC | Since: containers-0.5.9 |
Defined in Data.Graph Methods fold :: Monoid m => SCC m -> m # foldMap :: Monoid m => (a -> m) -> SCC a -> m # foldr :: (a -> b -> b) -> b -> SCC a -> b # foldr' :: (a -> b -> b) -> b -> SCC a -> b # foldl :: (b -> a -> b) -> b -> SCC a -> b # foldl' :: (b -> a -> b) -> b -> SCC a -> b # foldr1 :: (a -> a -> a) -> SCC a -> a # foldl1 :: (a -> a -> a) -> SCC a -> a # elem :: Eq a => a -> SCC a -> Bool # maximum :: Ord a => SCC a -> a # | |
Foldable Tree | |
Defined in Data.Tree Methods fold :: Monoid m => Tree m -> m # foldMap :: Monoid m => (a -> m) -> Tree a -> m # foldr :: (a -> b -> b) -> b -> Tree a -> b # foldr' :: (a -> b -> b) -> b -> Tree a -> b # foldl :: (b -> a -> b) -> b -> Tree a -> b # foldl' :: (b -> a -> b) -> b -> Tree a -> b # foldr1 :: (a -> a -> a) -> Tree a -> a # foldl1 :: (a -> a -> a) -> Tree a -> a # elem :: Eq a => a -> Tree a -> Bool # maximum :: Ord a => Tree a -> a # | |
Foldable Seq | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Seq m -> m # foldMap :: Monoid m => (a -> m) -> Seq a -> m # foldr :: (a -> b -> b) -> b -> Seq a -> b # foldr' :: (a -> b -> b) -> b -> Seq a -> b # foldl :: (b -> a -> b) -> b -> Seq a -> b # foldl' :: (b -> a -> b) -> b -> Seq a -> b # foldr1 :: (a -> a -> a) -> Seq a -> a # foldl1 :: (a -> a -> a) -> Seq a -> a # elem :: Eq a => a -> Seq a -> Bool # maximum :: Ord a => Seq a -> a # | |
Foldable FingerTree | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => FingerTree m -> m # foldMap :: Monoid m => (a -> m) -> FingerTree a -> m # foldr :: (a -> b -> b) -> b -> FingerTree a -> b # foldr' :: (a -> b -> b) -> b -> FingerTree a -> b # foldl :: (b -> a -> b) -> b -> FingerTree a -> b # foldl' :: (b -> a -> b) -> b -> FingerTree a -> b # foldr1 :: (a -> a -> a) -> FingerTree a -> a # foldl1 :: (a -> a -> a) -> FingerTree a -> a # toList :: FingerTree a -> [a] # null :: FingerTree a -> Bool # length :: FingerTree a -> Int # elem :: Eq a => a -> FingerTree a -> Bool # maximum :: Ord a => FingerTree a -> a # minimum :: Ord a => FingerTree a -> a # sum :: Num a => FingerTree a -> a # product :: Num a => FingerTree a -> a # | |
Foldable Digit | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Digit m -> m # foldMap :: Monoid m => (a -> m) -> Digit a -> m # foldr :: (a -> b -> b) -> b -> Digit a -> b # foldr' :: (a -> b -> b) -> b -> Digit a -> b # foldl :: (b -> a -> b) -> b -> Digit a -> b # foldl' :: (b -> a -> b) -> b -> Digit a -> b # foldr1 :: (a -> a -> a) -> Digit a -> a # foldl1 :: (a -> a -> a) -> Digit a -> a # elem :: Eq a => a -> Digit a -> Bool # maximum :: Ord a => Digit a -> a # minimum :: Ord a => Digit a -> a # | |
Foldable Node | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Node m -> m # foldMap :: Monoid m => (a -> m) -> Node a -> m # foldr :: (a -> b -> b) -> b -> Node a -> b # foldr' :: (a -> b -> b) -> b -> Node a -> b # foldl :: (b -> a -> b) -> b -> Node a -> b # foldl' :: (b -> a -> b) -> b -> Node a -> b # foldr1 :: (a -> a -> a) -> Node a -> a # foldl1 :: (a -> a -> a) -> Node a -> a # elem :: Eq a => a -> Node a -> Bool # maximum :: Ord a => Node a -> a # | |
Foldable Elem | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Elem m -> m # foldMap :: Monoid m => (a -> m) -> Elem a -> m # foldr :: (a -> b -> b) -> b -> Elem a -> b # foldr' :: (a -> b -> b) -> b -> Elem a -> b # foldl :: (b -> a -> b) -> b -> Elem a -> b # foldl' :: (b -> a -> b) -> b -> Elem a -> b # foldr1 :: (a -> a -> a) -> Elem a -> a # foldl1 :: (a -> a -> a) -> Elem a -> a # elem :: Eq a => a -> Elem a -> Bool # maximum :: Ord a => Elem a -> a # | |
Foldable ViewL | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => ViewL m -> m # foldMap :: Monoid m => (a -> m) -> ViewL a -> m # foldr :: (a -> b -> b) -> b -> ViewL a -> b # foldr' :: (a -> b -> b) -> b -> ViewL a -> b # foldl :: (b -> a -> b) -> b -> ViewL a -> b # foldl' :: (b -> a -> b) -> b -> ViewL a -> b # foldr1 :: (a -> a -> a) -> ViewL a -> a # foldl1 :: (a -> a -> a) -> ViewL a -> a # elem :: Eq a => a -> ViewL a -> Bool # maximum :: Ord a => ViewL a -> a # minimum :: Ord a => ViewL a -> a # | |
Foldable ViewR | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => ViewR m -> m # foldMap :: Monoid m => (a -> m) -> ViewR a -> m # foldr :: (a -> b -> b) -> b -> ViewR a -> b # foldr' :: (a -> b -> b) -> b -> ViewR a -> b # foldl :: (b -> a -> b) -> b -> ViewR a -> b # foldl' :: (b -> a -> b) -> b -> ViewR a -> b # foldr1 :: (a -> a -> a) -> ViewR a -> a # foldl1 :: (a -> a -> a) -> ViewR a -> a # elem :: Eq a => a -> ViewR a -> Bool # maximum :: Ord a => ViewR a -> a # minimum :: Ord a => ViewR a -> a # | |
Foldable Set | |
Defined in Data.Set.Internal Methods fold :: Monoid m => Set m -> m # foldMap :: Monoid m => (a -> m) -> Set a -> m # foldr :: (a -> b -> b) -> b -> Set a -> b # foldr' :: (a -> b -> b) -> b -> Set a -> b # foldl :: (b -> a -> b) -> b -> Set a -> b # foldl' :: (b -> a -> b) -> b -> Set a -> b # foldr1 :: (a -> a -> a) -> Set a -> a # foldl1 :: (a -> a -> a) -> Set a -> a # elem :: Eq a => a -> Set a -> Bool # maximum :: Ord a => Set a -> a # | |
Foldable DList | |
Defined in Data.DList Methods fold :: Monoid m => DList m -> m # foldMap :: Monoid m => (a -> m) -> DList a -> m # foldr :: (a -> b -> b) -> b -> DList a -> b # foldr' :: (a -> b -> b) -> b -> DList a -> b # foldl :: (b -> a -> b) -> b -> DList a -> b # foldl' :: (b -> a -> b) -> b -> DList a -> b # foldr1 :: (a -> a -> a) -> DList a -> a # foldl1 :: (a -> a -> a) -> DList a -> a # elem :: Eq a => a -> DList a -> Bool # maximum :: Ord a => DList a -> a # minimum :: Ord a => DList a -> a # | |
Foldable Hashed | |
Defined in Data.Hashable.Class Methods fold :: Monoid m => Hashed m -> m # foldMap :: Monoid m => (a -> m) -> Hashed a -> m # foldr :: (a -> b -> b) -> b -> Hashed a -> b # foldr' :: (a -> b -> b) -> b -> Hashed a -> b # foldl :: (b -> a -> b) -> b -> Hashed a -> b # foldl' :: (b -> a -> b) -> b -> Hashed a -> b # foldr1 :: (a -> a -> a) -> Hashed a -> a # foldl1 :: (a -> a -> a) -> Hashed a -> a # elem :: Eq a => a -> Hashed a -> Bool # maximum :: Ord a => Hashed a -> a # minimum :: Ord a => Hashed a -> a # | |
Foldable LenientData | |
Defined in Web.Internal.HttpApiData Methods fold :: Monoid m => LenientData m -> m # foldMap :: Monoid m => (a -> m) -> LenientData a -> m # foldr :: (a -> b -> b) -> b -> LenientData a -> b # foldr' :: (a -> b -> b) -> b -> LenientData a -> b # foldl :: (b -> a -> b) -> b -> LenientData a -> b # foldl' :: (b -> a -> b) -> b -> LenientData a -> b # foldr1 :: (a -> a -> a) -> LenientData a -> a # foldl1 :: (a -> a -> a) -> LenientData a -> a # toList :: LenientData a -> [a] # null :: LenientData a -> Bool # length :: LenientData a -> Int # elem :: Eq a => a -> LenientData a -> Bool # maximum :: Ord a => LenientData a -> a # minimum :: Ord a => LenientData a -> a # sum :: Num a => LenientData a -> a # product :: Num a => LenientData a -> a # | |
Foldable HistoriedResponse | |
Defined in Network.HTTP.Client Methods fold :: Monoid m => HistoriedResponse m -> m # foldMap :: Monoid m => (a -> m) -> HistoriedResponse a -> m # foldr :: (a -> b -> b) -> b -> HistoriedResponse a -> b # foldr' :: (a -> b -> b) -> b -> HistoriedResponse a -> b # foldl :: (b -> a -> b) -> b -> HistoriedResponse a -> b # foldl' :: (b -> a -> b) -> b -> HistoriedResponse a -> b # foldr1 :: (a -> a -> a) -> HistoriedResponse a -> a # foldl1 :: (a -> a -> a) -> HistoriedResponse a -> a # toList :: HistoriedResponse a -> [a] # null :: HistoriedResponse a -> Bool # length :: HistoriedResponse a -> Int # elem :: Eq a => a -> HistoriedResponse a -> Bool # maximum :: Ord a => HistoriedResponse a -> a # minimum :: Ord a => HistoriedResponse a -> a # sum :: Num a => HistoriedResponse a -> a # product :: Num a => HistoriedResponse a -> a # | |
Foldable Response | |
Defined in Network.HTTP.Client.Types Methods fold :: Monoid m => Response m -> m # foldMap :: Monoid m => (a -> m) -> Response a -> m # foldr :: (a -> b -> b) -> b -> Response a -> b # foldr' :: (a -> b -> b) -> b -> Response a -> b # foldl :: (b -> a -> b) -> b -> Response a -> b # foldl' :: (b -> a -> b) -> b -> Response a -> b # foldr1 :: (a -> a -> a) -> Response a -> a # foldl1 :: (a -> a -> a) -> Response a -> a # elem :: Eq a => a -> Response a -> Bool # maximum :: Ord a => Response a -> a # minimum :: Ord a => Response a -> a # | |
Foldable HashSet | |
Defined in Data.HashSet.Base Methods fold :: Monoid m => HashSet m -> m # foldMap :: Monoid m => (a -> m) -> HashSet a -> m # foldr :: (a -> b -> b) -> b -> HashSet a -> b # foldr' :: (a -> b -> b) -> b -> HashSet a -> b # foldl :: (b -> a -> b) -> b -> HashSet a -> b # foldl' :: (b -> a -> b) -> b -> HashSet a -> b # foldr1 :: (a -> a -> a) -> HashSet a -> a # foldl1 :: (a -> a -> a) -> HashSet a -> a # elem :: Eq a => a -> HashSet a -> Bool # maximum :: Ord a => HashSet a -> a # minimum :: Ord a => HashSet a -> a # | |
Foldable Vector | |
Defined in Data.Vector Methods fold :: Monoid m => Vector m -> m # foldMap :: Monoid m => (a -> m) -> Vector a -> m # foldr :: (a -> b -> b) -> b -> Vector a -> b # foldr' :: (a -> b -> b) -> b -> Vector a -> b # foldl :: (b -> a -> b) -> b -> Vector a -> b # foldl' :: (b -> a -> b) -> b -> Vector a -> b # foldr1 :: (a -> a -> a) -> Vector a -> a # foldl1 :: (a -> a -> a) -> Vector a -> a # elem :: Eq a => a -> Vector a -> Bool # maximum :: Ord a => Vector a -> a # minimum :: Ord a => Vector a -> a # | |
Foldable SmallArray | |
Defined in Data.Primitive.SmallArray Methods fold :: Monoid m => SmallArray m -> m # foldMap :: Monoid m => (a -> m) -> SmallArray a -> m # foldr :: (a -> b -> b) -> b -> SmallArray a -> b # foldr' :: (a -> b -> b) -> b -> SmallArray a -> b # foldl :: (b -> a -> b) -> b -> SmallArray a -> b # foldl' :: (b -> a -> b) -> b -> SmallArray a -> b # foldr1 :: (a -> a -> a) -> SmallArray a -> a # foldl1 :: (a -> a -> a) -> SmallArray a -> a # toList :: SmallArray a -> [a] # null :: SmallArray a -> Bool # length :: SmallArray a -> Int # elem :: Eq a => a -> SmallArray a -> Bool # maximum :: Ord a => SmallArray a -> a # minimum :: Ord a => SmallArray a -> a # sum :: Num a => SmallArray a -> a # product :: Num a => SmallArray a -> a # | |
Foldable Array | |
Defined in Data.Primitive.Array Methods fold :: Monoid m => Array m -> m # foldMap :: Monoid m => (a -> m) -> Array a -> m # foldr :: (a -> b -> b) -> b -> Array a -> b # foldr' :: (a -> b -> b) -> b -> Array a -> b # foldl :: (b -> a -> b) -> b -> Array a -> b # foldl' :: (b -> a -> b) -> b -> Array a -> b # foldr1 :: (a -> a -> a) -> Array a -> a # foldl1 :: (a -> a -> a) -> Array a -> a # elem :: Eq a => a -> Array a -> Bool # maximum :: Ord a => Array a -> a # minimum :: Ord a => Array a -> a # | |
Foldable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Either a m -> m # foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # toList :: Either a a0 -> [a0] # length :: Either a a0 -> Int # elem :: Eq a0 => a0 -> Either a a0 -> Bool # maximum :: Ord a0 => Either a a0 -> a0 # minimum :: Ord a0 => Either a a0 -> a0 # | |
Foldable (V1 :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => V1 m -> m # foldMap :: Monoid m => (a -> m) -> V1 a -> m # foldr :: (a -> b -> b) -> b -> V1 a -> b # foldr' :: (a -> b -> b) -> b -> V1 a -> b # foldl :: (b -> a -> b) -> b -> V1 a -> b # foldl' :: (b -> a -> b) -> b -> V1 a -> b # foldr1 :: (a -> a -> a) -> V1 a -> a # foldl1 :: (a -> a -> a) -> V1 a -> a # elem :: Eq a => a -> V1 a -> Bool # maximum :: Ord a => V1 a -> a # | |
Foldable (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => U1 m -> m # foldMap :: Monoid m => (a -> m) -> U1 a -> m # foldr :: (a -> b -> b) -> b -> U1 a -> b # foldr' :: (a -> b -> b) -> b -> U1 a -> b # foldl :: (b -> a -> b) -> b -> U1 a -> b # foldl' :: (b -> a -> b) -> b -> U1 a -> b # foldr1 :: (a -> a -> a) -> U1 a -> a # foldl1 :: (a -> a -> a) -> U1 a -> a # elem :: Eq a => a -> U1 a -> Bool # maximum :: Ord a => U1 a -> a # | |
Foldable ((,) a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (a, m) -> m # foldMap :: Monoid m => (a0 -> m) -> (a, a0) -> m # foldr :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldr' :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldl :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldl' :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldr1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # foldl1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # elem :: Eq a0 => a0 -> (a, a0) -> Bool # maximum :: Ord a0 => (a, a0) -> a0 # minimum :: Ord a0 => (a, a0) -> a0 # | |
Foldable (HashMap k) | |
Defined in Data.HashMap.Base Methods fold :: Monoid m => HashMap k m -> m # foldMap :: Monoid m => (a -> m) -> HashMap k a -> m # foldr :: (a -> b -> b) -> b -> HashMap k a -> b # foldr' :: (a -> b -> b) -> b -> HashMap k a -> b # foldl :: (b -> a -> b) -> b -> HashMap k a -> b # foldl' :: (b -> a -> b) -> b -> HashMap k a -> b # foldr1 :: (a -> a -> a) -> HashMap k a -> a # foldl1 :: (a -> a -> a) -> HashMap k a -> a # toList :: HashMap k a -> [a] # length :: HashMap k a -> Int # elem :: Eq a => a -> HashMap k a -> Bool # maximum :: Ord a => HashMap k a -> a # minimum :: Ord a => HashMap k a -> a # | |
Foldable (Map k) | |
Defined in Data.Map.Internal Methods fold :: Monoid m => Map k m -> m # foldMap :: Monoid m => (a -> m) -> Map k a -> m # foldr :: (a -> b -> b) -> b -> Map k a -> b # foldr' :: (a -> b -> b) -> b -> Map k a -> b # foldl :: (b -> a -> b) -> b -> Map k a -> b # foldl' :: (b -> a -> b) -> b -> Map k a -> b # foldr1 :: (a -> a -> a) -> Map k a -> a # foldl1 :: (a -> a -> a) -> Map k a -> a # elem :: Eq a => a -> Map k a -> Bool # maximum :: Ord a => Map k a -> a # minimum :: Ord a => Map k a -> a # | |
Foldable (Array i) | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Array i m -> m # foldMap :: Monoid m => (a -> m) -> Array i a -> m # foldr :: (a -> b -> b) -> b -> Array i a -> b # foldr' :: (a -> b -> b) -> b -> Array i a -> b # foldl :: (b -> a -> b) -> b -> Array i a -> b # foldl' :: (b -> a -> b) -> b -> Array i a -> b # foldr1 :: (a -> a -> a) -> Array i a -> a # foldl1 :: (a -> a -> a) -> Array i a -> a # elem :: Eq a => a -> Array i a -> Bool # maximum :: Ord a => Array i a -> a # minimum :: Ord a => Array i a -> a # | |
Foldable (Arg a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Arg a m -> m # foldMap :: Monoid m => (a0 -> m) -> Arg a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Arg a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Arg a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Arg a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Arg a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 # elem :: Eq a0 => a0 -> Arg a a0 -> Bool # maximum :: Ord a0 => Arg a a0 -> a0 # minimum :: Ord a0 => Arg a a0 -> a0 # | |
Foldable (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Proxy m -> m # foldMap :: Monoid m => (a -> m) -> Proxy a -> m # foldr :: (a -> b -> b) -> b -> Proxy a -> b # foldr' :: (a -> b -> b) -> b -> Proxy a -> b # foldl :: (b -> a -> b) -> b -> Proxy a -> b # foldl' :: (b -> a -> b) -> b -> Proxy a -> b # foldr1 :: (a -> a -> a) -> Proxy a -> a # foldl1 :: (a -> a -> a) -> Proxy a -> a # elem :: Eq a => a -> Proxy a -> Bool # maximum :: Ord a => Proxy a -> a # minimum :: Ord a => Proxy a -> a # | |
Foldable f => Foldable (Cofree f) | |
Defined in Control.Comonad.Cofree Methods fold :: Monoid m => Cofree f m -> m # foldMap :: Monoid m => (a -> m) -> Cofree f a -> m # foldr :: (a -> b -> b) -> b -> Cofree f a -> b # foldr' :: (a -> b -> b) -> b -> Cofree f a -> b # foldl :: (b -> a -> b) -> b -> Cofree f a -> b # foldl' :: (b -> a -> b) -> b -> Cofree f a -> b # foldr1 :: (a -> a -> a) -> Cofree f a -> a # foldl1 :: (a -> a -> a) -> Cofree f a -> a # elem :: Eq a => a -> Cofree f a -> Bool # maximum :: Ord a => Cofree f a -> a # minimum :: Ord a => Cofree f a -> a # | |
Foldable f => Foldable (Free f) | |
Defined in Control.Monad.Free Methods fold :: Monoid m => Free f m -> m # foldMap :: Monoid m => (a -> m) -> Free f a -> m # foldr :: (a -> b -> b) -> b -> Free f a -> b # foldr' :: (a -> b -> b) -> b -> Free f a -> b # foldl :: (b -> a -> b) -> b -> Free f a -> b # foldl' :: (b -> a -> b) -> b -> Free f a -> b # foldr1 :: (a -> a -> a) -> Free f a -> a # foldl1 :: (a -> a -> a) -> Free f a -> a # elem :: Eq a => a -> Free f a -> Bool # maximum :: Ord a => Free f a -> a # minimum :: Ord a => Free f a -> a # | |
Foldable f => Foldable (Yoneda f) | |
Defined in Data.Functor.Yoneda Methods fold :: Monoid m => Yoneda f m -> m # foldMap :: Monoid m => (a -> m) -> Yoneda f a -> m # foldr :: (a -> b -> b) -> b -> Yoneda f a -> b # foldr' :: (a -> b -> b) -> b -> Yoneda f a -> b # foldl :: (b -> a -> b) -> b -> Yoneda f a -> b # foldl' :: (b -> a -> b) -> b -> Yoneda f a -> b # foldr1 :: (a -> a -> a) -> Yoneda f a -> a # foldl1 :: (a -> a -> a) -> Yoneda f a -> a # elem :: Eq a => a -> Yoneda f a -> Bool # maximum :: Ord a => Yoneda f a -> a # minimum :: Ord a => Yoneda f a -> a # | |
Foldable (Level i) | |
Defined in Control.Lens.Internal.Level Methods fold :: Monoid m => Level i m -> m # foldMap :: Monoid m => (a -> m) -> Level i a -> m # foldr :: (a -> b -> b) -> b -> Level i a -> b # foldr' :: (a -> b -> b) -> b -> Level i a -> b # foldl :: (b -> a -> b) -> b -> Level i a -> b # foldl' :: (b -> a -> b) -> b -> Level i a -> b # foldr1 :: (a -> a -> a) -> Level i a -> a # foldl1 :: (a -> a -> a) -> Level i a -> a # elem :: Eq a => a -> Level i a -> Bool # maximum :: Ord a => Level i a -> a # minimum :: Ord a => Level i a -> a # | |
Foldable ((:<|>) a) | |
Defined in Servant.API.Alternative Methods fold :: Monoid m => (a :<|> m) -> m # foldMap :: Monoid m => (a0 -> m) -> (a :<|> a0) -> m # foldr :: (a0 -> b -> b) -> b -> (a :<|> a0) -> b # foldr' :: (a0 -> b -> b) -> b -> (a :<|> a0) -> b # foldl :: (b -> a0 -> b) -> b -> (a :<|> a0) -> b # foldl' :: (b -> a0 -> b) -> b -> (a :<|> a0) -> b # foldr1 :: (a0 -> a0 -> a0) -> (a :<|> a0) -> a0 # foldl1 :: (a0 -> a0 -> a0) -> (a :<|> a0) -> a0 # toList :: (a :<|> a0) -> [a0] # length :: (a :<|> a0) -> Int # elem :: Eq a0 => a0 -> (a :<|> a0) -> Bool # maximum :: Ord a0 => (a :<|> a0) -> a0 # minimum :: Ord a0 => (a :<|> a0) -> a0 # | |
Foldable f => Foldable (Rec1 f) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Rec1 f m -> m # foldMap :: Monoid m => (a -> m) -> Rec1 f a -> m # foldr :: (a -> b -> b) -> b -> Rec1 f a -> b # foldr' :: (a -> b -> b) -> b -> Rec1 f a -> b # foldl :: (b -> a -> b) -> b -> Rec1 f a -> b # foldl' :: (b -> a -> b) -> b -> Rec1 f a -> b # foldr1 :: (a -> a -> a) -> Rec1 f a -> a # foldl1 :: (a -> a -> a) -> Rec1 f a -> a # elem :: Eq a => a -> Rec1 f a -> Bool # maximum :: Ord a => Rec1 f a -> a # minimum :: Ord a => Rec1 f a -> a # | |
Foldable (URec Char :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Char m -> m # foldMap :: Monoid m => (a -> m) -> URec Char a -> m # foldr :: (a -> b -> b) -> b -> URec Char a -> b # foldr' :: (a -> b -> b) -> b -> URec Char a -> b # foldl :: (b -> a -> b) -> b -> URec Char a -> b # foldl' :: (b -> a -> b) -> b -> URec Char a -> b # foldr1 :: (a -> a -> a) -> URec Char a -> a # foldl1 :: (a -> a -> a) -> URec Char a -> a # toList :: URec Char a -> [a] # length :: URec Char a -> Int # elem :: Eq a => a -> URec Char a -> Bool # maximum :: Ord a => URec Char a -> a # minimum :: Ord a => URec Char a -> a # | |
Foldable (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Double m -> m # foldMap :: Monoid m => (a -> m) -> URec Double a -> m # foldr :: (a -> b -> b) -> b -> URec Double a -> b # foldr' :: (a -> b -> b) -> b -> URec Double a -> b # foldl :: (b -> a -> b) -> b -> URec Double a -> b # foldl' :: (b -> a -> b) -> b -> URec Double a -> b # foldr1 :: (a -> a -> a) -> URec Double a -> a # foldl1 :: (a -> a -> a) -> URec Double a -> a # toList :: URec Double a -> [a] # null :: URec Double a -> Bool # length :: URec Double a -> Int # elem :: Eq a => a -> URec Double a -> Bool # maximum :: Ord a => URec Double a -> a # minimum :: Ord a => URec Double a -> a # | |
Foldable (URec Float :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Float m -> m # foldMap :: Monoid m => (a -> m) -> URec Float a -> m # foldr :: (a -> b -> b) -> b -> URec Float a -> b # foldr' :: (a -> b -> b) -> b -> URec Float a -> b # foldl :: (b -> a -> b) -> b -> URec Float a -> b # foldl' :: (b -> a -> b) -> b -> URec Float a -> b # foldr1 :: (a -> a -> a) -> URec Float a -> a # foldl1 :: (a -> a -> a) -> URec Float a -> a # toList :: URec Float a -> [a] # null :: URec Float a -> Bool # length :: URec Float a -> Int # elem :: Eq a => a -> URec Float a -> Bool # maximum :: Ord a => URec Float a -> a # minimum :: Ord a => URec Float a -> a # | |
