| Safe Haskell | Trustworthy |
|---|---|
| Language | Haskell2010 |
Control.Foldl
Description
This module provides efficient and streaming left folds that you can combine
using Applicative style.
Import this module qualified to avoid clashing with the Prelude:
>>>import qualified Control.Foldl as Foldl
Use fold to apply a Fold to a list:
>>>Foldl.fold Foldl.sum [1..100]5050
Folds are Applicatives, so you can combine them using Applicative
combinators:
>>>import Control.Applicative>>>let average = (/) <$> Foldl.sum <*> Foldl.genericLength
… or you can use do notation if you enable the ApplicativeDo language
extension:
>>>:set -XApplicativeDo>>>let average = do total <- Foldl.sum; count <- Foldl.genericLength; return (total / count)
… or you can use the fact that the Fold type implements Num to do this:
>>>let average = Foldl.sum / Foldl.genericLength
These combined folds will still traverse the list only once, streaming efficiently over the list in constant space without space leaks:
>>>Foldl.fold average [1..10000000]5000000.5>>>Foldl.fold ((,) <$> Foldl.minimum <*> Foldl.maximum) [1..10000000](Just 1,Just 10000000)
You might want to try enabling the -flate-dmd-anal flag when compiling
executables that use this library to further improve performance.
Synopsis
- data Fold a b = forall x. Fold (x -> a -> x) x (x -> b)
- data FoldM m a b = forall x. FoldM (x -> a -> m x) (m x) (x -> m b)
- fold :: Foldable f => Fold a b -> f a -> b
- foldM :: (Foldable f, Monad m) => FoldM m a b -> f a -> m b
- scan :: Fold a b -> [a] -> [b]
- prescan :: Traversable t => Fold a b -> t a -> t b
- postscan :: Traversable t => Fold a b -> t a -> t b
- mconcat :: Monoid a => Fold a a
- foldMap :: Monoid w => (a -> w) -> (w -> b) -> Fold a b
- head :: Fold a (Maybe a)
- last :: Fold a (Maybe a)
- lastDef :: a -> Fold a a
- lastN :: Int -> Fold a [a]
- null :: Fold a Bool
- length :: Fold a Int
- and :: Fold Bool Bool
- or :: Fold Bool Bool
- all :: (a -> Bool) -> Fold a Bool
- any :: (a -> Bool) -> Fold a Bool
- sum :: Num a => Fold a a
- product :: Num a => Fold a a
- mean :: Fractional a => Fold a a
- variance :: Fractional a => Fold a a
- std :: Floating a => Fold a a
- maximum :: Ord a => Fold a (Maybe a)
- maximumBy :: (a -> a -> Ordering) -> Fold a (Maybe a)
- minimum :: Ord a => Fold a (Maybe a)
- minimumBy :: (a -> a -> Ordering) -> Fold a (Maybe a)
- elem :: Eq a => a -> Fold a Bool
- notElem :: Eq a => a -> Fold a Bool
- find :: (a -> Bool) -> Fold a (Maybe a)
- index :: Int -> Fold a (Maybe a)
- lookup :: Eq a => a -> Fold (a, b) (Maybe b)
- elemIndex :: Eq a => a -> Fold a (Maybe Int)
- findIndex :: (a -> Bool) -> Fold a (Maybe Int)
- random :: FoldM IO a (Maybe a)
- randomN :: Vector v a => Int -> FoldM IO a (Maybe (v a))
- mapM_ :: Monad m => (a -> m ()) -> FoldM m a ()
- sink :: (Monoid w, Monad m) => (a -> m w) -> FoldM m a w
- genericLength :: Num b => Fold a b
- genericIndex :: Integral i => i -> Fold a (Maybe a)
- list :: Fold a [a]
- revList :: Fold a [a]
- nub :: Ord a => Fold a [a]
- eqNub :: Eq a => Fold a [a]
- set :: Ord a => Fold a (Set a)
- hashSet :: (Eq a, Hashable a) => Fold a (HashSet a)
- map :: Ord a => Fold (a, b) (Map a b)
- foldByKeyMap :: forall k a b. Ord k => Fold a b -> Fold (k, a) (Map k b)
- hashMap :: (Eq a, Hashable a) => Fold (a, b) (HashMap a b)
- foldByKeyHashMap :: forall k a b. (Hashable k, Eq k) => Fold a b -> Fold (k, a) (HashMap k b)
- vector :: Vector v a => Fold a (v a)
- vectorM :: (PrimMonad m, Vector v a) => FoldM m a (v a)
- purely :: (forall x. (x -> a -> x) -> x -> (x -> b) -> r) -> Fold a b -> r
- purely_ :: (forall x. (x -> a -> x) -> x -> x) -> Fold a b -> b
- impurely :: (forall x. (x -> a -> m x) -> m x -> (x -> m b) -> r) -> FoldM m a b -> r
- impurely_ :: Monad m => (forall x. (x -> a -> m x) -> m x -> m x) -> FoldM m a b -> m b
- generalize :: Monad m => Fold a b -> FoldM m a b
- simplify :: FoldM Identity a b -> Fold a b
- hoists :: (forall x. m x -> n x) -> FoldM m a b -> FoldM n a b
- duplicateM :: Applicative m => FoldM m a b -> FoldM m a (FoldM m a b)
- _Fold1 :: (a -> a -> a) -> Fold a (Maybe a)
- premap :: (a -> b) -> Fold b r -> Fold a r
- premapM :: Monad m => (a -> m b) -> FoldM m b r -> FoldM m a r
- prefilter :: (a -> Bool) -> Fold a r -> Fold a r
- prefilterM :: Monad m => (a -> m Bool) -> FoldM m a r -> FoldM m a r
- predropWhile :: (a -> Bool) -> Fold a r -> Fold a r
- drop :: Natural -> Fold a b -> Fold a b
- dropM :: Monad m => Natural -> FoldM m a b -> FoldM m a b
- type Handler a b = forall x. (b -> Const (Dual (Endo x)) b) -> a -> Const (Dual (Endo x)) a
- handles :: Handler a b -> Fold b r -> Fold a r
- foldOver :: Handler s a -> Fold a b -> s -> b
- newtype EndoM m a = EndoM {
- appEndoM :: a -> m a
- type HandlerM m a b = forall x. (b -> Const (Dual (EndoM m x)) b) -> a -> Const (Dual (EndoM m x)) a
- handlesM :: HandlerM m a b -> FoldM m b r -> FoldM m a r
- foldOverM :: Monad m => HandlerM m s a -> FoldM m a b -> s -> m b
- folded :: (Contravariant f, Applicative f, Foldable t) => (a -> f a) -> t a -> f (t a)
- filtered :: Monoid m => (a -> Bool) -> (a -> m) -> a -> m
- groupBy :: Ord g => (a -> g) -> Fold a r -> Fold a (Map g r)
- either :: Fold a1 b1 -> Fold a2 b2 -> Fold (Either a1 a2) (b1, b2)
- eitherM :: Monad m => FoldM m a1 b1 -> FoldM m a2 b2 -> FoldM m (Either a1 a2) (b1, b2)
- nest :: Applicative f => Fold a b -> Fold (f a) (f b)
- data RealWorld
- class Monad m => PrimMonad (m :: Type -> Type)
- class Foldable (t :: TYPE LiftedRep -> Type)
- type family Mutable (v :: Type -> Type) = (mv :: Type -> Type -> Type) | mv -> v
- class MVector (Mutable v) a => Vector (v :: Type -> Type) a
Fold Types
Efficient representation of a left fold that preserves the fold's step function, initial accumulator, and extraction function
This allows the Applicative instance to assemble derived folds that
traverse the container only once
A 'Fold a b' processes elements of type a and results in a
value of type b.
Constructors
| forall x. Fold (x -> a -> x) x (x -> b) |
|
Instances
| Choice Fold Source # | |
| Profunctor Fold Source # | |
Defined in Control.Foldl | |
| Semigroupoid Fold Source # | |
| Applicative (Fold a) Source # | |
| Functor (Fold a) Source # | |
| Comonad (Fold a) Source # | |
| Extend (Fold a) Source # | |
| Monoid b => Monoid (Fold a b) Source # | |
| Semigroup b => Semigroup (Fold a b) Source # | |
| Floating b => Floating (Fold a b) Source # | |
Defined in Control.Foldl Methods sqrt :: Fold a b -> Fold a b # (**) :: Fold a b -> Fold a b -> Fold a b # logBase :: Fold a b -> Fold a b -> Fold a b # asin :: Fold a b -> Fold a b # acos :: Fold a b -> Fold a b # atan :: Fold a b -> Fold a b # sinh :: Fold a b -> Fold a b # cosh :: Fold a b -> Fold a b # tanh :: Fold a b -> Fold a b # asinh :: Fold a b -> Fold a b # acosh :: Fold a b -> Fold a b # atanh :: Fold a b -> Fold a b # log1p :: Fold a b -> Fold a b # expm1 :: Fold a b -> Fold a b # | |
| Num b => Num (Fold a b) Source # | |
| Fractional b => Fractional (Fold a b) Source # | |
Like Fold, but monadic.
A 'FoldM m a b' processes elements of type a and
results in a monadic value of type m b.
