| Safe Haskell | Trustworthy |
|---|---|
| Language | Haskell2010 |
Prelude.Compat
Synopsis
- either :: (a -> c) -> (b -> c) -> Either a b -> c
- all :: Foldable t => (a -> Bool) -> t a -> Bool
- and :: Foldable t => t Bool -> Bool
- any :: Foldable t => (a -> Bool) -> t a -> Bool
- concat :: Foldable t => t [a] -> [a]
- concatMap :: Foldable t => (a -> [b]) -> t a -> [b]
- mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m ()
- notElem :: (Foldable t, Eq a) => a -> t a -> Bool
- or :: Foldable t => t Bool -> Bool
- sequence_ :: (Foldable t, Monad m) => t (m a) -> m ()
- (<$>) :: Functor f => (a -> b) -> f a -> f b
- maybe :: b -> (a -> b) -> Maybe a -> b
- lines :: String -> [String]
- unlines :: [String] -> String
- unwords :: [String] -> String
- words :: String -> [String]
- curry :: ((a, b) -> c) -> a -> b -> c
- fst :: (a, b) -> a
- snd :: (a, b) -> b
- uncurry :: (a -> b -> c) -> (a, b) -> c
- ($!) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b
- (++) :: [a] -> [a] -> [a]
- (.) :: (b -> c) -> (a -> b) -> a -> c
- (=<<) :: Monad m => (a -> m b) -> m a -> m b
- asTypeOf :: a -> a -> a
- const :: a -> b -> a
- flip :: (a -> b -> c) -> b -> a -> c
- id :: a -> a
- map :: (a -> b) -> [a] -> [b]
- otherwise :: Bool
- until :: (a -> Bool) -> (a -> a) -> a -> a
- ioError :: IOError -> IO a
- userError :: String -> IOError
- (!!) :: HasCallStack => [a] -> Int -> a
- break :: (a -> Bool) -> [a] -> ([a], [a])
- cycle :: HasCallStack => [a] -> [a]
- drop :: Int -> [a] -> [a]
- dropWhile :: (a -> Bool) -> [a] -> [a]
- filter :: (a -> Bool) -> [a] -> [a]
- head :: HasCallStack => [a] -> a
- init :: HasCallStack => [a] -> [a]
- iterate :: (a -> a) -> a -> [a]
- last :: HasCallStack => [a] -> a
- lookup :: Eq a => a -> [(a, b)] -> Maybe b
- repeat :: a -> [a]
- replicate :: Int -> a -> [a]
- reverse :: [a] -> [a]
- scanl :: (b -> a -> b) -> b -> [a] -> [b]
- scanl1 :: (a -> a -> a) -> [a] -> [a]
- scanr :: (a -> b -> b) -> b -> [a] -> [b]
- scanr1 :: (a -> a -> a) -> [a] -> [a]
- span :: (a -> Bool) -> [a] -> ([a], [a])
- splitAt :: Int -> [a] -> ([a], [a])
- tail :: HasCallStack => [a] -> [a]
- take :: Int -> [a] -> [a]
- takeWhile :: (a -> Bool) -> [a] -> [a]
- unzip :: [(a, b)] -> ([a], [b])
- unzip3 :: [(a, b, c)] -> ([a], [b], [c])
- zip :: [a] -> [b] -> [(a, b)]
- zip3 :: [a] -> [b] -> [c] -> [(a, b, c)]
- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
- zipWith3 :: (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d]
- subtract :: Num a => a -> a -> a
- lex :: ReadS String
- readParen :: Bool -> ReadS a -> ReadS a
- (^) :: (Num a, Integral b) => a -> b -> a
- (^^) :: (Fractional a, Integral b) => a -> b -> a
- even :: Integral a => a -> Bool
- fromIntegral :: (Integral a, Num b) => a -> b
- gcd :: Integral a => a -> a -> a
- lcm :: Integral a => a -> a -> a
- odd :: Integral a => a -> Bool
- realToFrac :: (Real a, Fractional b) => a -> b
- showChar :: Char -> ShowS
- showParen :: Bool -> ShowS -> ShowS
- showString :: String -> ShowS
- shows :: Show a => a -> ShowS
- appendFile :: FilePath -> String -> IO ()
- getChar :: IO Char
- getContents :: IO String
- getLine :: IO String
- interact :: (String -> String) -> IO ()
- print :: Show a => a -> IO ()
- putChar :: Char -> IO ()
- putStr :: String -> IO ()
- putStrLn :: String -> IO ()
- readFile :: FilePath -> IO String
- readIO :: Read a => String -> IO a
- readLn :: Read a => IO a
- writeFile :: FilePath -> String -> IO ()
- read :: Read a => String -> a
- reads :: Read a => ReadS a
- (&&) :: Bool -> Bool -> Bool
- not :: Bool -> Bool
- (||) :: Bool -> Bool -> Bool
- ($) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b
- error :: forall (r :: RuntimeRep) (a :: TYPE r). HasCallStack => [Char] -> a
- errorWithoutStackTrace :: forall (r :: RuntimeRep) (a :: TYPE r). [Char] -> a
- undefined :: forall (r :: RuntimeRep) (a :: TYPE r). HasCallStack => a
- seq :: forall {r :: RuntimeRep} a (b :: TYPE r). a -> b -> b
- elem :: (Foldable t, Eq a) => a -> t a -> Bool
- foldMap :: (Foldable t, Monoid m) => (a -> m) -> t a -> m
- foldl :: Foldable t => (b -> a -> b) -> b -> t a -> b
- foldl' :: Foldable t => (b -> a -> b) -> b -> t a -> b
- foldl1 :: Foldable t => (a -> a -> a) -> t a -> a
- foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b
- foldr1 :: Foldable t => (a -> a -> a) -> t a -> a
- length :: Foldable t => t a -> Int
- maximum :: (Foldable t, Ord a) => t a -> a
- minimum :: (Foldable t, Ord a) => t a -> a
- null :: Foldable t => t a -> Bool
- product :: (Foldable t, Num a) => t a -> a
- sum :: (Foldable t, Num a) => t a -> a
- mapM :: (Traversable t, Monad m) => (a -> m b) -> t a -> m (t b)
- sequence :: (Traversable t, Monad m) => t (m a) -> m (t a)
- sequenceA :: (Traversable t, Applicative f) => t (f a) -> f (t a)
- traverse :: (Traversable t, Applicative f) => (a -> f b) -> t a -> f (t b)
- (*>) :: Applicative f => f a -> f b -> f b
- (<*) :: Applicative f => f a -> f b -> f a
- (<*>) :: Applicative f => f (a -> b) -> f a -> f b
- pure :: Applicative f => a -> f a
- liftA2 :: Applicative f => (a -> b -> c) -> f a -> f b -> f c
- (<$) :: Functor f => a -> f b -> f a
- fmap :: Functor f => (a -> b) -> f a -> f b
- (>>) :: Monad m => m a -> m b -> m b
- (>>=) :: Monad m => m a -> (a -> m b) -> m b
- fail :: MonadFail m => String -> m a
- return :: Monad m => a -> m a
- mappend :: Monoid a => a -> a -> a
- mconcat :: Monoid a => [a] -> a
- mempty :: Monoid a => a
- (<>) :: Semigroup a => a -> a -> a
- maxBound :: Bounded a => a
- minBound :: Bounded a => a
- enumFrom :: Enum a => a -> [a]
- enumFromThen :: Enum a => a -> a -> [a]
- enumFromThenTo :: Enum a => a -> a -> a -> [a]
- enumFromTo :: Enum a => a -> a -> [a]
- fromEnum :: Enum a => a -> Int
- pred :: Enum a => a -> a
- succ :: Enum a => a -> a
- toEnum :: Enum a => Int -> a
- (**) :: Floating a => a -> a -> a
- acos :: Floating a => a -> a
- acosh :: Floating a => a -> a
- asin :: Floating a => a -> a
- asinh :: Floating a => a -> a
- atan :: Floating a => a -> a
- atanh :: Floating a => a -> a
- cos :: Floating a => a -> a
- cosh :: Floating a => a -> a
- exp :: Floating a => a -> a
- log :: Floating a => a -> a
- logBase :: Floating a => a -> a -> a
- pi :: Floating a => a
- sin :: Floating a => a -> a
- sinh :: Floating a => a -> a
- sqrt :: Floating a => a -> a
- tan :: Floating a => a -> a
- tanh :: Floating a => a -> a
- atan2 :: RealFloat a => a -> a -> a
- decodeFloat :: RealFloat a => a -> (Integer, Int)
- encodeFloat :: RealFloat a => Integer -> Int -> a
- exponent :: RealFloat a => a -> Int
- floatDigits :: RealFloat a => a -> Int
- floatRadix :: RealFloat a => a -> Integer
- floatRange :: RealFloat a => a -> (Int, Int)
- isDenormalized :: RealFloat a => a -> Bool
- isIEEE :: RealFloat a => a -> Bool
- isInfinite :: RealFloat a => a -> Bool
- isNaN :: RealFloat a => a -> Bool
- isNegativeZero :: RealFloat a => a -> Bool
- scaleFloat :: RealFloat a => Int -> a -> a
- significand :: RealFloat a => a -> a
- (*) :: Num a => a -> a -> a
- (+) :: Num a => a -> a -> a
- (-) :: Num a => a -> a -> a
- abs :: Num a => a -> a
- negate :: Num a => a -> a
- signum :: Num a => a -> a
- readList :: Read a => ReadS [a]
- readsPrec :: Read a => Int -> ReadS a
- (/) :: Fractional a => a -> a -> a
- fromRational :: Fractional a => Rational -> a
- recip :: Fractional a => a -> a
- div :: Integral a => a -> a -> a
- divMod :: Integral a => a -> a -> (a, a)
- mod :: Integral a => a -> a -> a
- quot :: Integral a => a -> a -> a
- quotRem :: Integral a => a -> a -> (a, a)
- rem :: Integral a => a -> a -> a
- toInteger :: Integral a => a -> Integer
- toRational :: Real a => a -> Rational
- ceiling :: (RealFrac a, Integral b) => a -> b
- floor :: (RealFrac a, Integral b) => a -> b
- properFraction :: (RealFrac a, Integral b) => a -> (b, a)
- round :: (RealFrac a, Integral b) => a -> b
- truncate :: (RealFrac a, Integral b) => a -> b
- show :: Show a => a -> String
- showList :: Show a => [a] -> ShowS
- showsPrec :: Show a => Int -> a -> ShowS
- (/=) :: Eq a => a -> a -> Bool
- (==) :: Eq a => a -> a -> Bool
- (<) :: Ord a => a -> a -> Bool
- (<=) :: Ord a => a -> a -> Bool
- (>) :: Ord a => a -> a -> Bool
- (>=) :: Ord a => a -> a -> Bool
- compare :: Ord a => a -> a -> Ordering
- max :: Ord a => a -> a -> a
- min :: Ord a => a -> a -> a
- class Functor f => Applicative (f :: Type -> Type)
- class Bounded a
- class Enum a
- class Eq a
- class Fractional a => Floating a
- class Foldable (t :: Type -> Type)
- class Num a => Fractional a
- class Functor (f :: Type -> Type)
- class (Real a, Enum a) => Integral a
- class Applicative m => Monad (m :: Type -> Type)
- class Monad m => MonadFail (m :: Type -> Type)
- class Semigroup a => Monoid a
- class Num a where
- fromInteger :: Integer -> a
- class Eq a => Ord a
- class Read a
- class (Num a, Ord a) => Real a
- class (RealFrac a, Floating a) => RealFloat a
- class (Real a, Fractional a) => RealFrac a
- class Semigroup a
- class Show a
- class (Functor t, Foldable t) => Traversable (t :: Type -> Type)
- data IO a
- data Char
- data Double
- data Float
- data Int
- data Integer
- data Word
- data Bool
- data Either a b
- data Maybe a
- data Ordering
- type FilePath = String
- type IOError = IOException
- type Rational = Ratio Integer
- type ReadS a = String -> [(a, String)]
- type ShowS = String -> String
- type String = [Char]
- class a ~# b => (a :: k) ~ (b :: k)
Documentation
either :: (a -> c) -> (b -> c) -> Either a b -> c #
Case analysis for the Either type.
If the value is , apply the first function to Left aa;
if it is , apply the second function to Right bb.
Examples
We create two values of type , one using the
Either String IntLeft constructor and another using the Right constructor. Then
we apply "either" the length function (if we have a String)
or the "times-two" function (if we have an Int):
>>>let s = Left "foo" :: Either String Int>>>let n = Right 3 :: Either String Int>>>either length (*2) s3>>>either length (*2) n6
all :: Foldable t => (a -> Bool) -> t a -> Bool #
Determines whether all elements of the structure satisfy the predicate.
Examples
Basic usage:
>>>all (> 3) []True
>>>all (> 3) [1,2]False
>>>all (> 3) [1,2,3,4,5]False
>>>all (> 3) [1..]False
>>>all (> 3) [4..]* Hangs forever *
and :: Foldable t => t Bool -> Bool #
and returns the conjunction of a container of Bools. For the
result to be True, the container must be finite; False, however,
results from a False value finitely far from the left end.
