Safe Haskell | None |
---|---|
Language | Haskell2010 |
ClassyPrelude
Synopsis
- seq :: a -> b -> b
- fst :: (a, b) -> a
- snd :: (a, b) -> b
- otherwise :: Bool
- ($) :: (a -> b) -> a -> b
- fromIntegral :: (Integral a, Num b) => a -> b
- realToFrac :: (Real a, Fractional b) => a -> b
- class Bounded a where
- class Enum a where
- class Eq a where
- class Fractional a => Floating a where
- class Num a => Fractional a where
- class (Real a, Enum a) => Integral a where
- class Applicative m => Monad (m :: * -> *) where
- class Functor (f :: * -> *) where
- class Num a where
- class Eq a => Ord a where
- class Read a
- class (Num a, Ord a) => Real a where
- class (RealFrac a, Floating a) => RealFloat a where
- class (Real a, Fractional a) => RealFrac a where
- class Show a
- class Typeable (a :: k)
- class IsString a where
- class Functor f => Applicative (f :: * -> *) where
- class Foldable (t :: * -> *)
- class (Functor t, Foldable t) => Traversable (t :: * -> *)
- class Semigroup a => Monoid a where
- data Bool
- data Char
- data Double
- data Float
- data Int
- data Int32
- data Int64
- data Integer
- data Maybe a
- data Ordering
- type Rational = Ratio Integer
- data IO a
- data Word
- data Word8
- data Word32
- data Word64
- data Either a b
- either :: (a -> c) -> (b -> c) -> Either a b -> c
- class Monad m => MonadIO (m :: * -> *) where
- (>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c
- (***) :: Arrow a => a b c -> a b' c' -> a (b, b') (c, c')
- (&&&) :: Arrow a => a b c -> a b c' -> a b (c, c')
- annotateIOError :: IOError -> String -> Maybe Handle -> Maybe FilePath -> IOError
- modifyIOError :: (IOError -> IOError) -> IO a -> IO a
- ioeSetFileName :: IOError -> FilePath -> IOError
- ioeSetHandle :: IOError -> Handle -> IOError
- ioeSetLocation :: IOError -> String -> IOError
- ioeSetErrorString :: IOError -> String -> IOError
- ioeSetErrorType :: IOError -> IOErrorType -> IOError
- ioeGetFileName :: IOError -> Maybe FilePath
- ioeGetHandle :: IOError -> Maybe Handle
- ioeGetLocation :: IOError -> String
- ioeGetErrorString :: IOError -> String
- ioeGetErrorType :: IOError -> IOErrorType
- isUserErrorType :: IOErrorType -> Bool
- isPermissionErrorType :: IOErrorType -> Bool
- isIllegalOperationErrorType :: IOErrorType -> Bool
- isEOFErrorType :: IOErrorType -> Bool
- isFullErrorType :: IOErrorType -> Bool
- isAlreadyInUseErrorType :: IOErrorType -> Bool
- isDoesNotExistErrorType :: IOErrorType -> Bool
- isAlreadyExistsErrorType :: IOErrorType -> Bool
- userErrorType :: IOErrorType
- permissionErrorType :: IOErrorType
- illegalOperationErrorType :: IOErrorType
- eofErrorType :: IOErrorType
- fullErrorType :: IOErrorType
- alreadyInUseErrorType :: IOErrorType
- doesNotExistErrorType :: IOErrorType
- alreadyExistsErrorType :: IOErrorType
- isUserError :: IOError -> Bool
- isPermissionError :: IOError -> Bool
- isIllegalOperation :: IOError -> Bool
- isEOFError :: IOError -> Bool
- isFullError :: IOError -> Bool
- isAlreadyInUseError :: IOError -> Bool
- isDoesNotExistError :: IOError -> Bool
- isAlreadyExistsError :: IOError -> Bool
- mkIOError :: IOErrorType -> String -> Maybe Handle -> Maybe FilePath -> IOError
- tryIOError :: IO a -> IO (Either IOError a)
- ioError :: IOError -> IO a
- data IOErrorType
- type FilePath = String
- userError :: String -> IOError
- data IOException
- type IOError = IOException
- class (Typeable e, Show e) => Exception e where
- asum :: (Foldable t, Alternative f) => t (f a) -> f a
- partitionEithers :: [Either a b] -> ([a], [b])
- rights :: [Either a b] -> [b]
- lefts :: [Either a b] -> [a]
- comparing :: Ord a => (b -> a) -> b -> b -> Ordering
- newtype Down a = Down a
- id :: Category cat => cat a a
- (.) :: Category cat => cat b c -> cat a b -> cat a c
- class Storable a
- bool :: a -> a -> Bool -> a
- on :: (b -> b -> c) -> (a -> b) -> a -> a -> c
- (<$>) :: Functor f => (a -> b) -> f a -> f b
- (^^) :: (Fractional a, Integral b) => a -> b -> a
- (^) :: (Num a, Integral b) => a -> b -> a
- odd :: Integral a => a -> Bool
- even :: Integral a => a -> Bool
- mapMaybe :: (a -> Maybe b) -> [a] -> [b]
- listToMaybe :: [a] -> Maybe a
- maybeToList :: Maybe a -> [a]
- fromMaybe :: a -> Maybe a -> a
- isNothing :: Maybe a -> Bool
- isJust :: Maybe a -> Bool
- maybe :: b -> (a -> b) -> Maybe a -> b
- swap :: (a, b) -> (b, a)
- uncurry :: (a -> b -> c) -> (a, b) -> c
- curry :: ((a, b) -> c) -> a -> b -> c
- subtract :: Num a => a -> a -> a
- asTypeOf :: a -> a -> a
- until :: (a -> Bool) -> (a -> a) -> a -> a
- ($!) :: (a -> b) -> a -> b
- flip :: (a -> b -> c) -> b -> a -> c
- const :: a -> b -> a
- (=<<) :: Monad m => (a -> m b) -> m a -> m b
- (<|>) :: Alternative f => f a -> f a -> f a
- type String = [Char]
- error :: HasCallStack => [Char] -> a
- data SomeException
- (&&) :: Bool -> Bool -> Bool
- (||) :: Bool -> Bool -> Bool
- not :: Bool -> Bool
- terror :: HasCallStack => Text -> a
- getArgs :: MonadIO m => m [Text]
- equating :: Eq a => (b -> a) -> b -> b -> Bool
- type LText = Text
- type LByteString = ByteString
- type UVector = Vector
- type SVector = Vector
- data Vector a
- class (Vector Vector a, MVector MVector a) => Unbox a
- data HashMap k v
- data HashSet a
- data Text
- class Hashable a where
- (<.>) :: FilePath -> String -> FilePath
- (</>) :: FilePath -> FilePath -> FilePath
- data Set a
- data Seq a
- data Map k a
- data IntSet
- data IntMap a
- data ByteString
- lift :: (MonadTrans t, Monad m) => m a -> t m a
- undefined :: HasCallStack => a
- (++) :: Monoid m => m -> m -> m
- class Semigroup a where
- data WrappedMonoid m
- module Data.Functor
- liftA2 :: Applicative f => (a -> b -> c) -> f a -> f b -> f c
- optional :: Alternative f => f a -> f (Maybe a)
- liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d
- liftA :: Applicative f => (a -> b) -> f a -> f b
- (<**>) :: Applicative f => f a -> f (a -> b) -> f b
- class Applicative f => Alternative (f :: * -> *) where
- (<&&>) :: Applicative a => a Bool -> a Bool -> a Bool
- (<||>) :: Applicative a => a Bool -> a Bool -> a Bool
- guard :: Alternative f => Bool -> f ()
- join :: Monad m => m (m a) -> m a
- liftM :: Monad m => (a1 -> r) -> m a1 -> m r
- unless :: Applicative f => Bool -> f () -> f ()
- replicateM_ :: Applicative m => Int -> m a -> m ()
- forever :: Applicative f => f a -> f b
- (<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c
- (>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c
- void :: Functor f => f a -> f ()
- ap :: Monad m => m (a -> b) -> m a -> m b
- liftM5 :: Monad m => (a1 -> a2 -> a3 -> a4 -> a5 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m a5 -> m r
- liftM4 :: Monad m => (a1 -> a2 -> a3 -> a4 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m r
- liftM3 :: Monad m => (a1 -> a2 -> a3 -> r) -> m a1 -> m a2 -> m a3 -> m r
- liftM2 :: Monad m => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r
- when :: Applicative f => Bool -> f () -> f ()
- (=<<) :: Monad m => (a -> m b) -> m a -> m b
- class (Alternative m, Monad m) => MonadPlus (m :: * -> *) where
- whenM :: Monad m => m Bool -> m () -> m ()
- unlessM :: Monad m => m Bool -> m () -> m ()
- module UnliftIO
- orElseSTM :: STM a -> STM a -> STM a
- module Data.Mutable
- module Control.Concurrent.STM.TBChan
- module Control.Concurrent.STM.TBMChan
- module Control.Concurrent.STM.TBMQueue
- module Control.Concurrent.STM.TMChan
- module Control.Concurrent.STM.TMQueue
- primToPrim :: (PrimBase m1, PrimMonad m2, PrimState m1 ~ PrimState m2) => m1 a -> m2 a
- primToIO :: (PrimBase m, PrimState m ~ RealWorld) => m a -> IO a
- primToST :: PrimBase m => m a -> ST (PrimState m) a
- module Data.Primitive.MutVar
- trace :: String -> a -> a
- traceShow :: Show a => a -> b -> b
- traceId :: String -> String
- traceM :: Monad m => String -> m ()
- traceShowId :: Show a => a -> a
- traceShowM :: (Show a, Monad m) => a -> m ()
- formatTime :: FormatTime t => TimeLocale -> String -> t -> String
- parseTime :: ParseTime t => TimeLocale -> String -> String -> Maybe t
- parseTimeM :: (Monad m, ParseTime t) => Bool -> TimeLocale -> String -> String -> m t
- defaultTimeLocale :: TimeLocale
- getCurrentTime :: IO UTCTime
- data UTCTime = UTCTime {
- utctDay :: Day
- utctDayTime :: DiffTime
- fromGregorian :: Integer -> Int -> Int -> Day
- toGregorian :: Day -> (Integer, Int, Int)
- newtype Day = ModifiedJulianDay {}
- class Generic a
- newtype Identity a = Identity {
- runIdentity :: a
- class Monad m => MonadReader r (m :: * -> *) | m -> r
- ask :: MonadReader r m => m r
- asks :: MonadReader r m => (r -> a) -> m a
- newtype ReaderT r (m :: k -> *) (a :: k) :: forall k. * -> (k -> *) -> k -> * = ReaderT {
- runReaderT :: r -> m a
- type Reader r = ReaderT r Identity
- class Foldable (t :: * -> *)
- class (Functor t, Foldable t) => Traversable (t :: * -> *) where
- forM :: (Traversable t, Monad m) => t a -> (a -> m b) -> m (t b)
- for :: (Traversable t, Applicative f) => t a -> (a -> f b) -> f (t b)
- module Data.Bifunctor
- module Data.MonoTraversable
- module Data.MonoTraversable.Unprefixed
- module Data.Sequences
- module Data.Containers
- module Data.Builder
- module Data.NonNull
- toByteVector :: ByteString -> SVector Word8
- fromByteVector :: SVector Word8 -> ByteString
- module Say
- yieldThread :: MonadIO m => m ()
- waitAsync :: MonadIO m => Async a -> m a
- pollAsync :: MonadIO m => Async a -> m (Maybe (Either SomeException a))
- waitCatchAsync :: MonadIO m => Async a -> m (Either SomeException a)
- linkAsync :: MonadIO m => Async a -> m ()
- link2Async :: MonadIO m => Async a -> Async b -> m ()
- map :: Functor f => (a -> b) -> f a -> f b
- readMay :: (Element c ~ Char, MonoFoldable c, Read a) => c -> Maybe a
- zip :: Zip f => f a -> f b -> f (a, b)
- zip3 :: Zip3 f => f a -> f b -> f c -> f (a, b, c)
- zip4 :: Zip4 f => f a -> f b -> f c -> f d -> f (a, b, c, d)
- zip5 :: Zip5 f => f a -> f b -> f c -> f d -> f e -> f (a, b, c, d, e)
- zip6 :: Zip6 f => f a -> f b -> f c -> f d -> f e -> f g -> f (a, b, c, d, e, g)
- zip7 :: Zip7 f => f a -> f b -> f c -> f d -> f e -> f g -> f h -> f (a, b, c, d, e, g, h)
- unzip :: Zip f => f (a, b) -> (f a, f b)
- unzip3 :: Zip3 f => f (a, b, c) -> (f a, f b, f c)
- unzip4 :: Zip4 f => f (a, b, c, d) -> (f a, f b, f c, f d)
- unzip5 :: Zip5 f => f (a, b, c, d, e) -> (f a, f b, f c, f d, f e)
- unzip6 :: Zip6 f => f (a, b, c, d, e, g) -> (f a, f b, f c, f d, f e, f g)
- unzip7 :: Zip7 f => f (a, b, c, d, e, g, h) -> (f a, f b, f c, f d, f e, f g, f h)
- zipWith :: Zip f => (a -> b -> c) -> f a -> f b -> f c
- zipWith3 :: Zip3 f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d
- zipWith4 :: Zip4 f => (a -> b -> c -> d -> e) -> f a -> f b -> f c -> f d -> f e
- zipWith5 :: Zip5 f => (a -> b -> c -> d -> e -> g) -> f a -> f b -> f c -> f d -> f e -> f g
- zipWith6 :: Zip6 f => (a -> b -> c -> d -> e -> g -> h) -> f a -> f b -> f c -> f d -> f e -> f g -> f h
- zipWith7 :: Zip7 f => (a -> b -> c -> d -> e -> g -> h -> i) -> f a -> f b -> f c -> f d -> f e -> f g -> f h -> f i
- hashNub :: (Hashable a, Eq a) => [a] -> [a]
- ordNub :: Ord a => [a] -> [a]
- ordNubBy :: Ord b => (a -> b) -> (a -> a -> Bool) -> [a] -> [a]
- sortWith :: (Ord a, IsSequence c) => (Element c -> a) -> c -> c
- repeat :: a -> [a]
- (\\) :: SetContainer a => a -> a -> a
- intersect :: SetContainer a => a -> a -> a
- class Show a where
- tshow :: Show a => a -> Text
- tlshow :: Show a => a -> LText
- charToLower :: Char -> Char
- charToUpper :: Char -> Char
- readFile :: MonadIO m => FilePath -> m ByteString
- readFileUtf8 :: MonadIO m => FilePath -> m Text
- writeFile :: MonadIO m => FilePath -> ByteString -> m ()
- writeFileUtf8 :: MonadIO m => FilePath -> Text -> m ()
- hGetContents :: MonadIO m => Handle -> m ByteString
- hPut :: MonadIO m => Handle -> ByteString -> m ()
- hGetChunk :: MonadIO m => Handle -> m ByteString
- print :: (Show a, MonadIO m) => a -> m ()
- putChar :: MonadIO m => Char -> m ()
- putStr :: MonadIO m => Text -> m ()
- putStrLn :: MonadIO m => Text -> m ()
- getChar :: MonadIO m => m Char
- getLine :: MonadIO m => m Text
- getContents :: MonadIO m => m LText
- interact :: MonadIO m => (LText -> LText) -> m ()
- data DList a
- asDList :: DList a -> DList a
- applyDList :: DList a -> [a] -> [a]
- force :: NFData a => a -> a
- ($!!) :: NFData a => (a -> b) -> a -> b
- deepseq :: NFData a => a -> b -> b
- class NFData a where
- asByteString :: ByteString -> ByteString
- asLByteString :: LByteString -> LByteString
- asHashMap :: HashMap k v -> HashMap k v
- asHashSet :: HashSet a -> HashSet a
- asText :: Text -> Text
- asLText :: LText -> LText
- asList :: [a] -> [a]
- asMap :: Map k v -> Map k v
- asIntMap :: IntMap v -> IntMap v
- asMaybe :: Maybe a -> Maybe a
- asSet :: Set a -> Set a
- asIntSet :: IntSet -> IntSet
- asVector :: Vector a -> Vector a
- asUVector :: UVector a -> UVector a
- asSVector :: SVector a -> SVector a
- asString :: [Char] -> [Char]
CorePrelude
The value of seq a b
is bottom if a
is bottom, and
otherwise equal to b
. In other words, it evaluates the first
argument a
to weak head normal form (WHNF). seq
is usually
introduced to improve performance by avoiding unneeded laziness.
A note on evaluation order: the expression seq a b
does
not guarantee that a
will be evaluated before b
.
The only guarantee given by seq
is that the both a
and b
will be evaluated before seq
returns a value.
In particular, this means that b
may be evaluated before
a
. If you need to guarantee a specific order of evaluation,
you must use the function pseq
from the "parallel" package.
($) :: (a -> b) -> a -> b infixr 0 #
Application operator. This operator is redundant, since ordinary
application (f x)
means the same as (f
. However, $
x)$
has
low, right-associative binding precedence, so it sometimes allows
parentheses to be omitted; for example:
f $ g $ h x = f (g (h x))
It is also useful in higher-order situations, such as
,
or map
($
0) xs
.zipWith
($
) fs xs
fromIntegral :: (Integral a, Num b) => a -> b #
general coercion from integral types
realToFrac :: (Real a, Fractional b) => a -> b #
general coercion to fractional types
The Bounded
class is used to name the upper and lower limits of a
type. Ord
is not a superclass of Bounded
since types that are not
totally ordered may also have upper and lower bounds.
The Bounded
class may be derived for any enumeration type;
minBound
is the first constructor listed in the data
declaration
and maxBound
is the last.
Bounded
may also be derived for single-constructor datatypes whose
constituent types are in Bounded
.
Instances
Class Enum
defines operations on sequentially ordered types.
The enumFrom
... methods are used in Haskell's translation of
arithmetic sequences.
Instances of Enum
may be derived for any enumeration type (types
whose constructors have no fields). The nullary constructors are
assumed to be numbered left-to-right by fromEnum
from 0
through n-1
.
See Chapter 10 of the Haskell Report for more details.
For any type that is an instance of class Bounded
as well as Enum
,
the following should hold:
- The calls
andsucc
maxBound
should result in a runtime error.pred
minBound
fromEnum
andtoEnum
should give a runtime error if the result value is not representable in the result type. For example,
is an error.toEnum
7 ::Bool
enumFrom
andenumFromThen
should be defined with an implicit bound, thus:
enumFrom x = enumFromTo x maxBound enumFromThen x y = enumFromThenTo x y bound where bound | fromEnum y >= fromEnum x = maxBound | otherwise = minBound
Methods
the successor of a value. For numeric types, succ
adds 1.
the predecessor of a value. For numeric types, pred
subtracts 1.
Convert from an Int
.
Convert to an Int
.
It is implementation-dependent what fromEnum
returns when
applied to a value that is too large to fit in an Int
.
Used in Haskell's translation of [n..]
.
enumFromThen :: a -> a -> [a] #
Used in Haskell's translation of [n,n'..]
.
enumFromTo :: a -> a -> [a] #
Used in Haskell's translation of [n..m]
.
enumFromThenTo :: a -> a -> a -> [a] #
Used in Haskell's translation of [n,n'..m]
.
Instances
The Eq
class defines equality (==
) and inequality (/=
).
All the basic datatypes exported by the Prelude are instances of Eq
,
and Eq
may be derived for any datatype whose constituents are also
instances of Eq
.
Instances
class Fractional a => Floating a where #
Trigonometric and hyperbolic functions and related functions.
Minimal complete definition
pi, exp, log, sin, cos, asin, acos, atan, sinh, cosh, asinh, acosh, atanh
Instances
class Num a => Fractional a where #
Fractional numbers, supporting real division.
Minimal complete definition
fromRational, (recip | (/))
Methods
fractional division
reciprocal fraction
fromRational :: Rational -> a #
Conversion from a Rational
(that is
).
A floating literal stands for an application of Ratio
Integer
fromRational
to a value of type Rational
, so such literals have type
(
.Fractional
a) => a
Instances
Fractional CFloat | |
Fractional CDouble | |
Fractional DiffTime | |
Integral a => Fractional (Ratio a) | Since: base-2.0.1 |
RealFloat a => Fractional (Complex a) | Since: base-2.1 |
HasResolution a => Fractional (Fixed a) | Since: base-2.1 |
Fractional a => Fractional (Identity a) | |
Fractional a => Fractional (Const a b) | |
Fractional a => Fractional (Tagged s a) | |
class (Real a, Enum a) => Integral a where #
Integral numbers, supporting integer division.
Methods
quot :: a -> a -> a infixl 7 #
integer division truncated toward zero
integer remainder, satisfying
(x `quot` y)*y + (x `rem` y) == x
integer division truncated toward negative infinity
integer modulus, satisfying
(x `div` y)*y + (x `mod` y) == x
conversion to Integer
Instances
class Applicative m => Monad (m :: * -> *) where #
The Monad
class defines the basic operations over a monad,
a concept from a branch of mathematics known as category theory.
From the perspective of a Haskell programmer, however, it is best to
think of a monad as an abstract datatype of actions.
Haskell's do
expressions provide a convenient syntax for writing
monadic expressions.
Instances of Monad
should satisfy the following laws:
Furthermore, the Monad
and Applicative
operations should relate as follows:
The above laws imply:
and that pure
and (<*>
) satisfy the applicative functor laws.
The instances of Monad
for lists, Maybe
and IO
defined in the Prelude satisfy these laws.
Minimal complete definition
Methods
(>>=) :: m a -> (a -> m b) -> m b infixl 1 #
Sequentially compose two actions, passing any value produced by the first as an argument to the second.
(>>) :: m a -> m b -> m b infixl 1 #
Sequentially compose two actions, discarding any value produced by the first, like sequencing operators (such as the semicolon) in imperative languages.
Inject a value into the monadic type.
Fail with a message. This operation is not part of the
mathematical definition of a monad, but is invoked on pattern-match
failure in a do
expression.
As part of the MonadFail proposal (MFP), this function is moved
to its own class MonadFail
(see Control.Monad.Fail for more
details). The definition here will be removed in a future
release.
Instances
Monad [] | Since: base-2.1 |
Monad Maybe | Since: base-2.1 |
Monad IO | Since: base-2.1 |
Monad Par1 | Since: base-4.9.0.0 |
Monad Q | |
Monad Complex | Since: base-4.9.0.0 |
Monad Min | Since: base-4.9.0.0 |
Monad Max | Since: base-4.9.0.0 |
Monad First | Since: base-4.9.0.0 |
Monad Last | Since: base-4.9.0.0 |
Monad Option | Since: base-4.9.0.0 |
Monad Identity | Since: base-4.8.0.0 |
Monad STM | Since: base-4.3.0.0 |
Monad Down | Since: base-4.11.0.0 |
Monad ReadP | Since: base-2.1 |
Monad NonEmpty | Since: base-4.9.0.0 |
Monad Vector | |
Monad Seq | |
Monad Tree | |
Monad DList | |
Monad SmallArray | |
Defined in Data.Primitive.SmallArray Methods (>>=) :: SmallArray a -> (a -> SmallArray b) -> SmallArray b # (>>) :: SmallArray a -> SmallArray b -> SmallArray b # return :: a -> SmallArray a # fail :: String -> SmallArray a # | |
Monad Array | |
Monad Memoized | |
Monad Id | |
Monad Box | |
Monad P | Since: base-2.1 |
Monad (Either e) | Since: base-4.4.0.0 |
Monad (U1 :: * -> *) | Since: base-4.9.0.0 |
Monoid a => Monad ((,) a) | Since: base-4.9.0.0 |
Representable f => Monad (Co f) | |
Monad (ST s) | Since: base-2.1 |
Monad m => Monad (WrappedMonad m) | |
Defined in Control.Applicative Methods (>>=) :: WrappedMonad m a -> (a -> WrappedMonad m b) -> WrappedMonad m b # (>>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b # return :: a -> WrappedMonad m a # fail :: String -> WrappedMonad m a # | |
ArrowApply a => Monad (ArrowMonad a) | Since: base-2.1 |
Defined in Control.Arrow Methods (>>=) :: ArrowMonad a a0 -> (a0 -> ArrowMonad a b) -> ArrowMonad a b # (>>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b # return :: a0 -> ArrowMonad a a0 # fail :: String -> ArrowMonad a a0 # | |
Monad (Proxy :: * -> *) | Since: base-4.7.0.0 |
Monad m => Monad (MaybeT m) | |
Alternative f => Monad (Cofree f) | |
Functor f => Monad (Free f) | |
Monad m => Monad (ListT m) | |
(Monad (Rep p), Representable p) => Monad (Prep p) | |
Monad f => Monad (Rec1 f) | Since: base-4.9.0.0 |
Monad m => Monad (IdentityT m) | |
(Applicative f, Monad f) => Monad (WhenMissing f x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods (>>=) :: WhenMissing f x a -> (a -> WhenMissing f x b) -> WhenMissing f x b # (>>) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x b # return :: a -> WhenMissing f x a # fail :: String -> WhenMissing f x a # | |
(Functor f, Monad m) => Monad (FreeT f m) | |
(Monad m, Error e) => Monad (ErrorT e m) | |
Monad m => Monad (StateT s m) | |
Monad m => Monad (StateT s m) | |
(Monoid w, Monad m) => Monad (WriterT w m) | |
(Monoid w, Monad m) => Monad (WriterT w m) | |
Monad (Tagged s) | |
Monad ((->) r :: * -> *) | Since: base-2.1 |
(Monad f, Monad g) => Monad (f :*: g) | Since: base-4.9.0.0 |
(Monad f, Monad g) => Monad (Product f g) | Since: base-4.9.0.0 |
Monad (Cokleisli w a) | |
(Monad f, Applicative f) => Monad (WhenMatched f x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods (>>=) :: WhenMatched f x y a -> (a -> WhenMatched f x y b) -> WhenMatched f x y b # (>>) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y b # return :: a -> WhenMatched f x y a # fail :: String -> WhenMatched f x y a # | |
(Applicative f, Monad f) => Monad (WhenMissing f k x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods (>>=) :: WhenMissing f k x a -> (a -> WhenMissing f k x b) -> WhenMissing f k x b # (>>) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x b # return :: a -> WhenMissing f k x a # fail :: String -> WhenMissing f k x a # | |
Monad (ContT r m) | |
Monad m => Monad (ReaderT r m) | |
Monad f => Monad (M1 i c f) | Since: base-4.9.0.0 |
(Monad f, Applicative f) => Monad (WhenMatched f k x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods (>>=) :: WhenMatched f k x y a -> (a -> WhenMatched f k x y b) -> WhenMatched f k x y b # (>>) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y b # return :: a -> WhenMatched f k x y a # fail :: String -> WhenMatched f k x y a # | |
(Monoid w, Monad m) => Monad (RWST r w s m) | |
(Monoid w, Monad m) => Monad (RWST r w s m) | |
class Functor (f :: * -> *) where #
The Functor
class is used for types that can be mapped over.
Instances of Functor
should satisfy the following laws:
fmap id == id fmap (f . g) == fmap f . fmap g
The instances of Functor
for lists, Maybe
and IO
satisfy these laws.
Minimal complete definition
Instances
Basic numeric class.
Methods
Unary negation.
Absolute value.
Sign of a number.
The functions abs
and signum
should satisfy the law:
abs x * signum x == x
For real numbers, the signum
is either -1
(negative), 0
(zero)
or 1
(positive).
fromInteger :: Integer -> a #
Conversion from an Integer
.
An integer literal represents the application of the function
fromInteger
to the appropriate value of type Integer
,
so such literals have type (
.Num
a) => a
Instances
The Ord
class is used for totally ordered datatypes.
Instances of Ord
can be derived for any user-defined
datatype whose constituent types are in Ord
. The declared order
of the constructors in the data declaration determines the ordering
in derived Ord
instances. The Ordering
datatype allows a single
comparison to determine the precise ordering of two objects.
Minimal complete definition: either compare
or <=
.
Using compare
can be more efficient for complex types.