Constructors
| forall x. FoldM (x -> a -> m x) (m x) (x -> m b) |
|
Instances
| Functor m => Profunctor (FoldM m) Source # | |
Defined in Control.Foldl Methods dimap :: (a -> b) -> (c -> d) -> FoldM m b c -> FoldM m a d # lmap :: (a -> b) -> FoldM m b c -> FoldM m a c # rmap :: (b -> c) -> FoldM m a b -> FoldM m a c # (#.) :: forall a b c q. Coercible c b => q b c -> FoldM m a b -> FoldM m a c # (.#) :: forall a b c q. Coercible b a => FoldM m b c -> q a b -> FoldM m a c # | |
| Applicative m => Applicative (FoldM m a) Source # | |
| Functor m => Functor (FoldM m a) Source # | |
| Monad m => Extend (FoldM m a) Source # | |
| (Monoid b, Monad m) => Monoid (FoldM m a b) Source # | |
| (Semigroup b, Monad m) => Semigroup (FoldM m a b) Source # | |
| (Monad m, Floating b) => Floating (FoldM m a b) Source # | |
Defined in Control.Foldl Methods exp :: FoldM m a b -> FoldM m a b # log :: FoldM m a b -> FoldM m a b # sqrt :: FoldM m a b -> FoldM m a b # (**) :: FoldM m a b -> FoldM m a b -> FoldM m a b # logBase :: FoldM m a b -> FoldM m a b -> FoldM m a b # sin :: FoldM m a b -> FoldM m a b # cos :: FoldM m a b -> FoldM m a b # tan :: FoldM m a b -> FoldM m a b # asin :: FoldM m a b -> FoldM m a b # acos :: FoldM m a b -> FoldM m a b # atan :: FoldM m a b -> FoldM m a b # sinh :: FoldM m a b -> FoldM m a b # cosh :: FoldM m a b -> FoldM m a b # tanh :: FoldM m a b -> FoldM m a b # asinh :: FoldM m a b -> FoldM m a b # acosh :: FoldM m a b -> FoldM m a b # atanh :: FoldM m a b -> FoldM m a b # log1p :: FoldM m a b -> FoldM m a b # expm1 :: FoldM m a b -> FoldM m a b # | |
| (Monad m, Num b) => Num (FoldM m a b) Source # | |
Defined in Control.Foldl Methods (+) :: FoldM m a b -> FoldM m a b -> FoldM m a b # (-) :: FoldM m a b -> FoldM m a b -> FoldM m a b # (*) :: FoldM m a b -> FoldM m a b -> FoldM m a b # negate :: FoldM m a b -> FoldM m a b # abs :: FoldM m a b -> FoldM m a b # signum :: FoldM m a b -> FoldM m a b # fromInteger :: Integer -> FoldM m a b # | |
| (Monad m, Fractional b) => Fractional (FoldM m a b) Source # | |
Folding
scan :: Fold a b -> [a] -> [b] Source #
Convert a strict left Fold into a scan
>>>Foldl.scan Foldl.length [1..5][0,1,2,3,4,5]
prescan :: Traversable t => Fold a b -> t a -> t b Source #
Convert a Fold into a prescan for any Traversable type
"Prescan" means that the last element of the scan is not included
>>>Foldl.prescan Foldl.length [1..5][0,1,2,3,4]
postscan :: Traversable t => Fold a b -> t a -> t b Source #
Convert a Fold into a postscan for any Traversable type
"Postscan" means that the first element of the scan is not included
>>>Foldl.postscan Foldl.length [1..5][1,2,3,4,5]
Folds
head :: Fold a (Maybe a) Source #
Get the first element of a container or return Nothing if the container is
empty
last :: Fold a (Maybe a) Source #
Get the last element of a container or return Nothing if the container is
empty
lastDef :: a -> Fold a a Source #
Get the last element of a container or return a default value if the container is empty
mean :: Fractional a => Fold a a Source #
Compute a numerically stable arithmetic mean of all elements
variance :: Fractional a => Fold a a Source #
Compute a numerically stable (population) variance over all elements
std :: Floating a => Fold a a Source #
Compute a numerically stable (population) standard deviation over all elements
maximumBy :: (a -> a -> Ordering) -> Fold a (Maybe a) Source #
Computes the maximum element with respect to the given comparison function
minimumBy :: (a -> a -> Ordering) -> Fold a (Maybe a) Source #
Computes the minimum element with respect to the given comparison function
find :: (a -> Bool) -> Fold a (Maybe a) Source #
(find predicate) returns the first element that satisfies the predicate or
Nothing if no element satisfies the predicate
index :: Int -> Fold a (Maybe a) Source #
(index n) returns the nth element of the container, or Nothing if the
container has an insufficient number of elements
lookup :: Eq a => a -> Fold (a, b) (Maybe b) Source #
(lookup a) returns the element paired with the first matching item, or
Nothing if none matches
elemIndex :: Eq a => a -> Fold a (Maybe Int) Source #
(elemIndex a) returns the index of the first element that equals a, or
Nothing if no element matches
findIndex :: (a -> Bool) -> Fold a (Maybe Int) Source #
(findIndex predicate) returns the index of the first element that
satisfies the predicate, or Nothing if no element satisfies the predicate
randomN :: Vector v a => Int -> FoldM IO a (Maybe (v a)) Source #
Pick several random elements, using reservoir sampling
mapM_ :: Monad m => (a -> m ()) -> FoldM m a () Source #
Converts an effectful function to a fold. Specialized version of sink.
sink :: (Monoid w, Monad m) => (a -> m w) -> FoldM m a w Source #
Converts an effectful function to a fold
sink (f <> g) = sink f <> sink g -- if `(<>)` is commutative sink mempty = mempty
Generic Folds
Container folds
nub :: Ord a => Fold a [a] Source #
O(n log n). Fold values into a list with duplicates removed, while preserving their first occurrences
eqNub :: Eq a => Fold a [a] Source #
O(n^2). Fold values into a list with duplicates removed, while preserving their first occurrences
foldByKeyHashMap :: forall k a b. (Hashable k, Eq k) => Fold a b -> Fold (k, a) (HashMap k b) Source #
vectorM :: (PrimMonad m, Vector v a) => FoldM m a (v a) Source #
Fold all values into a vector
This is more efficient than vector but is impure
Utilities
purely and impurely allow you to write folds compatible with the foldl
library without incurring a foldl dependency. Write your fold to accept
three parameters corresponding to the step function, initial
accumulator, and extraction function and then users can upgrade your
function to accept a Fold or FoldM using the purely or impurely
combinators.
For example, the pipes library implements fold and foldM functions in
Pipes.Prelude with the following type:
Pipes.Prelude.fold
:: Monad m
-> (x -> a -> x) -> x -> (x -> b) -> Producer a m () -> m b
Pipes.Prelude.foldM
:: Monad m
=> (x -> a -> m x) -> m x -> (x -> m b) -> Producer a m () -> m bBoth fold and foldM is set up so that you can wrap them with either
purely or impurely to accept a Fold or FoldM, respectively:
purely Pipes.Prelude.fold
:: Monad m => Fold a b -> Producer a m () -> m b
impurely Pipes.Prelude.foldM
:: Monad m => FoldM m a b -> Producer a m () -> m bOther streaming libraries supporting purely and impurely include io-streams and streaming.
So for example we have:
purely System.IO.Streams.fold_
:: Fold a b -> Streams.InputStream a -> IO b
impurely System.IO.Streams.foldM_
:: FoldM IO a b -> Streams.InputStream a -> IO bThe monotraversable package makes it convenient to apply a
Fold or FoldM to pure containers that do not allow
a general Foldable instance, like unboxed vectors:
purely ofoldlUnwrap
:: MonoFoldable mono
=> Fold (Element mono) b -> mono -> b
impurely ofoldMUnwrap
:: MonoFoldable mono
=> FoldM m (Element mono) b -> mono -> m bpurely :: (forall x. (x -> a -> x) -> x -> (x -> b) -> r) -> Fold a b -> r Source #
Upgrade a fold to accept the Fold type
purely_ :: (forall x. (x -> a -> x) -> x -> x) -> Fold a b -> b Source #
Upgrade a more traditional fold to accept the Fold type
impurely :: (forall x. (x -> a -> m x) -> m x -> (x -> m b) -> r) -> FoldM m a b -> r Source #
Upgrade a monadic fold to accept the FoldM type
impurely_ :: Monad m => (forall x. (x -> a -> m x) -> m x -> m x) -> FoldM m a b -> m b Source #
Upgrade a more traditional monadic fold to accept the FoldM type
duplicateM :: Applicative m => FoldM m a b -> FoldM m a (FoldM m a b) Source #
premap :: (a -> b) -> Fold b r -> Fold a r Source #
(premap f folder) returns a new Fold where f is applied at each step
fold (premap f folder) list = fold folder (List.map f list)
>>>fold (premap Sum Foldl.mconcat) [1..10]Sum {getSum = 55}
>>>fold Foldl.mconcat (List.map Sum [1..10])Sum {getSum = 55}
premap id = id premap (f . g) = premap g . premap f
premap k (pure r) = pure r premap k (f <*> x) = premap k f <*> premap k x
premapM :: Monad m => (a -> m b) -> FoldM m b r -> FoldM m a r Source #
(premapM f folder) returns a new FoldM where f is applied to each input
element
premapM return = id premapM (f <=< g) = premap g . premap f
premapM k (pure r) = pure r premapM k (f <*> x) = premapM k f <*> premapM k x
prefilter :: (a -> Bool) -> Fold a r -> Fold a r Source #
(prefilter f folder) returns a new Fold where the folder's input is used
only when the input satisfies a predicate f
This can also be done with handles (handles (filtered f)) but prefilter
does not need you to depend on a lens library.
fold (prefilter p folder) list = fold folder (filter p list)
>>>fold (prefilter (>5) Control.Foldl.sum) [1..10]40
>>>fold Control.Foldl.sum (filter (>5) [1..10])40
prefilterM :: Monad m => (a -> m Bool) -> FoldM m a r -> FoldM m a r Source #
(prefilterM f folder) returns a new FoldM where the folder's input is used
only when the input satisfies a monadic predicate f.
foldM (prefilterM p folder) list = foldM folder (filter p list)
predropWhile :: (a -> Bool) -> Fold a r -> Fold a r Source #
Transforms a Fold into one which ignores elements
until they stop satisfying a predicate
fold (predropWhile p folder) list = fold folder (dropWhile p list)
>>>fold (predropWhile (>5) Control.Foldl.sum) [10,9,5,9]14
drop :: Natural -> Fold a b -> Fold a b Source #
(drop n folder) returns a new Fold that ignores the first n inputs but
otherwise behaves the same as the original fold.
fold (drop n folder) list = fold folder (Data.List.genericDrop n list)
>>>Foldl.fold (Foldl.drop 3 Foldl.sum) [10, 20, 30, 1, 2, 3]6
>>>Foldl.fold (Foldl.drop 10 Foldl.sum) [10, 20, 30, 1, 2, 3]0
dropM :: Monad m => Natural -> FoldM m a b -> FoldM m a b Source #
(dropM n folder) returns a new FoldM that ignores the first n inputs but
otherwise behaves the same as the original fold.