Foldable (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Int m -> m # foldMap :: Monoid m => (a -> m) -> URec Int a -> m # foldr :: (a -> b -> b) -> b -> URec Int a -> b # foldr' :: (a -> b -> b) -> b -> URec Int a -> b # foldl :: (b -> a -> b) -> b -> URec Int a -> b # foldl' :: (b -> a -> b) -> b -> URec Int a -> b # foldr1 :: (a -> a -> a) -> URec Int a -> a # foldl1 :: (a -> a -> a) -> URec Int a -> a # elem :: Eq a => a -> URec Int a -> Bool # maximum :: Ord a => URec Int a -> a # minimum :: Ord a => URec Int a -> a # | |
Foldable (URec Word :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Word m -> m # foldMap :: Monoid m => (a -> m) -> URec Word a -> m # foldr :: (a -> b -> b) -> b -> URec Word a -> b # foldr' :: (a -> b -> b) -> b -> URec Word a -> b # foldl :: (b -> a -> b) -> b -> URec Word a -> b # foldl' :: (b -> a -> b) -> b -> URec Word a -> b # foldr1 :: (a -> a -> a) -> URec Word a -> a # foldl1 :: (a -> a -> a) -> URec Word a -> a # toList :: URec Word a -> [a] # length :: URec Word a -> Int # elem :: Eq a => a -> URec Word a -> Bool # maximum :: Ord a => URec Word a -> a # minimum :: Ord a => URec Word a -> a # | |
Foldable (URec (Ptr ()) :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec (Ptr ()) m -> m # foldMap :: Monoid m => (a -> m) -> URec (Ptr ()) a -> m # foldr :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b # foldr' :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b # foldl :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b # foldl' :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b # foldr1 :: (a -> a -> a) -> URec (Ptr ()) a -> a # foldl1 :: (a -> a -> a) -> URec (Ptr ()) a -> a # toList :: URec (Ptr ()) a -> [a] # null :: URec (Ptr ()) a -> Bool # length :: URec (Ptr ()) a -> Int # elem :: Eq a => a -> URec (Ptr ()) a -> Bool # maximum :: Ord a => URec (Ptr ()) a -> a # minimum :: Ord a => URec (Ptr ()) a -> a # | |
Foldable (Const m :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Functor.Const Methods fold :: Monoid m0 => Const m m0 -> m0 # foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldr :: (a -> b -> b) -> b -> Const m a -> b # foldr' :: (a -> b -> b) -> b -> Const m a -> b # foldl :: (b -> a -> b) -> b -> Const m a -> b # foldl' :: (b -> a -> b) -> b -> Const m a -> b # foldr1 :: (a -> a -> a) -> Const m a -> a # foldl1 :: (a -> a -> a) -> Const m a -> a # elem :: Eq a => a -> Const m a -> Bool # maximum :: Ord a => Const m a -> a # minimum :: Ord a => Const m a -> a # | |
Foldable f => Foldable (Ap f) | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Ap f m -> m # foldMap :: Monoid m => (a -> m) -> Ap f a -> m # foldr :: (a -> b -> b) -> b -> Ap f a -> b # foldr' :: (a -> b -> b) -> b -> Ap f a -> b # foldl :: (b -> a -> b) -> b -> Ap f a -> b # foldl' :: (b -> a -> b) -> b -> Ap f a -> b # foldr1 :: (a -> a -> a) -> Ap f a -> a # foldl1 :: (a -> a -> a) -> Ap f a -> a # elem :: Eq a => a -> Ap f a -> Bool # maximum :: Ord a => Ap f a -> a # | |
Foldable f => Foldable (Alt f) | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Alt f m -> m # foldMap :: Monoid m => (a -> m) -> Alt f a -> m # foldr :: (a -> b -> b) -> b -> Alt f a -> b # foldr' :: (a -> b -> b) -> b -> Alt f a -> b # foldl :: (b -> a -> b) -> b -> Alt f a -> b # foldl' :: (b -> a -> b) -> b -> Alt f a -> b # foldr1 :: (a -> a -> a) -> Alt f a -> a # foldl1 :: (a -> a -> a) -> Alt f a -> a # elem :: Eq a => a -> Alt f a -> Bool # maximum :: Ord a => Alt f a -> a # minimum :: Ord a => Alt f a -> a # | |
Bifoldable p => Foldable (Join p) | |
Defined in Data.Bifunctor.Join Methods fold :: Monoid m => Join p m -> m # foldMap :: Monoid m => (a -> m) -> Join p a -> m # foldr :: (a -> b -> b) -> b -> Join p a -> b # foldr' :: (a -> b -> b) -> b -> Join p a -> b # foldl :: (b -> a -> b) -> b -> Join p a -> b # foldl' :: (b -> a -> b) -> b -> Join p a -> b # foldr1 :: (a -> a -> a) -> Join p a -> a # foldl1 :: (a -> a -> a) -> Join p a -> a # elem :: Eq a => a -> Join p a -> Bool # maximum :: Ord a => Join p a -> a # minimum :: Ord a => Join p a -> a # | |
Bifoldable p => Foldable (Fix p) | |
Defined in Data.Bifunctor.Fix Methods fold :: Monoid m => Fix p m -> m # foldMap :: Monoid m => (a -> m) -> Fix p a -> m # foldr :: (a -> b -> b) -> b -> Fix p a -> b # foldr' :: (a -> b -> b) -> b -> Fix p a -> b # foldl :: (b -> a -> b) -> b -> Fix p a -> b # foldl' :: (b -> a -> b) -> b -> Fix p a -> b # foldr1 :: (a -> a -> a) -> Fix p a -> a # foldl1 :: (a -> a -> a) -> Fix p a -> a # elem :: Eq a => a -> Fix p a -> Bool # maximum :: Ord a => Fix p a -> a # minimum :: Ord a => Fix p a -> a # | |
Foldable f => Foldable (FreeF f a) | |
Defined in Control.Monad.Trans.Free Methods fold :: Monoid m => FreeF f a m -> m # foldMap :: Monoid m => (a0 -> m) -> FreeF f a a0 -> m # foldr :: (a0 -> b -> b) -> b -> FreeF f a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> FreeF f a a0 -> b # foldl :: (b -> a0 -> b) -> b -> FreeF f a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> FreeF f a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> FreeF f a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> FreeF f a a0 -> a0 # toList :: FreeF f a a0 -> [a0] # null :: FreeF f a a0 -> Bool # length :: FreeF f a a0 -> Int # elem :: Eq a0 => a0 -> FreeF f a a0 -> Bool # maximum :: Ord a0 => FreeF f a a0 -> a0 # minimum :: Ord a0 => FreeF f a a0 -> a0 # | |
(Foldable m, Foldable f) => Foldable (FreeT f m) | |
Defined in Control.Monad.Trans.Free Methods fold :: Monoid m0 => FreeT f m m0 -> m0 # foldMap :: Monoid m0 => (a -> m0) -> FreeT f m a -> m0 # foldr :: (a -> b -> b) -> b -> FreeT f m a -> b # foldr' :: (a -> b -> b) -> b -> FreeT f m a -> b # foldl :: (b -> a -> b) -> b -> FreeT f m a -> b # foldl' :: (b -> a -> b) -> b -> FreeT f m a -> b # foldr1 :: (a -> a -> a) -> FreeT f m a -> a # foldl1 :: (a -> a -> a) -> FreeT f m a -> a # toList :: FreeT f m a -> [a] # length :: FreeT f m a -> Int # elem :: Eq a => a -> FreeT f m a -> Bool # maximum :: Ord a => FreeT f m a -> a # minimum :: Ord a => FreeT f m a -> a # | |
Foldable f => Foldable (CofreeF f a) | |
Defined in Control.Comonad.Trans.Cofree Methods fold :: Monoid m => CofreeF f a m -> m # foldMap :: Monoid m => (a0 -> m) -> CofreeF f a a0 -> m # foldr :: (a0 -> b -> b) -> b -> CofreeF f a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> CofreeF f a a0 -> b # foldl :: (b -> a0 -> b) -> b -> CofreeF f a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> CofreeF f a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> CofreeF f a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> CofreeF f a a0 -> a0 # toList :: CofreeF f a a0 -> [a0] # null :: CofreeF f a a0 -> Bool # length :: CofreeF f a a0 -> Int # elem :: Eq a0 => a0 -> CofreeF f a a0 -> Bool # maximum :: Ord a0 => CofreeF f a a0 -> a0 # minimum :: Ord a0 => CofreeF f a a0 -> a0 # | |
(Foldable f, Foldable w) => Foldable (CofreeT f w) | |
Defined in Control.Comonad.Trans.Cofree Methods fold :: Monoid m => CofreeT f w m -> m # foldMap :: Monoid m => (a -> m) -> CofreeT f w a -> m # foldr :: (a -> b -> b) -> b -> CofreeT f w a -> b # foldr' :: (a -> b -> b) -> b -> CofreeT f w a -> b # foldl :: (b -> a -> b) -> b -> CofreeT f w a -> b # foldl' :: (b -> a -> b) -> b -> CofreeT f w a -> b # foldr1 :: (a -> a -> a) -> CofreeT f w a -> a # foldl1 :: (a -> a -> a) -> CofreeT f w a -> a # toList :: CofreeT f w a -> [a] # null :: CofreeT f w a -> Bool # length :: CofreeT f w a -> Int # elem :: Eq a => a -> CofreeT f w a -> Bool # maximum :: Ord a => CofreeT f w a -> a # minimum :: Ord a => CofreeT f w a -> a # | |
Foldable f => Foldable (ErrorT e f) | |
Defined in Control.Monad.Trans.Error Methods fold :: Monoid m => ErrorT e f m -> m # foldMap :: Monoid m => (a -> m) -> ErrorT e f a -> m # foldr :: (a -> b -> b) -> b -> ErrorT e f a -> b # foldr' :: (a -> b -> b) -> b -> ErrorT e f a -> b # foldl :: (b -> a -> b) -> b -> ErrorT e f a -> b # foldl' :: (b -> a -> b) -> b -> ErrorT e f a -> b # foldr1 :: (a -> a -> a) -> ErrorT e f a -> a # foldl1 :: (a -> a -> a) -> ErrorT e f a -> a # toList :: ErrorT e f a -> [a] # null :: ErrorT e f a -> Bool # length :: ErrorT e f a -> Int # elem :: Eq a => a -> ErrorT e f a -> Bool # maximum :: Ord a => ErrorT e f a -> a # minimum :: Ord a => ErrorT e f a -> a # | |
Foldable (Tagged s) | |
Defined in Data.Tagged Methods fold :: Monoid m => Tagged s m -> m # foldMap :: Monoid m => (a -> m) -> Tagged s a -> m # foldr :: (a -> b -> b) -> b -> Tagged s a -> b # foldr' :: (a -> b -> b) -> b -> Tagged s a -> b # foldl :: (b -> a -> b) -> b -> Tagged s a -> b # foldl' :: (b -> a -> b) -> b -> Tagged s a -> b # foldr1 :: (a -> a -> a) -> Tagged s a -> a # foldl1 :: (a -> a -> a) -> Tagged s a -> a # elem :: Eq a => a -> Tagged s a -> Bool # maximum :: Ord a => Tagged s a -> a # minimum :: Ord a => Tagged s a -> a # | |
Foldable (K1 i c :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => K1 i c m -> m # foldMap :: Monoid m => (a -> m) -> K1 i c a -> m # foldr :: (a -> b -> b) -> b -> K1 i c a -> b # foldr' :: (a -> b -> b) -> b -> K1 i c a -> b # foldl :: (b -> a -> b) -> b -> K1 i c a -> b # foldl' :: (b -> a -> b) -> b -> K1 i c a -> b # foldr1 :: (a -> a -> a) -> K1 i c a -> a # foldl1 :: (a -> a -> a) -> K1 i c a -> a # elem :: Eq a => a -> K1 i c a -> Bool # maximum :: Ord a => K1 i c a -> a # minimum :: Ord a => K1 i c a -> a # | |
(Foldable f, Foldable g) => Foldable (f :+: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :+: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :+: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldr1 :: (a -> a -> a) -> (f :+: g) a -> a # foldl1 :: (a -> a -> a) -> (f :+: g) a -> a # toList :: (f :+: g) a -> [a] # length :: (f :+: g) a -> Int # elem :: Eq a => a -> (f :+: g) a -> Bool # maximum :: Ord a => (f :+: g) a -> a # minimum :: Ord a => (f :+: g) a -> a # | |
(Foldable f, Foldable g) => Foldable (f :*: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :*: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :*: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldr1 :: (a -> a -> a) -> (f :*: g) a -> a # foldl1 :: (a -> a -> a) -> (f :*: g) a -> a # toList :: (f :*: g) a -> [a] # length :: (f :*: g) a -> Int # elem :: Eq a => a -> (f :*: g) a -> Bool # maximum :: Ord a => (f :*: g) a -> a # minimum :: Ord a => (f :*: g) a -> a # | |
(Foldable f, Foldable g) => Foldable (Product f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product Methods fold :: Monoid m => Product f g m -> m # foldMap :: Monoid m => (a -> m) -> Product f g a -> m # foldr :: (a -> b -> b) -> b -> Product f g a -> b # foldr' :: (a -> b -> b) -> b -> Product f g a -> b # foldl :: (b -> a -> b) -> b -> Product f g a -> b # foldl' :: (b -> a -> b) -> b -> Product f g a -> b # foldr1 :: (a -> a -> a) -> Product f g a -> a # foldl1 :: (a -> a -> a) -> Product f g a -> a # toList :: Product f g a -> [a] # null :: Product f g a -> Bool # length :: Product f g a -> Int # elem :: Eq a => a -> Product f g a -> Bool # maximum :: Ord a => Product f g a -> a # minimum :: Ord a => Product f g a -> a # | |
(Foldable f, Foldable g) => Foldable (Sum f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Sum Methods fold :: Monoid m => Sum f g m -> m # foldMap :: Monoid m => (a -> m) -> Sum f g a -> m # foldr :: (a -> b -> b) -> b -> Sum f g a -> b # foldr' :: (a -> b -> b) -> b -> Sum f g a -> b # foldl :: (b -> a -> b) -> b -> Sum f g a -> b # foldl' :: (b -> a -> b) -> b -> Sum f g a -> b # foldr1 :: (a -> a -> a) -> Sum f g a -> a # foldl1 :: (a -> a -> a) -> Sum f g a -> a # elem :: Eq a => a -> Sum f g a -> Bool # maximum :: Ord a => Sum f g a -> a # minimum :: Ord a => Sum f g a -> a # | |
Foldable (Magma i t b) | |
Defined in Control.Lens.Internal.Magma Methods fold :: Monoid m => Magma i t b m -> m # foldMap :: Monoid m => (a -> m) -> Magma i t b a -> m # foldr :: (a -> b0 -> b0) -> b0 -> Magma i t b a -> b0 # foldr' :: (a -> b0 -> b0) -> b0 -> Magma i t b a -> b0 # foldl :: (b0 -> a -> b0) -> b0 -> Magma i t b a -> b0 # foldl' :: (b0 -> a -> b0) -> b0 -> Magma i t b a -> b0 # foldr1 :: (a -> a -> a) -> Magma i t b a -> a # foldl1 :: (a -> a -> a) -> Magma i t b a -> a # toList :: Magma i t b a -> [a] # null :: Magma i t b a -> Bool # length :: Magma i t b a -> Int # elem :: Eq a => a -> Magma i t b a -> Bool # maximum :: Ord a => Magma i t b a -> a # minimum :: Ord a => Magma i t b a -> a # | |
Foldable f => Foldable (M1 i c f) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => M1 i c f m -> m # foldMap :: Monoid m => (a -> m) -> M1 i c f a -> m # foldr :: (a -> b -> b) -> b -> M1 i c f a -> b # foldr' :: (a -> b -> b) -> b -> M1 i c f a -> b # foldl :: (b -> a -> b) -> b -> M1 i c f a -> b # foldl' :: (b -> a -> b) -> b -> M1 i c f a -> b # foldr1 :: (a -> a -> a) -> M1 i c f a -> a # foldl1 :: (a -> a -> a) -> M1 i c f a -> a # elem :: Eq a => a -> M1 i c f a -> Bool # maximum :: Ord a => M1 i c f a -> a # minimum :: Ord a => M1 i c f a -> a # | |
(Foldable f, Foldable g) => Foldable (f :.: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :.: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :.: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldr1 :: (a -> a -> a) -> (f :.: g) a -> a # foldl1 :: (a -> a -> a) -> (f :.: g) a -> a # toList :: (f :.: g) a -> [a] # length :: (f :.: g) a -> Int # elem :: Eq a => a -> (f :.: g) a -> Bool # maximum :: Ord a => (f :.: g) a -> a # minimum :: Ord a => (f :.: g) a -> a # | |
(Foldable f, Foldable g) => Foldable (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose Methods fold :: Monoid m => Compose f g m -> m # foldMap :: Monoid m => (a -> m) -> Compose f g a -> m # foldr :: (a -> b -> b) -> b -> Compose f g a -> b # foldr' :: (a -> b -> b) -> b -> Compose f g a -> b # foldl :: (b -> a -> b) -> b -> Compose f g a -> b # foldl' :: (b -> a -> b) -> b -> Compose f g a -> b # foldr1 :: (a -> a -> a) -> Compose f g a -> a # foldl1 :: (a -> a -> a) -> Compose f g a -> a # toList :: Compose f g a -> [a] # null :: Compose f g a -> Bool # length :: Compose f g a -> Int # elem :: Eq a => a -> Compose f g a -> Bool # maximum :: Ord a => Compose f g a -> a # minimum :: Ord a => Compose f g a -> a # | |
Bifoldable p => Foldable (WrappedBifunctor p a) | |
Defined in Data.Bifunctor.Wrapped Methods fold :: Monoid m => WrappedBifunctor p a m -> m # foldMap :: Monoid m => (a0 -> m) -> WrappedBifunctor p a a0 -> m # foldr :: (a0 -> b -> b) -> b -> WrappedBifunctor p a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> WrappedBifunctor p a a0 -> b # foldl :: (b -> a0 -> b) -> b -> WrappedBifunctor p a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> WrappedBifunctor p a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> WrappedBifunctor p a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> WrappedBifunctor p a a0 -> a0 # toList :: WrappedBifunctor p a a0 -> [a0] # null :: WrappedBifunctor p a a0 -> Bool # length :: WrappedBifunctor p a a0 -> Int # elem :: Eq a0 => a0 -> WrappedBifunctor p a a0 -> Bool # maximum :: Ord a0 => WrappedBifunctor p a a0 -> a0 # minimum :: Ord a0 => WrappedBifunctor p a a0 -> a0 # sum :: Num a0 => WrappedBifunctor p a a0 -> a0 # product :: Num a0 => WrappedBifunctor p a a0 -> a0 # | |
Foldable g => Foldable (Joker g a) | |
Defined in Data.Bifunctor.Joker Methods fold :: Monoid m => Joker g a m -> m # foldMap :: Monoid m => (a0 -> m) -> Joker g a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Joker g a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Joker g a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Joker g a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Joker g a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Joker g a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Joker g a a0 -> a0 # toList :: Joker g a a0 -> [a0] # null :: Joker g a a0 -> Bool # length :: Joker g a a0 -> Int # elem :: Eq a0 => a0 -> Joker g a a0 -> Bool # maximum :: Ord a0 => Joker g a a0 -> a0 # minimum :: Ord a0 => Joker g a a0 -> a0 # | |
Bifoldable p => Foldable (Flip p a) | |
Defined in Data.Bifunctor.Flip Methods fold :: Monoid m => Flip p a m -> m # foldMap :: Monoid m => (a0 -> m) -> Flip p a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Flip p a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Flip p a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Flip p a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Flip p a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Flip p a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Flip p a a0 -> a0 # toList :: Flip p a a0 -> [a0] # length :: Flip p a a0 -> Int # elem :: Eq a0 => a0 -> Flip p a a0 -> Bool # maximum :: Ord a0 => Flip p a a0 -> a0 # minimum :: Ord a0 => Flip p a a0 -> a0 # | |
Foldable (Clown f a :: Type -> Type) | |
Defined in Data.Bifunctor.Clown Methods fold :: Monoid m => Clown f a m -> m # foldMap :: Monoid m => (a0 -> m) -> Clown f a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Clown f a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Clown f a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Clown f a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Clown f a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Clown f a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Clown f a a0 -> a0 # toList :: Clown f a a0 -> [a0] # null :: Clown f a a0 -> Bool # length :: Clown f a a0 -> Int # elem :: Eq a0 => a0 -> Clown f a a0 -> Bool # maximum :: Ord a0 => Clown f a a0 -> a0 # minimum :: Ord a0 => Clown f a a0 -> a0 # | |
(Foldable f, Bifoldable p) => Foldable (Tannen f p a) | |
Defined in Data.Bifunctor.Tannen Methods fold :: Monoid m => Tannen f p a m -> m # foldMap :: Monoid m => (a0 -> m) -> Tannen f p a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Tannen f p a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Tannen f p a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Tannen f p a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Tannen f p a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Tannen f p a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Tannen f p a a0 -> a0 # toList :: Tannen f p a a0 -> [a0] # null :: Tannen f p a a0 -> Bool # length :: Tannen f p a a0 -> Int # elem :: Eq a0 => a0 -> Tannen f p a a0 -> Bool # maximum :: Ord a0 => Tannen f p a a0 -> a0 # minimum :: Ord a0 => Tannen f p a a0 -> a0 # | |
(Bifoldable p, Foldable g) => Foldable (Biff p f g a) | |
Defined in Data.Bifunctor.Biff Methods fold :: Monoid m => Biff p f g a m -> m # foldMap :: Monoid m => (a0 -> m) -> Biff p f g a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Biff p f g a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Biff p f g a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Biff p f g a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Biff p f g a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Biff p f g a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Biff p f g a a0 -> a0 # toList :: Biff p f g a a0 -> [a0] # null :: Biff p f g a a0 -> Bool # length :: Biff p f g a a0 -> Int # elem :: Eq a0 => a0 -> Biff p f g a a0 -> Bool # maximum :: Ord a0 => Biff p f g a a0 -> a0 # minimum :: Ord a0 => Biff p f g a a0 -> a0 # |
class (Functor t, Foldable t) => Traversable (t :: Type -> Type) where #
Functors representing data structures that can be traversed from left to right.
A definition of traverse
must satisfy the following laws:
- naturality
t .
for every applicative transformationtraverse
f =traverse
(t . f)t
- identity
traverse
Identity = Identity- composition
traverse
(Compose .fmap
g . f) = Compose .fmap
(traverse
g) .traverse
f
A definition of sequenceA
must satisfy the following laws:
- naturality
t .
for every applicative transformationsequenceA
=sequenceA
.fmap
tt
- identity
sequenceA
.fmap
Identity = Identity- composition
sequenceA
.fmap
Compose = Compose .fmap
sequenceA
.sequenceA
where an applicative transformation is a function
t :: (Applicative f, Applicative g) => f a -> g a
preserving the Applicative
operations, i.e.
and the identity functor Identity
and composition of functors Compose
are defined as
newtype Identity a = Identity a instance Functor Identity where fmap f (Identity x) = Identity (f x) instance Applicative Identity where pure x = Identity x Identity f <*> Identity x = Identity (f x) newtype Compose f g a = Compose (f (g a)) instance (Functor f, Functor g) => Functor (Compose f g) where fmap f (Compose x) = Compose (fmap (fmap f) x) instance (Applicative f, Applicative g) => Applicative (Compose f g) where pure x = Compose (pure (pure x)) Compose f <*> Compose x = Compose ((<*>) <$> f <*> x)
(The naturality law is implied by parametricity.)