Methods
compare :: a -> a -> Ordering #
(<) :: a -> a -> Bool infix 4 #
(<=) :: a -> a -> Bool infix 4 #
(>) :: a -> a -> Bool infix 4 #
Instances
Ord Bool | |
Ord Char | |
Ord Double | |
Ord Float | |
Ord Int | |
Ord Int8 | Since: base-2.1 |
Ord Int16 | Since: base-2.1 |
Ord Int32 | Since: base-2.1 |
Ord Int64 | Since: base-2.1 |
Ord Integer | |
Ord Natural | |
Ord Ordering | |
Defined in GHC.Classes | |
Ord Word | |
Ord Word8 | Since: base-2.1 |
Ord Word16 | Since: base-2.1 |
Ord Word32 | Since: base-2.1 |
Ord Word64 | Since: base-2.1 |
Ord SomeTypeRep | |
Defined in Data.Typeable.Internal Methods compare :: SomeTypeRep -> SomeTypeRep -> Ordering # (<) :: SomeTypeRep -> SomeTypeRep -> Bool # (<=) :: SomeTypeRep -> SomeTypeRep -> Bool # (>) :: SomeTypeRep -> SomeTypeRep -> Bool # (>=) :: SomeTypeRep -> SomeTypeRep -> Bool # max :: SomeTypeRep -> SomeTypeRep -> SomeTypeRep # min :: SomeTypeRep -> SomeTypeRep -> SomeTypeRep # | |
Ord Exp | |
Ord Match | |
Ord Clause | |
Ord Pat | |
Ord Type | |
Ord Dec | |
Ord Name | |
Ord FunDep | |
Ord InjectivityAnn | |
Defined in Language.Haskell.TH.Syntax Methods compare :: InjectivityAnn -> InjectivityAnn -> Ordering # (<) :: InjectivityAnn -> InjectivityAnn -> Bool # (<=) :: InjectivityAnn -> InjectivityAnn -> Bool # (>) :: InjectivityAnn -> InjectivityAnn -> Bool # (>=) :: InjectivityAnn -> InjectivityAnn -> Bool # max :: InjectivityAnn -> InjectivityAnn -> InjectivityAnn # min :: InjectivityAnn -> InjectivityAnn -> InjectivityAnn # | |
Ord Overlap | |
Defined in Language.Haskell.TH.Syntax | |
Ord DerivStrategy | |
Defined in Language.Haskell.TH.Syntax Methods compare :: DerivStrategy -> DerivStrategy -> Ordering # (<) :: DerivStrategy -> DerivStrategy -> Bool # (<=) :: DerivStrategy -> DerivStrategy -> Bool # (>) :: DerivStrategy -> DerivStrategy -> Bool # (>=) :: DerivStrategy -> DerivStrategy -> Bool # max :: DerivStrategy -> DerivStrategy -> DerivStrategy # min :: DerivStrategy -> DerivStrategy -> DerivStrategy # | |
Ord () | |
Ord TyCon | |
Ord ThreadId | Since: base-4.2.0.0 |
Defined in GHC.Conc.Sync | |
Ord BigNat | |
Ord Void | Since: base-4.8.0.0 |
Ord Unique | |
Ord Version | Since: base-2.1 |
Ord BlockReason | |
Defined in GHC.Conc.Sync Methods compare :: BlockReason -> BlockReason -> Ordering # (<) :: BlockReason -> BlockReason -> Bool # (<=) :: BlockReason -> BlockReason -> Bool # (>) :: BlockReason -> BlockReason -> Bool # (>=) :: BlockReason -> BlockReason -> Bool # max :: BlockReason -> BlockReason -> BlockReason # min :: BlockReason -> BlockReason -> BlockReason # | |
Ord ThreadStatus | |
Defined in GHC.Conc.Sync Methods compare :: ThreadStatus -> ThreadStatus -> Ordering # (<) :: ThreadStatus -> ThreadStatus -> Bool # (<=) :: ThreadStatus -> ThreadStatus -> Bool # (>) :: ThreadStatus -> ThreadStatus -> Bool # (>=) :: ThreadStatus -> ThreadStatus -> Bool # max :: ThreadStatus -> ThreadStatus -> ThreadStatus # min :: ThreadStatus -> ThreadStatus -> ThreadStatus # | |
Ord AsyncException | |
Defined in GHC.IO.Exception Methods compare :: AsyncException -> AsyncException -> Ordering # (<) :: AsyncException -> AsyncException -> Bool # (<=) :: AsyncException -> AsyncException -> Bool # (>) :: AsyncException -> AsyncException -> Bool # (>=) :: AsyncException -> AsyncException -> Bool # max :: AsyncException -> AsyncException -> AsyncException # min :: AsyncException -> AsyncException -> AsyncException # | |
Ord ArrayException | |
Defined in GHC.IO.Exception Methods compare :: ArrayException -> ArrayException -> Ordering # (<) :: ArrayException -> ArrayException -> Bool # (<=) :: ArrayException -> ArrayException -> Bool # (>) :: ArrayException -> ArrayException -> Bool # (>=) :: ArrayException -> ArrayException -> Bool # max :: ArrayException -> ArrayException -> ArrayException # min :: ArrayException -> ArrayException -> ArrayException # | |
Ord ExitCode | |
Defined in GHC.IO.Exception | |
Ord BufferMode | |
Defined in GHC.IO.Handle.Types Methods compare :: BufferMode -> BufferMode -> Ordering # (<) :: BufferMode -> BufferMode -> Bool # (<=) :: BufferMode -> BufferMode -> Bool # (>) :: BufferMode -> BufferMode -> Bool # (>=) :: BufferMode -> BufferMode -> Bool # max :: BufferMode -> BufferMode -> BufferMode # min :: BufferMode -> BufferMode -> BufferMode # | |
Ord Newline | |
Ord NewlineMode | |
Defined in GHC.IO.Handle.Types Methods compare :: NewlineMode -> NewlineMode -> Ordering # (<) :: NewlineMode -> NewlineMode -> Bool # (<=) :: NewlineMode -> NewlineMode -> Bool # (>) :: NewlineMode -> NewlineMode -> Bool # (>=) :: NewlineMode -> NewlineMode -> Bool # max :: NewlineMode -> NewlineMode -> NewlineMode # min :: NewlineMode -> NewlineMode -> NewlineMode # | |
Ord SeekMode | |
Defined in GHC.IO.Device | |
Ord ErrorCall | |
Ord ArithException | |
Defined in GHC.Exception Methods compare :: ArithException -> ArithException -> Ordering # (<) :: ArithException -> ArithException -> Bool # (<=) :: ArithException -> ArithException -> Bool # (>) :: ArithException -> ArithException -> Bool # (>=) :: ArithException -> ArithException -> Bool # max :: ArithException -> ArithException -> ArithException # min :: ArithException -> ArithException -> ArithException # | |
Ord Fixity | |
Ord Associativity | |
Defined in GHC.Generics Methods compare :: Associativity -> Associativity -> Ordering # (<) :: Associativity -> Associativity -> Bool # (<=) :: Associativity -> Associativity -> Bool # (>) :: Associativity -> Associativity -> Bool # (>=) :: Associativity -> Associativity -> Bool # max :: Associativity -> Associativity -> Associativity # min :: Associativity -> Associativity -> Associativity # | |
Ord SourceUnpackedness | |
Defined in GHC.Generics Methods compare :: SourceUnpackedness -> SourceUnpackedness -> Ordering # (<) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (<=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (>) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (>=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # max :: SourceUnpackedness -> SourceUnpackedness -> SourceUnpackedness # min :: SourceUnpackedness -> SourceUnpackedness -> SourceUnpackedness # | |
Ord SourceStrictness | |
Defined in GHC.Generics Methods compare :: SourceStrictness -> SourceStrictness -> Ordering # (<) :: SourceStrictness -> SourceStrictness -> Bool # (<=) :: SourceStrictness -> SourceStrictness -> Bool # (>) :: SourceStrictness -> SourceStrictness -> Bool # (>=) :: SourceStrictness -> SourceStrictness -> Bool # max :: SourceStrictness -> SourceStrictness -> SourceStrictness # min :: SourceStrictness -> SourceStrictness -> SourceStrictness # | |
Ord DecidedStrictness | |
Defined in GHC.Generics Methods compare :: DecidedStrictness -> DecidedStrictness -> Ordering # (<) :: DecidedStrictness -> DecidedStrictness -> Bool # (<=) :: DecidedStrictness -> DecidedStrictness -> Bool # (>) :: DecidedStrictness -> DecidedStrictness -> Bool # (>=) :: DecidedStrictness -> DecidedStrictness -> Bool # max :: DecidedStrictness -> DecidedStrictness -> DecidedStrictness # min :: DecidedStrictness -> DecidedStrictness -> DecidedStrictness # | |
Ord CChar | |
Ord CSChar | |
Ord CUChar | |
Ord CShort | |
Ord CUShort | |
Ord CInt | |
Ord CUInt | |
Ord CLong | |
Ord CULong | |
Ord CLLong | |
Ord CULLong | |
Ord CBool | |
Ord CFloat | |
Ord CDouble | |
Ord CPtrdiff | |
Defined in Foreign.C.Types | |
Ord CSize | |
Ord CWchar | |
Ord CSigAtomic | |
Defined in Foreign.C.Types Methods compare :: CSigAtomic -> CSigAtomic -> Ordering # (<) :: CSigAtomic -> CSigAtomic -> Bool # (<=) :: CSigAtomic -> CSigAtomic -> Bool # (>) :: CSigAtomic -> CSigAtomic -> Bool # (>=) :: CSigAtomic -> CSigAtomic -> Bool # max :: CSigAtomic -> CSigAtomic -> CSigAtomic # min :: CSigAtomic -> CSigAtomic -> CSigAtomic # | |
Ord CClock | |
Ord CTime | |
Ord CUSeconds | |
Ord CSUSeconds | |
Defined in Foreign.C.Types Methods compare :: CSUSeconds -> CSUSeconds -> Ordering # (<) :: CSUSeconds -> CSUSeconds -> Bool # (<=) :: CSUSeconds -> CSUSeconds -> Bool # (>) :: CSUSeconds -> CSUSeconds -> Bool # (>=) :: CSUSeconds -> CSUSeconds -> Bool # max :: CSUSeconds -> CSUSeconds -> CSUSeconds # min :: CSUSeconds -> CSUSeconds -> CSUSeconds # | |
Ord CIntPtr | |
Ord CUIntPtr | |
Defined in Foreign.C.Types | |
Ord CIntMax | |
Ord CUIntMax | |
Defined in Foreign.C.Types | |
Ord WordPtr | |
Ord IntPtr | |
Ord IOMode | |
Ord GeneralCategory | |
Defined in GHC.Unicode Methods compare :: GeneralCategory -> GeneralCategory -> Ordering # (<) :: GeneralCategory -> GeneralCategory -> Bool # (<=) :: GeneralCategory -> GeneralCategory -> Bool # (>) :: GeneralCategory -> GeneralCategory -> Bool # (>=) :: GeneralCategory -> GeneralCategory -> Bool # max :: GeneralCategory -> GeneralCategory -> GeneralCategory # min :: GeneralCategory -> GeneralCategory -> GeneralCategory # | |
Ord IntSet | |
Ord ByteString | |
Defined in Data.ByteString.Internal Methods compare :: ByteString -> ByteString -> Ordering # (<) :: ByteString -> ByteString -> Bool # (<=) :: ByteString -> ByteString -> Bool # (>) :: ByteString -> ByteString -> Bool # (>=) :: ByteString -> ByteString -> Bool # max :: ByteString -> ByteString -> ByteString # min :: ByteString -> ByteString -> ByteString # | |
Ord ShortByteString | |
Defined in Data.ByteString.Short.Internal Methods compare :: ShortByteString -> ShortByteString -> Ordering # (<) :: ShortByteString -> ShortByteString -> Bool # (<=) :: ShortByteString -> ShortByteString -> Bool # (>) :: ShortByteString -> ShortByteString -> Bool # (>=) :: ShortByteString -> ShortByteString -> Bool # max :: ShortByteString -> ShortByteString -> ShortByteString # min :: ShortByteString -> ShortByteString -> ShortByteString # | |
Ord ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods compare :: ByteString -> ByteString -> Ordering # (<) :: ByteString -> ByteString -> Bool # (<=) :: ByteString -> ByteString -> Bool # (>) :: ByteString -> ByteString -> Bool # (>=) :: ByteString -> ByteString -> Bool # max :: ByteString -> ByteString -> ByteString # min :: ByteString -> ByteString -> ByteString # | |
Ord ByteArray | Non-lexicographic ordering. This compares the lengths of the byte arrays first and uses a lexicographic ordering if the lengths are equal. Subject to change between major versions. Since: primitive-0.6.3.0 |
Ord Addr | |
Ord ModName | |
Defined in Language.Haskell.TH.Syntax | |
Ord PkgName | |
Defined in Language.Haskell.TH.Syntax | |
Ord Module | |
Ord OccName | |
Defined in Language.Haskell.TH.Syntax | |
Ord NameFlavour | |
Defined in Language.Haskell.TH.Syntax Methods compare :: NameFlavour -> NameFlavour -> Ordering # (<) :: NameFlavour -> NameFlavour -> Bool # (<=) :: NameFlavour -> NameFlavour -> Bool # (>) :: NameFlavour -> NameFlavour -> Bool # (>=) :: NameFlavour -> NameFlavour -> Bool # max :: NameFlavour -> NameFlavour -> NameFlavour # min :: NameFlavour -> NameFlavour -> NameFlavour # | |
Ord NameSpace | |
Ord Loc | |
Ord Info | |
Ord ModuleInfo | |
Defined in Language.Haskell.TH.Syntax Methods compare :: ModuleInfo -> ModuleInfo -> Ordering # (<) :: ModuleInfo -> ModuleInfo -> Bool # (<=) :: ModuleInfo -> ModuleInfo -> Bool # (>) :: ModuleInfo -> ModuleInfo -> Bool # (>=) :: ModuleInfo -> ModuleInfo -> Bool # max :: ModuleInfo -> ModuleInfo -> ModuleInfo # min :: ModuleInfo -> ModuleInfo -> ModuleInfo # | |
Ord Fixity | |
Ord FixityDirection | |
Defined in Language.Haskell.TH.Syntax Methods compare :: FixityDirection -> FixityDirection -> Ordering # (<) :: FixityDirection -> FixityDirection -> Bool # (<=) :: FixityDirection -> FixityDirection -> Bool # (>) :: FixityDirection -> FixityDirection -> Bool # (>=) :: FixityDirection -> FixityDirection -> Bool # max :: FixityDirection -> FixityDirection -> FixityDirection # min :: FixityDirection -> FixityDirection -> FixityDirection # | |
Ord Lit | |
Ord Body | |
Ord Guard | |
Ord Stmt | |
Ord Range | |
Ord DerivClause | |
Defined in Language.Haskell.TH.Syntax Methods compare :: DerivClause -> DerivClause -> Ordering # (<) :: DerivClause -> DerivClause -> Bool # (<=) :: DerivClause -> DerivClause -> Bool # (>) :: DerivClause -> DerivClause -> Bool # (>=) :: DerivClause -> DerivClause -> Bool # max :: DerivClause -> DerivClause -> DerivClause # min :: DerivClause -> DerivClause -> DerivClause # | |
Ord TypeFamilyHead | |
Defined in Language.Haskell.TH.Syntax Methods compare :: TypeFamilyHead -> TypeFamilyHead -> Ordering # (<) :: TypeFamilyHead -> TypeFamilyHead -> Bool # (<=) :: TypeFamilyHead -> TypeFamilyHead -> Bool # (>) :: TypeFamilyHead -> TypeFamilyHead -> Bool # (>=) :: TypeFamilyHead -> TypeFamilyHead -> Bool # max :: TypeFamilyHead -> TypeFamilyHead -> TypeFamilyHead # min :: TypeFamilyHead -> TypeFamilyHead -> TypeFamilyHead # | |
Ord TySynEqn | |
Defined in Language.Haskell.TH.Syntax | |
Ord Foreign | |
Defined in Language.Haskell.TH.Syntax | |
Ord Callconv | |
Defined in Language.Haskell.TH.Syntax | |
Ord Safety | |
Ord Pragma | |
Ord Inline | |
Ord RuleMatch | |
Ord Phases | |
Ord RuleBndr | |
Defined in Language.Haskell.TH.Syntax | |
Ord AnnTarget | |
Ord SourceUnpackedness | |
Defined in Language.Haskell.TH.Syntax Methods compare :: SourceUnpackedness -> SourceUnpackedness -> Ordering # (<) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (<=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (>) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (>=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # max :: SourceUnpackedness -> SourceUnpackedness -> SourceUnpackedness # min :: SourceUnpackedness -> SourceUnpackedness -> SourceUnpackedness # | |
Ord SourceStrictness | |
Defined in Language.Haskell.TH.Syntax Methods compare :: SourceStrictness -> SourceStrictness -> Ordering # (<) :: SourceStrictness -> SourceStrictness -> Bool # (<=) :: SourceStrictness -> SourceStrictness -> Bool # (>) :: SourceStrictness -> SourceStrictness -> Bool # (>=) :: SourceStrictness -> SourceStrictness -> Bool # max :: SourceStrictness -> SourceStrictness -> SourceStrictness # min :: SourceStrictness -> SourceStrictness -> SourceStrictness # | |
Ord DecidedStrictness | |
Defined in Language.Haskell.TH.Syntax Methods compare :: DecidedStrictness -> DecidedStrictness -> Ordering # (<) :: DecidedStrictness -> DecidedStrictness -> Bool # (<=) :: DecidedStrictness -> DecidedStrictness -> Bool # (>) :: DecidedStrictness -> DecidedStrictness -> Bool # (>=) :: DecidedStrictness -> DecidedStrictness -> Bool # max :: DecidedStrictness -> DecidedStrictness -> DecidedStrictness # min :: DecidedStrictness -> DecidedStrictness -> DecidedStrictness # | |
Ord Con | |
Ord Bang | |
Ord PatSynDir | |
Ord PatSynArgs | |
Defined in Language.Haskell.TH.Syntax Methods compare :: PatSynArgs -> PatSynArgs -> Ordering # (<) :: PatSynArgs -> PatSynArgs -> Bool # (<=) :: PatSynArgs -> PatSynArgs -> Bool # (>) :: PatSynArgs -> PatSynArgs -> Bool # (>=) :: PatSynArgs -> PatSynArgs -> Bool # max :: PatSynArgs -> PatSynArgs -> PatSynArgs # min :: PatSynArgs -> PatSynArgs -> PatSynArgs # | |
Ord TyVarBndr | |
Ord FamilyResultSig | |
Defined in Language.Haskell.TH.Syntax Methods compare :: FamilyResultSig -> FamilyResultSig -> Ordering # (<) :: FamilyResultSig -> FamilyResultSig -> Bool # (<=) :: FamilyResultSig -> FamilyResultSig -> Bool # (>) :: FamilyResultSig -> FamilyResultSig -> Bool # (>=) :: FamilyResultSig -> FamilyResultSig -> Bool # max :: FamilyResultSig -> FamilyResultSig -> FamilyResultSig # min :: FamilyResultSig -> FamilyResultSig -> FamilyResultSig # | |
Ord TyLit | |
Ord Role | |
Ord AnnLookup | |
Ord TimeLocale | |
Defined in Data.Time.Format.Locale Methods compare :: TimeLocale -> TimeLocale -> Ordering # (<) :: TimeLocale -> TimeLocale -> Bool # (<=) :: TimeLocale -> TimeLocale -> Bool # (>) :: TimeLocale -> TimeLocale -> Bool # (>=) :: TimeLocale -> TimeLocale -> Bool # max :: TimeLocale -> TimeLocale -> TimeLocale # min :: TimeLocale -> TimeLocale -> TimeLocale # | |
Ord LocalTime | |
Defined in Data.Time.LocalTime.Internal.LocalTime | |
Ord UTCTime | |
Defined in Data.Time.Clock.Internal.UTCTime | |
Ord DiffTime | |
Defined in Data.Time.Clock.Internal.DiffTime | |
Ord Day | |
Ord a => Ord [a] | |
Ord a => Ord (Maybe a) | |
Integral a => Ord (Ratio a) | Since: base-2.0.1 |
Ord (Ptr a) | |
Ord (FunPtr a) | |
Defined in GHC.Ptr | |
Ord p => Ord (Par1 p) | |
Ord (ForeignPtr a) | Since: base-2.1 |
Defined in GHC.ForeignPtr Methods compare :: ForeignPtr a -> ForeignPtr a -> Ordering # (<) :: ForeignPtr a -> ForeignPtr a -> Bool # (<=) :: ForeignPtr a -> ForeignPtr a -> Bool # (>) :: ForeignPtr a -> ForeignPtr a -> Bool # (>=) :: ForeignPtr a -> ForeignPtr a -> Bool # max :: ForeignPtr a -> ForeignPtr a -> ForeignPtr a # min :: ForeignPtr a -> ForeignPtr a -> ForeignPtr a # | |
Ord (Async a) | |
Defined in Control.Concurrent.Async | |
Ord (Fixed a) | |
Ord a => Ord (Min a) | |
Ord a => Ord (Max a) | |
Ord a => Ord (First a) | |
Ord a => Ord (Last a) | |
Ord m => Ord (WrappedMonoid m) | |
Defined in Data.Semigroup Methods compare :: WrappedMonoid m -> WrappedMonoid m -> Ordering # (<) :: WrappedMonoid m -> WrappedMonoid m -> Bool # (<=) :: WrappedMonoid m -> WrappedMonoid m -> Bool # (>) :: WrappedMonoid m -> WrappedMonoid m -> Bool # (>=) :: WrappedMonoid m -> WrappedMonoid m -> Bool # max :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # min :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # | |
Ord a => Ord (Option a) | |
Defined in Data.Semigroup | |
Ord a => Ord (ZipList a) | |
Ord a => Ord (Identity a) | |
Defined in Data.Functor.Identity | |
Ord a => Ord (Down a) | Since: base-4.6.0.0 |
Ord a => Ord (NonEmpty a) | |
Ord a => Ord (Vector a) | |
Defined in Data.Vector | |
Ord a => Ord (HashSet a) | |
Ord a => Ord (Set a) | |
Ord a => Ord (Seq a) | |
Ord a => Ord (IntMap a) | |
Defined in Data.IntMap.Internal | |
Ord a => Ord (ViewL a) | |
Defined in Data.Sequence.Internal | |
Ord a => Ord (ViewR a) | |
Defined in Data.Sequence.Internal | |
Ord a => Ord (DList a) | |
Ord a => Ord (Hashed a) | |
Defined in Data.Hashable.Class | |
Ord mono => Ord (NonNull mono) | |
Defined in Data.NonNull | |
(Ord a, PrimUnlifted a) => Ord (UnliftedArray a) | Lexicographic ordering. Subject to change between major versions. Since: primitive-0.6.4.0 |
Defined in Data.Primitive.UnliftedArray Methods compare :: UnliftedArray a -> UnliftedArray a -> Ordering # (<) :: UnliftedArray a -> UnliftedArray a -> Bool # (<=) :: UnliftedArray a -> UnliftedArray a -> Bool # (>) :: UnliftedArray a -> UnliftedArray a -> Bool # (>=) :: UnliftedArray a -> UnliftedArray a -> Bool # max :: UnliftedArray a -> UnliftedArray a -> UnliftedArray a # min :: UnliftedArray a -> UnliftedArray a -> UnliftedArray a # | |
(Ord a, Prim a) => Ord (PrimArray a) | Lexicographic ordering. Subject to change between major versions. Since: primitive-0.6.4.0 |
Defined in Data.Primitive.PrimArray | |
Ord a => Ord (SmallArray a) | Lexicographic ordering. Subject to change between major versions. |
Defined in Data.Primitive.SmallArray Methods compare :: SmallArray a -> SmallArray a -> Ordering # (<) :: SmallArray a -> SmallArray a -> Bool # (<=) :: SmallArray a -> SmallArray a -> Bool # (>) :: SmallArray a -> SmallArray a -> Bool # (>=) :: SmallArray a -> SmallArray a -> Bool # max :: SmallArray a -> SmallArray a -> SmallArray a # min :: SmallArray a -> SmallArray a -> SmallArray a # | |
Ord a => Ord (Array a) | Lexicographic ordering. Subject to change between major versions. |
Defined in Data.Primitive.Array | |
(Storable a, Ord a) => Ord (Vector a) | |
Defined in Data.Vector.Storable | |
(Prim a, Ord a) => Ord (Vector a) | |
Defined in Data.Vector.Primitive | |
(Ord a, Ord b) => Ord (Either a b) | |
Ord (V1 p) | Since: base-4.9.0.0 |
Ord (U1 p) | Since: base-4.9.0.0 |
Ord (TypeRep a) | Since: base-4.4.0.0 |
(Ord a, Ord b) => Ord (a, b) | |
Ord a => Ord (Arg a b) | Since: base-4.9.0.0 |
Ord (Proxy s) | Since: base-4.7.0.0 |
(Ord k, Ord v) => Ord (HashMap k v) | The order is total. Note: Because the hash is not guaranteed to be stable across library
versions, OSes, or architectures, neither is an actual order of elements in
|
Defined in Data.HashMap.Base | |
(Ord k, Ord v) => Ord (Map k v) | |
(Ord1 m, Ord a) => Ord (MaybeT m a) | |
Defined in Control.Monad.Trans.Maybe | |
(Ord1 f, Ord a) => Ord (Cofree f a) | |
Defined in Control.Comonad.Cofree | |
(Ord1 f, Ord a) => Ord (Free f a) | |
Defined in Control.Monad.Free | |
(Ord1 m, Ord a) => Ord (ListT m a) | |
Ord (f p) => Ord (Rec1 f p) | |
Defined in GHC.Generics | |
Ord (URec (Ptr ()) p) | |
Defined in GHC.Generics Methods compare :: URec (Ptr ()) p -> URec (Ptr ()) p -> Ordering # (<) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (<=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (>) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (>=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # max :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p # min :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p # | |
Ord (URec Char p) | |
Defined in GHC.Generics | |
Ord (URec Double p) | |
Defined in GHC.Generics Methods compare :: URec Double p -> URec Double p -> Ordering # (<) :: URec Double p -> URec Double p -> Bool # (<=) :: URec Double p -> URec Double p -> Bool # (>) :: URec Double p -> URec Double p -> Bool # (>=) :: URec Double p -> URec Double p -> Bool # | |
Ord (URec Float p) | |
Defined in GHC.Generics | |
Ord (URec Int p) | |
Ord (URec Word p) | |
Defined in GHC.Generics | |
(Ord a, Ord b, Ord c) => Ord (a, b, c) | |
Ord a => Ord (Const a b) | |
Ord (a :~: b) | |
Defined in Data.Type.Equality | |
Ord (p a a) => Ord (Join p a) | |
Defined in Data.Bifunctor.Join | |
(Ord1 f, Ord a) => Ord (IdentityT f a) | |
Defined in Control.Monad.Trans.Identity Methods compare :: IdentityT f a -> IdentityT f a -> Ordering # (<) :: IdentityT f a -> IdentityT f a -> Bool # (<=) :: IdentityT f a -> IdentityT f a -> Bool # (>) :: IdentityT f a -> IdentityT f a -> Bool # (>=) :: IdentityT f a -> IdentityT f a -> Bool # | |
(Ord a, Ord (f b)) => Ord (FreeF f a b) | |
Defined in Control.Monad.Trans.Free | |
(Ord1 f, Ord1 m, Ord a) => Ord (FreeT f m a) | |
Defined in Control.Monad.Trans.Free | |
(Ord e, Ord1 m, Ord a) => Ord (ErrorT e m a) | |
Defined in Control.Monad.Trans.Error | |
(Ord w, Ord1 m, Ord a) => Ord (WriterT w m a) | |
Defined in Control.Monad.Trans.Writer.Lazy Methods compare :: WriterT w m a -> WriterT w m a -> Ordering # (<) :: WriterT w m a -> WriterT w m a -> Bool # (<=) :: WriterT w m a -> WriterT w m a -> Bool # (>) :: WriterT w m a -> WriterT w m a -> Bool # (>=) :: WriterT w m a -> WriterT w m a -> Bool # | |
(Ord w, Ord1 m, Ord a) => Ord (WriterT w m a) | |
Defined in Control.Monad.Trans.Writer.Strict Methods compare :: WriterT w m a -> WriterT w m a -> Ordering # (<) :: WriterT w m a -> WriterT w m a -> Bool # (<=) :: WriterT w m a -> WriterT w m a -> Bool # (>) :: WriterT w m a -> WriterT w m a -> Bool # (>=) :: WriterT w m a -> WriterT w m a -> Bool # | |
Ord b => Ord (Tagged s b) | |
Ord c => Ord (K1 i c p) | |
Defined in GHC.Generics | |
(Ord (f p), Ord (g p)) => Ord ((f :+: g) p) | |
Defined in GHC.Generics | |
(Ord (f p), Ord (g p)) => Ord ((f :*: g) p) | |
Defined in GHC.Generics | |
(Ord a, Ord b, Ord c, Ord d) => Ord (a, b, c, d) | |
Defined in GHC.Classes | |
(Ord1 f, Ord1 g, Ord a) => Ord (Product f g a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product Methods compare :: Product f g a -> Product f g a -> Ordering # (<) :: Product f g a -> Product f g a -> Bool # (<=) :: Product f g a -> Product f g a -> Bool # (>) :: Product f g a -> Product f g a -> Bool # (>=) :: Product f g a -> Product f g a -> Bool # | |
(Ord1 f, Ord1 g, Ord a) => Ord (Sum f g a) | Since: base-4.9.0.0 |
Ord (a :~~: b) | Since: base-4.10.0.0 |
Ord (f p) => Ord (M1 i c f p) | |
Ord (f (g p)) => Ord ((f :.: g) p) | |
Defined in GHC.Generics | |
(Ord a, Ord b, Ord c, Ord d, Ord e) => Ord (a, b, c, d, e) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e) -> (a, b, c, d, e) -> Ordering # (<) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # (<=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # (>) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # (>=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # max :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) # min :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) # | |
(Ord1 f, Ord1 g, Ord a) => Ord (Compose f g a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose Methods compare :: Compose f g a -> Compose f g a -> Ordering # (<) :: Compose f g a -> Compose f g a -> Bool # (<=) :: Compose f g a -> Compose f g a -> Bool # (>) :: Compose f g a -> Compose f g a -> Bool # (>=) :: Compose f g a -> Compose f g a -> Bool # | |
Ord (p a b) => Ord (WrappedBifunctor p a b) | |
Defined in Data.Bifunctor.Wrapped Methods compare :: WrappedBifunctor p a b -> WrappedBifunctor p a b -> Ordering # (<) :: WrappedBifunctor p a b -> WrappedBifunctor p a b -> Bool # (<=) :: WrappedBifunctor p a b -> WrappedBifunctor p a b -> Bool # (>) :: WrappedBifunctor p a b -> WrappedBifunctor p a b -> Bool # (>=) :: WrappedBifunctor p a b -> WrappedBifunctor p a b -> Bool # max :: WrappedBifunctor p a b -> WrappedBifunctor p a b -> WrappedBifunctor p a b # min :: WrappedBifunctor p a b -> WrappedBifunctor p a b -> WrappedBifunctor p a b # | |
Ord (g b) => Ord (Joker g a b) | |
Defined in Data.Bifunctor.Joker | |
Ord (p b a) => Ord (Flip p a b) | |
Defined in Data.Bifunctor.Flip | |
Ord (f a) => Ord (Clown f a b) | |
Defined in Data.Bifunctor.Clown | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f) => Ord (a, b, c, d, e, f) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Ordering # (<) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # (<=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # (>) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # (>=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # max :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) # min :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) # | |
(Ord (p a b), Ord (q a b)) => Ord (Sum p q a b) | |
Defined in Data.Bifunctor.Sum | |
(Ord (f a b), Ord (g a b)) => Ord (Product f g a b) | |
Defined in Data.Bifunctor.Product Methods compare :: Product f g a b -> Product f g a b -> Ordering # (<) :: Product f g a b -> Product f g a b -> Bool # (<=) :: Product f g a b -> Product f g a b -> Bool # (>) :: Product f g a b -> Product f g a b -> Bool # (>=) :: Product f g a b -> Product f g a b -> Bool # max :: Product f g a b -> Product f g a b -> Product f g a b # min :: Product f g a b -> Product f g a b -> Product f g a b # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g) => Ord (a, b, c, d, e, f, g) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Ordering # (<) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # (<=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # (>) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # (>=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # max :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) # min :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) # | |
Ord (f (p a b)) => Ord (Tannen f p a b) | |
Defined in Data.Bifunctor.Tannen Methods compare :: Tannen f p a b -> Tannen f p a b -> Ordering # (<) :: Tannen f p a b -> Tannen f p a b -> Bool # (<=) :: Tannen f p a b -> Tannen f p a b -> Bool # (>) :: Tannen f p a b -> Tannen f p a b -> Bool # (>=) :: Tannen f p a b -> Tannen f p a b -> Bool # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h) => Ord (a, b, c, d, e, f, g, h) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Ordering # (<) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # (<=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # (>) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # (>=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # max :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) # min :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i) => Ord (a, b, c, d, e, f, g, h, i) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # max :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) # min :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) # | |
Ord (p (f a) (g b)) => Ord (Biff p f g a b) | |
Defined in Data.Bifunctor.Biff Methods compare :: Biff p f g a b -> Biff p f g a b -> Ordering # (<) :: Biff p f g a b -> Biff p f g a b -> Bool # (<=) :: Biff p f g a b -> Biff p f g a b -> Bool # (>) :: Biff p f g a b -> Biff p f g a b -> Bool # (>=) :: Biff p f g a b -> Biff p f g a b -> Bool # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j) => Ord (a, b, c, d, e, f, g, h, i, j) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) # min :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k) => Ord (a, b, c, d, e, f, g, h, i, j, k) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) # min :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l) => Ord (a, b, c, d, e, f, g, h, i, j, k, l) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) # min :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) # min :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) # min :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n, Ord o) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) # min :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) # |
Parsing of String
s, producing values.
Derived instances of Read
make the following assumptions, which
derived instances of Show
obey:
- If the constructor is defined to be an infix operator, then the
derived
Read
instance will parse only infix applications of the constructor (not the prefix form). - Associativity is not used to reduce the occurrence of parentheses, although precedence may be.
- If the constructor is defined using record syntax, the derived
Read
will parse only the record-syntax form, and furthermore, the fields must be given in the same order as the original declaration. - The derived
Read
instance allows arbitrary Haskell whitespace between tokens of the input string. Extra parentheses are also allowed.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Read
in Haskell 2010 is equivalent to
instance (Read a) => Read (Tree a) where readsPrec d r = readParen (d > app_prec) (\r -> [(Leaf m,t) | ("Leaf",s) <- lex r, (m,t) <- readsPrec (app_prec+1) s]) r ++ readParen (d > up_prec) (\r -> [(u:^:v,w) | (u,s) <- readsPrec (up_prec+1) r, (":^:",t) <- lex s, (v,w) <- readsPrec (up_prec+1) t]) r where app_prec = 10 up_prec = 5
Note that right-associativity of :^:
is unused.
The derived instance in GHC is equivalent to
instance (Read a) => Read (Tree a) where readPrec = parens $ (prec app_prec $ do Ident "Leaf" <- lexP m <- step readPrec return (Leaf m)) +++ (prec up_prec $ do u <- step readPrec Symbol ":^:" <- lexP v <- step readPrec return (u :^: v)) where app_prec = 10 up_prec = 5 readListPrec = readListPrecDefault
Why do both readsPrec
and readPrec
exist, and why does GHC opt to
implement readPrec
in derived Read
instances instead of readsPrec
?
The reason is that readsPrec
is based on the ReadS
type, and although
ReadS
is mentioned in the Haskell 2010 Report, it is not a very efficient
parser data structure.
readPrec
, on the other hand, is based on a much more efficient ReadPrec
datatype (a.k.a "new-style parsers"), but its definition relies on the use
of the RankNTypes
language extension. Therefore, readPrec
(and its
cousin, readListPrec
) are marked as GHC-only. Nevertheless, it is
recommended to use readPrec
instead of readsPrec
whenever possible
for the efficiency improvements it brings.
As mentioned above, derived Read
instances in GHC will implement
readPrec
instead of readsPrec
. The default implementations of
readsPrec
(and its cousin, readList
) will simply use readPrec
under
the hood. If you are writing a Read
instance by hand, it is recommended
to write it like so:
instanceRead
T wherereadPrec
= ...readListPrec
=readListPrecDefault
Instances
Read Bool | Since: base-2.1 |
Read Char | Since: base-2.1 |
Read Double | Since: base-2.1 |
Read Float | Since: base-2.1 |
Read Int | Since: base-2.1 |
Read Int8 | Since: base-2.1 |
Read Int16 | Since: base-2.1 |
Read Int32 | Since: base-2.1 |
Read Int64 | Since: base-2.1 |
Read Integer | Since: base-2.1 |
Read Natural | Since: base-4.8.0.0 |
Read Ordering | Since: base-2.1 |
Read Word | Since: base-4.5.0.0 |
Read Word8 | Since: base-2.1 |
Read Word16 | Since: base-2.1 |
Read Word32 | Since: base-2.1 |
Read Word64 | Since: base-2.1 |
Read () | Since: base-2.1 |
Read Void | Reading a Since: base-4.8.0.0 |
Read Version | |
Read ExitCode | |
Read BufferMode | |
Defined in GHC.IO.Handle.Types Methods readsPrec :: Int -> ReadS BufferMode # readList :: ReadS [BufferMode] # readPrec :: ReadPrec BufferMode # readListPrec :: ReadPrec [BufferMode] # | |
Read Newline | |
Read NewlineMode | |
Defined in GHC.IO.Handle.Types Methods readsPrec :: Int -> ReadS NewlineMode # readList :: ReadS [NewlineMode] # readPrec :: ReadPrec NewlineMode # readListPrec :: ReadPrec [NewlineMode] # | |
Read SeekMode | |
Read Fixity | |
Read Associativity | |
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS Associativity # readList :: ReadS [Associativity] # | |
Read SourceUnpackedness | |
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS SourceUnpackedness # readList :: ReadS [SourceUnpackedness] # | |
Read SourceStrictness | |
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS SourceStrictness # readList :: ReadS [SourceStrictness] # | |
Read DecidedStrictness | |
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS DecidedStrictness # readList :: ReadS [DecidedStrictness] # | |
Read CChar | |
Read CSChar | |
Read CUChar | |
Read CShort | |
Read CUShort | |
Read CInt | |
Read CUInt | |
Read CLong | |
Read CULong | |
Read CLLong | |
Read CULLong | |
Read CBool | |
Read CFloat | |
Read CDouble | |
Read CPtrdiff | |
Read CSize | |
Read CWchar | |
Read CSigAtomic | |
Defined in Foreign.C.Types Methods readsPrec :: Int -> ReadS CSigAtomic # readList :: ReadS [CSigAtomic] # readPrec :: ReadPrec CSigAtomic # readListPrec :: ReadPrec [CSigAtomic] # | |
Read CClock | |
Read CTime | |
Read CUSeconds | |
Read CSUSeconds | |
Defined in Foreign.C.Types Methods readsPrec :: Int -> ReadS CSUSeconds # readList :: ReadS [CSUSeconds] # readPrec :: ReadPrec CSUSeconds # readListPrec :: ReadPrec [CSUSeconds] # | |
Read CIntPtr | |
Read CUIntPtr | |
Read CIntMax | |
Read CUIntMax | |
Read WordPtr | |
Read IntPtr | |
Read IOMode | |
Read Lexeme | Since: base-2.1 |
Read GeneralCategory | |
Defined in GHC.Read Methods readsPrec :: Int -> ReadS GeneralCategory # readList :: ReadS [GeneralCategory] # | |
Read IntSet | |
Read ByteString | |
Defined in Data.ByteString.Internal Methods readsPrec :: Int -> ReadS ByteString # readList :: ReadS [ByteString] # readPrec :: ReadPrec ByteString # readListPrec :: ReadPrec [ByteString] # | |
Read ShortByteString | |
Defined in Data.ByteString.Short.Internal Methods readsPrec :: Int -> ReadS ShortByteString # readList :: ReadS [ShortByteString] # | |
Read ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods readsPrec :: Int -> ReadS ByteString # readList :: ReadS [ByteString] # readPrec :: ReadPrec ByteString # readListPrec :: ReadPrec [ByteString] # | |
Read a => Read [a] | Since: base-2.1 |
Read a => Read (Maybe a) | Since: base-2.1 |
(Integral a, Read a) => Read (Ratio a) | Since: base-2.1 |
Read p => Read (Par1 p) | |
Read a => Read (Complex a) | |
HasResolution a => Read (Fixed a) | Since: base-4.3.0.0 |
Read a => Read (Min a) | |
Read a => Read (Max a) | |
Read a => Read (First a) | |
Read a => Read (Last a) | |
Read m => Read (WrappedMonoid m) | |
Defined in Data.Semigroup Methods readsPrec :: Int -> ReadS (WrappedMonoid m) # readList :: ReadS [WrappedMonoid m] # readPrec :: ReadPrec (WrappedMonoid m) # readListPrec :: ReadPrec [WrappedMonoid m] # | |
Read a => Read (Option a) | |
Read a => Read (ZipList a) | |
Read a => Read (Identity a) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
Read a => Read (Down a) | Since: base-4.7.0.0 |
Read a => Read (NonEmpty a) | |
Read a => Read (Vector a) | |
(Eq a, Hashable a, Read a) => Read (HashSet a) | |
(Read a, Ord a) => Read (Set a) | |
Read a => Read (Seq a) | |
Read e => Read (IntMap e) | |
Read a => Read (Tree a) | |
Read a => Read (ViewL a) | |
Read a => Read (ViewR a) | |
Read a => Read (DList a) | |
Read mono => Read (NonNull mono) | |
Read a => Read (SmallArray a) | |
Defined in Data.Primitive.SmallArray Methods readsPrec :: Int -> ReadS (SmallArray a) # readList :: ReadS [SmallArray a] # readPrec :: ReadPrec (SmallArray a) # readListPrec :: ReadPrec [SmallArray a] # | |
Read a => Read (Array a) | |
(Read a, Storable a) => Read (Vector a) | |
(Read a, Prim a) => Read (Vector a) | |
(Read a, Read b) => Read (Either a b) | |
Read (V1 p) | Since: base-4.9.0.0 |
Read (U1 p) | Since: base-4.9.0.0 |
(Read a, Read b) => Read (a, b) | Since: base-2.1 |
(Ix a, Read a, Read b) => Read (Array a b) | Since: base-2.1 |
(Read a, Read b) => Read (Arg a b) | |
Read (Proxy t) | Since: base-4.7.0.0 |
(Eq k, Hashable k, Read k, Read e) => Read (HashMap k e) | |
(Ord k, Read k, Read e) => Read (Map k e) | |
(Read1 m, Read a) => Read (MaybeT m a) | |
(Read1 f, Read a) => Read (Cofree f a) | |
(Read1 f, Read a) => Read (Free f a) | |
(Read1 m, Read a) => Read (ListT m a) | |
Read (f p) => Read (Rec1 f p) | |
(Read a, Read b, Read c) => Read (a, b, c) | Since: base-2.1 |
Read a => Read (Const a b) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
a ~ b => Read (a :~: b) | Since: base-4.7.0.0 |
Read (p a a) => Read (Join p a) | |
(Read1 f, Read a) => Read (IdentityT f a) | |
(Read a, Read (f b)) => Read (FreeF f a b) | |
(Read1 f, Read1 m, Read a) => Read (FreeT f m a) | |
(Read e, Read1 m, Read a) => Read (ErrorT e m a) | |
(Read w, Read1 m, Read a) => Read (WriterT w m a) | |
(Read w, Read1 m, Read a) => Read (WriterT w m a) | |
Read b => Read (Tagged s b) | |
Read c => Read (K1 i c p) | |
(Read (f p), Read (g p)) => Read ((f :+: g) p) | |
(Read (f p), Read (g p)) => Read ((f :*: g) p) | |
(Read a, Read b, Read c, Read d) => Read (a, b, c, d) | Since: base-2.1 |
(Read1 f, Read1 g, Read a) => Read (Product f g a) | Since: base-4.9.0.0 |
(Read1 f, Read1 g, Read a) => Read (Sum f g a) | Since: base-4.9.0.0 |
a ~~ b => Read (a :~~: b) | Since: base-4.10.0.0 |
Read (f p) => Read (M1 i c f p) | |
Read (f (g p)) => Read ((f :.: g) p) | |
(Read a, Read b, Read c, Read d, Read e) => Read (a, b, c, d, e) | Since: base-2.1 |
(Read1 f, Read1 g, Read a) => Read (Compose f g a) | Since: base-4.9.0.0 |
Read (p a b) => Read (WrappedBifunctor p a b) | |
Defined in Data.Bifunctor.Wrapped Methods readsPrec :: Int -> ReadS (WrappedBifunctor p a b) # readList :: ReadS [WrappedBifunctor p a b] # readPrec :: ReadPrec (WrappedBifunctor p a b) # readListPrec :: ReadPrec [WrappedBifunctor p a b] # | |
Read (g b) => Read (Joker g a b) | |
Read (p b a) => Read (Flip p a b) | |
Read (f a) => Read (Clown f a b) | |
(Read a, Read b, Read c, Read d, Read e, Read f) => Read (a, b, c, d, e, f) | Since: base-2.1 |
(Read (p a b), Read (q a b)) => Read (Sum p q a b) | |
(Read (f a b), Read (g a b)) => Read (Product f g a b) | |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g) => Read (a, b, c, d, e, f, g) | Since: base-2.1 |
Read (f (p a b)) => Read (Tannen f p a b) | |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h) => Read (a, b, c, d, e, f, g, h) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i) => Read (a, b, c, d, e, f, g, h, i) | Since: base-2.1 |
Read (p (f a) (g b)) => Read (Biff p f g a b) | |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j) => Read (a, b, c, d, e, f, g, h, i, j) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k) => Read (a, b, c, d, e, f, g, h, i, j, k) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l) => Read (a, b, c, d, e, f, g, h, i, j, k, l) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n, Read o) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | Since: base-2.1 |
Defined in GHC.Read |
class (Num a, Ord a) => Real a where #
Minimal complete definition
Methods
toRational :: a -> Rational #
the rational equivalent of its real argument with full precision
Instances
class (RealFrac a, Floating a) => RealFloat a where #
Efficient, machine-independent access to the components of a floating-point number.
Minimal complete definition
floatRadix, floatDigits, floatRange, decodeFloat, encodeFloat, isNaN, isInfinite, isDenormalized, isNegativeZero, isIEEE
Methods
floatRadix :: a -> Integer #
a constant function, returning the radix of the representation
(often 2
)
floatDigits :: a -> Int #
a constant function, returning the number of digits of
floatRadix
in the significand
floatRange :: a -> (Int, Int) #
a constant function, returning the lowest and highest values the exponent may assume
decodeFloat :: a -> (Integer, Int) #
The function decodeFloat
applied to a real floating-point
number returns the significand expressed as an Integer
and an
appropriately scaled exponent (an Int
). If
yields decodeFloat
x(m,n)
, then x
is equal in value to m*b^^n
, where b
is the floating-point radix, and furthermore, either m
and n
are both zero or else b^(d-1) <=
, where abs
m < b^dd
is
the value of
.
In particular, floatDigits
x
. If the type
contains a negative zero, also decodeFloat
0 = (0,0)
.
The result of decodeFloat
(-0.0) = (0,0)
is unspecified if either of
decodeFloat
x
or isNaN
x
is isInfinite
xTrue
.
encodeFloat :: Integer -> Int -> a #
encodeFloat
performs the inverse of decodeFloat
in the
sense that for finite x
with the exception of -0.0
,
.
uncurry
encodeFloat
(decodeFloat
x) = x
is one of the two closest representable
floating-point numbers to encodeFloat
m nm*b^^n
(or ±Infinity
if overflow
occurs); usually the closer, but if m
contains too many bits,
the result may be rounded in the wrong direction.
exponent
corresponds to the second component of decodeFloat
.
and for finite nonzero exponent
0 = 0x
,
.
If exponent
x = snd (decodeFloat
x) + floatDigits
xx
is a finite floating-point number, it is equal in value to
, where significand
x * b ^^ exponent
xb
is the
floating-point radix.
The behaviour is unspecified on infinite or NaN
values.
significand :: a -> a #
The first component of decodeFloat
, scaled to lie in the open
interval (-1
,1
), either 0.0
or of absolute value >= 1/b
,
where b
is the floating-point radix.
The behaviour is unspecified on infinite or NaN
values.
scaleFloat :: Int -> a -> a #
multiplies a floating-point number by an integer power of the radix
True
if the argument is an IEEE "not-a-number" (NaN) value
isInfinite :: a -> Bool #
True
if the argument is an IEEE infinity or negative infinity
isDenormalized :: a -> Bool #
True
if the argument is too small to be represented in
normalized format
isNegativeZero :: a -> Bool #
True
if the argument is an IEEE negative zero
True
if the argument is an IEEE floating point number
a version of arctangent taking two real floating-point arguments.
For real floating x
and y
,
computes the angle
(from the positive x-axis) of the vector from the origin to the
point atan2
y x(x,y)
.
returns a value in the range [atan2
y x-pi
,
pi
]. It follows the Common Lisp semantics for the origin when
signed zeroes are supported.
, with atan2
y 1y
in a type
that is RealFloat
, should return the same value as
.
A default definition of atan
yatan2
is provided, but implementors
can provide a more accurate implementation.
Instances
class (Real a, Fractional a) => RealFrac a where #
Extracting components of fractions.
Minimal complete definition
Methods
properFraction :: Integral b => a -> (b, a) #
The function properFraction
takes a real fractional number x
and returns a pair (n,f)
such that x = n+f
, and:
n
is an integral number with the same sign asx
; andf
is a fraction with the same type and sign asx
, and with absolute value less than1
.
The default definitions of the ceiling
, floor
, truncate
and round
functions are in terms of properFraction
.
truncate :: Integral b => a -> b #
returns the integer nearest truncate
xx
between zero and x
round :: Integral b => a -> b #
returns the nearest integer to round
xx
;
the even integer if x
is equidistant between two integers
ceiling :: Integral b => a -> b #
returns the least integer not less than ceiling
xx
floor :: Integral b => a -> b #
returns the greatest integer not greater than floor
xx
Conversion of values to readable String
s.