Examples
Basic usage:
>>>and []True
>>>and [True]True
>>>and [False]False
>>>and [True, True, False]False
>>>and (False : repeat True) -- Infinite list [False,True,True,True,...False
>>>and (repeat True)* Hangs forever *
any :: Foldable t => (a -> Bool) -> t a -> Bool #
Determines whether any element of the structure satisfies the predicate.
Examples
Basic usage:
>>>any (> 3) []False
>>>any (> 3) [1,2]False
>>>any (> 3) [1,2,3,4,5]True
>>>any (> 3) [1..]True
>>>any (> 3) [0, -1..]* Hangs forever *
concat :: Foldable t => t [a] -> [a] #
The concatenation of all the elements of a container of lists.
Examples
Basic usage:
>>>concat (Just [1, 2, 3])[1,2,3]
>>>concat (Left 42)[]
>>>concat [[1, 2, 3], [4, 5], [6], []][1,2,3,4,5,6]
concatMap :: Foldable t => (a -> [b]) -> t a -> [b] #
Map a function over all the elements of a container and concatenate the resulting lists.
Examples
Basic usage:
>>>concatMap (take 3) [[1..], [10..], [100..], [1000..]][1,2,3,10,11,12,100,101,102,1000,1001,1002]
>>>concatMap (take 3) (Just [1..])[1,2,3]
notElem :: (Foldable t, Eq a) => a -> t a -> Bool infix 4 #
notElem is the negation of elem.
Examples
Basic usage:
>>>3 `notElem` []True
>>>3 `notElem` [1,2]True
>>>3 `notElem` [1,2,3,4,5]False
For infinite structures, notElem terminates if the value exists at a
finite distance from the left side of the structure:
>>>3 `notElem` [1..]False
>>>3 `notElem` ([4..] ++ [3])* Hangs forever *
or :: Foldable t => t Bool -> Bool #
or returns the disjunction of a container of Bools. For the
result to be False, the container must be finite; True, however,
results from a True value finitely far from the left end.
Examples
Basic usage:
>>>or []False
>>>or [True]True
>>>or [False]False
>>>or [True, True, False]True
>>>or (True : repeat False) -- Infinite list [True,False,False,False,...True
>>>or (repeat False)* Hangs forever *
sequence_ :: (Foldable t, Monad m) => t (m a) -> m () #
Evaluate each monadic action in the structure from left to right,
and ignore the results. For a version that doesn't ignore the
results see sequence.
sequence_ is just like sequenceA_, but specialised to monadic
actions.
(<$>) :: Functor f => (a -> b) -> f a -> f b infixl 4 #
An infix synonym for fmap.
The name of this operator is an allusion to $.
Note the similarities between their types:
($) :: (a -> b) -> a -> b (<$>) :: Functor f => (a -> b) -> f a -> f b
Whereas $ is function application, <$> is function
application lifted over a Functor.
Examples
Convert from a to a Maybe Int using Maybe
Stringshow:
>>>show <$> NothingNothing>>>show <$> Just 3Just "3"
Convert from an to an
Either Int IntEither IntString using show:
>>>show <$> Left 17Left 17>>>show <$> Right 17Right "17"
Double each element of a list:
>>>(*2) <$> [1,2,3][2,4,6]
Apply even to the second element of a pair:
>>>even <$> (2,2)(2,True)
maybe :: b -> (a -> b) -> Maybe a -> b #
The maybe function takes a default value, a function, and a Maybe
value. If the Maybe value is Nothing, the function returns the
default value. Otherwise, it applies the function to the value inside
the Just and returns the result.
Examples
Basic usage:
>>>maybe False odd (Just 3)True
>>>maybe False odd NothingFalse
Read an integer from a string using readMaybe. If we succeed,
return twice the integer; that is, apply (*2) to it. If instead
we fail to parse an integer, return 0 by default:
>>>import Text.Read ( readMaybe )>>>maybe 0 (*2) (readMaybe "5")10>>>maybe 0 (*2) (readMaybe "")0
Apply show to a Maybe Int. If we have Just n, we want to show
the underlying Int n. But if we have Nothing, we return the
empty string instead of (for example) "Nothing":
>>>maybe "" show (Just 5)"5">>>maybe "" show Nothing""
Splits the argument into a list of lines stripped of their terminating
\n characters. The \n terminator is optional in a final non-empty
line of the argument string.
For example:
>>>lines "" -- empty input contains no lines[]>>>lines "\n" -- single empty line[""]>>>lines "one" -- single unterminated line["one"]>>>lines "one\n" -- single non-empty line["one"]>>>lines "one\n\n" -- second line is empty["one",""]>>>lines "one\ntwo" -- second line is unterminated["one","two"]>>>lines "one\ntwo\n" -- two non-empty lines["one","two"]
When the argument string is empty, or ends in a \n character, it can be
recovered by passing the result of lines to the unlines function.
Otherwise, unlines appends the missing terminating \n. This makes
unlines . lines idempotent:
(unlines . lines) . (unlines . lines) = (unlines . lines)
uncurry :: (a -> b -> c) -> (a, b) -> c #
uncurry converts a curried function to a function on pairs.
Examples
>>>uncurry (+) (1,2)3
>>>uncurry ($) (show, 1)"1"
>>>map (uncurry max) [(1,2), (3,4), (6,8)][2,4,8]
($!) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b infixr 0 #
Strict (call-by-value) application operator. It takes a function and an argument, evaluates the argument to weak head normal form (WHNF), then calls the function with that value.
(++) :: [a] -> [a] -> [a] infixr 5 #
Append two lists, i.e.,
[x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn] [x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]
If the first list is not finite, the result is the first list.
WARNING: This function takes linear time in the number of elements of the first list.
(=<<) :: Monad m => (a -> m b) -> m a -> m b infixr 1 #
Same as >>=, but with the arguments interchanged.
const x y always evaluates to x, ignoring its second argument.
>>>const 42 "hello"42
>>>map (const 42) [0..3][42,42,42,42]
flip :: (a -> b -> c) -> b -> a -> c #
takes its (first) two arguments in the reverse order of flip ff.
>>>flip (++) "hello" "world""worldhello"
map :: (a -> b) -> [a] -> [b] #
\(\mathcal{O}(n)\). map f xs is the list obtained by applying f to
each element of xs, i.e.,
map f [x1, x2, ..., xn] == [f x1, f x2, ..., f xn] map f [x1, x2, ...] == [f x1, f x2, ...]
>>>map (+1) [1, 2, 3][2,3,4]
until :: (a -> Bool) -> (a -> a) -> a -> a #
yields the result of applying until p ff until p holds.
userError :: String -> IOError #
Construct an IOException value with a string describing the error.
The fail method of the IO instance of the Monad class raises a
userError, thus:
instance Monad IO where ... fail s = ioError (userError s)
(!!) :: HasCallStack => [a] -> Int -> a infixl 9 #
List index (subscript) operator, starting from 0.
It is an instance of the more general genericIndex,
which takes an index of any integral type.
>>>['a', 'b', 'c'] !! 0'a'>>>['a', 'b', 'c'] !! 2'c'>>>['a', 'b', 'c'] !! 3*** Exception: Prelude.!!: index too large>>>['a', 'b', 'c'] !! (-1)*** Exception: Prelude.!!: negative index
WARNING: This function is partial. You can use atMay instead.
break :: (a -> Bool) -> [a] -> ([a], [a]) #
break, applied to a predicate p and a list xs, returns a tuple where
first element is longest prefix (possibly empty) of xs of elements that
do not satisfy p and second element is the remainder of the list:
>>>break (> 3) [1,2,3,4,1,2,3,4]([1,2,3],[4,1,2,3,4])>>>break (< 9) [1,2,3]([],[1,2,3])>>>break (> 9) [1,2,3]([1,2,3],[])
cycle :: HasCallStack => [a] -> [a] #
cycle ties a finite list into a circular one, or equivalently,
the infinite repetition of the original list. It is the identity
on infinite lists.
>>>cycle []*** Exception: Prelude.cycle: empty list>>>cycle [42][42,42,42,42,42,42,42,42,42,42...>>>cycle [2, 5, 7][2,5,7,2,5,7,2,5,7,2,5,7...
drop n xs returns the suffix of xs
after the first n elements, or [] if n >= .length xs
>>>drop 6 "Hello World!""World!">>>drop 3 [1,2,3,4,5][4,5]>>>drop 3 [1,2][]>>>drop 3 [][]>>>drop (-1) [1,2][1,2]>>>drop 0 [1,2][1,2]
It is an instance of the more general genericDrop,
in which n may be of any integral type.
filter :: (a -> Bool) -> [a] -> [a] #
\(\mathcal{O}(n)\). filter, applied to a predicate and a list, returns
the list of those elements that satisfy the predicate; i.e.,
filter p xs = [ x | x <- xs, p x]
>>>filter odd [1, 2, 3][1,3]
head :: HasCallStack => [a] -> a #
\(\mathcal{O}(1)\). Extract the first element of a list, which must be non-empty.
>>>head [1, 2, 3]1>>>head [1..]1>>>head []*** Exception: Prelude.head: empty list
WARNING: This function is partial. You can use case-matching, uncons or
listToMaybe instead.
init :: HasCallStack => [a] -> [a] #
iterate :: (a -> a) -> a -> [a] #
iterate f x returns an infinite list of repeated applications
of f to x:
iterate f x == [x, f x, f (f x), ...]
Note that iterate is lazy, potentially leading to thunk build-up if
the consumer doesn't force each iterate. See iterate' for a strict
variant of this function.
>>>take 10 $ iterate not True[True,False,True,False...>>>take 10 $ iterate (+3) 42[42,45,48,51,54,57,60,63...
last :: HasCallStack => [a] -> a #
\(\mathcal{O}(n)\). Extract the last element of a list, which must be finite and non-empty.
>>>last [1, 2, 3]3>>>last [1..]* Hangs forever *>>>last []*** Exception: Prelude.last: empty list
WARNING: This function is partial. You can use reverse with case-matching,
uncons or listToMaybe instead.
repeat x is an infinite list, with x the value of every element.
>>>repeat 17[17,17,17,17,17,17,17,17,17...
replicate :: Int -> a -> [a] #
replicate n x is a list of length n with x the value of
every element.
It is an instance of the more general genericReplicate,
in which n may be of any integral type.
>>>replicate 0 True[]>>>replicate (-1) True[]>>>replicate 4 True[True,True,True,True]
reverse xs returns the elements of xs in reverse order.
xs must be finite.
>>>reverse [][]>>>reverse [42][42]>>>reverse [2,5,7][7,5,2]>>>reverse [1..]* Hangs forever *
scanl :: (b -> a -> b) -> b -> [a] -> [b] #
\(\mathcal{O}(n)\). scanl is similar to foldl, but returns a list of
successive reduced values from the left:
scanl f z [x1, x2, ...] == [z, z `f` x1, (z `f` x1) `f` x2, ...]
Note that
last (scanl f z xs) == foldl f z xs
>>>scanl (+) 0 [1..4][0,1,3,6,10]>>>scanl (+) 42 [][42]>>>scanl (-) 100 [1..4][100,99,97,94,90]>>>scanl (\reversedString nextChar -> nextChar : reversedString) "foo" ['a', 'b', 'c', 'd']["foo","afoo","bafoo","cbafoo","dcbafoo"]>>>scanl (+) 0 [1..]* Hangs forever *
scanl1 :: (a -> a -> a) -> [a] -> [a] #
\(\mathcal{O}(n)\). scanl1 is a variant of scanl that has no starting
value argument:
scanl1 f [x1, x2, ...] == [x1, x1 `f` x2, ...]
>>>scanl1 (+) [1..4][1,3,6,10]>>>scanl1 (+) [][]>>>scanl1 (-) [1..4][1,-1,-4,-8]>>>scanl1 (&&) [True, False, True, True][True,False,False,False]>>>scanl1 (||) [False, False, True, True][False,False,True,True]>>>scanl1 (+) [1..]* Hangs forever *
scanr :: (a -> b -> b) -> b -> [a] -> [b] #
\(\mathcal{O}(n)\). scanr is the right-to-left dual of scanl. Note that the order of parameters on the accumulating function are reversed compared to scanl.
Also note that
head (scanr f z xs) == foldr f z xs.
>>>scanr (+) 0 [1..4][10,9,7,4,0]>>>scanr (+) 42 [][42]>>>scanr (-) 100 [1..4][98,-97,99,-96,100]>>>scanr (\nextChar reversedString -> nextChar : reversedString) "foo" ['a', 'b', 'c', 'd']["abcdfoo","bcdfoo","cdfoo","dfoo","foo"]>>>force $ scanr (+) 0 [1..]*** Exception: stack overflow
scanr1 :: (a -> a -> a) -> [a] -> [a] #
\(\mathcal{O}(n)\). scanr1 is a variant of scanr that has no starting
value argument.