Instances are similar to Functor
, e.g. given a data type
data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)
a suitable instance would be
instance Traversable Tree where traverse f Empty = pure Empty traverse f (Leaf x) = Leaf <$> f x traverse f (Node l k r) = Node <$> traverse f l <*> f k <*> traverse f r
This is suitable even for abstract types, as the laws for <*>
imply a form of associativity.
The superclass instances should satisfy the following:
- In the
Functor
instance,fmap
should be equivalent to traversal with the identity applicative functor (fmapDefault
). - In the
Foldable
instance,foldMap
should be equivalent to traversal with a constant applicative functor (foldMapDefault
).
Methods
traverse :: Applicative f => (a -> f b) -> t a -> f (t b) #
Map each element of a structure to an action, evaluate these actions
from left to right, and collect the results. For a version that ignores
the results see traverse_
.
sequenceA :: Applicative f => t (f a) -> f (t a) #
Evaluate each action in the structure from left to right, and
collect the results. For a version that ignores the results
see sequenceA_
.
mapM :: Monad m => (a -> m b) -> t a -> m (t b) #
Map each element of a structure to a monadic action, evaluate
these actions from left to right, and collect the results. For
a version that ignores the results see mapM_
.
sequence :: Monad m => t (m a) -> m (t a) #
Evaluate each monadic action in the structure from left to
right, and collect the results. For a version that ignores the
results see sequence_
.
Instances
Representable types of kind *
.
This class is derivable in GHC with the DeriveGeneric
flag on.
A Generic
instance must satisfy the following laws:
from
.to
≡id
to
.from
≡id
Instances
The class of semigroups (types with an associative binary operation).
Instances should satisfy the associativity law:
Since: base-4.9.0.0
Instances
class Semigroup a => Monoid a where #
The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following laws:
x
<>
mempty
= xmempty
<>
x = xx
(<>
(y<>
z) = (x<>
y)<>
zSemigroup
law)mconcat
=foldr
'(<>)'mempty
The method names refer to the monoid of lists under concatenation, but there are many other instances.
Some types can be viewed as a monoid in more than one way,
e.g. both addition and multiplication on numbers.
In such cases we often define newtype
s and make those instances
of Monoid
, e.g. Sum
and Product
.
NOTE: Semigroup
is a superclass of Monoid
since base-4.11.0.0.
Minimal complete definition
Methods
Identity of mappend
An associative operation
NOTE: This method is redundant and has the default
implementation
since base-4.11.0.0.mappend
= '(<>)'
Fold a list using the monoid.
For most types, the default definition for mconcat
will be
used, but the function is included in the class definition so
that an optimized version can be provided for specific types.
Instances
Instances
The character type Char
is an enumeration whose values represent
Unicode (or equivalently ISO/IEC 10646) code points (i.e. characters, see
http://www.unicode.org/ for details). This set extends the ISO 8859-1
(Latin-1) character set (the first 256 characters), which is itself an extension
of the ASCII character set (the first 128 characters). A character literal in
Haskell has type Char
.
To convert a Char
to or from the corresponding Int
value defined
by Unicode, use toEnum
and fromEnum
from the
Enum
class respectively (or equivalently ord
and chr
).
Instances
Double-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE double-precision type.
Instances
Single-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE single-precision type.
Instances
A fixed-precision integer type with at least the range [-2^29 .. 2^29-1]
.
The exact range for a given implementation can be determined by using
minBound
and maxBound
from the Bounded
class.
Instances
32-bit signed integer type
Instances
64-bit signed integer type
Instances
Invariant: Jn#
and Jp#
are used iff value doesn't fit in S#
Useful properties resulting from the invariants:
Instances
Type representing arbitrary-precision non-negative integers.
>>>
2^100 :: Natural
1267650600228229401496703205376
Operations whose result would be negative
,throw
(Underflow
:: ArithException
)
>>>
-1 :: Natural
*** Exception: arithmetic underflow
Since: base-4.8.0.0
Instances
The Maybe
type encapsulates an optional value. A value of type
either contains a value of type Maybe
aa
(represented as
),
or it is empty (represented as Just
aNothing
). Using Maybe
is a good way to
deal with errors or exceptional cases without resorting to drastic
measures such as error
.
The Maybe
type is also a monad. It is a simple kind of error
monad, where all errors are represented by Nothing
. A richer
error monad can be built using the Either
type.
Instances
Monad Maybe | Since: base-2.1 |
Functor Maybe | Since: base-2.1 |
Applicative Maybe | Since: base-2.1 |
Foldable Maybe | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |
Traversable Maybe | Since: base-2.1 |
ToJSON1 Maybe | |
Defined in Data.Aeson.Types.ToJSON Methods liftToJSON :: (a -> Value) -> ([a] -> Value) -> Maybe a -> Value # liftToJSONList :: (a -> Value) -> ([a] -> Value) -> [Maybe a] -> Value # liftToEncoding :: (a -> Encoding) -> ([a] -> Encoding) -> Maybe a -> Encoding # liftToEncodingList :: (a -> Encoding) -> ([a] -> Encoding) -> [Maybe a] -> Encoding # | |
FromJSON1 Maybe | |
Alternative Maybe | Since: base-2.1 |
MonadPlus Maybe | Since: base-2.1 |
Eq1 Maybe | Since: base-4.9.0.0 |
Ord1 Maybe | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Read1 Maybe | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Show1 Maybe | Since: base-4.9.0.0 |
MonadFailure Maybe | |
MonadThrow Maybe | |
Defined in Control.Monad.Catch | |
Hashable1 Maybe | |
Defined in Data.Hashable.Class | |
FunctorWithIndex () Maybe | |
Defined in Control.Lens.Indexed | |
FoldableWithIndex () Maybe | |
TraversableWithIndex () Maybe | |
Defined in Control.Lens.Indexed Methods itraverse :: Applicative f => (() -> a -> f b) -> Maybe a -> f (Maybe b) # itraversed :: IndexedTraversal () (Maybe a) (Maybe b) a b # | |
(Selector s, GToJSON enc arity (K1 i (Maybe a) :: Type -> Type), KeyValuePair enc pairs, Monoid pairs) => RecordToPairs enc pairs arity (S1 s (K1 i (Maybe a) :: Type -> Type)) | |
Defined in Data.Aeson.Types.ToJSON | |
(Selector s, ToHttpApiData c) => GToForm (t :: k) (M1 S s (K1 i (Maybe c) :: Type -> Type)) | |
Defined in Web.Internal.FormUrlEncoded | |
(Selector s, FromHttpApiData c) => GFromForm (t :: k) (M1 S s (K1 i (Maybe c) :: Type -> Type)) | |
(Selector s, FromJSON a) => FromRecord arity (S1 s (K1 i (Maybe a) :: Type -> Type)) | |
Defined in Data.Aeson.Types.FromJSON | |
Eq a => Eq (Maybe a) | Since: base-2.1 |
Data a => Data (Maybe a) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Maybe a -> c (Maybe a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Maybe a) # toConstr :: Maybe a -> Constr # dataTypeOf :: Maybe a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Maybe a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Maybe a)) # gmapT :: (forall b. Data b => b -> b) -> Maybe a -> Maybe a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r # gmapQ :: (forall d. Data d => d -> u) -> Maybe a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Maybe a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # | |
Ord a => Ord (Maybe a) | Since: base-2.1 |
Read a => Read (Maybe a) | Since: base-2.1 |
Show a => Show (Maybe a) | Since: base-2.1 |
Generic (Maybe a) | |
Semigroup a => Semigroup (Maybe a) | Since: base-4.9.0.0 |
Semigroup a => Monoid (Maybe a) | Lift a semigroup into Since 4.11.0: constraint on inner Since: base-2.1 |
Lift a => Lift (Maybe a) | |
Hashable a => Hashable (Maybe a) | |
Defined in Data.Hashable.Class | |
ToJSON a => ToJSON (Maybe a) | |
Defined in Data.Aeson.Types.ToJSON | |
FromJSON a => FromJSON (Maybe a) | |
SingKind a => SingKind (Maybe a) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
ToHttpApiData a => ToHttpApiData (Maybe a) |
|
Defined in Web.Internal.HttpApiData Methods toUrlPiece :: Maybe a -> Text # toEncodedUrlPiece :: Maybe a -> Builder # toHeader :: Maybe a -> ByteString # toQueryParam :: Maybe a -> Text # | |
FromHttpApiData a => FromHttpApiData (Maybe a) |
|
Defined in Web.Internal.HttpApiData Methods parseUrlPiece :: Text -> Either Text (Maybe a) # parseHeader :: ByteString -> Either Text (Maybe a) # | |
(QueryKeyLike k, QueryValueLike v) => QueryLike [Maybe (k, v)] | |
Defined in Network.HTTP.Types.QueryLike | |
QueryValueLike a => QueryValueLike (Maybe a) | |
Defined in Network.HTTP.Types.QueryLike Methods toQueryValue :: Maybe a -> Maybe ByteString # | |
Ixed (Maybe a) | |
Defined in Control.Lens.At | |
At (Maybe a) | |
AsEmpty (Maybe a) | |
Defined in Control.Lens.Empty | |
MonoFunctor (Maybe a) | |
MonoFoldable (Maybe a) | |
Defined in Data.MonoTraversable Methods ofoldMap :: Monoid m => (Element (Maybe a) -> m) -> Maybe a -> m # ofoldr :: (Element (Maybe a) -> b -> b) -> b -> Maybe a -> b # ofoldl' :: (a0 -> Element (Maybe a) -> a0) -> a0 -> Maybe a -> a0 # otoList :: Maybe a -> [Element (Maybe a)] # oall :: (Element (Maybe a) -> Bool) -> Maybe a -> Bool # oany :: (Element (Maybe a) -> Bool) -> Maybe a -> Bool # olength64 :: Maybe a -> Int64 # ocompareLength :: Integral i => Maybe a -> i -> Ordering # otraverse_ :: Applicative f => (Element (Maybe a) -> f b) -> Maybe a -> f () # ofor_ :: Applicative f => Maybe a -> (Element (Maybe a) -> f b) -> f () # omapM_ :: Applicative m => (Element (Maybe a) -> m ()) -> Maybe a -> m () # oforM_ :: Applicative m => Maybe a -> (Element (Maybe a) -> m ()) -> m () # ofoldlM :: Monad m => (a0 -> Element (Maybe a) -> m a0) -> a0 -> Maybe a -> m a0 # ofoldMap1Ex :: Semigroup m => (Element (Maybe a) -> m) -> Maybe a -> m # ofoldr1Ex :: (Element (Maybe a) -> Element (Maybe a) -> Element (Maybe a)) -> Maybe a -> Element (Maybe a) # ofoldl1Ex' :: (Element (Maybe a) -> Element (Maybe a) -> Element (Maybe a)) -> Maybe a -> Element (Maybe a) # headEx :: Maybe a -> Element (Maybe a) # lastEx :: Maybe a -> Element (Maybe a) # unsafeHead :: Maybe a -> Element (Maybe a) # unsafeLast :: Maybe a -> Element (Maybe a) # maximumByEx :: (Element (Maybe a) -> Element (Maybe a) -> Ordering) -> Maybe a -> Element (Maybe a) # minimumByEx :: (Element (Maybe a) -> Element (Maybe a) -> Ordering) -> Maybe a -> Element (Maybe a) # | |
MonoTraversable (Maybe a) | |
MonoPointed (Maybe a) | |
Generic1 Maybe | |
SingI (Nothing :: Maybe a) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Each (Maybe a) (Maybe b) a b |
|
SingI a2 => SingI (Just a2 :: Maybe a1) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Failure Maybe | |
Defined in Basement.Monad | |
type Rep (Maybe a) | Since: base-4.6.0.0 |
data Sing (b :: Maybe a) | |
type DemoteRep (Maybe a) | |
Defined in GHC.Generics | |
type Index (Maybe a) | |
Defined in Control.Lens.At | |
type IxValue (Maybe a) | |
Defined in Control.Lens.At | |
type Element (Maybe a) | |
Defined in Data.MonoTraversable | |
type Rep1 Maybe | Since: base-4.6.0.0 |
Instances
Bounded Ordering | Since: base-2.1 |
Enum Ordering | Since: base-2.1 |
Eq Ordering | |
Data Ordering | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ordering -> c Ordering # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Ordering # toConstr :: Ordering -> Constr # dataTypeOf :: Ordering -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Ordering) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Ordering) # gmapT :: (forall b. Data b => b -> b) -> Ordering -> Ordering # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r # gmapQ :: (forall d. Data d => d -> u) -> Ordering -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ordering -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # | |
Ord Ordering | |
Defined in GHC.Classes | |
Read Ordering | Since: base-2.1 |
Show Ordering | Since: base-2.1 |
Ix Ordering | Since: base-2.1 |
Defined in GHC.Arr | |
Generic Ordering | |
Semigroup Ordering | Since: base-4.9.0.0 |
Monoid Ordering | Since: base-2.1 |
Hashable Ordering | |
Defined in Data.Hashable.Class | |
ToJSON Ordering | |
Defined in Data.Aeson.Types.ToJSON | |
FromJSON Ordering | |
ToFormKey Ordering | |
Defined in Web.Internal.FormUrlEncoded | |
FromFormKey Ordering | |
Defined in Web.Internal.FormUrlEncoded | |
ToHttpApiData Ordering | |
Defined in Web.Internal.HttpApiData Methods toUrlPiece :: Ordering -> Text # toEncodedUrlPiece :: Ordering -> Builder # toHeader :: Ordering -> ByteString # toQueryParam :: Ordering -> Text # | |
FromHttpApiData Ordering | |
Defined in Web.Internal.HttpApiData Methods parseUrlPiece :: Text -> Either Text Ordering # parseHeader :: ByteString -> Either Text Ordering # | |
AsEmpty Ordering | |
Defined in Control.Lens.Empty | |
type Rep Ordering | Since: base-4.6.0.0 |
A value of type
is a computation which, when performed,
does some I/O before returning a value of type IO
aa
.
There is really only one way to "perform" an I/O action: bind it to
Main.main
in your program. When your program is run, the I/O will
be performed. It isn't possible to perform I/O from an arbitrary
function, unless that function is itself in the IO
monad and called
at some point, directly or indirectly, from Main.main
.
IO
is a monad, so IO
actions can be combined using either the do-notation
or the >>
and >>=
operations from the Monad
class.
Instances
8-bit unsigned integer type
Instances
32-bit unsigned integer type
Instances
64-bit unsigned integer type
Instances
The Either
type represents values with two possibilities: a value of
type
is either Either
a b
or Left
a
.Right
b
The Either
type is sometimes used to represent a value which is
either correct or an error; by convention, the Left
constructor is
used to hold an error value and the Right
constructor is used to
hold a correct value (mnemonic: "right" also means "correct").
Examples
The type
is the type of values which can be either
a Either
String
Int
String
or an Int
. The Left
constructor can be used only on
String
s, and the Right
constructor can be used only on Int
s:
>>>
let s = Left "foo" :: Either String Int
>>>
s
Left "foo">>>
let n = Right 3 :: Either String Int
>>>
n
Right 3>>>
:type s
s :: Either String Int>>>
:type n
n :: Either String Int
The fmap
from our Functor
instance will ignore Left
values, but
will apply the supplied function to values contained in a Right
:
>>>
let s = Left "foo" :: Either String Int
>>>
let n = Right 3 :: Either String Int
>>>
fmap (*2) s
Left "foo">>>
fmap (*2) n
Right 6
The Monad
instance for Either
allows us to chain together multiple
actions which may fail, and fail overall if any of the individual
steps failed. First we'll write a function that can either parse an
Int
from a Char
, or fail.
>>>
import Data.Char ( digitToInt, isDigit )
>>>
:{
let parseEither :: Char -> Either String Int parseEither c | isDigit c = Right (digitToInt c) | otherwise = Left "parse error">>>
:}
The following should work, since both '1'
and '2'
can be
parsed as Int
s.
>>>
:{
let parseMultiple :: Either String Int parseMultiple = do x <- parseEither '1' y <- parseEither '2' return (x + y)>>>
:}
>>>
parseMultiple
Right 3
But the following should fail overall, since the first operation where
we attempt to parse 'm'
as an Int
will fail:
>>>
:{
let parseMultiple :: Either String Int parseMultiple = do x <- parseEither 'm' y <- parseEither '2' return (x + y)>>>
:}
>>>
parseMultiple
Left "parse error"
Instances
ToJSON2 Either | |
Defined in Data.Aeson.Types.ToJSON Methods liftToJSON2 :: (a -> Value) -> ([a] -> Value) -> (b -> Value) -> ([b] -> Value) -> Either a b -> Value # liftToJSONList2 :: (a -> Value) -> ([a] -> Value) -> (b -> Value) -> ([b] -> Value) -> [Either a b] -> Value # liftToEncoding2 :: (a -> Encoding) -> ([a] -> Encoding) -> (b -> Encoding) -> ([b] -> Encoding) -> Either a b -> Encoding # liftToEncodingList2 :: (a -> Encoding) -> ([a] -> Encoding) -> (b -> Encoding) -> ([b] -> Encoding) -> [Either a b] -> Encoding # | |
FromJSON2 Either | |
Defined in Data.Aeson.Types.FromJSON | |
Bifunctor Either | Since: base-4.8.0.0 |
Eq2 Either | Since: base-4.9.0.0 |
Ord2 Either | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Read2 Either | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes Methods liftReadsPrec2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (Either a b) # liftReadList2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> ReadS [Either a b] # liftReadPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec (Either a b) # liftReadListPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec [Either a b] # | |
Show2 Either | Since: base-4.9.0.0 |
Hashable2 Either | |
Defined in Data.Hashable.Class | |
Bitraversable1 Either | |
Defined in Data.Semigroup.Traversable.Class Methods bitraverse1 :: Apply f => (a -> f b) -> (c -> f d) -> Either a c -> f (Either b d) # bisequence1 :: Apply f => Either (f a) (f b) -> f (Either a b) # | |
Swapped Either | |
Monad (Either e) | Since: base-4.4.0.0 |
Functor (Either a) | Since: base-3.0 |
Applicative (Either e) | Since: base-3.0 |
Foldable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Either a m -> m # foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # toList :: Either a a0 -> [a0] # length :: Either a a0 -> Int # elem :: Eq a0 => a0 -> Either a a0 -> Bool # maximum :: Ord a0 => Either a a0 -> a0 # minimum :: Ord a0 => Either a a0 -> a0 # | |
Traversable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Traversable | |
ToJSON a => ToJSON1 (Either a) | |
Defined in Data.Aeson.Types.ToJSON Methods liftToJSON :: (a0 -> Value) -> ([a0] -> Value) -> Either a a0 -> Value # liftToJSONList :: (a0 -> Value) -> ([a0] -> Value) -> [Either a a0] -> Value # liftToEncoding :: (a0 -> Encoding) -> ([a0] -> Encoding) -> Either a a0 -> Encoding # liftToEncodingList :: (a0 -> Encoding) -> ([a0] -> Encoding) -> [Either a a0] -> Encoding # | |
FromJSON a => FromJSON1 (Either a) | |
Eq a => Eq1 (Either a) | Since: base-4.9.0.0 |
Ord a => Ord1 (Either a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Read a => Read1 (Either a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes Methods liftReadsPrec :: (Int -> ReadS a0) -> ReadS [a0] -> Int -> ReadS (Either a a0) # liftReadList :: (Int -> ReadS a0) -> ReadS [a0] -> ReadS [Either a a0] # liftReadPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec (Either a a0) # liftReadListPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec [Either a a0] # | |
Show a => Show1 (Either a) | Since: base-4.9.0.0 |
MonadFailure (Either a) | |
e ~ SomeException => MonadThrow (Either e) | |
Defined in Control.Monad.Catch | |
e ~ SomeException => MonadCatch (Either e) | Since: exceptions-0.8.3 |
e ~ SomeException => MonadMask (Either e) | Since: exceptions-0.8.3 |
Defined in Control.Monad.Catch | |
Hashable a => Hashable1 (Either a) | |
Defined in Data.Hashable.Class | |
Generic1 (Either a :: Type -> Type) | |
(Eq a, Eq b) => Eq (Either a b) | Since: base-2.1 |
(Data a, Data b) => Data (Either a b) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Either a b -> c (Either a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Either a b) # toConstr :: Either a b -> Constr # dataTypeOf :: Either a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Either a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Either a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Either a b -> Either a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Either a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Either a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # | |
(Ord a, Ord b) => Ord (Either a b) | Since: base-2.1 |
(Read a, Read b) => Read (Either a b) | Since: base-3.0 |
(Show a, Show b) => Show (Either a b) | Since: base-3.0 |
Generic (Either a b) | |
Semigroup (Either a b) | Since: base-4.9.0.0 |
(Lift a, Lift b) => Lift (Either a b) | |
(Hashable a, Hashable b) => Hashable (Either a b) | |
Defined in Data.Hashable.Class | |
(ToJSON a, ToJSON b) => ToJSON (Either a b) | |
Defined in Data.Aeson.Types.ToJSON | |
(FromJSON a, FromJSON b) => FromJSON (Either a b) | |
(ToHttpApiData a, ToHttpApiData b) => ToHttpApiData (Either a b) |
|
Defined in Web.Internal.HttpApiData Methods toUrlPiece :: Either a b -> Text # toEncodedUrlPiece :: Either a b -> Builder # toHeader :: Either a b -> ByteString # toQueryParam :: Either a b -> Text # | |
(FromHttpApiData a, FromHttpApiData b) => FromHttpApiData (Either a b) |
|
Defined in Web.Internal.HttpApiData Methods parseUrlPiece :: Text -> Either Text (Either a b) # parseHeader :: ByteString -> Either Text (Either a b) # | |
MonoFunctor (Either a b) | |
MonoFoldable (Either a b) | |
Defined in Data.MonoTraversable Methods ofoldMap :: Monoid m => (Element (Either a b) -> m) -> Either a b -> m # ofoldr :: (Element (Either a b) -> b0 -> b0) -> b0 -> Either a b -> b0 # ofoldl' :: (a0 -> Element (Either a b) -> a0) -> a0 -> Either a b -> a0 # otoList :: Either a b -> [Element (Either a b)] # oall :: (Element (Either a b) -> Bool) -> Either a b -> Bool # oany :: (Element (Either a b) -> Bool) -> Either a b -> Bool # olength :: Either a b -> Int # olength64 :: Either a b -> Int64 # ocompareLength :: Integral i => Either a b -> i -> Ordering # otraverse_ :: Applicative f => (Element (Either a b) -> f b0) -> Either a b -> f () # ofor_ :: Applicative f => Either a b -> (Element (Either a b) -> f b0) -> f () # omapM_ :: Applicative m => (Element (Either a b) -> m ()) -> Either a b -> m () # oforM_ :: Applicative m => Either a b -> (Element (Either a b) -> m ()) -> m () # ofoldlM :: Monad m => (a0 -> Element (Either a b) -> m a0) -> a0 -> Either a b -> m a0 # ofoldMap1Ex :: Semigroup m => (Element (Either a b) -> m) -> Either a b -> m # ofoldr1Ex :: (Element (Either a b) -> Element (Either a b) -> Element (Either a b)) -> Either a b -> Element (Either a b) # ofoldl1Ex' :: (Element (Either a b) -> Element (Either a b) -> Element (Either a b)) -> Either a b -> Element (Either a b) # headEx :: Either a b -> Element (Either a b) # lastEx :: Either a b -> Element (Either a b) # unsafeHead :: Either a b -> Element (Either a b) # unsafeLast :: Either a b -> Element (Either a b) # maximumByEx :: (Element (Either a b) -> Element (Either a b) -> Ordering) -> Either a b -> Element (Either a b) # minimumByEx :: (Element (Either a b) -> Element (Either a b) -> Ordering) -> Either a b -> Element (Either a b) # | |
MonoTraversable (Either a b) | |
MonoPointed (Either a b) | |
(FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex (Either i j) (Sum f g) | |
(FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex (Either i j) (Product f g) | |
(FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex (Either i j) (f :+: g) | |
(FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex (Either i j) (f :*: g) | |
(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (Either i j) (Sum f g) | |
Defined in Control.Lens.Indexed Methods ifoldMap :: Monoid m => (Either i j -> a -> m) -> Sum f g a -> m # ifolded :: IndexedFold (Either i j) (Sum f g a) a # ifoldr :: (Either i j -> a -> b -> b) -> b -> Sum f g a -> b # ifoldl :: (Either i j -> b -> a -> b) -> b -> Sum f g a -> b # ifoldr' :: (Either i j -> a -> b -> b) -> b -> Sum f g a -> b # ifoldl' :: (Either i j -> b -> a -> b) -> b -> Sum f g a -> b # | |
(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (Either i j) (Product f g) | |
Defined in Control.Lens.Indexed Methods ifoldMap :: Monoid m => (Either i j -> a -> m) -> Product f g a -> m # ifolded :: IndexedFold (Either i j) (Product f g a) a # ifoldr :: (Either i j -> a -> b -> b) -> b -> Product f g a -> b # ifoldl :: (Either i j -> b -> a -> b) -> b -> Product f g a -> b # ifoldr' :: (Either i j -> a -> b -> b) -> b -> Product f g a -> b # ifoldl' :: (Either i j -> b -> a -> b) -> b -> Product f g a -> b # | |
(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (Either i j) (f :+: g) | |
Defined in Control.Lens.Indexed Methods ifoldMap :: Monoid m => (Either i j -> a -> m) -> (f :+: g) a -> m # ifolded :: IndexedFold (Either i j) ((f :+: g) a) a # ifoldr :: (Either i j -> a -> b -> b) -> b -> (f :+: g) a -> b # ifoldl :: (Either i j -> b -> a -> b) -> b -> (f :+: g) a -> b # ifoldr' :: (Either i j -> a -> b -> b) -> b -> (f :+: g) a -> b # ifoldl' :: (Either i j -> b -> a -> b) -> b -> (f :+: g) a -> b # | |
(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (Either i j) (f :*: g) | |
Defined in Control.Lens.Indexed Methods ifoldMap :: Monoid m => (Either i j -> a -> m) -> (f :*: g) a -> m # ifolded :: IndexedFold (Either i j) ((f :*: g) a) a # ifoldr :: (Either i j -> a -> b -> b) -> b -> (f :*: g) a -> b # ifoldl :: (Either i j -> b -> a -> b) -> b -> (f :*: g) a -> b # ifoldr' :: (Either i j -> a -> b -> b) -> b -> (f :*: g) a -> b # ifoldl' :: (Either i j -> b -> a -> b) -> b -> (f :*: g) a -> b # | |
(TraversableWithIndex i f, TraversableWithIndex j g) => TraversableWithIndex (Either i j) (Sum f g) | |
Defined in Control.Lens.Indexed Methods itraverse :: Applicative f0 => (Either i j -> a -> f0 b) -> Sum f g a -> f0 (Sum f g b) # itraversed :: IndexedTraversal (Either i j) (Sum f g a) (Sum f g b) a b # | |
(TraversableWithIndex i f, TraversableWithIndex j g) => TraversableWithIndex (Either i j) (Product f g) | |
Defined in Control.Lens.Indexed Methods itraverse :: Applicative f0 => (Either i j -> a -> f0 b) -> Product f g a -> f0 (Product f g b) # itraversed :: IndexedTraversal (Either i j) (Product f g a) (Product f g b) a b # | |
(TraversableWithIndex i f, TraversableWithIndex j g) => TraversableWithIndex (Either i j) (f :+: g) | |
Defined in Control.Lens.Indexed Methods itraverse :: Applicative f0 => (Either i j -> a -> f0 b) -> (f :+: g) a -> f0 ((f :+: g) b) # itraversed :: IndexedTraversal (Either i j) ((f :+: g) a) ((f :+: g) b) a b # | |
(TraversableWithIndex i f, TraversableWithIndex j g) => TraversableWithIndex (Either i j) (f :*: g) | |
Defined in Control.Lens.Indexed Methods itraverse :: Applicative f0 => (Either i j -> a -> f0 b) -> (f :*: g) a -> f0 ((f :*: g) b) # itraversed :: IndexedTraversal (Either i j) ((f :*: g) a) ((f :*: g) b) a b # | |
type Failure (Either a) | |
Defined in Basement.Monad | |
type Rep1 (Either a :: Type -> Type) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep1 (Either a :: Type -> Type) = D1 (MetaData "Either" "Data.Either" "base" False) (C1 (MetaCons "Left" PrefixI False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 a)) :+: C1 (MetaCons "Right" PrefixI False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) Par1)) | |
type Rep (Either a b) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep (Either a b) = D1 (MetaData "Either" "Data.Either" "base" False) (C1 (MetaCons "Left" PrefixI False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 a)) :+: C1 (MetaCons "Right" PrefixI False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 b))) | |
type Element (Either a b) | |
Defined in Data.MonoTraversable |
either :: (a -> c) -> (b -> c) -> Either a b -> c #
Case analysis for the Either
type.