Derived instances of Show
have the following properties, which
are compatible with derived instances of Read
:
- The result of
show
is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used. - If the constructor is defined to be an infix operator, then
showsPrec
will produce infix applications of the constructor. - the representation will be enclosed in parentheses if the
precedence of the top-level constructor in
x
is less thand
(associativity is ignored). Thus, ifd
is0
then the result is never surrounded in parentheses; ifd
is11
it is always surrounded in parentheses, unless it is an atomic expression. - If the constructor is defined using record syntax, then
show
will produce the record-syntax form, with the fields given in the same order as the original declaration.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Show
is equivalent to
instance (Show a) => Show (Tree a) where showsPrec d (Leaf m) = showParen (d > app_prec) $ showString "Leaf " . showsPrec (app_prec+1) m where app_prec = 10 showsPrec d (u :^: v) = showParen (d > up_prec) $ showsPrec (up_prec+1) u . showString " :^: " . showsPrec (up_prec+1) v where up_prec = 5
Note that right-associativity of :^:
is ignored. For example,
produces the stringshow
(Leaf 1 :^: Leaf 2 :^: Leaf 3)"Leaf 1 :^: (Leaf 2 :^: Leaf 3)"
.
Instances
The class Typeable
allows a concrete representation of a type to
be calculated.
Minimal complete definition
typeRep#
Class for string-like datastructures; used by the overloaded string extension (-XOverloadedStrings in GHC).
Minimal complete definition
Methods
fromString :: String -> a #
Instances
class Functor f => Applicative (f :: * -> *) where #
A functor with application, providing operations to
A minimal complete definition must include implementations of pure
and of either <*>
or liftA2
. If it defines both, then they must behave
the same as their default definitions:
(<*>
) =liftA2
id
liftA2
f x y = f<$>
x<*>
y
Further, any definition must satisfy the following:
- identity
pure
id
<*>
v = v- composition
pure
(.)<*>
u<*>
v<*>
w = u<*>
(v<*>
w)- homomorphism
pure
f<*>
pure
x =pure
(f x)- interchange
u
<*>
pure
y =pure
($
y)<*>
u
The other methods have the following default definitions, which may be overridden with equivalent specialized implementations:
As a consequence of these laws, the Functor
instance for f
will satisfy
It may be useful to note that supposing
forall x y. p (q x y) = f x . g y
it follows from the above that
liftA2
p (liftA2
q u v) =liftA2
f u .liftA2
g v
If f
is also a Monad
, it should satisfy
(which implies that pure
and <*>
satisfy the applicative functor laws).
Methods
Lift a value.
(<*>) :: f (a -> b) -> f a -> f b infixl 4 #
Sequential application.
A few functors support an implementation of <*>
that is more
efficient than the default one.
liftA2 :: (a -> b -> c) -> f a -> f b -> f c #
Lift a binary function to actions.
Some functors support an implementation of liftA2
that is more
efficient than the default one. In particular, if fmap
is an
expensive operation, it is likely better to use liftA2
than to
fmap
over the structure and then use <*>
.
(*>) :: f a -> f b -> f b infixl 4 #
Sequence actions, discarding the value of the first argument.
(<*) :: f a -> f b -> f a infixl 4 #
Sequence actions, discarding the value of the second argument.
Instances
class Foldable (t :: * -> *) #
Data structures that can be folded.
For example, given a data type
data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)
a suitable instance would be
instance Foldable Tree where foldMap f Empty = mempty foldMap f (Leaf x) = f x foldMap f (Node l k r) = foldMap f l `mappend` f k `mappend` foldMap f r
This is suitable even for abstract types, as the monoid is assumed
to satisfy the monoid laws. Alternatively, one could define foldr
:
instance Foldable Tree where foldr f z Empty = z foldr f z (Leaf x) = f x z foldr f z (Node l k r) = foldr f (f k (foldr f z r)) l
Foldable
instances are expected to satisfy the following laws:
foldr f z t = appEndo (foldMap (Endo . f) t ) z
foldl f z t = appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z
fold = foldMap id
length = getSum . foldMap (Sum . const 1)
sum
, product
, maximum
, and minimum
should all be essentially
equivalent to foldMap
forms, such as
sum = getSum . foldMap Sum
but may be less defined.
If the type is also a Functor
instance, it should satisfy
foldMap f = fold . fmap f
which implies that
foldMap f . fmap g = foldMap (f . g)
Instances
Foldable [] | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => [m] -> m # foldMap :: Monoid m => (a -> m) -> [a] -> m # foldr :: (a -> b -> b) -> b -> [a] -> b # foldr' :: (a -> b -> b) -> b -> [a] -> b # foldl :: (b -> a -> b) -> b -> [a] -> b # foldl' :: (b -> a -> b) -> b -> [a] -> b # foldr1 :: (a -> a -> a) -> [a] -> a # foldl1 :: (a -> a -> a) -> [a] -> a # elem :: Eq a => a -> [a] -> Bool # maximum :: Ord a => [a] -> a # | |
Foldable Maybe | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |
Foldable Par1 | |
Defined in Data.Foldable Methods fold :: Monoid m => Par1 m -> m # foldMap :: Monoid m => (a -> m) -> Par1 a -> m # foldr :: (a -> b -> b) -> b -> Par1 a -> b # foldr' :: (a -> b -> b) -> b -> Par1 a -> b # foldl :: (b -> a -> b) -> b -> Par1 a -> b # foldl' :: (b -> a -> b) -> b -> Par1 a -> b # foldr1 :: (a -> a -> a) -> Par1 a -> a # foldl1 :: (a -> a -> a) -> Par1 a -> a # elem :: Eq a => a -> Par1 a -> Bool # maximum :: Ord a => Par1 a -> a # | |
Foldable Complex | |
Defined in Data.Complex Methods fold :: Monoid m => Complex m -> m # foldMap :: Monoid m => (a -> m) -> Complex a -> m # foldr :: (a -> b -> b) -> b -> Complex a -> b # foldr' :: (a -> b -> b) -> b -> Complex a -> b # foldl :: (b -> a -> b) -> b -> Complex a -> b # foldl' :: (b -> a -> b) -> b -> Complex a -> b # foldr1 :: (a -> a -> a) -> Complex a -> a # foldl1 :: (a -> a -> a) -> Complex a -> a # elem :: Eq a => a -> Complex a -> Bool # maximum :: Ord a => Complex a -> a # minimum :: Ord a => Complex a -> a # | |
Foldable Min | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Min m -> m # foldMap :: Monoid m => (a -> m) -> Min a -> m # foldr :: (a -> b -> b) -> b -> Min a -> b # foldr' :: (a -> b -> b) -> b -> Min a -> b # foldl :: (b -> a -> b) -> b -> Min a -> b # foldl' :: (b -> a -> b) -> b -> Min a -> b # foldr1 :: (a -> a -> a) -> Min a -> a # foldl1 :: (a -> a -> a) -> Min a -> a # elem :: Eq a => a -> Min a -> Bool # maximum :: Ord a => Min a -> a # | |
Foldable Max | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Max m -> m # foldMap :: Monoid m => (a -> m) -> Max a -> m # foldr :: (a -> b -> b) -> b -> Max a -> b # foldr' :: (a -> b -> b) -> b -> Max a -> b # foldl :: (b -> a -> b) -> b -> Max a -> b # foldl' :: (b -> a -> b) -> b -> Max a -> b # foldr1 :: (a -> a -> a) -> Max a -> a # foldl1 :: (a -> a -> a) -> Max a -> a # elem :: Eq a => a -> Max a -> Bool # maximum :: Ord a => Max a -> a # | |
Foldable First | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |
Foldable Last | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
Foldable Option | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Option m -> m # foldMap :: Monoid m => (a -> m) -> Option a -> m # foldr :: (a -> b -> b) -> b -> Option a -> b # foldr' :: (a -> b -> b) -> b -> Option a -> b # foldl :: (b -> a -> b) -> b -> Option a -> b # foldl' :: (b -> a -> b) -> b -> Option a -> b # foldr1 :: (a -> a -> a) -> Option a -> a # foldl1 :: (a -> a -> a) -> Option a -> a # elem :: Eq a => a -> Option a -> Bool # maximum :: Ord a => Option a -> a # minimum :: Ord a => Option a -> a # | |
Foldable ZipList | |
Defined in Control.Applicative Methods fold :: Monoid m => ZipList m -> m # foldMap :: Monoid m => (a -> m) -> ZipList a -> m # foldr :: (a -> b -> b) -> b -> ZipList a -> b # foldr' :: (a -> b -> b) -> b -> ZipList a -> b # foldl :: (b -> a -> b) -> b -> ZipList a -> b # foldl' :: (b -> a -> b) -> b -> ZipList a -> b # foldr1 :: (a -> a -> a) -> ZipList a -> a # foldl1 :: (a -> a -> a) -> ZipList a -> a # elem :: Eq a => a -> ZipList a -> Bool # maximum :: Ord a => ZipList a -> a # minimum :: Ord a => ZipList a -> a # | |
Foldable Identity | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity Methods fold :: Monoid m => Identity m -> m # foldMap :: Monoid m => (a -> m) -> Identity a -> m # foldr :: (a -> b -> b) -> b -> Identity a -> b # foldr' :: (a -> b -> b) -> b -> Identity a -> b # foldl :: (b -> a -> b) -> b -> Identity a -> b # foldl' :: (b -> a -> b) -> b -> Identity a -> b # foldr1 :: (a -> a -> a) -> Identity a -> a # foldl1 :: (a -> a -> a) -> Identity a -> a # elem :: Eq a => a -> Identity a -> Bool # maximum :: Ord a => Identity a -> a # minimum :: Ord a => Identity a -> a # | |
Foldable First | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |
Foldable Last | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
Foldable Dual | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Dual m -> m # foldMap :: Monoid m => (a -> m) -> Dual a -> m # foldr :: (a -> b -> b) -> b -> Dual a -> b # foldr' :: (a -> b -> b) -> b -> Dual a -> b # foldl :: (b -> a -> b) -> b -> Dual a -> b # foldl' :: (b -> a -> b) -> b -> Dual a -> b # foldr1 :: (a -> a -> a) -> Dual a -> a # foldl1 :: (a -> a -> a) -> Dual a -> a # elem :: Eq a => a -> Dual a -> Bool # maximum :: Ord a => Dual a -> a # | |
Foldable Sum | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Sum m -> m # foldMap :: Monoid m => (a -> m) -> Sum a -> m # foldr :: (a -> b -> b) -> b -> Sum a -> b # foldr' :: (a -> b -> b) -> b -> Sum a -> b # foldl :: (b -> a -> b) -> b -> Sum a -> b # foldl' :: (b -> a -> b) -> b -> Sum a -> b # foldr1 :: (a -> a -> a) -> Sum a -> a # foldl1 :: (a -> a -> a) -> Sum a -> a # elem :: Eq a => a -> Sum a -> Bool # maximum :: Ord a => Sum a -> a # | |
Foldable Product | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Product m -> m # foldMap :: Monoid m => (a -> m) -> Product a -> m # foldr :: (a -> b -> b) -> b -> Product a -> b # foldr' :: (a -> b -> b) -> b -> Product a -> b # foldl :: (b -> a -> b) -> b -> Product a -> b # foldl' :: (b -> a -> b) -> b -> Product a -> b # foldr1 :: (a -> a -> a) -> Product a -> a # foldl1 :: (a -> a -> a) -> Product a -> a # elem :: Eq a => a -> Product a -> Bool # maximum :: Ord a => Product a -> a # minimum :: Ord a => Product a -> a # | |
Foldable NonEmpty | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => NonEmpty m -> m # foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m # foldr :: (a -> b -> b) -> b -> NonEmpty a -> b # foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b # foldl :: (b -> a -> b) -> b -> NonEmpty a -> b # foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b # foldr1 :: (a -> a -> a) -> NonEmpty a -> a # foldl1 :: (a -> a -> a) -> NonEmpty a -> a # elem :: Eq a => a -> NonEmpty a -> Bool # maximum :: Ord a => NonEmpty a -> a # minimum :: Ord a => NonEmpty a -> a # | |
Foldable Vector | |
Defined in Data.Vector Methods fold :: Monoid m => Vector m -> m # foldMap :: Monoid m => (a -> m) -> Vector a -> m # foldr :: (a -> b -> b) -> b -> Vector a -> b # foldr' :: (a -> b -> b) -> b -> Vector a -> b # foldl :: (b -> a -> b) -> b -> Vector a -> b # foldl' :: (b -> a -> b) -> b -> Vector a -> b # foldr1 :: (a -> a -> a) -> Vector a -> a # foldl1 :: (a -> a -> a) -> Vector a -> a # elem :: Eq a => a -> Vector a -> Bool # maximum :: Ord a => Vector a -> a # minimum :: Ord a => Vector a -> a # | |
Foldable HashSet | |
Defined in Data.HashSet Methods fold :: Monoid m => HashSet m -> m # foldMap :: Monoid m => (a -> m) -> HashSet a -> m # foldr :: (a -> b -> b) -> b -> HashSet a -> b # foldr' :: (a -> b -> b) -> b -> HashSet a -> b # foldl :: (b -> a -> b) -> b -> HashSet a -> b # foldl' :: (b -> a -> b) -> b -> HashSet a -> b # foldr1 :: (a -> a -> a) -> HashSet a -> a # foldl1 :: (a -> a -> a) -> HashSet a -> a # elem :: Eq a => a -> HashSet a -> Bool # maximum :: Ord a => HashSet a -> a # minimum :: Ord a => HashSet a -> a # | |
Foldable Set | |
Defined in Data.Set.Internal Methods fold :: Monoid m => Set m -> m # foldMap :: Monoid m => (a -> m) -> Set a -> m # foldr :: (a -> b -> b) -> b -> Set a -> b # foldr' :: (a -> b -> b) -> b -> Set a -> b # foldl :: (b -> a -> b) -> b -> Set a -> b # foldl' :: (b -> a -> b) -> b -> Set a -> b # foldr1 :: (a -> a -> a) -> Set a -> a # foldl1 :: (a -> a -> a) -> Set a -> a # elem :: Eq a => a -> Set a -> Bool # maximum :: Ord a => Set a -> a # | |
Foldable Seq | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Seq m -> m # foldMap :: Monoid m => (a -> m) -> Seq a -> m # foldr :: (a -> b -> b) -> b -> Seq a -> b # foldr' :: (a -> b -> b) -> b -> Seq a -> b # foldl :: (b -> a -> b) -> b -> Seq a -> b # foldl' :: (b -> a -> b) -> b -> Seq a -> b # foldr1 :: (a -> a -> a) -> Seq a -> a # foldl1 :: (a -> a -> a) -> Seq a -> a # elem :: Eq a => a -> Seq a -> Bool # maximum :: Ord a => Seq a -> a # | |
Foldable IntMap | |
Defined in Data.IntMap.Internal Methods fold :: Monoid m => IntMap m -> m # foldMap :: Monoid m => (a -> m) -> IntMap a -> m # foldr :: (a -> b -> b) -> b -> IntMap a -> b # foldr' :: (a -> b -> b) -> b -> IntMap a -> b # foldl :: (b -> a -> b) -> b -> IntMap a -> b # foldl' :: (b -> a -> b) -> b -> IntMap a -> b # foldr1 :: (a -> a -> a) -> IntMap a -> a # foldl1 :: (a -> a -> a) -> IntMap a -> a # elem :: Eq a => a -> IntMap a -> Bool # maximum :: Ord a => IntMap a -> a # minimum :: Ord a => IntMap a -> a # | |
Foldable Tree | |
Defined in Data.Tree Methods fold :: Monoid m => Tree m -> m # foldMap :: Monoid m => (a -> m) -> Tree a -> m # foldr :: (a -> b -> b) -> b -> Tree a -> b # foldr' :: (a -> b -> b) -> b -> Tree a -> b # foldl :: (b -> a -> b) -> b -> Tree a -> b # foldl' :: (b -> a -> b) -> b -> Tree a -> b # foldr1 :: (a -> a -> a) -> Tree a -> a # foldl1 :: (a -> a -> a) -> Tree a -> a # elem :: Eq a => a -> Tree a -> Bool # maximum :: Ord a => Tree a -> a # | |
Foldable FingerTree | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => FingerTree m -> m # foldMap :: Monoid m => (a -> m) -> FingerTree a -> m # foldr :: (a -> b -> b) -> b -> FingerTree a -> b # foldr' :: (a -> b -> b) -> b -> FingerTree a -> b # foldl :: (b -> a -> b) -> b -> FingerTree a -> b # foldl' :: (b -> a -> b) -> b -> FingerTree a -> b # foldr1 :: (a -> a -> a) -> FingerTree a -> a # foldl1 :: (a -> a -> a) -> FingerTree a -> a # toList :: FingerTree a -> [a] # null :: FingerTree a -> Bool # length :: FingerTree a -> Int # elem :: Eq a => a -> FingerTree a -> Bool # maximum :: Ord a => FingerTree a -> a # minimum :: Ord a => FingerTree a -> a # sum :: Num a => FingerTree a -> a # product :: Num a => FingerTree a -> a # | |
Foldable Digit | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Digit m -> m # foldMap :: Monoid m => (a -> m) -> Digit a -> m # foldr :: (a -> b -> b) -> b -> Digit a -> b # foldr' :: (a -> b -> b) -> b -> Digit a -> b # foldl :: (b -> a -> b) -> b -> Digit a -> b # foldl' :: (b -> a -> b) -> b -> Digit a -> b # foldr1 :: (a -> a -> a) -> Digit a -> a # foldl1 :: (a -> a -> a) -> Digit a -> a # elem :: Eq a => a -> Digit a -> Bool # maximum :: Ord a => Digit a -> a # minimum :: Ord a => Digit a -> a # | |
Foldable Node | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Node m -> m # foldMap :: Monoid m => (a -> m) -> Node a -> m # foldr :: (a -> b -> b) -> b -> Node a -> b # foldr' :: (a -> b -> b) -> b -> Node a -> b # foldl :: (b -> a -> b) -> b -> Node a -> b # foldl' :: (b -> a -> b) -> b -> Node a -> b # foldr1 :: (a -> a -> a) -> Node a -> a # foldl1 :: (a -> a -> a) -> Node a -> a # elem :: Eq a => a -> Node a -> Bool # maximum :: Ord a => Node a -> a # | |
Foldable Elem | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Elem m -> m # foldMap :: Monoid m => (a -> m) -> Elem a -> m # foldr :: (a -> b -> b) -> b -> Elem a -> b # foldr' :: (a -> b -> b) -> b -> Elem a -> b # foldl :: (b -> a -> b) -> b -> Elem a -> b # foldl' :: (b -> a -> b) -> b -> Elem a -> b # foldr1 :: (a -> a -> a) -> Elem a -> a # foldl1 :: (a -> a -> a) -> Elem a -> a # elem :: Eq a => a -> Elem a -> Bool # maximum :: Ord a => Elem a -> a # | |
Foldable ViewL | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => ViewL m -> m # foldMap :: Monoid m => (a -> m) -> ViewL a -> m # foldr :: (a -> b -> b) -> b -> ViewL a -> b # foldr' :: (a -> b -> b) -> b -> ViewL a -> b # foldl :: (b -> a -> b) -> b -> ViewL a -> b # foldl' :: (b -> a -> b) -> b -> ViewL a -> b # foldr1 :: (a -> a -> a) -> ViewL a -> a # foldl1 :: (a -> a -> a) -> ViewL a -> a # elem :: Eq a => a -> ViewL a -> Bool # maximum :: Ord a => ViewL a -> a # minimum :: Ord a => ViewL a -> a # | |
Foldable ViewR | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => ViewR m -> m # foldMap :: Monoid m => (a -> m) -> ViewR a -> m # foldr :: (a -> b -> b) -> b -> ViewR a -> b # foldr' :: (a -> b -> b) -> b -> ViewR a -> b # foldl :: (b -> a -> b) -> b -> ViewR a -> b # foldl' :: (b -> a -> b) -> b -> ViewR a -> b # foldr1 :: (a -> a -> a) -> ViewR a -> a # foldl1 :: (a -> a -> a) -> ViewR a -> a # elem :: Eq a => a -> ViewR a -> Bool # maximum :: Ord a => ViewR a -> a # minimum :: Ord a => ViewR a -> a # | |
Foldable DList | |
Defined in Data.DList Methods fold :: Monoid m => DList m -> m # foldMap :: Monoid m => (a -> m) -> DList a -> m # foldr :: (a -> b -> b) -> b -> DList a -> b # foldr' :: (a -> b -> b) -> b -> DList a -> b # foldl :: (b -> a -> b) -> b -> DList a -> b # foldl' :: (b -> a -> b) -> b -> DList a -> b # foldr1 :: (a -> a -> a) -> DList a -> a # foldl1 :: (a -> a -> a) -> DList a -> a # elem :: Eq a => a -> DList a -> Bool # maximum :: Ord a => DList a -> a # minimum :: Ord a => DList a -> a # | |
Foldable Hashed | |
Defined in Data.Hashable.Class Methods fold :: Monoid m => Hashed m -> m # foldMap :: Monoid m => (a -> m) -> Hashed a -> m # foldr :: (a -> b -> b) -> b -> Hashed a -> b # foldr' :: (a -> b -> b) -> b -> Hashed a -> b # foldl :: (b -> a -> b) -> b -> Hashed a -> b # foldl' :: (b -> a -> b) -> b -> Hashed a -> b # foldr1 :: (a -> a -> a) -> Hashed a -> a # foldl1 :: (a -> a -> a) -> Hashed a -> a # elem :: Eq a => a -> Hashed a -> Bool # maximum :: Ord a => Hashed a -> a # minimum :: Ord a => Hashed a -> a # | |
Foldable SmallArray | |
Defined in Data.Primitive.SmallArray Methods fold :: Monoid m => SmallArray m -> m # foldMap :: Monoid m => (a -> m) -> SmallArray a -> m # foldr :: (a -> b -> b) -> b -> SmallArray a -> b # foldr' :: (a -> b -> b) -> b -> SmallArray a -> b # foldl :: (b -> a -> b) -> b -> SmallArray a -> b # foldl' :: (b -> a -> b) -> b -> SmallArray a -> b # foldr1 :: (a -> a -> a) -> SmallArray a -> a # foldl1 :: (a -> a -> a) -> SmallArray a -> a # toList :: SmallArray a -> [a] # null :: SmallArray a -> Bool # length :: SmallArray a -> Int # elem :: Eq a => a -> SmallArray a -> Bool # maximum :: Ord a => SmallArray a -> a # minimum :: Ord a => SmallArray a -> a # sum :: Num a => SmallArray a -> a # product :: Num a => SmallArray a -> a # | |
Foldable Array | |
Defined in Data.Primitive.Array Methods fold :: Monoid m => Array m -> m # foldMap :: Monoid m => (a -> m) -> Array a -> m # foldr :: (a -> b -> b) -> b -> Array a -> b # foldr' :: (a -> b -> b) -> b -> Array a -> b # foldl :: (b -> a -> b) -> b -> Array a -> b # foldl' :: (b -> a -> b) -> b -> Array a -> b # foldr1 :: (a -> a -> a) -> Array a -> a # foldl1 :: (a -> a -> a) -> Array a -> a # elem :: Eq a => a -> Array a -> Bool # maximum :: Ord a => Array a -> a # minimum :: Ord a => Array a -> a # | |
Foldable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Either a m -> m # foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # toList :: Either a a0 -> [a0] # length :: Either a a0 -> Int # elem :: Eq a0 => a0 -> Either a a0 -> Bool # maximum :: Ord a0 => Either a a0 -> a0 # minimum :: Ord a0 => Either a a0 -> a0 # | |
Foldable (V1 :: * -> *) | |
Defined in Data.Foldable Methods fold :: Monoid m => V1 m -> m # foldMap :: Monoid m => (a -> m) -> V1 a -> m # foldr :: (a -> b -> b) -> b -> V1 a -> b # foldr' :: (a -> b -> b) -> b -> V1 a -> b # foldl :: (b -> a -> b) -> b -> V1 a -> b # foldl' :: (b -> a -> b) -> b -> V1 a -> b # foldr1 :: (a -> a -> a) -> V1 a -> a # foldl1 :: (a -> a -> a) -> V1 a -> a # elem :: Eq a => a -> V1 a -> Bool # maximum :: Ord a => V1 a -> a # | |
Foldable (U1 :: * -> *) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => U1 m -> m # foldMap :: Monoid m => (a -> m) -> U1 a -> m # foldr :: (a -> b -> b) -> b -> U1 a -> b # foldr' :: (a -> b -> b) -> b -> U1 a -> b # foldl :: (b -> a -> b) -> b -> U1 a -> b # foldl' :: (b -> a -> b) -> b -> U1 a -> b # foldr1 :: (a -> a -> a) -> U1 a -> a # foldl1 :: (a -> a -> a) -> U1 a -> a # elem :: Eq a => a -> U1 a -> Bool # maximum :: Ord a => U1 a -> a # | |
Foldable ((,) a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (a, m) -> m # foldMap :: Monoid m => (a0 -> m) -> (a, a0) -> m # foldr :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldr' :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldl :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldl' :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldr1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # foldl1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # elem :: Eq a0 => a0 -> (a, a0) -> Bool # maximum :: Ord a0 => (a, a0) -> a0 # minimum :: Ord a0 => (a, a0) -> a0 # | |
Foldable (Array i) | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Array i m -> m # foldMap :: Monoid m => (a -> m) -> Array i a -> m # foldr :: (a -> b -> b) -> b -> Array i a -> b # foldr' :: (a -> b -> b) -> b -> Array i a -> b # foldl :: (b -> a -> b) -> b -> Array i a -> b # foldl' :: (b -> a -> b) -> b -> Array i a -> b # foldr1 :: (a -> a -> a) -> Array i a -> a # foldl1 :: (a -> a -> a) -> Array i a -> a # elem :: Eq a => a -> Array i a -> Bool # maximum :: Ord a => Array i a -> a # minimum :: Ord a => Array i a -> a # | |
Foldable (Arg a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Arg a m -> m # foldMap :: Monoid m => (a0 -> m) -> Arg a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Arg a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Arg a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Arg a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Arg a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 # elem :: Eq a0 => a0 -> Arg a a0 -> Bool # maximum :: Ord a0 => Arg a a0 -> a0 # minimum :: Ord a0 => Arg a a0 -> a0 # | |
Foldable (Proxy :: * -> *) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Proxy m -> m # foldMap :: Monoid m => (a -> m) -> Proxy a -> m # foldr :: (a -> b -> b) -> b -> Proxy a -> b # foldr' :: (a -> b -> b) -> b -> Proxy a -> b # foldl :: (b -> a -> b) -> b -> Proxy a -> b # foldl' :: (b -> a -> b) -> b -> Proxy a -> b # foldr1 :: (a -> a -> a) -> Proxy a -> a # foldl1 :: (a -> a -> a) -> Proxy a -> a # elem :: Eq a => a -> Proxy a -> Bool # maximum :: Ord a => Proxy a -> a # minimum :: Ord a => Proxy a -> a # | |
Foldable (HashMap k) | |
Defined in Data.HashMap.Base Methods fold :: Monoid m => HashMap k m -> m # foldMap :: Monoid m => (a -> m) -> HashMap k a -> m # foldr :: (a -> b -> b) -> b -> HashMap k a -> b # foldr' :: (a -> b -> b) -> b -> HashMap k a -> b # foldl :: (b -> a -> b) -> b -> HashMap k a -> b # foldl' :: (b -> a -> b) -> b -> HashMap k a -> b # foldr1 :: (a -> a -> a) -> HashMap k a -> a # foldl1 :: (a -> a -> a) -> HashMap k a -> a # toList :: HashMap k a -> [a] # length :: HashMap k a -> Int # elem :: Eq a => a -> HashMap k a -> Bool # maximum :: Ord a => HashMap k a -> a # minimum :: Ord a => HashMap k a -> a # | |
Foldable (Map k) | |
Defined in Data.Map.Internal Methods fold :: Monoid m => Map k m -> m # foldMap :: Monoid m => (a -> m) -> Map k a -> m # foldr :: (a -> b -> b) -> b -> Map k a -> b # foldr' :: (a -> b -> b) -> b -> Map k a -> b # foldl :: (b -> a -> b) -> b -> Map k a -> b # foldl' :: (b -> a -> b) -> b -> Map k a -> b # foldr1 :: (a -> a -> a) -> Map k a -> a # foldl1 :: (a -> a -> a) -> Map k a -> a # elem :: Eq a => a -> Map k a -> Bool # maximum :: Ord a => Map k a -> a # minimum :: Ord a => Map k a -> a # | |
Foldable f => Foldable (MaybeT f) | |
Defined in Control.Monad.Trans.Maybe Methods fold :: Monoid m => MaybeT f m -> m # foldMap :: Monoid m => (a -> m) -> MaybeT f a -> m # foldr :: (a -> b -> b) -> b -> MaybeT f a -> b # foldr' :: (a -> b -> b) -> b -> MaybeT f a -> b # foldl :: (b -> a -> b) -> b -> MaybeT f a -> b # foldl' :: (b -> a -> b) -> b -> MaybeT f a -> b # foldr1 :: (a -> a -> a) -> MaybeT f a -> a # foldl1 :: (a -> a -> a) -> MaybeT f a -> a # elem :: Eq a => a -> MaybeT f a -> Bool # maximum :: Ord a => MaybeT f a -> a # minimum :: Ord a => MaybeT f a -> a # | |
Foldable f => Foldable (Cofree f) | |
Defined in Control.Comonad.Cofree Methods fold :: Monoid m => Cofree f m -> m # foldMap :: Monoid m => (a -> m) -> Cofree f a -> m # foldr :: (a -> b -> b) -> b -> Cofree f a -> b # foldr' :: (a -> b -> b) -> b -> Cofree f a -> b # foldl :: (b -> a -> b) -> b -> Cofree f a -> b # foldl' :: (b -> a -> b) -> b -> Cofree f a -> b # foldr1 :: (a -> a -> a) -> Cofree f a -> a # foldl1 :: (a -> a -> a) -> Cofree f a -> a # elem :: Eq a => a -> Cofree f a -> Bool # maximum :: Ord a => Cofree f a -> a # minimum :: Ord a => Cofree f a -> a # | |
Foldable f => Foldable (Free f) | |
Defined in Control.Monad.Free Methods fold :: Monoid m => Free f m -> m # foldMap :: Monoid m => (a -> m) -> Free f a -> m # foldr :: (a -> b -> b) -> b -> Free f a -> b # foldr' :: (a -> b -> b) -> b -> Free f a -> b # foldl :: (b -> a -> b) -> b -> Free f a -> b # foldl' :: (b -> a -> b) -> b -> Free f a -> b # foldr1 :: (a -> a -> a) -> Free f a -> a # foldl1 :: (a -> a -> a) -> Free f a -> a # elem :: Eq a => a -> Free f a -> Bool # maximum :: Ord a => Free f a -> a # minimum :: Ord a => Free f a -> a # | |
Foldable f => Foldable (ListT f) | |
Defined in Control.Monad.Trans.List Methods fold :: Monoid m => ListT f m -> m # foldMap :: Monoid m => (a -> m) -> ListT f a -> m # foldr :: (a -> b -> b) -> b -> ListT f a -> b # foldr' :: (a -> b -> b) -> b -> ListT f a -> b # foldl :: (b -> a -> b) -> b -> ListT f a -> b # foldl' :: (b -> a -> b) -> b -> ListT f a -> b # foldr1 :: (a -> a -> a) -> ListT f a -> a # foldl1 :: (a -> a -> a) -> ListT f a -> a # elem :: Eq a => a -> ListT f a -> Bool # maximum :: Ord a => ListT f a -> a # minimum :: Ord a => ListT f a -> a # | |
Foldable f => Foldable (Rec1 f) | |
Defined in Data.Foldable Methods fold :: Monoid m => Rec1 f m -> m # foldMap :: Monoid m => (a -> m) -> Rec1 f a -> m # foldr :: (a -> b -> b) -> b -> Rec1 f a -> b # foldr' :: (a -> b -> b) -> b -> Rec1 f a -> b # foldl :: (b -> a -> b) -> b -> Rec1 f a -> b # foldl' :: (b -> a -> b) -> b -> Rec1 f a -> b # foldr1 :: (a -> a -> a) -> Rec1 f a -> a # foldl1 :: (a -> a -> a) -> Rec1 f a -> a # elem :: Eq a => a -> Rec1 f a -> Bool # maximum :: Ord a => Rec1 f a -> a # minimum :: Ord a => Rec1 f a -> a # | |
Foldable (URec Char :: * -> *) | |
Defined in Data.Foldable Methods fold :: Monoid m => URec Char m -> m # foldMap :: Monoid m => (a -> m) -> URec Char a -> m # foldr :: (a -> b -> b) -> b -> URec Char a -> b # foldr' :: (a -> b -> b) -> b -> URec Char a -> b # foldl :: (b -> a -> b) -> b -> URec Char a -> b # foldl' :: (b -> a -> b) -> b -> URec Char a -> b # foldr1 :: (a -> a -> a) -> URec Char a -> a # foldl1 :: (a -> a -> a) -> URec Char a -> a # toList :: URec Char a -> [a] # length :: URec Char a -> Int # elem :: Eq a => a -> URec Char a -> Bool # maximum :: Ord a => URec Char a -> a # minimum :: Ord a => URec Char a -> a # | |
Foldable (URec Double :: * -> *) | |
Defined in Data.Foldable Methods fold :: Monoid m => URec Double m -> m # foldMap :: Monoid m => (a -> m) -> URec Double a -> m # foldr :: (a -> b -> b) -> b -> URec Double a -> b # foldr' :: (a -> b -> b) -> b -> URec Double a -> b # foldl :: (b -> a -> b) -> b -> URec Double a -> b # foldl' :: (b -> a -> b) -> b -> URec Double a -> b # foldr1 :: (a -> a -> a) -> URec Double a -> a # foldl1 :: (a -> a -> a) -> URec Double a -> a # toList :: URec Double a -> [a] # null :: URec Double a -> Bool # length :: URec Double a -> Int # elem :: Eq a => a -> URec Double a -> Bool # maximum :: Ord a => URec Double a -> a # minimum :: Ord a => URec Double a -> a # | |
Foldable (URec Float :: * -> *) | |
Defined in Data.Foldable Methods fold :: Monoid m => URec Float m -> m # foldMap :: Monoid m => (a -> m) -> URec Float a -> m # foldr :: (a -> b -> b) -> b -> URec Float a -> b # foldr' :: (a -> b -> b) -> b -> URec Float a -> b # foldl :: (b -> a -> b) -> b -> URec Float a -> b # foldl' :: (b -> a -> b) -> b -> URec Float a -> b # foldr1 :: (a -> a -> a) -> URec Float a -> a # foldl1 :: (a -> a -> a) -> URec Float a -> a # toList :: URec Float a -> [a] # null :: URec Float a -> Bool # length :: URec Float a -> Int # elem :: Eq a => a -> URec Float a -> Bool # maximum :: Ord a => URec Float a -> a # minimum :: Ord a => URec Float a -> a # | |
Foldable (URec Int :: * -> *) | |
Defined in Data.Foldable Methods fold :: Monoid m => URec Int m -> m # foldMap :: Monoid m => (a -> m) -> URec Int a -> m # foldr :: (a -> b -> b) -> b -> URec Int a -> b # foldr' :: (a -> b -> b) -> b -> URec Int a -> b # foldl :: (b -> a -> b) -> b -> URec Int a -> b # foldl' :: (b -> a -> b) -> b -> URec Int a -> b # foldr1 :: (a -> a -> a) -> URec Int a -> a # foldl1 :: (a -> a -> a) -> URec Int a -> a # elem :: Eq a => a -> URec Int a -> Bool # maximum :: Ord a => URec Int a -> a # minimum :: Ord a => URec Int a -> a # | |
Foldable (URec Word :: * -> *) | |
Defined in Data.Foldable Methods fold :: Monoid m => URec Word m -> m # foldMap :: Monoid m => (a -> m) -> URec Word a -> m # foldr :: (a -> b -> b) -> b -> URec Word a -> b # foldr' :: (a -> b -> b) -> b -> URec Word a -> b # foldl :: (b -> a -> b) -> b -> URec Word a -> b # foldl' :: (b -> a -> b) -> b -> URec Word a -> b # foldr1 :: (a -> a -> a) -> URec Word a -> a # foldl1 :: (a -> a -> a) -> URec Word a -> a # toList :: URec Word a -> [a] # length :: URec Word a -> Int # elem :: Eq a => a -> URec Word a -> Bool # maximum :: Ord a => URec Word a -> a # minimum :: Ord a => URec Word a -> a # | |
Foldable (URec (Ptr ()) :: * -> *) | |
Defined in Data.Foldable Methods fold :: Monoid m => URec (Ptr ()) m -> m # foldMap :: Monoid m => (a -> m) -> URec (Ptr ()) a -> m # foldr :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b # foldr' :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b # foldl :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b # foldl' :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b # foldr1 :: (a -> a -> a) -> URec (Ptr ()) a -> a # foldl1 :: (a -> a -> a) -> URec (Ptr ()) a -> a # toList :: URec (Ptr ()) a -> [a] # null :: URec (Ptr ()) a -> Bool # length :: URec (Ptr ()) a -> Int # elem :: Eq a => a -> URec (Ptr ()) a -> Bool # maximum :: Ord a => URec (Ptr ()) a -> a # minimum :: Ord a => URec (Ptr ()) a -> a # | |
Foldable (Const m :: * -> *) | Since: base-4.7.0.0 |
Defined in Data.Functor.Const Methods fold :: Monoid m0 => Const m m0 -> m0 # foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldr :: (a -> b -> b) -> b -> Const m a -> b # foldr' :: (a -> b -> b) -> b -> Const m a -> b # foldl :: (b -> a -> b) -> b -> Const m a -> b # foldl' :: (b -> a -> b) -> b -> Const m a -> b # foldr1 :: (a -> a -> a) -> Const m a -> a # foldl1 :: (a -> a -> a) -> Const m a -> a # elem :: Eq a => a -> Const m a -> Bool # maximum :: Ord a => Const m a -> a # minimum :: Ord a => Const m a -> a # | |
Bifoldable p => Foldable (Join p) | |
Defined in Data.Bifunctor.Join Methods fold :: Monoid m => Join p m -> m # foldMap :: Monoid m => (a -> m) -> Join p a -> m # foldr :: (a -> b -> b) -> b -> Join p a -> b # foldr' :: (a -> b -> b) -> b -> Join p a -> b # foldl :: (b -> a -> b) -> b -> Join p a -> b # foldl' :: (b -> a -> b) -> b -> Join p a -> b # foldr1 :: (a -> a -> a) -> Join p a -> a # foldl1 :: (a -> a -> a) -> Join p a -> a # elem :: Eq a => a -> Join p a -> Bool # maximum :: Ord a => Join p a -> a # minimum :: Ord a => Join p a -> a # | |
Foldable w => Foldable (EnvT e w) | |
Defined in Control.Comonad.Trans.Env Methods fold :: Monoid m => EnvT e w m -> m # foldMap :: Monoid m => (a -> m) -> EnvT e w a -> m # foldr :: (a -> b -> b) -> b -> EnvT e w a -> b # foldr' :: (a -> b -> b) -> b -> EnvT e w a -> b # foldl :: (b -> a -> b) -> b -> EnvT e w a -> b # foldl' :: (b -> a -> b) -> b -> EnvT e w a -> b # foldr1 :: (a -> a -> a) -> EnvT e w a -> a # foldl1 :: (a -> a -> a) -> EnvT e w a -> a # elem :: Eq a => a -> EnvT e w a -> Bool # maximum :: Ord a => EnvT e w a -> a # minimum :: Ord a => EnvT e w a -> a # | |
Foldable f => Foldable (IdentityT f) | |
Defined in Control.Monad.Trans.Identity Methods fold :: Monoid m => IdentityT f m -> m # foldMap :: Monoid m => (a -> m) -> IdentityT f a -> m # foldr :: (a -> b -> b) -> b -> IdentityT f a -> b # foldr' :: (a -> b -> b) -> b -> IdentityT f a -> b # foldl :: (b -> a -> b) -> b -> IdentityT f a -> b # foldl' :: (b -> a -> b) -> b -> IdentityT f a -> b # foldr1 :: (a -> a -> a) -> IdentityT f a -> a # foldl1 :: (a -> a -> a) -> IdentityT f a -> a # toList :: IdentityT f a -> [a] # null :: IdentityT f a -> Bool # length :: IdentityT f a -> Int # elem :: Eq a => a -> IdentityT f a -> Bool # maximum :: Ord a => IdentityT f a -> a # minimum :: Ord a => IdentityT f a -> a # | |
Foldable f => Foldable (FreeF f a) | |
Defined in Control.Monad.Trans.Free Methods fold :: Monoid m => FreeF f a m -> m # foldMap :: Monoid m => (a0 -> m) -> FreeF f a a0 -> m # foldr :: (a0 -> b -> b) -> b -> FreeF f a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> FreeF f a a0 -> b # foldl :: (b -> a0 -> b) -> b -> FreeF f a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> FreeF f a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> FreeF f a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> FreeF f a a0 -> a0 # toList :: FreeF f a a0 -> [a0] # null :: FreeF f a a0 -> Bool # length :: FreeF f a a0 -> Int # elem :: Eq a0 => a0 -> FreeF f a a0 -> Bool # maximum :: Ord a0 => FreeF f a a0 -> a0 # minimum :: Ord a0 => FreeF f a a0 -> a0 # | |
(Foldable m, Foldable f) => Foldable (FreeT f m) | |
Defined in Control.Monad.Trans.Free Methods fold :: Monoid m0 => FreeT f m m0 -> m0 # foldMap :: Monoid m0 => (a -> m0) -> FreeT f m a -> m0 # foldr :: (a -> b -> b) -> b -> FreeT f m a -> b # foldr' :: (a -> b -> b) -> b -> FreeT f m a -> b # foldl :: (b -> a -> b) -> b -> FreeT f m a -> b # foldl' :: (b -> a -> b) -> b -> FreeT f m a -> b # foldr1 :: (a -> a -> a) -> FreeT f m a -> a # foldl1 :: (a -> a -> a) -> FreeT f m a -> a # toList :: FreeT f m a -> [a] # length :: FreeT f m a -> Int # elem :: Eq a => a -> FreeT f m a -> Bool # maximum :: Ord a => FreeT f m a -> a # minimum :: Ord a => FreeT f m a -> a # | |
Foldable f => Foldable (ErrorT e f) | |
Defined in Control.Monad.Trans.Error Methods fold :: Monoid m => ErrorT e f m -> m # foldMap :: Monoid m => (a -> m) -> ErrorT e f a -> m # foldr :: (a -> b -> b) -> b -> ErrorT e f a -> b # foldr' :: (a -> b -> b) -> b -> ErrorT e f a -> b # foldl :: (b -> a -> b) -> b -> ErrorT e f a -> b # foldl' :: (b -> a -> b) -> b -> ErrorT e f a -> b # foldr1 :: (a -> a -> a) -> ErrorT e f a -> a # foldl1 :: (a -> a -> a) -> ErrorT e f a -> a # toList :: ErrorT e f a -> [a] # null :: ErrorT e f a -> Bool # length :: ErrorT e f a -> Int # elem :: Eq a => a -> ErrorT e f a -> Bool # maximum :: Ord a => ErrorT e f a -> a # minimum :: Ord a => ErrorT e f a -> a # | |