foldM (dropM n folder) list = foldM folder (Data.List.genericDrop n list)
>>>Foldl.foldM (Foldl.dropM 3 (Foldl.generalize Foldl.sum)) [10, 20, 30, 1, 2, 3]6
>>>Foldl.foldM (Foldl.dropM 10 (Foldl.generalize Foldl.sum)) [10, 20, 30, 1, 2, 3]0
type Handler a b = forall x. (b -> Const (Dual (Endo x)) b) -> a -> Const (Dual (Endo x)) a Source #
handles :: Handler a b -> Fold b r -> Fold a r Source #
(handles t folder) transforms the input of a Fold using a lens,
traversal, or prism:
handles _1 :: Fold a r -> Fold (a, b) r handles _Left :: Fold a r -> Fold (Either a b) r handles traverse :: Traversable t => Fold a r -> Fold (t a) r handles folded :: Foldable t => Fold a r -> Fold (t a) r
>>>fold (handles traverse sum) [[1..5],[6..10]]55
>>>fold (handles (traverse.traverse) sum) [[Nothing, Just 2, Just 7],[Just 13, Nothing, Just 20]]42
>>>fold (handles (filtered even) sum) [1..10]30
>>>fold (handles _2 Foldl.mconcat) [(1,"Hello "),(2,"World"),(3,"!")]"Hello World!"
handles id = id handles (f . g) = handles f . handles g
handles t (pure r) = pure r handles t (f <*> x) = handles t f <*> handles t x
foldOver :: Handler s a -> Fold a b -> s -> b Source #
(foldOver f folder xs) folds all values from a Lens, Traversal, Prism or Fold with the given folder
>>>foldOver (_Just . both) Foldl.sum (Just (2, 3))5
>>>foldOver (_Just . both) Foldl.sum Nothing0
Foldl.foldOver f folder xs == Foldl.fold folder (xs^..f)
Foldl.foldOver (folded.f) folder == Foldl.fold (handles f folder)
Foldl.foldOver folded == Foldl.fold
instance Monad m => Monoid (EndoM m a) where
mempty = EndoM return
mappend (EndoM f) (EndoM g) = EndoM (f <=< g)type HandlerM m a b = forall x. (b -> Const (Dual (EndoM m x)) b) -> a -> Const (Dual (EndoM m x)) a Source #
handlesM :: HandlerM m a b -> FoldM m b r -> FoldM m a r Source #
(handlesM t folder) transforms the input of a FoldM using a lens,
traversal, or prism:
handlesM _1 :: FoldM m a r -> FoldM (a, b) r handlesM _Left :: FoldM m a r -> FoldM (Either a b) r handlesM traverse :: Traversable t => FoldM m a r -> FoldM m (t a) r handlesM folded :: Foldable t => FoldM m a r -> FoldM m (t a) r
handlesM obeys these laws:
handlesM id = id handlesM (f . g) = handlesM f . handlesM g
handlesM t (pure r) = pure r handlesM t (f <*> x) = handlesM t f <*> handlesM t x
foldOverM :: Monad m => HandlerM m s a -> FoldM m a b -> s -> m b Source #
(foldOverM f folder xs) folds all values from a Lens, Traversal, Prism or Fold monadically with the given folder
Foldl.foldOverM (folded.f) folder == Foldl.foldM (handlesM f folder)
Foldl.foldOverM folded == Foldl.foldM
folded :: (Contravariant f, Applicative f, Foldable t) => (a -> f a) -> t a -> f (t a) Source #
folded :: Foldable t => Fold (t a) a handles folded :: Foldable t => Fold a r -> Fold (t a) r
filtered :: Monoid m => (a -> Bool) -> (a -> m) -> a -> m Source #
>>>fold (handles (filtered even) sum) [1..10]30
>>>foldM (handlesM (filtered even) (Foldl.mapM_ print)) [1..10]2 4 6 8 10
groupBy :: Ord g => (a -> g) -> Fold a r -> Fold a (Map g r) Source #
Perform a Fold while grouping the data according to a specified group
projection function. Returns the folded result grouped as a map keyed by the
group.
either :: Fold a1 b1 -> Fold a2 b2 -> Fold (Either a1 a2) (b1, b2) Source #
Combine two folds into a fold over inputs for either of them.
eitherM :: Monad m => FoldM m a1 b1 -> FoldM m a2 b2 -> FoldM m (Either a1 a2) (b1, b2) Source #
Combine two monadic folds into a fold over inputs for either of them.
Re-exports
Control.Monad.Primitive re-exports the PrimMonad type class
Data.Foldable re-exports the Foldable type class
Data.Vector.Generic re-exports the Vector type class
RealWorld is deeply magical. It is primitive, but it is not
unlifted (hence ptrArg). We never manipulate values of type
RealWorld; it's only used in the type system, to parameterise State#.
class Monad m => PrimMonad (m :: Type -> Type) #
Class of monads which can perform primitive state-transformer actions.
Minimal complete definition
Instances
| PrimMonad IO | |
| PrimMonad (ST s) | |
| PrimMonad (ST s) | |
| PrimMonad m => PrimMonad (ListT m) | |
| PrimMonad m => PrimMonad (MaybeT m) | |
| (Monoid w, PrimMonad m) => PrimMonad (AccumT w m) | Since: primitive-0.6.3.0 |
| (Error e, PrimMonad m) => PrimMonad (ErrorT e m) | |
| PrimMonad m => PrimMonad (ExceptT e m) | |
| PrimMonad m => PrimMonad (IdentityT m) | |
| PrimMonad m => PrimMonad (ReaderT r m) | |
| PrimMonad m => PrimMonad (SelectT r m) | |
| PrimMonad m => PrimMonad (StateT s m) | |
| PrimMonad m => PrimMonad (StateT s m) | |
| (Monoid w, PrimMonad m) => PrimMonad (WriterT w m) | |
| (Monoid w, PrimMonad m) => PrimMonad (WriterT w m) | |
| (Monoid w, PrimMonad m) => PrimMonad (WriterT w m) | |
| PrimMonad m => PrimMonad (ContT r m) | Since: primitive-0.6.3.0 |
| (Monoid w, PrimMonad m) => PrimMonad (RWST r w s m) | |
| (Monoid w, PrimMonad m) => PrimMonad (RWST r w s m) | |
| (Monoid w, PrimMonad m) => PrimMonad (RWST r w s m) | |
class Foldable (t :: TYPE LiftedRep -> Type) #
The Foldable class represents data structures that can be reduced to a summary value one element at a time. Strict left-associative folds are a good fit for space-efficient reduction, while lazy right-associative folds are a good fit for corecursive iteration, or for folds that short-circuit after processing an initial subsequence of the structure's elements.
Instances can be derived automatically by enabling the DeriveFoldable
extension. For example, a derived instance for a binary tree might be:
{-# LANGUAGE DeriveFoldable #-}
data Tree a = Empty
| Leaf a
| Node (Tree a) a (Tree a)
deriving FoldableA more detailed description can be found in the Overview section of Data.Foldable.
For the class laws see the Laws section of Data.Foldable.
Instances
| Foldable ZipList | Since: base-4.9.0.0 |
Defined in Control.Applicative Methods fold :: Monoid m => ZipList m -> m # foldMap :: Monoid m => (a -> m) -> ZipList a -> m # foldMap' :: Monoid m => (a -> m) -> ZipList a -> m # foldr :: (a -> b -> b) -> b -> ZipList a -> b # foldr' :: (a -> b -> b) -> b -> ZipList a -> b # foldl :: (b -> a -> b) -> b -> ZipList a -> b # foldl' :: (b -> a -> b) -> b -> ZipList a -> b # foldr1 :: (a -> a -> a) -> ZipList a -> a # foldl1 :: (a -> a -> a) -> ZipList a -> a # elem :: Eq a => a -> ZipList a -> Bool # maximum :: Ord a => ZipList a -> a # minimum :: Ord a => ZipList a -> a # | |
| Foldable Complex | Since: base-4.9.0.0 |
Defined in Data.Complex Methods fold :: Monoid m => Complex m -> m # foldMap :: Monoid m => (a -> m) -> Complex a -> m # foldMap' :: Monoid m => (a -> m) -> Complex a -> m # foldr :: (a -> b -> b) -> b -> Complex a -> b # foldr' :: (a -> b -> b) -> b -> Complex a -> b # foldl :: (b -> a -> b) -> b -> Complex a -> b # foldl' :: (b -> a -> b) -> b -> Complex a -> b # foldr1 :: (a -> a -> a) -> Complex a -> a # foldl1 :: (a -> a -> a) -> Complex a -> a # elem :: Eq a => a -> Complex a -> Bool # maximum :: Ord a => Complex a -> a # minimum :: Ord a => Complex a -> a # | |
| Foldable Identity | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity Methods fold :: Monoid m => Identity m -> m # foldMap :: Monoid m => (a -> m) -> Identity a -> m # foldMap' :: Monoid m => (a -> m) -> Identity a -> m # foldr :: (a -> b -> b) -> b -> Identity a -> b # foldr' :: (a -> b -> b) -> b -> Identity a -> b # foldl :: (b -> a -> b) -> b -> Identity a -> b # foldl' :: (b -> a -> b) -> b -> Identity a -> b # foldr1 :: (a -> a -> a) -> Identity a -> a # foldl1 :: (a -> a -> a) -> Identity a -> a # elem :: Eq a => a -> Identity a -> Bool # maximum :: Ord a => Identity a -> a # minimum :: Ord a => Identity a -> a # | |
| Foldable First | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldMap' :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |
| Foldable Last | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldMap' :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
| Foldable Down | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Down m -> m # foldMap :: Monoid m => (a -> m) -> Down a -> m # foldMap' :: Monoid m => (a -> m) -> Down a -> m # foldr :: (a -> b -> b) -> b -> Down a -> b # foldr' :: (a -> b -> b) -> b -> Down a -> b # foldl :: (b -> a -> b) -> b -> Down a -> b # foldl' :: (b -> a -> b) -> b -> Down a -> b # foldr1 :: (a -> a -> a) -> Down a -> a # foldl1 :: (a -> a -> a) -> Down a -> a # elem :: Eq a => a -> Down a -> Bool # maximum :: Ord a => Down a -> a # | |