If the value is
, apply the first function to Left
aa
;
if it is
, apply the second function to Right
bb
.
Examples
We create two values of type
, one using the
Either
String
Int
Left
constructor and another using the Right
constructor. Then
we apply "either" the length
function (if we have a String
)
or the "times-two" function (if we have an Int
):
>>>
let s = Left "foo" :: Either String Int
>>>
let n = Right 3 :: Either String Int
>>>
either length (*2) s
3>>>
either length (*2) n
6
data ByteString #
A space-efficient representation of a Word8
vector, supporting many
efficient operations.
A ByteString
contains 8-bit bytes, or by using the operations from
Data.ByteString.Char8 it can be interpreted as containing 8-bit
characters.
Instances
data Scientific #
An arbitrary-precision number represented using scientific notation.
This type describes the set of all
which have a finite
decimal expansion.Real
s
A scientific number with coefficient
c
and base10Exponent
e
corresponds to the Fractional
number: fromInteger
c * 10 ^^
e
Instances
Eq Scientific | Scientific numbers can be safely compared for equality. No magnitude |
Defined in Data.Scientific | |
Fractional Scientific | WARNING:
|
Defined in Data.Scientific Methods (/) :: Scientific -> Scientific -> Scientific # recip :: Scientific -> Scientific # fromRational :: Rational -> Scientific # | |
Data Scientific | |
Defined in Data.Scientific Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Scientific -> c Scientific # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Scientific # toConstr :: Scientific -> Constr # dataTypeOf :: Scientific -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Scientific) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Scientific) # gmapT :: (forall b. Data b => b -> b) -> Scientific -> Scientific # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Scientific -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Scientific -> r # gmapQ :: (forall d. Data d => d -> u) -> Scientific -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Scientific -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Scientific -> m Scientific # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Scientific -> m Scientific # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Scientific -> m Scientific # | |
Num Scientific | WARNING: |
Defined in Data.Scientific Methods (+) :: Scientific -> Scientific -> Scientific # (-) :: Scientific -> Scientific -> Scientific # (*) :: Scientific -> Scientific -> Scientific # negate :: Scientific -> Scientific # abs :: Scientific -> Scientific # signum :: Scientific -> Scientific # fromInteger :: Integer -> Scientific # | |
Ord Scientific | Scientific numbers can be safely compared for ordering. No magnitude |
Defined in Data.Scientific Methods compare :: Scientific -> Scientific -> Ordering # (<) :: Scientific -> Scientific -> Bool # (<=) :: Scientific -> Scientific -> Bool # (>) :: Scientific -> Scientific -> Bool # (>=) :: Scientific -> Scientific -> Bool # max :: Scientific -> Scientific -> Scientific # min :: Scientific -> Scientific -> Scientific # | |
Read Scientific | Supports the skipping of parentheses and whitespaces. Example: > read " ( (( -1.0e+3 ) ))" :: Scientific -1000.0 (Note: This |
Defined in Data.Scientific Methods readsPrec :: Int -> ReadS Scientific # readList :: ReadS [Scientific] # readPrec :: ReadPrec Scientific # readListPrec :: ReadPrec [Scientific] # | |
Real Scientific | WARNING: Avoid applying |
Defined in Data.Scientific Methods toRational :: Scientific -> Rational # | |
RealFrac Scientific | WARNING: the methods of the |
Defined in Data.Scientific Methods properFraction :: Integral b => Scientific -> (b, Scientific) # truncate :: Integral b => Scientific -> b # round :: Integral b => Scientific -> b # ceiling :: Integral b => Scientific -> b # floor :: Integral b => Scientific -> b # | |
Show Scientific | See |
Defined in Data.Scientific Methods showsPrec :: Int -> Scientific -> ShowS # show :: Scientific -> String # showList :: [Scientific] -> ShowS # | |
Hashable Scientific | A hash can be safely calculated from a |
Defined in Data.Scientific | |
ToJSON Scientific | |
Defined in Data.Aeson.Types.ToJSON Methods toJSON :: Scientific -> Value # toEncoding :: Scientific -> Encoding # toJSONList :: [Scientific] -> Value # toEncodingList :: [Scientific] -> Encoding # | |
ToJSONKey Scientific | |
Defined in Data.Aeson.Types.ToJSON | |
FromJSON Scientific | |
Defined in Data.Aeson.Types.FromJSON | |
Binary Scientific | Note that in the future I intend to change the type of the |
Defined in Data.Scientific | |
NFData Scientific | |
Defined in Data.Scientific Methods rnf :: Scientific -> () # |
(<$>) :: Functor f => (a -> b) -> f a -> f b infixl 4 #
An infix synonym for fmap
.
The name of this operator is an allusion to $
.
Note the similarities between their types:
($) :: (a -> b) -> a -> b (<$>) :: Functor f => (a -> b) -> f a -> f b
Whereas $
is function application, <$>
is function
application lifted over a Functor
.
Examples
Convert from a
to a Maybe
Int
using Maybe
String
show
:
>>>
show <$> Nothing
Nothing>>>
show <$> Just 3
Just "3"
Convert from an
to an Either
Int
Int
Either
Int
String
using show
:
>>>
show <$> Left 17
Left 17>>>
show <$> Right 17
Right "17"
Double each element of a list:
>>>
(*2) <$> [1,2,3]
[2,4,6]
Apply even
to the second element of a pair:
>>>
even <$> (2,2)
(2,True)
The class of types that can be converted to a hash value.
Minimal implementation: hashWithSalt
.
Minimal complete definition
Nothing
Methods
hashWithSalt :: Int -> a -> Int infixl 0 #
Return a hash value for the argument, using the given salt.
The general contract of hashWithSalt
is:
- If two values are equal according to the
==
method, then applying thehashWithSalt
method on each of the two values must produce the same integer result if the same salt is used in each case. - It is not required that if two values are unequal
according to the
==
method, then applying thehashWithSalt
method on each of the two values must produce distinct integer results. However, the programmer should be aware that producing distinct integer results for unequal values may improve the performance of hashing-based data structures. - This method can be used to compute different hash values for
the same input by providing a different salt in each
application of the method. This implies that any instance
that defines
hashWithSalt
must make use of the salt in its implementation.
Instances
A space efficient, packed, unboxed Unicode text type.
Instances
This is the simplest representation of UTC. It consists of the day number, and a time offset from midnight. Note that if a day has a leap second added to it, it will have 86401 seconds.
Instances
A map from keys to values. A map cannot contain duplicate keys; each key can map to at most one value.
Instances
KeyValue Object | Constructs a singleton |
Eq2 HashMap | |
Ord2 HashMap | |
Defined in Data.HashMap.Base | |
Show2 HashMap | |
Hashable2 HashMap | |
Defined in Data.HashMap.Base | |
FunctorWithIndex k (HashMap k) | |
Defined in Control.Lens.Indexed | |
FoldableWithIndex k (HashMap k) | |
Defined in Control.Lens.Indexed | |
TraversableWithIndex k (HashMap k) | |
Defined in Control.Lens.Indexed Methods itraverse :: Applicative f => (k -> a -> f b) -> HashMap k a -> f (HashMap k b) # itraversed :: IndexedTraversal k (HashMap k a) (HashMap k b) a b # | |
Functor (HashMap k) | |
Foldable (HashMap k) | |
Defined in Data.HashMap.Base Methods fold :: Monoid m => HashMap k m -> m # foldMap :: Monoid m => (a -> m) -> HashMap k a -> m # foldr :: (a -> b -> b) -> b -> HashMap k a -> b # foldr' :: (a -> b -> b) -> b -> HashMap k a -> b # foldl :: (b -> a -> b) -> b -> HashMap k a -> b # foldl' :: (b -> a -> b) -> b -> HashMap k a -> b # foldr1 :: (a -> a -> a) -> HashMap k a -> a # foldl1 :: (a -> a -> a) -> HashMap k a -> a # toList :: HashMap k a -> [a] # length :: HashMap k a -> Int # elem :: Eq a => a -> HashMap k a -> Bool # maximum :: Ord a => HashMap k a -> a # minimum :: Ord a => HashMap k a -> a # | |
Traversable (HashMap k) | |
Defined in Data.HashMap.Base | |
ToJSONKey k => ToJSON1 (HashMap k) | |
Defined in Data.Aeson.Types.ToJSON Methods liftToJSON :: (a -> Value) -> ([a] -> Value) -> HashMap k a -> Value # liftToJSONList :: (a -> Value) -> ([a] -> Value) -> [HashMap k a] -> Value # liftToEncoding :: (a -> Encoding) -> ([a] -> Encoding) -> HashMap k a -> Encoding # liftToEncodingList :: (a -> Encoding) -> ([a] -> Encoding) -> [HashMap k a] -> Encoding # | |
(FromJSONKey k, Eq k, Hashable k) => FromJSON1 (HashMap k) | |
Eq k => Eq1 (HashMap k) | |
Ord k => Ord1 (HashMap k) | |
Defined in Data.HashMap.Base | |
(Eq k, Hashable k, Read k) => Read1 (HashMap k) | |
Defined in Data.HashMap.Base | |
Show k => Show1 (HashMap k) | |
Hashable k => Hashable1 (HashMap k) | |
Defined in Data.HashMap.Base | |
(Eq k, Hashable k) => IsList (HashMap k v) | |
(Eq k, Eq v) => Eq (HashMap k v) | |
(Data k, Data v, Eq k, Hashable k) => Data (HashMap k v) | |
Defined in Data.HashMap.Base Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> HashMap k v -> c (HashMap k v) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (HashMap k v) # toConstr :: HashMap k v -> Constr # dataTypeOf :: HashMap k v -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (HashMap k v)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (HashMap k v)) # gmapT :: (forall b. Data b => b -> b) -> HashMap k v -> HashMap k v # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> HashMap k v -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> HashMap k v -> r # gmapQ :: (forall d. Data d => d -> u) -> HashMap k v -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> HashMap k v -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> HashMap k v -> m (HashMap k v) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> HashMap k v -> m (HashMap k v) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> HashMap k v -> m (HashMap k v) # | |
(Ord k, Ord v) => Ord (HashMap k v) | The order is total. Note: Because the hash is not guaranteed to be stable across library
versions, OSes, or architectures, neither is an actual order of elements in
|
Defined in Data.HashMap.Base | |
(Eq k, Hashable k, Read k, Read e) => Read (HashMap k e) | |
(Show k, Show v) => Show (HashMap k v) | |
(Eq k, Hashable k) => Semigroup (HashMap k v) | |
(Eq k, Hashable k) => Monoid (HashMap k v) | |
(Hashable k, Hashable v) => Hashable (HashMap k v) | |
Defined in Data.HashMap.Base | |
(ToJSON v, ToJSONKey k) => ToJSON (HashMap k v) | |
Defined in Data.Aeson.Types.ToJSON | |
(FromJSON v, FromJSONKey k, Eq k, Hashable k) => FromJSON (HashMap k v) | |
(NFData k, NFData v) => NFData (HashMap k v) | |
Defined in Data.HashMap.Base | |
(ToFormKey k, ToHttpApiData v) => ToForm (HashMap k [v]) | |
Defined in Web.Internal.FormUrlEncoded | |
(Eq k, Hashable k, FromFormKey k, FromHttpApiData v) => FromForm (HashMap k [v]) | |
(Eq k, Hashable k) => Ixed (HashMap k a) | |
Defined in Control.Lens.At | |
(Eq k, Hashable k) => At (HashMap k a) | |
(Hashable k, Eq k) => Wrapped (HashMap k a) | |
AsEmpty (HashMap k a) | |
Defined in Control.Lens.Empty | |
MonoFunctor (HashMap k v) | |
MonoFoldable (HashMap k v) | |
Defined in Data.MonoTraversable Methods ofoldMap :: Monoid m => (Element (HashMap k v) -> m) -> HashMap k v -> m # ofoldr :: (Element (HashMap k v) -> b -> b) -> b -> HashMap k v -> b # ofoldl' :: (a -> Element (HashMap k v) -> a) -> a -> HashMap k v -> a # otoList :: HashMap k v -> [Element (HashMap k v)] # oall :: (Element (HashMap k v) -> Bool) -> HashMap k v -> Bool # oany :: (Element (HashMap k v) -> Bool) -> HashMap k v -> Bool # onull :: HashMap k v -> Bool # olength :: HashMap k v -> Int # olength64 :: HashMap k v -> Int64 # ocompareLength :: Integral i => HashMap k v -> i -> Ordering # otraverse_ :: Applicative f => (Element (HashMap k v) -> f b) -> HashMap k v -> f () # ofor_ :: Applicative f => HashMap k v -> (Element (HashMap k v) -> f b) -> f () # omapM_ :: Applicative m => (Element (HashMap k v) -> m ()) -> HashMap k v -> m () # oforM_ :: Applicative m => HashMap k v -> (Element (HashMap k v) -> m ()) -> m () # ofoldlM :: Monad m => (a -> Element (HashMap k v) -> m a) -> a -> HashMap k v -> m a # ofoldMap1Ex :: Semigroup m => (Element (HashMap k v) -> m) -> HashMap k v -> m # ofoldr1Ex :: (Element (HashMap k v) -> Element (HashMap k v) -> Element (HashMap k v)) -> HashMap k v -> Element (HashMap k v) # ofoldl1Ex' :: (Element (HashMap k v) -> Element (HashMap k v) -> Element (HashMap k v)) -> HashMap k v -> Element (HashMap k v) # headEx :: HashMap k v -> Element (HashMap k v) # lastEx :: HashMap k v -> Element (HashMap k v) # unsafeHead :: HashMap k v -> Element (HashMap k v) # unsafeLast :: HashMap k v -> Element (HashMap k v) # maximumByEx :: (Element (HashMap k v) -> Element (HashMap k v) -> Ordering) -> HashMap k v -> Element (HashMap k v) # minimumByEx :: (Element (HashMap k v) -> Element (HashMap k v) -> Ordering) -> HashMap k v -> Element (HashMap k v) # | |
MonoTraversable (HashMap k v) | |
(Eq k, Hashable k) => GrowingAppend (HashMap k v) | |
Defined in Data.MonoTraversable | |
(t ~ HashMap k' a', Hashable k, Eq k) => Rewrapped (HashMap k a) t | Use |
Defined in Control.Lens.Wrapped | |
c ~ d => Each (HashMap c a) (HashMap d b) a b |
|
type Item (HashMap k v) | |
Defined in Data.HashMap.Base | |
type Index (HashMap k a) | |
Defined in Control.Lens.At | |
type IxValue (HashMap k a) | |
Defined in Control.Lens.At | |
type Unwrapped (HashMap k a) | |
Defined in Control.Lens.Wrapped | |
type Element (HashMap k v) | |
Defined in Data.MonoTraversable |
A type that can be converted to JSON.
Instances in general must specify toJSON
and should (but don't need
to) specify toEncoding
.
An example type and instance:
-- Allow ourselves to writeText
literals. {-# LANGUAGE OverloadedStrings #-} data Coord = Coord { x :: Double, y :: Double } instanceToJSON
Coord wheretoJSON
(Coord x y) =object
["x".=
x, "y".=
y]toEncoding
(Coord x y) =pairs
("x".=
x<>
"y".=
y)
Instead of manually writing your ToJSON
instance, there are two options
to do it automatically:
- Data.Aeson.TH provides Template Haskell functions which will derive an instance at compile time. The generated instance is optimized for your type so it will probably be more efficient than the following option.
- The compiler can provide a default generic implementation for
toJSON
.
To use the second, simply add a deriving
clause to your
datatype and declare a Generic
ToJSON
instance. If you require nothing other than
defaultOptions
, it is sufficient to write (and this is the only
alternative where the default toJSON
implementation is sufficient):
{-# LANGUAGE DeriveGeneric #-} import GHC.Generics data Coord = Coord { x :: Double, y :: Double } derivingGeneric
instanceToJSON
Coord wheretoEncoding
=genericToEncoding
defaultOptions
If on the other hand you wish to customize the generic decoding, you have to implement both methods:
customOptions =defaultOptions
{fieldLabelModifier
=map
toUpper
} instanceToJSON
Coord wheretoJSON
=genericToJSON
customOptionstoEncoding
=genericToEncoding
customOptions
Previous versions of this library only had the toJSON
method. Adding
toEncoding
had two reasons:
- toEncoding is more efficient for the common case that the output of
toJSON
is directly serialized to aByteString
. Further, expressing either method in terms of the other would be non-optimal. - The choice of defaults allows a smooth transition for existing users:
Existing instances that do not define
toEncoding
still compile and have the correct semantics. This is ensured by making the default implementation oftoEncoding
usetoJSON
. This produces correct results, but since it performs an intermediate conversion to aValue
, it will be less efficient than directly emitting anEncoding
. (this also means that specifying nothing more thaninstance ToJSON Coord
would be sufficient as a generically decoding instance, but there probably exists no good reason to not specifytoEncoding
in new instances.)
Minimal complete definition
Nothing
Methods
Convert a Haskell value to a JSON-friendly intermediate type.
toEncoding :: a -> Encoding #
Encode a Haskell value as JSON.
The default implementation of this method creates an
intermediate Value
using toJSON
. This provides
source-level compatibility for people upgrading from older
versions of this library, but obviously offers no performance
advantage.
To benefit from direct encoding, you must provide an
implementation for this method. The easiest way to do so is by
having your types implement Generic
using the DeriveGeneric
extension, and then have GHC generate a method body as follows.
instanceToJSON
Coord wheretoEncoding
=genericToEncoding
defaultOptions
toJSONList :: [a] -> Value #
toEncodingList :: [a] -> Encoding #
Instances
(.!=) :: Parser (Maybe a) -> a -> Parser a #
Helper for use in combination with .:?
to provide default
values for optional JSON object fields.
This combinator is most useful if the key and value can be absent
from an object without affecting its validity and we know a default
value to assign in that case. If the key and value are mandatory,
use .:
instead.
Example usage:
v1 <- o.:?
"opt_field_with_dfl" .!= "default_val" v2 <- o.:
"mandatory_field" v3 <- o.:?
"opt_field2"
(.:?) :: FromJSON a => Object -> Text -> Parser (Maybe a) #
Retrieve the value associated with the given key of an Object
. The
result is Nothing
if the key is not present or if its value is Null
,
or empty
if the value cannot be converted to the desired type.
This accessor is most useful if the key and value can be absent
from an object without affecting its validity. If the key and
value are mandatory, use .:
instead.
(.:) :: FromJSON a => Object -> Text -> Parser a #
Retrieve the value associated with the given key of an Object
.
The result is empty
if the key is not present or the value cannot
be converted to the desired type.
This accessor is appropriate if the key and value must be present
in an object for it to be valid. If the key and value are
optional, use .:?
instead.
withObject :: String -> (Object -> Parser a) -> Value -> Parser a #
applies withObject
expected f valuef
to the Object
when value
is an Object
and fails using
otherwise.typeMismatch
expected
A type that can be converted from JSON, with the possibility of failure.
In many cases, you can get the compiler to generate parsing code for you (see below). To begin, let's cover writing an instance by hand.
There are various reasons a conversion could fail. For example, an
Object
could be missing a required key, an Array
could be of
the wrong size, or a value could be of an incompatible type.
The basic ways to signal a failed conversion are as follows:
empty
andmzero
work, but are terse and uninformative;fail
yields a custom error message;typeMismatch
produces an informative message for cases when the value encountered is not of the expected type.
An example type and instance using typeMismatch
:
-- Allow ourselves to writeText
literals. {-# LANGUAGE OverloadedStrings #-} data Coord = Coord { x :: Double, y :: Double } instanceFromJSON
Coord whereparseJSON
(Object
v) = Coord<$>
v.:
"x"<*>
v.:
"y" -- We do not expect a non-Object
value here. -- We could usemzero
to fail, buttypeMismatch
-- gives a much more informative error message.parseJSON
invalid =typeMismatch
"Coord" invalid
For this common case of only being concerned with a single
type of JSON value, the functions withObject
, withNumber
, etc.
are provided. Their use is to be preferred when possible, since
they are more terse. Using withObject
, we can rewrite the above instance
(assuming the same language extension and data type) as:
instanceFromJSON
Coord whereparseJSON
=withObject
"Coord" $ \v -> Coord<$>
v.:
"x"<*>
v.:
"y"
Instead of manually writing your FromJSON
instance, there are two options
to do it automatically:
- Data.Aeson.TH provides Template Haskell functions which will derive an instance at compile time. The generated instance is optimized for your type so it will probably be more efficient than the following option.
- The compiler can provide a default generic implementation for
parseJSON
.
To use the second, simply add a deriving
clause to your
datatype and declare a Generic
FromJSON
instance for your datatype without giving
a definition for parseJSON
.