Foldable f => Foldable (WriterT w f) | |
Defined in Control.Monad.Trans.Writer.Lazy Methods fold :: Monoid m => WriterT w f m -> m # foldMap :: Monoid m => (a -> m) -> WriterT w f a -> m # foldr :: (a -> b -> b) -> b -> WriterT w f a -> b # foldr' :: (a -> b -> b) -> b -> WriterT w f a -> b # foldl :: (b -> a -> b) -> b -> WriterT w f a -> b # foldl' :: (b -> a -> b) -> b -> WriterT w f a -> b # foldr1 :: (a -> a -> a) -> WriterT w f a -> a # foldl1 :: (a -> a -> a) -> WriterT w f a -> a # toList :: WriterT w f a -> [a] # null :: WriterT w f a -> Bool # length :: WriterT w f a -> Int # elem :: Eq a => a -> WriterT w f a -> Bool # maximum :: Ord a => WriterT w f a -> a # minimum :: Ord a => WriterT w f a -> a # | |
Foldable f => Foldable (WriterT w f) | |
Defined in Control.Monad.Trans.Writer.Strict Methods fold :: Monoid m => WriterT w f m -> m # foldMap :: Monoid m => (a -> m) -> WriterT w f a -> m # foldr :: (a -> b -> b) -> b -> WriterT w f a -> b # foldr' :: (a -> b -> b) -> b -> WriterT w f a -> b # foldl :: (b -> a -> b) -> b -> WriterT w f a -> b # foldl' :: (b -> a -> b) -> b -> WriterT w f a -> b # foldr1 :: (a -> a -> a) -> WriterT w f a -> a # foldl1 :: (a -> a -> a) -> WriterT w f a -> a # toList :: WriterT w f a -> [a] # null :: WriterT w f a -> Bool # length :: WriterT w f a -> Int # elem :: Eq a => a -> WriterT w f a -> Bool # maximum :: Ord a => WriterT w f a -> a # minimum :: Ord a => WriterT w f a -> a # | |
Foldable (Tagged s) | |
Defined in Data.Tagged Methods fold :: Monoid m => Tagged s m -> m # foldMap :: Monoid m => (a -> m) -> Tagged s a -> m # foldr :: (a -> b -> b) -> b -> Tagged s a -> b # foldr' :: (a -> b -> b) -> b -> Tagged s a -> b # foldl :: (b -> a -> b) -> b -> Tagged s a -> b # foldl' :: (b -> a -> b) -> b -> Tagged s a -> b # foldr1 :: (a -> a -> a) -> Tagged s a -> a # foldl1 :: (a -> a -> a) -> Tagged s a -> a # elem :: Eq a => a -> Tagged s a -> Bool # maximum :: Ord a => Tagged s a -> a # minimum :: Ord a => Tagged s a -> a # | |
Foldable (K1 i c :: * -> *) | |
Defined in Data.Foldable Methods fold :: Monoid m => K1 i c m -> m # foldMap :: Monoid m => (a -> m) -> K1 i c a -> m # foldr :: (a -> b -> b) -> b -> K1 i c a -> b # foldr' :: (a -> b -> b) -> b -> K1 i c a -> b # foldl :: (b -> a -> b) -> b -> K1 i c a -> b # foldl' :: (b -> a -> b) -> b -> K1 i c a -> b # foldr1 :: (a -> a -> a) -> K1 i c a -> a # foldl1 :: (a -> a -> a) -> K1 i c a -> a # elem :: Eq a => a -> K1 i c a -> Bool # maximum :: Ord a => K1 i c a -> a # minimum :: Ord a => K1 i c a -> a # | |
(Foldable f, Foldable g) => Foldable (f :+: g) | |
Defined in Data.Foldable Methods fold :: Monoid m => (f :+: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :+: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldr1 :: (a -> a -> a) -> (f :+: g) a -> a # foldl1 :: (a -> a -> a) -> (f :+: g) a -> a # toList :: (f :+: g) a -> [a] # length :: (f :+: g) a -> Int # elem :: Eq a => a -> (f :+: g) a -> Bool # maximum :: Ord a => (f :+: g) a -> a # minimum :: Ord a => (f :+: g) a -> a # | |
(Foldable f, Foldable g) => Foldable (f :*: g) | |
Defined in Data.Foldable Methods fold :: Monoid m => (f :*: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :*: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldr1 :: (a -> a -> a) -> (f :*: g) a -> a # foldl1 :: (a -> a -> a) -> (f :*: g) a -> a # toList :: (f :*: g) a -> [a] # length :: (f :*: g) a -> Int # elem :: Eq a => a -> (f :*: g) a -> Bool # maximum :: Ord a => (f :*: g) a -> a # minimum :: Ord a => (f :*: g) a -> a # | |
(Foldable f, Foldable g) => Foldable (Product f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product Methods fold :: Monoid m => Product f g m -> m # foldMap :: Monoid m => (a -> m) -> Product f g a -> m # foldr :: (a -> b -> b) -> b -> Product f g a -> b # foldr' :: (a -> b -> b) -> b -> Product f g a -> b # foldl :: (b -> a -> b) -> b -> Product f g a -> b # foldl' :: (b -> a -> b) -> b -> Product f g a -> b # foldr1 :: (a -> a -> a) -> Product f g a -> a # foldl1 :: (a -> a -> a) -> Product f g a -> a # toList :: Product f g a -> [a] # null :: Product f g a -> Bool # length :: Product f g a -> Int # elem :: Eq a => a -> Product f g a -> Bool # maximum :: Ord a => Product f g a -> a # minimum :: Ord a => Product f g a -> a # | |
(Foldable f, Foldable g) => Foldable (Sum f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Sum Methods fold :: Monoid m => Sum f g m -> m # foldMap :: Monoid m => (a -> m) -> Sum f g a -> m # foldr :: (a -> b -> b) -> b -> Sum f g a -> b # foldr' :: (a -> b -> b) -> b -> Sum f g a -> b # foldl :: (b -> a -> b) -> b -> Sum f g a -> b # foldl' :: (b -> a -> b) -> b -> Sum f g a -> b # foldr1 :: (a -> a -> a) -> Sum f g a -> a # foldl1 :: (a -> a -> a) -> Sum f g a -> a # elem :: Eq a => a -> Sum f g a -> Bool # maximum :: Ord a => Sum f g a -> a # minimum :: Ord a => Sum f g a -> a # | |
Foldable f => Foldable (M1 i c f) | |
Defined in Data.Foldable Methods fold :: Monoid m => M1 i c f m -> m # foldMap :: Monoid m => (a -> m) -> M1 i c f a -> m # foldr :: (a -> b -> b) -> b -> M1 i c f a -> b # foldr' :: (a -> b -> b) -> b -> M1 i c f a -> b # foldl :: (b -> a -> b) -> b -> M1 i c f a -> b # foldl' :: (b -> a -> b) -> b -> M1 i c f a -> b # foldr1 :: (a -> a -> a) -> M1 i c f a -> a # foldl1 :: (a -> a -> a) -> M1 i c f a -> a # elem :: Eq a => a -> M1 i c f a -> Bool # maximum :: Ord a => M1 i c f a -> a # minimum :: Ord a => M1 i c f a -> a # | |
(Foldable f, Foldable g) => Foldable (f :.: g) | |
Defined in Data.Foldable Methods fold :: Monoid m => (f :.: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :.: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldr1 :: (a -> a -> a) -> (f :.: g) a -> a # foldl1 :: (a -> a -> a) -> (f :.: g) a -> a # toList :: (f :.: g) a -> [a] # length :: (f :.: g) a -> Int # elem :: Eq a => a -> (f :.: g) a -> Bool # maximum :: Ord a => (f :.: g) a -> a # minimum :: Ord a => (f :.: g) a -> a # | |
(Foldable f, Foldable g) => Foldable (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose Methods fold :: Monoid m => Compose f g m -> m # foldMap :: Monoid m => (a -> m) -> Compose f g a -> m # foldr :: (a -> b -> b) -> b -> Compose f g a -> b # foldr' :: (a -> b -> b) -> b -> Compose f g a -> b # foldl :: (b -> a -> b) -> b -> Compose f g a -> b # foldl' :: (b -> a -> b) -> b -> Compose f g a -> b # foldr1 :: (a -> a -> a) -> Compose f g a -> a # foldl1 :: (a -> a -> a) -> Compose f g a -> a # toList :: Compose f g a -> [a] # null :: Compose f g a -> Bool # length :: Compose f g a -> Int # elem :: Eq a => a -> Compose f g a -> Bool # maximum :: Ord a => Compose f g a -> a # minimum :: Ord a => Compose f g a -> a # | |
Bifoldable p => Foldable (WrappedBifunctor p a) | |
Defined in Data.Bifunctor.Wrapped Methods fold :: Monoid m => WrappedBifunctor p a m -> m # foldMap :: Monoid m => (a0 -> m) -> WrappedBifunctor p a a0 -> m # foldr :: (a0 -> b -> b) -> b -> WrappedBifunctor p a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> WrappedBifunctor p a a0 -> b # foldl :: (b -> a0 -> b) -> b -> WrappedBifunctor p a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> WrappedBifunctor p a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> WrappedBifunctor p a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> WrappedBifunctor p a a0 -> a0 # toList :: WrappedBifunctor p a a0 -> [a0] # null :: WrappedBifunctor p a a0 -> Bool # length :: WrappedBifunctor p a a0 -> Int # elem :: Eq a0 => a0 -> WrappedBifunctor p a a0 -> Bool # maximum :: Ord a0 => WrappedBifunctor p a a0 -> a0 # minimum :: Ord a0 => WrappedBifunctor p a a0 -> a0 # sum :: Num a0 => WrappedBifunctor p a a0 -> a0 # product :: Num a0 => WrappedBifunctor p a a0 -> a0 # | |
Foldable g => Foldable (Joker g a) | |
Defined in Data.Bifunctor.Joker Methods fold :: Monoid m => Joker g a m -> m # foldMap :: Monoid m => (a0 -> m) -> Joker g a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Joker g a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Joker g a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Joker g a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Joker g a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Joker g a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Joker g a a0 -> a0 # toList :: Joker g a a0 -> [a0] # null :: Joker g a a0 -> Bool # length :: Joker g a a0 -> Int # elem :: Eq a0 => a0 -> Joker g a a0 -> Bool # maximum :: Ord a0 => Joker g a a0 -> a0 # minimum :: Ord a0 => Joker g a a0 -> a0 # | |
Bifoldable p => Foldable (Flip p a) | |
Defined in Data.Bifunctor.Flip Methods fold :: Monoid m => Flip p a m -> m # foldMap :: Monoid m => (a0 -> m) -> Flip p a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Flip p a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Flip p a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Flip p a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Flip p a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Flip p a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Flip p a a0 -> a0 # toList :: Flip p a a0 -> [a0] # length :: Flip p a a0 -> Int # elem :: Eq a0 => a0 -> Flip p a a0 -> Bool # maximum :: Ord a0 => Flip p a a0 -> a0 # minimum :: Ord a0 => Flip p a a0 -> a0 # | |
Foldable (Clown f a :: * -> *) | |
Defined in Data.Bifunctor.Clown Methods fold :: Monoid m => Clown f a m -> m # foldMap :: Monoid m => (a0 -> m) -> Clown f a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Clown f a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Clown f a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Clown f a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Clown f a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Clown f a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Clown f a a0 -> a0 # toList :: Clown f a a0 -> [a0] # null :: Clown f a a0 -> Bool # length :: Clown f a a0 -> Int # elem :: Eq a0 => a0 -> Clown f a a0 -> Bool # maximum :: Ord a0 => Clown f a a0 -> a0 # minimum :: Ord a0 => Clown f a a0 -> a0 # | |
(Foldable f, Bifoldable p) => Foldable (Tannen f p a) | |
Defined in Data.Bifunctor.Tannen Methods fold :: Monoid m => Tannen f p a m -> m # foldMap :: Monoid m => (a0 -> m) -> Tannen f p a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Tannen f p a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Tannen f p a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Tannen f p a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Tannen f p a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Tannen f p a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Tannen f p a a0 -> a0 # toList :: Tannen f p a a0 -> [a0] # null :: Tannen f p a a0 -> Bool # length :: Tannen f p a a0 -> Int # elem :: Eq a0 => a0 -> Tannen f p a a0 -> Bool # maximum :: Ord a0 => Tannen f p a a0 -> a0 # minimum :: Ord a0 => Tannen f p a a0 -> a0 # | |
(Bifoldable p, Foldable g) => Foldable (Biff p f g a) | |
Defined in Data.Bifunctor.Biff Methods fold :: Monoid m => Biff p f g a m -> m # foldMap :: Monoid m => (a0 -> m) -> Biff p f g a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Biff p f g a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Biff p f g a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Biff p f g a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Biff p f g a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Biff p f g a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Biff p f g a a0 -> a0 # toList :: Biff p f g a a0 -> [a0] # null :: Biff p f g a a0 -> Bool # length :: Biff p f g a a0 -> Int # elem :: Eq a0 => a0 -> Biff p f g a a0 -> Bool # maximum :: Ord a0 => Biff p f g a a0 -> a0 # minimum :: Ord a0 => Biff p f g a a0 -> a0 # |
class (Functor t, Foldable t) => Traversable (t :: * -> *) #
Functors representing data structures that can be traversed from left to right.
A definition of traverse
must satisfy the following laws:
- naturality
t .
for every applicative transformationtraverse
f =traverse
(t . f)t
- identity
traverse
Identity = Identity- composition
traverse
(Compose .fmap
g . f) = Compose .fmap
(traverse
g) .traverse
f
A definition of sequenceA
must satisfy the following laws:
- naturality
t .
for every applicative transformationsequenceA
=sequenceA
.fmap
tt
- identity
sequenceA
.fmap
Identity = Identity- composition
sequenceA
.fmap
Compose = Compose .fmap
sequenceA
.sequenceA
where an applicative transformation is a function
t :: (Applicative f, Applicative g) => f a -> g a
preserving the Applicative
operations, i.e.
and the identity functor Identity
and composition of functors Compose
are defined as
newtype Identity a = Identity a instance Functor Identity where fmap f (Identity x) = Identity (f x) instance Applicative Identity where pure x = Identity x Identity f <*> Identity x = Identity (f x) newtype Compose f g a = Compose (f (g a)) instance (Functor f, Functor g) => Functor (Compose f g) where fmap f (Compose x) = Compose (fmap (fmap f) x) instance (Applicative f, Applicative g) => Applicative (Compose f g) where pure x = Compose (pure (pure x)) Compose f <*> Compose x = Compose ((<*>) <$> f <*> x)
(The naturality law is implied by parametricity.)
Instances are similar to Functor
, e.g. given a data type
data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)
a suitable instance would be
instance Traversable Tree where traverse f Empty = pure Empty traverse f (Leaf x) = Leaf <$> f x traverse f (Node l k r) = Node <$> traverse f l <*> f k <*> traverse f r
This is suitable even for abstract types, as the laws for <*>
imply a form of associativity.
The superclass instances should satisfy the following:
- In the
Functor
instance,fmap
should be equivalent to traversal with the identity applicative functor (fmapDefault
). - In the
Foldable
instance,foldMap
should be equivalent to traversal with a constant applicative functor (foldMapDefault
).
Instances
class Semigroup a => Monoid a where #
The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following laws:
x
<>
mempty
= xmempty
<>
x = xx
(<>
(y<>
z) = (x<>
y)<>
zSemigroup
law)mconcat
=foldr
'(<>)'mempty
The method names refer to the monoid of lists under concatenation, but there are many other instances.
Some types can be viewed as a monoid in more than one way,
e.g. both addition and multiplication on numbers.
In such cases we often define newtype
s and make those instances
of Monoid
, e.g. Sum
and Product
.
NOTE: Semigroup
is a superclass of Monoid
since base-4.11.0.0.
Minimal complete definition
Methods
Identity of mappend
An associative operation
NOTE: This method is redundant and has the default
implementation
since base-4.11.0.0.mappend
= '(<>)'
Fold a list using the monoid.
For most types, the default definition for mconcat
will be
used, but the function is included in the class definition so
that an optimized version can be provided for specific types.
Instances
Instances
The character type Char
is an enumeration whose values represent
Unicode (or equivalently ISO/IEC 10646) code points (i.e. characters, see
http://www.unicode.org/ for details). This set extends the ISO 8859-1
(Latin-1) character set (the first 256 characters), which is itself an extension
of the ASCII character set (the first 128 characters). A character literal in
Haskell has type Char
.
To convert a Char
to or from the corresponding Int
value defined
by Unicode, use toEnum
and fromEnum
from the
Enum
class respectively (or equivalently ord
and chr
).
Instances
Double-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE double-precision type.
Instances
Single-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE single-precision type.
Instances
A fixed-precision integer type with at least the range [-2^29 .. 2^29-1]
.
The exact range for a given implementation can be determined by using
minBound
and maxBound
from the Bounded
class.
Instances
32-bit signed integer type
Instances
64-bit signed integer type
Instances
Invariant: Jn#
and Jp#
are used iff value doesn't fit in S#
Useful properties resulting from the invariants:
Instances
Enum Integer | Since: base-2.1 |
Eq Integer | |
Integral Integer | Since: base-2.0.1 |
Defined in GHC.Real | |
Num Integer | Since: base-2.1 |
Ord Integer | |
Read Integer | Since: base-2.1 |
Real Integer | Since: base-2.0.1 |
Defined in GHC.Real Methods toRational :: Integer -> Rational # | |
Show Integer | Since: base-2.1 |
Lift Integer | |
Hashable Integer | |
Defined in Data.Hashable.Class | |
NFData Integer | |
Defined in Control.DeepSeq |
The Maybe
type encapsulates an optional value. A value of type
either contains a value of type Maybe
aa
(represented as
),
or it is empty (represented as Just
aNothing
). Using Maybe
is a good way to
deal with errors or exceptional cases without resorting to drastic
measures such as error
.
The Maybe
type is also a monad. It is a simple kind of error
monad, where all errors are represented by Nothing
. A richer
error monad can be built using the Either
type.
Instances
Monad Maybe | Since: base-2.1 |
Functor Maybe | Since: base-2.1 |
Applicative Maybe | Since: base-2.1 |
Foldable Maybe | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |
Traversable Maybe | Since: base-2.1 |
Eq1 Maybe | Since: base-4.9.0.0 |
Ord1 Maybe | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Read1 Maybe | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Show1 Maybe | Since: base-4.9.0.0 |
Alternative Maybe | Since: base-2.1 |
MonadPlus Maybe | Since: base-2.1 |
NFData1 Maybe | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Hashable1 Maybe | |
Defined in Data.Hashable.Class | |
Keyed Maybe | |
Zip Maybe | |
ZipWithKey Maybe | |
Indexable Maybe | |
Lookup Maybe | |
FoldableWithKey Maybe | |
TraversableWithKey Maybe | |
Defined in Data.Key Methods traverseWithKey :: Applicative f => (Key Maybe -> a -> f b) -> Maybe a -> f (Maybe b) # mapWithKeyM :: Monad m => (Key Maybe -> a -> m b) -> Maybe a -> m (Maybe b) # | |
Apply Maybe | |
Bind Maybe | |
Eq a => Eq (Maybe a) | |
Ord a => Ord (Maybe a) | |
Read a => Read (Maybe a) | Since: base-2.1 |
Show a => Show (Maybe a) | |
Generic (Maybe a) | |
Semigroup a => Semigroup (Maybe a) | Since: base-4.9.0.0 |
Semigroup a => Monoid (Maybe a) | Lift a semigroup into Since 4.11.0: constraint on inner Since: base-2.1 |
Lift a => Lift (Maybe a) | |
SingKind a => SingKind (Maybe a) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Hashable a => Hashable (Maybe a) | |
Defined in Data.Hashable.Class | |
NFData a => NFData (Maybe a) | |
Defined in Control.DeepSeq | |
MonoFunctor (Maybe a) | |
MonoFoldable (Maybe a) | |
Defined in Data.MonoTraversable Methods ofoldMap :: Monoid m => (Element (Maybe a) -> m) -> Maybe a -> m # ofoldr :: (Element (Maybe a) -> b -> b) -> b -> Maybe a -> b # ofoldl' :: (a0 -> Element (Maybe a) -> a0) -> a0 -> Maybe a -> a0 # otoList :: Maybe a -> [Element (Maybe a)] # oall :: (Element (Maybe a) -> Bool) -> Maybe a -> Bool # oany :: (Element (Maybe a) -> Bool) -> Maybe a -> Bool # olength64 :: Maybe a -> Int64 # ocompareLength :: Integral i => Maybe a -> i -> Ordering # otraverse_ :: Applicative f => (Element (Maybe a) -> f b) -> Maybe a -> f () # ofor_ :: Applicative f => Maybe a -> (Element (Maybe a) -> f b) -> f () # omapM_ :: Applicative m => (Element (Maybe a) -> m ()) -> Maybe a -> m () # oforM_ :: Applicative m => Maybe a -> (Element (Maybe a) -> m ()) -> m () # ofoldlM :: Monad m => (a0 -> Element (Maybe a) -> m a0) -> a0 -> Maybe a -> m a0 # ofoldMap1Ex :: Semigroup m => (Element (Maybe a) -> m) -> Maybe a -> m # ofoldr1Ex :: (Element (Maybe a) -> Element (Maybe a) -> Element (Maybe a)) -> Maybe a -> Element (Maybe a) # ofoldl1Ex' :: (Element (Maybe a) -> Element (Maybe a) -> Element (Maybe a)) -> Maybe a -> Element (Maybe a) # headEx :: Maybe a -> Element (Maybe a) # lastEx :: Maybe a -> Element (Maybe a) # unsafeHead :: Maybe a -> Element (Maybe a) # unsafeLast :: Maybe a -> Element (Maybe a) # maximumByEx :: (Element (Maybe a) -> Element (Maybe a) -> Ordering) -> Maybe a -> Element (Maybe a) # minimumByEx :: (Element (Maybe a) -> Element (Maybe a) -> Ordering) -> Maybe a -> Element (Maybe a) # | |
MonoTraversable (Maybe a) | |
MonoPointed (Maybe a) | |
Generic1 Maybe | |
SingI (Nothing :: Maybe a) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
SingI a2 => SingI (Just a2 :: Maybe a1) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Key Maybe | |
type Rep (Maybe a) | |
data Sing (b :: Maybe a) | |
type DemoteRep (Maybe a) | |
Defined in GHC.Generics | |
type Element (Maybe a) | |
Defined in Data.MonoTraversable | |
type Rep1 Maybe | |
Instances
Bounded Ordering | Since: base-2.1 |
Enum Ordering | Since: base-2.1 |
Eq Ordering | |
Ord Ordering | |
Defined in GHC.Classes | |
Read Ordering | Since: base-2.1 |
Show Ordering | |
Generic Ordering | |
Semigroup Ordering | Since: base-4.9.0.0 |
Monoid Ordering | Since: base-2.1 |
Hashable Ordering | |
Defined in Data.Hashable.Class | |
NFData Ordering | |
Defined in Control.DeepSeq | |
type Rep Ordering | |
A value of type
is a computation which, when performed,
does some I/O before returning a value of type IO
aa
.
There is really only one way to "perform" an I/O action: bind it to
Main.main
in your program. When your program is run, the I/O will
be performed. It isn't possible to perform I/O from an arbitrary
function, unless that function is itself in the IO
monad and called
at some point, directly or indirectly, from Main.main
.
IO
is a monad, so IO
actions can be combined using either the do-notation
or the >>
and >>=
operations from the Monad
class.
Instances
Instances
8-bit unsigned integer type
Instances
32-bit unsigned integer type
Instances
64-bit unsigned integer type
Instances
The Either
type represents values with two possibilities: a value of
type
is either Either
a b
or Left
a
.Right
b
The Either
type is sometimes used to represent a value which is
either correct or an error; by convention, the Left
constructor is
used to hold an error value and the Right
constructor is used to
hold a correct value (mnemonic: "right" also means "correct").
Examples
The type
is the type of values which can be either
a Either
String
Int
String
or an Int
. The Left
constructor can be used only on
String
s, and the Right
constructor can be used only on Int
s:
>>>
let s = Left "foo" :: Either String Int
>>>
s
Left "foo">>>
let n = Right 3 :: Either String Int
>>>
n
Right 3>>>
:type s
s :: Either String Int>>>
:type n
n :: Either String Int
The fmap
from our Functor
instance will ignore Left
values, but
will apply the supplied function to values contained in a Right
:
>>>
let s = Left "foo" :: Either String Int
>>>
let n = Right 3 :: Either String Int
>>>
fmap (*2) s
Left "foo">>>
fmap (*2) n
Right 6
The Monad
instance for Either
allows us to chain together multiple
actions which may fail, and fail overall if any of the individual
steps failed. First we'll write a function that can either parse an
Int
from a Char
, or fail.
>>>
import Data.Char ( digitToInt, isDigit )
>>>
:{
let parseEither :: Char -> Either String Int parseEither c | isDigit c = Right (digitToInt c) | otherwise = Left "parse error">>>
:}
The following should work, since both '1'
and '2'
can be
parsed as Int
s.
>>>
:{
let parseMultiple :: Either String Int parseMultiple = do x <- parseEither '1' y <- parseEither '2' return (x + y)>>>
:}
>>>
parseMultiple
Right 3
But the following should fail overall, since the first operation where
we attempt to parse 'm'
as an Int
will fail:
>>>
:{
let parseMultiple :: Either String Int parseMultiple = do x <- parseEither 'm' y <- parseEither '2' return (x + y)>>>
:}
>>>
parseMultiple
Left "parse error"
Instances
either :: (a -> c) -> (b -> c) -> Either a b -> c #
Case analysis for the Either
type.
If the value is
, apply the first function to Left
aa
;
if it is
, apply the second function to Right
bb
.
Examples
We create two values of type
, one using the
Either
String
Int
Left
constructor and another using the Right
constructor. Then
we apply "either" the length
function (if we have a String
)
or the "times-two" function (if we have an Int
):
>>>
let s = Left "foo" :: Either String Int
>>>
let n = Right 3 :: Either String Int
>>>
either length (*2) s
3>>>
either length (*2) n
6
class Monad m => MonadIO (m :: * -> *) where #
Monads in which IO
computations may be embedded.
Any monad built by applying a sequence of monad transformers to the
IO
monad will be an instance of this class.
Instances should satisfy the following laws, which state that liftIO
is a transformer of monads:
Minimal complete definition
Instances
(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c infixr 1 #
Left-to-right Kleisli composition of monads.
(***) :: Arrow a => a b c -> a b' c' -> a (b, b') (c, c') infixr 3 #
Split the input between the two argument arrows and combine their output. Note that this is in general not a functor.
The default definition may be overridden with a more efficient version if desired.
(&&&) :: Arrow a => a b c -> a b c' -> a b (c, c') infixr 3 #
Fanout: send the input to both argument arrows and combine their output.
The default definition may be overridden with a more efficient version if desired.
modifyIOError :: (IOError -> IOError) -> IO a -> IO a #
Catch any IOError
that occurs in the computation and throw a
modified version.
ioeSetFileName :: IOError -> FilePath -> IOError #
ioeSetHandle :: IOError -> Handle -> IOError #
ioeSetLocation :: IOError -> String -> IOError #
ioeSetErrorString :: IOError -> String -> IOError #
ioeSetErrorType :: IOError -> IOErrorType -> IOError #
ioeGetFileName :: IOError -> Maybe FilePath #
ioeGetHandle :: IOError -> Maybe Handle #
ioeGetLocation :: IOError -> String #
ioeGetErrorString :: IOError -> String #
ioeGetErrorType :: IOError -> IOErrorType #
isUserErrorType :: IOErrorType -> Bool #
I/O error that is programmer-defined.
isPermissionErrorType :: IOErrorType -> Bool #
I/O error where the operation failed because the user does not have sufficient operating system privilege to perform that operation.
isIllegalOperationErrorType :: IOErrorType -> Bool #
I/O error where the operation is not possible.
isEOFErrorType :: IOErrorType -> Bool #
I/O error where the operation failed because the end of file has been reached.
isFullErrorType :: IOErrorType -> Bool #
I/O error where the operation failed because the device is full.
isAlreadyInUseErrorType :: IOErrorType -> Bool #
I/O error where the operation failed because one of its arguments is a single-use resource, which is already being used.
isDoesNotExistErrorType :: IOErrorType -> Bool #
I/O error where the operation failed because one of its arguments does not exist.
isAlreadyExistsErrorType :: IOErrorType -> Bool #
I/O error where the operation failed because one of its arguments already exists.
userErrorType :: IOErrorType #
I/O error that is programmer-defined.
permissionErrorType :: IOErrorType #
I/O error where the operation failed because the user does not have sufficient operating system privilege to perform that operation.
illegalOperationErrorType :: IOErrorType #
I/O error where the operation is not possible.
I/O error where the operation failed because the end of file has been reached.
fullErrorType :: IOErrorType #
I/O error where the operation failed because the device is full.
alreadyInUseErrorType :: IOErrorType #
I/O error where the operation failed because one of its arguments is a single-use resource, which is already being used.
doesNotExistErrorType :: IOErrorType #
I/O error where the operation failed because one of its arguments does not exist.
alreadyExistsErrorType :: IOErrorType #
I/O error where the operation failed because one of its arguments already exists.
isUserError :: IOError -> Bool #
A programmer-defined error value constructed using userError
.
isPermissionError :: IOError -> Bool #
An error indicating that an IO
operation failed because
the user does not have sufficient operating system privilege
to perform that operation.
isIllegalOperation :: IOError -> Bool #
An error indicating that an IO
operation failed because
the operation was not possible.
Any computation which returns an IO
result may fail with
isIllegalOperation
. In some cases, an implementation will not be
able to distinguish between the possible error causes. In this case
it should fail with isIllegalOperation
.
isEOFError :: IOError -> Bool #
An error indicating that an IO
operation failed because
the end of file has been reached.
isFullError :: IOError -> Bool #
An error indicating that an IO
operation failed because
the device is full.
isAlreadyInUseError :: IOError -> Bool #
An error indicating that an IO
operation failed because
one of its arguments is a single-use resource, which is already
being used (for example, opening the same file twice for writing
might give this error).
isDoesNotExistError :: IOError -> Bool #
An error indicating that an IO
operation failed because
one of its arguments does not exist.
isAlreadyExistsError :: IOError -> Bool #
An error indicating that an IO
operation failed because
one of its arguments already exists.
mkIOError :: IOErrorType -> String -> Maybe Handle -> Maybe FilePath -> IOError #
Construct an IOError
of the given type where the second argument
describes the error location and the third and fourth argument
contain the file handle and file path of the file involved in the
error if applicable.
tryIOError :: IO a -> IO (Either IOError a) #
The construct tryIOError
comp
exposes IO errors which occur within a
computation, and which are not fully handled.
Non-I/O exceptions are not caught by this variant; to catch all
exceptions, use try
from Control.Exception.
Since: base-4.4.0.0
data IOErrorType #
An abstract type that contains a value for each variant of IOError
.
Instances
Eq IOErrorType | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception | |
Show IOErrorType | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods showsPrec :: Int -> IOErrorType -> ShowS # show :: IOErrorType -> String # showList :: [IOErrorType] -> ShowS # |
File and directory names are values of type String
, whose precise
meaning is operating system dependent. Files can be opened, yielding a
handle which can then be used to operate on the contents of that file.
data IOException #
Exceptions that occur in the IO
monad.
An IOException
records a more specific error type, a descriptive
string and maybe the handle that was used when the error was
flagged.
Instances
Eq IOException | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception | |
Show IOException | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods showsPrec :: Int -> IOException -> ShowS # show :: IOException -> String # showList :: [IOException] -> ShowS # | |
Exception IOException | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods toException :: IOException -> SomeException # fromException :: SomeException -> Maybe IOException # displayException :: IOException -> String # | |
Error IOException | |
Defined in Control.Monad.Trans.Error |
type IOError = IOException #
class (Typeable e, Show e) => Exception e where #
Any type that you wish to throw or catch as an exception must be an
instance of the Exception
class. The simplest case is a new exception
type directly below the root:
data MyException = ThisException | ThatException deriving Show instance Exception MyException
The default method definitions in the Exception
class do what we need
in this case. You can now throw and catch ThisException
and
ThatException
as exceptions:
*Main> throw ThisException `catch` \e -> putStrLn ("Caught " ++ show (e :: MyException)) Caught ThisException
In more complicated examples, you may wish to define a whole hierarchy of exceptions:
--------------------------------------------------------------------- -- Make the root exception type for all the exceptions in a compiler data SomeCompilerException = forall e . Exception e => SomeCompilerException e instance Show SomeCompilerException where show (SomeCompilerException e) = show e instance Exception SomeCompilerException compilerExceptionToException :: Exception e => e -> SomeException compilerExceptionToException = toException . SomeCompilerException compilerExceptionFromException :: Exception e => SomeException -> Maybe e compilerExceptionFromException x = do SomeCompilerException a <- fromException x cast a --------------------------------------------------------------------- -- Make a subhierarchy for exceptions in the frontend of the compiler data SomeFrontendException = forall e . Exception e => SomeFrontendException e instance Show SomeFrontendException where show (SomeFrontendException e) = show e instance Exception SomeFrontendException where toException = compilerExceptionToException fromException = compilerExceptionFromException frontendExceptionToException :: Exception e => e -> SomeException frontendExceptionToException = toException . SomeFrontendException frontendExceptionFromException :: Exception e => SomeException -> Maybe e frontendExceptionFromException x = do SomeFrontendException a <- fromException x cast a --------------------------------------------------------------------- -- Make an exception type for a particular frontend compiler exception data MismatchedParentheses = MismatchedParentheses deriving Show instance Exception MismatchedParentheses where toException = frontendExceptionToException fromException = frontendExceptionFromException
We can now catch a MismatchedParentheses
exception as
MismatchedParentheses
, SomeFrontendException
or
SomeCompilerException
, but not other types, e.g. IOException
:
*Main> throw MismatchedParentheses `catch` \e -> putStrLn ("Caught " ++ show (e :: MismatchedParentheses)) Caught MismatchedParentheses *Main> throw MismatchedParentheses `catch` \e -> putStrLn ("Caught " ++ show (e :: SomeFrontendException)) Caught MismatchedParentheses *Main> throw MismatchedParentheses `catch` \e -> putStrLn ("Caught " ++ show (e :: SomeCompilerException)) Caught MismatchedParentheses *Main> throw MismatchedParentheses `catch` \e -> putStrLn ("Caught " ++ show (e :: IOException)) *** Exception: MismatchedParentheses
Methods
toException :: e -> SomeException #
fromException :: SomeException -> Maybe e #
displayException :: e -> String #
Render this exception value in a human-friendly manner.
Default implementation:
.show
Since: base-4.8.0.0
Instances
asum :: (Foldable t, Alternative f) => t (f a) -> f a #
partitionEithers :: [Either a b] -> ([a], [b]) #
Partitions a list of Either
into two lists.
All the Left
elements are extracted, in order, to the first
component of the output. Similarly the Right
elements are extracted
to the second component of the output.
Examples
Basic usage:
>>>
let list = [ Left "foo", Right 3, Left "bar", Right 7, Left "baz" ]
>>>
partitionEithers list
(["foo","bar","baz"],[3,7])
The pair returned by
should be the same
pair as partitionEithers
x(
:lefts
x, rights
x)
>>>
let list = [ Left "foo", Right 3, Left "bar", Right 7, Left "baz" ]
>>>
partitionEithers list == (lefts list, rights list)
True
comparing :: Ord a => (b -> a) -> b -> b -> Ordering #
comparing p x y = compare (p x) (p y)
Useful combinator for use in conjunction with the xxxBy
family
of functions from Data.List, for example:
... sortBy (comparing fst) ...
The Down
type allows you to reverse sort order conveniently. A value of type
contains a value of type Down
aa
(represented as
).