>>>scanr1 (+) [1..4][10,9,7,4]>>>scanr1 (+) [][]>>>scanr1 (-) [1..4][-2,3,-1,4]>>>scanr1 (&&) [True, False, True, True][False,False,True,True]>>>scanr1 (||) [True, True, False, False][True,True,False,False]>>>force $ scanr1 (+) [1..]*** Exception: stack overflow
span :: (a -> Bool) -> [a] -> ([a], [a]) #
span, applied to a predicate p and a list xs, returns a tuple where
first element is longest prefix (possibly empty) of xs of elements that
satisfy p and second element is the remainder of the list:
>>>span (< 3) [1,2,3,4,1,2,3,4]([1,2],[3,4,1,2,3,4])>>>span (< 9) [1,2,3]([1,2,3],[])>>>span (< 0) [1,2,3]([],[1,2,3])
splitAt :: Int -> [a] -> ([a], [a]) #
splitAt n xs returns a tuple where first element is xs prefix of
length n and second element is the remainder of the list:
>>>splitAt 6 "Hello World!"("Hello ","World!")>>>splitAt 3 [1,2,3,4,5]([1,2,3],[4,5])>>>splitAt 1 [1,2,3]([1],[2,3])>>>splitAt 3 [1,2,3]([1,2,3],[])>>>splitAt 4 [1,2,3]([1,2,3],[])>>>splitAt 0 [1,2,3]([],[1,2,3])>>>splitAt (-1) [1,2,3]([],[1,2,3])
It is equivalent to ( when take n xs, drop n xs)n is not _|_
(splitAt _|_ xs = _|_).
splitAt is an instance of the more general genericSplitAt,
in which n may be of any integral type.
tail :: HasCallStack => [a] -> [a] #
\(\mathcal{O}(1)\). Extract the elements after the head of a list, which must be non-empty.
>>>tail [1, 2, 3][2,3]>>>tail [1][]>>>tail []*** Exception: Prelude.tail: empty list
WARNING: This function is partial. You can use case-matching or uncons
instead.
take n, applied to a list xs, returns the prefix of xs
of length n, or xs itself if n >= .length xs
>>>take 5 "Hello World!""Hello">>>take 3 [1,2,3,4,5][1,2,3]>>>take 3 [1,2][1,2]>>>take 3 [][]>>>take (-1) [1,2][]>>>take 0 [1,2][]
It is an instance of the more general genericTake,
in which n may be of any integral type.
takeWhile :: (a -> Bool) -> [a] -> [a] #
takeWhile, applied to a predicate p and a list xs, returns the
longest prefix (possibly empty) of xs of elements that satisfy p.
>>>takeWhile (< 3) [1,2,3,4,1,2,3,4][1,2]>>>takeWhile (< 9) [1,2,3][1,2,3]>>>takeWhile (< 0) [1,2,3][]
unzip :: [(a, b)] -> ([a], [b]) #
unzip transforms a list of pairs into a list of first components
and a list of second components.
>>>unzip []([],[])>>>unzip [(1, 'a'), (2, 'b')]([1,2],"ab")
zip :: [a] -> [b] -> [(a, b)] #
\(\mathcal{O}(\min(m,n))\). zip takes two lists and returns a list of
corresponding pairs.
>>>zip [1, 2] ['a', 'b'][(1,'a'),(2,'b')]
If one input list is shorter than the other, excess elements of the longer list are discarded, even if one of the lists is infinite:
>>>zip [1] ['a', 'b'][(1,'a')]>>>zip [1, 2] ['a'][(1,'a')]>>>zip [] [1..][]>>>zip [1..] [][]
zip is right-lazy:
>>>zip [] undefined[]>>>zip undefined []*** Exception: Prelude.undefined ...
zip is capable of list fusion, but it is restricted to its
first list argument and its resulting list.
zipWith :: (a -> b -> c) -> [a] -> [b] -> [c] #
\(\mathcal{O}(\min(m,n))\). zipWith generalises zip by zipping with the
function given as the first argument, instead of a tupling function.
zipWith (,) xs ys == zip xs ys zipWith f [x1,x2,x3..] [y1,y2,y3..] == [f x1 y1, f x2 y2, f x3 y3..]
For example, is applied to two lists to produce the list of
corresponding sums:zipWith (+)
>>>zipWith (+) [1, 2, 3] [4, 5, 6][5,7,9]
zipWith is right-lazy:
>>>let f = undefined>>>zipWith f [] undefined[]
zipWith is capable of list fusion, but it is restricted to its
first list argument and its resulting list.
zipWith3 :: (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d] #
The zipWith3 function takes a function which combines three
elements, as well as three lists and returns a list of the function applied
to corresponding elements, analogous to zipWith.
It is capable of list fusion, but it is restricted to its
first list argument and its resulting list.
zipWith3 (,,) xs ys zs == zip3 xs ys zs zipWith3 f [x1,x2,x3..] [y1,y2,y3..] [z1,z2,z3..] == [f x1 y1 z1, f x2 y2 z2, f x3 y3 z3..]
The lex function reads a single lexeme from the input, discarding
initial white space, and returning the characters that constitute the
lexeme. If the input string contains only white space, lex returns a
single successful `lexeme' consisting of the empty string. (Thus
.) If there is no legal lexeme at the
beginning of the input string, lex "" = [("","")]lex fails (i.e. returns []).
This lexer is not completely faithful to the Haskell lexical syntax in the following respects:
- Qualified names are not handled properly
- Octal and hexadecimal numerics are not recognized as a single token
- Comments are not treated properly
(^^) :: (Fractional a, Integral b) => a -> b -> a infixr 8 #
raise a number to an integral power
fromIntegral :: (Integral a, Num b) => a -> b #
General coercion from Integral types.
WARNING: This function performs silent truncation if the result type is not at least as big as the argument's type.
gcd :: Integral a => a -> a -> a #
is the non-negative factor of both gcd x yx and y of which
every common factor of x and y is also a factor; for example
, gcd 4 2 = 2, gcd (-4) 6 = 2 = gcd 0 44. = gcd 0 00.
(That is, the common divisor that is "greatest" in the divisibility
preordering.)
Note: Since for signed fixed-width integer types, ,
the result may be negative if one of the arguments is abs minBound < 0 (and
necessarily is if the other is minBound0 or ) for such types.minBound
lcm :: Integral a => a -> a -> a #
is the smallest positive integer that both lcm x yx and y divide.
realToFrac :: (Real a, Fractional b) => a -> b #
General coercion to Fractional types.
WARNING: This function goes through the Rational type, which does not have values for NaN for example.
This means it does not round-trip.
For Double it also behaves differently with or without -O0:
Prelude> realToFrac nan -- With -O0 -Infinity Prelude> realToFrac nan NaN
utility function converting a Char to a show function that
simply prepends the character unchanged.
showString :: String -> ShowS #
utility function converting a String to a show function that
simply prepends the string unchanged.
appendFile :: FilePath -> String -> IO () #
The computation appendFile file str function appends the string str,
to the file file.
Note that writeFile and appendFile write a literal string
to a file. To write a value of any printable type, as with print,
use the show function to convert the value to a string first.
main = appendFile "squares" (show [(x,x*x) | x <- [0,0.1..2]])
getContents :: IO String #
The getContents operation returns all user input as a single string,
which is read lazily as it is needed
(same as hGetContents stdin).
interact :: (String -> String) -> IO () #
The interact function takes a function of type String->String
as its argument. The entire input from the standard input device is
passed to this function as its argument, and the resulting string is
output on the standard output device.
print :: Show a => a -> IO () #
The print function outputs a value of any printable type to the
standard output device.
Printable types are those that are instances of class Show; print
converts values to strings for output using the show operation and
adds a newline.
For example, a program to print the first 20 integers and their powers of 2 could be written as:
main = print ([(n, 2^n) | n <- [0..19]])
readFile :: FilePath -> IO String #
The readFile function reads a file and
returns the contents of the file as a string.
The file is read lazily, on demand, as with getContents.
writeFile :: FilePath -> String -> IO () #
The computation writeFile file str function writes the string str,
to the file file.
read :: Read a => String -> a #
The read function reads input from a string, which must be
completely consumed by the input process. read fails with an error if the
parse is unsuccessful, and it is therefore discouraged from being used in
real applications. Use readMaybe or readEither for safe alternatives.
>>>read "123" :: Int123
>>>read "hello" :: Int*** Exception: Prelude.read: no parse
($) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b infixr 0 #
Application operator. This operator is redundant, since ordinary
application (f x) means the same as (f . However, $ x)$ has
low, right-associative binding precedence, so it sometimes allows
parentheses to be omitted; for example:
f $ g $ h x = f (g (h x))
It is also useful in higher-order situations, such as ,
or map ($ 0) xs.zipWith ($) fs xs
Note that ( is representation-polymorphic in its result type, so that
$)foo where $ Truefoo :: Bool -> Int# is well-typed.
error :: forall (r :: RuntimeRep) (a :: TYPE r). HasCallStack => [Char] -> a #
error stops execution and displays an error message.
errorWithoutStackTrace :: forall (r :: RuntimeRep) (a :: TYPE r). [Char] -> a #
A variant of error that does not produce a stack trace.
Since: base-4.9.0.0
undefined :: forall (r :: RuntimeRep) (a :: TYPE r). HasCallStack => a #
seq :: forall {r :: RuntimeRep} a (b :: TYPE r). a -> b -> b infixr 0 #
The value of is bottom if seq a ba is bottom, and
otherwise equal to b. In other words, it evaluates the first
argument a to weak head normal form (WHNF). seq is usually
introduced to improve performance by avoiding unneeded laziness.
A note on evaluation order: the expression does
not guarantee that seq a ba will be evaluated before b.
The only guarantee given by seq is that the both a
and b will be evaluated before seq returns a value.
In particular, this means that b may be evaluated before
a. If you need to guarantee a specific order of evaluation,
you must use the function pseq from the "parallel" package.
elem :: (Foldable t, Eq a) => a -> t a -> Bool infix 4 #
Does the element occur in the structure?
Note: elem is often used in infix form.
Examples
Basic usage:
>>>3 `elem` []False
>>>3 `elem` [1,2]False
>>>3 `elem` [1,2,3,4,5]True
For infinite structures, the default implementation of elem
terminates if the sought-after value exists at a finite distance
from the left side of the structure:
>>>3 `elem` [1..]True
>>>3 `elem` ([4..] ++ [3])* Hangs forever *
Since: base-4.8.0.0
foldMap :: (Foldable t, Monoid m) => (a -> m) -> t a -> m #
Map each element of the structure into a monoid, and combine the
results with (. This fold is right-associative and lazy in the
accumulator. For strict left-associative folds consider <>)foldMap'
instead.
Examples
Basic usage:
>>>foldMap Sum [1, 3, 5]Sum {getSum = 9}
>>>foldMap Product [1, 3, 5]Product {getProduct = 15}
>>>foldMap (replicate 3) [1, 2, 3][1,1,1,2,2,2,3,3,3]
When a Monoid's ( is lazy in its second argument, <>)foldMap can
return a result even from an unbounded structure. For example, lazy
accumulation enables Data.ByteString.Builder to efficiently serialise
large data structures and produce the output incrementally:
>>>import qualified Data.ByteString.Lazy as L>>>import qualified Data.ByteString.Builder as B>>>let bld :: Int -> B.Builder; bld i = B.intDec i <> B.word8 0x20>>>let lbs = B.toLazyByteString $ foldMap bld [0..]>>>L.take 64 lbs"0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24"
foldl :: Foldable t => (b -> a -> b) -> b -> t a -> b #
Left-associative fold of a structure, lazy in the accumulator. This is rarely what you want, but can work well for structures with efficient right-to-left sequencing and an operator that is lazy in its left argument.
In the case of lists, foldl, when applied to a binary operator, a
starting value (typically the left-identity of the operator), and a
list, reduces the list using the binary operator, from left to right:
foldl f z [x1, x2, ..., xn] == (...((z `f` x1) `f` x2) `f`...) `f` xn
Note that to produce the outermost application of the operator the
entire input list must be traversed. Like all left-associative folds,
foldl will diverge if given an infinite list.
If you want an efficient strict left-fold, you probably want to use
foldl' instead of foldl. The reason for this is that the latter
does not force the inner results (e.g. z `f` x1 in the above
example) before applying them to the operator (e.g. to (`f` x2)).
This results in a thunk chain O(n) elements long, which then must be
evaluated from the outside-in.
For a general Foldable structure this should be semantically identical
to:
foldl f z =foldlf z .toList
Examples
The first example is a strict fold, which in practice is best performed
with foldl'.
>>>foldl (+) 42 [1,2,3,4]52
Though the result below is lazy, the input is reversed before prepending it to the initial accumulator, so corecursion begins only after traversing the entire input string.