For example, the previous example can be simplified to just:
{-# LANGUAGE DeriveGeneric #-} import GHC.Generics data Coord = Coord { x :: Double, y :: Double } derivingGeneric
instanceFromJSON
Coord
The default implementation will be equivalent to
parseJSON =
; If you need different
options, you can customize the generic decoding by defining:genericParseJSON
defaultOptions
customOptions =defaultOptions
{fieldLabelModifier
=map
toUpper
} instanceFromJSON
Coord whereparseJSON
=genericParseJSON
customOptions
Minimal complete definition
Nothing
Instances
emptyObject :: Value #
The empty object.
read :: Read a => String -> a #
The read
function reads input from a string, which must be
completely consumed by the input process. read
fails with an error
if the
parse is unsuccessful, and it is therefore discouraged from being used in
real applications. Use readMaybe
or readEither
for safe alternatives.
>>>
read "123" :: Int
123
>>>
read "hello" :: Int
*** Exception: Prelude.read: no parse
appendFile :: FilePath -> String -> IO () #
The computation appendFile
file str
function appends the string str
,
to the file file
.
Note that writeFile
and appendFile
write a literal string
to a file. To write a value of any printable type, as with print
,
use the show
function to convert the value to a string first.
main = appendFile "squares" (show [(x,x*x) | x <- [0,0.1..2]])
writeFile :: FilePath -> String -> IO () #
The computation writeFile
file str
function writes the string str
,
to the file file
.
readFile :: FilePath -> IO String #
The readFile
function reads a file and
returns the contents of the file as a string.
The file is read lazily, on demand, as with getContents
.
interact :: (String -> String) -> IO () #
The interact
function takes a function of type String->String
as its argument. The entire input from the standard input device is
passed to this function as its argument, and the resulting string is
output on the standard output device.
getContents :: IO String #
The getContents
operation returns all user input as a single string,
which is read lazily as it is needed
(same as hGetContents
stdin
).
File and directory names are values of type String
, whose precise
meaning is operating system dependent. Files can be opened, yielding a
handle which can then be used to operate on the contents of that file.
userError :: String -> IOError #
Construct an IOException
value with a string describing the error.
The fail
method of the IO
instance of the Monad
class raises a
userError
, thus:
instance Monad IO where ... fail s = ioError (userError s)
type IOError = IOException #
The Haskell 2010 type for exceptions in the IO
monad.
Any I/O operation may raise an IOException
instead of returning a result.
For a more general type of exception, including also those that arise
in pure code, see Exception
.
In Haskell 2010, this is an opaque type.
all :: Foldable t => (a -> Bool) -> t a -> Bool #
Determines whether all elements of the structure satisfy the predicate.
concatMap :: Foldable t => (a -> [b]) -> t a -> [b] #
Map a function over all the elements of a container and concatenate the resulting lists.
concat :: Foldable t => t [a] -> [a] #
The concatenation of all the elements of a container of lists.
sequence_ :: (Foldable t, Monad m) => t (m a) -> m () #
Evaluate each monadic action in the structure from left to right,
and ignore the results. For a version that doesn't ignore the
results see sequence
.
As of base 4.8.0.0, sequence_
is just sequenceA_
, specialized
to Monad
.
words
breaks a string up into a list of words, which were delimited
by white space.
>>>
words "Lorem ipsum\ndolor"
["Lorem","ipsum","dolor"]
lines
breaks a string up into a list of strings at newline
characters. The resulting strings do not contain newlines.
Note that after splitting the string at newline characters, the last part of the string is considered a line even if it doesn't end with a newline. For example,
>>>
lines ""
[]
>>>
lines "\n"
[""]
>>>
lines "one"
["one"]
>>>
lines "one\n"
["one"]
>>>
lines "one\n\n"
["one",""]
>>>
lines "one\ntwo"
["one","two"]
>>>
lines "one\ntwo\n"
["one","two"]
Thus
contains at least as many elements as newlines in lines
ss
.
asProxyTypeOf :: a -> proxy a -> a #
asProxyTypeOf
is a type-restricted version of const
.
It is usually used as an infix operator, and its typing forces its first
argument (which is usually overloaded) to have the same type as the tag
of the second.
>>>
import Data.Word
>>>
:type asProxyTypeOf 123 (Proxy :: Proxy Word8)
asProxyTypeOf 123 (Proxy :: Proxy Word8) :: Word8
Note the lower-case proxy
in the definition. This allows any type
constructor with just one argument to be passed to the function, for example
we could also write
>>>
import Data.Word
>>>
:type asProxyTypeOf 123 (Just (undefined :: Word8))
asProxyTypeOf 123 (Just (undefined :: Word8)) :: Word8
data Proxy (t :: k) :: forall k. k -> Type #
Proxy
is a type that holds no data, but has a phantom parameter of
arbitrary type (or even kind). Its use is to provide type information, even
though there is no value available of that type (or it may be too costly to
create one).
Historically,
is a safer alternative to the
Proxy
:: Proxy
a'undefined :: a'
idiom.
>>>
Proxy :: Proxy (Void, Int -> Int)
Proxy
Proxy can even hold types of higher kinds,
>>>
Proxy :: Proxy Either
Proxy
>>>
Proxy :: Proxy Functor
Proxy
>>>
Proxy :: Proxy complicatedStructure
Proxy
Constructors
Proxy |
Instances
Generic1 (Proxy :: k -> Type) | |
FunctorWithIndex Void (Proxy :: Type -> Type) | |
FoldableWithIndex Void (Proxy :: Type -> Type) | |
Defined in Control.Lens.Indexed | |
TraversableWithIndex Void (Proxy :: Type -> Type) | |
Defined in Control.Lens.Indexed Methods itraverse :: Applicative f => (Void -> a -> f b) -> Proxy a -> f (Proxy b) # itraversed :: IndexedTraversal Void (Proxy a) (Proxy b) a b # | |
Monad (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Functor (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Applicative (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Foldable (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Proxy m -> m # foldMap :: Monoid m => (a -> m) -> Proxy a -> m # foldr :: (a -> b -> b) -> b -> Proxy a -> b # foldr' :: (a -> b -> b) -> b -> Proxy a -> b # foldl :: (b -> a -> b) -> b -> Proxy a -> b # foldl' :: (b -> a -> b) -> b -> Proxy a -> b # foldr1 :: (a -> a -> a) -> Proxy a -> a # foldl1 :: (a -> a -> a) -> Proxy a -> a # elem :: Eq a => a -> Proxy a -> Bool # maximum :: Ord a => Proxy a -> a # minimum :: Ord a => Proxy a -> a # | |
Traversable (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Contravariant (Proxy :: Type -> Type) | |
Representable (Proxy :: Type -> Type) | |
ToJSON1 (Proxy :: Type -> Type) | |
Defined in Data.Aeson.Types.ToJSON Methods liftToJSON :: (a -> Value) -> ([a] -> Value) -> Proxy a -> Value # liftToJSONList :: (a -> Value) -> ([a] -> Value) -> [Proxy a] -> Value # liftToEncoding :: (a -> Encoding) -> ([a] -> Encoding) -> Proxy a -> Encoding # liftToEncodingList :: (a -> Encoding) -> ([a] -> Encoding) -> [Proxy a] -> Encoding # | |
FromJSON1 (Proxy :: Type -> Type) | |
Alternative (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
MonadPlus (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
Eq1 (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
Ord1 (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Read1 (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Show1 (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
Hashable1 (Proxy :: Type -> Type) | |
Defined in Data.Hashable.Class | |
Bounded (Proxy t) | Since: base-4.7.0.0 |
Enum (Proxy s) | Since: base-4.7.0.0 |
Eq (Proxy s) | Since: base-4.7.0.0 |
Data t => Data (Proxy t) | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Proxy t -> c (Proxy t) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Proxy t) # toConstr :: Proxy t -> Constr # dataTypeOf :: Proxy t -> DataType # dataCast1 :: Typeable t0 => (forall d. Data d => c (t0 d)) -> Maybe (c (Proxy t)) # dataCast2 :: Typeable t0 => (forall d e. (Data d, Data e) => c (t0 d e)) -> Maybe (c (Proxy t)) # gmapT :: (forall b. Data b => b -> b) -> Proxy t -> Proxy t # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Proxy t -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Proxy t -> r # gmapQ :: (forall d. Data d => d -> u) -> Proxy t -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Proxy t -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) # | |
Ord (Proxy s) | Since: base-4.7.0.0 |
Read (Proxy t) | Since: base-4.7.0.0 |
Show (Proxy s) | Since: base-4.7.0.0 |
Ix (Proxy s) | Since: base-4.7.0.0 |
Defined in Data.Proxy | |
Generic (Proxy t) | |
Semigroup (Proxy s) | Since: base-4.9.0.0 |
Monoid (Proxy s) | Since: base-4.7.0.0 |
Hashable (Proxy a) | |
Defined in Data.Hashable.Class | |
ToJSON (Proxy a) | |
Defined in Data.Aeson.Types.ToJSON | |
FromJSON (Proxy a) | |
MonoFunctor (Proxy a) | Since: mono-traversable-1.0.11.0 |
MonoFoldable (Proxy a) | Since: mono-traversable-1.0.11.0 |
Defined in Data.MonoTraversable Methods ofoldMap :: Monoid m => (Element (Proxy a) -> m) -> Proxy a -> m # ofoldr :: (Element (Proxy a) -> b -> b) -> b -> Proxy a -> b # ofoldl' :: (a0 -> Element (Proxy a) -> a0) -> a0 -> Proxy a -> a0 # otoList :: Proxy a -> [Element (Proxy a)] # oall :: (Element (Proxy a) -> Bool) -> Proxy a -> Bool # oany :: (Element (Proxy a) -> Bool) -> Proxy a -> Bool # olength64 :: Proxy a -> Int64 # ocompareLength :: Integral i => Proxy a -> i -> Ordering # otraverse_ :: Applicative f => (Element (Proxy a) -> f b) -> Proxy a -> f () # ofor_ :: Applicative f => Proxy a -> (Element (Proxy a) -> f b) -> f () # omapM_ :: Applicative m => (Element (Proxy a) -> m ()) -> Proxy a -> m () # oforM_ :: Applicative m => Proxy a -> (Element (Proxy a) -> m ()) -> m () # ofoldlM :: Monad m => (a0 -> Element (Proxy a) -> m a0) -> a0 -> Proxy a -> m a0 # ofoldMap1Ex :: Semigroup m => (Element (Proxy a) -> m) -> Proxy a -> m # ofoldr1Ex :: (Element (Proxy a) -> Element (Proxy a) -> Element (Proxy a)) -> Proxy a -> Element (Proxy a) # ofoldl1Ex' :: (Element (Proxy a) -> Element (Proxy a) -> Element (Proxy a)) -> Proxy a -> Element (Proxy a) # headEx :: Proxy a -> Element (Proxy a) # lastEx :: Proxy a -> Element (Proxy a) # unsafeHead :: Proxy a -> Element (Proxy a) # unsafeLast :: Proxy a -> Element (Proxy a) # maximumByEx :: (Element (Proxy a) -> Element (Proxy a) -> Ordering) -> Proxy a -> Element (Proxy a) # minimumByEx :: (Element (Proxy a) -> Element (Proxy a) -> Ordering) -> Proxy a -> Element (Proxy a) # | |
MonoTraversable (Proxy a) | Since: mono-traversable-1.0.11.0 |
MonoPointed (Proxy a) | Since: mono-traversable-1.0.11.0 |
type Rep1 (Proxy :: k -> Type) | Since: base-4.6.0.0 |
type Rep (Proxy :: Type -> Type) | |
type Rep (Proxy t) | Since: base-4.6.0.0 |
type Element (Proxy a) | |
Defined in Data.MonoTraversable |
A concrete, promotable proxy type, for use at the kind level There are no instances for this because it is intended at the kind level only
Constructors
KProxy |
The lex
function reads a single lexeme from the input, discarding
initial white space, and returning the characters that constitute the
lexeme. If the input string contains only white space, lex
returns a
single successful `lexeme' consisting of the empty string. (Thus
.) If there is no legal lexeme at the
beginning of the input string, lex
"" = [("","")]lex
fails (i.e. returns []
).
This lexer is not completely faithful to the Haskell lexical syntax in the following respects:
- Qualified names are not handled properly
- Octal and hexadecimal numerics are not recognized as a single token
- Comments are not treated properly
type family If (cond :: Bool) (tru :: k) (fls :: k) :: k where ... #
Type-level If. If True a b
==> a
; If False a b
==> b
lcm :: Integral a => a -> a -> a #
is the smallest positive integer that both lcm
x yx
and y
divide.
gcd :: Integral a => a -> a -> a #
is the non-negative factor of both gcd
x yx
and y
of which
every common factor of x
and y
is also a factor; for example
, gcd
4 2 = 2
, gcd
(-4) 6 = 2
= gcd
0 44
.
= gcd
0 00
.
(That is, the common divisor that is "greatest" in the divisibility
preordering.)
Note: Since for signed fixed-width integer types,
,
the result may be negative if one of the arguments is abs
minBound
< 0
(and
necessarily is if the other is minBound
0
or
) for such types.minBound
(^^) :: (Fractional a, Integral b) => a -> b -> a infixr 8 #
raise a number to an integral power
showString :: String -> ShowS #
utility function converting a String
to a show function that
simply prepends the string unchanged.
utility function converting a Char
to a show function that
simply prepends the character unchanged.
unzip :: [(a, b)] -> ([a], [b]) #
unzip
transforms a list of pairs into a list of first components
and a list of second components.
(!!) :: [a] -> Int -> a infixl 9 #
List index (subscript) operator, starting from 0.
It is an instance of the more general genericIndex
,
which takes an index of any integral type.
lookup :: Eq a => a -> [(a, b)] -> Maybe b #
lookup
key assocs
looks up a key in an association list.
break :: (a -> Bool) -> [a] -> ([a], [a]) #
break
, applied to a predicate p
and a list xs
, returns a tuple where
first element is longest prefix (possibly empty) of xs
of elements that
do not satisfy p
and second element is the remainder of the list:
break (> 3) [1,2,3,4,1,2,3,4] == ([1,2,3],[4,1,2,3,4]) break (< 9) [1,2,3] == ([],[1,2,3]) break (> 9) [1,2,3] == ([1,2,3],[])
splitAt :: Int -> [a] -> ([a], [a]) #
splitAt
n xs
returns a tuple where first element is xs
prefix of
length n
and second element is the remainder of the list:
splitAt 6 "Hello World!" == ("Hello ","World!") splitAt 3 [1,2,3,4,5] == ([1,2,3],[4,5]) splitAt 1 [1,2,3] == ([1],[2,3]) splitAt 3 [1,2,3] == ([1,2,3],[]) splitAt 4 [1,2,3] == ([1,2,3],[]) splitAt 0 [1,2,3] == ([],[1,2,3]) splitAt (-1) [1,2,3] == ([],[1,2,3])
It is equivalent to (
when take
n xs, drop
n xs)n
is not _|_
(splitAt _|_ xs = _|_
).
splitAt
is an instance of the more general genericSplitAt
,
in which n
may be of any integral type.
drop
n xs
returns the suffix of xs
after the first n
elements, or []
if n >
:length
xs
drop 6 "Hello World!" == "World!" drop 3 [1,2,3,4,5] == [4,5] drop 3 [1,2] == [] drop 3 [] == [] drop (-1) [1,2] == [1,2] drop 0 [1,2] == [1,2]
It is an instance of the more general genericDrop
,
in which n
may be of any integral type.
take
n
, applied to a list xs
, returns the prefix of xs
of length n
, or xs
itself if n >
:length
xs
take 5 "Hello World!" == "Hello" take 3 [1,2,3,4,5] == [1,2,3] take 3 [1,2] == [1,2] take 3 [] == [] take (-1) [1,2] == [] take 0 [1,2] == []
It is an instance of the more general genericTake
,
in which n
may be of any integral type.
takeWhile :: (a -> Bool) -> [a] -> [a] #
takeWhile
, applied to a predicate p
and a list xs
, returns the
longest prefix (possibly empty) of xs
of elements that satisfy p
:
takeWhile (< 3) [1,2,3,4,1,2,3,4] == [1,2] takeWhile (< 9) [1,2,3] == [1,2,3] takeWhile (< 0) [1,2,3] == []
cycle
ties a finite list into a circular one, or equivalently,
the infinite repetition of the original list. It is the identity
on infinite lists.
replicate :: Int -> a -> [a] #
replicate
n x
is a list of length n
with x
the value of
every element.
It is an instance of the more general genericReplicate
,
in which n
may be of any integral type.
Return all the elements of a list except the last one. The list must be non-empty.
mapMaybe :: (a -> Maybe b) -> [a] -> [b] #
The mapMaybe
function is a version of map
which can throw
out elements. In particular, the functional argument returns
something of type
. If this is Maybe
bNothing
, no element
is added on to the result list. If it is
, then Just
bb
is
included in the result list.
Examples
Using
is a shortcut for mapMaybe
f x
in most cases:catMaybes
$ map
f x
>>>
import Text.Read ( readMaybe )
>>>
let readMaybeInt = readMaybe :: String -> Maybe Int
>>>
mapMaybe readMaybeInt ["1", "Foo", "3"]
[1,3]>>>
catMaybes $ map readMaybeInt ["1", "Foo", "3"]
[1,3]
If we map the Just
constructor, the entire list should be returned:
>>>
mapMaybe Just [1,2,3]
[1,2,3]
catMaybes :: [Maybe a] -> [a] #
The catMaybes
function takes a list of Maybe
s and returns
a list of all the Just
values.
Examples
Basic usage:
>>>
catMaybes [Just 1, Nothing, Just 3]
[1,3]
When constructing a list of Maybe
values, catMaybes
can be used
to return all of the "success" results (if the list is the result
of a map
, then mapMaybe
would be more appropriate):
>>>
import Text.Read ( readMaybe )
>>>
[readMaybe x :: Maybe Int | x <- ["1", "Foo", "3"] ]
[Just 1,Nothing,Just 3]>>>
catMaybes $ [readMaybe x :: Maybe Int | x <- ["1", "Foo", "3"] ]
[1,3]
listToMaybe :: [a] -> Maybe a #
The listToMaybe
function returns Nothing
on an empty list
or
where Just
aa
is the first element of the list.
Examples
Basic usage:
>>>
listToMaybe []
Nothing
>>>
listToMaybe [9]
Just 9
>>>
listToMaybe [1,2,3]
Just 1
Composing maybeToList
with listToMaybe
should be the identity
on singleton/empty lists:
>>>
maybeToList $ listToMaybe [5]
[5]>>>
maybeToList $ listToMaybe []
[]
But not on lists with more than one element:
>>>
maybeToList $ listToMaybe [1,2,3]
[1]
maybeToList :: Maybe a -> [a] #
The maybeToList
function returns an empty list when given
Nothing
or a singleton list when not given Nothing
.
Examples
Basic usage:
>>>
maybeToList (Just 7)
[7]
>>>
maybeToList Nothing
[]
One can use maybeToList
to avoid pattern matching when combined
with a function that (safely) works on lists:
>>>
import Text.Read ( readMaybe )
>>>
sum $ maybeToList (readMaybe "3")
3>>>
sum $ maybeToList (readMaybe "")
0
fromMaybe :: a -> Maybe a -> a #
The fromMaybe
function takes a default value and and Maybe
value. If the Maybe
is Nothing
, it returns the default values;
otherwise, it returns the value contained in the Maybe
.
Examples
Basic usage:
>>>
fromMaybe "" (Just "Hello, World!")
"Hello, World!"
>>>
fromMaybe "" Nothing
""
Read an integer from a string using readMaybe
. If we fail to
parse an integer, we want to return 0
by default:
>>>
import Text.Read ( readMaybe )
>>>
fromMaybe 0 (readMaybe "5")
5>>>
fromMaybe 0 (readMaybe "")
0
maybe :: b -> (a -> b) -> Maybe a -> b #
The maybe
function takes a default value, a function, and a Maybe
value. If the Maybe
value is Nothing
, the function returns the
default value. Otherwise, it applies the function to the value inside
the Just
and returns the result.
Examples
Basic usage:
>>>
maybe False odd (Just 3)
True
>>>
maybe False odd Nothing
False
Read an integer from a string using readMaybe
. If we succeed,
return twice the integer; that is, apply (*2)
to it. If instead
we fail to parse an integer, return 0
by default:
>>>
import Text.Read ( readMaybe )
>>>
maybe 0 (*2) (readMaybe "5")
10>>>
maybe 0 (*2) (readMaybe "")
0
Apply show
to a Maybe Int
. If we have Just n
, we want to show
the underlying Int
n
. But if we have Nothing
, we return the
empty string instead of (for example) "Nothing":
>>>
maybe "" show (Just 5)
"5">>>
maybe "" show Nothing
""
uncurry :: (a -> b -> c) -> (a, b) -> c #
uncurry
converts a curried function to a function on pairs.
Examples
>>>
uncurry (+) (1,2)
3
>>>
uncurry ($) (show, 1)
"1"
>>>
map (uncurry max) [(1,2), (3,4), (6,8)]
[2,4,8]
until :: (a -> Bool) -> (a -> a) -> a -> a #
yields the result of applying until
p ff
until p
holds.
($!) :: (a -> b) -> a -> b infixr 0 #
Strict (call-by-value) application operator. It takes a function and an argument, evaluates the argument to weak head normal form (WHNF), then calls the function with that value.
flip :: (a -> b -> c) -> b -> a -> c #
takes its (first) two arguments in the reverse order of flip
ff
.
>>>
flip (++) "hello" "world"
"worldhello"
const x
is a unary function which evaluates to x
for all inputs.
>>>
const 42 "hello"
42
>>>
map (const 42) [0..3]
[42,42,42,42]
(=<<) :: Monad m => (a -> m b) -> m a -> m b infixr 1 #
Same as >>=
, but with the arguments interchanged.
undefined :: HasCallStack => a #
errorWithoutStackTrace :: [Char] -> a #
A variant of error
that does not produce a stack trace.
Since: base-4.9.0.0
error :: HasCallStack => [Char] -> a #
error
stops execution and displays an error message.
class ToHttpApiData a where #
Convert value to HTTP API data.
WARNING: Do not derive this using DeriveAnyClass
as the generated
instance will loop indefinitely.
Minimal complete definition
Methods
toUrlPiece :: a -> Text #
Convert to URL path piece.
toEncodedUrlPiece :: a -> Builder #
Convert to a URL path piece, making sure to encode any special chars.
The default definition uses encodePathSegmentsRelative
,
but this may be overriden with a more efficient version.
toHeader :: a -> ByteString #
Convert to HTTP header value.
toQueryParam :: a -> Text #
Convert to query param value.
Instances
class FromHttpApiData a where #
Parse value from HTTP API data.
WARNING: Do not derive this using DeriveAnyClass
as the generated
instance will loop indefinitely.
Minimal complete definition
Methods
parseUrlPiece :: Text -> Either Text a #
Parse URL path piece.
parseHeader :: ByteString -> Either Text a #
Parse HTTP header value.
parseQueryParam :: Text -> Either Text a #
Parse query param value.
Instances
Represents a general universal resource identifier using its component parts.
For example, for the URI
foo://anonymous@www.haskell.org:42/ghc?query#frag
the components are:
Constructors
URI | |
Instances
Eq URI | |
Data URI | |
Defined in Network.URI Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> URI -> c URI # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c URI # dataTypeOf :: URI -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c URI) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c URI) # gmapT :: (forall b. Data b => b -> b) -> URI -> URI # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> URI -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> URI -> r # gmapQ :: (forall d. Data d => d -> u) -> URI -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> URI -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> URI -> m URI # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> URI -> m URI # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> URI -> m URI # | |
Ord URI | |
Show URI | |
Generic URI | |
NFData URI | |
Defined in Network.URI | |
type Rep URI | |
Defined in Network.URI type Rep URI = D1 (MetaData "URI" "Network.URI" "network-uri-2.6.1.0-K75fCYvLQE41EntOQ30cqK" False) (C1 (MetaCons "URI" PrefixI True) ((S1 (MetaSel (Just "uriScheme") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 String) :*: S1 (MetaSel (Just "uriAuthority") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (Maybe URIAuth))) :*: (S1 (MetaSel (Just "uriPath") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 String) :*: (S1 (MetaSel (Just "uriQuery") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 String) :*: S1 (MetaSel (Just "uriFragment") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 String))))) |
data RequestBody #
When using one of the RequestBodyStream
/ RequestBodyStreamChunked
constructors, you must ensure that the GivesPopper
can be called multiple
times. Usually this is not a problem.
The RequestBodyStreamChunked
will send a chunked request body. Note that
not all servers support this. Only use RequestBodyStreamChunked
if you
know the server you're sending to supports chunked request bodies.
Since 0.1.0
Instances
IsString RequestBody | Since 0.4.12 |
Defined in Network.HTTP.Client.Types Methods fromString :: String -> RequestBody # | |
Semigroup RequestBody | |
Defined in Network.HTTP.Client.Types Methods (<>) :: RequestBody -> RequestBody -> RequestBody # sconcat :: NonEmpty RequestBody -> RequestBody # stimes :: Integral b => b -> RequestBody -> RequestBody # | |
Monoid RequestBody | |
Defined in Network.HTTP.Client.Types Methods mempty :: RequestBody # mappend :: RequestBody -> RequestBody -> RequestBody # mconcat :: [RequestBody] -> RequestBody # |
data HttpVersion #
HTTP Version.