If Down
aa
has an
instance associated with it then comparing two
values thus wrapped will give you the opposite of their normal sort order.
This is particularly useful when sorting in generalised list comprehensions,
as in: Ord
then sortWith by
Down
x
Since: base-4.6.0.0
Constructors
Down a |
Instances
Monad Down | Since: base-4.11.0.0 |
Functor Down | Since: base-4.11.0.0 |
Applicative Down | Since: base-4.11.0.0 |
NFData1 Down | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Apply Down | |
Bind Down | |
Eq a => Eq (Down a) | |
Num a => Num (Down a) | Since: base-4.11.0.0 |
Ord a => Ord (Down a) | Since: base-4.6.0.0 |
Read a => Read (Down a) | Since: base-4.7.0.0 |
Show a => Show (Down a) | Since: base-4.7.0.0 |
Semigroup a => Semigroup (Down a) | Since: base-4.11.0.0 |
Monoid a => Monoid (Down a) | Since: base-4.11.0.0 |
NFData a => NFData (Down a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq |
The member functions of this class facilitate writing values of primitive types to raw memory (which may have been allocated with the above mentioned routines) and reading values from blocks of raw memory. The class, furthermore, includes support for computing the storage requirements and alignment restrictions of storable types.
Memory addresses are represented as values of type
, for some
Ptr
aa
which is an instance of class Storable
. The type argument to
Ptr
helps provide some valuable type safety in FFI code (you can't
mix pointers of different types without an explicit cast), while
helping the Haskell type system figure out which marshalling method is
needed for a given pointer.
All marshalling between Haskell and a foreign language ultimately
boils down to translating Haskell data structures into the binary
representation of a corresponding data structure of the foreign
language and vice versa. To code this marshalling in Haskell, it is
necessary to manipulate primitive data types stored in unstructured
memory blocks. The class Storable
facilitates this manipulation on
all types for which it is instantiated, which are the standard basic
types of Haskell, the fixed size Int
types (Int8
, Int16
,
Int32
, Int64
), the fixed size Word
types (Word8
, Word16
,
Word32
, Word64
), StablePtr
, all types from Foreign.C.Types,
as well as Ptr
.
Minimal complete definition
sizeOf, alignment, (peek | peekElemOff | peekByteOff), (poke | pokeElemOff | pokeByteOff)
Instances
Case analysis for the Bool
type.
evaluates to bool
x y px
when p
is False
, and evaluates to y
when p
is True
.
This is equivalent to if p then y else x
; that is, one can
think of it as an if-then-else construct with its arguments
reordered.
Examples
Basic usage:
>>>
bool "foo" "bar" True
"bar">>>
bool "foo" "bar" False
"foo"
Confirm that
and bool
x y pif p then y else x
are
equivalent:
>>>
let p = True; x = "bar"; y = "foo"
>>>
bool x y p == if p then y else x
True>>>
let p = False
>>>
bool x y p == if p then y else x
True
Since: base-4.7.0.0
(<$>) :: Functor f => (a -> b) -> f a -> f b infixl 4 #
An infix synonym for fmap
.
The name of this operator is an allusion to $
.
Note the similarities between their types:
($) :: (a -> b) -> a -> b (<$>) :: Functor f => (a -> b) -> f a -> f b
Whereas $
is function application, <$>
is function
application lifted over a Functor
.
Examples
Convert from a
to a Maybe
Int
using Maybe
String
show
:
>>>
show <$> Nothing
Nothing>>>
show <$> Just 3
Just "3"
Convert from an
to an Either
Int
Int
Either
Int
String
using show
:
>>>
show <$> Left 17
Left 17>>>
show <$> Right 17
Right "17"
Double each element of a list:
>>>
(*2) <$> [1,2,3]
[2,4,6]
Apply even
to the second element of a pair:
>>>
even <$> (2,2)
(2,True)
(^^) :: (Fractional a, Integral b) => a -> b -> a infixr 8 #
raise a number to an integral power
mapMaybe :: (a -> Maybe b) -> [a] -> [b] #
The mapMaybe
function is a version of map
which can throw
out elements. In particular, the functional argument returns
something of type
. If this is Maybe
bNothing
, no element
is added on to the result list. If it is
, then Just
bb
is
included in the result list.
Examples
Using
is a shortcut for mapMaybe
f x
in most cases:catMaybes
$ map
f x
>>>
import Text.Read ( readMaybe )
>>>
let readMaybeInt = readMaybe :: String -> Maybe Int
>>>
mapMaybe readMaybeInt ["1", "Foo", "3"]
[1,3]>>>
catMaybes $ map readMaybeInt ["1", "Foo", "3"]
[1,3]
If we map the Just
constructor, the entire list should be returned:
>>>
mapMaybe Just [1,2,3]
[1,2,3]
listToMaybe :: [a] -> Maybe a #
The listToMaybe
function returns Nothing
on an empty list
or
where Just
aa
is the first element of the list.
Examples
Basic usage:
>>>
listToMaybe []
Nothing
>>>
listToMaybe [9]
Just 9
>>>
listToMaybe [1,2,3]
Just 1
Composing maybeToList
with listToMaybe
should be the identity
on singleton/empty lists:
>>>
maybeToList $ listToMaybe [5]
[5]>>>
maybeToList $ listToMaybe []
[]
But not on lists with more than one element:
>>>
maybeToList $ listToMaybe [1,2,3]
[1]
maybeToList :: Maybe a -> [a] #
The maybeToList
function returns an empty list when given
Nothing
or a singleton list when not given Nothing
.
Examples
Basic usage:
>>>
maybeToList (Just 7)
[7]
>>>
maybeToList Nothing
[]
One can use maybeToList
to avoid pattern matching when combined
with a function that (safely) works on lists:
>>>
import Text.Read ( readMaybe )
>>>
sum $ maybeToList (readMaybe "3")
3>>>
sum $ maybeToList (readMaybe "")
0
fromMaybe :: a -> Maybe a -> a #
The fromMaybe
function takes a default value and and Maybe
value. If the Maybe
is Nothing
, it returns the default values;
otherwise, it returns the value contained in the Maybe
.
Examples
Basic usage:
>>>
fromMaybe "" (Just "Hello, World!")
"Hello, World!"
>>>
fromMaybe "" Nothing
""
Read an integer from a string using readMaybe
. If we fail to
parse an integer, we want to return 0
by default:
>>>
import Text.Read ( readMaybe )
>>>
fromMaybe 0 (readMaybe "5")
5>>>
fromMaybe 0 (readMaybe "")
0
maybe :: b -> (a -> b) -> Maybe a -> b #
The maybe
function takes a default value, a function, and a Maybe
value. If the Maybe
value is Nothing
, the function returns the
default value. Otherwise, it applies the function to the value inside
the Just
and returns the result.
Examples
Basic usage:
>>>
maybe False odd (Just 3)
True
>>>
maybe False odd Nothing
False
Read an integer from a string using readMaybe
. If we succeed,
return twice the integer; that is, apply (*2)
to it. If instead
we fail to parse an integer, return 0
by default:
>>>
import Text.Read ( readMaybe )
>>>
maybe 0 (*2) (readMaybe "5")
10>>>
maybe 0 (*2) (readMaybe "")
0
Apply show
to a Maybe Int
. If we have Just n
, we want to show
the underlying Int
n
. But if we have Nothing
, we return the
empty string instead of (for example) "Nothing":
>>>
maybe "" show (Just 5)
"5">>>
maybe "" show Nothing
""
uncurry :: (a -> b -> c) -> (a, b) -> c #
uncurry
converts a curried function to a function on pairs.
Examples
>>>
uncurry (+) (1,2)
3
>>>
uncurry ($) (show, 1)
"1"
>>>
map (uncurry max) [(1,2), (3,4), (6,8)]
[2,4,8]
until :: (a -> Bool) -> (a -> a) -> a -> a #
yields the result of applying until
p ff
until p
holds.
($!) :: (a -> b) -> a -> b infixr 0 #
Strict (call-by-value) application operator. It takes a function and an argument, evaluates the argument to weak head normal form (WHNF), then calls the function with that value.
flip :: (a -> b -> c) -> b -> a -> c #
takes its (first) two arguments in the reverse order of flip
ff
.
>>>
flip (++) "hello" "world"
"worldhello"
const x
is a unary function which evaluates to x
for all inputs.
>>>
const 42 "hello"
42
>>>
map (const 42) [0..3]
[42,42,42,42]
(=<<) :: Monad m => (a -> m b) -> m a -> m b infixr 1 #
Same as >>=
, but with the arguments interchanged.
(<|>) :: Alternative f => f a -> f a -> f a infixl 3 #
An associative binary operation
error :: HasCallStack => [Char] -> a #
error
stops execution and displays an error message.
data SomeException #
The SomeException
type is the root of the exception type hierarchy.
When an exception of type e
is thrown, behind the scenes it is
encapsulated in a SomeException
.
Instances
Show SomeException | Since: base-3.0 |
Defined in GHC.Exception Methods showsPrec :: Int -> SomeException -> ShowS # show :: SomeException -> String # showList :: [SomeException] -> ShowS # | |
Exception SomeException | Since: base-3.0 |
Defined in GHC.Exception Methods toException :: SomeException -> SomeException # fromException :: SomeException -> Maybe SomeException # displayException :: SomeException -> String # |
terror :: HasCallStack => Text -> a #
error
applied to Text
Since 0.4.1
type LByteString = ByteString #
Boxed vectors, supporting efficient slicing.
Instances
class (Vector Vector a, MVector MVector a) => Unbox a #
Instances
A map from keys to values. A map cannot contain duplicate keys; each key can map to at most one value.
Instances
Eq2 HashMap | |
Ord2 HashMap | |
Defined in Data.HashMap.Base | |
Show2 HashMap | |
Hashable2 HashMap | |
Defined in Data.HashMap.Base | |
BiPolyMap HashMap | |
Defined in Data.Containers Associated Types type BPMKeyConstraint HashMap key :: Constraint # Methods mapKeysWith :: (BPMKeyConstraint HashMap k1, BPMKeyConstraint HashMap k2) => (v -> v -> v) -> (k1 -> k2) -> HashMap k1 v -> HashMap k2 v # | |
Functor (HashMap k) | |
Foldable (HashMap k) | |
Defined in Data.HashMap.Base Methods fold :: Monoid m => HashMap k m -> m # foldMap :: Monoid m => (a -> m) -> HashMap k a -> m # foldr :: (a -> b -> b) -> b -> HashMap k a -> b # foldr' :: (a -> b -> b) -> b -> HashMap k a -> b # foldl :: (b -> a -> b) -> b -> HashMap k a -> b # foldl' :: (b -> a -> b) -> b -> HashMap k a -> b # foldr1 :: (a -> a -> a) -> HashMap k a -> a # foldl1 :: (a -> a -> a) -> HashMap k a -> a # toList :: HashMap k a -> [a] # length :: HashMap k a -> Int # elem :: Eq a => a -> HashMap k a -> Bool # maximum :: Ord a => HashMap k a -> a # minimum :: Ord a => HashMap k a -> a # | |
Traversable (HashMap k) | |
Defined in Data.HashMap.Base | |
Eq k => Eq1 (HashMap k) | |
Ord k => Ord1 (HashMap k) | |
Defined in Data.HashMap.Base | |
(Eq k, Hashable k, Read k) => Read1 (HashMap k) | |
Defined in Data.HashMap.Base | |
Show k => Show1 (HashMap k) | |
Hashable k => Hashable1 (HashMap k) | |
Defined in Data.HashMap.Base | |
Keyed (HashMap k) | |
(Eq k, Hashable k) => Zip (HashMap k) | |
(Eq k, Hashable k) => ZipWithKey (HashMap k) | |
(Eq k, Hashable k) => Indexable (HashMap k) | |
(Eq k, Hashable k) => Lookup (HashMap k) | |
FoldableWithKey (HashMap k) | |
Defined in Data.Key | |
TraversableWithKey (HashMap k) | |
Defined in Data.Key Methods traverseWithKey :: Applicative f => (Key (HashMap k) -> a -> f b) -> HashMap k a -> f (HashMap k b) # mapWithKeyM :: Monad m => (Key (HashMap k) -> a -> m b) -> HashMap k a -> m (HashMap k b) # | |
(Eq key, Hashable key) => PolyMap (HashMap key) | This instance uses the functions from Data.HashMap.Strict. |
Defined in Data.Containers Methods differenceMap :: HashMap key value1 -> HashMap key value2 -> HashMap key value1 # intersectionMap :: HashMap key value1 -> HashMap key value2 -> HashMap key value1 # intersectionWithMap :: (value1 -> value2 -> value3) -> HashMap key value1 -> HashMap key value2 -> HashMap key value3 # | |
(Hashable k, Eq k) => Apply (HashMap k) | A |
(Hashable k, Eq k) => Bind (HashMap k) | |
(Eq k, Hashable k) => IsList (HashMap k v) | |
(Eq k, Eq v) => Eq (HashMap k v) | |
(Data k, Data v, Eq k, Hashable k) => Data (HashMap k v) | |
Defined in Data.HashMap.Base Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> HashMap k v -> c (HashMap k v) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (HashMap k v) # toConstr :: HashMap k v -> Constr # dataTypeOf :: HashMap k v -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (HashMap k v)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (HashMap k v)) # gmapT :: (forall b. Data b => b -> b) -> HashMap k v -> HashMap k v # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> HashMap k v -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> HashMap k v -> r # gmapQ :: (forall d. Data d => d -> u) -> HashMap k v -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> HashMap k v -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> HashMap k v -> m (HashMap k v) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> HashMap k v -> m (HashMap k v) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> HashMap k v -> m (HashMap k v) # | |
(Ord k, Ord v) => Ord (HashMap k v) | The order is total. Note: Because the hash is not guaranteed to be stable across library
versions, OSes, or architectures, neither is an actual order of elements in
|
Defined in Data.HashMap.Base | |
(Eq k, Hashable k, Read k, Read e) => Read (HashMap k e) | |
(Show k, Show v) => Show (HashMap k v) | |
(Eq k, Hashable k) => Semigroup (HashMap k v) | |
(Eq k, Hashable k) => Monoid (HashMap k v) | |
(Hashable k, Hashable v) => Hashable (HashMap k v) | |
Defined in Data.HashMap.Base | |
(NFData k, NFData v) => NFData (HashMap k v) | |
Defined in Data.HashMap.Base | |
(Eq key, Hashable key) => SetContainer (HashMap key value) | This instance uses the functions from Data.HashMap.Strict. |
Defined in Data.Containers Associated Types type ContainerKey (HashMap key value) :: * # Methods member :: ContainerKey (HashMap key value) -> HashMap key value -> Bool # notMember :: ContainerKey (HashMap key value) -> HashMap key value -> Bool # union :: HashMap key value -> HashMap key value -> HashMap key value # unions :: (MonoFoldable mono, Element mono ~ HashMap key value) => mono -> HashMap key value # difference :: HashMap key value -> HashMap key value -> HashMap key value # intersection :: HashMap key value -> HashMap key value -> HashMap key value # keys :: HashMap key value -> [ContainerKey (HashMap key value)] # | |
(Eq key, Hashable key) => IsMap (HashMap key value) | This instance uses the functions from Data.HashMap.Strict. |
Defined in Data.Containers Methods lookup :: ContainerKey (HashMap key value) -> HashMap key value -> Maybe (MapValue (HashMap key value)) # insertMap :: ContainerKey (HashMap key value) -> MapValue (HashMap key value) -> HashMap key value -> HashMap key value # deleteMap :: ContainerKey (HashMap key value) -> HashMap key value -> HashMap key value # singletonMap :: ContainerKey (HashMap key value) -> MapValue (HashMap key value) -> HashMap key value # mapFromList :: [(ContainerKey (HashMap key value), MapValue (HashMap key value))] -> HashMap key value # mapToList :: HashMap key value -> [(ContainerKey (HashMap key value), MapValue (HashMap key value))] # findWithDefault :: MapValue (HashMap key value) -> ContainerKey (HashMap key value) -> HashMap key value -> MapValue (HashMap key value) # insertWith :: (MapValue (HashMap key value) -> MapValue (HashMap key value) -> MapValue (HashMap key value)) -> ContainerKey (HashMap key value) -> MapValue (HashMap key value) -> HashMap key value -> HashMap key value # insertWithKey :: (ContainerKey (HashMap key value) -> MapValue (HashMap key value) -> MapValue (HashMap key value) -> MapValue (HashMap key value)) -> ContainerKey (HashMap key value) -> MapValue (HashMap key value) -> HashMap key value -> HashMap key value # insertLookupWithKey :: (ContainerKey (HashMap key value) -> MapValue (HashMap key value) -> MapValue (HashMap key value) -> MapValue (HashMap key value)) -> ContainerKey (HashMap key value) -> MapValue (HashMap key value) -> HashMap key value -> (Maybe (MapValue (HashMap key value)), HashMap key value) # adjustMap :: (MapValue (HashMap key value) -> MapValue (HashMap key value)) -> ContainerKey (HashMap key value) -> HashMap key value -> HashMap key value # adjustWithKey :: (ContainerKey (HashMap key value) -> MapValue (HashMap key value) -> MapValue (HashMap key value)) -> ContainerKey (HashMap key value) -> HashMap key value -> HashMap key value # updateMap :: (MapValue (HashMap key value) -> Maybe (MapValue (HashMap key value))) -> ContainerKey (HashMap key value) -> HashMap key value -> HashMap key value # updateWithKey :: (ContainerKey (HashMap key value) -> MapValue (HashMap key value) -> Maybe (MapValue (HashMap key value))) -> ContainerKey (HashMap key value) -> HashMap key value -> HashMap key value # updateLookupWithKey :: (ContainerKey (HashMap key value) -> MapValue (HashMap key value) -> Maybe (MapValue (HashMap key value))) -> ContainerKey (HashMap key value) -> HashMap key value -> (Maybe (MapValue (HashMap key value)), HashMap key value) # alterMap :: (Maybe (MapValue (HashMap key value)) -> Maybe (MapValue (HashMap key value))) -> ContainerKey (HashMap key value) -> HashMap key value -> HashMap key value # unionWith :: (MapValue (HashMap key value) -> MapValue (HashMap key value) -> MapValue (HashMap key value)) -> HashMap key value -> HashMap key value -> HashMap key value # unionWithKey :: (ContainerKey (HashMap key value) -> MapValue (HashMap key value) -> MapValue (HashMap key value) -> MapValue (HashMap key value)) -> HashMap key value -> HashMap key value -> HashMap key value # unionsWith :: (MapValue (HashMap key value) -> MapValue (HashMap key value) -> MapValue (HashMap key value)) -> [HashMap key value] -> HashMap key value # mapWithKey :: (ContainerKey (HashMap key value) -> MapValue (HashMap key value) -> MapValue (HashMap key value)) -> HashMap key value -> HashMap key value # omapKeysWith :: (MapValue (HashMap key value) -> MapValue (HashMap key value) -> MapValue (HashMap key value)) -> (ContainerKey (HashMap key value) -> ContainerKey (HashMap key value)) -> HashMap key value -> HashMap key value # filterMap :: (MapValue (HashMap key value) -> Bool) -> HashMap key value -> HashMap key value # | |
(Hashable k, Eq k) => HasKeysSet (HashMap k v) | |
MonoFunctor (HashMap k v) | |
MonoFoldable (HashMap k v) | |
Defined in Data.MonoTraversable Methods ofoldMap :: Monoid m => (Element (HashMap k v) -> m) -> HashMap k v -> m # ofoldr :: (Element (HashMap k v) -> b -> b) -> b -> HashMap k v -> b # ofoldl' :: (a -> Element (HashMap k v) -> a) -> a -> HashMap k v -> a # otoList :: HashMap k v -> [Element (HashMap k v)] # oall :: (Element (HashMap k v) -> Bool) -> HashMap k v -> Bool # oany :: (Element (HashMap k v) -> Bool) -> HashMap k v -> Bool # onull :: HashMap k v -> Bool # olength :: HashMap k v -> Int # olength64 :: HashMap k v -> Int64 # ocompareLength :: Integral i => HashMap k v -> i -> Ordering # otraverse_ :: Applicative f => (Element (HashMap k v) -> f b) -> HashMap k v -> f () # ofor_ :: Applicative f => HashMap k v -> (Element (HashMap k v) -> f b) -> f () # omapM_ :: Applicative m => (Element (HashMap k v) -> m ()) -> HashMap k v -> m () # oforM_ :: Applicative m => HashMap k v -> (Element (HashMap k v) -> m ()) -> m () # ofoldlM :: Monad m => (a -> Element (HashMap k v) -> m a) -> a -> HashMap k v -> m a # ofoldMap1Ex :: Semigroup m => (Element (HashMap k v) -> m) -> HashMap k v -> m # ofoldr1Ex :: (Element (HashMap k v) -> Element (HashMap k v) -> Element (HashMap k v)) -> HashMap k v -> Element (HashMap k v) # ofoldl1Ex' :: (Element (HashMap k v) -> Element (HashMap k v) -> Element (HashMap k v)) -> HashMap k v -> Element (HashMap k v) # headEx :: HashMap k v -> Element (HashMap k v) # lastEx :: HashMap k v -> Element (HashMap k v) # unsafeHead :: HashMap k v -> Element (HashMap k v) # unsafeLast :: HashMap k v -> Element (HashMap k v) # maximumByEx :: (Element (HashMap k v) -> Element (HashMap k v) -> Ordering) -> HashMap k v -> Element (HashMap k v) # minimumByEx :: (Element (HashMap k v) -> Element (HashMap k v) -> Ordering) -> HashMap k v -> Element (HashMap k v) # | |
MonoTraversable (HashMap k v) | |
(Eq k, Hashable k) => GrowingAppend (HashMap k v) | |
Defined in Data.MonoTraversable | |
type BPMKeyConstraint HashMap key | |
Defined in Data.Containers | |
type Key (HashMap k) | |
type Item (HashMap k v) | |
Defined in Data.HashMap.Base | |
type ContainerKey (HashMap key value) | |
Defined in Data.Containers | |
type MapValue (HashMap key value) | |
Defined in Data.Containers | |
type KeySet (HashMap k v) | |
Defined in Data.Containers | |
type Element (HashMap k v) | |
Defined in Data.MonoTraversable |
A set of values. A set cannot contain duplicate values.
Instances
Foldable HashSet | |
Defined in Data.HashSet Methods fold :: Monoid m => HashSet m -> m # foldMap :: Monoid m => (a -> m) -> HashSet a -> m # foldr :: (a -> b -> b) -> b -> HashSet a -> b # foldr' :: (a -> b -> b) -> b -> HashSet a -> b # foldl :: (b -> a -> b) -> b -> HashSet a -> b # foldl' :: (b -> a -> b) -> b -> HashSet a -> b # foldr1 :: (a -> a -> a) -> HashSet a -> a # foldl1 :: (a -> a -> a) -> HashSet a -> a # elem :: Eq a => a -> HashSet a -> Bool # maximum :: Ord a => HashSet a -> a # minimum :: Ord a => HashSet a -> a # | |
Eq1 HashSet | |
Ord1 HashSet | |
Defined in Data.HashSet | |
Show1 HashSet | |
Hashable1 HashSet | |
Defined in Data.HashSet | |
(Eq a, Hashable a) => IsList (HashSet a) | |
Eq a => Eq (HashSet a) | |
(Data a, Eq a, Hashable a) => Data (HashSet a) | |
Defined in Data.HashSet Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> HashSet a -> c (HashSet a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (HashSet a) # toConstr :: HashSet a -> Constr # dataTypeOf :: HashSet a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (HashSet a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (HashSet a)) # gmapT :: (forall b. Data b => b -> b) -> HashSet a -> HashSet a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> HashSet a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> HashSet a -> r # gmapQ :: (forall d. Data d => d -> u) -> HashSet a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> HashSet a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> HashSet a -> m (HashSet a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> HashSet a -> m (HashSet a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> HashSet a -> m (HashSet a) # | |
Ord a => Ord (HashSet a) | |
(Eq a, Hashable a, Read a) => Read (HashSet a) | |
Show a => Show (HashSet a) | |
(Hashable a, Eq a) => Semigroup (HashSet a) | |
(Hashable a, Eq a) => Monoid (HashSet a) | |
Hashable a => Hashable (HashSet a) | |
Defined in Data.HashSet | |
NFData a => NFData (HashSet a) | |
Defined in Data.HashSet | |
(Eq element, Hashable element) => SetContainer (HashSet element) | |
Defined in Data.Containers Associated Types type ContainerKey (HashSet element) :: * # Methods member :: ContainerKey (HashSet element) -> HashSet element -> Bool # notMember :: ContainerKey (HashSet element) -> HashSet element -> Bool # union :: HashSet element -> HashSet element -> HashSet element # unions :: (MonoFoldable mono, Element mono ~ HashSet element) => mono -> HashSet element # difference :: HashSet element -> HashSet element -> HashSet element # intersection :: HashSet element -> HashSet element -> HashSet element # keys :: HashSet element -> [ContainerKey (HashSet element)] # | |
(Eq element, Hashable element) => IsSet (HashSet element) | |
Defined in Data.Containers Methods insertSet :: Element (HashSet element) -> HashSet element -> HashSet element # deleteSet :: Element (HashSet element) -> HashSet element -> HashSet element # singletonSet :: Element (HashSet element) -> HashSet element # setFromList :: [Element (HashSet element)] -> HashSet element # setToList :: HashSet element -> [Element (HashSet element)] # | |
MonoFoldable (HashSet e) | |
Defined in Data.MonoTraversable Methods ofoldMap :: Monoid m => (Element (HashSet e) -> m) -> HashSet e -> m # ofoldr :: (Element (HashSet e) -> b -> b) -> b -> HashSet e -> b # ofoldl' :: (a -> Element (HashSet e) -> a) -> a -> HashSet e -> a # otoList :: HashSet e -> [Element (HashSet e)] # oall :: (Element (HashSet e) -> Bool) -> HashSet e -> Bool # oany :: (Element (HashSet e) -> Bool) -> HashSet e -> Bool # olength64 :: HashSet e -> Int64 # ocompareLength :: Integral i => HashSet e -> i -> Ordering # otraverse_ :: Applicative f => (Element (HashSet e) -> f b) -> HashSet e -> f () # ofor_ :: Applicative f => HashSet e -> (Element (HashSet e) -> f b) -> f () # omapM_ :: Applicative m => (Element (HashSet e) -> m ()) -> HashSet e -> m () # oforM_ :: Applicative m => HashSet e -> (Element (HashSet e) -> m ()) -> m () # ofoldlM :: Monad m => (a -> Element (HashSet e) -> m a) -> a -> HashSet e -> m a # ofoldMap1Ex :: Semigroup m => (Element (HashSet e) -> m) -> HashSet e -> m # ofoldr1Ex :: (Element (HashSet e) -> Element (HashSet e) -> Element (HashSet e)) -> HashSet e -> Element (HashSet e) # ofoldl1Ex' :: (Element (HashSet e) -> Element (HashSet e) -> Element (HashSet e)) -> HashSet e -> Element (HashSet e) # headEx :: HashSet e -> Element (HashSet e) # lastEx :: HashSet e -> Element (HashSet e) # unsafeHead :: HashSet e -> Element (HashSet e) # unsafeLast :: HashSet e -> Element (HashSet e) # maximumByEx :: (Element (HashSet e) -> Element (HashSet e) -> Ordering) -> HashSet e -> Element (HashSet e) # minimumByEx :: (Element (HashSet e) -> Element (HashSet e) -> Ordering) -> HashSet e -> Element (HashSet e) # | |
Hashable a => MonoPointed (HashSet a) | |
(Eq v, Hashable v) => GrowingAppend (HashSet v) | |
Defined in Data.MonoTraversable | |
type Item (HashSet a) | |
Defined in Data.HashSet | |
type ContainerKey (HashSet element) | |
Defined in Data.Containers | |
type Element (HashSet e) | |
Defined in Data.MonoTraversable |
A space efficient, packed, unboxed Unicode text type.
Instances
The class of types that can be converted to a hash value.
Minimal implementation: hashWithSalt
.
Methods
hashWithSalt :: Int -> a -> Int infixl 0 #
Return a hash value for the argument, using the given salt.
The general contract of hashWithSalt
is:
- If two values are equal according to the
==
method, then applying thehashWithSalt
method on each of the two values must produce the same integer result if the same salt is used in each case. - It is not required that if two values are unequal
according to the
==
method, then applying thehashWithSalt
method on each of the two values must produce distinct integer results. However, the programmer should be aware that producing distinct integer results for unequal values may improve the performance of hashing-based data structures. - This method can be used to compute different hash values for
the same input by providing a different salt in each
application of the method. This implies that any instance
that defines
hashWithSalt
must make use of the salt in its implementation.
Like hashWithSalt
, but no salt is used. The default
implementation uses hashWithSalt
with some default salt.
Instances might want to implement this method to provide a more
efficient implementation than the default implementation.
Instances
(<.>) :: FilePath -> String -> FilePath infixr 7 #
Add an extension, even if there is already one there, equivalent to addExtension
.
"/directory/path" <.> "ext" == "/directory/path.ext" "/directory/path" <.> ".ext" == "/directory/path.ext"
(</>) :: FilePath -> FilePath -> FilePath infixr 5 #
Combine two paths with a path separator.
If the second path starts with a path separator or a drive letter, then it returns the second.
The intention is that readFile (dir
will access the same file as
</>
file)setCurrentDirectory dir; readFile file
.
Posix: "/directory" </> "file.ext" == "/directory/file.ext" Windows: "/directory" </> "file.ext" == "/directory\\file.ext" "directory" </> "/file.ext" == "/file.ext" Valid x => (takeDirectory x </> takeFileName x) `equalFilePath` x
Combined:
Posix: "/" </> "test" == "/test" Posix: "home" </> "bob" == "home/bob" Posix: "x:" </> "foo" == "x:/foo" Windows: "C:\\foo" </> "bar" == "C:\\foo\\bar" Windows: "home" </> "bob" == "home\\bob"
Not combined:
Posix: "home" </> "/bob" == "/bob" Windows: "home" </> "C:\\bob" == "C:\\bob"
Not combined (tricky):
On Windows, if a filepath starts with a single slash, it is relative to the
root of the current drive. In [1], this is (confusingly) referred to as an
absolute path.
The current behavior of </>
is to never combine these forms.
Windows: "home" </> "/bob" == "/bob" Windows: "home" </> "\\bob" == "\\bob" Windows: "C:\\home" </> "\\bob" == "\\bob"
On Windows, from [1]: "If a file name begins with only a disk designator
but not the backslash after the colon, it is interpreted as a relative path
to the current directory on the drive with the specified letter."
The current behavior of </>
is to never combine these forms.
Windows: "D:\\foo" </> "C:bar" == "C:bar" Windows: "C:\\foo" </> "C:bar" == "C:bar"
A set of values a
.
Instances
Foldable Set | |
Defined in Data.Set.Internal Methods fold :: Monoid m => Set m -> m # foldMap :: Monoid m => (a -> m) -> Set a -> m # foldr :: (a -> b -> b) -> b -> Set a -> b # foldr' :: (a -> b -> b) -> b -> Set a -> b # foldl :: (b -> a -> b) -> b -> Set a -> b # foldl' :: (b -> a -> b) -> b -> Set a -> b # foldr1 :: (a -> a -> a) -> Set a -> a # foldl1 :: (a -> a -> a) -> Set a -> a # elem :: Eq a => a -> Set a -> Bool # maximum :: Ord a => Set a -> a # | |
Eq1 Set | Since: containers-0.5.9 |
Ord1 Set | Since: containers-0.5.9 |
Defined in Data.Set.Internal | |
Show1 Set | Since: containers-0.5.9 |
Ord a => IsList (Set a) | Since: containers-0.5.6.2 |
Eq a => Eq (Set a) | |
(Data a, Ord a) => Data (Set a) | |
Defined in Data.Set.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Set a -> c (Set a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Set a) # dataTypeOf :: Set a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Set a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Set a)) # gmapT :: (forall b. Data b => b -> b) -> Set a -> Set a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Set a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Set a -> r # gmapQ :: (forall d. Data d => d -> u) -> Set a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Set a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # | |
Ord a => Ord (Set a) | |
(Read a, Ord a) => Read (Set a) | |
Show a => Show (Set a) | |
Ord a => Semigroup (Set a) | Since: containers-0.5.7 |
Ord a => Monoid (Set a) | |
NFData a => NFData (Set a) | |
Defined in Data.Set.Internal | |
Ord element => SetContainer (Set element) | |
Defined in Data.Containers Associated Types type ContainerKey (Set element) :: * # Methods member :: ContainerKey (Set element) -> Set element -> Bool # notMember :: ContainerKey (Set element) -> Set element -> Bool # union :: Set element -> Set element -> Set element # unions :: (MonoFoldable mono, Element mono ~ Set element) => mono -> Set element # difference :: Set element -> Set element -> Set element # intersection :: Set element -> Set element -> Set element # keys :: Set element -> [ContainerKey (Set element)] # | |
Ord element => IsSet (Set element) | |
Ord e => MonoFoldable (Set e) | |
Defined in Data.MonoTraversable Methods ofoldMap :: Monoid m => (Element (Set e) -> m) -> Set e -> m # ofoldr :: (Element (Set e) -> b -> b) -> b -> Set e -> b # ofoldl' :: (a -> Element (Set e) -> a) -> a -> Set e -> a # otoList :: Set e -> [Element (Set e)] # oall :: (Element (Set e) -> Bool) -> Set e -> Bool # oany :: (Element (Set e) -> Bool) -> Set e -> Bool # ocompareLength :: Integral i => Set e -> i -> Ordering # otraverse_ :: Applicative f => (Element (Set e) -> f b) -> Set e -> f () # ofor_ :: Applicative f => Set e -> (Element (Set e) -> f b) -> f () # omapM_ :: Applicative m => (Element (Set e) -> m ()) -> Set e -> m () # oforM_ :: Applicative m => Set e -> (Element (Set e) -> m ()) -> m () # ofoldlM :: Monad m => (a -> Element (Set e) -> m a) -> a -> Set e -> m a # ofoldMap1Ex :: Semigroup m => (Element (Set e) -> m) -> Set e -> m # ofoldr1Ex :: (Element (Set e) -> Element (Set e) -> Element (Set e)) -> Set e -> Element (Set e) # ofoldl1Ex' :: (Element (Set e) -> Element (Set e) -> Element (Set e)) -> Set e -> Element (Set e) # headEx :: Set e -> Element (Set e) # lastEx :: Set e -> Element (Set e) # unsafeHead :: Set e -> Element (Set e) # unsafeLast :: Set e -> Element (Set e) # maximumByEx :: (Element (Set e) -> Element (Set e) -> Ordering) -> Set e -> Element (Set e) # minimumByEx :: (Element (Set e) -> Element (Set e) -> Ordering) -> Set e -> Element (Set e) # | |
MonoPointed (Set a) | |
Ord v => GrowingAppend (Set v) | |
Defined in Data.MonoTraversable | |
type Item (Set a) | |
Defined in Data.Set.Internal | |
type ContainerKey (Set element) | |
Defined in Data.Containers | |
type Element (Set e) | |
Defined in Data.MonoTraversable |
General-purpose finite sequences.
Instances
Monad Seq | |
Functor Seq | |
MonadFix Seq | Since: containers-0.5.11 |
Defined in Data.Sequence.Internal | |
Applicative Seq | Since: containers-0.5.4 |
Foldable Seq | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Seq m -> m # foldMap :: Monoid m => (a -> m) -> Seq a -> m # foldr :: (a -> b -> b) -> b -> Seq a -> b # foldr' :: (a -> b -> b) -> b -> Seq a -> b # foldl :: (b -> a -> b) -> b -> Seq a -> b # foldl' :: (b -> a -> b) -> b -> Seq a -> b # foldr1 :: (a -> a -> a) -> Seq a -> a # foldl1 :: (a -> a -> a) -> Seq a -> a # elem :: Eq a => a -> Seq a -> Bool # maximum :: Ord a => Seq a -> a # | |
Traversable Seq | |
Eq1 Seq | Since: containers-0.5.9 |
Ord1 Seq | Since: containers-0.5.9 |
Defined in Data.Sequence.Internal | |
Read1 Seq | Since: containers-0.5.9 |
Defined in Data.Sequence.Internal | |
Show1 Seq | Since: containers-0.5.9 |
MonadZip Seq |
|
Alternative Seq | Since: containers-0.5.4 |
MonadPlus Seq | |
Zip Seq | |
Zip3 Seq | |
Zip4 Seq | |
Defined in Data.ChunkedZip | |
Keyed Seq | |
Zip Seq | |
ZipWithKey Seq | |
Indexable Seq | |
Lookup Seq | |
Adjustable Seq | |
FoldableWithKey Seq | |
TraversableWithKey Seq | |
Defined in Data.Key Methods traverseWithKey :: Applicative f => (Key Seq -> a -> f b) -> Seq a -> f (Seq b) # mapWithKeyM :: Monad m => (Key Seq -> a -> m b) -> Seq a -> m (Seq b) # | |
Apply Seq | |
Bind Seq | |
UnzipWith Seq | |
Defined in Data.Sequence.Internal Methods unzipWith' :: (x -> (a, b)) -> Seq x -> (Seq a, Seq b) | |
IsList (Seq a) | |
Eq a => Eq (Seq a) | |
Data a => Data (Seq a) | |
Defined in Data.Sequence.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Seq a -> c (Seq a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Seq a) # dataTypeOf :: Seq a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Seq a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Seq a)) # gmapT :: (forall b. Data b => b -> b) -> Seq a -> Seq a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Seq a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Seq a -> r # gmapQ :: (forall d. Data d => d -> u) -> Seq a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Seq a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) # | |
Ord a => Ord (Seq a) | |
Read a => Read (Seq a) | |
Show a => Show (Seq a) | |
a ~ Char => IsString (Seq a) | Since: containers-0.5.7 |
Defined in Data.Sequence.Internal Methods fromString :: String -> Seq a # | |
Semigroup (Seq a) | Since: containers-0.5.7 |
Monoid (Seq a) | |
NFData a => NFData (Seq a) | |
Defined in Data.Sequence.Internal | |
SemiSequence (Seq a) | |
IsSequence (Seq a) | |
Defined in Data.Sequences Methods fromList :: [Element (Seq a)] -> Seq a # lengthIndex :: Seq a -> Index (Seq a) # break :: (Element (Seq a) -> Bool) -> Seq a -> (Seq a, Seq a) # span :: (Element (Seq a) -> Bool) -> Seq a -> (Seq a, Seq a) # dropWhile :: (Element (Seq a) -> Bool) -> Seq a -> Seq a # takeWhile :: (Element (Seq a) -> Bool) -> Seq a -> Seq a # splitAt :: Index (Seq a) -> Seq a -> (Seq a, Seq a) # unsafeSplitAt :: Index (Seq a) -> Seq a -> (Seq a, Seq a) # take :: Index (Seq a) -> Seq a -> Seq a # unsafeTake :: Index (Seq a) -> Seq a -> Seq a # drop :: Index (Seq a) -> Seq a -> Seq a # unsafeDrop :: Index (Seq a) -> Seq a -> Seq a # dropEnd :: Index (Seq a) -> Seq a -> Seq a # partition :: (Element (Seq a) -> Bool) -> Seq a -> (Seq a, Seq a) # uncons :: Seq a -> Maybe (Element (Seq a), Seq a) # unsnoc :: Seq a -> Maybe (Seq a, Element (Seq a)) # filter :: (Element (Seq a) -> Bool) -> Seq a -> Seq a # filterM :: Monad m => (Element (Seq a) -> m Bool) -> Seq a -> m (Seq a) # replicate :: Index (Seq a) -> Element (Seq a) -> Seq a # replicateM :: Monad m => Index (Seq a) -> m (Element (Seq a)) -> m (Seq a) # groupBy :: (Element (Seq a) -> Element (Seq a) -> Bool) -> Seq a -> [Seq a] # groupAllOn :: Eq b => (Element (Seq a) -> b) -> Seq a -> [Seq a] # subsequences :: Seq a -> [Seq a] # permutations :: Seq a -> [Seq a] # tailMay :: Seq a -> Maybe (Seq a) # initMay :: Seq a -> Maybe (Seq a) # unsafeTail :: Seq a -> Seq a # unsafeInit :: Seq a -> Seq a # index :: Seq a -> Index (Seq a) -> Maybe (Element (Seq a)) # indexEx :: Seq a -> Index (Seq a) -> Element (Seq a) # unsafeIndex :: Seq a -> Index (Seq a) -> Element (Seq a) # splitWhen :: (Element (Seq a) -> Bool) -> Seq a -> [Seq a] # | |
MonoFunctor (Seq a) | |
MonoFoldable (Seq a) | |
Defined in Data.MonoTraversable Methods ofoldMap :: Monoid m => (Element (Seq a) -> m) -> Seq a -> m # ofoldr :: (Element (Seq a) -> b -> b) -> b -> Seq a -> b # ofoldl' :: (a0 -> Element (Seq a) -> a0) -> a0 -> Seq a -> a0 # otoList :: Seq a -> [Element (Seq a)] # oall :: (Element (Seq a) -> Bool) -> Seq a -> Bool # oany :: (Element (Seq a) -> Bool) -> Seq a -> Bool # ocompareLength :: Integral i => Seq a -> i -> Ordering # otraverse_ :: Applicative f => (Element (Seq a) -> f b) -> Seq a -> f () # ofor_ :: Applicative f => Seq a -> (Element (Seq a) -> f b) -> f () # omapM_ :: Applicative m => (Element (Seq a) -> m ()) -> Seq a -> m () # oforM_ :: Applicative m => Seq a -> (Element (Seq a) -> m ()) -> m () # ofoldlM :: Monad m => (a0 -> Element (Seq a) -> m a0) -> a0 -> Seq a -> m a0 # ofoldMap1Ex :: Semigroup m => (Element (Seq a) -> m) -> Seq a -> m # ofoldr1Ex :: (Element (Seq a) -> Element (Seq a) -> Element (Seq a)) -> Seq a -> Element (Seq a) # ofoldl1Ex' :: (Element (Seq a) -> Element (Seq a) -> Element (Seq a)) -> Seq a -> Element (Seq a) # headEx :: Seq a -> Element (Seq a) # lastEx :: Seq a -> Element (Seq a) # unsafeHead :: Seq a -> Element (Seq a) # unsafeLast :: Seq a -> Element (Seq a) # maximumByEx :: (Element (Seq a) -> Element (Seq a) -> Ordering) -> Seq a -> Element (Seq a) # minimumByEx :: (Element (Seq a) -> Element (Seq a) -> Ordering) -> Seq a -> Element (Seq a) # | |
MonoTraversable (Seq a) | |
MonoPointed (Seq a) | |
GrowingAppend (Seq a) | |
Defined in Data.MonoTraversable | |
type Key Seq | |
type Item (Seq a) | |
Defined in Data.Sequence.Internal | |
type Index (Seq a) | |
Defined in Data.Sequences | |
type Element (Seq a) | |
Defined in Data.MonoTraversable |
A Map from keys k
to values a
.