>>>foldl (\acc c -> c : acc) "abcd" "efgh""hgfeabcd"
A left fold of a structure that is infinite on the right cannot terminate, even when for any finite input the fold just returns the initial accumulator:
>>>foldl (\a _ -> a) 0 $ repeat 1* Hangs forever *
WARNING: When it comes to lists, you always want to use either foldl' or foldr instead.
foldl' :: Foldable t => (b -> a -> b) -> b -> t a -> b #
Left-associative fold of a structure but with strict application of the operator.
This ensures that each step of the fold is forced to Weak Head Normal
Form before being applied, avoiding the collection of thunks that would
otherwise occur. This is often what you want to strictly reduce a
finite structure to a single strict result (e.g. sum).
For a general Foldable structure this should be semantically identical
to,
foldl' f z =foldl'f z .toList
Since: base-4.6.0.0
foldl1 :: Foldable t => (a -> a -> a) -> t a -> a #
A variant of foldl that has no base case,
and thus may only be applied to non-empty structures.
This function is non-total and will raise a runtime exception if the structure happens to be empty.
foldl1f =foldl1f .toList
Examples
Basic usage:
>>>foldl1 (+) [1..4]10
>>>foldl1 (+) []*** Exception: Prelude.foldl1: empty list
>>>foldl1 (+) Nothing*** Exception: foldl1: empty structure
>>>foldl1 (-) [1..4]-8
>>>foldl1 (&&) [True, False, True, True]False
>>>foldl1 (||) [False, False, True, True]True
>>>foldl1 (+) [1..]* Hangs forever *
foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b #
Right-associative fold of a structure, lazy in the accumulator.
In the case of lists, foldr, when applied to a binary operator, a
starting value (typically the right-identity of the operator), and a
list, reduces the list using the binary operator, from right to left:
foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...)
Note that since the head of the resulting expression is produced by an
application of the operator to the first element of the list, given an
operator lazy in its right argument, foldr can produce a terminating
expression from an unbounded list.
For a general Foldable structure this should be semantically identical
to,
foldr f z =foldrf z .toList
Examples
Basic usage:
>>>foldr (||) False [False, True, False]True
>>>foldr (||) False []False
>>>foldr (\c acc -> acc ++ [c]) "foo" ['a', 'b', 'c', 'd']"foodcba"
Infinite structures
⚠️ Applying foldr to infinite structures usually doesn't terminate.
It may still terminate under one of the following conditions:
- the folding function is short-circuiting
- the folding function is lazy on its second argument
Short-circuiting
( short-circuits on ||)True values, so the following terminates
because there is a True value finitely far from the left side:
>>>foldr (||) False (True : repeat False)True
But the following doesn't terminate:
>>>foldr (||) False (repeat False ++ [True])* Hangs forever *
Laziness in the second argument
Applying foldr to infinite structures terminates when the operator is
lazy in its second argument (the initial accumulator is never used in
this case, and so could be left undefined, but [] is more clear):
>>>take 5 $ foldr (\i acc -> i : fmap (+3) acc) [] (repeat 1)[1,4,7,10,13]
foldr1 :: Foldable t => (a -> a -> a) -> t a -> a #
A variant of foldr that has no base case,
and thus may only be applied to non-empty structures.
This function is non-total and will raise a runtime exception if the structure happens to be empty.
Examples
Basic usage:
>>>foldr1 (+) [1..4]10
>>>foldr1 (+) []Exception: Prelude.foldr1: empty list
>>>foldr1 (+) Nothing*** Exception: foldr1: empty structure
>>>foldr1 (-) [1..4]-2
>>>foldr1 (&&) [True, False, True, True]False
>>>foldr1 (||) [False, False, True, True]True
>>>foldr1 (+) [1..]* Hangs forever *
length :: Foldable t => t a -> Int #
Returns the size/length of a finite structure as an Int. The
default implementation just counts elements starting with the leftmost.
Instances for structures that can compute the element count faster
than via element-by-element counting, should provide a specialised
implementation.
Examples
Basic usage:
>>>length []0
>>>length ['a', 'b', 'c']3>>>length [1..]* Hangs forever *
Since: base-4.8.0.0
maximum :: (Foldable t, Ord a) => t a -> a #
The largest element of a non-empty structure.
This function is non-total and will raise a runtime exception if the structure happens to be empty. A structure that supports random access and maintains its elements in order should provide a specialised implementation to return the maximum in faster than linear time.
Examples
Basic usage:
>>>maximum [1..10]10
>>>maximum []*** Exception: Prelude.maximum: empty list
>>>maximum Nothing*** Exception: maximum: empty structure
WARNING: This function is partial for possibly-empty structures like lists.
Since: base-4.8.0.0
minimum :: (Foldable t, Ord a) => t a -> a #
The least element of a non-empty structure.
This function is non-total and will raise a runtime exception if the structure happens to be empty. A structure that supports random access and maintains its elements in order should provide a specialised implementation to return the minimum in faster than linear time.
Examples
Basic usage:
>>>minimum [1..10]1
>>>minimum []*** Exception: Prelude.minimum: empty list
>>>minimum Nothing*** Exception: minimum: empty structure
WARNING: This function is partial for possibly-empty structures like lists.
Since: base-4.8.0.0
null :: Foldable t => t a -> Bool #
Test whether the structure is empty. The default implementation is Left-associative and lazy in both the initial element and the accumulator. Thus optimised for structures where the first element can be accessed in constant time. Structures where this is not the case should have a non-default implementation.
Examples
Basic usage:
>>>null []True
>>>null [1]False
null is expected to terminate even for infinite structures.
The default implementation terminates provided the structure
is bounded on the left (there is a leftmost element).
>>>null [1..]False
Since: base-4.8.0.0
product :: (Foldable t, Num a) => t a -> a #
The product function computes the product of the numbers of a
structure.
Examples
Basic usage:
>>>product []1
>>>product [42]42
>>>product [1..10]3628800
>>>product [4.1, 2.0, 1.7]13.939999999999998
>>>product [1..]* Hangs forever *
Since: base-4.8.0.0
sum :: (Foldable t, Num a) => t a -> a #
The sum function computes the sum of the numbers of a structure.
Examples
Basic usage:
>>>sum []0
>>>sum [42]42
>>>sum [1..10]55
>>>sum [4.1, 2.0, 1.7]7.8
>>>sum [1..]* Hangs forever *
Since: base-4.8.0.0
mapM :: (Traversable t, Monad m) => (a -> m b) -> t a -> m (t b) #
Map each element of a structure to a monadic action, evaluate
these actions from left to right, and collect the results. For
a version that ignores the results see mapM_.
Examples
sequence :: (Traversable t, Monad m) => t (m a) -> m (t a) #
Evaluate each monadic action in the structure from left to
right, and collect the results. For a version that ignores the
results see sequence_.
Examples
Basic usage:
The first two examples are instances where the input and
and output of sequence are isomorphic.
>>>sequence $ Right [1,2,3,4][Right 1,Right 2,Right 3,Right 4]
>>>sequence $ [Right 1,Right 2,Right 3,Right 4]Right [1,2,3,4]
The following examples demonstrate short circuit behavior
for sequence.
>>>sequence $ Left [1,2,3,4]Left [1,2,3,4]
>>>sequence $ [Left 0, Right 1,Right 2,Right 3,Right 4]Left 0
sequenceA :: (Traversable t, Applicative f) => t (f a) -> f (t a) #
Evaluate each action in the structure from left to right, and
collect the results. For a version that ignores the results
see sequenceA_.
Examples
Basic usage:
For the first two examples we show sequenceA fully evaluating a a structure and collecting the results.
>>>sequenceA [Just 1, Just 2, Just 3]Just [1,2,3]
>>>sequenceA [Right 1, Right 2, Right 3]Right [1,2,3]
The next two example show Nothing and Just will short circuit
the resulting structure if present in the input. For more context,
check the Traversable instances for Either and Maybe.
>>>sequenceA [Just 1, Just 2, Just 3, Nothing]Nothing
>>>sequenceA [Right 1, Right 2, Right 3, Left 4]Left 4
traverse :: (Traversable t, Applicative f) => (a -> f b) -> t a -> f (t b) #
Map each element of a structure to an action, evaluate these actions
from left to right, and collect the results. For a version that ignores
the results see traverse_.
Examples
Basic usage:
In the first two examples we show each evaluated action mapping to the output structure.
>>>traverse Just [1,2,3,4]Just [1,2,3,4]
>>>traverse id [Right 1, Right 2, Right 3, Right 4]Right [1,2,3,4]
In the next examples, we show that Nothing and Left values short
circuit the created structure.
>>>traverse (const Nothing) [1,2,3,4]Nothing
>>>traverse (\x -> if odd x then Just x else Nothing) [1,2,3,4]Nothing
>>>traverse id [Right 1, Right 2, Right 3, Right 4, Left 0]Left 0
(*>) :: Applicative f => f a -> f b -> f b infixl 4 #
Sequence actions, discarding the value of the first argument.
Examples
If used in conjunction with the Applicative instance for Maybe,
you can chain Maybe computations, with a possible "early return"
in case of Nothing.
>>>Just 2 *> Just 3Just 3
>>>Nothing *> Just 3Nothing
Of course a more interesting use case would be to have effectful computations instead of just returning pure values.
>>>import Data.Char>>>import Text.ParserCombinators.ReadP>>>let p = string "my name is " *> munch1 isAlpha <* eof>>>readP_to_S p "my name is Simon"[("Simon","")]
(<*) :: Applicative f => f a -> f b -> f a infixl 4 #
Sequence actions, discarding the value of the second argument.
(<*>) :: Applicative f => f (a -> b) -> f a -> f b infixl 4 #
Sequential application.
A few functors support an implementation of <*> that is more
efficient than the default one.
Example
Used in combination with (, <$>)( can be used to build a record.<*>)
>>>data MyState = MyState {arg1 :: Foo, arg2 :: Bar, arg3 :: Baz}
>>>produceFoo :: Applicative f => f Foo
>>>produceBar :: Applicative f => f Bar>>>produceBaz :: Applicative f => f Baz
>>>mkState :: Applicative f => f MyState>>>mkState = MyState <$> produceFoo <*> produceBar <*> produceBaz
pure :: Applicative f => a -> f a #
Lift a value.
liftA2 :: Applicative f => (a -> b -> c) -> f a -> f b -> f c #
Lift a binary function to actions.
Some functors support an implementation of liftA2 that is more
efficient than the default one. In particular, if fmap is an
expensive operation, it is likely better to use liftA2 than to
fmap over the structure and then use <*>.
This became a typeclass method in 4.10.0.0. Prior to that, it was
a function defined in terms of <*> and fmap.
Example
>>>liftA2 (,) (Just 3) (Just 5)Just (3,5)
fmap :: Functor f => (a -> b) -> f a -> f b #
fmap is used to apply a function of type (a -> b) to a value of type f a,
where f is a functor, to produce a value of type f b.
Note that for any type constructor with more than one parameter (e.g., Either),
only the last type parameter can be modified with fmap (e.g., b in `Either a b`).
Some type constructors with two parameters or more have a instance that allows
both the last and the penultimate parameters to be mapped over.Bifunctor
Examples
Convert from a to a Maybe IntMaybe String
using show:
>>>fmap show NothingNothing>>>fmap show (Just 3)Just "3"
Convert from an to an
Either Int IntEither Int String using show:
>>>fmap show (Left 17)Left 17>>>fmap show (Right 17)Right "17"
Double each element of a list:
>>>fmap (*2) [1,2,3][2,4,6]
Apply even to the second element of a pair:
>>>fmap even (2,2)(2,True)
It may seem surprising that the function is only applied to the last element of the tuple
compared to the list example above which applies it to every element in the list.
To understand, remember that tuples are type constructors with multiple type parameters:
a tuple of 3 elements (a,b,c) can also be written (,,) a b c and its Functor instance
is defined for Functor ((,,) a b) (i.e., only the third parameter is free to be mapped over
with fmap).
It explains why fmap can be used with tuples containing values of different types as in the
following example:
>>>fmap even ("hello", 1.0, 4)("hello",1.0,True)
(>>) :: Monad m => m a -> m b -> m b infixl 1 #
Sequentially compose two actions, discarding any value produced by the first, like sequencing operators (such as the semicolon) in imperative languages.
'as ' can be understood as the >> bsdo expression
do as bs
(>>=) :: Monad m => m a -> (a -> m b) -> m b infixl 1 #
Sequentially compose two actions, passing any value produced by the first as an argument to the second.
'as ' can be understood as the >>= bsdo expression
do a <- as bs a
mappend :: Monoid a => a -> a -> a #
An associative operation
NOTE: This method is redundant and has the default
implementation since base-4.11.0.0.
Should it be implemented manually, since mappend = (<>)mappend is a synonym for
(<>), it is expected that the two functions are defined the same
way. In a future GHC release mappend will be removed from Monoid.
mconcat :: Monoid a => [a] -> a #
Fold a list using the monoid.
For most types, the default definition for mconcat will be
used, but the function is included in the class definition so
that an optimized version can be provided for specific types.
>>>mconcat ["Hello", " ", "Haskell", "!"]"Hello Haskell!"