| Foldable First | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldMap' :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |
| Foldable Last | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldMap' :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
| Foldable Max | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Max m -> m # foldMap :: Monoid m => (a -> m) -> Max a -> m # foldMap' :: Monoid m => (a -> m) -> Max a -> m # foldr :: (a -> b -> b) -> b -> Max a -> b # foldr' :: (a -> b -> b) -> b -> Max a -> b # foldl :: (b -> a -> b) -> b -> Max a -> b # foldl' :: (b -> a -> b) -> b -> Max a -> b # foldr1 :: (a -> a -> a) -> Max a -> a # foldl1 :: (a -> a -> a) -> Max a -> a # elem :: Eq a => a -> Max a -> Bool # maximum :: Ord a => Max a -> a # | |
| Foldable Min | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Min m -> m # foldMap :: Monoid m => (a -> m) -> Min a -> m # foldMap' :: Monoid m => (a -> m) -> Min a -> m # foldr :: (a -> b -> b) -> b -> Min a -> b # foldr' :: (a -> b -> b) -> b -> Min a -> b # foldl :: (b -> a -> b) -> b -> Min a -> b # foldl' :: (b -> a -> b) -> b -> Min a -> b # foldr1 :: (a -> a -> a) -> Min a -> a # foldl1 :: (a -> a -> a) -> Min a -> a # elem :: Eq a => a -> Min a -> Bool # maximum :: Ord a => Min a -> a # | |
| Foldable Dual | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Dual m -> m # foldMap :: Monoid m => (a -> m) -> Dual a -> m # foldMap' :: Monoid m => (a -> m) -> Dual a -> m # foldr :: (a -> b -> b) -> b -> Dual a -> b # foldr' :: (a -> b -> b) -> b -> Dual a -> b # foldl :: (b -> a -> b) -> b -> Dual a -> b # foldl' :: (b -> a -> b) -> b -> Dual a -> b # foldr1 :: (a -> a -> a) -> Dual a -> a # foldl1 :: (a -> a -> a) -> Dual a -> a # elem :: Eq a => a -> Dual a -> Bool # maximum :: Ord a => Dual a -> a # | |
| Foldable Product | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Product m -> m # foldMap :: Monoid m => (a -> m) -> Product a -> m # foldMap' :: Monoid m => (a -> m) -> Product a -> m # foldr :: (a -> b -> b) -> b -> Product a -> b # foldr' :: (a -> b -> b) -> b -> Product a -> b # foldl :: (b -> a -> b) -> b -> Product a -> b # foldl' :: (b -> a -> b) -> b -> Product a -> b # foldr1 :: (a -> a -> a) -> Product a -> a # foldl1 :: (a -> a -> a) -> Product a -> a # elem :: Eq a => a -> Product a -> Bool # maximum :: Ord a => Product a -> a # minimum :: Ord a => Product a -> a # | |
| Foldable Sum | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Sum m -> m # foldMap :: Monoid m => (a -> m) -> Sum a -> m # foldMap' :: Monoid m => (a -> m) -> Sum a -> m # foldr :: (a -> b -> b) -> b -> Sum a -> b # foldr' :: (a -> b -> b) -> b -> Sum a -> b # foldl :: (b -> a -> b) -> b -> Sum a -> b # foldl' :: (b -> a -> b) -> b -> Sum a -> b # foldr1 :: (a -> a -> a) -> Sum a -> a # foldl1 :: (a -> a -> a) -> Sum a -> a # elem :: Eq a => a -> Sum a -> Bool # maximum :: Ord a => Sum a -> a # | |
| Foldable Par1 | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Par1 m -> m # foldMap :: Monoid m => (a -> m) -> Par1 a -> m # foldMap' :: Monoid m => (a -> m) -> Par1 a -> m # foldr :: (a -> b -> b) -> b -> Par1 a -> b # foldr' :: (a -> b -> b) -> b -> Par1 a -> b # foldl :: (b -> a -> b) -> b -> Par1 a -> b # foldl' :: (b -> a -> b) -> b -> Par1 a -> b # foldr1 :: (a -> a -> a) -> Par1 a -> a # foldl1 :: (a -> a -> a) -> Par1 a -> a # elem :: Eq a => a -> Par1 a -> Bool # maximum :: Ord a => Par1 a -> a # | |
| Foldable IntMap | Folds in order of increasing key. |
Defined in Data.IntMap.Internal Methods fold :: Monoid m => IntMap m -> m # foldMap :: Monoid m => (a -> m) -> IntMap a -> m # foldMap' :: Monoid m => (a -> m) -> IntMap a -> m # foldr :: (a -> b -> b) -> b -> IntMap a -> b # foldr' :: (a -> b -> b) -> b -> IntMap a -> b # foldl :: (b -> a -> b) -> b -> IntMap a -> b # foldl' :: (b -> a -> b) -> b -> IntMap a -> b # foldr1 :: (a -> a -> a) -> IntMap a -> a # foldl1 :: (a -> a -> a) -> IntMap a -> a # elem :: Eq a => a -> IntMap a -> Bool # maximum :: Ord a => IntMap a -> a # minimum :: Ord a => IntMap a -> a # | |
| Foldable Digit | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Digit m -> m # foldMap :: Monoid m => (a -> m) -> Digit a -> m # foldMap' :: Monoid m => (a -> m) -> Digit a -> m # foldr :: (a -> b -> b) -> b -> Digit a -> b # foldr' :: (a -> b -> b) -> b -> Digit a -> b # foldl :: (b -> a -> b) -> b -> Digit a -> b # foldl' :: (b -> a -> b) -> b -> Digit a -> b # foldr1 :: (a -> a -> a) -> Digit a -> a # foldl1 :: (a -> a -> a) -> Digit a -> a # elem :: Eq a => a -> Digit a -> Bool # maximum :: Ord a => Digit a -> a # minimum :: Ord a => Digit a -> a # | |
| Foldable Elem | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Elem m -> m # foldMap :: Monoid m => (a -> m) -> Elem a -> m # foldMap' :: Monoid m => (a -> m) -> Elem a -> m # foldr :: (a -> b -> b) -> b -> Elem a -> b # foldr' :: (a -> b -> b) -> b -> Elem a -> b # foldl :: (b -> a -> b) -> b -> Elem a -> b # foldl' :: (b -> a -> b) -> b -> Elem a -> b # foldr1 :: (a -> a -> a) -> Elem a -> a # foldl1 :: (a -> a -> a) -> Elem a -> a # elem :: Eq a => a -> Elem a -> Bool # maximum :: Ord a => Elem a -> a # | |
| Foldable FingerTree | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => FingerTree m -> m # foldMap :: Monoid m => (a -> m) -> FingerTree a -> m # foldMap' :: Monoid m => (a -> m) -> FingerTree a -> m # foldr :: (a -> b -> b) -> b -> FingerTree a -> b # foldr' :: (a -> b -> b) -> b -> FingerTree a -> b # foldl :: (b -> a -> b) -> b -> FingerTree a -> b # foldl' :: (b -> a -> b) -> b -> FingerTree a -> b # foldr1 :: (a -> a -> a) -> FingerTree a -> a # foldl1 :: (a -> a -> a) -> FingerTree a -> a # toList :: FingerTree a -> [a] # null :: FingerTree a -> Bool # length :: FingerTree a -> Int # elem :: Eq a => a -> FingerTree a -> Bool # maximum :: Ord a => FingerTree a -> a # minimum :: Ord a => FingerTree a -> a # sum :: Num a => FingerTree a -> a # product :: Num a => FingerTree a -> a # | |
| Foldable Node | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Node m -> m # foldMap :: Monoid m => (a -> m) -> Node a -> m # foldMap' :: Monoid m => (a -> m) -> Node a -> m # foldr :: (a -> b -> b) -> b -> Node a -> b # foldr' :: (a -> b -> b) -> b -> Node a -> b # foldl :: (b -> a -> b) -> b -> Node a -> b # foldl' :: (b -> a -> b) -> b -> Node a -> b # foldr1 :: (a -> a -> a) -> Node a -> a # foldl1 :: (a -> a -> a) -> Node a -> a # elem :: Eq a => a -> Node a -> Bool # maximum :: Ord a => Node a -> a # | |
| Foldable Seq | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Seq m -> m # foldMap :: Monoid m => (a -> m) -> Seq a -> m # foldMap' :: Monoid m => (a -> m) -> Seq a -> m # foldr :: (a -> b -> b) -> b -> Seq a -> b # foldr' :: (a -> b -> b) -> b -> Seq a -> b # foldl :: (b -> a -> b) -> b -> Seq a -> b # foldl' :: (b -> a -> b) -> b -> Seq a -> b # foldr1 :: (a -> a -> a) -> Seq a -> a # foldl1 :: (a -> a -> a) -> Seq a -> a # elem :: Eq a => a -> Seq a -> Bool # maximum :: Ord a => Seq a -> a # | |
| Foldable ViewL | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => ViewL m -> m # foldMap :: Monoid m => (a -> m) -> ViewL a -> m # foldMap' :: Monoid m => (a -> m) -> ViewL a -> m # foldr :: (a -> b -> b) -> b -> ViewL a -> b # foldr' :: (a -> b -> b) -> b -> ViewL a -> b # foldl :: (b -> a -> b) -> b -> ViewL a -> b # foldl' :: (b -> a -> b) -> b -> ViewL a -> b # foldr1 :: (a -> a -> a) -> ViewL a -> a # foldl1 :: (a -> a -> a) -> ViewL a -> a # elem :: Eq a => a -> ViewL a -> Bool # maximum :: Ord a => ViewL a -> a # minimum :: Ord a => ViewL a -> a # | |
| Foldable ViewR | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => ViewR m -> m # foldMap :: Monoid m => (a -> m) -> ViewR a -> m # foldMap' :: Monoid m => (a -> m) -> ViewR a -> m # foldr :: (a -> b -> b) -> b -> ViewR a -> b # foldr' :: (a -> b -> b) -> b -> ViewR a -> b # foldl :: (b -> a -> b) -> b -> ViewR a -> b # foldl' :: (b -> a -> b) -> b -> ViewR a -> b # foldr1 :: (a -> a -> a) -> ViewR a -> a # foldl1 :: (a -> a -> a) -> ViewR a -> a # elem :: Eq a => a -> ViewR a -> Bool # maximum :: Ord a => ViewR a -> a # minimum :: Ord a => ViewR a -> a # | |
| Foldable Set | Folds in order of increasing key. |