Instances
Eq2 Map | Since: containers-0.5.9 |
Ord2 Map | Since: containers-0.5.9 |
Defined in Data.Map.Internal | |
Show2 Map | Since: containers-0.5.9 |
BiPolyMap Map | |
Defined in Data.Containers Associated Types type BPMKeyConstraint Map key :: Constraint # Methods mapKeysWith :: (BPMKeyConstraint Map k1, BPMKeyConstraint Map k2) => (v -> v -> v) -> (k1 -> k2) -> Map k1 v -> Map k2 v # | |
Functor (Map k) | |
Foldable (Map k) | |
Defined in Data.Map.Internal Methods fold :: Monoid m => Map k m -> m # foldMap :: Monoid m => (a -> m) -> Map k a -> m # foldr :: (a -> b -> b) -> b -> Map k a -> b # foldr' :: (a -> b -> b) -> b -> Map k a -> b # foldl :: (b -> a -> b) -> b -> Map k a -> b # foldl' :: (b -> a -> b) -> b -> Map k a -> b # foldr1 :: (a -> a -> a) -> Map k a -> a # foldl1 :: (a -> a -> a) -> Map k a -> a # elem :: Eq a => a -> Map k a -> Bool # maximum :: Ord a => Map k a -> a # minimum :: Ord a => Map k a -> a # | |
Traversable (Map k) | |
Eq k => Eq1 (Map k) | Since: containers-0.5.9 |
Ord k => Ord1 (Map k) | Since: containers-0.5.9 |
Defined in Data.Map.Internal | |
(Ord k, Read k) => Read1 (Map k) | Since: containers-0.5.9 |
Defined in Data.Map.Internal | |
Show k => Show1 (Map k) | Since: containers-0.5.9 |
Keyed (Map k) | |
Ord k => Zip (Map k) | |
Ord k => ZipWithKey (Map k) | |
Ord k => Indexable (Map k) | |
Ord k => Lookup (Map k) | |
Ord k => Adjustable (Map k) | |
FoldableWithKey (Map k) | |
TraversableWithKey (Map k) | |
Defined in Data.Key Methods traverseWithKey :: Applicative f => (Key (Map k) -> a -> f b) -> Map k a -> f (Map k b) # mapWithKeyM :: Monad m => (Key (Map k) -> a -> m b) -> Map k a -> m (Map k b) # | |
Ord key => PolyMap (Map key) | This instance uses the functions from Data.Map.Strict. |
Defined in Data.Containers Methods differenceMap :: Map key value1 -> Map key value2 -> Map key value1 # intersectionMap :: Map key value1 -> Map key value2 -> Map key value1 # intersectionWithMap :: (value1 -> value2 -> value3) -> Map key value1 -> Map key value2 -> Map key value3 # | |
Ord k => Apply (Map k) | A Map is not |
Ord k => Bind (Map k) | |
Ord k => IsList (Map k v) | Since: containers-0.5.6.2 |
(Eq k, Eq a) => Eq (Map k a) | |
(Data k, Data a, Ord k) => Data (Map k a) | |
Defined in Data.Map.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Map k a -> c (Map k a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Map k a) # toConstr :: Map k a -> Constr # dataTypeOf :: Map k a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Map k a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Map k a)) # gmapT :: (forall b. Data b => b -> b) -> Map k a -> Map k a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Map k a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Map k a -> r # gmapQ :: (forall d. Data d => d -> u) -> Map k a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Map k a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) # | |
(Ord k, Ord v) => Ord (Map k v) | |
(Ord k, Read k, Read e) => Read (Map k e) | |
(Show k, Show a) => Show (Map k a) | |
Ord k => Semigroup (Map k v) | |
Ord k => Monoid (Map k v) | |
(NFData k, NFData a) => NFData (Map k a) | |
Defined in Data.Map.Internal | |
Ord k => SetContainer (Map k v) | This instance uses the functions from Data.Map.Strict. |
Defined in Data.Containers Associated Types type ContainerKey (Map k v) :: * # Methods member :: ContainerKey (Map k v) -> Map k v -> Bool # notMember :: ContainerKey (Map k v) -> Map k v -> Bool # union :: Map k v -> Map k v -> Map k v # unions :: (MonoFoldable mono, Element mono ~ Map k v) => mono -> Map k v # difference :: Map k v -> Map k v -> Map k v # intersection :: Map k v -> Map k v -> Map k v # keys :: Map k v -> [ContainerKey (Map k v)] # | |
Ord key => IsMap (Map key value) | This instance uses the functions from Data.Map.Strict. |
Defined in Data.Containers Methods lookup :: ContainerKey (Map key value) -> Map key value -> Maybe (MapValue (Map key value)) # insertMap :: ContainerKey (Map key value) -> MapValue (Map key value) -> Map key value -> Map key value # deleteMap :: ContainerKey (Map key value) -> Map key value -> Map key value # singletonMap :: ContainerKey (Map key value) -> MapValue (Map key value) -> Map key value # mapFromList :: [(ContainerKey (Map key value), MapValue (Map key value))] -> Map key value # mapToList :: Map key value -> [(ContainerKey (Map key value), MapValue (Map key value))] # findWithDefault :: MapValue (Map key value) -> ContainerKey (Map key value) -> Map key value -> MapValue (Map key value) # insertWith :: (MapValue (Map key value) -> MapValue (Map key value) -> MapValue (Map key value)) -> ContainerKey (Map key value) -> MapValue (Map key value) -> Map key value -> Map key value # insertWithKey :: (ContainerKey (Map key value) -> MapValue (Map key value) -> MapValue (Map key value) -> MapValue (Map key value)) -> ContainerKey (Map key value) -> MapValue (Map key value) -> Map key value -> Map key value # insertLookupWithKey :: (ContainerKey (Map key value) -> MapValue (Map key value) -> MapValue (Map key value) -> MapValue (Map key value)) -> ContainerKey (Map key value) -> MapValue (Map key value) -> Map key value -> (Maybe (MapValue (Map key value)), Map key value) # adjustMap :: (MapValue (Map key value) -> MapValue (Map key value)) -> ContainerKey (Map key value) -> Map key value -> Map key value # adjustWithKey :: (ContainerKey (Map key value) -> MapValue (Map key value) -> MapValue (Map key value)) -> ContainerKey (Map key value) -> Map key value -> Map key value # updateMap :: (MapValue (Map key value) -> Maybe (MapValue (Map key value))) -> ContainerKey (Map key value) -> Map key value -> Map key value # updateWithKey :: (ContainerKey (Map key value) -> MapValue (Map key value) -> Maybe (MapValue (Map key value))) -> ContainerKey (Map key value) -> Map key value -> Map key value # updateLookupWithKey :: (ContainerKey (Map key value) -> MapValue (Map key value) -> Maybe (MapValue (Map key value))) -> ContainerKey (Map key value) -> Map key value -> (Maybe (MapValue (Map key value)), Map key value) # alterMap :: (Maybe (MapValue (Map key value)) -> Maybe (MapValue (Map key value))) -> ContainerKey (Map key value) -> Map key value -> Map key value # unionWith :: (MapValue (Map key value) -> MapValue (Map key value) -> MapValue (Map key value)) -> Map key value -> Map key value -> Map key value # unionWithKey :: (ContainerKey (Map key value) -> MapValue (Map key value) -> MapValue (Map key value) -> MapValue (Map key value)) -> Map key value -> Map key value -> Map key value # unionsWith :: (MapValue (Map key value) -> MapValue (Map key value) -> MapValue (Map key value)) -> [Map key value] -> Map key value # mapWithKey :: (ContainerKey (Map key value) -> MapValue (Map key value) -> MapValue (Map key value)) -> Map key value -> Map key value # omapKeysWith :: (MapValue (Map key value) -> MapValue (Map key value) -> MapValue (Map key value)) -> (ContainerKey (Map key value) -> ContainerKey (Map key value)) -> Map key value -> Map key value # filterMap :: (MapValue (Map key value) -> Bool) -> Map key value -> Map key value # | |
Ord k => HasKeysSet (Map k v) | |
MonoFunctor (Map k v) | |
MonoFoldable (Map k v) | |
Defined in Data.MonoTraversable Methods ofoldMap :: Monoid m => (Element (Map k v) -> m) -> Map k v -> m # ofoldr :: (Element (Map k v) -> b -> b) -> b -> Map k v -> b # ofoldl' :: (a -> Element (Map k v) -> a) -> a -> Map k v -> a # otoList :: Map k v -> [Element (Map k v)] # oall :: (Element (Map k v) -> Bool) -> Map k v -> Bool # oany :: (Element (Map k v) -> Bool) -> Map k v -> Bool # olength64 :: Map k v -> Int64 # ocompareLength :: Integral i => Map k v -> i -> Ordering # otraverse_ :: Applicative f => (Element (Map k v) -> f b) -> Map k v -> f () # ofor_ :: Applicative f => Map k v -> (Element (Map k v) -> f b) -> f () # omapM_ :: Applicative m => (Element (Map k v) -> m ()) -> Map k v -> m () # oforM_ :: Applicative m => Map k v -> (Element (Map k v) -> m ()) -> m () # ofoldlM :: Monad m => (a -> Element (Map k v) -> m a) -> a -> Map k v -> m a # ofoldMap1Ex :: Semigroup m => (Element (Map k v) -> m) -> Map k v -> m # ofoldr1Ex :: (Element (Map k v) -> Element (Map k v) -> Element (Map k v)) -> Map k v -> Element (Map k v) # ofoldl1Ex' :: (Element (Map k v) -> Element (Map k v) -> Element (Map k v)) -> Map k v -> Element (Map k v) # headEx :: Map k v -> Element (Map k v) # lastEx :: Map k v -> Element (Map k v) # unsafeHead :: Map k v -> Element (Map k v) # unsafeLast :: Map k v -> Element (Map k v) # maximumByEx :: (Element (Map k v) -> Element (Map k v) -> Ordering) -> Map k v -> Element (Map k v) # minimumByEx :: (Element (Map k v) -> Element (Map k v) -> Ordering) -> Map k v -> Element (Map k v) # | |
MonoTraversable (Map k v) | |
Ord k => GrowingAppend (Map k v) | |
Defined in Data.MonoTraversable | |
type BPMKeyConstraint Map key | |
Defined in Data.Containers | |
type Key (Map k) | |
type Item (Map k v) | |
Defined in Data.Map.Internal | |
type ContainerKey (Map k v) | |
Defined in Data.Containers | |
type MapValue (Map key value) | |
Defined in Data.Containers | |
type KeySet (Map k v) | |
Defined in Data.Containers | |
type Element (Map k v) | |
Defined in Data.MonoTraversable |
A set of integers.
Instances
A map of integers to values a
.
Instances
Functor IntMap | |
Foldable IntMap | |
Defined in Data.IntMap.Internal Methods fold :: Monoid m => IntMap m -> m # foldMap :: Monoid m => (a -> m) -> IntMap a -> m # foldr :: (a -> b -> b) -> b -> IntMap a -> b # foldr' :: (a -> b -> b) -> b -> IntMap a -> b # foldl :: (b -> a -> b) -> b -> IntMap a -> b # foldl' :: (b -> a -> b) -> b -> IntMap a -> b # foldr1 :: (a -> a -> a) -> IntMap a -> a # foldl1 :: (a -> a -> a) -> IntMap a -> a # elem :: Eq a => a -> IntMap a -> Bool # maximum :: Ord a => IntMap a -> a # minimum :: Ord a => IntMap a -> a # | |
Traversable IntMap | |
Eq1 IntMap | Since: containers-0.5.9 |
Ord1 IntMap | Since: containers-0.5.9 |
Defined in Data.IntMap.Internal | |
Read1 IntMap | Since: containers-0.5.9 |
Defined in Data.IntMap.Internal | |
Show1 IntMap | Since: containers-0.5.9 |
Zip IntMap | |
Keyed IntMap | |
Zip IntMap | |
ZipWithKey IntMap | |
Indexable IntMap | |
Lookup IntMap | |
Adjustable IntMap | |
FoldableWithKey IntMap | |
TraversableWithKey IntMap | |
Defined in Data.Key Methods traverseWithKey :: Applicative f => (Key IntMap -> a -> f b) -> IntMap a -> f (IntMap b) # mapWithKeyM :: Monad m => (Key IntMap -> a -> m b) -> IntMap a -> m (IntMap b) # | |
PolyMap IntMap | This instance uses the functions from Data.IntMap.Strict. |
Defined in Data.Containers Methods differenceMap :: IntMap value1 -> IntMap value2 -> IntMap value1 # intersectionMap :: IntMap value1 -> IntMap value2 -> IntMap value1 # intersectionWithMap :: (value1 -> value2 -> value3) -> IntMap value1 -> IntMap value2 -> IntMap value3 # | |
Apply IntMap | An IntMap is not |
Bind IntMap | |
IsList (IntMap a) | Since: containers-0.5.6.2 |
Eq a => Eq (IntMap a) | |
Data a => Data (IntMap a) | |
Defined in Data.IntMap.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntMap a -> c (IntMap a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (IntMap a) # toConstr :: IntMap a -> Constr # dataTypeOf :: IntMap a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (IntMap a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (IntMap a)) # gmapT :: (forall b. Data b => b -> b) -> IntMap a -> IntMap a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntMap a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntMap a -> r # gmapQ :: (forall d. Data d => d -> u) -> IntMap a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> IntMap a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) # | |
Ord a => Ord (IntMap a) | |
Defined in Data.IntMap.Internal | |
Read e => Read (IntMap e) | |
Show a => Show (IntMap a) | |
Semigroup (IntMap a) | Since: containers-0.5.7 |
Monoid (IntMap a) | |
NFData a => NFData (IntMap a) | |
Defined in Data.IntMap.Internal | |
SetContainer (IntMap value) | This instance uses the functions from Data.IntMap.Strict. |
Defined in Data.Containers Associated Types type ContainerKey (IntMap value) :: * # Methods member :: ContainerKey (IntMap value) -> IntMap value -> Bool # notMember :: ContainerKey (IntMap value) -> IntMap value -> Bool # union :: IntMap value -> IntMap value -> IntMap value # unions :: (MonoFoldable mono, Element mono ~ IntMap value) => mono -> IntMap value # difference :: IntMap value -> IntMap value -> IntMap value # intersection :: IntMap value -> IntMap value -> IntMap value # keys :: IntMap value -> [ContainerKey (IntMap value)] # | |
IsMap (IntMap value) | This instance uses the functions from Data.IntMap.Strict. |
Defined in Data.Containers Methods lookup :: ContainerKey (IntMap value) -> IntMap value -> Maybe (MapValue (IntMap value)) # insertMap :: ContainerKey (IntMap value) -> MapValue (IntMap value) -> IntMap value -> IntMap value # deleteMap :: ContainerKey (IntMap value) -> IntMap value -> IntMap value # singletonMap :: ContainerKey (IntMap value) -> MapValue (IntMap value) -> IntMap value # mapFromList :: [(ContainerKey (IntMap value), MapValue (IntMap value))] -> IntMap value # mapToList :: IntMap value -> [(ContainerKey (IntMap value), MapValue (IntMap value))] # findWithDefault :: MapValue (IntMap value) -> ContainerKey (IntMap value) -> IntMap value -> MapValue (IntMap value) # insertWith :: (MapValue (IntMap value) -> MapValue (IntMap value) -> MapValue (IntMap value)) -> ContainerKey (IntMap value) -> MapValue (IntMap value) -> IntMap value -> IntMap value # insertWithKey :: (ContainerKey (IntMap value) -> MapValue (IntMap value) -> MapValue (IntMap value) -> MapValue (IntMap value)) -> ContainerKey (IntMap value) -> MapValue (IntMap value) -> IntMap value -> IntMap value # insertLookupWithKey :: (ContainerKey (IntMap value) -> MapValue (IntMap value) -> MapValue (IntMap value) -> MapValue (IntMap value)) -> ContainerKey (IntMap value) -> MapValue (IntMap value) -> IntMap value -> (Maybe (MapValue (IntMap value)), IntMap value) # adjustMap :: (MapValue (IntMap value) -> MapValue (IntMap value)) -> ContainerKey (IntMap value) -> IntMap value -> IntMap value # adjustWithKey :: (ContainerKey (IntMap value) -> MapValue (IntMap value) -> MapValue (IntMap value)) -> ContainerKey (IntMap value) -> IntMap value -> IntMap value # updateMap :: (MapValue (IntMap value) -> Maybe (MapValue (IntMap value))) -> ContainerKey (IntMap value) -> IntMap value -> IntMap value # updateWithKey :: (ContainerKey (IntMap value) -> MapValue (IntMap value) -> Maybe (MapValue (IntMap value))) -> ContainerKey (IntMap value) -> IntMap value -> IntMap value # updateLookupWithKey :: (ContainerKey (IntMap value) -> MapValue (IntMap value) -> Maybe (MapValue (IntMap value))) -> ContainerKey (IntMap value) -> IntMap value -> (Maybe (MapValue (IntMap value)), IntMap value) # alterMap :: (Maybe (MapValue (IntMap value)) -> Maybe (MapValue (IntMap value))) -> ContainerKey (IntMap value) -> IntMap value -> IntMap value # unionWith :: (MapValue (IntMap value) -> MapValue (IntMap value) -> MapValue (IntMap value)) -> IntMap value -> IntMap value -> IntMap value # unionWithKey :: (ContainerKey (IntMap value) -> MapValue (IntMap value) -> MapValue (IntMap value) -> MapValue (IntMap value)) -> IntMap value -> IntMap value -> IntMap value # unionsWith :: (MapValue (IntMap value) -> MapValue (IntMap value) -> MapValue (IntMap value)) -> [IntMap value] -> IntMap value # mapWithKey :: (ContainerKey (IntMap value) -> MapValue (IntMap value) -> MapValue (IntMap value)) -> IntMap value -> IntMap value # omapKeysWith :: (MapValue (IntMap value) -> MapValue (IntMap value) -> MapValue (IntMap value)) -> (ContainerKey (IntMap value) -> ContainerKey (IntMap value)) -> IntMap value -> IntMap value # filterMap :: (MapValue (IntMap value) -> Bool) -> IntMap value -> IntMap value # | |
HasKeysSet (IntMap v) | |
MonoFunctor (IntMap a) | |
MonoFoldable (IntMap a) | |
Defined in Data.MonoTraversable Methods ofoldMap :: Monoid m => (Element (IntMap a) -> m) -> IntMap a -> m # ofoldr :: (Element (IntMap a) -> b -> b) -> b -> IntMap a -> b # ofoldl' :: (a0 -> Element (IntMap a) -> a0) -> a0 -> IntMap a -> a0 # otoList :: IntMap a -> [Element (IntMap a)] # oall :: (Element (IntMap a) -> Bool) -> IntMap a -> Bool # oany :: (Element (IntMap a) -> Bool) -> IntMap a -> Bool # olength64 :: IntMap a -> Int64 # ocompareLength :: Integral i => IntMap a -> i -> Ordering # otraverse_ :: Applicative f => (Element (IntMap a) -> f b) -> IntMap a -> f () # ofor_ :: Applicative f => IntMap a -> (Element (IntMap a) -> f b) -> f () # omapM_ :: Applicative m => (Element (IntMap a) -> m ()) -> IntMap a -> m () # oforM_ :: Applicative m => IntMap a -> (Element (IntMap a) -> m ()) -> m () # ofoldlM :: Monad m => (a0 -> Element (IntMap a) -> m a0) -> a0 -> IntMap a -> m a0 # ofoldMap1Ex :: Semigroup m => (Element (IntMap a) -> m) -> IntMap a -> m # ofoldr1Ex :: (Element (IntMap a) -> Element (IntMap a) -> Element (IntMap a)) -> IntMap a -> Element (IntMap a) # ofoldl1Ex' :: (Element (IntMap a) -> Element (IntMap a) -> Element (IntMap a)) -> IntMap a -> Element (IntMap a) # headEx :: IntMap a -> Element (IntMap a) # lastEx :: IntMap a -> Element (IntMap a) # unsafeHead :: IntMap a -> Element (IntMap a) # unsafeLast :: IntMap a -> Element (IntMap a) # maximumByEx :: (Element (IntMap a) -> Element (IntMap a) -> Ordering) -> IntMap a -> Element (IntMap a) # minimumByEx :: (Element (IntMap a) -> Element (IntMap a) -> Ordering) -> IntMap a -> Element (IntMap a) # | |
MonoTraversable (IntMap a) | |
GrowingAppend (IntMap v) | |
Defined in Data.MonoTraversable | |
type Key IntMap | |
type Item (IntMap a) | |
Defined in Data.IntMap.Internal | |
type ContainerKey (IntMap value) | |
Defined in Data.Containers | |
type MapValue (IntMap value) | |
Defined in Data.Containers | |
type KeySet (IntMap v) | |
Defined in Data.Containers | |
type Element (IntMap a) | |
Defined in Data.MonoTraversable |
data ByteString #
A space-efficient representation of a Word8
vector, supporting many
efficient operations.
A ByteString
contains 8-bit bytes, or by using the operations from
Data.ByteString.Char8 it can be interpreted as containing 8-bit
characters.
Instances
lift :: (MonadTrans t, Monad m) => m a -> t m a #
Lift a computation from the argument monad to the constructed monad.
undefined :: HasCallStack => a Source #
Deprecated: It is highly recommended that you either avoid partial functions or provide meaningful error messages
We define our own undefined
which is marked as deprecated. This makes it
useful to use during development, but lets you more easily get
notifications if you accidentally ship partial code in production.
The classy prelude recommendation for when you need to really have a partial
function in production is to use error
with a very descriptive message so
that, in case an exception is thrown, you get more information than
Prelude.
.undefined
Since 0.5.5
Standard
Monoid
Semigroup
The class of semigroups (types with an associative binary operation).
Instances should satisfy the associativity law:
Since: base-4.9.0.0
Minimal complete definition
Methods
(<>) :: a -> a -> a infixr 6 #
An associative operation.
Reduce a non-empty list with <>
The default definition should be sufficient, but this can be overridden for efficiency.
stimes :: Integral b => b -> a -> a #
Repeat a value n
times.
Given that this works on a Semigroup
it is allowed to fail if
you request 0 or fewer repetitions, and the default definition
will do so.
By making this a member of the class, idempotent semigroups
and monoids can upgrade this to execute in O(1) by
picking stimes =
or stimesIdempotent
stimes =
respectively.stimesIdempotentMonoid
Instances
data WrappedMonoid m #
Provide a Semigroup for an arbitrary Monoid.
NOTE: This is not needed anymore since Semigroup
became a superclass of
Monoid
in base-4.11 and this newtype be deprecated at some point in the future.
Instances
Functor
module Data.Functor
Applicative
liftA2 :: Applicative f => (a -> b -> c) -> f a -> f b -> f c #
optional :: Alternative f => f a -> f (Maybe a) #
One or none.
liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d #
Lift a ternary function to actions.
liftA :: Applicative f => (a -> b) -> f a -> f b #
(<**>) :: Applicative f => f a -> f (a -> b) -> f b infixl 4 #
A variant of <*>
with the arguments reversed.
class Applicative f => Alternative (f :: * -> *) where #
A monoid on applicative functors.
If defined, some
and many
should be the least solutions
of the equations:
Methods
The identity of <|>
(<|>) :: f a -> f a -> f a infixl 3 #
An associative binary operation
One or more.
Zero or more.
Instances
(<&&>) :: Applicative a => a Bool -> a Bool -> a Bool infixr 3 Source #
&&
lifted to an Applicative.
Since: classy-prelude-0.12.8
(<||>) :: Applicative a => a Bool -> a Bool -> a Bool infixr 2 Source #
||
lifted to an Applicative.
Since: classy-prelude-0.12.8
Monad
guard :: Alternative f => Bool -> f () #
Conditional failure of Alternative
computations. Defined by
guard True =pure
() guard False =empty
Examples
Common uses of guard
include conditionally signaling an error in
an error monad and conditionally rejecting the current choice in an
Alternative
-based parser.
As an example of signaling an error in the error monad Maybe
,
consider a safe division function safeDiv x y
that returns
Nothing
when the denominator y
is zero and
otherwise. For example:Just
(x `div`
y)
>>> safeDiv 4 0 Nothing >>> safeDiv 4 2 Just 2
A definition of safeDiv
using guards, but not guard
:
safeDiv :: Int -> Int -> Maybe Int safeDiv x y | y /= 0 = Just (x `div` y) | otherwise = Nothing
A definition of safeDiv
using guard
and Monad
do
-notation:
safeDiv :: Int -> Int -> Maybe Int safeDiv x y = do guard (y /= 0) return (x `div` y)
join :: Monad m => m (m a) -> m a #
The join
function is the conventional monad join operator. It
is used to remove one level of monadic structure, projecting its
bound argument into the outer level.
unless :: Applicative f => Bool -> f () -> f () #
The reverse of when
.
replicateM_ :: Applicative m => Int -> m a -> m () #
Like replicateM
, but discards the result.
forever :: Applicative f => f a -> f b #
repeats the action infinitely.forever
act
(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c infixr 1 #
Left-to-right Kleisli composition of monads.
void :: Functor f => f a -> f () #
discards or ignores the result of evaluation, such
as the return value of an void
valueIO
action.
Examples
Replace the contents of a
with unit:Maybe
Int
>>>
void Nothing
Nothing>>>
void (Just 3)
Just ()
Replace the contents of an
with unit,
resulting in an Either
Int
Int
:Either
Int
'()'
>>>
void (Left 8675309)
Left 8675309>>>
void (Right 8675309)
Right ()
Replace every element of a list with unit:
>>>
void [1,2,3]
[(),(),()]
Replace the second element of a pair with unit:
>>>
void (1,2)
(1,())
Discard the result of an IO
action:
>>>
mapM print [1,2]
1 2 [(),()]>>>
void $ mapM print [1,2]
1 2
liftM5 :: Monad m => (a1 -> a2 -> a3 -> a4 -> a5 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m a5 -> m r #
Promote a function to a monad, scanning the monadic arguments from
left to right (cf. liftM2
).
liftM4 :: Monad m => (a1 -> a2 -> a3 -> a4 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m r #
Promote a function to a monad, scanning the monadic arguments from
left to right (cf. liftM2
).
liftM3 :: Monad m => (a1 -> a2 -> a3 -> r) -> m a1 -> m a2 -> m a3 -> m r #
Promote a function to a monad, scanning the monadic arguments from
left to right (cf. liftM2
).
liftM2 :: Monad m => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r #
Promote a function to a monad, scanning the monadic arguments from left to right. For example,
liftM2 (+) [0,1] [0,2] = [0,2,1,3] liftM2 (+) (Just 1) Nothing = Nothing
when :: Applicative f => Bool -> f () -> f () #
Conditional execution of Applicative
expressions. For example,
when debug (putStrLn "Debugging")
will output the string Debugging
if the Boolean value debug
is True
, and otherwise do nothing.
(=<<) :: Monad m => (a -> m b) -> m a -> m b infixr 1 #
Same as >>=
, but with the arguments interchanged.
class (Alternative m, Monad m) => MonadPlus (m :: * -> *) where #
Monads that also support choice and failure.
Methods
The identity of mplus
. It should also satisfy the equations
mzero >>= f = mzero v >> mzero = mzero
The default definition is
mzero = empty
An associative operation. The default definition is
mplus = (<|>
)
Instances
whenM :: Monad m => m Bool -> m () -> m () Source #
Only perform the action if the predicate returns True
.
Since 0.9.2
unlessM :: Monad m => m Bool -> m () -> m () Source #
Only perform the action if the predicate returns False
.
Since 0.9.2
UnliftIO reexports
module UnliftIO
Mutable references
module Data.Mutable
STM Channels
Primitive (exported since 0.9.4)
primToPrim :: (PrimBase m1, PrimMonad m2, PrimState m1 ~ PrimState m2) => m1 a -> m2 a #
Convert a PrimBase
to another monad with the same state token.
module Data.Primitive.MutVar
Debugging
trace :: String -> a -> a Source #
Warning: Leaving traces in the code
We define our own trace
(and also its variants) which provides a warning
when used. So that tracing is available during development, but the compiler
reminds you to not leave them in the code for production.
traceShowId :: Show a => a -> a Source #
Warning: Leaving traces in the code
Since 0.5.9
traceShowM :: (Show a, Monad m) => a -> m () Source #
Warning: Leaving traces in the code
Since 0.5.9
Time (since 0.6.1)
formatTime :: FormatTime t => TimeLocale -> String -> t -> String #
Substitute various time-related information for each %-code in the string, as per formatCharacter
.
The general form is %<modifier><width><specifier>
, where <modifier>
and <width>
are optional.
<modifier>
glibc-style modifiers can be used before the specifier (here marked as z
):
%-z
- no padding
%_z
- pad with spaces
%0z
- pad with zeros
%^z
- convert to upper case
%#z
- convert to lower case (consistently, unlike glibc)
<width>
Width digits can also be used after any modifiers and before the specifier (here marked as z
), for example:
%4z
- pad to 4 characters (with default padding character)
%_12z
- pad with spaces to 12 characters
<specifier>
For all types (note these three are done by formatTime
, not by formatCharacter
):
%%
%
%t
- tab
%n
- newline
TimeZone
For TimeZone
(and ZonedTime
and UTCTime
):
%z
- timezone offset in the format
-HHMM
. %Z
- timezone name
LocalTime
For LocalTime
(and ZonedTime
and UTCTime
and UniversalTime
):
%c
- as
dateTimeFmt
locale
(e.g.%a %b %e %H:%M:%S %Z %Y
)
TimeOfDay
For TimeOfDay
(and LocalTime
and ZonedTime
and UTCTime
and UniversalTime
):
%R
- same as
%H:%M
%T
- same as
%H:%M:%S
%X
- as
timeFmt
locale
(e.g.%H:%M:%S
) %r
- as
time12Fmt
locale
(e.g.%I:%M:%S %p
) %P
- day-half of day from (
amPm
locale
), converted to lowercase,am
,pm
%p
- day-half of day from (
amPm
locale
),AM
,PM
%H
- hour of day (24-hour), 0-padded to two chars,
00
-23
%k
- hour of day (24-hour), space-padded to two chars,
0
-23
%I
- hour of day-half (12-hour), 0-padded to two chars,
01
-12
%l
- hour of day-half (12-hour), space-padded to two chars,
1
-12
%M
- minute of hour, 0-padded to two chars,
00
-59
%S
- second of minute (without decimal part), 0-padded to two chars,
00
-60
%q
- picosecond of second, 0-padded to twelve chars,
000000000000
-999999999999
. %Q
- decimal point and fraction of second, up to 12 second decimals, without trailing zeros.
For a whole number of seconds,
%Q
omits the decimal point unless padding is specified.
UTCTime
and ZonedTime
%s
- number of whole seconds since the Unix epoch. For times before
the Unix epoch, this is a negative number. Note that in
%s.%q
and%s%Q
the decimals are positive, not negative. For example, 0.9 seconds before the Unix epoch is formatted as-1.1
with%s%Q
.
Day
For Day
(and LocalTime
and ZonedTime
and UTCTime
and UniversalTime
):
%D
- same as
%m/%d/%y
%F
- same as
%Y-%m-%d
%x
- as
dateFmt
locale
(e.g.%m/%d/%y
) %Y
- year, no padding. Note
%0Y
and%_Y
pad to four chars %y
- year of century, 0-padded to two chars,
00
-99
%C
- century, no padding. Note
%0C
and%_C
pad to two chars %B
- month name, long form (
fst
frommonths
locale
),January
-December
%b
,%h
- month name, short form (
snd
frommonths
locale
),Jan
-Dec
%m
- month of year, 0-padded to two chars,
01
-12
%d
- day of month, 0-padded to two chars,
01
-31
%e
- day of month, space-padded to two chars,
1
-31
%j
- day of year, 0-padded to three chars,
001
-366
%f
- century for Week Date format, no padding. Note
%0f
and%_f
pad to two chars %V
- week of year for Week Date format, 0-padded to two chars,
01
-53
%u
- day of week for Week Date format,
1
-7
%a
- day of week, short form (
snd
fromwDays
locale
),Sun
-Sat
%A
- day of week, long form (
fst
fromwDays
locale
),Sunday
-Saturday
%U
- week of year where weeks start on Sunday (as
sundayStartWeek
), 0-padded to two chars,00
-53
%w
- day of week number,
0
(= Sunday) -6
(= Saturday) %W
- week of year where weeks start on Monday (as
mondayStartWeek
), 0-padded to two chars,00
-53
Arguments
:: (Monad m, ParseTime t) | |
=> Bool | Accept leading and trailing whitespace? |
-> TimeLocale | Time locale. |
-> String | Format string. |
-> String | Input string. |
-> m t | Return the time value, or fail if the input could not be parsed using the given format. |
Parses a time value given a format string.
Supports the same %-codes as formatTime
, including %-
, %_
and %0
modifiers, however padding widths are not supported.
Case is not significant in the input string.
Some variations in the input are accepted:
%z
- accepts any of
-HHMM
or-HH:MM
. %Z
- accepts any string of letters, or any of the formats accepted by
%z
. %0Y
- accepts exactly four digits.
%0G
- accepts exactly four digits.
%0C
- accepts exactly two digits.
%0f
- accepts exactly two digits.
defaultTimeLocale :: TimeLocale #
Locale representing American usage.
knownTimeZones
contains only the ten time-zones mentioned in RFC 822 sec. 5:
"UT", "GMT", "EST", "EDT", "CST", "CDT", "MST", "MDT", "PST", "PDT".
Note that the parsing functions will regardless parse single-letter military time-zones and +HHMM format.
getCurrentTime :: IO UTCTime #
Get the current UTCTime
from the system clock.
This is the simplest representation of UTC. It consists of the day number, and a time offset from midnight. Note that if a day has a leap second added to it, it will have 86401 seconds.
Constructors
UTCTime | |
Fields
|
Instances
Eq UTCTime | |
Data UTCTime | |
Defined in Data.Time.Clock.Internal.UTCTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> UTCTime -> c UTCTime # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c UTCTime # toConstr :: UTCTime -> Constr # dataTypeOf :: UTCTime -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c UTCTime) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c UTCTime) # gmapT :: (forall b. Data b => b -> b) -> UTCTime -> UTCTime # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> UTCTime -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> UTCTime -> r # gmapQ :: (forall d. Data d => d -> u) -> UTCTime -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> UTCTime -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> UTCTime -> m UTCTime # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> UTCTime -> m UTCTime # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> UTCTime -> m UTCTime # | |
Ord UTCTime | |
Defined in Data.Time.Clock.Internal.UTCTime | |
NFData UTCTime | |
Defined in Data.Time.Clock.Internal.UTCTime | |
FormatTime UTCTime | |
Defined in Data.Time.Format Methods formatCharacter :: Char -> Maybe (TimeLocale -> Maybe NumericPadOption -> Maybe Int -> UTCTime -> String) # | |
ParseTime UTCTime | |
Defined in Data.Time.Format.Parse |
fromGregorian :: Integer -> Int -> Int -> Day #
Convert from proleptic Gregorian calendar. First argument is year, second month number (1-12), third day (1-31). Invalid values will be clipped to the correct range, month first, then day.
toGregorian :: Day -> (Integer, Int, Int) #
Convert to proleptic Gregorian calendar. First element of result is year, second month number (1-12), third day (1-31).
The Modified Julian Day is a standard count of days, with zero being the day 1858-11-17.
Constructors
ModifiedJulianDay | |
Fields |
Instances
Enum Day | |
Eq Day | |
Data Day | |
Defined in Data.Time.Calendar.Days Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Day -> c Day # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Day # dataTypeOf :: Day -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Day) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Day) # gmapT :: (forall b. Data b => b -> b) -> Day -> Day # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Day -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Day -> r # gmapQ :: (forall d. Data d => d -> u) -> Day -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Day -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Day -> m Day # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Day -> m Day # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Day -> m Day # | |
Ord Day | |
Ix Day | |
NFData Day | |
Defined in Data.Time.Calendar.Days | |
FormatTime Day | |
Defined in Data.Time.Format Methods formatCharacter :: Char -> Maybe (TimeLocale -> Maybe NumericPadOption -> Maybe Int -> Day -> String) # | |
ParseTime Day | |
Defined in Data.Time.Format.Parse |
Generics (since 0.8.1)
Representable types of kind *
.