Note that the Show instance is intended merely for debugging.
Constructors
HttpVersion | |
Instances
Eq HttpVersion | |
Defined in Network.HTTP.Types.Version | |
Ord HttpVersion | |
Defined in Network.HTTP.Types.Version Methods compare :: HttpVersion -> HttpVersion -> Ordering # (<) :: HttpVersion -> HttpVersion -> Bool # (<=) :: HttpVersion -> HttpVersion -> Bool # (>) :: HttpVersion -> HttpVersion -> Bool # (>=) :: HttpVersion -> HttpVersion -> Bool # max :: HttpVersion -> HttpVersion -> HttpVersion # min :: HttpVersion -> HttpVersion -> HttpVersion # | |
Show HttpVersion | |
Defined in Network.HTTP.Types.Version Methods showsPrec :: Int -> HttpVersion -> ShowS # show :: HttpVersion -> String # showList :: [HttpVersion] -> ShowS # | |
HasLink sub => HasLink (HttpVersion :> sub :: Type) | |
Defined in Servant.Links Associated Types type MkLink (HttpVersion :> sub) a :: Type # Methods toLink :: (Link -> a) -> Proxy (HttpVersion :> sub) -> Link -> MkLink (HttpVersion :> sub) a # | |
type MkLink (HttpVersion :> sub :: Type) a | |
Defined in Servant.Links |
HTTP standard method (as defined by RFC 2616, and PATCH which is defined by RFC 5789).
Instances
_Just :: Prism (Maybe a) (Maybe b) a b #
This Prism
provides a Traversal
for tweaking the target of the value of Just
in a Maybe
.
>>>
over _Just (+1) (Just 2)
Just 3
Unlike traverse
this is a Prism
, and so you can use it to inject as well:
>>>
_Just # 5
Just 5
>>>
5^.re _Just
Just 5
Interestingly,
m^?
_Just
≡ m
>>>
Just x ^? _Just
Just x
>>>
Nothing ^? _Just
Nothing
(#) :: AReview t b -> b -> t infixr 8 #
An infix alias for review
.
unto
f # x ≡ f x l # x ≡ x^.
re
l
This is commonly used when using a Prism
as a smart constructor.
>>>
_Left # 4
Left 4
But it can be used for any Prism
>>>
base 16 # 123
"7b"
(#) ::Iso'
s a -> a -> s (#) ::Prism'
s a -> a -> s (#) ::Review
s a -> a -> s (#) ::Equality'
s a -> a -> s
(^.) :: s -> Getting a s a -> a infixl 8 #
View the value pointed to by a Getter
or Lens
or the
result of folding over all the results of a Fold
or
Traversal
that points at a monoidal values.
This is the same operation as view
with the arguments flipped.
The fixity and semantics are such that subsequent field accesses can be
performed with (.
).
>>>
(a,b)^._2
b
>>>
("hello","world")^._2
"world"
>>>
import Data.Complex
>>>
((0, 1 :+ 2), 3)^._1._2.to magnitude
2.23606797749979
(^.
) :: s ->Getter
s a -> a (^.
) ::Monoid
m => s ->Fold
s m -> m (^.
) :: s ->Iso'
s a -> a (^.
) :: s ->Lens'
s a -> a (^.
) ::Monoid
m => s ->Traversal'
s m -> m
allFieldLinks' :: (HasLink (ToServantApi routes), GenericServant routes (AsLink a), ToServant routes (AsLink a) ~ MkLink (ToServantApi routes) a) => (Link -> a) -> routes (AsLink a) #
More general version of allFieldLinks
.
Since: servant-0.14.1
allFieldLinks :: (HasLink (ToServantApi routes), GenericServant routes (AsLink Link), ToServant routes (AsLink Link) ~ MkLink (ToServantApi routes) Link) => routes (AsLink Link) #
Get all links as a record.
Since: servant-0.14.1
fieldLink' :: (IsElem endpoint (ToServantApi routes), HasLink endpoint, GenericServant routes AsApi) => (Link -> a) -> (routes AsApi -> endpoint) -> MkLink endpoint a #
More general version of fieldLink
Since: servant-0.14.1
fieldLink :: (IsElem endpoint (ToServantApi routes), HasLink endpoint, GenericServant routes AsApi) => (routes AsApi -> endpoint) -> MkLink endpoint Link #
Given an API record field, create a link for that route. Only the field's type is used.
data Record route = Record { _get :: route :- Capture "id" Int :> Get '[JSON] String , _put :: route :- ReqBody '[JSON] Int :> Put '[JSON] Bool } deriving (Generic
) getLink :: Int -> Link getLink =fieldLink
_get
Since: servant-0.14.1
allLinks :: HasLink api => Proxy api -> MkLink api Link #
Create all links in an API.
Note that the api
type must be restricted to the endpoints that have
valid links to them.
>>>
type API = "foo" :> Capture "name" Text :> Get '[JSON] Text :<|> "bar" :> Capture "name" Int :> Get '[JSON] Double
>>>
let fooLink :<|> barLink = allLinks (Proxy :: Proxy API)
>>>
:t fooLink
fooLink :: Text -> Link>>>
:t barLink
barLink :: Int -> Link
Note: nested APIs don't work well with this approach
>>>
:kind! MkLink (Capture "nest" Char :> (Capture "x" Int :> Get '[JSON] Int :<|> Capture "y" Double :> Get '[JSON] Double)) Link
MkLink (Capture "nest" Char :> (Capture "x" Int :> Get '[JSON] Int :<|> Capture "y" Double :> Get '[JSON] Double)) Link :: * = Char -> (Int -> Link) :<|> (Double -> Link)
Arguments
:: (IsElem endpoint api, HasLink endpoint) | |
=> (Link -> a) | |
-> Proxy api | The whole API that this endpoint is a part of |
-> Proxy endpoint | The API endpoint you would like to point to |
-> MkLink endpoint a |
More general safeLink
.
Arguments
:: (IsElem endpoint api, HasLink endpoint) | |
=> Proxy api | The whole API that this endpoint is a part of |
-> Proxy endpoint | The API endpoint you would like to point to |
-> MkLink endpoint Link |
Create a valid (by construction) relative URI with query params.
This function will only typecheck if endpoint
is part of the API api
linkURI' :: LinkArrayElementStyle -> Link -> URI #
Configurable linkURI
.
>>>
type API = "sum" :> QueryParams "x" Int :> Get '[JSON] Int
>>>
linkURI' LinkArrayElementBracket $ safeLink (Proxy :: Proxy API) (Proxy :: Proxy API) [1, 2, 3]
sum?x[]=1&x[]=2&x[]=3
>>>
linkURI' LinkArrayElementPlain $ safeLink (Proxy :: Proxy API) (Proxy :: Proxy API) [1, 2, 3]
sum?x=1&x=2&x=3
>>>
type API = "something" :> Get '[JSON] Int
>>>
linkURI $ safeLink (Proxy :: Proxy API) (Proxy :: Proxy API)
something
>>>
type API = "sum" :> QueryParams "x" Int :> Get '[JSON] Int
>>>
linkURI $ safeLink (Proxy :: Proxy API) (Proxy :: Proxy API) [1, 2, 3]
sum?x[]=1&x[]=2&x[]=3
>>>
type API = "foo/bar" :> Get '[JSON] Int
>>>
linkURI $ safeLink (Proxy :: Proxy API) (Proxy :: Proxy API)
foo%2Fbar
>>>
type SomeRoute = "abc" :> Capture "email" String :> Put '[JSON] ()
>>>
let someRoute = Proxy :: Proxy SomeRoute
>>>
safeLink someRoute someRoute "test@example.com"
Link {_segments = ["abc","test%40example.com"], _queryParams = []}
>>>
linkURI $ safeLink someRoute someRoute "test@example.com"
abc/test%40example.com
linkQueryParams :: Link -> [Param] #
linkSegments :: Link -> [String] #
Query parameter.
Constructors
SingleParam String Text | |
ArrayElemParam String Text | |
FlagParam String |
data LinkArrayElementStyle #
How to encode array query elements.
Constructors
LinkArrayElementBracket | foo[]=1&foo[]=2 |
LinkArrayElementPlain | foo=1&foo=2 |
Instances
A type that specifies that an API record contains a set of links.
Since: servant-0.14.1
Instances
GenericMode (AsLink a) | |
Defined in Servant.Links | |
type (AsLink a) :- api | |
Defined in Servant.Links |
class HasLink (endpoint :: k) where #
Construct a toLink for an endpoint.
Methods
Instances
HasLink Raw | |
HasLink EmptyAPI | |
(HasLink a, HasLink b) => HasLink (a :<|> b :: Type) | |
HasLink sub => HasLink (WithNamedContext name context sub :: Type) | |
Defined in Servant.Links Associated Types type MkLink (WithNamedContext name context sub) a :: Type # Methods toLink :: (Link -> a) -> Proxy (WithNamedContext name context sub) -> Link -> MkLink (WithNamedContext name context sub) a # | |
HasLink sub => HasLink (HttpVersion :> sub :: Type) | |
Defined in Servant.Links Associated Types type MkLink (HttpVersion :> sub) a :: Type # Methods toLink :: (Link -> a) -> Proxy (HttpVersion :> sub) -> Link -> MkLink (HttpVersion :> sub) a # | |
HasLink sub => HasLink (StreamBody' mods framing ct a :> sub :: Type) | |
Defined in Servant.Links Associated Types type MkLink (StreamBody' mods framing ct a :> sub) a :: Type # Methods toLink :: (Link -> a0) -> Proxy (StreamBody' mods framing ct a :> sub) -> Link -> MkLink (StreamBody' mods framing ct a :> sub) a0 # | |
HasLink sub => HasLink (ReqBody' mods ct a :> sub :: Type) | |
HasLink sub => HasLink (RemoteHost :> sub :: Type) | |
Defined in Servant.Links Associated Types type MkLink (RemoteHost :> sub) a :: Type # Methods toLink :: (Link -> a) -> Proxy (RemoteHost :> sub) -> Link -> MkLink (RemoteHost :> sub) a # | |
(KnownSymbol sym, ToHttpApiData v, HasLink sub, SBoolI (FoldRequired mods)) => HasLink (QueryParam' mods sym v :> sub :: Type) | |
Defined in Servant.Links Associated Types type MkLink (QueryParam' mods sym v :> sub) a :: Type # Methods toLink :: (Link -> a) -> Proxy (QueryParam' mods sym v :> sub) -> Link -> MkLink (QueryParam' mods sym v :> sub) a # | |
(KnownSymbol sym, ToHttpApiData v, HasLink sub) => HasLink (QueryParams sym v :> sub :: Type) | |
Defined in Servant.Links Associated Types type MkLink (QueryParams sym v :> sub) a :: Type # Methods toLink :: (Link -> a) -> Proxy (QueryParams sym v :> sub) -> Link -> MkLink (QueryParams sym v :> sub) a # | |
(KnownSymbol sym, HasLink sub) => HasLink (QueryFlag sym :> sub :: Type) | |
HasLink sub => HasLink (Header' mods sym a :> sub :: Type) | |
HasLink sub => HasLink (IsSecure :> sub :: Type) | |
HasLink sub => HasLink (AuthProtect tag :> sub :: Type) | |
Defined in Servant.Links Associated Types type MkLink (AuthProtect tag :> sub) a :: Type # Methods toLink :: (Link -> a) -> Proxy (AuthProtect tag :> sub) -> Link -> MkLink (AuthProtect tag :> sub) a # | |
HasLink sub => HasLink (Summary s :> sub :: Type) | |
HasLink sub => HasLink (Description s :> sub :: Type) | |
Defined in Servant.Links Associated Types type MkLink (Description s :> sub) a :: Type # Methods toLink :: (Link -> a) -> Proxy (Description s :> sub) -> Link -> MkLink (Description s :> sub) a # | |
(ToHttpApiData v, HasLink sub) => HasLink (Capture' mods sym v :> sub :: Type) | |
(ToHttpApiData v, HasLink sub) => HasLink (CaptureAll sym v :> sub :: Type) | |
Defined in Servant.Links Associated Types type MkLink (CaptureAll sym v :> sub) a :: Type # Methods toLink :: (Link -> a) -> Proxy (CaptureAll sym v :> sub) -> Link -> MkLink (CaptureAll sym v :> sub) a # | |
HasLink sub => HasLink (BasicAuth realm a :> sub :: Type) | |
HasLink sub => HasLink (Vault :> sub :: Type) | |
(KnownSymbol sym, HasLink sub) => HasLink (sym :> sub :: Type) | |
HasLink (Verb m s ct a :: Type) | |
HasLink (Stream m status fr ct a :: Type) | |
type StreamPost = Stream POST 200 #
type StreamBody = StreamBody' ([] :: [Type]) #
A stream request body.
data StreamBody' (mods :: [Type]) framing contentType a #
Instances
HasLink sub => HasLink (StreamBody' mods framing ct a :> sub :: Type) | |
Defined in Servant.Links Associated Types type MkLink (StreamBody' mods framing ct a :> sub) a :: Type # Methods toLink :: (Link -> a0) -> Proxy (StreamBody' mods framing ct a :> sub) -> Link -> MkLink (StreamBody' mods framing ct a :> sub) a0 # | |
Generic (StreamBody' mods framing contentType a) | |
Defined in Servant.API.Stream Associated Types type Rep (StreamBody' mods framing contentType a) :: Type -> Type # Methods from :: StreamBody' mods framing contentType a -> Rep (StreamBody' mods framing contentType a) x # to :: Rep (StreamBody' mods framing contentType a) x -> StreamBody' mods framing contentType a # | |
type MkLink (StreamBody' mods framing ct a :> sub :: Type) r | |
Defined in Servant.Links | |
type Rep (StreamBody' mods framing contentType a) | |
Defined in Servant.API.Stream |
class ToSourceIO chunk a | a -> chunk where #
ToSourceIO
is intended to be implemented for types such as Conduit, Pipe,
etc. By implementing this class, all such streaming abstractions can be used
directly as endpoints.
Methods
toSourceIO :: a -> SourceIO chunk #
Instances
ToSourceIO a [a] | |
Defined in Servant.API.Stream Methods toSourceIO :: [a] -> SourceIO a # | |
ToSourceIO a (NonEmpty a) | |
Defined in Servant.API.Stream Methods toSourceIO :: NonEmpty a -> SourceIO a # | |
SourceToSourceIO m => ToSourceIO chunk (SourceT m chunk) | Relax to use auxiliary class, have m |
Defined in Servant.API.Stream Methods toSourceIO :: SourceT m chunk -> SourceIO chunk # |
class FromSourceIO chunk a | a -> chunk where #
FromSourceIO
is intended to be implemented for types such as Conduit,
Pipe, etc. By implementing this class, all such streaming abstractions can
be used directly on the client side for talking to streaming endpoints.
Methods
fromSourceIO :: SourceIO chunk -> a #
Instances
MonadIO m => FromSourceIO a (SourceT m a) | |
Defined in Servant.API.Stream Methods fromSourceIO :: SourceIO a -> SourceT m a # |
class FramingRender (strategy :: k) where #
The FramingRender
class provides the logic for emitting a framing strategy.
The strategy transforms a
into SourceT
m a
,
therefore it can prepend, append and intercalate framing structure
around chunks.SourceT
m ByteString
Note: as the
is generic, this is pure transformation.Monad
m
Methods
framingRender :: Monad m => Proxy strategy -> (a -> ByteString) -> SourceT m a -> SourceT m ByteString #
Instances
FramingRender NoFraming | |
Defined in Servant.API.Stream Methods framingRender :: Monad m => Proxy NoFraming -> (a -> ByteString) -> SourceT m a -> SourceT m ByteString # | |
FramingRender NewlineFraming | |
Defined in Servant.API.Stream Methods framingRender :: Monad m => Proxy NewlineFraming -> (a -> ByteString) -> SourceT m a -> SourceT m ByteString # | |
FramingRender NetstringFraming | |
Defined in Servant.API.Stream Methods framingRender :: Monad m => Proxy NetstringFraming -> (a -> ByteString) -> SourceT m a -> SourceT m ByteString # |
class FramingUnrender (strategy :: k) where #
The FramingUnrender
class provides the logic for parsing a framing
strategy.
Methods
framingUnrender :: Monad m => Proxy strategy -> (ByteString -> Either String a) -> SourceT m ByteString -> SourceT m a #
Instances
FramingUnrender NoFraming | As That works well when |
Defined in Servant.API.Stream Methods framingUnrender :: Monad m => Proxy NoFraming -> (ByteString -> Either String a) -> SourceT m ByteString -> SourceT m a # | |
FramingUnrender NewlineFraming | |
Defined in Servant.API.Stream Methods framingUnrender :: Monad m => Proxy NewlineFraming -> (ByteString -> Either String a) -> SourceT m ByteString -> SourceT m a # | |
FramingUnrender NetstringFraming | |
Defined in Servant.API.Stream Methods framingUnrender :: Monad m => Proxy NetstringFraming -> (ByteString -> Either String a) -> SourceT m ByteString -> SourceT m a # |
A framing strategy that does not do any framing at all, it just passes the input data This will be used most of the time with binary data, such as files
Instances
FramingRender NoFraming | |
Defined in Servant.API.Stream Methods framingRender :: Monad m => Proxy NoFraming -> (a -> ByteString) -> SourceT m a -> SourceT m ByteString # | |
FramingUnrender NoFraming | As That works well when |
Defined in Servant.API.Stream Methods framingUnrender :: Monad m => Proxy NoFraming -> (ByteString -> Either String a) -> SourceT m ByteString -> SourceT m a # |
data NewlineFraming #
A simple framing strategy that has no header, and inserts a newline character after each frame. This assumes that it is used with a Content-Type that encodes without newlines (e.g. JSON).
Instances
FramingRender NewlineFraming | |
Defined in Servant.API.Stream Methods framingRender :: Monad m => Proxy NewlineFraming -> (a -> ByteString) -> SourceT m a -> SourceT m ByteString # | |
FramingUnrender NewlineFraming | |
Defined in Servant.API.Stream Methods framingUnrender :: Monad m => Proxy NewlineFraming -> (ByteString -> Either String a) -> SourceT m ByteString -> SourceT m a # |
data NetstringFraming #
The netstring framing strategy as defined by djb: http://cr.yp.to/proto/netstrings.txt
Any string of 8-bit bytes may be encoded as [len]":"[string]","
. Here
[string]
is the string and [len]
is a nonempty sequence of ASCII digits
giving the length of [string]
in decimal. The ASCII digits are 30
for
0, 31
for 1, and so on up through 39
for 9. Extra zeros at the front
of [len]
are prohibited: [len]
begins with 30
exactly when
[string]
is empty.
For example, the string "hello world!"
is encoded as
32 3a 68 65 6c 6c 6f 20 77 6f 72 6c 64 21 2c
,
i.e., "12:hello world!,"
.
The empty string is encoded as "0:,"
.
Instances
FramingRender NetstringFraming | |
Defined in Servant.API.Stream Methods framingRender :: Monad m => Proxy NetstringFraming -> (a -> ByteString) -> SourceT m a -> SourceT m ByteString # | |
FramingUnrender NetstringFraming | |
Defined in Servant.API.Stream Methods framingUnrender :: Monad m => Proxy NetstringFraming -> (ByteString -> Either String a) -> SourceT m ByteString -> SourceT m a # |
data WithNamedContext (name :: Symbol) (subContext :: [Type]) subApi #
WithNamedContext
names a specific tagged context to use for the
combinators in the API. (See also in servant-server
,
Servant.Server.Context
.) For example:
type UseNamedContextAPI = WithNamedContext "myContext" '[String] ( ReqBody '[JSON] Int :> Get '[JSON] Int)
Both the ReqBody
and Get
combinators will use the WithNamedContext
with
type tag "myContext" as their context.
Context
s are only relevant for servant-server
.
For more information, see the tutorial.
Instances
HasLink sub => HasLink (WithNamedContext name context sub :: Type) | |
Defined in Servant.Links Associated Types type MkLink (WithNamedContext name context sub) a :: Type # Methods toLink :: (Link -> a) -> Proxy (WithNamedContext name context sub) -> Link -> MkLink (WithNamedContext name context sub) a # | |
type MkLink (WithNamedContext name context sub :: Type) a | |
Defined in Servant.Links |
type family Endpoints api :: [Type] where ... #
Flatten API into a list of endpoints.
>>>
Refl :: Endpoints SampleAPI :~: '["hello" :> Verb 'GET 200 '[JSON] Int, "bye" :> (Capture "name" String :> Verb 'POST 200 '[JSON, PlainText] Bool)]
Refl
type family IsElem' a s :: Constraint #
You may use this type family to tell the type checker that your custom
type may be skipped as part of a link. This is useful for things like
that are optional in a URI and do not affect them if they are
omitted.QueryParam
>>>
data CustomThing
>>>
type instance IsElem' e (CustomThing :> s) = IsElem e s
Note that
is called, which will mutually recurse back to IsElem
if it exhausts all other options again.IsElem'
Once you have written a HasLink
instance for CustomThing
you are ready to go.
type family IsElem endpoint api :: Constraint where ... #
Closed type family, check if endpoint
is within api
.
Uses
if it exhausts all other options.IsElem'
>>>
ok (Proxy :: Proxy (IsElem ("hello" :> Get '[JSON] Int) SampleAPI))
OK
>>>
ok (Proxy :: Proxy (IsElem ("bye" :> Get '[JSON] Int) SampleAPI))
... ... Could not deduce... ...
An endpoint is considered within an api even if it is missing combinators that don't affect the URL:
>>>
ok (Proxy :: Proxy (IsElem (Get '[JSON] Int) (Header "h" Bool :> Get '[JSON] Int)))
OK
>>>
ok (Proxy :: Proxy (IsElem (Get '[JSON] Int) (ReqBody '[JSON] Bool :> Get '[JSON] Int)))
OK
- N.B.:*
IsElem a b
can be seen as capturing the notion of whether the URL represented bya
would match the URL represented byb
, *not* whether a request represented bya
matches the endpoints servingb
(for the latter, useIsIn
).
Equations
IsElem e (sa :<|> sb) = Or (IsElem e sa) (IsElem e sb) | |
IsElem (e :> sa) (e :> sb) = IsElem sa sb | |
IsElem sa (Header sym x :> sb) = IsElem sa sb | |
IsElem sa (ReqBody y x :> sb) = IsElem sa sb | |
IsElem (CaptureAll z y :> sa) (CaptureAll x y :> sb) = IsElem sa sb | |
IsElem (Capture z y :> sa) (Capture x y :> sb) = IsElem sa sb | |
IsElem sa (QueryParam x y :> sb) = IsElem sa sb | |
IsElem sa (QueryParams x y :> sb) = IsElem sa sb | |
IsElem sa (QueryFlag x :> sb) = IsElem sa sb | |
IsElem (Verb m s ct typ) (Verb m s ct' typ) = IsSubList ct ct' | |
IsElem e e = () | |
IsElem e a = IsElem' e a |
type family IsSubAPI sub api :: Constraint where ... #
Check whether sub
is a sub-API of api
.
>>>
ok (Proxy :: Proxy (IsSubAPI SampleAPI (SampleAPI :<|> Get '[JSON] Int)))
OK
>>>
ok (Proxy :: Proxy (IsSubAPI (SampleAPI :<|> Get '[JSON] Int) SampleAPI))
... ... Could not deduce... ...
This uses IsElem
for checking; thus the note there applies here.
type family AllIsElem (xs :: [Type]) api :: Constraint where ... #
Check that every element of xs
is an endpoint of api
(using
).IsElem
type family IsIn endpoint api :: Constraint where ... #
Closed type family, check if endpoint
is exactly within api
.
>>>
ok (Proxy :: Proxy (IsIn ("hello" :> Get '[JSON] Int) SampleAPI))
OK
Unlike IsElem
, this requires an *exact* match.
>>>
ok (Proxy :: Proxy (IsIn (Get '[JSON] Int) (Header "h" Bool :> Get '[JSON] Int)))
... ... Could not deduce... ...
type family IsStrictSubAPI sub api :: Constraint where ... #
Equations
IsStrictSubAPI sub api = AllIsIn (Endpoints sub) api |
type family AllIsIn (xs :: [Type]) api :: Constraint where ... #
Check that every element of xs
is an endpoint of api
(using
).IsIn
ok (Proxy :: Proxy (AllIsIn (Endpoints SampleAPI) SampleAPI)) OK
type family AppendList (xs :: [a]) (ys :: [a]) :: [a] where ... #
Append two type-level lists.