Defined in Data.Set.Internal Methods fold :: Monoid m => Set m -> m # foldMap :: Monoid m => (a -> m) -> Set a -> m # foldMap' :: Monoid m => (a -> m) -> Set a -> m # foldr :: (a -> b -> b) -> b -> Set a -> b # foldr' :: (a -> b -> b) -> b -> Set a -> b # foldl :: (b -> a -> b) -> b -> Set a -> b # foldl' :: (b -> a -> b) -> b -> Set a -> b # foldr1 :: (a -> a -> a) -> Set a -> a # foldl1 :: (a -> a -> a) -> Set a -> a # elem :: Eq a => a -> Set a -> Bool # maximum :: Ord a => Set a -> a # | |
| Foldable Tree | |
Defined in Data.Tree Methods fold :: Monoid m => Tree m -> m # foldMap :: Monoid m => (a -> m) -> Tree a -> m # foldMap' :: Monoid m => (a -> m) -> Tree a -> m # foldr :: (a -> b -> b) -> b -> Tree a -> b # foldr' :: (a -> b -> b) -> b -> Tree a -> b # foldl :: (b -> a -> b) -> b -> Tree a -> b # foldl' :: (b -> a -> b) -> b -> Tree a -> b # foldr1 :: (a -> a -> a) -> Tree a -> a # foldl1 :: (a -> a -> a) -> Tree a -> a # elem :: Eq a => a -> Tree a -> Bool # maximum :: Ord a => Tree a -> a # | |
| Foldable Hashed | |
Defined in Data.Hashable.Class Methods fold :: Monoid m => Hashed m -> m # foldMap :: Monoid m => (a -> m) -> Hashed a -> m # foldMap' :: Monoid m => (a -> m) -> Hashed a -> m # foldr :: (a -> b -> b) -> b -> Hashed a -> b # foldr' :: (a -> b -> b) -> b -> Hashed a -> b # foldl :: (b -> a -> b) -> b -> Hashed a -> b # foldl' :: (b -> a -> b) -> b -> Hashed a -> b # foldr1 :: (a -> a -> a) -> Hashed a -> a # foldl1 :: (a -> a -> a) -> Hashed a -> a # elem :: Eq a => a -> Hashed a -> Bool # maximum :: Ord a => Hashed a -> a # minimum :: Ord a => Hashed a -> a # | |
| Foldable HashSet | |
Defined in Data.HashSet.Internal Methods fold :: Monoid m => HashSet m -> m # foldMap :: Monoid m => (a -> m) -> HashSet a -> m # foldMap' :: Monoid m => (a -> m) -> HashSet a -> m # foldr :: (a -> b -> b) -> b -> HashSet a -> b # foldr' :: (a -> b -> b) -> b -> HashSet a -> b # foldl :: (b -> a -> b) -> b -> HashSet a -> b # foldl' :: (b -> a -> b) -> b -> HashSet a -> b # foldr1 :: (a -> a -> a) -> HashSet a -> a # foldl1 :: (a -> a -> a) -> HashSet a -> a # elem :: Eq a => a -> HashSet a -> Bool # maximum :: Ord a => HashSet a -> a # minimum :: Ord a => HashSet a -> a # | |
| Foldable NonEmpty | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => NonEmpty m -> m # foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m # foldMap' :: Monoid m => (a -> m) -> NonEmpty a -> m # foldr :: (a -> b -> b) -> b -> NonEmpty a -> b # foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b # foldl :: (b -> a -> b) -> b -> NonEmpty a -> b # foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b # foldr1 :: (a -> a -> a) -> NonEmpty a -> a # foldl1 :: (a -> a -> a) -> NonEmpty a -> a # elem :: Eq a => a -> NonEmpty a -> Bool # maximum :: Ord a => NonEmpty a -> a # minimum :: Ord a => NonEmpty a -> a # | |
| Foldable Maybe | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldMap' :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |
| Foldable Solo | Since: base-4.15 |
Defined in Data.Foldable Methods fold :: Monoid m => Solo m -> m # foldMap :: Monoid m => (a -> m) -> Solo a -> m # foldMap' :: Monoid m => (a -> m) -> Solo a -> m # foldr :: (a -> b -> b) -> b -> Solo a -> b # foldr' :: (a -> b -> b) -> b -> Solo a -> b # foldl :: (b -> a -> b) -> b -> Solo a -> b # foldl' :: (b -> a -> b) -> b -> Solo a -> b # foldr1 :: (a -> a -> a) -> Solo a -> a # foldl1 :: (a -> a -> a) -> Solo a -> a # elem :: Eq a => a -> Solo a -> Bool # maximum :: Ord a => Solo a -> a # | |
| Foldable [] | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => [m] -> m # foldMap :: Monoid m => (a -> m) -> [a] -> m # foldMap' :: Monoid m => (a -> m) -> [a] -> m # foldr :: (a -> b -> b) -> b -> [a] -> b # foldr' :: (a -> b -> b) -> b -> [a] -> b # foldl :: (b -> a -> b) -> b -> [a] -> b # foldl' :: (b -> a -> b) -> b -> [a] -> b # foldr1 :: (a -> a -> a) -> [a] -> a # foldl1 :: (a -> a -> a) -> [a] -> a # elem :: Eq a => a -> [a] -> Bool # maximum :: Ord a => [a] -> a # | |
| Foldable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Either a m -> m # foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # toList :: Either a a0 -> [a0] # length :: Either a a0 -> Int # elem :: Eq a0 => a0 -> Either a a0 -> Bool # maximum :: Ord a0 => Either a a0 -> a0 # minimum :: Ord a0 => Either a a0 -> a0 # | |
| Foldable (Proxy :: TYPE LiftedRep -> Type) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Proxy m -> m # foldMap :: Monoid m => (a -> m) -> Proxy a -> m # foldMap' :: Monoid m => (a -> m) -> Proxy a -> m # foldr :: (a -> b -> b) -> b -> Proxy a -> b # foldr' :: (a -> b -> b) -> b -> Proxy a -> b # foldl :: (b -> a -> b) -> b -> Proxy a -> b # foldl' :: (b -> a -> b) -> b -> Proxy a -> b # foldr1 :: (a -> a -> a) -> Proxy a -> a # foldl1 :: (a -> a -> a) -> Proxy a -> a # elem :: Eq a => a -> Proxy a -> Bool # maximum :: Ord a => Proxy a -> a # minimum :: Ord a => Proxy a -> a # | |
| Foldable (Arg a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Arg a m -> m # foldMap :: Monoid m => (a0 -> m) -> Arg a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Arg a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Arg a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Arg a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Arg a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Arg a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 # elem :: Eq a0 => a0 -> Arg a a0 -> Bool # maximum :: Ord a0 => Arg a a0 -> a0 # minimum :: Ord a0 => Arg a a0 -> a0 # | |
| Foldable (Array i) | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Array i m -> m # foldMap :: Monoid m => (a -> m) -> Array i a -> m # foldMap' :: Monoid m => (a -> m) -> Array i a -> m # foldr :: (a -> b -> b) -> b -> Array i a -> b # foldr' :: (a -> b -> b) -> b -> Array i a -> b # foldl :: (b -> a -> b) -> b -> Array i a -> b # foldl' :: (b -> a -> b) -> b -> Array i a -> b # foldr1 :: (a -> a -> a) -> Array i a -> a # foldl1 :: (a -> a -> a) -> Array i a -> a # elem :: Eq a => a -> Array i a -> Bool # maximum :: Ord a => Array i a -> a # minimum :: Ord a => Array i a -> a # | |
| Foldable (U1 :: TYPE LiftedRep -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => U1 m -> m # foldMap :: Monoid m => (a -> m) -> U1 a -> m # foldMap' :: Monoid m => (a -> m) -> U1 a -> m # foldr :: (a -> b -> b) -> b -> U1 a -> b # foldr' :: (a -> b -> b) -> b -> U1 a -> b # foldl :: (b -> a -> b) -> b -> U1 a -> b # foldl' :: (b -> a -> b) -> b -> U1 a -> b # foldr1 :: (a -> a -> a) -> U1 a -> a # foldl1 :: (a -> a -> a) -> U1 a -> a # elem :: Eq a => a -> U1 a -> Bool # maximum :: Ord a => U1 a -> a # | |
| Foldable (UAddr :: TYPE LiftedRep -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UAddr m -> m # foldMap :: Monoid m => (a -> m) -> UAddr a -> m # foldMap' :: Monoid m => (a -> m) -> UAddr a -> m # foldr :: (a -> b -> b) -> b -> UAddr a -> b # foldr' :: (a -> b -> b) -> b -> UAddr a -> b # foldl :: (b -> a -> b) -> b -> UAddr a -> b # foldl' :: (b -> a -> b) -> b -> UAddr a -> b # foldr1 :: (a -> a -> a) -> UAddr a -> a # foldl1 :: (a -> a -> a) -> UAddr a -> a # elem :: Eq a => a -> UAddr a -> Bool # maximum :: Ord a => UAddr a -> a # minimum :: Ord a => UAddr a -> a # | |
| Foldable (UChar :: TYPE LiftedRep -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UChar m -> m # foldMap :: Monoid m => (a -> m) -> UChar a -> m # foldMap' :: Monoid m => (a -> m) -> UChar a -> m # foldr :: (a -> b -> b) -> b -> UChar a -> b # foldr' :: (a -> b -> b) -> b -> UChar a -> b # foldl :: (b -> a -> b) -> b -> UChar a -> b # foldl' :: (b -> a -> b) -> b -> UChar a -> b # foldr1 :: (a -> a -> a) -> UChar a -> a # foldl1 :: (a -> a -> a) -> UChar a -> a # elem :: Eq a => a -> UChar a -> Bool # maximum :: Ord a => UChar a -> a # minimum :: Ord a => UChar a -> a # | |
| Foldable (UDouble :: TYPE LiftedRep -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UDouble m -> m # foldMap :: Monoid m => (a -> m) -> UDouble a -> m # foldMap' :: Monoid m => (a -> m) -> UDouble a -> m # foldr :: (a -> b -> b) -> b -> UDouble a -> b # foldr' :: (a -> b -> b) -> b -> UDouble a -> b # foldl :: (b -> a -> b) -> b -> UDouble a -> b # foldl' :: (b -> a -> b) -> b -> UDouble a -> b # foldr1 :: (a -> a -> a) -> UDouble a -> a # foldl1 :: (a -> a -> a) -> UDouble a -> a # elem :: Eq a => a -> UDouble a -> Bool # maximum :: Ord a => UDouble a -> a # minimum :: Ord a => UDouble a -> a # | |