This class is derivable in GHC with the DeriveGeneric
flag on.
A Generic
instance must satisfy the following laws:
from
.to
≡id
to
.from
≡id
Instances
Transformers (since 0.9.4)
Identity functor and monad. (a non-strict monad)
Since: base-4.8.0.0
Constructors
Identity | |
Fields
|
Instances
class Monad m => MonadReader r (m :: * -> *) | m -> r #
See examples in Control.Monad.Reader.
Note, the partially applied function type (->) r
is a simple reader monad.
See the instance
declaration below.
Instances
MonadReader r m => MonadReader r (MaybeT m) | |
MonadReader r m => MonadReader r (ListT m) | |
(Functor m, MonadReader e m) => MonadReader e (Free m) | |
(Representable f, Rep f ~ a) => MonadReader a (Co f) | |
(Monoid w, MonadReader r m) => MonadReader r (WriterT w m) | |
(Monoid w, MonadReader r m) => MonadReader r (WriterT w m) | |
MonadReader r m => MonadReader r (StateT s m) | |
MonadReader r m => MonadReader r (StateT s m) | |
MonadReader r m => MonadReader r (IdentityT m) | |
MonadReader r m => MonadReader r (ExceptT e m) | Since: mtl-2.2 |
(Error e, MonadReader r m) => MonadReader r (ErrorT e m) | |
(Functor f, MonadReader r m) => MonadReader r (FreeT f m) | |
Monad m => MonadReader r (ReaderT r m) | |
MonadReader r ((->) r :: * -> *) | |
MonadReader r' m => MonadReader r' (ContT r m) | |
(Monad m, Monoid w) => MonadReader r (RWST r w s m) | |
(Monad m, Monoid w) => MonadReader r (RWST r w s m) | |
ask :: MonadReader r m => m r #
Retrieves the monad environment.
Arguments
:: MonadReader r m | |
=> (r -> a) | The selector function to apply to the environment. |
-> m a |
Retrieves a function of the current environment.
newtype ReaderT r (m :: k -> *) (a :: k) :: forall k. * -> (k -> *) -> k -> * #
The reader monad transformer, which adds a read-only environment to the given monad.
The return
function ignores the environment, while >>=
passes
the inherited environment to both subcomputations.
Constructors
ReaderT | |
Fields
|
Instances
type Reader r = ReaderT r Identity #
The parameterizable reader monad.
Computations are functions of a shared environment.
The return
function ignores the environment, while >>=
passes
the inherited environment to both subcomputations.
Poly hierarchy
class Foldable (t :: * -> *) #
Data structures that can be folded.
For example, given a data type
data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)
a suitable instance would be
instance Foldable Tree where foldMap f Empty = mempty foldMap f (Leaf x) = f x foldMap f (Node l k r) = foldMap f l `mappend` f k `mappend` foldMap f r
This is suitable even for abstract types, as the monoid is assumed
to satisfy the monoid laws. Alternatively, one could define foldr
:
instance Foldable Tree where foldr f z Empty = z foldr f z (Leaf x) = f x z foldr f z (Node l k r) = foldr f (f k (foldr f z r)) l
Foldable
instances are expected to satisfy the following laws:
foldr f z t = appEndo (foldMap (Endo . f) t ) z
foldl f z t = appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z
fold = foldMap id
length = getSum . foldMap (Sum . const 1)
sum
, product
, maximum
, and minimum
should all be essentially
equivalent to foldMap
forms, such as
sum = getSum . foldMap Sum
but may be less defined.
If the type is also a Functor
instance, it should satisfy
foldMap f = fold . fmap f
which implies that
foldMap f . fmap g = foldMap (f . g)
Instances
Foldable [] | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => [m] -> m # foldMap :: Monoid m => (a -> m) -> [a] -> m # foldr :: (a -> b -> b) -> b -> [a] -> b # foldr' :: (a -> b -> b) -> b -> [a] -> b # foldl :: (b -> a -> b) -> b -> [a] -> b # foldl' :: (b -> a -> b) -> b -> [a] -> b # foldr1 :: (a -> a -> a) -> [a] -> a # foldl1 :: (a -> a -> a) -> [a] -> a # elem :: Eq a => a -> [a] -> Bool # maximum :: Ord a => [a] -> a # | |
Foldable Maybe | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |
Foldable Par1 | |
Defined in Data.Foldable Methods fold :: Monoid m => Par1 m -> m # foldMap :: Monoid m => (a -> m) -> Par1 a -> m # foldr :: (a -> b -> b) -> b -> Par1 a -> b # foldr' :: (a -> b -> b) -> b -> Par1 a -> b # foldl :: (b -> a -> b) -> b -> Par1 a -> b # foldl' :: (b -> a -> b) -> b -> Par1 a -> b # foldr1 :: (a -> a -> a) -> Par1 a -> a # foldl1 :: (a -> a -> a) -> Par1 a -> a # elem :: Eq a => a -> Par1 a -> Bool # maximum :: Ord a => Par1 a -> a # | |
Foldable Complex | |
Defined in Data.Complex Methods fold :: Monoid m => Complex m -> m # foldMap :: Monoid m => (a -> m) -> Complex a -> m # foldr :: (a -> b -> b) -> b -> Complex a -> b # foldr' :: (a -> b -> b) -> b -> Complex a -> b # foldl :: (b -> a -> b) -> b -> Complex a -> b # foldl' :: (b -> a -> b) -> b -> Complex a -> b # foldr1 :: (a -> a -> a) -> Complex a -> a # foldl1 :: (a -> a -> a) -> Complex a -> a # elem :: Eq a => a -> Complex a -> Bool # maximum :: Ord a => Complex a -> a # minimum :: Ord a => Complex a -> a # | |
Foldable Min | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Min m -> m # foldMap :: Monoid m => (a -> m) -> Min a -> m # foldr :: (a -> b -> b) -> b -> Min a -> b # foldr' :: (a -> b -> b) -> b -> Min a -> b # foldl :: (b -> a -> b) -> b -> Min a -> b # foldl' :: (b -> a -> b) -> b -> Min a -> b # foldr1 :: (a -> a -> a) -> Min a -> a # foldl1 :: (a -> a -> a) -> Min a -> a # elem :: Eq a => a -> Min a -> Bool # maximum :: Ord a => Min a -> a # | |
Foldable Max | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Max m -> m # foldMap :: Monoid m => (a -> m) -> Max a -> m # foldr :: (a -> b -> b) -> b -> Max a -> b # foldr' :: (a -> b -> b) -> b -> Max a -> b # foldl :: (b -> a -> b) -> b -> Max a -> b # foldl' :: (b -> a -> b) -> b -> Max a -> b # foldr1 :: (a -> a -> a) -> Max a -> a # foldl1 :: (a -> a -> a) -> Max a -> a # elem :: Eq a => a -> Max a -> Bool # maximum :: Ord a => Max a -> a # | |
Foldable First | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |
Foldable Last | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
Foldable Option | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Option m -> m # foldMap :: Monoid m => (a -> m) -> Option a -> m # foldr :: (a -> b -> b) -> b -> Option a -> b # foldr' :: (a -> b -> b) -> b -> Option a -> b # foldl :: (b -> a -> b) -> b -> Option a -> b # foldl' :: (b -> a -> b) -> b -> Option a -> b # foldr1 :: (a -> a -> a) -> Option a -> a # foldl1 :: (a -> a -> a) -> Option a -> a # elem :: Eq a => a -> Option a -> Bool # maximum :: Ord a => Option a -> a # minimum :: Ord a => Option a -> a # | |
Foldable ZipList | |
Defined in Control.Applicative Methods fold :: Monoid m => ZipList m -> m # foldMap :: Monoid m => (a -> m) -> ZipList a -> m # foldr :: (a -> b -> b) -> b -> ZipList a -> b # foldr' :: (a -> b -> b) -> b -> ZipList a -> b # foldl :: (b -> a -> b) -> b -> ZipList a -> b # foldl' :: (b -> a -> b) -> b -> ZipList a -> b # foldr1 :: (a -> a -> a) -> ZipList a -> a # foldl1 :: (a -> a -> a) -> ZipList a -> a # elem :: Eq a => a -> ZipList a -> Bool # maximum :: Ord a => ZipList a -> a # minimum :: Ord a => ZipList a -> a # | |
Foldable Identity | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity Methods fold :: Monoid m => Identity m -> m # foldMap :: Monoid m => (a -> m) -> Identity a -> m # foldr :: (a -> b -> b) -> b -> Identity a -> b # foldr' :: (a -> b -> b) -> b -> Identity a -> b # foldl :: (b -> a -> b) -> b -> Identity a -> b # foldl' :: (b -> a -> b) -> b -> Identity a -> b # foldr1 :: (a -> a -> a) -> Identity a -> a # foldl1 :: (a -> a -> a) -> Identity a -> a # elem :: Eq a => a -> Identity a -> Bool # maximum :: Ord a => Identity a -> a # minimum :: Ord a => Identity a -> a # | |
Foldable First | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |
Foldable Last | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
Foldable Dual | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Dual m -> m # foldMap :: Monoid m => (a -> m) -> Dual a -> m # foldr :: (a -> b -> b) -> b -> Dual a -> b # foldr' :: (a -> b -> b) -> b -> Dual a -> b # foldl :: (b -> a -> b) -> b -> Dual a -> b # foldl' :: (b -> a -> b) -> b -> Dual a -> b # foldr1 :: (a -> a -> a) -> Dual a -> a # foldl1 :: (a -> a -> a) -> Dual a -> a # elem :: Eq a => a -> Dual a -> Bool # maximum :: Ord a => Dual a -> a # | |
Foldable Sum | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Sum m -> m # foldMap :: Monoid m => (a -> m) -> Sum a -> m # foldr :: (a -> b -> b) -> b -> Sum a -> b # foldr' :: (a -> b -> b) -> b -> Sum a -> b # foldl :: (b -> a -> b) -> b -> Sum a -> b # foldl' :: (b -> a -> b) -> b -> Sum a -> b # foldr1 :: (a -> a -> a) -> Sum a -> a # foldl1 :: (a -> a -> a) -> Sum a -> a # elem :: Eq a => a -> Sum a -> Bool # maximum :: Ord a => Sum a -> a # | |
Foldable Product | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Product m -> m # foldMap :: Monoid m => (a -> m) -> Product a -> m # foldr :: (a -> b -> b) -> b -> Product a -> b # foldr' :: (a -> b -> b) -> b -> Product a -> b # foldl :: (b -> a -> b) -> b -> Product a -> b # foldl' :: (b -> a -> b) -> b -> Product a -> b # foldr1 :: (a -> a -> a) -> Product a -> a # foldl1 :: (a -> a -> a) -> Product a -> a # elem :: Eq a => a -> Product a -> Bool # maximum :: Ord a => Product a -> a # minimum :: Ord a => Product a -> a # | |
Foldable NonEmpty | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => NonEmpty m -> m # foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m # foldr :: (a -> b -> b) -> b -> NonEmpty a -> b # foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b # foldl :: (b -> a -> b) -> b -> NonEmpty a -> b # foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b # foldr1 :: (a -> a -> a) -> NonEmpty a -> a # foldl1 :: (a -> a -> a) -> NonEmpty a -> a # elem :: Eq a => a -> NonEmpty a -> Bool # maximum :: Ord a => NonEmpty a -> a # minimum :: Ord a => NonEmpty a -> a # | |
Foldable Vector | |
Defined in Data.Vector Methods fold :: Monoid m => Vector m -> m # foldMap :: Monoid m => (a -> m) -> Vector a -> m # foldr :: (a -> b -> b) -> b -> Vector a -> b # foldr' :: (a -> b -> b) -> b -> Vector a -> b # foldl :: (b -> a -> b) -> b -> Vector a -> b # foldl' :: (b -> a -> b) -> b -> Vector a -> b # foldr1 :: (a -> a -> a) -> Vector a -> a # foldl1 :: (a -> a -> a) -> Vector a -> a # elem :: Eq a => a -> Vector a -> Bool # maximum :: Ord a => Vector a -> a # minimum :: Ord a => Vector a -> a # | |
Foldable HashSet | |
Defined in Data.HashSet Methods fold :: Monoid m => HashSet m -> m # foldMap :: Monoid m => (a -> m) -> HashSet a -> m # foldr :: (a -> b -> b) -> b -> HashSet a -> b # foldr' :: (a -> b -> b) -> b -> HashSet a -> b # foldl :: (b -> a -> b) -> b -> HashSet a -> b # foldl' :: (b -> a -> b) -> b -> HashSet a -> b # foldr1 :: (a -> a -> a) -> HashSet a -> a # foldl1 :: (a -> a -> a) -> HashSet a -> a # elem :: Eq a => a -> HashSet a -> Bool # maximum :: Ord a => HashSet a -> a # minimum :: Ord a => HashSet a -> a # | |
Foldable Set | |
Defined in Data.Set.Internal Methods fold :: Monoid m => Set m -> m # foldMap :: Monoid m => (a -> m) -> Set a -> m # foldr :: (a -> b -> b) -> b -> Set a -> b # foldr' :: (a -> b -> b) -> b -> Set a -> b # foldl :: (b -> a -> b) -> b -> Set a -> b # foldl' :: (b -> a -> b) -> b -> Set a -> b # foldr1 :: (a -> a -> a) -> Set a -> a # foldl1 :: (a -> a -> a) -> Set a -> a # elem :: Eq a => a -> Set a -> Bool # maximum :: Ord a => Set a -> a # | |
Foldable Seq | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Seq m -> m # foldMap :: Monoid m => (a -> m) -> Seq a -> m # foldr :: (a -> b -> b) -> b -> Seq a -> b # foldr' :: (a -> b -> b) -> b -> Seq a -> b # foldl :: (b -> a -> b) -> b -> Seq a -> b # foldl' :: (b -> a -> b) -> b -> Seq a -> b # foldr1 :: (a -> a -> a) -> Seq a -> a # foldl1 :: (a -> a -> a) -> Seq a -> a # elem :: Eq a => a -> Seq a -> Bool # maximum :: Ord a => Seq a -> a # | |
Foldable IntMap | |
Defined in Data.IntMap.Internal Methods fold :: Monoid m => IntMap m -> m # foldMap :: Monoid m => (a -> m) -> IntMap a -> m # foldr :: (a -> b -> b) -> b -> IntMap a -> b # foldr' :: (a -> b -> b) -> b -> IntMap a -> b # foldl :: (b -> a -> b) -> b -> IntMap a -> b # foldl' :: (b -> a -> b) -> b -> IntMap a -> b # foldr1 :: (a -> a -> a) -> IntMap a -> a # foldl1 :: (a -> a -> a) -> IntMap a -> a # elem :: Eq a => a -> IntMap a -> Bool # maximum :: Ord a => IntMap a -> a # minimum :: Ord a => IntMap a -> a # | |
Foldable Tree | |
Defined in Data.Tree Methods fold :: Monoid m => Tree m -> m # foldMap :: Monoid m => (a -> m) -> Tree a -> m # foldr :: (a -> b -> b) -> b -> Tree a -> b # foldr' :: (a -> b -> b) -> b -> Tree a -> b # foldl :: (b -> a -> b) -> b -> Tree a -> b # foldl' :: (b -> a -> b) -> b -> Tree a -> b # foldr1 :: (a -> a -> a) -> Tree a -> a # foldl1 :: (a -> a -> a) -> Tree a -> a # elem :: Eq a => a -> Tree a -> Bool # maximum :: Ord a => Tree a -> a # | |
Foldable FingerTree | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => FingerTree m -> m # foldMap :: Monoid m => (a -> m) -> FingerTree a -> m # foldr :: (a -> b -> b) -> b -> FingerTree a -> b # foldr' :: (a -> b -> b) -> b -> FingerTree a -> b # foldl :: (b -> a -> b) -> b -> FingerTree a -> b # foldl' :: (b -> a -> b) -> b -> FingerTree a -> b # foldr1 :: (a -> a -> a) -> FingerTree a -> a # foldl1 :: (a -> a -> a) -> FingerTree a -> a # toList :: FingerTree a -> [a] # null :: FingerTree a -> Bool # length :: FingerTree a -> Int # elem :: Eq a => a -> FingerTree a -> Bool # maximum :: Ord a => FingerTree a -> a # minimum :: Ord a => FingerTree a -> a # sum :: Num a => FingerTree a -> a # product :: Num a => FingerTree a -> a # | |
Foldable Digit | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Digit m -> m # foldMap :: Monoid m => (a -> m) -> Digit a -> m # foldr :: (a -> b -> b) -> b -> Digit a -> b # foldr' :: (a -> b -> b) -> b -> Digit a -> b # foldl :: (b -> a -> b) -> b -> Digit a -> b # foldl' :: (b -> a -> b) -> b -> Digit a -> b # foldr1 :: (a -> a -> a) -> Digit a -> a # foldl1 :: (a -> a -> a) -> Digit a -> a # elem :: Eq a => a -> Digit a -> Bool # maximum :: Ord a => Digit a -> a # minimum :: Ord a => Digit a -> a # | |
Foldable Node | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Node m -> m # foldMap :: Monoid m => (a -> m) -> Node a -> m # foldr :: (a -> b -> b) -> b -> Node a -> b # foldr' :: (a -> b -> b) -> b -> Node a -> b # foldl :: (b -> a -> b) -> b -> Node a -> b # foldl' :: (b -> a -> b) -> b -> Node a -> b # foldr1 :: (a -> a -> a) -> Node a -> a # foldl1 :: (a -> a -> a) -> Node a -> a # elem :: Eq a => a -> Node a -> Bool # maximum :: Ord a => Node a -> a # | |
Foldable Elem | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Elem m -> m # foldMap :: Monoid m => (a -> m) -> Elem a -> m # foldr :: (a -> b -> b) -> b -> Elem a -> b # foldr' :: (a -> b -> b) -> b -> Elem a -> b # foldl :: (b -> a -> b) -> b -> Elem a -> b # foldl' :: (b -> a -> b) -> b -> Elem a -> b # foldr1 :: (a -> a -> a) -> Elem a -> a # foldl1 :: (a -> a -> a) -> Elem a -> a # elem :: Eq a => a -> Elem a -> Bool # maximum :: Ord a => Elem a -> a # | |
Foldable ViewL | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => ViewL m -> m # foldMap :: Monoid m => (a -> m) -> ViewL a -> m # foldr :: (a -> b -> b) -> b -> ViewL a -> b # foldr' :: (a -> b -> b) -> b -> ViewL a -> b # foldl :: (b -> a -> b) -> b -> ViewL a -> b # foldl' :: (b -> a -> b) -> b -> ViewL a -> b # foldr1 :: (a -> a -> a) -> ViewL a -> a # foldl1 :: (a -> a -> a) -> ViewL a -> a # elem :: Eq a => a -> ViewL a -> Bool # maximum :: Ord a => ViewL a -> a # minimum :: Ord a => ViewL a -> a # | |
Foldable ViewR | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => ViewR m -> m # foldMap :: Monoid m => (a -> m) -> ViewR a -> m # foldr :: (a -> b -> b) -> b -> ViewR a -> b # foldr' :: (a -> b -> b) -> b -> ViewR a -> b # foldl :: (b -> a -> b) -> b -> ViewR a -> b # foldl' :: (b -> a -> b) -> b -> ViewR a -> b # foldr1 :: (a -> a -> a) -> ViewR a -> a # foldl1 :: (a -> a -> a) -> ViewR a -> a # elem :: Eq a => a -> ViewR a -> Bool # maximum :: Ord a => ViewR a -> a # minimum :: Ord a => ViewR a -> a # | |
Foldable DList | |
Defined in Data.DList Methods fold :: Monoid m => DList m -> m # foldMap :: Monoid m => (a -> m) -> DList a -> m # foldr :: (a -> b -> b) -> b -> DList a -> b # foldr' :: (a -> b -> b) -> b -> DList a -> b # foldl :: (b -> a -> b) -> b -> DList a -> b # foldl' :: (b -> a -> b) -> b -> DList a -> b # foldr1 :: (a -> a -> a) -> DList a -> a # foldl1 :: (a -> a -> a) -> DList a -> a # elem :: Eq a => a -> DList a -> Bool # maximum :: Ord a => DList a -> a # minimum :: Ord a => DList a -> a # | |
Foldable Hashed | |
Defined in Data.Hashable.Class Methods fold :: Monoid m => Hashed m -> m # foldMap :: Monoid m => (a -> m) -> Hashed a -> m # foldr :: (a -> b -> b) -> b -> Hashed a -> b # foldr' :: (a -> b -> b) -> b -> Hashed a -> b # foldl :: (b -> a -> b) -> b -> Hashed a -> b # foldl' :: (b -> a -> b) -> b -> Hashed a -> b # foldr1 :: (a -> a -> a) -> Hashed a -> a # foldl1 :: (a -> a -> a) -> Hashed a -> a # elem :: Eq a => a -> Hashed a -> Bool # maximum :: Ord a => Hashed a -> a # minimum :: Ord a => Hashed a -> a # | |
Foldable SmallArray | |
Defined in Data.Primitive.SmallArray Methods fold :: Monoid m => SmallArray m -> m # foldMap :: Monoid m => (a -> m) -> SmallArray a -> m # foldr :: (a -> b -> b) -> b -> SmallArray a -> b # foldr' :: (a -> b -> b) -> b -> SmallArray a -> b # foldl :: (b -> a -> b) -> b -> SmallArray a -> b # foldl' :: (b -> a -> b) -> b -> SmallArray a -> b # foldr1 :: (a -> a -> a) -> SmallArray a -> a # foldl1 :: (a -> a -> a) -> SmallArray a -> a # toList :: SmallArray a -> [a] # null :: SmallArray a -> Bool # length :: SmallArray a -> Int # elem :: Eq a => a -> SmallArray a -> Bool # maximum :: Ord a => SmallArray a -> a # minimum :: Ord a => SmallArray a -> a # sum :: Num a => SmallArray a -> a # product :: Num a => SmallArray a -> a # | |
Foldable Array | |
Defined in Data.Primitive.Array Methods fold :: Monoid m => Array m -> m # foldMap :: Monoid m => (a -> m) -> Array a -> m # foldr :: (a -> b -> b) -> b -> Array a -> b # foldr' :: (a -> b -> b) -> b -> Array a -> b # foldl :: (b -> a -> b) -> b -> Array a -> b # foldl' :: (b -> a -> b) -> b -> Array a -> b # foldr1 :: (a -> a -> a) -> Array a -> a # foldl1 :: (a -> a -> a) -> Array a -> a # elem :: Eq a => a -> Array a -> Bool # maximum :: Ord a => Array a -> a # minimum :: Ord a => Array a -> a # | |
Foldable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Either a m -> m # foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # toList :: Either a a0 -> [a0] # length :: Either a a0 -> Int # elem :: Eq a0 => a0 -> Either a a0 -> Bool # maximum :: Ord a0 => Either a a0 -> a0 # minimum :: Ord a0 => Either a a0 -> a0 # | |
Foldable (V1 :: * -> *) | |
Defined in Data.Foldable Methods fold :: Monoid m => V1 m -> m # foldMap :: Monoid m => (a -> m) -> V1 a -> m # foldr :: (a -> b -> b) -> b -> V1 a -> b # foldr' :: (a -> b -> b) -> b -> V1 a -> b # foldl :: (b -> a -> b) -> b -> V1 a -> b # foldl' :: (b -> a -> b) -> b -> V1 a -> b # foldr1 :: (a -> a -> a) -> V1 a -> a # foldl1 :: (a -> a -> a) -> V1 a -> a # elem :: Eq a => a -> V1 a -> Bool # maximum :: Ord a => V1 a -> a # | |
Foldable (U1 :: * -> *) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => U1 m -> m # foldMap :: Monoid m => (a -> m) -> U1 a -> m # foldr :: (a -> b -> b) -> b -> U1 a -> b # foldr' :: (a -> b -> b) -> b -> U1 a -> b # foldl :: (b -> a -> b) -> b -> U1 a -> b # foldl' :: (b -> a -> b) -> b -> U1 a -> b # foldr1 :: (a -> a -> a) -> U1 a -> a # foldl1 :: (a -> a -> a) -> U1 a -> a # elem :: Eq a => a -> U1 a -> Bool # maximum :: Ord a => U1 a -> a # | |
Foldable ((,) a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (a, m) -> m # foldMap :: Monoid m => (a0 -> m) -> (a, a0) -> m # foldr :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldr' :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldl :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldl' :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldr1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # foldl1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # elem :: Eq a0 => a0 -> (a, a0) -> Bool # maximum :: Ord a0 => (a, a0) -> a0 # minimum :: Ord a0 => (a, a0) -> a0 # | |
Foldable (Array i) | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Array i m -> m # foldMap :: Monoid m => (a -> m) -> Array i a -> m # foldr :: (a -> b -> b) -> b -> Array i a -> b # foldr' :: (a -> b -> b) -> b -> Array i a -> b # foldl :: (b -> a -> b) -> b -> Array i a -> b # foldl' :: (b -> a -> b) -> b -> Array i a -> b # foldr1 :: (a -> a -> a) -> Array i a -> a # foldl1 :: (a -> a -> a) -> Array i a -> a # elem :: Eq a => a -> Array i a -> Bool # maximum :: Ord a => Array i a -> a # minimum :: Ord a => Array i a -> a # | |
Foldable (Arg a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Arg a m -> m # foldMap :: Monoid m => (a0 -> m) -> Arg a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Arg a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Arg a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Arg a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Arg a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 # elem :: Eq a0 => a0 -> Arg a a0 -> Bool # maximum :: Ord a0 => Arg a a0 -> a0 # minimum :: Ord a0 => Arg a a0 -> a0 # | |
Foldable (Proxy :: * -> *) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Proxy m -> m # foldMap :: Monoid m => (a -> m) -> Proxy a -> m # foldr :: (a -> b -> b) -> b -> Proxy a -> b # foldr' :: (a -> b -> b) -> b -> Proxy a -> b # foldl :: (b -> a -> b) -> b -> Proxy a -> b # foldl' :: (b -> a -> b) -> b -> Proxy a -> b # foldr1 :: (a -> a -> a) -> Proxy a -> a # foldl1 :: (a -> a -> a) -> Proxy a -> a # elem :: Eq a => a -> Proxy a -> Bool # maximum :: Ord a => Proxy a -> a # minimum :: Ord a => Proxy a -> a # | |
Foldable (HashMap k) | |
Defined in Data.HashMap.Base Methods fold :: Monoid m => HashMap k m -> m # foldMap :: Monoid m => (a -> m) -> HashMap k a -> m # foldr :: (a -> b -> b) -> b -> HashMap k a -> b # foldr' :: (a -> b -> b) -> b -> HashMap k a -> b # foldl :: (b -> a -> b) -> b -> HashMap k a -> b # foldl' :: (b -> a -> b) -> b -> HashMap k a -> b # foldr1 :: (a -> a -> a) -> HashMap k a -> a # foldl1 :: (a -> a -> a) -> HashMap k a -> a # toList :: HashMap k a -> [a] # length :: HashMap k a -> Int # elem :: Eq a => a -> HashMap k a -> Bool # maximum :: Ord a => HashMap k a -> a # minimum :: Ord a => HashMap k a -> a # | |
Foldable (Map k) | |
Defined in Data.Map.Internal Methods fold :: Monoid m => Map k m -> m # foldMap :: Monoid m => (a -> m) -> Map k a -> m # foldr :: (a -> b -> b) -> b -> Map k a -> b # foldr' :: (a -> b -> b) -> b -> Map k a -> b # foldl :: (b -> a -> b) -> b -> Map k a -> b # foldl' :: (b -> a -> b) -> b -> Map k a -> b # foldr1 :: (a -> a -> a) -> Map k a -> a # foldl1 :: (a -> a -> a) -> Map k a -> a # elem :: Eq a => a -> Map k a -> Bool # maximum :: Ord a => Map k a -> a # minimum :: Ord a => Map k a -> a # | |
Foldable f => Foldable (MaybeT f) | |
Defined in Control.Monad.Trans.Maybe Methods fold :: Monoid m => MaybeT f m -> m # foldMap :: Monoid m => (a -> m) -> MaybeT f a -> m # foldr :: (a -> b -> b) -> b -> MaybeT f a -> b # foldr' :: (a -> b -> b) -> b -> MaybeT f a -> b # foldl :: (b -> a -> b) -> b -> MaybeT f a -> b # foldl' :: (b -> a -> b) -> b -> MaybeT f a -> b # foldr1 :: (a -> a -> a) -> MaybeT f a -> a # foldl1 :: (a -> a -> a) -> MaybeT f a -> a # elem :: Eq a => a -> MaybeT f a -> Bool # maximum :: Ord a => MaybeT f a -> a # minimum :: Ord a => MaybeT f a -> a # | |
Foldable f => Foldable (Cofree f) | |
Defined in Control.Comonad.Cofree Methods fold :: Monoid m => Cofree f m -> m # foldMap :: Monoid m => (a -> m) -> Cofree f a -> m # foldr :: (a -> b -> b) -> b -> Cofree f a -> b # foldr' :: (a -> b -> b) -> b -> Cofree f a -> b # foldl :: (b -> a -> b) -> b -> Cofree f a -> b # foldl' :: (b -> a -> b) -> b -> Cofree f a -> b # foldr1 :: (a -> a -> a) -> Cofree f a -> a # foldl1 :: (a -> a -> a) -> Cofree f a -> a # elem :: Eq a => a -> Cofree f a -> Bool # maximum :: Ord a => Cofree f a -> a # minimum :: Ord a => Cofree f a -> a # | |
Foldable f => Foldable (Free f) | |
Defined in Control.Monad.Free Methods fold :: Monoid m => Free f m -> m # foldMap :: Monoid m => (a -> m) -> Free f a -> m # foldr :: (a -> b -> b) -> b -> Free f a -> b # foldr' :: (a -> b -> b) -> b -> Free f a -> b # foldl :: (b -> a -> b) -> b -> Free f a -> b # foldl' :: (b -> a -> b) -> b -> Free f a -> b # foldr1 :: (a -> a -> a) -> Free f a -> a # foldl1 :: (a -> a -> a) -> Free f a -> a # elem :: Eq a => a -> Free f a -> Bool # maximum :: Ord a => Free f a -> a # minimum :: Ord a => Free f a -> a # | |
Foldable f => Foldable (ListT f) | |
Defined in Control.Monad.Trans.List Methods fold :: Monoid m => ListT f m -> m # foldMap :: Monoid m => (a -> m) -> ListT f a -> m # foldr :: (a -> b -> b) -> b -> ListT f a -> b # foldr' :: (a -> b -> b) -> b -> ListT f a -> b # foldl :: (b -> a -> b) -> b -> ListT f a -> b # foldl' :: (b -> a -> b) -> b -> ListT f a -> b # foldr1 :: (a -> a -> a) -> ListT f a -> a # foldl1 :: (a -> a -> a) -> ListT f a -> a # elem :: Eq a => a -> ListT f a -> Bool # maximum :: Ord a => ListT f a -> a # minimum :: Ord a => ListT f a -> a # | |
Foldable f => Foldable (Rec1 f) | |
Defined in Data.Foldable Methods fold :: Monoid m => Rec1 f m -> m # foldMap :: Monoid m => (a -> m) -> Rec1 f a -> m # foldr :: (a -> b -> b) -> b -> Rec1 f a -> b # foldr' :: (a -> b -> b) -> b -> Rec1 f a -> b # foldl :: (b -> a -> b) -> b -> Rec1 f a -> b # foldl' :: (b -> a -> b) -> b -> Rec1 f a -> b # foldr1 :: (a -> a -> a) -> Rec1 f a -> a # foldl1 :: (a -> a -> a) -> Rec1 f a -> a # elem :: Eq a => a -> Rec1 f a -> Bool # maximum :: Ord a => Rec1 f a -> a # minimum :: Ord a => Rec1 f a -> a # | |
Foldable (URec Char :: * -> *) | |
Defined in Data.Foldable Methods fold :: Monoid m => URec Char m -> m # foldMap :: Monoid m => (a -> m) -> URec Char a -> m # foldr :: (a -> b -> b) -> b -> URec Char a -> b # foldr' :: (a -> b -> b) -> b -> URec Char a -> b # foldl :: (b -> a -> b) -> b -> URec Char a -> b # foldl' :: (b -> a -> b) -> b -> URec Char a -> b # foldr1 :: (a -> a -> a) -> URec Char a -> a # foldl1 :: (a -> a -> a) -> URec Char a -> a # toList :: URec Char a -> [a] # length :: URec Char a -> Int # elem :: Eq a => a -> URec Char a -> Bool # maximum :: Ord a => URec Char a -> a # minimum :: Ord a => URec Char a -> a # | |
Foldable (URec Double :: * -> *) | |
Defined in Data.Foldable Methods fold :: Monoid m => URec Double m -> m # foldMap :: Monoid m => (a -> m) -> URec Double a -> m # foldr :: (a -> b -> b) -> b -> URec Double a -> b # foldr' :: (a -> b -> b) -> b -> URec Double a -> b # foldl :: (b -> a -> b) -> b -> URec Double a -> b # foldl' :: (b -> a -> b) -> b -> URec Double a -> b # foldr1 :: (a -> a -> a) -> URec Double a -> a # foldl1 :: (a -> a -> a) -> URec Double a -> a # toList :: URec Double a -> [a] # null :: URec Double a -> Bool # length :: URec Double a -> Int # elem :: Eq a => a -> URec Double a -> Bool # maximum :: Ord a => URec Double a -> a # minimum :: Ord a => URec Double a -> a # | |
Foldable (URec Float :: * -> *) | |
Defined in Data.Foldable Methods fold :: Monoid m => URec Float m -> m # foldMap :: Monoid m => (a -> m) -> URec Float a -> m # foldr :: (a -> b -> b) -> b -> URec Float a -> b # foldr' :: (a -> b -> b) -> b -> URec Float a -> b # foldl :: (b -> a -> b) -> b -> URec Float a -> b # foldl' :: (b -> a -> b) -> b -> URec Float a -> b # foldr1 :: (a -> a -> a) -> URec Float a -> a # foldl1 :: (a -> a -> a) -> URec Float a -> a # toList :: URec Float a -> [a] # null :: URec Float a -> Bool # length :: URec Float a -> Int # elem :: Eq a => a -> URec Float a -> Bool # maximum :: Ord a => URec Float a -> a # minimum :: Ord a => URec Float a -> a # | |
Foldable (URec Int :: * -> *) | |
Defined in Data.Foldable Methods fold :: Monoid m => URec Int m -> m # foldMap :: Monoid m => (a -> m) -> URec Int a -> m # foldr :: (a -> b -> b) -> b -> URec Int a -> b # foldr' :: (a -> b -> b) -> b -> URec Int a -> b # foldl :: (b -> a -> b) -> b -> URec Int a -> b # foldl' :: (b -> a -> b) -> b -> URec Int a -> b # foldr1 :: (a -> a -> a) -> URec Int a -> a # foldl1 :: (a -> a -> a) -> URec Int a -> a # elem :: Eq a => a -> URec Int a -> Bool # maximum :: Ord a => URec Int a -> a # minimum :: Ord a => URec Int a -> a # | |
Foldable (URec Word :: * -> *) | |
Defined in Data.Foldable Methods fold :: Monoid m => URec Word m -> m # foldMap :: Monoid m => (a -> m) -> URec Word a -> m # foldr :: (a -> b -> b) -> b -> URec Word a -> b # foldr' :: (a -> b -> b) -> b -> URec Word a -> b # foldl :: (b -> a -> b) -> b -> URec Word a -> b # foldl' :: (b -> a -> b) -> b -> URec Word a -> b # foldr1 :: (a -> a -> a) -> URec Word a -> a # foldl1 :: (a -> a -> a) -> URec Word a -> a # toList :: URec Word a -> [a] # length :: URec Word a -> Int # elem :: Eq a => a -> URec Word a -> Bool # maximum :: Ord a => URec Word a -> a # minimum :: Ord a => URec Word a -> a # | |
Foldable (URec (Ptr ()) :: * -> *) | |
Defined in Data.Foldable Methods fold :: Monoid m => URec (Ptr ()) m -> m # foldMap :: Monoid m => (a -> m) -> URec (Ptr ()) a -> m # foldr :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b # foldr' :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b # foldl :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b # foldl' :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b # foldr1 :: (a -> a -> a) -> URec (Ptr ()) a -> a # foldl1 :: (a -> a -> a) -> URec (Ptr ()) a -> a # toList :: URec (Ptr ()) a -> [a] # null :: URec (Ptr ()) a -> Bool # length :: URec (Ptr ()) a -> Int # elem :: Eq a => a -> URec (Ptr ()) a -> Bool # maximum :: Ord a => URec (Ptr ()) a -> a # minimum :: Ord a => URec (Ptr ()) a -> a # | |
Foldable (Const m :: * -> *) | Since: base-4.7.0.0 |
Defined in Data.Functor.Const Methods fold :: Monoid m0 => Const m m0 -> m0 # foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldr :: (a -> b -> b) -> b -> Const m a -> b # foldr' :: (a -> b -> b) -> b -> Const m a -> b # foldl :: (b -> a -> b) -> b -> Const m a -> b # foldl' :: (b -> a -> b) -> b -> Const m a -> b # foldr1 :: (a -> a -> a) -> Const m a -> a # foldl1 :: (a -> a -> a) -> Const m a -> a # elem :: Eq a => a -> Const m a -> Bool # maximum :: Ord a => Const m a -> a # minimum :: Ord a => Const m a -> a # | |
Bifoldable p => Foldable (Join p) | |
Defined in Data.Bifunctor.Join Methods fold :: Monoid m => Join p m -> m # foldMap :: Monoid m => (a -> m) -> Join p a -> m # foldr :: (a -> b -> b) -> b -> Join p a -> b # foldr' :: (a -> b -> b) -> b -> Join p a -> b # foldl :: (b -> a -> b) -> b -> Join p a -> b # foldl' :: (b -> a -> b) -> b -> Join p a -> b # foldr1 :: (a -> a -> a) -> Join p a -> a # foldl1 :: (a -> a -> a) -> Join p a -> a # elem :: Eq a => a -> Join p a -> Bool # maximum :: Ord a => Join p a -> a # minimum :: Ord a => Join p a -> a # | |
Foldable w => Foldable (EnvT e w) | |
Defined in Control.Comonad.Trans.Env Methods fold :: Monoid m => EnvT e w m -> m # foldMap :: Monoid m => (a -> m) -> EnvT e w a -> m # foldr :: (a -> b -> b) -> b -> EnvT e w a -> b # foldr' :: (a -> b -> b) -> b -> EnvT e w a -> b # foldl :: (b -> a -> b) -> b -> EnvT e w a -> b # foldl' :: (b -> a -> b) -> b -> EnvT e w a -> b # foldr1 :: (a -> a -> a) -> EnvT e w a -> a # foldl1 :: (a -> a -> a) -> EnvT e w a -> a # elem :: Eq a => a -> EnvT e w a -> Bool # maximum :: Ord a => EnvT e w a -> a # minimum :: Ord a => EnvT e w a -> a # | |
Foldable f => Foldable (IdentityT f) | |
Defined in Control.Monad.Trans.Identity Methods fold :: Monoid m => IdentityT f m -> m # foldMap :: Monoid m => (a -> m) -> IdentityT f a -> m # foldr :: (a -> b -> b) -> b -> IdentityT f a -> b # foldr' :: (a -> b -> b) -> b -> IdentityT f a -> b # foldl :: (b -> a -> b) -> b -> IdentityT f a -> b # foldl' :: (b -> a -> b) -> b -> IdentityT f a -> b # foldr1 :: (a -> a -> a) -> IdentityT f a -> a # foldl1 :: (a -> a -> a) -> IdentityT f a -> a # toList :: IdentityT f a -> [a] # null :: IdentityT f a -> Bool # length :: IdentityT f a -> Int # elem :: Eq a => a -> IdentityT f a -> Bool # maximum :: Ord a => IdentityT f a -> a # minimum :: Ord a => IdentityT f a -> a # | |
Foldable f => Foldable (FreeF f a) | |
Defined in Control.Monad.Trans.Free Methods fold :: Monoid m => FreeF f a m -> m # foldMap :: Monoid m => (a0 -> m) -> FreeF f a a0 -> m # foldr :: (a0 -> b -> b) -> b -> FreeF f a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> FreeF f a a0 -> b # foldl :: (b -> a0 -> b) -> b -> FreeF f a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> FreeF f a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> FreeF f a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> FreeF f a a0 -> a0 # toList :: FreeF f a a0 -> [a0] # null :: FreeF f a a0 -> Bool # length :: FreeF f a a0 -> Int # elem :: Eq a0 => a0 -> FreeF f a a0 -> Bool # maximum :: Ord a0 => FreeF f a a0 -> a0 # minimum :: Ord a0 => FreeF f a a0 -> a0 # | |
(Foldable m, Foldable f) => Foldable (FreeT f m) | |
Defined in Control.Monad.Trans.Free Methods fold :: Monoid m0 => FreeT f m m0 -> m0 # foldMap :: Monoid m0 => (a -> m0) -> FreeT f m a -> m0 # foldr :: (a -> b -> b) -> b -> FreeT f m a -> b # foldr' :: (a -> b -> b) -> b -> FreeT f m a -> b # foldl :: (b -> a -> b) -> b -> FreeT f m a -> b # foldl' :: (b -> a -> b) -> b -> FreeT f m a -> b # foldr1 :: (a -> a -> a) -> FreeT f m a -> a # foldl1 :: (a -> a -> a) -> FreeT f m a -> a # toList :: FreeT f m a -> [a] # length :: FreeT f m a -> Int # elem :: Eq a => a -> FreeT f m a -> Bool # maximum :: Ord a => FreeT f m a -> a # minimum :: Ord a => FreeT f m a -> a # | |
Foldable f => Foldable (ErrorT e f) | |
Defined in Control.Monad.Trans.Error Methods fold :: Monoid m => ErrorT e f m -> m # foldMap :: Monoid m => (a -> m) -> ErrorT e f a -> m # foldr :: (a -> b -> b) -> b -> ErrorT e f a -> b # foldr' :: (a -> b -> b) -> b -> ErrorT e f a -> b # foldl :: (b -> a -> b) -> b -> ErrorT e f a -> b # foldl' :: (b -> a -> b) -> b -> ErrorT e f a -> b # foldr1 :: (a -> a -> a) -> ErrorT e f a -> a # foldl1 :: (a -> a -> a) -> ErrorT e f a -> a # toList :: ErrorT e f a -> [a] # null :: ErrorT e f a -> Bool # length :: ErrorT e f a -> Int # elem :: Eq a => a -> ErrorT e f a -> Bool # maximum :: Ord a => ErrorT e f a -> a # minimum :: Ord a => ErrorT e f a -> a # | |
Foldable f => Foldable (WriterT w f) | |
Defined in Control.Monad.Trans.Writer.Lazy Methods fold :: Monoid m => WriterT w f m -> m # foldMap :: Monoid m => (a -> m) -> WriterT w f a -> m # foldr :: (a -> b -> b) -> b -> WriterT w f a -> b # foldr' :: (a -> b -> b) -> b -> WriterT w f a -> b # foldl :: (b -> a -> b) -> b -> WriterT w f a -> b # foldl' :: (b -> a -> b) -> b -> WriterT w f a -> b # foldr1 :: (a -> a -> a) -> WriterT w f a -> a # foldl1 :: (a -> a -> a) -> WriterT w f a -> a # toList :: WriterT w f a -> [a] # null :: WriterT w f a -> Bool # length :: WriterT w f a -> Int # elem :: Eq a => a -> WriterT w f a -> Bool # maximum :: Ord a => WriterT w f a -> a # minimum :: Ord a => WriterT w f a -> a # | |
Foldable f => Foldable (WriterT w f) | |