Equations
AppendList ([] :: [a]) (ys :: [a]) = ys | |
AppendList (x ': xs :: [a]) (ys :: [a]) = x ': AppendList xs ys |
type family IsSubList (a :: [t]) (b :: [t]) :: Constraint where ... #
type Elem (e :: t) (es :: [t]) = ElemGo e es es #
Check that a value is an element of a list:
>>>
ok (Proxy :: Proxy (Elem Bool '[Int, Bool]))
OK
>>>
ok (Proxy :: Proxy (Elem String '[Int, Bool]))
... ... [Char]...'[Int, Bool... ...
type family ElemGo (e :: t) (es :: [t]) (orig :: t1) :: Constraint where ... #
type family Or a b :: Constraint where ... #
If either a or b produce an empty constraint, produce an empty constraint.
type family And a b :: Constraint where ... #
If both a or b produce an empty constraint, produce an empty constraint.
Equations
And () () = () |
data Verb (method :: k1) (statusCode :: Nat) (contentTypes :: [Type]) a :: forall k1. k1 -> Nat -> [Type] -> Type -> Type #
Verb
is a general type for representing HTTP verbs (a.k.a. methods). For
convenience, type synonyms for each verb with a 200 response code are
provided, but you are free to define your own:
>>>
type Post204 contentTypes a = Verb 'POST 204 contentTypes a
Instances
HasLink (Verb m s ct a :: Type) | |
GoogleClient (Get (c ': cs) ()) Source # | |
FromStream c a => GoogleClient (Get (c ': cs) a) Source # | |
GoogleClient (Post cs ()) Source # | |
(FromStream c a, cs' ~ (c ': cs)) => GoogleClient (Post cs' a) Source # | |
GoogleClient (Put (c ': cs) ()) Source # | |
FromStream c a => GoogleClient (Put (c ': cs) a) Source # | |
GoogleClient (Delete (c ': cs) ()) Source # | |
FromStream c a => GoogleClient (Delete (c ': cs) a) Source # | |
GoogleClient (Patch (c ': cs) ()) Source # | |
FromStream c a => GoogleClient (Patch (c ': cs) a) Source # | |
Generic (Verb method statusCode contentTypes a) | |
Defined in Servant.API.Verbs | |
type MkLink (Verb m s ct a :: Type) r | |
Defined in Servant.Links | |
type Fn (Get (c ': cs) ()) Source # | |
Defined in Network.Google.Types | |
type Fn (Get (c ': cs) a) Source # | |
Defined in Network.Google.Types | |
type Fn (Post cs ()) Source # | |
Defined in Network.Google.Types | |
type Fn (Post cs' a) Source # | |
Defined in Network.Google.Types | |
type Fn (Put (c ': cs) ()) Source # | |
Defined in Network.Google.Types | |
type Fn (Put (c ': cs) a) Source # | |
Defined in Network.Google.Types | |
type Fn (Delete (c ': cs) ()) Source # | |
Defined in Network.Google.Types | |
type Fn (Delete (c ': cs) a) Source # | |
Defined in Network.Google.Types | |
type Fn (Patch (c ': cs) ()) Source # | |
Defined in Network.Google.Types | |
type Fn (Patch (c ': cs) a) Source # | |
Defined in Network.Google.Types | |
type Rep (Verb method statusCode contentTypes a) | |
type PostCreated = Verb POST 201 #
POST
with 201 status code.
type PutCreated = Verb PUT 201 #
PUT
with 201 status code.
type GetAccepted = Verb GET 202 #
GET
with 202 status code.
type PostAccepted = Verb POST 202 #
POST
with 202 status code.
type DeleteAccepted = Verb DELETE 202 #
DELETE
with 202 status code.
type PatchAccepted = Verb PATCH 202 #
PATCH
with 202 status code.
type PutAccepted = Verb PUT 202 #
PUT
with 202 status code.
type GetNonAuthoritative = Verb GET 203 #
GET
with 203 status code.
type PostNonAuthoritative = Verb POST 203 #
POST
with 203 status code.
type DeleteNonAuthoritative = Verb DELETE 203 #
DELETE
with 203 status code.
type PatchNonAuthoritative = Verb PATCH 203 #
PATCH
with 203 status code.
type PutNonAuthoritative = Verb PUT 203 #
PUT
with 203 status code.
type GetNoContent = Verb GET 204 #
GET
with 204 status code.
type PostNoContent = Verb POST 204 #
POST
with 204 status code.
type DeleteNoContent = Verb DELETE 204 #
DELETE
with 204 status code.
type PatchNoContent = Verb PATCH 204 #
PATCH
with 204 status code.
type PutNoContent = Verb PUT 204 #
PUT
with 204 status code.
type GetResetContent = Verb GET 205 #
GET
with 205 status code.
type PostResetContent = Verb POST 205 #
POST
with 205 status code.
type GetPartialContent = Verb GET 206 #
GET
with 206 status code.
class ReflectMethod (a :: k) where #
Methods
reflectMethod :: Proxy a -> Method #
Instances
ReflectMethod PATCH | |
Defined in Servant.API.Verbs Methods reflectMethod :: Proxy PATCH -> Method # | |
ReflectMethod OPTIONS | |
Defined in Servant.API.Verbs Methods reflectMethod :: Proxy OPTIONS -> Method # | |
ReflectMethod CONNECT | |
Defined in Servant.API.Verbs Methods reflectMethod :: Proxy CONNECT -> Method # | |
ReflectMethod TRACE | |
Defined in Servant.API.Verbs Methods reflectMethod :: Proxy TRACE -> Method # | |
ReflectMethod DELETE | |
Defined in Servant.API.Verbs Methods reflectMethod :: Proxy DELETE -> Method # | |
ReflectMethod PUT | |
Defined in Servant.API.Verbs Methods reflectMethod :: Proxy PUT -> Method # | |
ReflectMethod HEAD | |
Defined in Servant.API.Verbs Methods reflectMethod :: Proxy HEAD -> Method # | |
ReflectMethod POST | |
Defined in Servant.API.Verbs Methods reflectMethod :: Proxy POST -> Method # | |
ReflectMethod GET | |
Defined in Servant.API.Verbs Methods reflectMethod :: Proxy GET -> Method # |
data (path :: k) :> a :: forall k. k -> Type -> Type infixr 4 #
The contained API (second argument) can be found under ("/" ++ path)
(path being the first argument).
Example:
>>>
-- GET /hello/world
>>>
-- returning a JSON encoded World value
>>>
type MyApi = "hello" :> "world" :> Get '[JSON] World
Instances
lookupResponseHeader :: HasResponseHeader h a headers => Headers headers r -> ResponseHeader h a #
Look up a specific ResponseHeader, without having to know what position it is in the HList.
>>>
let example1 = addHeader 5 "hi" :: Headers '[Header "someheader" Int] String
>>>
let example2 = addHeader True example1 :: Headers '[Header "1st" Bool, Header "someheader" Int] String
>>>
lookupResponseHeader example2 :: ResponseHeader "someheader" Int
Header 5
>>>
lookupResponseHeader example2 :: ResponseHeader "1st" Bool
Header True
Usage of this function relies on an explicit type annotation of the header to be looked up. This can be done with type annotations on the result, or with an explicit type application. In this example, the type of header value is determined by the type-inference, we only specify the name of the header:
>>>
:set -XTypeApplications
>>>
case lookupResponseHeader @"1st" example2 of { Header b -> b ; _ -> False }
True
Since: servant-0.15
noHeader :: AddHeader h v orig new => orig -> new #
Deliberately do not add a header to a value.
>>>
let example1 = noHeader "hi" :: Headers '[Header "someheader" Int] String
>>>
getHeaders example1
[]
addHeader :: AddHeader h v orig new => v -> orig -> new #
addHeader
adds a header to a response. Note that it changes the type of
the value in the following ways:
- A simple value is wrapped in "Headers '[hdr]":
>>>
let example1 = addHeader 5 "hi" :: Headers '[Header "someheader" Int] String;
>>>
getHeaders example1
[("someheader","5")]
- A value that already has a header has its new header *prepended* to the existing list:
>>>
let example1 = addHeader 5 "hi" :: Headers '[Header "someheader" Int] String;
>>>
let example2 = addHeader True example1 :: Headers '[Header "1st" Bool, Header "someheader" Int] String
>>>
getHeaders example2
[("1st","true"),("someheader","5")]
Note that while in your handlers type annotations are not required, since the type can be inferred from the API type, in other cases you may find yourself needing to add annotations.
getHeadersHList :: Headers ls a -> HList ls #
HList of headers.
pattern MissingHeader :: ResponseHeader sym a #
pattern UndecodableHeader :: ByteString -> ResponseHeader sym a #
data HList (a :: [Type]) where #
Constructors
HNil :: forall (a :: [Type]). HList ([] :: [Type]) | |
HCons :: forall (a :: [Type]) (h :: Symbol) x (xs :: [Type]). ResponseHeader h x -> HList xs -> HList (Header h x ': xs) |
Instances
GetHeadersFromHList hs => GetHeaders (HList hs) | |
Defined in Servant.API.ResponseHeaders Methods getHeaders :: HList hs -> [Header] # |
class BuildHeadersTo (hs :: [Type]) where #
Methods
buildHeadersTo :: [Header] -> HList hs #
Note: if there are multiple occurences of a header in the argument, the values are interspersed with commas before deserialization (see RFC2616 Sec 4.2)
Instances
BuildHeadersTo ([] :: [Type]) | |
Defined in Servant.API.ResponseHeaders Methods buildHeadersTo :: [Header] -> HList [] # | |
(FromHttpApiData v, BuildHeadersTo xs, KnownSymbol h) => BuildHeadersTo (Header h v ': xs) | |
Defined in Servant.API.ResponseHeaders Methods buildHeadersTo :: [Header0] -> HList (Header h v ': xs) # |
class GetHeaders ls where #
Methods
getHeaders :: ls -> [Header] #
Instances
GetHeadersFromHList hs => GetHeaders (HList hs) | |
Defined in Servant.API.ResponseHeaders Methods getHeaders :: HList hs -> [Header] # | |
GetHeaders' hs => GetHeaders (Headers hs a) | |
Defined in Servant.API.ResponseHeaders Methods getHeaders :: Headers hs a -> [Header] # |
class AddHeader (h :: Symbol) v orig new | h v orig -> new, new -> h, new -> v, new -> orig #
Minimal complete definition
addOptionalHeader
Instances
(KnownSymbol h, ToHttpApiData v, new ~ Headers (Header h v ': ([] :: [Type])) a) => AddHeader h v a new | |
Defined in Servant.API.ResponseHeaders Methods addOptionalHeader :: ResponseHeader h v -> a -> new | |
(KnownSymbol h, ToHttpApiData v) => AddHeader h v (Headers (fst ': rest) a) (Headers (Header h v ': (fst ': rest)) a) | |
Defined in Servant.API.ResponseHeaders Methods addOptionalHeader :: ResponseHeader h v -> Headers (fst ': rest) a -> Headers (Header h v ': (fst ': rest)) a |
class HasResponseHeader (h :: Symbol) a (headers :: [Type]) #
Minimal complete definition
hlistLookupHeader
Instances
HasResponseHeader h a (Header h a ': rest) | |
Defined in Servant.API.ResponseHeaders Methods hlistLookupHeader :: HList (Header h a ': rest) -> ResponseHeader h a | |
HasResponseHeader h a rest => HasResponseHeader h a (first ': rest) | |
Defined in Servant.API.ResponseHeaders Methods hlistLookupHeader :: HList (first ': rest) -> ResponseHeader h a |
type ReqBody = ReqBody' (Required ': (Strict ': ([] :: [Type]))) #
Extract the request body as a value of type a
.
Example:
>>>
-- POST /books
>>>
type MyApi = "books" :> ReqBody '[JSON] Book :> Post '[JSON] Book
data RemoteHost #
Provides access to the host or IP address from which the HTTP request was sent.
Instances
HasLink sub => HasLink (RemoteHost :> sub :: Type) | |
Defined in Servant.Links Associated Types type MkLink (RemoteHost :> sub) a :: Type # Methods toLink :: (Link -> a) -> Proxy (RemoteHost :> sub) -> Link -> MkLink (RemoteHost :> sub) a # | |
type MkLink (RemoteHost :> sub :: Type) a | |
Defined in Servant.Links |
Endpoint for plugging in your own Wai Application
s.
The given Application
will get the request as received by the server, potentially with
a modified (stripped) pathInfo
if the Application
is being routed with :>
.
In addition to just letting you plug in your existing WAI Application
s,
this can also be used with serveDirectory to serve
static files stored in a particular directory on your filesystem
type QueryParam = QueryParam' (Optional ': (Strict ': ([] :: [Type]))) #
Lookup the value associated to the sym
query string parameter
and try to extract it as a value of type a
.
Example:
>>>
-- /books?author=<author name>
>>>
type MyApi = "books" :> QueryParam "author" Text :> Get '[JSON] [Book]
data QueryParam' (mods :: [Type]) (sym :: Symbol) a #
QueryParam
which can be Required
, Lenient
, or modified otherwise.
Instances
(KnownSymbol sym, ToHttpApiData v, HasLink sub, SBoolI (FoldRequired mods)) => HasLink (QueryParam' mods sym v :> sub :: Type) | |
Defined in Servant.Links Associated Types type MkLink (QueryParam' mods sym v :> sub) a :: Type # Methods toLink :: (Link -> a) -> Proxy (QueryParam' mods sym v :> sub) -> Link -> MkLink (QueryParam' mods sym v :> sub) a # | |
(KnownSymbol s, ToHttpApiData a, GoogleClient fn) => GoogleClient (QueryParam s a :> fn) Source # | |
Defined in Network.Google.Types Methods buildClient :: Proxy (QueryParam s a :> fn) -> Request -> Fn (QueryParam s a :> fn) Source # | |
type MkLink (QueryParam' mods sym v :> sub :: Type) a | |
Defined in Servant.Links type MkLink (QueryParam' mods sym v :> sub :: Type) a = If (FoldRequired mods) v (Maybe v) -> MkLink sub a | |
type Fn (QueryParam s a :> fn) Source # | |
Defined in Network.Google.Types |
data QueryParams (sym :: Symbol) a #
Lookup the values associated to the sym
query string parameter
and try to extract it as a value of type [a]
. This is typically
meant to support query string parameters of the form
param[]=val1¶m[]=val2
and so on. Note that servant doesn't actually
require the []
s and will fetch the values just fine with
param=val1¶m=val2
, too.
Example:
>>>
-- /books?authors[]=<author1>&authors[]=<author2>&...
>>>
type MyApi = "books" :> QueryParams "authors" Text :> Get '[JSON] [Book]
Instances
(KnownSymbol sym, ToHttpApiData v, HasLink sub) => HasLink (QueryParams sym v :> sub :: Type) | |
Defined in Servant.Links Associated Types type MkLink (QueryParams sym v :> sub) a :: Type # Methods toLink :: (Link -> a) -> Proxy (QueryParams sym v :> sub) -> Link -> MkLink (QueryParams sym v :> sub) a # | |
(KnownSymbol s, ToHttpApiData a, GoogleClient fn) => GoogleClient (QueryParams s a :> fn) Source # | |
Defined in Network.Google.Types Methods buildClient :: Proxy (QueryParams s a :> fn) -> Request -> Fn (QueryParams s a :> fn) Source # | |
type MkLink (QueryParams sym v :> sub :: Type) a | |
Defined in Servant.Links | |
type Fn (QueryParams s a :> fn) Source # | |
Defined in Network.Google.Types |
data QueryFlag (sym :: Symbol) #
Lookup a potentially value-less query string parameter
with boolean semantics. If the param sym
is there without any value,
or if it's there with value "true" or "1", it's interpreted as True
.
Otherwise, it's interpreted as False
.
Example:
>>>
-- /books?published
>>>
type MyApi = "books" :> QueryFlag "published" :> Get '[JSON] [Book]
data Header' (mods :: [Type]) (sym :: Symbol) (a :: k) :: forall k. [Type] -> Symbol -> k -> Type #
Instances
Required argument. Not wrapped.
Instances
(ToBody c a, GoogleClient fn) => GoogleClient (ReqBody (c ': cs) a :> fn) Source # | |
type Fn (ReqBody (c ': cs) a :> fn) Source # | |
Defined in Network.Google.Types |
Optional argument. Wrapped in Maybe
.
Instances
Strictly parsed argument. Not wrapped.
Instances
Was this request made over an SSL connection?
Note that this value will not tell you if the client originally
made this request over SSL, but rather whether the current
connection is SSL. The distinction lies with reverse proxies.
In many cases, the client will connect to a load balancer over SSL,
but connect to the WAI handler without SSL. In such a case,
the handlers would get NotSecure
, but from a user perspective,
there is a secure connection.
Constructors
Secure | the connection to the server is secure (HTTPS) |
NotSecure | the connection to the server is not secure (HTTP) |
data AuthProtect (tag :: k) :: forall k. k -> Type #
A generalized Authentication combinator. Use this if you have a non-standard authentication technique.
NOTE: THIS API IS EXPERIMENTAL AND SUBJECT TO CHANGE.
Instances
HasLink sub => HasLink (AuthProtect tag :> sub :: Type) | |
Defined in Servant.Links Associated Types type MkLink (AuthProtect tag :> sub) a :: Type # Methods toLink :: (Link -> a) -> Proxy (AuthProtect tag :> sub) -> Link -> MkLink (AuthProtect tag :> sub) a # | |
type MkLink (AuthProtect tag :> sub :: Type) a | |
Defined in Servant.Links |
An empty API: one which serves nothing. Morally speaking, this should be
the unit of :<|>
. Implementors of interpretations of API types should
treat EmptyAPI
as close to the unit as possible.
Constructors
EmptyAPI |
Instances
Bounded EmptyAPI | |
Enum EmptyAPI | |
Defined in Servant.API.Empty | |
Eq EmptyAPI | |
Show EmptyAPI | |
HasLink EmptyAPI | |
type MkLink EmptyAPI a | |
Defined in Servant.Links |
data Summary (sym :: Symbol) #
Add a short summary for (part of) API.
Example:
>>>
type MyApi = Summary "Get book by ISBN." :> "books" :> Capture "isbn" Text :> Get '[JSON] Book
data Description (sym :: Symbol) #
Add more verbose description for (part of) API.
Example:
>>>
:{
type MyApi = Description "This comment is visible in multiple Servant interpretations \ \and can be really long if necessary. \ \Haskell multiline support is not perfect \ \but it's still very readable." :> Get '[JSON] Book :}
Instances
HasLink sub => HasLink (Description s :> sub :: Type) | |
Defined in Servant.Links Associated Types type MkLink (Description s :> sub) a :: Type # Methods toLink :: (Link -> a) -> Proxy (Description s :> sub) -> Link -> MkLink (Description s :> sub) a # | |
type MkLink (Description s :> sub :: Type) a | |
Defined in Servant.Links |
Instances
FromJSON a => FromStream JSON a Source # | |
Defined in Network.Google.Types | |
ToJSON a => ToBody JSON a Source # | |
Accept JSON | application/json |
Defined in Servant.API.ContentTypes | |
ToJSON a => MimeRender JSON a | |
Defined in Servant.API.ContentTypes Methods mimeRender :: Proxy JSON -> a -> ByteString # | |
FromJSON a => MimeUnrender JSON a |
|
Defined in Servant.API.ContentTypes Methods mimeUnrender :: Proxy JSON -> ByteString -> Either String a # mimeUnrenderWithType :: Proxy JSON -> MediaType -> ByteString -> Either String a # |
Instances
data FormUrlEncoded #
Instances
Accept FormUrlEncoded | application/x-www-form-urlencoded |
Defined in Servant.API.ContentTypes Methods contentType :: Proxy FormUrlEncoded -> MediaType # contentTypes :: Proxy FormUrlEncoded -> NonEmpty MediaType # | |
ToForm a => MimeRender FormUrlEncoded a |
|
Defined in Servant.API.ContentTypes Methods mimeRender :: Proxy FormUrlEncoded -> a -> ByteString # | |
FromForm a => MimeUnrender FormUrlEncoded a |
|
Defined in Servant.API.ContentTypes Methods mimeUnrender :: Proxy FormUrlEncoded -> ByteString -> Either String a # mimeUnrenderWithType :: Proxy FormUrlEncoded -> MediaType -> ByteString -> Either String a # |
data OctetStream #
Instances
class Accept (ctype :: k) where #
Instances of Accept
represent mimetypes. They are used for matching
against the Accept
HTTP header of the request, and for setting the
Content-Type
header of the response
Example:
>>>
import Network.HTTP.Media ((//), (/:))
>>>
data HTML
>>>
:{
instance Accept HTML where contentType _ = "text" // "html" /: ("charset", "utf-8") :}
Minimal complete definition
Instances
Accept JSON | application/json |
Defined in Servant.API.ContentTypes | |
Accept PlainText | text/plain;charset=utf-8 |
Defined in Servant.API.ContentTypes | |
Accept FormUrlEncoded | application/x-www-form-urlencoded |
Defined in Servant.API.ContentTypes Methods contentType :: Proxy FormUrlEncoded -> MediaType # contentTypes :: Proxy FormUrlEncoded -> NonEmpty MediaType # | |
Accept OctetStream | application/octet-stream |
Defined in Servant.API.ContentTypes Methods contentType :: Proxy OctetStream -> MediaType # |
class Accept ctype => MimeRender (ctype :: k) a where #
Instantiate this class to register a way of serializing a type based
on the Accept
header.
Example:
data MyContentType instance Accept MyContentType where contentType _ = "example" // "prs.me.mine" /: ("charset", "utf-8") instance Show a => MimeRender MyContentType a where mimeRender _ val = pack ("This is MINE! " ++ show val) type MyAPI = "path" :> Get '[MyContentType] Int
Methods
mimeRender :: Proxy ctype -> a -> ByteString #
Instances
class Accept ctype => MimeUnrender (ctype :: k) a where #
Instantiate this class to register a way of deserializing a type based
on the request's Content-Type
header.
>>>
import Network.HTTP.Media hiding (Accept)
>>>
import qualified Data.ByteString.Lazy.Char8 as BSC
>>>
data MyContentType = MyContentType String
>>>
:{
instance Accept MyContentType where contentType _ = "example" // "prs.me.mine" /: ("charset", "utf-8") :}
>>>
:{
instance Read a => MimeUnrender MyContentType a where mimeUnrender _ bs = case BSC.take 12 bs of "MyContentType" -> return . read . BSC.unpack $ BSC.drop 12 bs _ -> Left "didn't start with the magic incantation" :}
>>>
type MyAPI = "path" :> ReqBody '[MyContentType] Int :> Get '[JSON] Int
Minimal complete definition
Methods
mimeUnrender :: Proxy ctype -> ByteString -> Either String a #
mimeUnrenderWithType :: Proxy ctype -> MediaType -> ByteString -> Either String a #
Instances
A type for responses without content-body.
Constructors
NoContent |
Instances
Eq NoContent | |
Read NoContent | |
Show NoContent | |
Generic NoContent | |
Accept ctyp => AllMimeRender (ctyp ': ([] :: [Type])) NoContent | |
Defined in Servant.API.ContentTypes Methods allMimeRender :: Proxy (ctyp ': []) -> NoContent -> [(MediaType, ByteString)] # | |
AllMime (ctyp ': (ctyp' ': ctyps)) => AllMimeRender (ctyp ': (ctyp' ': ctyps)) NoContent | |
Defined in Servant.API.ContentTypes Methods allMimeRender :: Proxy (ctyp ': (ctyp' ': ctyps)) -> NoContent -> [(MediaType, ByteString)] # | |
type Rep NoContent | |
type Capture = Capture' ([] :: [Type]) #
Capture a value from the request path under a certain type a
.
Example:
>>>
-- GET /books/:isbn
>>>
type MyApi = "books" :> Capture "isbn" Text :> Get '[JSON] Book
data Capture' (mods :: [Type]) (sym :: Symbol) a #
Capture
which can be modified. For example with Description
.
Instances
(ToHttpApiData v, HasLink sub) => HasLink (Capture' mods sym v :> sub :: Type) | |
(KnownSymbol s, ToHttpApiData a, GoogleClient fn) => GoogleClient (Capture s a :> fn) Source # | |
type MkLink (Capture' mods sym v :> sub :: Type) a | |
type Fn (Capture s a :> fn) Source # | |
Defined in Network.Google.Types |
data CaptureAll (sym :: Symbol) a #
Capture all remaining values from the request path under a certain type
a
.
Example:
>>>
-- GET /src/*
>>>
type MyAPI = "src" :> CaptureAll "segments" Text :> Get '[JSON] SourceFile
Instances
(ToHttpApiData v, HasLink sub) => HasLink (CaptureAll sym v :> sub :: Type) | |
Defined in Servant.Links Associated Types type MkLink (CaptureAll sym v :> sub) a :: Type # Methods toLink :: (Link -> a) -> Proxy (CaptureAll sym v :> sub) -> Link -> MkLink (CaptureAll sym v :> sub) a # | |
type MkLink (CaptureAll sym v :> sub :: Type) a | |
Defined in Servant.Links |
data BasicAuth (realm :: Symbol) userData #
Combinator for Basic Access Authentication.