| Foldable (UFloat :: TYPE LiftedRep -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UFloat m -> m # foldMap :: Monoid m => (a -> m) -> UFloat a -> m # foldMap' :: Monoid m => (a -> m) -> UFloat a -> m # foldr :: (a -> b -> b) -> b -> UFloat a -> b # foldr' :: (a -> b -> b) -> b -> UFloat a -> b # foldl :: (b -> a -> b) -> b -> UFloat a -> b # foldl' :: (b -> a -> b) -> b -> UFloat a -> b # foldr1 :: (a -> a -> a) -> UFloat a -> a # foldl1 :: (a -> a -> a) -> UFloat a -> a # elem :: Eq a => a -> UFloat a -> Bool # maximum :: Ord a => UFloat a -> a # minimum :: Ord a => UFloat a -> a # | |
| Foldable (UInt :: TYPE LiftedRep -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UInt m -> m # foldMap :: Monoid m => (a -> m) -> UInt a -> m # foldMap' :: Monoid m => (a -> m) -> UInt a -> m # foldr :: (a -> b -> b) -> b -> UInt a -> b # foldr' :: (a -> b -> b) -> b -> UInt a -> b # foldl :: (b -> a -> b) -> b -> UInt a -> b # foldl' :: (b -> a -> b) -> b -> UInt a -> b # foldr1 :: (a -> a -> a) -> UInt a -> a # foldl1 :: (a -> a -> a) -> UInt a -> a # elem :: Eq a => a -> UInt a -> Bool # maximum :: Ord a => UInt a -> a # | |
| Foldable (UWord :: TYPE LiftedRep -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UWord m -> m # foldMap :: Monoid m => (a -> m) -> UWord a -> m # foldMap' :: Monoid m => (a -> m) -> UWord a -> m # foldr :: (a -> b -> b) -> b -> UWord a -> b # foldr' :: (a -> b -> b) -> b -> UWord a -> b # foldl :: (b -> a -> b) -> b -> UWord a -> b # foldl' :: (b -> a -> b) -> b -> UWord a -> b # foldr1 :: (a -> a -> a) -> UWord a -> a # foldl1 :: (a -> a -> a) -> UWord a -> a # elem :: Eq a => a -> UWord a -> Bool # maximum :: Ord a => UWord a -> a # minimum :: Ord a => UWord a -> a # | |
| Foldable (V1 :: TYPE LiftedRep -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => V1 m -> m # foldMap :: Monoid m => (a -> m) -> V1 a -> m # foldMap' :: Monoid m => (a -> m) -> V1 a -> m # foldr :: (a -> b -> b) -> b -> V1 a -> b # foldr' :: (a -> b -> b) -> b -> V1 a -> b # foldl :: (b -> a -> b) -> b -> V1 a -> b # foldl' :: (b -> a -> b) -> b -> V1 a -> b # foldr1 :: (a -> a -> a) -> V1 a -> a # foldl1 :: (a -> a -> a) -> V1 a -> a # elem :: Eq a => a -> V1 a -> Bool # maximum :: Ord a => V1 a -> a # | |
| Foldable (Map k) | Folds in order of increasing key. |
Defined in Data.Map.Internal Methods fold :: Monoid m => Map k m -> m # foldMap :: Monoid m => (a -> m) -> Map k a -> m # foldMap' :: Monoid m => (a -> m) -> Map k a -> m # foldr :: (a -> b -> b) -> b -> Map k a -> b # foldr' :: (a -> b -> b) -> b -> Map k a -> b # foldl :: (b -> a -> b) -> b -> Map k a -> b # foldl' :: (b -> a -> b) -> b -> Map k a -> b # foldr1 :: (a -> a -> a) -> Map k a -> a # foldl1 :: (a -> a -> a) -> Map k a -> a # elem :: Eq a => a -> Map k a -> Bool # maximum :: Ord a => Map k a -> a # minimum :: Ord a => Map k a -> a # | |
| Foldable f => Foldable (ListT f) | |
Defined in Control.Monad.Trans.List Methods fold :: Monoid m => ListT f m -> m # foldMap :: Monoid m => (a -> m) -> ListT f a -> m # foldMap' :: Monoid m => (a -> m) -> ListT f a -> m # foldr :: (a -> b -> b) -> b -> ListT f a -> b # foldr' :: (a -> b -> b) -> b -> ListT f a -> b # foldl :: (b -> a -> b) -> b -> ListT f a -> b # foldl' :: (b -> a -> b) -> b -> ListT f a -> b # foldr1 :: (a -> a -> a) -> ListT f a -> a # foldl1 :: (a -> a -> a) -> ListT f a -> a # elem :: Eq a => a -> ListT f a -> Bool # maximum :: Ord a => ListT f a -> a # minimum :: Ord a => ListT f a -> a # | |
| Foldable f => Foldable (MaybeT f) | |
Defined in Control.Monad.Trans.Maybe Methods fold :: Monoid m => MaybeT f m -> m # foldMap :: Monoid m => (a -> m) -> MaybeT f a -> m # foldMap' :: Monoid m => (a -> m) -> MaybeT f a -> m # foldr :: (a -> b -> b) -> b -> MaybeT f a -> b # foldr' :: (a -> b -> b) -> b -> MaybeT f a -> b # foldl :: (b -> a -> b) -> b -> MaybeT f a -> b # foldl' :: (b -> a -> b) -> b -> MaybeT f a -> b # foldr1 :: (a -> a -> a) -> MaybeT f a -> a # foldl1 :: (a -> a -> a) -> MaybeT f a -> a # elem :: Eq a => a -> MaybeT f a -> Bool # maximum :: Ord a => MaybeT f a -> a # minimum :: Ord a => MaybeT f a -> a # | |
| Foldable (HashMap k) | |
Defined in Data.HashMap.Internal Methods fold :: Monoid m => HashMap k m -> m # foldMap :: Monoid m => (a -> m) -> HashMap k a -> m # foldMap' :: Monoid m => (a -> m) -> HashMap k a -> m # foldr :: (a -> b -> b) -> b -> HashMap k a -> b # foldr' :: (a -> b -> b) -> b -> HashMap k a -> b # foldl :: (b -> a -> b) -> b -> HashMap k a -> b # foldl' :: (b -> a -> b) -> b -> HashMap k a -> b # foldr1 :: (a -> a -> a) -> HashMap k a -> a # foldl1 :: (a -> a -> a) -> HashMap k a -> a # toList :: HashMap k a -> [a] # length :: HashMap k a -> Int # elem :: Eq a => a -> HashMap k a -> Bool # maximum :: Ord a => HashMap k a -> a # minimum :: Ord a => HashMap k a -> a # | |
| Foldable ((,) a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (a, m) -> m # foldMap :: Monoid m => (a0 -> m) -> (a, a0) -> m # foldMap' :: Monoid m => (a0 -> m) -> (a, a0) -> m # foldr :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldr' :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldl :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldl' :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldr1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # foldl1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # elem :: Eq a0 => a0 -> (a, a0) -> Bool # maximum :: Ord a0 => (a, a0) -> a0 # minimum :: Ord a0 => (a, a0) -> a0 # | |
| Foldable (Const m :: TYPE LiftedRep -> Type) | Since: base-4.7.0.0 |
Defined in Data.Functor.Const Methods fold :: Monoid m0 => Const m m0 -> m0 # foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldMap' :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldr :: (a -> b -> b) -> b -> Const m a -> b # foldr' :: (a -> b -> b) -> b -> Const m a -> b # foldl :: (b -> a -> b) -> b -> Const m a -> b # foldl' :: (b -> a -> b) -> b -> Const m a -> b # foldr1 :: (a -> a -> a) -> Const m a -> a # foldl1 :: (a -> a -> a) -> Const m a -> a # elem :: Eq a => a -> Const m a -> Bool # maximum :: Ord a => Const m a -> a # minimum :: Ord a => Const m a -> a # | |
| Foldable f => Foldable (Ap f) | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Ap f m -> m # foldMap :: Monoid m => (a -> m) -> Ap f a -> m # foldMap' :: Monoid m => (a -> m) -> Ap f a -> m # foldr :: (a -> b -> b) -> b -> Ap f a -> b # foldr' :: (a -> b -> b) -> b -> Ap f a -> b # foldl :: (b -> a -> b) -> b -> Ap f a -> b # foldl' :: (b -> a -> b) -> b -> Ap f a -> b # foldr1 :: (a -> a -> a) -> Ap f a -> a # foldl1 :: (a -> a -> a) -> Ap f a -> a # elem :: Eq a => a -> Ap f a -> Bool # maximum :: Ord a => Ap f a -> a # | |
| Foldable f => Foldable (Alt f) | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Alt f m -> m # foldMap :: Monoid m => (a -> m) -> Alt f a -> m # foldMap' :: Monoid m => (a -> m) -> Alt f a -> m # foldr :: (a -> b -> b) -> b -> Alt f a -> b # foldr' :: (a -> b -> b) -> b -> Alt f a -> b # foldl :: (b -> a -> b) -> b -> Alt f a -> b # foldl' :: (b -> a -> b) -> b -> Alt f a -> b # foldr1 :: (a -> a -> a) -> Alt f a -> a # foldl1 :: (a -> a -> a) -> Alt f a -> a # elem :: Eq a => a -> Alt f a -> Bool # maximum :: Ord a => Alt f a -> a # minimum :: Ord a => Alt f a -> a # | |
| Foldable f => Foldable (Rec1 f) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Rec1 f m -> m # foldMap :: Monoid m => (a -> m) -> Rec1 f a -> m # foldMap' :: Monoid m => (a -> m) -> Rec1 f a -> m # foldr :: (a -> b -> b) -> b -> Rec1 f a -> b # foldr' :: (a -> b -> b) -> b -> Rec1 f a -> b # foldl :: (b -> a -> b) -> b -> Rec1 f a -> b # foldl' :: (b -> a -> b) -> b -> Rec1 f a -> b # foldr1 :: (a -> a -> a) -> Rec1 f a -> a # foldl1 :: (a -> a -> a) -> Rec1 f a -> a # elem :: Eq a => a -> Rec1 f a -> Bool # maximum :: Ord a => Rec1 f a -> a # minimum :: Ord a => Rec1 f a -> a # | |
| Bifoldable p => Foldable (Join p) | |
Defined in Data.Bifunctor.Join Methods fold :: Monoid m => Join p m -> m # foldMap :: Monoid m => (a -> m) -> Join p a -> m # foldMap' :: Monoid m => (a -> m) -> Join p a -> m # foldr :: (a -> b -> b) -> b -> Join p a -> b # foldr' :: (a -> b -> b) -> b -> Join p a -> b # foldl :: (b -> a -> b) -> b -> Join p a -> b # foldl' :: (b -> a -> b) -> b -> Join p a -> b # foldr1 :: (a -> a -> a) -> Join p a -> a # foldl1 :: (a -> a -> a) -> Join p a -> a # elem :: Eq a => a -> Join p a -> Bool # maximum :: Ord a => Join p a -> a # minimum :: Ord a => Join p a -> a # | |