(<>) :: Semigroup a => a -> a -> a infixr 6 #
An associative operation.
>>>[1,2,3] <> [4,5,6][1,2,3,4,5,6]
enumFrom :: Enum a => a -> [a] #
Used in Haskell's translation of [n..] with [n..] = enumFrom n,
a possible implementation being enumFrom n = n : enumFrom (succ n).
For example:
enumFrom 4 :: [Integer] = [4,5,6,7,...]
enumFrom 6 :: [Int] = [6,7,8,9,...,maxBound :: Int]
enumFromThen :: Enum a => a -> a -> [a] #
Used in Haskell's translation of [n,n'..]
with [n,n'..] = enumFromThen n n', a possible implementation being
enumFromThen n n' = n : n' : worker (f x) (f x n'),
worker s v = v : worker s (s v), x = fromEnum n' - fromEnum n and
f n y
| n > 0 = f (n - 1) (succ y)
| n < 0 = f (n + 1) (pred y)
| otherwise = y
For example:
enumFromThen 4 6 :: [Integer] = [4,6,8,10...]
enumFromThen 6 2 :: [Int] = [6,2,-2,-6,...,minBound :: Int]
enumFromThenTo :: Enum a => a -> a -> a -> [a] #
Used in Haskell's translation of [n,n'..m] with
[n,n'..m] = enumFromThenTo n n' m, a possible implementation
being enumFromThenTo n n' m = worker (f x) (c x) n m,
x = fromEnum n' - fromEnum n, c x = bool (>=) ((x 0)
f n y
| n > 0 = f (n - 1) (succ y)
| n < 0 = f (n + 1) (pred y)
| otherwise = y and
worker s c v m
| c v m = v : worker s c (s v) m
| otherwise = []
For example:
enumFromThenTo 4 2 -6 :: [Integer] = [4,2,0,-2,-4,-6]
enumFromThenTo 6 8 2 :: [Int] = []
enumFromTo :: Enum a => a -> a -> [a] #
Used in Haskell's translation of [n..m] with
[n..m] = enumFromTo n m, a possible implementation being
enumFromTo n m
| n <= m = n : enumFromTo (succ n) m
| otherwise = [].
For example:
enumFromTo 6 10 :: [Int] = [6,7,8,9,10]
enumFromTo 42 1 :: [Integer] = []
atan2 :: RealFloat a => a -> a -> a #
a version of arctangent taking two real floating-point arguments.
For real floating x and y, computes the angle
(from the positive x-axis) of the vector from the origin to the
point atan2 y x(x,y). returns a value in the range [atan2 y x-pi,
pi]. It follows the Common Lisp semantics for the origin when
signed zeroes are supported. , with atan2 y 1y in a type
that is RealFloat, should return the same value as .
A default definition of atan yatan2 is provided, but implementors
can provide a more accurate implementation.
decodeFloat :: RealFloat a => a -> (Integer, Int) #
The function decodeFloat applied to a real floating-point
number returns the significand expressed as an Integer and an
appropriately scaled exponent (an Int). If
yields decodeFloat x(m,n), then x is equal in value to m*b^^n, where b
is the floating-point radix, and furthermore, either m and n
are both zero or else b^(d-1) <= , where abs m < b^dd is
the value of .
In particular, floatDigits x. If the type
contains a negative zero, also decodeFloat 0 = (0,0).
The result of decodeFloat (-0.0) = (0,0) is unspecified if either of
decodeFloat x or isNaN x is isInfinite xTrue.
encodeFloat :: RealFloat a => Integer -> Int -> a #
encodeFloat performs the inverse of decodeFloat in the
sense that for finite x with the exception of -0.0,
.
uncurry encodeFloat (decodeFloat x) = x is one of the two closest representable
floating-point numbers to encodeFloat m nm*b^^n (or ±Infinity if overflow
occurs); usually the closer, but if m contains too many bits,
the result may be rounded in the wrong direction.
exponent :: RealFloat a => a -> Int #
exponent corresponds to the second component of decodeFloat.
and for finite nonzero exponent 0 = 0x,
.
If exponent x = snd (decodeFloat x) + floatDigits xx is a finite floating-point number, it is equal in value to
, where significand x * b ^^ exponent xb is the
floating-point radix.
The behaviour is unspecified on infinite or NaN values.
floatDigits :: RealFloat a => a -> Int #
a constant function, returning the number of digits of
floatRadix in the significand
floatRadix :: RealFloat a => a -> Integer #
a constant function, returning the radix of the representation
(often 2)
floatRange :: RealFloat a => a -> (Int, Int) #
a constant function, returning the lowest and highest values the exponent may assume
isDenormalized :: RealFloat a => a -> Bool #
True if the argument is too small to be represented in
normalized format
isInfinite :: RealFloat a => a -> Bool #
True if the argument is an IEEE infinity or negative infinity
isNegativeZero :: RealFloat a => a -> Bool #
True if the argument is an IEEE negative zero
scaleFloat :: RealFloat a => Int -> a -> a #
multiplies a floating-point number by an integer power of the radix
significand :: RealFloat a => a -> a #
The first component of decodeFloat, scaled to lie in the open
interval (-1,1), either 0.0 or of absolute value >= 1/b,
where b is the floating-point radix.
The behaviour is unspecified on infinite or NaN values.
Arguments
| :: Read a | |
| => Int | the operator precedence of the enclosing
context (a number from |
| -> ReadS a |
attempts to parse a value from the front of the string, returning a list of (parsed value, remaining string) pairs. If there is no successful parse, the returned list is empty.
Derived instances of Read and Show satisfy the following:
That is, readsPrec parses the string produced by
showsPrec, and delivers the value that
showsPrec started with.
(/) :: Fractional a => a -> a -> a infixl 7 #
Fractional division.
fromRational :: Fractional a => Rational -> a #
Conversion from a Rational (that is ).
A floating literal stands for an application of Ratio IntegerfromRational
to a value of type Rational, so such literals have type
(.Fractional a) => a
recip :: Fractional a => a -> a #
Reciprocal fraction.
div :: Integral a => a -> a -> a infixl 7 #
integer division truncated toward negative infinity
WARNING: This function is partial (because it throws when 0 is passed as
the divisor) for all the integer types in base.
mod :: Integral a => a -> a -> a infixl 7 #
integer modulus, satisfying
(x `div` y)*y + (x `mod` y) == x
WARNING: This function is partial (because it throws when 0 is passed as
the divisor) for all the integer types in base.
quot :: Integral a => a -> a -> a infixl 7 #
integer division truncated toward zero
WARNING: This function is partial (because it throws when 0 is passed as
the divisor) for all the integer types in base.
rem :: Integral a => a -> a -> a infixl 7 #
integer remainder, satisfying
(x `quot` y)*y + (x `rem` y) == x
WARNING: This function is partial (because it throws when 0 is passed as
the divisor) for all the integer types in base.
toRational :: Real a => a -> Rational #
the rational equivalent of its real argument with full precision
floor :: (RealFrac a, Integral b) => a -> b #
returns the greatest integer not greater than floor xx
properFraction :: (RealFrac a, Integral b) => a -> (b, a) #
The function properFraction takes a real fractional number x
and returns a pair (n,f) such that x = n+f, and:
nis an integral number with the same sign asx; andfis a fraction with the same type and sign asx, and with absolute value less than1.
The default definitions of the ceiling, floor, truncate
and round functions are in terms of properFraction.
round :: (RealFrac a, Integral b) => a -> b #
returns the nearest integer to round xx;
the even integer if x is equidistant between two integers
truncate :: (RealFrac a, Integral b) => a -> b #
returns the integer nearest truncate xx between zero and x
Arguments
| :: Show a | |
| => Int | the operator precedence of the enclosing
context (a number from |
| -> a | the value to be converted to a |
| -> ShowS |
class Functor f => Applicative (f :: Type -> Type) #
A functor with application, providing operations to
A minimal complete definition must include implementations of pure
and of either <*> or liftA2. If it defines both, then they must behave
the same as their default definitions:
(<*>) =liftA2id
liftA2f x y = f<$>x<*>y
Further, any definition must satisfy the following:
- Identity
pureid<*>v = v- Composition
pure(.)<*>u<*>v<*>w = u<*>(v<*>w)- Homomorphism
puref<*>purex =pure(f x)- Interchange
u
<*>purey =pure($y)<*>u
The other methods have the following default definitions, which may be overridden with equivalent specialized implementations:
As a consequence of these laws, the Functor instance for f will satisfy
It may be useful to note that supposing
forall x y. p (q x y) = f x . g y
it follows from the above that
liftA2p (liftA2q u v) =liftA2f u .liftA2g v
If f is also a Monad, it should satisfy
(which implies that pure and <*> satisfy the applicative functor laws).
Instances
| Applicative ZipList | f <$> ZipList xs1 <*> ... <*> ZipList xsN
= ZipList (zipWithN f xs1 ... xsN)where (\a b c -> stimes c [a, b]) <$> ZipList "abcd" <*> ZipList "567" <*> ZipList [1..]
= ZipList (zipWith3 (\a b c -> stimes c [a, b]) "abcd" "567" [1..])
= ZipList {getZipList = ["a5","b6b6","c7c7c7"]}Since: base-2.1 |
| Applicative Complex | Since: base-4.9.0.0 |
| Applicative Identity | Since: base-4.8.0.0 |
| Applicative First | Since: base-4.8.0.0 |
| Applicative Last | Since: base-4.8.0.0 |
| Applicative First | Since: base-4.9.0.0 |
| Applicative Last | Since: base-4.9.0.0 |
| Applicative Max | Since: base-4.9.0.0 |
| Applicative Min | Since: base-4.9.0.0 |
| Applicative Dual | Since: base-4.8.0.0 |
| Applicative Product | Since: base-4.8.0.0 |
| Applicative Sum | Since: base-4.8.0.0 |
| Applicative NonEmpty | Since: base-4.9.0.0 |
| Applicative STM | Since: base-4.8.0.0 |
| Applicative P | Since: base-4.5.0.0 |
| Applicative ReadP | Since: base-4.6.0.0 |
| Applicative ReadPrec | Since: base-4.6.0.0 |
| Applicative IO | Since: base-2.1 |
| Applicative Maybe | Since: base-2.1 |
| Applicative Solo | Since: base-4.15 |
| Applicative List | Since: base-2.1 |
| Monad m => Applicative (WrappedMonad m) | Since: base-2.1 |
Defined in Control.Applicative Methods pure :: a -> WrappedMonad m a # (<*>) :: WrappedMonad m (a -> b) -> WrappedMonad m a -> WrappedMonad m b # liftA2 :: (a -> b -> c) -> WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m c # (*>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b # (<*) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m a # | |
| Applicative (ST s) | Since: base-2.1 |
| Applicative (Either e) | Since: base-3.0 |
| Applicative (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
| Applicative (ST s) | Since: base-4.4.0.0 |
| Monoid a => Applicative ((,) a) | For tuples, the ("hello ", (+15)) <*> ("world!", 2002)
("hello world!",2017)Since: base-2.1 |
| Arrow a => Applicative (WrappedArrow a b) | Since: base-2.1 |
Defined in Control.Applicative Methods pure :: a0 -> WrappedArrow a b a0 # (<*>) :: WrappedArrow a b (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 # liftA2 :: (a0 -> b0 -> c) -> WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b c # (*>) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b b0 # (<*) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 # | |
| Monoid m => Applicative (Const m :: Type -> Type) | Since: base-2.0.1 |
| Applicative f => Applicative (Ap f) | Since: base-4.12.0.0 |
| Applicative f => Applicative (Alt f) | Since: base-4.8.0.0 |
| (Monoid a, Monoid b) => Applicative ((,,) a b) | Since: base-4.14.0.0 |
| (Applicative f, Applicative g) => Applicative (Product f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product | |
| (Monoid a, Monoid b, Monoid c) => Applicative ((,,,) a b c) | Since: base-4.14.0.0 |
Defined in GHC.Base | |
| Applicative ((->) r) | Since: base-2.1 |
| (Applicative f, Applicative g) => Applicative (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose | |
The Bounded class is used to name the upper and lower limits of a
type. Ord is not a superclass of Bounded since types that are not
totally ordered may also have upper and lower bounds.
The Bounded class may be derived for any enumeration type;
minBound is the first constructor listed in the data declaration
and maxBound is the last.
Bounded may also be derived for single-constructor datatypes whose
constituent types are in Bounded.