Defined in Control.Monad.Trans.Writer.Strict Methods fold :: Monoid m => WriterT w f m -> m # foldMap :: Monoid m => (a -> m) -> WriterT w f a -> m # foldr :: (a -> b -> b) -> b -> WriterT w f a -> b # foldr' :: (a -> b -> b) -> b -> WriterT w f a -> b # foldl :: (b -> a -> b) -> b -> WriterT w f a -> b # foldl' :: (b -> a -> b) -> b -> WriterT w f a -> b # foldr1 :: (a -> a -> a) -> WriterT w f a -> a # foldl1 :: (a -> a -> a) -> WriterT w f a -> a # toList :: WriterT w f a -> [a] # null :: WriterT w f a -> Bool # length :: WriterT w f a -> Int # elem :: Eq a => a -> WriterT w f a -> Bool # maximum :: Ord a => WriterT w f a -> a # minimum :: Ord a => WriterT w f a -> a # | |
Foldable (Tagged s) | |
Defined in Data.Tagged Methods fold :: Monoid m => Tagged s m -> m # foldMap :: Monoid m => (a -> m) -> Tagged s a -> m # foldr :: (a -> b -> b) -> b -> Tagged s a -> b # foldr' :: (a -> b -> b) -> b -> Tagged s a -> b # foldl :: (b -> a -> b) -> b -> Tagged s a -> b # foldl' :: (b -> a -> b) -> b -> Tagged s a -> b # foldr1 :: (a -> a -> a) -> Tagged s a -> a # foldl1 :: (a -> a -> a) -> Tagged s a -> a # elem :: Eq a => a -> Tagged s a -> Bool # maximum :: Ord a => Tagged s a -> a # minimum :: Ord a => Tagged s a -> a # | |
Foldable (K1 i c :: * -> *) | |
Defined in Data.Foldable Methods fold :: Monoid m => K1 i c m -> m # foldMap :: Monoid m => (a -> m) -> K1 i c a -> m # foldr :: (a -> b -> b) -> b -> K1 i c a -> b # foldr' :: (a -> b -> b) -> b -> K1 i c a -> b # foldl :: (b -> a -> b) -> b -> K1 i c a -> b # foldl' :: (b -> a -> b) -> b -> K1 i c a -> b # foldr1 :: (a -> a -> a) -> K1 i c a -> a # foldl1 :: (a -> a -> a) -> K1 i c a -> a # elem :: Eq a => a -> K1 i c a -> Bool # maximum :: Ord a => K1 i c a -> a # minimum :: Ord a => K1 i c a -> a # | |
(Foldable f, Foldable g) => Foldable (f :+: g) | |
Defined in Data.Foldable Methods fold :: Monoid m => (f :+: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :+: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldr1 :: (a -> a -> a) -> (f :+: g) a -> a # foldl1 :: (a -> a -> a) -> (f :+: g) a -> a # toList :: (f :+: g) a -> [a] # length :: (f :+: g) a -> Int # elem :: Eq a => a -> (f :+: g) a -> Bool # maximum :: Ord a => (f :+: g) a -> a # minimum :: Ord a => (f :+: g) a -> a # | |
(Foldable f, Foldable g) => Foldable (f :*: g) | |
Defined in Data.Foldable Methods fold :: Monoid m => (f :*: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :*: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldr1 :: (a -> a -> a) -> (f :*: g) a -> a # foldl1 :: (a -> a -> a) -> (f :*: g) a -> a # toList :: (f :*: g) a -> [a] # length :: (f :*: g) a -> Int # elem :: Eq a => a -> (f :*: g) a -> Bool # maximum :: Ord a => (f :*: g) a -> a # minimum :: Ord a => (f :*: g) a -> a # | |
(Foldable f, Foldable g) => Foldable (Product f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product Methods fold :: Monoid m => Product f g m -> m # foldMap :: Monoid m => (a -> m) -> Product f g a -> m # foldr :: (a -> b -> b) -> b -> Product f g a -> b # foldr' :: (a -> b -> b) -> b -> Product f g a -> b # foldl :: (b -> a -> b) -> b -> Product f g a -> b # foldl' :: (b -> a -> b) -> b -> Product f g a -> b # foldr1 :: (a -> a -> a) -> Product f g a -> a # foldl1 :: (a -> a -> a) -> Product f g a -> a # toList :: Product f g a -> [a] # null :: Product f g a -> Bool # length :: Product f g a -> Int # elem :: Eq a => a -> Product f g a -> Bool # maximum :: Ord a => Product f g a -> a # minimum :: Ord a => Product f g a -> a # | |
(Foldable f, Foldable g) => Foldable (Sum f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Sum Methods fold :: Monoid m => Sum f g m -> m # foldMap :: Monoid m => (a -> m) -> Sum f g a -> m # foldr :: (a -> b -> b) -> b -> Sum f g a -> b # foldr' :: (a -> b -> b) -> b -> Sum f g a -> b # foldl :: (b -> a -> b) -> b -> Sum f g a -> b # foldl' :: (b -> a -> b) -> b -> Sum f g a -> b # foldr1 :: (a -> a -> a) -> Sum f g a -> a # foldl1 :: (a -> a -> a) -> Sum f g a -> a # elem :: Eq a => a -> Sum f g a -> Bool # maximum :: Ord a => Sum f g a -> a # minimum :: Ord a => Sum f g a -> a # | |
Foldable f => Foldable (M1 i c f) | |
Defined in Data.Foldable Methods fold :: Monoid m => M1 i c f m -> m # foldMap :: Monoid m => (a -> m) -> M1 i c f a -> m # foldr :: (a -> b -> b) -> b -> M1 i c f a -> b # foldr' :: (a -> b -> b) -> b -> M1 i c f a -> b # foldl :: (b -> a -> b) -> b -> M1 i c f a -> b # foldl' :: (b -> a -> b) -> b -> M1 i c f a -> b # foldr1 :: (a -> a -> a) -> M1 i c f a -> a # foldl1 :: (a -> a -> a) -> M1 i c f a -> a # elem :: Eq a => a -> M1 i c f a -> Bool # maximum :: Ord a => M1 i c f a -> a # minimum :: Ord a => M1 i c f a -> a # | |
(Foldable f, Foldable g) => Foldable (f :.: g) | |
Defined in Data.Foldable Methods fold :: Monoid m => (f :.: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :.: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldr1 :: (a -> a -> a) -> (f :.: g) a -> a # foldl1 :: (a -> a -> a) -> (f :.: g) a -> a # toList :: (f :.: g) a -> [a] # length :: (f :.: g) a -> Int # elem :: Eq a => a -> (f :.: g) a -> Bool # maximum :: Ord a => (f :.: g) a -> a # minimum :: Ord a => (f :.: g) a -> a # | |
(Foldable f, Foldable g) => Foldable (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose Methods fold :: Monoid m => Compose f g m -> m # foldMap :: Monoid m => (a -> m) -> Compose f g a -> m # foldr :: (a -> b -> b) -> b -> Compose f g a -> b # foldr' :: (a -> b -> b) -> b -> Compose f g a -> b # foldl :: (b -> a -> b) -> b -> Compose f g a -> b # foldl' :: (b -> a -> b) -> b -> Compose f g a -> b # foldr1 :: (a -> a -> a) -> Compose f g a -> a # foldl1 :: (a -> a -> a) -> Compose f g a -> a # toList :: Compose f g a -> [a] # null :: Compose f g a -> Bool # length :: Compose f g a -> Int # elem :: Eq a => a -> Compose f g a -> Bool # maximum :: Ord a => Compose f g a -> a # minimum :: Ord a => Compose f g a -> a # | |
Bifoldable p => Foldable (WrappedBifunctor p a) | |
Defined in Data.Bifunctor.Wrapped Methods fold :: Monoid m => WrappedBifunctor p a m -> m # foldMap :: Monoid m => (a0 -> m) -> WrappedBifunctor p a a0 -> m # foldr :: (a0 -> b -> b) -> b -> WrappedBifunctor p a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> WrappedBifunctor p a a0 -> b # foldl :: (b -> a0 -> b) -> b -> WrappedBifunctor p a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> WrappedBifunctor p a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> WrappedBifunctor p a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> WrappedBifunctor p a a0 -> a0 # toList :: WrappedBifunctor p a a0 -> [a0] # null :: WrappedBifunctor p a a0 -> Bool # length :: WrappedBifunctor p a a0 -> Int # elem :: Eq a0 => a0 -> WrappedBifunctor p a a0 -> Bool # maximum :: Ord a0 => WrappedBifunctor p a a0 -> a0 # minimum :: Ord a0 => WrappedBifunctor p a a0 -> a0 # sum :: Num a0 => WrappedBifunctor p a a0 -> a0 # product :: Num a0 => WrappedBifunctor p a a0 -> a0 # | |
Foldable g => Foldable (Joker g a) | |
Defined in Data.Bifunctor.Joker Methods fold :: Monoid m => Joker g a m -> m # foldMap :: Monoid m => (a0 -> m) -> Joker g a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Joker g a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Joker g a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Joker g a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Joker g a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Joker g a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Joker g a a0 -> a0 # toList :: Joker g a a0 -> [a0] # null :: Joker g a a0 -> Bool # length :: Joker g a a0 -> Int # elem :: Eq a0 => a0 -> Joker g a a0 -> Bool # maximum :: Ord a0 => Joker g a a0 -> a0 # minimum :: Ord a0 => Joker g a a0 -> a0 # | |
Bifoldable p => Foldable (Flip p a) | |
Defined in Data.Bifunctor.Flip Methods fold :: Monoid m => Flip p a m -> m # foldMap :: Monoid m => (a0 -> m) -> Flip p a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Flip p a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Flip p a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Flip p a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Flip p a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Flip p a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Flip p a a0 -> a0 # toList :: Flip p a a0 -> [a0] # length :: Flip p a a0 -> Int # elem :: Eq a0 => a0 -> Flip p a a0 -> Bool # maximum :: Ord a0 => Flip p a a0 -> a0 # minimum :: Ord a0 => Flip p a a0 -> a0 # | |
Foldable (Clown f a :: * -> *) | |
Defined in Data.Bifunctor.Clown Methods fold :: Monoid m => Clown f a m -> m # foldMap :: Monoid m => (a0 -> m) -> Clown f a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Clown f a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Clown f a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Clown f a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Clown f a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Clown f a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Clown f a a0 -> a0 # toList :: Clown f a a0 -> [a0] # null :: Clown f a a0 -> Bool # length :: Clown f a a0 -> Int # elem :: Eq a0 => a0 -> Clown f a a0 -> Bool # maximum :: Ord a0 => Clown f a a0 -> a0 # minimum :: Ord a0 => Clown f a a0 -> a0 # | |
(Foldable f, Bifoldable p) => Foldable (Tannen f p a) | |
Defined in Data.Bifunctor.Tannen Methods fold :: Monoid m => Tannen f p a m -> m # foldMap :: Monoid m => (a0 -> m) -> Tannen f p a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Tannen f p a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Tannen f p a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Tannen f p a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Tannen f p a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Tannen f p a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Tannen f p a a0 -> a0 # toList :: Tannen f p a a0 -> [a0] # null :: Tannen f p a a0 -> Bool # length :: Tannen f p a a0 -> Int # elem :: Eq a0 => a0 -> Tannen f p a a0 -> Bool # maximum :: Ord a0 => Tannen f p a a0 -> a0 # minimum :: Ord a0 => Tannen f p a a0 -> a0 # | |
(Bifoldable p, Foldable g) => Foldable (Biff p f g a) | |
Defined in Data.Bifunctor.Biff Methods fold :: Monoid m => Biff p f g a m -> m # foldMap :: Monoid m => (a0 -> m) -> Biff p f g a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Biff p f g a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Biff p f g a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Biff p f g a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Biff p f g a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Biff p f g a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Biff p f g a a0 -> a0 # toList :: Biff p f g a a0 -> [a0] # null :: Biff p f g a a0 -> Bool # length :: Biff p f g a a0 -> Int # elem :: Eq a0 => a0 -> Biff p f g a a0 -> Bool # maximum :: Ord a0 => Biff p f g a a0 -> a0 # minimum :: Ord a0 => Biff p f g a a0 -> a0 # |
class (Functor t, Foldable t) => Traversable (t :: * -> *) where #
Functors representing data structures that can be traversed from left to right.
A definition of traverse
must satisfy the following laws:
- naturality
t .
for every applicative transformationtraverse
f =traverse
(t . f)t
- identity
traverse
Identity = Identity- composition
traverse
(Compose .fmap
g . f) = Compose .fmap
(traverse
g) .traverse
f
A definition of sequenceA
must satisfy the following laws:
- naturality
t .
for every applicative transformationsequenceA
=sequenceA
.fmap
tt
- identity
sequenceA
.fmap
Identity = Identity- composition
sequenceA
.fmap
Compose = Compose .fmap
sequenceA
.sequenceA
where an applicative transformation is a function
t :: (Applicative f, Applicative g) => f a -> g a
preserving the Applicative
operations, i.e.
and the identity functor Identity
and composition of functors Compose
are defined as
newtype Identity a = Identity a instance Functor Identity where fmap f (Identity x) = Identity (f x) instance Applicative Identity where pure x = Identity x Identity f <*> Identity x = Identity (f x) newtype Compose f g a = Compose (f (g a)) instance (Functor f, Functor g) => Functor (Compose f g) where fmap f (Compose x) = Compose (fmap (fmap f) x) instance (Applicative f, Applicative g) => Applicative (Compose f g) where pure x = Compose (pure (pure x)) Compose f <*> Compose x = Compose ((<*>) <$> f <*> x)
(The naturality law is implied by parametricity.)
Instances are similar to Functor
, e.g. given a data type
data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)
a suitable instance would be
instance Traversable Tree where traverse f Empty = pure Empty traverse f (Leaf x) = Leaf <$> f x traverse f (Node l k r) = Node <$> traverse f l <*> f k <*> traverse f r
This is suitable even for abstract types, as the laws for <*>
imply a form of associativity.
The superclass instances should satisfy the following:
- In the
Functor
instance,fmap
should be equivalent to traversal with the identity applicative functor (fmapDefault
). - In the
Foldable
instance,foldMap
should be equivalent to traversal with a constant applicative functor (foldMapDefault
).
Methods
traverse :: Applicative f => (a -> f b) -> t a -> f (t b) #
Map each element of a structure to an action, evaluate these actions
from left to right, and collect the results. For a version that ignores
the results see traverse_
.
sequenceA :: Applicative f => t (f a) -> f (t a) #
Evaluate each action in the structure from left to right, and
and collect the results. For a version that ignores the results
see sequenceA_
.
mapM :: Monad m => (a -> m b) -> t a -> m (t b) #
Map each element of a structure to a monadic action, evaluate
these actions from left to right, and collect the results. For
a version that ignores the results see mapM_
.
sequence :: Monad m => t (m a) -> m (t a) #
Evaluate each monadic action in the structure from left to
right, and collect the results. For a version that ignores the
results see sequence_
.
Instances
forM :: (Traversable t, Monad m) => t a -> (a -> m b) -> m (t b) #
for :: (Traversable t, Applicative f) => t a -> (a -> f b) -> f (t b) #
Bifunctor (since 0.10.0)
module Data.Bifunctor
Mono hierarchy
module Data.MonoTraversable
module Data.Sequences
module Data.Containers
module Data.Builder
module Data.NonNull
toByteVector :: ByteString -> SVector Word8 Source #
Convert a ByteString
into a storable Vector
.
fromByteVector :: SVector Word8 -> ByteString Source #
Convert a storable Vector
into a ByteString
.
I/O
module Say
Concurrency
yieldThread :: MonadIO m => m () Source #
Originally yield
.
waitCatchAsync :: MonadIO m => Async a -> m (Either SomeException a) Source #
waitCatchSTM
for any MonadIO
Since: classy-prelude-1.0.0
Non-standard
List-like classes
zipWith6 :: Zip6 f => (a -> b -> c -> d -> e -> g -> h) -> f a -> f b -> f c -> f d -> f e -> f g -> f h #
zipWith7 :: Zip7 f => (a -> b -> c -> d -> e -> g -> h -> i) -> f a -> f b -> f c -> f d -> f e -> f g -> f h -> f i #
ordNubBy :: Ord b => (a -> b) -> (a -> a -> Bool) -> [a] -> [a] Source #
sortWith :: (Ord a, IsSequence c) => (Element c -> a) -> c -> c Source #
Sort elements using the user supplied function to project something out of each element. Inspired by http://hackage.haskell.org/packages/archive/base/latest/doc/html/GHC-Exts.html#v:sortWith.
Set-like
(\\) :: SetContainer a => a -> a -> a infixl 9 Source #
An alias for difference
.
intersect :: SetContainer a => a -> a -> a Source #
An alias for intersection
.
Text-like
Conversion of values to readable String
s.
Derived instances of Show
have the following properties, which
are compatible with derived instances of Read
:
- The result of
show
is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used. - If the constructor is defined to be an infix operator, then
showsPrec
will produce infix applications of the constructor. - the representation will be enclosed in parentheses if the
precedence of the top-level constructor in
x
is less thand
(associativity is ignored). Thus, ifd
is0
then the result is never surrounded in parentheses; ifd
is11
it is always surrounded in parentheses, unless it is an atomic expression. - If the constructor is defined using record syntax, then
show
will produce the record-syntax form, with the fields given in the same order as the original declaration.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Show
is equivalent to
instance (Show a) => Show (Tree a) where showsPrec d (Leaf m) = showParen (d > app_prec) $ showString "Leaf " . showsPrec (app_prec+1) m where app_prec = 10 showsPrec d (u :^: v) = showParen (d > up_prec) $ showsPrec (up_prec+1) u . showString " :^: " . showsPrec (up_prec+1) v where up_prec = 5
Note that right-associativity of :^:
is ignored. For example,
produces the stringshow
(Leaf 1 :^: Leaf 2 :^: Leaf 3)"Leaf 1 :^: (Leaf 2 :^: Leaf 3)"
.
Methods
Arguments
:: Int | the operator precedence of the enclosing
context (a number from |
-> a | the value to be converted to a |
-> ShowS |
Convert a value to a readable String
.
showsPrec
should satisfy the law
showsPrec d x r ++ s == showsPrec d x (r ++ s)
Derived instances of Read
and Show
satisfy the following:
That is, readsPrec
parses the string produced by
showsPrec
, and delivers the value that showsPrec
started with.
Instances
Case conversion
charToLower :: Char -> Char Source #
Convert a character to lower case.
Character-based case conversion is lossy in comparison to string-based toLower
.
For instance, İ will be converted to i, instead of i̇.
charToUpper :: Char -> Char Source #
Convert a character to upper case.
Character-based case conversion is lossy in comparison to string-based toUpper
.
For instance, ß won't be converted to SS.
IO
readFile :: MonadIO m => FilePath -> m ByteString Source #
Strictly read a file into a ByteString
.
Since: classy-prelude-1.2.0
readFileUtf8 :: MonadIO m => FilePath -> m Text Source #
Strictly read a file into a Text
using a UTF-8 character
encoding. In the event of a character encoding error, a Unicode
replacement character will be used (a.k.a., lenientDecode
).
Since: classy-prelude-1.2.0
writeFile :: MonadIO m => FilePath -> ByteString -> m () Source #
Write a ByteString
to a file.
Since: classy-prelude-1.2.0
writeFileUtf8 :: MonadIO m => FilePath -> Text -> m () Source #
Write a Text
to a file using a UTF-8 character encoding.
Since: classy-prelude-1.2.0
hGetContents :: MonadIO m => Handle -> m ByteString Source #
Strictly read the contents of the given Handle
into a
ByteString
.
Since: classy-prelude-1.2.0
hPut :: MonadIO m => Handle -> ByteString -> m () Source #
Write a ByteString
to the given Handle
.
Since: classy-prelude-1.2.0
hGetChunk :: MonadIO m => Handle -> m ByteString Source #
Read a single chunk of data as a ByteString
from the given
Handle
.
Under the surface, this uses hGetSome
with the
default chunk size.
Since: classy-prelude-1.2.0
putChar :: MonadIO m => Char -> m () Source #
Write a character to stdout
Uses system locale settings
Since: classy-prelude-1.3.1
putStr :: MonadIO m => Text -> m () Source #
Write a Text to stdout
Uses system locale settings
Since: classy-prelude-1.3.1
putStrLn :: MonadIO m => Text -> m () Source #
Write a Text followed by a newline to stdout
Uses system locale settings
Since: classy-prelude-1.3.1
getChar :: MonadIO m => m Char Source #
Read a character from stdin
Uses system locale settings
Since: classy-prelude-1.3.1
getLine :: MonadIO m => m Text Source #
Read a line from stdin
Uses system locale settings
Since: classy-prelude-1.3.1
getContents :: MonadIO m => m LText Source #
Read all input from stdin into a lazy Text (LText
)
Uses system locale settings
Since: classy-prelude-1.3.1
interact :: MonadIO m => (LText -> LText) -> m () Source #
Takes a function of type 'LText -> LText' and passes all input on stdin to it, then prints result to stdout
Uses lazy IO Uses system locale settings
Since: classy-prelude-1.3.1
Difference lists
A difference list is a function that, given a list, returns the original contents of the difference list prepended to the given list.
This structure supports O(1) append and snoc operations on lists, making it
very useful for append-heavy uses (esp. left-nested uses of ++
), such
as logging and pretty printing.
Here is an example using DList as the state type when printing a tree with the Writer monad:
import Control.Monad.Writer import Data.DList data Tree a = Leaf a | Branch (Tree a) (Tree a) flatten_writer :: Tree x -> DList x flatten_writer = snd . runWriter . flatten where flatten (Leaf x) = tell (singleton x) flatten (Branch x y) = flatten x >> flatten y
Instances
Monad DList | |
Functor DList | |
Applicative DList | |
Foldable DList | |
Defined in Data.DList Methods fold :: Monoid m => DList m -> m # foldMap :: Monoid m => (a -> m) -> DList a -> m # foldr :: (a -> b -> b) -> b -> DList a -> b # foldr' :: (a -> b -> b) -> b -> DList a -> b # foldl :: (b -> a -> b) -> b -> DList a -> b # foldl' :: (b -> a -> b) -> b -> DList a -> b # foldr1 :: (a -> a -> a) -> DList a -> a # foldl1 :: (a -> a -> a) -> DList a -> a # elem :: Eq a => a -> DList a -> Bool # maximum :: Ord a => DList a -> a # minimum :: Ord a => DList a -> a # | |
Alternative DList | |
MonadPlus DList | |
IsList (DList a) | |
Eq a => Eq (DList a) | |
Ord a => Ord (DList a) | |
Read a => Read (DList a) | |
Show a => Show (DList a) | |
a ~ Char => IsString (DList a) | |
Defined in Data.DList Methods fromString :: String -> DList a # | |
Semigroup (DList a) | |
Monoid (DList a) | |
NFData a => NFData (DList a) | |
Defined in Data.DList | |
type Item (DList a) | |
Defined in Data.DList | |
type Index (DList a) | |
Defined in Data.MonoTraversable.Instances | |
type Element (DList a) | |
Defined in Data.MonoTraversable.Instances |
applyDList :: DList a -> [a] -> [a] Source #
Synonym for apply
Since 0.11.0
Exceptions
a variant of deepseq
that is useful in some circumstances:
force x = x `deepseq` x
force x
fully evaluates x
, and then returns it. Note that
force x
only performs evaluation when the value of force x
itself is demanded, so essentially it turns shallow evaluation into
deep evaluation.
force
can be conveniently used in combination with ViewPatterns
:
{-# LANGUAGE BangPatterns, ViewPatterns #-} import Control.DeepSeq someFun :: ComplexData -> SomeResult someFun (force -> !arg) = {- 'arg' will be fully evaluated -}
Another useful application is to combine force
with
evaluate
in order to force deep evaluation
relative to other IO
operations:
import Control.Exception (evaluate) import Control.DeepSeq main = do result <- evaluate $ force $ pureComputation {- 'result' will be fully evaluated at this point -} return ()
Finally, here's an exception safe variant of the readFile'
example:
readFile' :: FilePath -> IO String readFile' fn = bracket (openFile fn ReadMode) hClose $ \h -> evaluate . force =<< hGetContents h
Since: deepseq-1.2.0.0
($!!) :: NFData a => (a -> b) -> a -> b infixr 0 #
the deep analogue of $!
. In the expression f $!! x
, x
is
fully evaluated before the function f
is applied to it.
Since: deepseq-1.2.0.0
deepseq :: NFData a => a -> b -> b #
deepseq
: fully evaluates the first argument, before returning the
second.
The name deepseq
is used to illustrate the relationship to seq
:
where seq
is shallow in the sense that it only evaluates the top
level of its argument, deepseq
traverses the entire data structure
evaluating it completely.
deepseq
can be useful for forcing pending exceptions,
eradicating space leaks, or forcing lazy I/O to happen. It is
also useful in conjunction with parallel Strategies (see the
parallel
package).
There is no guarantee about the ordering of evaluation. The
implementation may evaluate the components of the structure in
any order or in parallel. To impose an actual order on
evaluation, use pseq
from Control.Parallel in the
parallel
package.
Since: deepseq-1.1.0.0
A class of types that can be fully evaluated.
Since: deepseq-1.1.0.0
Methods
rnf
should reduce its argument to normal form (that is, fully
evaluate all sub-components), and then return '()'.
Generic
NFData
deriving
Starting with GHC 7.2, you can automatically derive instances
for types possessing a Generic
instance.
Note: Generic1
can be auto-derived starting with GHC 7.4
{-# LANGUAGE DeriveGeneric #-} import GHC.Generics (Generic, Generic1) import Control.DeepSeq data Foo a = Foo a String deriving (Eq, Generic, Generic1) instance NFData a => NFData (Foo a) instance NFData1 Foo data Colour = Red | Green | Blue deriving Generic instance NFData Colour
Starting with GHC 7.10, the example above can be written more
concisely by enabling the new DeriveAnyClass
extension:
{-# LANGUAGE DeriveGeneric, DeriveAnyClass #-} import GHC.Generics (Generic) import Control.DeepSeq data Foo a = Foo a String deriving (Eq, Generic, Generic1, NFData, NFData1) data Colour = Red | Green | Blue deriving (Generic, NFData)
Compatibility with previous deepseq
versions
Prior to version 1.4.0.0, the default implementation of the rnf
method was defined as
rnf
a =seq
a ()
However, starting with deepseq-1.4.0.0
, the default
implementation is based on DefaultSignatures
allowing for
more accurate auto-derived NFData
instances. If you need the
previously used exact default rnf
method implementation
semantics, use
instance NFData Colour where rnf x = seq x ()
or alternatively
instance NFData Colour where rnf = rwhnf
or
{-# LANGUAGE BangPatterns #-} instance NFData Colour where rnf !_ = ()
Instances
NFData Bool | |
Defined in Control.DeepSeq | |
NFData Char | |
Defined in Control.DeepSeq | |
NFData Double | |
Defined in Control.DeepSeq | |
NFData Float | |
Defined in Control.DeepSeq | |
NFData Int | |
Defined in Control.DeepSeq | |
NFData Int8 | |
Defined in Control.DeepSeq | |
NFData Int16 | |
Defined in Control.DeepSeq | |
NFData Int32 | |
Defined in Control.DeepSeq | |
NFData Int64 | |
Defined in Control.DeepSeq | |
NFData Integer | |
Defined in Control.DeepSeq | |
NFData Natural | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData Ordering | |
Defined in Control.DeepSeq | |
NFData Word | |
Defined in Control.DeepSeq | |
NFData Word8 | |
Defined in Control.DeepSeq | |
NFData Word16 | |
Defined in Control.DeepSeq | |
NFData Word32 | |
Defined in Control.DeepSeq | |
NFData Word64 | |
Defined in Control.DeepSeq | |
NFData CallStack | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData () | |
Defined in Control.DeepSeq | |
NFData TyCon | NOTE: Only defined for Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData ThreadId | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData Void | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData Unique | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData Version | Since: deepseq-1.3.0.0 |
Defined in Control.DeepSeq | |
NFData ExitCode | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData TypeRep | NOTE: Only defined for Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData All | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData Any | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CChar | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CSChar | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CUChar | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CShort | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CUShort | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CInt | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CUInt | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CLong | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CULong | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CLLong | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CULLong | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CBool | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
NFData CFloat | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CDouble | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CPtrdiff | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CSize | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CWchar | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CSigAtomic | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq Methods rnf :: CSigAtomic -> () # | |
NFData CClock | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CTime | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CUSeconds | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CSUSeconds | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq Methods rnf :: CSUSeconds -> () # | |
NFData CFile | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CFpos | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CJmpBuf | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CIntPtr | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CUIntPtr | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CIntMax | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData CUIntMax | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData Fingerprint | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq Methods rnf :: Fingerprint -> () # | |
NFData SrcLoc | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData IntSet | |
Defined in Data.IntSet.Internal | |
NFData ByteString | |
Defined in Data.ByteString.Internal Methods rnf :: ByteString -> () # | |
NFData ShortByteString | |
Defined in Data.ByteString.Short.Internal Methods rnf :: ShortByteString -> () # | |
NFData ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods rnf :: ByteString -> () # | |
NFData Doc | |
Defined in Text.PrettyPrint.HughesPJ | |
NFData TextDetails | |
Defined in Text.PrettyPrint.Annotated.HughesPJ Methods rnf :: TextDetails -> () # | |
NFData ZonedTime | |
Defined in Data.Time.LocalTime.Internal.ZonedTime | |
NFData LocalTime | |
Defined in Data.Time.LocalTime.Internal.LocalTime | |
NFData UTCTime | |
Defined in Data.Time.Clock.Internal.UTCTime | |
NFData DiffTime | |
Defined in Data.Time.Clock.Internal.DiffTime | |
NFData Day | |
Defined in Data.Time.Calendar.Days | |
NFData a => NFData [a] | |
Defined in Control.DeepSeq | |
NFData a => NFData (Maybe a) | |
Defined in Control.DeepSeq | |
NFData a => NFData (Ratio a) | |
Defined in Control.DeepSeq | |
NFData (Ptr a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData (FunPtr a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Complex a) | |
Defined in Control.DeepSeq | |
NFData (Fixed a) | Since: deepseq-1.3.0.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Min a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Max a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (First a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Last a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData m => NFData (WrappedMonoid m) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq Methods rnf :: WrappedMonoid m -> () # | |
NFData a => NFData (Option a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData (StableName a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq Methods rnf :: StableName a -> () # | |
NFData a => NFData (ZipList a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Identity a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData (IORef a) | NOTE: Only strict in the reference and not the referenced value. Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (First a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Last a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Dual a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Sum a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Product a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Down a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData (MVar a) | NOTE: Only strict in the reference and not the referenced value. Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (NonEmpty a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData a => NFData (Vector a) | |
Defined in Data.Vector | |
NFData a => NFData (HashSet a) | |
Defined in Data.HashSet | |
NFData a => NFData (Set a) | |
Defined in Data.Set.Internal | |
NFData a => NFData (Seq a) | |
Defined in Data.Sequence.Internal | |
NFData a => NFData (IntMap a) | |
Defined in Data.IntMap.Internal | |
NFData a => NFData (Tree a) | |
NFData a => NFData (FingerTree a) | |
Defined in Data.Sequence.Internal Methods rnf :: FingerTree a -> () # | |
NFData a => NFData (Digit a) | |
Defined in Data.Sequence.Internal | |
NFData a => NFData (Node a) | |
Defined in Data.Sequence.Internal | |
NFData a => NFData (Elem a) | |
Defined in Data.Sequence.Internal | |
NFData a => NFData (DList a) | |
Defined in Data.DList | |
NFData a => NFData (Hashed a) | |
Defined in Data.Hashable.Class | |
NFData a => NFData (Doc a) | |
Defined in Text.PrettyPrint.Annotated.HughesPJ | |
NFData a => NFData (AnnotDetails a) | |
Defined in Text.PrettyPrint.Annotated.HughesPJ Methods rnf :: AnnotDetails a -> () # | |
NFData (Vector a) | |
Defined in Data.Vector.Unboxed.Base | |
NFData (Vector a) | |
Defined in Data.Vector.Storable | |
NFData (Vector a) | |
Defined in Data.Vector.Primitive | |
NFData (a -> b) | This instance is for convenience and consistency with Since: deepseq-1.3.0.0 |
Defined in Control.DeepSeq | |
(NFData a, NFData b) => NFData (Either a b) | |
Defined in Control.DeepSeq | |
(NFData a, NFData b) => NFData (a, b) | |
Defined in Control.DeepSeq | |
(NFData a, NFData b) => NFData (Array a b) | |
Defined in Control.DeepSeq | |
(NFData a, NFData b) => NFData (Arg a b) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
NFData (Proxy a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData (STRef s a) | NOTE: Only strict in the reference and not the referenced value. Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
(NFData k, NFData v) => NFData (HashMap k v) | |
Defined in Data.HashMap.Base | |
(NFData k, NFData a) => NFData (Map k a) | |
Defined in Data.Map.Internal | |
(NFData k, NFData v) => NFData (Leaf k v) | |
Defined in Data.HashMap.Base | |
NFData (MVector s a) | |
Defined in Data.Vector.Unboxed.Base | |
(NFData a1, NFData a2, NFData a3) => NFData (a1, a2, a3) | |
Defined in Control.DeepSeq | |
NFData a => NFData (Const a b) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
NFData (a :~: b) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
NFData b => NFData (Tagged s b) | |
Defined in Data.Tagged | |
(NFData a1, NFData a2, NFData a3, NFData a4) => NFData (a1, a2, a3, a4) | |
Defined in Control.DeepSeq | |
(NFData1 f, NFData1 g, NFData a) => NFData (Product f g a) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
(NFData1 f, NFData1 g, NFData a) => NFData (Sum f g a) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
NFData (a :~~: b) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5) => NFData (a1, a2, a3, a4, a5) | |
Defined in Control.DeepSeq | |
(NFData1 f, NFData1 g, NFData a) => NFData (Compose f g a) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6) => NFData (a1, a2, a3, a4, a5, a6) | |
Defined in Control.DeepSeq | |
(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6, NFData a7) => NFData (a1, a2, a3, a4, a5, a6, a7) | |
Defined in Control.DeepSeq | |
(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6, NFData a7, NFData a8) => NFData (a1, a2, a3, a4, a5, a6, a7, a8) | |
Defined in Control.DeepSeq | |
(NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6, NFData a7, NFData a8, NFData a9) => NFData (a1, a2, a3, a4, a5, a6, a7, a8, a9) | |
Defined in Control.DeepSeq |
Force types
Helper functions for situations where type inferer gets confused.
asByteString :: ByteString -> ByteString Source #