| Foldable (Tagged s) | |
Defined in Data.Tagged Methods fold :: Monoid m => Tagged s m -> m # foldMap :: Monoid m => (a -> m) -> Tagged s a -> m # foldMap' :: Monoid m => (a -> m) -> Tagged s a -> m # foldr :: (a -> b -> b) -> b -> Tagged s a -> b # foldr' :: (a -> b -> b) -> b -> Tagged s a -> b # foldl :: (b -> a -> b) -> b -> Tagged s a -> b # foldl' :: (b -> a -> b) -> b -> Tagged s a -> b # foldr1 :: (a -> a -> a) -> Tagged s a -> a # foldl1 :: (a -> a -> a) -> Tagged s a -> a # elem :: Eq a => a -> Tagged s a -> Bool # maximum :: Ord a => Tagged s a -> a # minimum :: Ord a => Tagged s a -> a # | |
| Foldable f => Foldable (ErrorT e f) | |
Defined in Control.Monad.Trans.Error Methods fold :: Monoid m => ErrorT e f m -> m # foldMap :: Monoid m => (a -> m) -> ErrorT e f a -> m # foldMap' :: Monoid m => (a -> m) -> ErrorT e f a -> m # foldr :: (a -> b -> b) -> b -> ErrorT e f a -> b # foldr' :: (a -> b -> b) -> b -> ErrorT e f a -> b # foldl :: (b -> a -> b) -> b -> ErrorT e f a -> b # foldl' :: (b -> a -> b) -> b -> ErrorT e f a -> b # foldr1 :: (a -> a -> a) -> ErrorT e f a -> a # foldl1 :: (a -> a -> a) -> ErrorT e f a -> a # toList :: ErrorT e f a -> [a] # null :: ErrorT e f a -> Bool # length :: ErrorT e f a -> Int # elem :: Eq a => a -> ErrorT e f a -> Bool # maximum :: Ord a => ErrorT e f a -> a # minimum :: Ord a => ErrorT e f a -> a # | |
| Foldable f => Foldable (ExceptT e f) | |
Defined in Control.Monad.Trans.Except Methods fold :: Monoid m => ExceptT e f m -> m # foldMap :: Monoid m => (a -> m) -> ExceptT e f a -> m # foldMap' :: Monoid m => (a -> m) -> ExceptT e f a -> m # foldr :: (a -> b -> b) -> b -> ExceptT e f a -> b # foldr' :: (a -> b -> b) -> b -> ExceptT e f a -> b # foldl :: (b -> a -> b) -> b -> ExceptT e f a -> b # foldl' :: (b -> a -> b) -> b -> ExceptT e f a -> b # foldr1 :: (a -> a -> a) -> ExceptT e f a -> a # foldl1 :: (a -> a -> a) -> ExceptT e f a -> a # toList :: ExceptT e f a -> [a] # null :: ExceptT e f a -> Bool # length :: ExceptT e f a -> Int # elem :: Eq a => a -> ExceptT e f a -> Bool # maximum :: Ord a => ExceptT e f a -> a # minimum :: Ord a => ExceptT e f a -> a # | |
| Foldable f => Foldable (IdentityT f) | |
Defined in Control.Monad.Trans.Identity Methods fold :: Monoid m => IdentityT f m -> m # foldMap :: Monoid m => (a -> m) -> IdentityT f a -> m # foldMap' :: Monoid m => (a -> m) -> IdentityT f a -> m # foldr :: (a -> b -> b) -> b -> IdentityT f a -> b # foldr' :: (a -> b -> b) -> b -> IdentityT f a -> b # foldl :: (b -> a -> b) -> b -> IdentityT f a -> b # foldl' :: (b -> a -> b) -> b -> IdentityT f a -> b # foldr1 :: (a -> a -> a) -> IdentityT f a -> a # foldl1 :: (a -> a -> a) -> IdentityT f a -> a # toList :: IdentityT f a -> [a] # null :: IdentityT f a -> Bool # length :: IdentityT f a -> Int # elem :: Eq a => a -> IdentityT f a -> Bool # maximum :: Ord a => IdentityT f a -> a # minimum :: Ord a => IdentityT f a -> a # | |
| Foldable f => Foldable (WriterT w f) | |
Defined in Control.Monad.Trans.Writer.Lazy Methods fold :: Monoid m => WriterT w f m -> m # foldMap :: Monoid m => (a -> m) -> WriterT w f a -> m # foldMap' :: Monoid m => (a -> m) -> WriterT w f a -> m # foldr :: (a -> b -> b) -> b -> WriterT w f a -> b # foldr' :: (a -> b -> b) -> b -> WriterT w f a -> b # foldl :: (b -> a -> b) -> b -> WriterT w f a -> b # foldl' :: (b -> a -> b) -> b -> WriterT w f a -> b # foldr1 :: (a -> a -> a) -> WriterT w f a -> a # foldl1 :: (a -> a -> a) -> WriterT w f a -> a # toList :: WriterT w f a -> [a] # null :: WriterT w f a -> Bool # length :: WriterT w f a -> Int # elem :: Eq a => a -> WriterT w f a -> Bool # maximum :: Ord a => WriterT w f a -> a # minimum :: Ord a => WriterT w f a -> a # | |
| Foldable f => Foldable (WriterT w f) | |
Defined in Control.Monad.Trans.Writer.Strict Methods fold :: Monoid m => WriterT w f m -> m # foldMap :: Monoid m => (a -> m) -> WriterT w f a -> m # foldMap' :: Monoid m => (a -> m) -> WriterT w f a -> m # foldr :: (a -> b -> b) -> b -> WriterT w f a -> b # foldr' :: (a -> b -> b) -> b -> WriterT w f a -> b # foldl :: (b -> a -> b) -> b -> WriterT w f a -> b # foldl' :: (b -> a -> b) -> b -> WriterT w f a -> b # foldr1 :: (a -> a -> a) -> WriterT w f a -> a # foldl1 :: (a -> a -> a) -> WriterT w f a -> a # toList :: WriterT w f a -> [a] # null :: WriterT w f a -> Bool # length :: WriterT w f a -> Int # elem :: Eq a => a -> WriterT w f a -> Bool # maximum :: Ord a => WriterT w f a -> a # minimum :: Ord a => WriterT w f a -> a # | |
| (Foldable f, Foldable g) => Foldable (Product f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product Methods fold :: Monoid m => Product f g m -> m # foldMap :: Monoid m => (a -> m) -> Product f g a -> m # foldMap' :: Monoid m => (a -> m) -> Product f g a -> m # foldr :: (a -> b -> b) -> b -> Product f g a -> b # foldr' :: (a -> b -> b) -> b -> Product f g a -> b # foldl :: (b -> a -> b) -> b -> Product f g a -> b # foldl' :: (b -> a -> b) -> b -> Product f g a -> b # foldr1 :: (a -> a -> a) -> Product f g a -> a # foldl1 :: (a -> a -> a) -> Product f g a -> a # toList :: Product f g a -> [a] # null :: Product f g a -> Bool # length :: Product f g a -> Int # elem :: Eq a => a -> Product f g a -> Bool # maximum :: Ord a => Product f g a -> a # minimum :: Ord a => Product f g a -> a # | |
| (Foldable f, Foldable g) => Foldable (Sum f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Sum Methods fold :: Monoid m => Sum f g m -> m # foldMap :: Monoid m => (a -> m) -> Sum f g a -> m # foldMap' :: Monoid m => (a -> m) -> Sum f g a -> m # foldr :: (a -> b -> b) -> b -> Sum f g a -> b # foldr' :: (a -> b -> b) -> b -> Sum f g a -> b # foldl :: (b -> a -> b) -> b -> Sum f g a -> b # foldl' :: (b -> a -> b) -> b -> Sum f g a -> b # foldr1 :: (a -> a -> a) -> Sum f g a -> a # foldl1 :: (a -> a -> a) -> Sum f g a -> a # elem :: Eq a => a -> Sum f g a -> Bool # maximum :: Ord a => Sum f g a -> a # minimum :: Ord a => Sum f g a -> a # | |
| (Foldable f, Foldable g) => Foldable (f :*: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :*: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :*: g) a -> m # foldMap' :: Monoid m => (a -> m) -> (f :*: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldr1 :: (a -> a -> a) -> (f :*: g) a -> a # foldl1 :: (a -> a -> a) -> (f :*: g) a -> a # toList :: (f :*: g) a -> [a] # length :: (f :*: g) a -> Int # elem :: Eq a => a -> (f :*: g) a -> Bool # maximum :: Ord a => (f :*: g) a -> a # minimum :: Ord a => (f :*: g) a -> a # | |
| (Foldable f, Foldable g) => Foldable (f :+: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :+: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :+: g) a -> m # foldMap' :: Monoid m => (a -> m) -> (f :+: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldr1 :: (a -> a -> a) -> (f :+: g) a -> a # foldl1 :: (a -> a -> a) -> (f :+: g) a -> a # toList :: (f :+: g) a -> [a] # length :: (f :+: g) a -> Int # elem :: Eq a => a -> (f :+: g) a -> Bool # maximum :: Ord a => (f :+: g) a -> a # minimum :: Ord a => (f :+: g) a -> a # | |
| Foldable (K1 i c :: TYPE LiftedRep -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => K1 i c m -> m # foldMap :: Monoid m => (a -> m) -> K1 i c a -> m # foldMap' :: Monoid m => (a -> m) -> K1 i c a -> m # foldr :: (a -> b -> b) -> b -> K1 i c a -> b # foldr' :: (a -> b -> b) -> b -> K1 i c a -> b # foldl :: (b -> a -> b) -> b -> K1 i c a -> b # foldl' :: (b -> a -> b) -> b -> K1 i c a -> b # foldr1 :: (a -> a -> a) -> K1 i c a -> a # foldl1 :: (a -> a -> a) -> K1 i c a -> a # elem :: Eq a => a -> K1 i c a -> Bool # maximum :: Ord a => K1 i c a -> a # minimum :: Ord a => K1 i c a -> a # | |
| Foldable (Forget r a :: TYPE LiftedRep -> TYPE LiftedRep) | |
Defined in Data.Profunctor.Types Methods fold :: Monoid m => Forget r a m -> m # foldMap :: Monoid m => (a0 -> m) -> Forget r a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Forget r a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Forget r a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Forget r a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Forget r a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Forget r a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Forget r a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Forget r a a0 -> a0 # toList :: Forget r a a0 -> [a0] # null :: Forget r a a0 -> Bool # length :: Forget r a a0 -> Int # elem :: Eq a0 => a0 -> Forget r a a0 -> Bool # maximum :: Ord a0 => Forget r a a0 -> a0 # minimum :: Ord a0 => Forget r a a0 -> a0 # | |