Instances
| Bounded All | Since: base-2.1 |
| Bounded Any | Since: base-2.1 |
| Bounded IntPtr | |
| Bounded WordPtr | |
| Bounded Int16 | Since: base-2.1 |
| Bounded Int32 | Since: base-2.1 |
| Bounded Int64 | Since: base-2.1 |
| Bounded Int8 | Since: base-2.1 |
| Bounded Word16 | Since: base-2.1 |
| Bounded Word32 | Since: base-2.1 |
| Bounded Word64 | Since: base-2.1 |
| Bounded Word8 | Since: base-2.1 |
| Bounded Ordering | Since: base-2.1 |
| Bounded () | Since: base-2.1 |
| Bounded Bool | Since: base-2.1 |
| Bounded Char | Since: base-2.1 |
| Bounded Int | Since: base-2.1 |
| Bounded Levity | Since: base-4.16.0.0 |
| Bounded VecCount | Since: base-4.10.0.0 |
| Bounded VecElem | Since: base-4.10.0.0 |
| Bounded Word | Since: base-2.1 |
| Bounded a => Bounded (And a) | Since: base-4.16 |
| Bounded a => Bounded (Iff a) | Since: base-4.16 |
| Bounded a => Bounded (Ior a) | Since: base-4.16 |
| Bounded a => Bounded (Xor a) | Since: base-4.16 |
| Bounded a => Bounded (Identity a) | Since: base-4.9.0.0 |
| Bounded a => Bounded (First a) | Since: base-4.9.0.0 |
| Bounded a => Bounded (Last a) | Since: base-4.9.0.0 |
| Bounded a => Bounded (Max a) | Since: base-4.9.0.0 |
| Bounded a => Bounded (Min a) | Since: base-4.9.0.0 |
| Bounded m => Bounded (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup | |
| Bounded a => Bounded (Dual a) | Since: base-2.1 |
| Bounded a => Bounded (Product a) | Since: base-2.1 |
| Bounded a => Bounded (Sum a) | Since: base-2.1 |
| Bounded a => Bounded (a) | |
| Bounded (Proxy t) | Since: base-4.7.0.0 |
| (Bounded a, Bounded b) => Bounded (a, b) | Since: base-2.1 |
| Bounded a => Bounded (Const a b) | Since: base-4.9.0.0 |
| (Applicative f, Bounded a) => Bounded (Ap f a) | Since: base-4.12.0.0 |
| Coercible a b => Bounded (Coercion a b) | Since: base-4.7.0.0 |
| a ~ b => Bounded (a :~: b) | Since: base-4.7.0.0 |
| (Bounded a, Bounded b, Bounded c) => Bounded (a, b, c) | Since: base-2.1 |
| a ~~ b => Bounded (a :~~: b) | Since: base-4.10.0.0 |
| (Bounded a, Bounded b, Bounded c, Bounded d) => Bounded (a, b, c, d) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e) => Bounded (a, b, c, d, e) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f) => Bounded (a, b, c, d, e, f) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g) => Bounded (a, b, c, d, e, f, g) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h) => Bounded (a, b, c, d, e, f, g, h) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i) => Bounded (a, b, c, d, e, f, g, h, i) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j) => Bounded (a, b, c, d, e, f, g, h, i, j) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k) => Bounded (a, b, c, d, e, f, g, h, i, j, k) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n, Bounded o) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | Since: base-2.1 |
Class Enum defines operations on sequentially ordered types.
The enumFrom... methods are used in Haskell's translation of
arithmetic sequences.
Instances of Enum may be derived for any enumeration type (types
whose constructors have no fields). The nullary constructors are
assumed to be numbered left-to-right by fromEnum from 0 through n-1.
See Chapter 10 of the Haskell Report for more details.
For any type that is an instance of class Bounded as well as Enum,
the following should hold:
- The calls
andsuccmaxBoundshould result in a runtime error.predminBound fromEnumandtoEnumshould give a runtime error if the result value is not representable in the result type. For example,is an error.toEnum7 ::BoolenumFromandenumFromThenshould be defined with an implicit bound, thus:
enumFrom x = enumFromTo x maxBound
enumFromThen x y = enumFromThenTo x y bound
where
bound | fromEnum y >= fromEnum x = maxBound
| otherwise = minBoundInstances
| Enum IntPtr | |
Defined in Foreign.Ptr | |
| Enum WordPtr | |
| Enum SeekMode | Since: base-4.2.0.0 |
| Enum IOMode | Since: base-4.2.0.0 |
Defined in GHC.IO.IOMode | |
| Enum Int16 | Since: base-2.1 |
| Enum Int32 | Since: base-2.1 |
| Enum Int64 | Since: base-2.1 |
| Enum Int8 | Since: base-2.1 |
| Enum Word16 | Since: base-2.1 |
Defined in GHC.Word | |
| Enum Word32 | Since: base-2.1 |
Defined in GHC.Word | |
| Enum Word64 | Since: base-2.1 |
Defined in GHC.Word | |
| Enum Word8 | Since: base-2.1 |
| Enum Ordering | Since: base-2.1 |
| Enum Integer | Since: base-2.1 |
| Enum Natural | Since: base-4.8.0.0 |
| Enum () | Since: base-2.1 |
| Enum Bool | Since: base-2.1 |
| Enum Char | Since: base-2.1 |
| Enum Int | Since: base-2.1 |
| Enum Levity | Since: base-4.16.0.0 |
Defined in GHC.Enum | |
| Enum VecCount | Since: base-4.10.0.0 |
| Enum VecElem | Since: base-4.10.0.0 |
| Enum Word | Since: base-2.1 |
| Enum a => Enum (And a) | Since: base-4.16 |
| Enum a => Enum (Iff a) | Since: base-4.16 |
| Enum a => Enum (Ior a) | Since: base-4.16 |
| Enum a => Enum (Xor a) | Since: base-4.16 |
| Enum a => Enum (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Identity Methods succ :: Identity a -> Identity a # pred :: Identity a -> Identity a # fromEnum :: Identity a -> Int # enumFrom :: Identity a -> [Identity a] # enumFromThen :: Identity a -> Identity a -> [Identity a] # enumFromTo :: Identity a -> Identity a -> [Identity a] # enumFromThenTo :: Identity a -> Identity a -> Identity a -> [Identity a] # | |
| Enum a => Enum (First a) | Since: base-4.9.0.0 |
| Enum a => Enum (Last a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup | |
| Enum a => Enum (Max a) | Since: base-4.9.0.0 |
| Enum a => Enum (Min a) | Since: base-4.9.0.0 |
| Enum a => Enum (WrappedMonoid a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods succ :: WrappedMonoid a -> WrappedMonoid a # pred :: WrappedMonoid a -> WrappedMonoid a # toEnum :: Int -> WrappedMonoid a # fromEnum :: WrappedMonoid a -> Int # enumFrom :: WrappedMonoid a -> [WrappedMonoid a] # enumFromThen :: WrappedMonoid a -> WrappedMonoid a -> [WrappedMonoid a] # enumFromTo :: WrappedMonoid a -> WrappedMonoid a -> [WrappedMonoid a] # enumFromThenTo :: WrappedMonoid a -> WrappedMonoid a -> WrappedMonoid a -> [WrappedMonoid a] # | |
| Integral a => Enum (Ratio a) | Since: base-2.0.1 |
| Enum a => Enum (a) | |
| Enum (Proxy s) | Since: base-4.7.0.0 |
| Enum a => Enum (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods succ :: Const a b -> Const a b # pred :: Const a b -> Const a b # fromEnum :: Const a b -> Int # enumFrom :: Const a b -> [Const a b] # enumFromThen :: Const a b -> Const a b -> [Const a b] # enumFromTo :: Const a b -> Const a b -> [Const a b] # enumFromThenTo :: Const a b -> Const a b -> Const a b -> [Const a b] # | |
| Enum (f a) => Enum (Ap f a) | Since: base-4.12.0.0 |
Defined in Data.Monoid | |
| Enum (f a) => Enum (Alt f a) | Since: base-4.8.0.0 |
| Coercible a b => Enum (Coercion a b) | Since: base-4.7.0.0 |
Defined in Data.Type.Coercion Methods succ :: Coercion a b -> Coercion a b # pred :: Coercion a b -> Coercion a b # toEnum :: Int -> Coercion a b # fromEnum :: Coercion a b -> Int # enumFrom :: Coercion a b -> [Coercion a b] # enumFromThen :: Coercion a b -> Coercion a b -> [Coercion a b] # enumFromTo :: Coercion a b -> Coercion a b -> [Coercion a b] # enumFromThenTo :: Coercion a b -> Coercion a b -> Coercion a b -> [Coercion a b] # | |
| a ~ b => Enum (a :~: b) | Since: base-4.7.0.0 |
Defined in Data.Type.Equality Methods succ :: (a :~: b) -> a :~: b # pred :: (a :~: b) -> a :~: b # fromEnum :: (a :~: b) -> Int # enumFrom :: (a :~: b) -> [a :~: b] # enumFromThen :: (a :~: b) -> (a :~: b) -> [a :~: b] # enumFromTo :: (a :~: b) -> (a :~: b) -> [a :~: b] # enumFromThenTo :: (a :~: b) -> (a :~: b) -> (a :~: b) -> [a :~: b] # | |
| a ~~ b => Enum (a :~~: b) | Since: base-4.10.0.0 |
Defined in Data.Type.Equality Methods succ :: (a :~~: b) -> a :~~: b # pred :: (a :~~: b) -> a :~~: b # fromEnum :: (a :~~: b) -> Int # enumFrom :: (a :~~: b) -> [a :~~: b] # enumFromThen :: (a :~~: b) -> (a :~~: b) -> [a :~~: b] # enumFromTo :: (a :~~: b) -> (a :~~: b) -> [a :~~: b] # enumFromThenTo :: (a :~~: b) -> (a :~~: b) -> (a :~~: b) -> [a :~~: b] # | |
The Eq class defines equality (==) and inequality (/=).
All the basic datatypes exported by the Prelude are instances of Eq,
and Eq may be derived for any datatype whose constituents are also
instances of Eq.