- IMPORTANT*: Only use Basic Auth over HTTPS! Credentials are not hashed or encrypted. Note also that because the same credentials are sent on every request, Basic Auth is not as secure as some alternatives. Further, the implementation in servant-server does not protect against some types of timing attacks.
In Basic Auth, username and password are base64-encoded and transmitted via
the Authorization
header. Handshakes are not required, making it
relatively efficient.
data BasicAuthData #
A simple datatype to hold data required to decorate a request
Constructors
BasicAuthData | |
Fields |
Union of two APIs, first takes precedence in case of overlap.
Example:
>>>
:{
type MyApi = "books" :> Get '[JSON] [Book] -- GET /books :<|> "books" :> ReqBody '[JSON] Book :> Post '[JSON] () -- POST /books :}
Constructors
a :<|> b infixr 3 |
Instances
Bitraversable (:<|>) | |
Defined in Servant.API.Alternative Methods bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> (a :<|> b) -> f (c :<|> d) # | |
Bifoldable (:<|>) | |
Bifunctor (:<|>) | |
Biapplicative (:<|>) | |
Defined in Servant.API.Alternative | |
Functor ((:<|>) a) | |
Foldable ((:<|>) a) | |
Defined in Servant.API.Alternative Methods fold :: Monoid m => (a :<|> m) -> m # foldMap :: Monoid m => (a0 -> m) -> (a :<|> a0) -> m # foldr :: (a0 -> b -> b) -> b -> (a :<|> a0) -> b # foldr' :: (a0 -> b -> b) -> b -> (a :<|> a0) -> b # foldl :: (b -> a0 -> b) -> b -> (a :<|> a0) -> b # foldl' :: (b -> a0 -> b) -> b -> (a :<|> a0) -> b # foldr1 :: (a0 -> a0 -> a0) -> (a :<|> a0) -> a0 # foldl1 :: (a0 -> a0 -> a0) -> (a :<|> a0) -> a0 # toList :: (a :<|> a0) -> [a0] # length :: (a :<|> a0) -> Int # elem :: Eq a0 => a0 -> (a :<|> a0) -> Bool # maximum :: Ord a0 => (a :<|> a0) -> a0 # minimum :: Ord a0 => (a :<|> a0) -> a0 # | |
Traversable ((:<|>) a) | |
(HasLink a, HasLink b) => HasLink (a :<|> b :: Type) | |
(Bounded a, Bounded b) => Bounded (a :<|> b) | |
(Eq a, Eq b) => Eq (a :<|> b) | |
(Show a, Show b) => Show (a :<|> b) | |
(Semigroup a, Semigroup b) => Semigroup (a :<|> b) | |
(Monoid a, Monoid b) => Monoid (a :<|> b) | |
(GoogleClient a, GoogleClient b) => GoogleClient (a :<|> b) Source # | |
type MkLink (a :<|> b :: Type) r | |
type Fn (a :<|> b) Source # | |
type Vault = Vault RealWorld #
A persistent store for values of arbitrary types.
This variant is the simplest and creates keys in the IO
monad.
See the module Data.Vault.ST if you want to use it with the ST
monad instead.
Time of day as represented in hour, minute and second (with picoseconds), typically used to express local time of day.
Instances
The Modified Julian Day is a standard count of days, with zero being the day 1858-11-17.
Instances
Enum Day | |
Eq Day | |
Data Day | |
Defined in Data.Time.Calendar.Days Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Day -> c Day # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Day # dataTypeOf :: Day -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Day) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Day) # gmapT :: (forall b. Data b => b -> b) -> Day -> Day # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Day -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Day -> r # gmapQ :: (forall d. Data d => d -> u) -> Day -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Day -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Day -> m Day # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Day -> m Day # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Day -> m Day # | |
Ord Day | |
Ix Day | |
ToJSON Day | |
Defined in Data.Aeson.Types.ToJSON | |
ToJSONKey Day | |
Defined in Data.Aeson.Types.ToJSON | |
FromJSON Day | |
FromJSONKey Day | |
Defined in Data.Aeson.Types.FromJSON | |
NFData Day | |
Defined in Data.Time.Calendar.Days | |
ToFormKey Day | |
Defined in Web.Internal.FormUrlEncoded | |
FromFormKey Day | |
Defined in Web.Internal.FormUrlEncoded | |
ToHttpApiData Day |
|
Defined in Web.Internal.HttpApiData Methods toUrlPiece :: Day -> Text # toEncodedUrlPiece :: Day -> Builder # toHeader :: Day -> ByteString # toQueryParam :: Day -> Text # | |
FromHttpApiData Day |
|
Defined in Web.Internal.HttpApiData | |
FormatTime Day | |
Defined in Data.Time.Format Methods formatCharacter :: Char -> Maybe (TimeLocale -> Maybe NumericPadOption -> Maybe Int -> Day -> String) # | |
ParseTime Day | |
Defined in Data.Time.Format.Parse |
Constructors
Textual a |
Instances
Eq a => Eq (Textual a) Source # | |
Fractional a => Fractional (Textual a) Source # | |
Data a => Data (Textual a) Source # | |
Defined in Network.Google.Data.JSON Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Textual a -> c (Textual a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Textual a) # toConstr :: Textual a -> Constr # dataTypeOf :: Textual a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Textual a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Textual a)) # gmapT :: (forall b. Data b => b -> b) -> Textual a -> Textual a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Textual a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Textual a -> r # gmapQ :: (forall d. Data d => d -> u) -> Textual a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Textual a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Textual a -> m (Textual a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Textual a -> m (Textual a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Textual a -> m (Textual a) # | |
Num a => Num (Textual a) Source # | |
Defined in Network.Google.Data.JSON | |
Ord a => Ord (Textual a) Source # | |
Read a => Read (Textual a) Source # | |
Show a => Show (Textual a) Source # | |
ToHttpApiData a => ToJSON (Textual a) Source # | |
Defined in Network.Google.Data.JSON | |
(FromJSON a, FromHttpApiData a) => FromJSON (Textual a) Source # | |
ToHttpApiData a => ToHttpApiData (Textual a) Source # | |
Defined in Network.Google.Data.JSON Methods toUrlPiece :: Textual a -> Text # toEncodedUrlPiece :: Textual a -> Builder # toHeader :: Textual a -> ByteString # toQueryParam :: Textual a -> Text # | |
FromHttpApiData a => FromHttpApiData (Textual a) Source # | |
Defined in Network.Google.Data.JSON Methods parseUrlPiece :: Text -> Either Text (Textual a) # parseHeader :: ByteString -> Either Text (Textual a) # |
parseJSONText :: FromHttpApiData a => String -> Value -> Parser a Source #
toJSONText :: ToHttpApiData a => a -> Value Source #
Binary data.
This data is passed to/from the serialisation routines as-is, and any particular encoding or decoding (say, base64) is left up to the caller.
Constructors
Bytes | |
Fields |
Instances
Eq Bytes Source # | |
Data Bytes Source # | |
Defined in Network.Google.Data.Bytes Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bytes -> c Bytes # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bytes # dataTypeOf :: Bytes -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Bytes) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bytes) # gmapT :: (forall b. Data b => b -> b) -> Bytes -> Bytes # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bytes -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bytes -> r # gmapQ :: (forall d. Data d => d -> u) -> Bytes -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Bytes -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bytes -> m Bytes # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bytes -> m Bytes # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bytes -> m Bytes # | |
Ord Bytes Source # | |
Read Bytes Source # | |
Show Bytes Source # | |
Generic Bytes Source # | |
Hashable Bytes Source # | |
Defined in Network.Google.Data.Bytes | |
ToJSON Bytes Source # | |
Defined in Network.Google.Data.Bytes | |
FromJSON Bytes Source # | |
ToHttpApiData Bytes Source # | |
Defined in Network.Google.Data.Bytes Methods toUrlPiece :: Bytes -> Text # toEncodedUrlPiece :: Bytes -> Builder # toHeader :: Bytes -> ByteString # toQueryParam :: Bytes -> Text # | |
FromHttpApiData Bytes Source # | |
Defined in Network.Google.Data.Bytes | |
type Rep Bytes Source # | |
Defined in Network.Google.Data.Bytes type Rep Bytes = D1 (MetaData "Bytes" "Network.Google.Data.Bytes" "gogol-core-0.4.0-G4Dw8paiz1K5bZSvPti4JM" True) (C1 (MetaCons "Bytes" PrefixI True) (S1 (MetaSel (Just "unBytes") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 ByteString))) |
Instances
Enum Nat Source # | |
Eq Nat Source # | |
Integral Nat Source # | |
Data Nat Source # | |
Defined in Network.Google.Data.Numeric Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Nat -> c Nat # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Nat # dataTypeOf :: Nat -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Nat) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Nat) # gmapT :: (forall b. Data b => b -> b) -> Nat -> Nat # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Nat -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Nat -> r # gmapQ :: (forall d. Data d => d -> u) -> Nat -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Nat -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Nat -> m Nat # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Nat -> m Nat # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Nat -> m Nat # | |
Num Nat Source # | |
Ord Nat Source # | |
Read Nat Source # | |
Real Nat Source # | |
Defined in Network.Google.Data.Numeric Methods toRational :: Nat -> Rational # | |
Show Nat Source # | |
ToJSON Nat Source # | |
Defined in Network.Google.Data.Numeric | |
FromJSON Nat Source # | |
ToHttpApiData Nat Source # | |
Defined in Network.Google.Data.Numeric Methods toUrlPiece :: Nat -> Text # toEncodedUrlPiece :: Nat -> Builder # toHeader :: Nat -> ByteString # toQueryParam :: Nat -> Text # | |
FromHttpApiData Nat Source # | |
Defined in Network.Google.Data.Numeric |
A duration in seconds with up to nine fractional digits, terminated by s
.
Example: "3.5s"
.
Instances
This SHOULD be a date in ISO 8601 format of YYYY-MM- DDThh:mm:ssZ in UTC time. This is the recommended form of date/timestamp.
Constructors
DateTime' | |
Fields |
Instances
This SHOULD be a date in the format of YYYY-MM-DD. It is recommended that you use the "date-time" format instead of "date" unless you need to transfer only the date part.
Instances
Eq Date' Source # | |
Data Date' Source # | |
Defined in Network.Google.Data.Time Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Date' -> c Date' # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Date' # dataTypeOf :: Date' -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Date') # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Date') # gmapT :: (forall b. Data b => b -> b) -> Date' -> Date' # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Date' -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Date' -> r # gmapQ :: (forall d. Data d => d -> u) -> Date' -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Date' -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Date' -> m Date' # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Date' -> m Date' # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Date' -> m Date' # | |
Ord Date' Source # | |
Read Date' Source # | |
Show Date' Source # | |
Generic Date' Source # | |
ToJSON Date' Source # | |
Defined in Network.Google.Data.Time | |
FromJSON Date' Source # | |
ToHttpApiData Date' Source # | |
Defined in Network.Google.Data.Time Methods toUrlPiece :: Date' -> Text # toEncodedUrlPiece :: Date' -> Builder # toHeader :: Date' -> ByteString # toQueryParam :: Date' -> Text # | |
FromHttpApiData Date' Source # | |
Defined in Network.Google.Data.Time | |
type Rep Date' Source # | |
Defined in Network.Google.Data.Time |
This SHOULD be a time in the format of hh:mm:ss. It is recommended that you use the "date-time" format instead of "time" unless you need to transfer only the time part.
Instances
Eq Time' Source # | |
Data Time' Source # | |
Defined in Network.Google.Data.Time Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Time' -> c Time' # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Time' # dataTypeOf :: Time' -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Time') # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Time') # gmapT :: (forall b. Data b => b -> b) -> Time' -> Time' # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Time' -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Time' -> r # gmapQ :: (forall d. Data d => d -> u) -> Time' -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Time' -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Time' -> m Time' # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Time' -> m Time' # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Time' -> m Time' # | |
Ord Time' Source # | |
Read Time' Source # | |
Show Time' Source # | |
Generic Time' Source # | |
ToJSON Time' Source # | |
Defined in Network.Google.Data.Time | |
FromJSON Time' Source # | |
ToHttpApiData Time' Source # | |
Defined in Network.Google.Data.Time Methods toUrlPiece :: Time' -> Text # toEncodedUrlPiece :: Time' -> Builder # toHeader :: Time' -> ByteString # toQueryParam :: Time' -> Text # | |
FromHttpApiData Time' Source # | |
Defined in Network.Google.Data.Time | |
type Rep Time' Source # | |
Defined in Network.Google.Data.Time |
newtype GFieldMask Source #
Constructors
GFieldMask Text |
Instances
An integral value representing seconds.
Instances
Bounded Seconds Source # | |
Enum Seconds Source # | |
Eq Seconds Source # | |
Integral Seconds Source # | |
Defined in Network.Google.Types | |
Data Seconds Source # | |
Defined in Network.Google.Types Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Seconds -> c Seconds # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Seconds # toConstr :: Seconds -> Constr # dataTypeOf :: Seconds -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Seconds) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Seconds) # gmapT :: (forall b. Data b => b -> b) -> Seconds -> Seconds # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Seconds -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Seconds -> r # gmapQ :: (forall d. Data d => d -> u) -> Seconds -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Seconds -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Seconds -> m Seconds # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Seconds -> m Seconds # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Seconds -> m Seconds # | |
Num Seconds Source # | |
Ord Seconds Source # | |
Defined in Network.Google.Types | |
Read Seconds Source # | |
Real Seconds Source # | |
Defined in Network.Google.Types Methods toRational :: Seconds -> Rational # | |
Show Seconds Source # | |
Generic Seconds Source # | |
type Rep Seconds Source # | |
Defined in Network.Google.Types |
data MultipartRelated (cs :: [*]) m Source #
Instances
(ToBody c m, GoogleClient fn) => GoogleClient (MultipartRelated (c ': cs) m :> fn) Source # | |
Defined in Network.Google.Types Methods buildClient :: Proxy (MultipartRelated (c ': cs) m :> fn) -> Request -> Fn (MultipartRelated (c ': cs) m :> fn) Source # | |
type Fn (MultipartRelated (c ': cs) m :> fn) Source # | |
Defined in Network.Google.Types |
data CaptureMode (s :: Symbol) (m :: Symbol) a Source #
Instances
(KnownSymbol s, KnownSymbol m, ToHttpApiData a, GoogleClient fn) => GoogleClient (CaptureMode s m a :> fn) Source # | |
Defined in Network.Google.Types Methods buildClient :: Proxy (CaptureMode s m a :> fn) -> Request -> Fn (CaptureMode s m a :> fn) Source # | |
type Fn (CaptureMode s m a :> fn) Source # | |
Defined in Network.Google.Types |
data Captures (s :: Symbol) a Source #
Instances
(KnownSymbol s, ToHttpApiData a, GoogleClient fn) => GoogleClient (Captures s a :> fn) Source # | |
type Fn (Captures s a :> fn) Source # | |
Defined in Network.Google.Types |
class GoogleClient fn where Source #
Instances
class GoogleRequest a where Source #
Methods
requestClient :: a -> GClient (Rs a) Source #
class Accept c => FromStream c a where Source #
Methods
fromStream :: Proxy c -> Stream -> ResourceT IO (Either (String, ByteString) a) Source #
Instances
FromJSON a => FromStream JSON a Source # | |
Defined in Network.Google.Types | |
FromStream OctetStream Stream Source # | |
Defined in Network.Google.Types Methods fromStream :: Proxy OctetStream -> Stream -> ResourceT IO (Either (String, ByteString) Stream) Source # |
class Accept c => ToBody c a where Source #
Instances
ToJSON a => ToBody JSON a Source # | |
ToBody PlainText ByteString Source # | |
Defined in Network.Google.Types | |
ToBody PlainText ByteString Source # | |
Defined in Network.Google.Types | |
ToBody OctetStream ByteString Source # | |
Defined in Network.Google.Types Methods toBody :: Proxy OctetStream -> ByteString -> Body Source # | |
ToBody OctetStream ByteString Source # | |
Defined in Network.Google.Types Methods toBody :: Proxy OctetStream -> ByteString -> Body Source # |
A materialised 'http-client' request and associated response parser.
Constructors
GClient | |
Fields
|
An intermediary request builder.
Constructors
Request | |
Fields
|
A single part of a (potentially multipart) request body.
Note: The IsString
instance defaults to a text/plain
MIME type.
Constructors
Body !MediaType !RequestBody |
Instances
IsString Body Source # | |
Defined in Network.Google.Types Methods fromString :: String -> Body # |
data ServiceConfig Source #
Constructors
ServiceConfig | |
Fields
|
class AsError a where Source #
Minimal complete definition
Methods
_Error :: Prism' a Error Source #
A general Amazonka error.
_TransportError :: Prism' a HttpException Source #
An error occured while communicating over HTTP with a remote service.
_SerializeError :: Prism' a SerializeError Source #
A serialisation error occured when attempting to deserialise a response.
_ServiceError :: Prism' a ServiceError Source #
A service specific error returned by the remote service.
Instances
AsError SomeException Source # | |
AsError Error Source # | |
Defined in Network.Google.Types |
data ServiceError Source #
Constructors
ServiceError' | |
Fields
|
Instances
Eq ServiceError Source # | |
Defined in Network.Google.Types | |
Show ServiceError Source # | |
Defined in Network.Google.Types Methods showsPrec :: Int -> ServiceError -> ShowS # show :: ServiceError -> String # showList :: [ServiceError] -> ShowS # |
data SerializeError Source #
Constructors
SerializeError' | |
Fields
|
Instances
Eq SerializeError Source # | |
Defined in Network.Google.Types Methods (==) :: SerializeError -> SerializeError -> Bool # (/=) :: SerializeError -> SerializeError -> Bool # | |
Show SerializeError Source # | |
Defined in Network.Google.Types Methods showsPrec :: Int -> SerializeError -> ShowS # show :: SerializeError -> String # showList :: [SerializeError] -> ShowS # |
Instances
Show Error Source # | |
Exception Error Source # | |
Defined in Network.Google.Types Methods toException :: Error -> SomeException # fromException :: SomeException -> Maybe Error # displayException :: Error -> String # | |
AsError Error Source # | |
Defined in Network.Google.Types |
data MediaUpload a Source #
Constructors
MediaUpload a Body |
newtype MediaDownload a Source #
Constructors
MediaDownload a |
An opaque client secret.
Instances
Eq GSecret Source # | |
Ord GSecret Source # | |
Defined in Network.Google.Types | |
Read GSecret Source # | |
Show GSecret Source # | |
IsString GSecret Source # | |
Defined in Network.Google.Types Methods fromString :: String -> GSecret # | |
Generic GSecret Source # | |
ToJSON GSecret Source # | |
Defined in Network.Google.Types | |
FromJSON GSecret Source # | |
ToHttpApiData GSecret Source # | |
Defined in Network.Google.Types Methods toUrlPiece :: GSecret -> Text # toEncodedUrlPiece :: GSecret -> Builder # toHeader :: GSecret -> ByteString # toQueryParam :: GSecret -> Text # | |
FromHttpApiData GSecret Source # | |
Defined in Network.Google.Types Methods parseUrlPiece :: Text -> Either Text GSecret # parseHeader :: ByteString -> Either Text GSecret # | |
type Rep GSecret Source # | |
Defined in Network.Google.Types |
A service identifier.
Instances
Eq ServiceId Source # | |
Ord ServiceId Source # | |
Read ServiceId Source # | |
Show ServiceId Source # | |
IsString ServiceId Source # | |
Defined in Network.Google.Types Methods fromString :: String -> ServiceId # | |
Generic ServiceId Source # | |
ToJSON ServiceId Source # | |
Defined in Network.Google.Types | |
FromJSON ServiceId Source # | |
ToHttpApiData ServiceId Source # | |
Defined in Network.Google.Types Methods toUrlPiece :: ServiceId -> Text # toEncodedUrlPiece :: ServiceId -> Builder # toHeader :: ServiceId -> ByteString # toQueryParam :: ServiceId -> Text # | |
FromHttpApiData ServiceId Source # | |
Defined in Network.Google.Types Methods parseUrlPiece :: Text -> Either Text ServiceId # parseHeader :: ByteString -> Either Text ServiceId # | |
type Rep ServiceId Source # | |
Defined in Network.Google.Types |
A client identifier.
Instances
Eq ClientId Source # | |
Ord ClientId Source # | |
Defined in Network.Google.Types | |
Read ClientId Source # | |
Show ClientId Source # | |
IsString ClientId Source # | |
Defined in Network.Google.Types Methods fromString :: String -> ClientId # | |
Generic ClientId Source # | |
ToJSON ClientId Source # | |
Defined in Network.Google.Types | |
FromJSON ClientId Source # | |
ToHttpApiData ClientId Source # | |
Defined in Network.Google.Types Methods toUrlPiece :: ClientId -> Text # toEncodedUrlPiece :: ClientId -> Builder # toHeader :: ClientId -> ByteString # toQueryParam :: ClientId -> Text # | |
FromHttpApiData ClientId Source # | |
Defined in Network.Google.Types Methods parseUrlPiece :: Text -> Either Text ClientId # parseHeader :: ByteString -> Either Text ClientId # | |
type Rep ClientId Source # | |
Defined in Network.Google.Types |
newtype RefreshToken Source #
An OAuth2 refresh token.
Constructors
RefreshToken Text |
Instances
newtype AccessToken Source #
An OAuth2 access token.
Constructors
AccessToken Text |
Instances
newtype OAuthScope Source #
An OAuth2 scope.
Constructors
OAuthScope Text |
Instances
Constructors
Multipart |
Instances
Eq Multipart Source # | |
Ord Multipart Source # | |
Read Multipart Source # | |
Show Multipart Source # | |
Generic Multipart Source # | |
ToHttpApiData Multipart Source # | |
Defined in Network.Google.Types Methods toUrlPiece :: Multipart -> Text # toEncodedUrlPiece :: Multipart -> Builder # toHeader :: Multipart -> ByteString # toQueryParam :: Multipart -> Text # | |
type Rep Multipart Source # | |
Constructors
AltMedia |
Instances
Eq AltMedia Source # | |
Ord AltMedia Source # | |
Defined in Network.Google.Types | |
Read AltMedia Source # | |
Show AltMedia Source # | |
Generic AltMedia Source # | |
ToHttpApiData AltMedia Source # | |
Defined in Network.Google.Types Methods toUrlPiece :: AltMedia -> Text # toEncodedUrlPiece :: AltMedia -> Builder # toHeader :: AltMedia -> ByteString # toQueryParam :: AltMedia -> Text # | |
GoogleClient fn => GoogleClient (AltMedia :> fn) Source # | |
type Rep AltMedia Source # | |
type Fn (AltMedia :> fn) Source # | |
Constructors
AltJSON |
Instances
Eq AltJSON Source # | |
Ord AltJSON Source # | |
Defined in Network.Google.Types | |
Read AltJSON Source # | |
Show AltJSON Source # | |
Generic AltJSON Source # | |
ToHttpApiData AltJSON Source # | |
Defined in Network.Google.Types Methods toUrlPiece :: AltJSON -> Text # toEncodedUrlPiece :: AltJSON -> Builder # toHeader :: AltJSON -> ByteString # toQueryParam :: AltJSON -> Text # | |
type Rep AltJSON Source # | |
_Default :: Monoid a => Iso' (Maybe a) a Source #
Invalid Iso, exists for ease of composition with the current 'Lens . Iso' chaining to hide internal types from the user.
defaultService :: ServiceId -> ByteString -> ServiceConfig Source #
serviceHost :: Lens' ServiceConfig ByteString Source #
The remote host name, used for both the IP address to connect to and the host request header.
servicePort :: Lens' ServiceConfig Int Source #
The remote port to connect to.
Defaults to 443
.
servicePath :: Lens' ServiceConfig Builder Source #
A path prefix that is prepended to any sent HTTP request.
Defaults to mempty
.
serviceSecure :: Lens' ServiceConfig Bool Source #
Whether to use HTTPS/SSL.
Defaults to True
.
serviceTimeout :: Lens' ServiceConfig (Maybe Seconds) Source #
Number of seconds to wait for a response.
appendPaths :: ToHttpApiData a => Request -> [a] -> Request Source #
appendQuery :: Request -> ByteString -> Maybe Text -> Request Source #
appendHeader :: Request -> HeaderName -> Maybe Text -> Request Source #
clientService :: Lens' (GClient a) ServiceConfig Source #
mime :: FromStream c a => Proxy c -> Method -> [Int] -> Request -> ServiceConfig -> GClient a Source #
gClient :: (Stream -> ResourceT IO (Either (String, ByteString) a)) -> Maybe MediaType -> Method -> [Int] -> Request -> ServiceConfig -> GClient a Source #
buildText :: ToHttpApiData a => a -> Builder Source #
buildSymbol :: forall n proxy. KnownSymbol n => proxy n -> Builder Source #
byteSymbol :: forall n proxy. KnownSymbol n => proxy n -> ByteString Source #
microseconds :: Seconds -> Int Source #