| (Foldable f, Foldable g) => Foldable (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose Methods fold :: Monoid m => Compose f g m -> m # foldMap :: Monoid m => (a -> m) -> Compose f g a -> m # foldMap' :: Monoid m => (a -> m) -> Compose f g a -> m # foldr :: (a -> b -> b) -> b -> Compose f g a -> b # foldr' :: (a -> b -> b) -> b -> Compose f g a -> b # foldl :: (b -> a -> b) -> b -> Compose f g a -> b # foldl' :: (b -> a -> b) -> b -> Compose f g a -> b # foldr1 :: (a -> a -> a) -> Compose f g a -> a # foldl1 :: (a -> a -> a) -> Compose f g a -> a # toList :: Compose f g a -> [a] # null :: Compose f g a -> Bool # length :: Compose f g a -> Int # elem :: Eq a => a -> Compose f g a -> Bool # maximum :: Ord a => Compose f g a -> a # minimum :: Ord a => Compose f g a -> a # | |
| (Foldable f, Foldable g) => Foldable (f :.: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :.: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :.: g) a -> m # foldMap' :: Monoid m => (a -> m) -> (f :.: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldr1 :: (a -> a -> a) -> (f :.: g) a -> a # foldl1 :: (a -> a -> a) -> (f :.: g) a -> a # toList :: (f :.: g) a -> [a] # length :: (f :.: g) a -> Int # elem :: Eq a => a -> (f :.: g) a -> Bool # maximum :: Ord a => (f :.: g) a -> a # minimum :: Ord a => (f :.: g) a -> a # | |
| Foldable f => Foldable (M1 i c f) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => M1 i c f m -> m # foldMap :: Monoid m => (a -> m) -> M1 i c f a -> m # foldMap' :: Monoid m => (a -> m) -> M1 i c f a -> m # foldr :: (a -> b -> b) -> b -> M1 i c f a -> b # foldr' :: (a -> b -> b) -> b -> M1 i c f a -> b # foldl :: (b -> a -> b) -> b -> M1 i c f a -> b # foldl' :: (b -> a -> b) -> b -> M1 i c f a -> b # foldr1 :: (a -> a -> a) -> M1 i c f a -> a # foldl1 :: (a -> a -> a) -> M1 i c f a -> a # elem :: Eq a => a -> M1 i c f a -> Bool # maximum :: Ord a => M1 i c f a -> a # minimum :: Ord a => M1 i c f a -> a # | |
| Foldable (Clown f a :: TYPE LiftedRep -> Type) | |
Defined in Data.Bifunctor.Clown Methods fold :: Monoid m => Clown f a m -> m # foldMap :: Monoid m => (a0 -> m) -> Clown f a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Clown f a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Clown f a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Clown f a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Clown f a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Clown f a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Clown f a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Clown f a a0 -> a0 # toList :: Clown f a a0 -> [a0] # null :: Clown f a a0 -> Bool # length :: Clown f a a0 -> Int # elem :: Eq a0 => a0 -> Clown f a a0 -> Bool # maximum :: Ord a0 => Clown f a a0 -> a0 # minimum :: Ord a0 => Clown f a a0 -> a0 # | |
| Bifoldable p => Foldable (Flip p a) | |
Defined in Data.Bifunctor.Flip Methods fold :: Monoid m => Flip p a m -> m # foldMap :: Monoid m => (a0 -> m) -> Flip p a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Flip p a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Flip p a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Flip p a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Flip p a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Flip p a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Flip p a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Flip p a a0 -> a0 # toList :: Flip p a a0 -> [a0] # length :: Flip p a a0 -> Int # elem :: Eq a0 => a0 -> Flip p a a0 -> Bool # maximum :: Ord a0 => Flip p a a0 -> a0 # minimum :: Ord a0 => Flip p a a0 -> a0 # | |
| Foldable g => Foldable (Joker g a) | |
Defined in Data.Bifunctor.Joker Methods fold :: Monoid m => Joker g a m -> m # foldMap :: Monoid m => (a0 -> m) -> Joker g a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Joker g a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Joker g a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Joker g a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Joker g a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Joker g a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Joker g a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Joker g a a0 -> a0 # toList :: Joker g a a0 -> [a0] # null :: Joker g a a0 -> Bool # length :: Joker g a a0 -> Int # elem :: Eq a0 => a0 -> Joker g a a0 -> Bool # maximum :: Ord a0 => Joker g a a0 -> a0 # minimum :: Ord a0 => Joker g a a0 -> a0 # | |
| Bifoldable p => Foldable (WrappedBifunctor p a) | |
Defined in Data.Bifunctor.Wrapped Methods fold :: Monoid m => WrappedBifunctor p a m -> m # foldMap :: Monoid m => (a0 -> m) -> WrappedBifunctor p a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> WrappedBifunctor p a a0 -> m # foldr :: (a0 -> b -> b) -> b -> WrappedBifunctor p a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> WrappedBifunctor p a a0 -> b # foldl :: (b -> a0 -> b) -> b -> WrappedBifunctor p a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> WrappedBifunctor p a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> WrappedBifunctor p a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> WrappedBifunctor p a a0 -> a0 # toList :: WrappedBifunctor p a a0 -> [a0] # null :: WrappedBifunctor p a a0 -> Bool # length :: WrappedBifunctor p a a0 -> Int # elem :: Eq a0 => a0 -> WrappedBifunctor p a a0 -> Bool # maximum :: Ord a0 => WrappedBifunctor p a a0 -> a0 # minimum :: Ord a0 => WrappedBifunctor p a a0 -> a0 # sum :: Num a0 => WrappedBifunctor p a a0 -> a0 # product :: Num a0 => WrappedBifunctor p a a0 -> a0 # | |
| (Foldable f, Bifoldable p) => Foldable (Tannen f p a) | |
Defined in Data.Bifunctor.Tannen Methods fold :: Monoid m => Tannen f p a m -> m # foldMap :: Monoid m => (a0 -> m) -> Tannen f p a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Tannen f p a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Tannen f p a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Tannen f p a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Tannen f p a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Tannen f p a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Tannen f p a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Tannen f p a a0 -> a0 # toList :: Tannen f p a a0 -> [a0] # null :: Tannen f p a a0 -> Bool # length :: Tannen f p a a0 -> Int # elem :: Eq a0 => a0 -> Tannen f p a a0 -> Bool # maximum :: Ord a0 => Tannen f p a a0 -> a0 # minimum :: Ord a0 => Tannen f p a a0 -> a0 # | |
| (Bifoldable p, Foldable g) => Foldable (Biff p f g a) | |
Defined in Data.Bifunctor.Biff Methods fold :: Monoid m => Biff p f g a m -> m # foldMap :: Monoid m => (a0 -> m) -> Biff p f g a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Biff p f g a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Biff p f g a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Biff p f g a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Biff p f g a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Biff p f g a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Biff p f g a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Biff p f g a a0 -> a0 # toList :: Biff p f g a a0 -> [a0] # null :: Biff p f g a a0 -> Bool # length :: Biff p f g a a0 -> Int # elem :: Eq a0 => a0 -> Biff p f g a a0 -> Bool # maximum :: Ord a0 => Biff p f g a a0 -> a0 # minimum :: Ord a0 => Biff p f g a a0 -> a0 # | |
type family Mutable (v :: Type -> Type) = (mv :: Type -> Type -> Type) | mv -> v #
Mutable v s a is the mutable version of the immutable vector type v a with
the state token s. It is injective on GHC 8 and newer.
class MVector (Mutable v) a => Vector (v :: Type -> Type) a #
Class of immutable vectors. Every immutable vector is associated with its
mutable version through the Mutable type family. Methods of this class
should not be used directly. Instead, Data.Vector.Generic and other
Data.Vector modules provide safe and fusible wrappers.
Minimum complete implementation:
Minimal complete definition
basicUnsafeFreeze, basicUnsafeThaw, basicLength, basicUnsafeSlice, basicUnsafeIndexM