The Haskell Report defines no laws for Eq. However, instances are
encouraged to follow these properties:
Instances
| Eq All | Since: base-2.1 |
| Eq Any | Since: base-2.1 |
| Eq SomeTypeRep | |
Defined in Data.Typeable.Internal | |
| Eq Version | Since: base-2.1 |
| Eq IntPtr | |
| Eq WordPtr | |
| Eq Void | Since: base-4.8.0.0 |
| Eq BlockReason | Since: base-4.3.0.0 |
Defined in GHC.Conc.Sync | |
| Eq ThreadId | Since: base-4.2.0.0 |
| Eq ThreadStatus | Since: base-4.3.0.0 |
Defined in GHC.Conc.Sync | |
| Eq ErrorCall | Since: base-4.7.0.0 |
| Eq ArithException | Since: base-3.0 |
Defined in GHC.Exception.Type Methods (==) :: ArithException -> ArithException -> Bool # (/=) :: ArithException -> ArithException -> Bool # | |
| Eq SpecConstrAnnotation | Since: base-4.3.0.0 |
Defined in GHC.Exts Methods (==) :: SpecConstrAnnotation -> SpecConstrAnnotation -> Bool # (/=) :: SpecConstrAnnotation -> SpecConstrAnnotation -> Bool # | |
| Eq Fingerprint | Since: base-4.4.0.0 |
Defined in GHC.Fingerprint.Type | |
| Eq MaskingState | Since: base-4.3.0.0 |
Defined in GHC.IO | |
| Eq IODeviceType | Since: base-4.2.0.0 |
Defined in GHC.IO.Device | |
| Eq SeekMode | Since: base-4.2.0.0 |
| Eq CodingProgress | Since: base-4.4.0.0 |
Defined in GHC.IO.Encoding.Types Methods (==) :: CodingProgress -> CodingProgress -> Bool # (/=) :: CodingProgress -> CodingProgress -> Bool # | |
| Eq ArrayException | Since: base-4.2.0.0 |
Defined in GHC.IO.Exception Methods (==) :: ArrayException -> ArrayException -> Bool # (/=) :: ArrayException -> ArrayException -> Bool # | |
| Eq AsyncException | Since: base-4.2.0.0 |
Defined in GHC.IO.Exception Methods (==) :: AsyncException -> AsyncException -> Bool # (/=) :: AsyncException -> AsyncException -> Bool # | |
| Eq ExitCode | |
| Eq IOErrorType | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception | |
| Eq IOException | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception | |
| Eq HandlePosn | Since: base-4.1.0.0 |
Defined in GHC.IO.Handle | |
| Eq BufferMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types | |
| Eq Handle | Since: base-4.1.0.0 |
| Eq Newline | Since: base-4.2.0.0 |
| Eq NewlineMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types | |
| Eq IOMode | Since: base-4.2.0.0 |
| Eq Int16 | Since: base-2.1 |
| Eq Int32 | Since: base-2.1 |
| Eq Int64 | Since: base-2.1 |
| Eq Int8 | Since: base-2.1 |
| Eq SrcLoc | Since: base-4.9.0.0 |
| Eq Word16 | Since: base-2.1 |
| Eq Word32 | Since: base-2.1 |
| Eq Word64 | Since: base-2.1 |
| Eq Word8 | Since: base-2.1 |
| Eq Lexeme | Since: base-2.1 |
| Eq Number | Since: base-4.6.0.0 |
| Eq Module | |
| Eq Ordering | |
| Eq TrName | |
| Eq TyCon | |
| Eq Integer | |
| Eq Natural | |
| Eq () | |
| Eq Bool | |
| Eq Char | |
| Eq Double | Note that due to the presence of
Also note that
|
| Eq Float | Note that due to the presence of
Also note that
|
| Eq Int | |
| Eq Word | |
| Eq a => Eq (ZipList a) | Since: base-4.7.0.0 |
| Eq (Chan a) | Since: base-4.4.0.0 |
| Eq a => Eq (And a) | Since: base-4.16 |
| Eq a => Eq (Iff a) | Since: base-4.16 |
| Eq a => Eq (Ior a) | Since: base-4.16 |
| Eq a => Eq (Xor a) | Since: base-4.16 |
| Eq a => Eq (Complex a) | Since: base-2.1 |
| Eq a => Eq (Identity a) | Since: base-4.8.0.0 |
| Eq a => Eq (First a) | Since: base-2.1 |
| Eq a => Eq (Last a) | Since: base-2.1 |
| Eq a => Eq (First a) | Since: base-4.9.0.0 |
| Eq a => Eq (Last a) | Since: base-4.9.0.0 |
| Eq a => Eq (Max a) | Since: base-4.9.0.0 |
| Eq a => Eq (Min a) | Since: base-4.9.0.0 |
| Eq m => Eq (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods (==) :: WrappedMonoid m -> WrappedMonoid m -> Bool # (/=) :: WrappedMonoid m -> WrappedMonoid m -> Bool # | |
| Eq a => Eq (Dual a) | Since: base-2.1 |
| Eq a => Eq (Product a) | Since: base-2.1 |
| Eq a => Eq (Sum a) | Since: base-2.1 |
| Eq a => Eq (NonEmpty a) | Since: base-4.9.0.0 |
| Eq (TVar a) | Since: base-4.8.0.0 |
| Eq (ForeignPtr a) | Since: base-2.1 |
Defined in GHC.ForeignPtr | |
| Eq (IORef a) | Pointer equality. Since: base-4.0.0.0 |
| Eq (MVar a) | Since: base-4.1.0.0 |
| Eq (FunPtr a) | |
| Eq (Ptr a) | Since: base-2.1 |
| Eq a => Eq (Ratio a) | Since: base-2.1 |
| Eq (StablePtr a) | Since: base-2.1 |
| Eq a => Eq (Maybe a) | Since: base-2.1 |
| Eq a => Eq (a) | |
| Eq a => Eq [a] | |
| (Eq a, Eq b) => Eq (Either a b) | Since: base-2.1 |
| Eq (Proxy s) | Since: base-4.7.0.0 |
| Eq a => Eq (Arg a b) | Since: base-4.9.0.0 |
| Eq (TypeRep a) | Since: base-2.1 |
| Eq (STRef s a) | Pointer equality. Since: base-2.1 |
| (Eq a, Eq b) => Eq (a, b) | |
| Eq a => Eq (Const a b) | Since: base-4.9.0.0 |
| Eq (f a) => Eq (Ap f a) | Since: base-4.12.0.0 |
| Eq (f a) => Eq (Alt f a) | Since: base-4.8.0.0 |
| Eq (Coercion a b) | Since: base-4.7.0.0 |
| Eq (a :~: b) | Since: base-4.7.0.0 |
| (Eq a, Eq b, Eq c) => Eq (a, b, c) | |
| (Eq (f a), Eq (g a)) => Eq (Product f g a) | Since: base-4.18.0.0 |
| (Eq (f a), Eq (g a)) => Eq (Sum f g a) | Since: base-4.18.0.0 |
| Eq (a :~~: b) | Since: base-4.10.0.0 |
| (Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d) | |
| Eq (f (g a)) => Eq (Compose f g a) | Since: base-4.18.0.0 |
| (Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f) => Eq (a, b, c, d, e, f) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g) => Eq (a, b, c, d, e, f, g) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h) => Eq (a, b, c, d, e, f, g, h) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i) => Eq (a, b, c, d, e, f, g, h, i) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j) => Eq (a, b, c, d, e, f, g, h, i, j) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k) => Eq (a, b, c, d, e, f, g, h, i, j, k) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l) => Eq (a, b, c, d, e, f, g, h, i, j, k, l) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n, Eq o) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | |
class Fractional a => Floating a #
Trigonometric and hyperbolic functions and related functions.
The Haskell Report defines no laws for Floating. However, (, +)(
and *)exp are customarily expected to define an exponential field and have
the following properties:
exp (a + b)=exp a * exp bexp (fromInteger 0)=fromInteger 1
Minimal complete definition
pi, exp, log, sin, cos, asin, acos, atan, sinh, cosh, asinh, acosh, atanh
Instances
class Foldable (t :: Type -> Type) #
The Foldable class represents data structures that can be reduced to a summary value one element at a time. Strict left-associative folds are a good fit for space-efficient reduction, while lazy right-associative folds are a good fit for corecursive iteration, or for folds that short-circuit after processing an initial subsequence of the structure's elements.
Instances can be derived automatically by enabling the DeriveFoldable
extension. For example, a derived instance for a binary tree might be:
{-# LANGUAGE DeriveFoldable #-}
data Tree a = Empty
| Leaf a
| Node (Tree a) a (Tree a)
deriving FoldableA more detailed description can be found in the Overview section of Data.Foldable.
For the class laws see the Laws section of Data.Foldable.
Instances
| Foldable ZipList | Since: base-4.9.0.0 |
Defined in Control.Applicative Methods fold :: Monoid m => ZipList m -> m # foldMap :: Monoid m => (a -> m) -> ZipList a -> m # foldMap' :: Monoid m => (a -> m) -> ZipList a -> m # foldr :: (a -> b -> b) -> b -> ZipList a -> b # foldr' :: (a -> b -> b) -> b -> ZipList a -> b # foldl :: (b -> a -> b) -> b -> ZipList a -> b # foldl' :: (b -> a -> b) -> b -> ZipList a -> b # foldr1 :: (a -> a -> a) -> ZipList a -> a # foldl1 :: (a -> a -> a) -> ZipList a -> a # elem :: Eq a => a -> ZipList a -> Bool # maximum :: Ord a => ZipList a -> a # minimum :: Ord a => ZipList a -> a # | |
| Foldable Complex | Since: base-4.9.0.0 |
Defined in Data.Complex Methods fold :: Monoid m => Complex m -> m # foldMap :: Monoid m => (a -> m) -> Complex a -> m # foldMap' :: Monoid m => (a -> m) -> Complex a -> m # foldr :: (a -> b -> b) -> b -> Complex a -> b # foldr' :: (a -> b -> b) -> b -> Complex a -> b # foldl :: (b -> a -> b) -> b -> Complex a -> b # foldl' :: (b -> a -> b) -> b -> Complex a -> b # foldr1 :: (a -> a -> a) -> Complex a -> a # foldl1 :: (a -> a -> a) -> Complex a -> a # elem :: Eq a => a -> Complex a -> Bool # maximum :: Ord a => Complex a -> a # minimum :: Ord a => Complex a -> a # | |
| Foldable Identity | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity Methods fold :: Monoid m => Identity m -> m # foldMap :: Monoid m => (a -> m) -> Identity a -> m # foldMap' :: Monoid m => (a -> m) -> Identity a -> m # foldr :: (a -> b -> b) -> b -> Identity a -> b # foldr' :: (a -> b -> b) -> b -> Identity a -> b # foldl :: (b -> a -> b) -> b -> Identity a -> b # foldl' :: (b -> a -> b) -> b -> Identity a -> b # foldr1 :: (a -> a -> a) -> Identity a -> a # foldl1 :: (a -> a -> a) -> Identity a -> a # elem :: Eq a => a -> Identity a -> Bool # maximum :: Ord a => Identity a -> a # minimum :: Ord a => Identity a -> a # | |
| Foldable First | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldMap' :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |
| Foldable Last | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldMap' :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
| Foldable Down | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Down m -> m # foldMap :: Monoid m => (a -> m) -> Down a -> m # foldMap' :: Monoid m => (a -> m) -> Down a -> m # foldr :: (a -> b -> b) -> b -> Down a -> b # foldr' :: (a -> b -> b) -> b -> Down a -> b # foldl :: (b -> a -> b) -> b -> Down a -> b # foldl' :: (b -> a -> b) -> b -> Down a -> b # foldr1 :: (a -> a -> a) -> Down a -> a # foldl1 :: (a -> a -> a) -> Down a -> a # elem :: Eq a => a -> Down a -> Bool # maximum :: Ord a => Down a -> a # | |
| Foldable First | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldMap' :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |
| Foldable Last | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldMap' :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
| Foldable Max | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Max m -> m # foldMap :: Monoid m => (a -> m) -> Max a -> m # foldMap' :: Monoid m => (a -> m) -> Max a -> m # foldr :: (a -> b -> b) -> b -> Max a -> b # foldr' :: (a -> b -> b) -> b -> Max a -> b # foldl :: (b -> a -> b) -> b -> Max a -> b # foldl' :: (b -> a -> b) -> b -> Max a -> b # foldr1 :: (a -> a -> a) -> Max a -> a # foldl1 :: (a -> a -> a) -> Max a -> a # elem :: Eq a => a -> Max a -> Bool # maximum :: Ord a => Max a -> a # | |
| Foldable Min | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Min m -> m # foldMap :: Monoid m => (a -> m) -> Min a -> m # foldMap' :: Monoid m => (a -> m) -> Min a -> m # foldr :: (a -> b -> b) -> b -> Min a -> b # foldr' :: (a -> b -> b) -> b -> Min a -> b # foldl :: (b -> a -> b) -> b -> Min a -> b # foldl' :: (b -> a -> b) -> b -> Min a -> b # foldr1 :: (a -> a -> a) -> Min a -> a # foldl1 :: (a -> a -> a) -> Min a -> a # elem :: Eq a => a -> Min a -> Bool # maximum :: Ord a => Min a -> a # | |
| Foldable Dual | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Dual m -> m # foldMap :: Monoid m => (a -> m) -> Dual a -> m # foldMap' :: Monoid m => (a -> m) -> Dual a -> m # foldr :: (a -> b -> b) -> b -> Dual a -> b # foldr' :: (a -> b -> b) -> b -> Dual a -> b # foldl :: (b -> a -> b) -> b -> Dual a -> b # foldl' :: (b -> a -> b) -> b -> Dual a -> b # foldr1 :: (a -> a -> a) -> Dual a -> a # foldl1 :: (a -> a -> a) -> Dual a -> a # elem :: Eq a => a -> Dual a -> Bool # maximum :: Ord a => Dual a -> a # | |
| Foldable Product | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Product m -> m # foldMap :: Monoid m => (a -> m) -> Product a -> m # foldMap' :: Monoid m => (a -> m) -> Product a -> m # foldr :: (a -> b -> b) -> b -> Product a -> b # foldr' :: (a -> b -> b) -> b -> Product a -> b # foldl :: (b -> a -> b) -> b -> Product a -> b # foldl' :: (b -> a -> b) -> b -> Product a -> b # foldr1 :: (a -> a -> a) -> Product a -> a # foldl1 :: (a -> a -> a) -> Product a -> a # elem :: Eq a => a -> Product a -> Bool # maximum :: Ord a => Product a -> a # minimum :: Ord a => Product a -> a # | |
| Foldable Sum | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Sum m -> m # foldMap :: Monoid m => (a -> m) -> Sum a -> m # foldMap' :: Monoid m => (a -> m) -> Sum a -> m # foldr :: (a -> b -> b) -> b -> Sum a -> b # foldr' :: (a -> b -> b) -> b -> Sum a -> b # foldl :: (b -> a -> b) -> b -> Sum a -> b # foldl' :: (b -> a -> b) -> b -> Sum a -> b # foldr1 :: (a -> a -> a) -> Sum a -> a # foldl1 :: (a -> a -> a) -> Sum a -> a # elem :: Eq a => a -> Sum a -> Bool # maximum :: Ord a => Sum a -> a # | |
| Foldable NonEmpty | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => NonEmpty m -> m # foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m # foldMap' :: Monoid m => (a -> m) -> NonEmpty a -> m # foldr :: (a -> b -> b) -> b -> NonEmpty a -> b # foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b # foldl :: (b -> a -> b) -> b -> NonEmpty a -> b # foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b # foldr1 :: (a -> a -> a) -> NonEmpty a -> a # foldl1 :: (a -> a -> a) -> NonEmpty a -> a # elem :: Eq a => a -> NonEmpty a -> Bool # maximum :: Ord a => NonEmpty a -> a # minimum :: Ord a => NonEmpty a -> a # | |
| Foldable Par1 | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Par1 m -> m # foldMap :: Monoid m => (a -> m) -> Par1 a -> m # foldMap' :: Monoid m => (a -> m) -> Par1 a -> m # foldr :: (a -> b -> b) -> b -> Par1 a -> b # foldr' :: (a -> b -> b) -> b -> Par1 a -> b # foldl :: (b -> a -> b) -> b -> Par1 a -> b # foldl' :: (b -> a -> b) -> b -> Par1 a -> b # foldr1 :: (a -> a -> a) -> Par1 a -> a # foldl1 :: (a -> a -> a) -> Par1 a -> a # elem :: Eq a => a -> Par1 a -> Bool # maximum :: Ord a => Par1 a -> a # | |
| Foldable Maybe | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldMap' :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |
| Foldable Solo | Since: base-4.15 |
Defined in Data.Foldable Methods fold :: Monoid m => Solo m -> m # foldMap :: Monoid m => (a -> m) -> Solo a -> m # foldMap' :: Monoid m => (a -> m) -> Solo a -> m # foldr :: (a -> b -> b) -> b -> Solo a -> b # foldr' :: (a -> b -> b) -> b -> Solo a -> b # foldl :: (b -> a -> b) -> b -> Solo a -> b # foldl' :: (b -> a -> b) -> b -> Solo a -> b # foldr1 :: (a -> a -> a) -> Solo a -> a # foldl1 :: (a -> a -> a) -> Solo a -> a # elem :: Eq a => a -> Solo a -> Bool # maximum :: Ord a => Solo a -> a # | |
| Foldable List | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => [m] -> m # foldMap :: Monoid m => (a -> m) -> [a] -> m # foldMap' :: Monoid m => (a -> m) -> [a] -> m # foldr :: (a -> b -> b) -> b -> [a] -> b # foldr' :: (a -> b -> b) -> b -> [a] -> b # foldl :: (b -> a -> b) -> b -> [a] -> b # foldl' :: (b -> a -> b) -> b -> [a] -> b # foldr1 :: (a -> a -> a) -> [a] -> a # foldl1 :: (a -> a -> a) -> [a] -> a # elem :: Eq a => a -> [a] -> Bool # maximum :: Ord a => [a] -> a # | |
| Foldable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Either a m -> m # foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # toList :: Either a a0 -> [a0] # length :: Either a a0 -> Int # elem :: Eq a0 => a0 -> Either a a0 -> Bool # maximum :: Ord a0 => Either a a0 -> a0 # minimum :: Ord a0 => Either a a0 -> a0 # | |
| Foldable (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Proxy m -> m # foldMap :: Monoid m => (a -> m) -> Proxy a -> m # foldMap' :: Monoid m => (a -> m) -> Proxy a -> m # foldr :: (a -> b -> b) -> b -> Proxy a -> b # foldr' :: (a -> b -> b) -> b -> Proxy a -> b # foldl :: (b -> a -> b) -> b -> Proxy a -> b # foldl' :: (b -> a -> b) -> b -> Proxy a -> b # foldr1 :: (a -> a -> a) -> Proxy a -> a # foldl1 :: (a -> a -> a) -> Proxy a -> a # elem :: Eq a => a -> Proxy a -> Bool # maximum :: Ord a => Proxy a -> a # minimum :: Ord a => Proxy a -> a # | |
| Foldable (Arg a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Arg a m -> m # foldMap :: Monoid m => (a0 -> m) -> Arg a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Arg a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Arg a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Arg a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Arg a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Arg a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 # elem :: Eq a0 => a0 -> Arg a a0 -> Bool # maximum :: Ord a0 => Arg a a0 -> a0 # minimum :: Ord a0 => Arg a a0 -> a0 # | |
| Foldable (Array i) | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Array i m -> m # foldMap :: Monoid m => (a -> m) -> Array i a -> m # foldMap' :: Monoid m => (a -> m) -> Array i a -> m # foldr :: (a -> b -> b) -> b -> Array i a -> b # foldr' :: (a -> b -> b) -> b -> Array i a -> b # foldl :: (b -> a -> b) -> b -> Array i a -> b # foldl' :: (b -> a -> b) -> b -> Array i a -> b # foldr1 :: (a -> a -> a) -> Array i a -> a # foldl1 :: (a -> a -> a) -> Array i a -> a # elem :: Eq a => a -> Array i a -> Bool # maximum :: Ord a => Array i a -> a # minimum :: Ord a => Array i a -> a # | |
| Foldable (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => U1 m -> m # foldMap :: Monoid m => (a -> m) -> U1 a -> m # foldMap' :: Monoid m => (a -> m) -> U1 a -> m # foldr :: (a -> b -> b) -> b -> U1 a -> b # foldr' :: (a -> b -> b) -> b -> U1 a -> b # foldl :: (b -> a -> b) -> b -> U1 a -> b # foldl' :: (b -> a -> b) -> b -> U1 a -> b # foldr1 :: (a -> a -> a) -> U1 a -> a # foldl1 :: (a -> a -> a) -> U1 a -> a # elem :: Eq a => a -> U1 a -> Bool # maximum :: Ord a => U1 a -> a # | |
| Foldable (UAddr :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UAddr m -> m # foldMap :: Monoid m => (a -> m) -> UAddr a -> m # foldMap' :: Monoid m => (a -> m) -> UAddr a -> m # foldr :: (a -> b -> b) -> b -> UAddr a -> b # foldr' :: (a -> b -> b) -> b -> UAddr a -> b # foldl :: (b -> a -> b) -> b -> UAddr a -> b # foldl' :: (b -> a -> b) -> b -> UAddr a -> b # foldr1 :: (a -> a -> a) -> UAddr a -> a # foldl1 :: (a -> a -> a) -> UAddr a -> a # elem :: Eq a => a -> UAddr a -> Bool # maximum :: Ord a => UAddr a -> a # minimum :: Ord a => UAddr a -> a # | |
| Foldable (UChar :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UChar m -> m # foldMap :: Monoid m => (a -> m) -> UChar a -> m # foldMap' :: Monoid m => (a -> m) -> UChar a -> m # foldr :: (a -> b -> b) -> b -> UChar a -> b # foldr' :: (a -> b -> b) -> b -> UChar a -> b # foldl :: (b -> a -> b) -> b -> UChar a -> b # foldl' :: (b -> a -> b) -> b -> UChar a -> b # foldr1 :: (a -> a -> a) -> UChar a -> a # foldl1 :: (a -> a -> a) -> UChar a -> a # elem :: Eq a => a -> UChar a -> Bool # maximum :: Ord a => UChar a -> a # minimum :: Ord a => UChar a -> a # | |
| Foldable (UDouble :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UDouble m -> m # foldMap :: Monoid m => (a -> m) -> UDouble a -> m # foldMap' :: Monoid m => (a -> m) -> UDouble a -> m # foldr :: (a -> b -> b) -> b -> UDouble a -> b # foldr' :: (a -> b -> b) -> b -> UDouble a -> b # foldl :: (b -> a -> b) -> b -> UDouble a -> b # foldl' :: (b -> a -> b) -> b -> UDouble a -> b # foldr1 :: (a -> a -> a) -> UDouble a -> a # foldl1 :: (a -> a -> a) -> UDouble a -> a # elem :: Eq a => a -> UDouble a -> Bool # maximum :: Ord a => UDouble a -> a # minimum :: Ord a => UDouble a -> a # | |
| Foldable (UFloat :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UFloat m -> m # foldMap :: Monoid m => (a -> m) -> UFloat a -> m # foldMap' :: Monoid m => (a -> m) -> UFloat a -> m # foldr :: (a -> b -> b) -> b -> UFloat a -> b # foldr' :: (a -> b -> b) -> b -> UFloat a -> b # foldl :: (b -> a -> b) -> b -> UFloat a -> b # foldl' :: (b -> a -> b) -> b -> UFloat a -> b # foldr1 :: (a -> a -> a) -> UFloat a -> a # foldl1 :: (a -> a -> a) -> UFloat a -> a # elem :: Eq a => a -> UFloat a -> Bool # maximum :: Ord a => UFloat a -> a # minimum :: Ord a => UFloat a -> a # | |
| Foldable (UInt :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UInt m -> m # foldMap :: Monoid m => (a -> m) -> UInt a -> m # foldMap' :: Monoid m => (a -> m) -> UInt a -> m # foldr :: (a -> b -> b) -> b -> UInt a -> b # foldr' :: (a -> b -> b) -> b -> UInt a -> b # foldl :: (b -> a -> b) -> b -> UInt a -> b # foldl' :: (b -> a -> b) -> b -> UInt a -> b # foldr1 :: (a -> a -> a) -> UInt a -> a # foldl1 :: (a -> a -> a) -> UInt a -> a # elem :: Eq a => a -> UInt a -> Bool # maximum :: Ord a => UInt a -> a # | |
| Foldable (UWord :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UWord m -> m # foldMap :: Monoid m => (a -> m) -> UWord a -> m # foldMap' :: Monoid m => (a -> m) -> UWord a -> m # foldr :: (a -> b -> b) -> b -> UWord a -> b # foldr' :: (a -> b -> b) -> b -> UWord a -> b # foldl :: (b -> a -> b) -> b -> UWord a -> b # foldl' :: (b -> a -> b) -> b -> UWord a -> b # foldr1 :: (a -> a -> a) -> UWord a -> a # foldl1 :: (a -> a -> a) -> UWord a -> a # elem :: Eq a => a -> UWord a -> Bool # maximum :: Ord a => UWord a -> a # minimum :: Ord a => UWord a -> a # | |
| Foldable (V1 :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => V1 m -> m # foldMap :: Monoid m => (a -> m) -> V1 a -> m # foldMap' :: Monoid m => (a -> m) -> V1 a -> m # foldr :: (a -> b -> b) -> b -> V1 a -> b # foldr' :: (a -> b -> b) -> b -> V1 a -> b # foldl :: (b -> a -> b) -> b -> V1 a -> b # foldl' :: (b -> a -> b) -> b -> V1 a -> b # foldr1 :: (a -> a -> a) -> V1 a -> a # foldl1 :: (a -> a -> a) -> V1 a -> a # elem :: Eq a => a -> V1 a -> Bool # maximum :: Ord a => V1 a -> a # | |
| Foldable ((,) a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (a, m) -> m # foldMap :: Monoid m => (a0 -> m) -> (a, a0) -> m # foldMap' :: Monoid m => (a0 -> m) -> (a, a0) -> m # foldr :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldr' :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldl :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldl' :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldr1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # foldl1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # elem :: Eq a0 => a0 -> (a, a0) -> Bool # maximum :: Ord a0 => (a, a0) -> a0 # minimum :: Ord a0 => (a, a0) -> a0 # | |
| Foldable (Const m :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Functor.Const Methods fold :: Monoid m0 => Const m m0 -> m0 # foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldMap' :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldr :: (a -> b -> b) -> b -> Const m a -> b # foldr' :: (a -> b -> b) -> b -> Const m a -> b # foldl :: (b -> a -> b) -> b -> Const m a -> b # foldl' :: (b -> a -> b) -> b -> Const m a -> b # foldr1 :: (a -> a -> a) -> Const m a -> a # foldl1 :: (a -> a -> a) -> Const m a -> a # elem :: Eq a => a -> Const m a -> Bool # maximum :: Ord a => Const m a -> a # minimum :: Ord a => Const m a -> a # | |
| Foldable f => Foldable (Ap f) | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Ap f m -> m # foldMap :: Monoid m => (a -> m) -> Ap f a -> m # foldMap' :: Monoid m => (a -> m) -> Ap f a -> m # foldr :: (a -> b -> b) -> b -> Ap f a -> b # foldr' :: (a -> b -> b) -> b -> Ap f a -> b # foldl :: (b -> a -> b) -> b -> Ap f a -> b # foldl' :: (b -> a -> b) -> b -> Ap f a -> b # foldr1 :: (a -> a -> a) -> Ap f a -> a # foldl1 :: (a -> a -> a) -> Ap f a -> a # elem :: Eq a => a -> Ap f a -> Bool # maximum :: Ord a => Ap f a -> a # | |
| Foldable f => Foldable (Alt f) | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Alt f m -> m # foldMap :: Monoid m => (a -> m) -> Alt f a -> m # foldMap' :: Monoid m => (a -> m) -> Alt f a -> m # foldr :: (a -> b -> b) -> b -> Alt f a -> b # foldr' :: (a -> b -> b) -> b -> Alt f a -> b # foldl :: (b -> a -> b) -> b -> Alt f a -> b # foldl' :: (b -> a -> b) -> b -> Alt f a -> b # foldr1 :: (a -> a -> a) -> Alt f a -> a # foldl1 :: (a -> a -> a) -> Alt f a -> a # elem :: Eq a => a -> Alt f a -> Bool # maximum :: Ord a => Alt f a -> a # minimum :: Ord a => Alt f a -> a # | |
| Foldable f => Foldable (Rec1 f) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Rec1 f m -> m # foldMap :: Monoid m => (a -> m) -> Rec1 f a -> m # foldMap' :: Monoid m => (a -> m) -> Rec1 f a -> m # foldr :: (a -> b -> b) -> b -> Rec1 f a -> b # foldr' :: (a -> b -> b) -> b -> Rec1 f a -> b # foldl :: (b -> a -> b) -> b -> Rec1 f a -> b # foldl' :: (b -> a -> b) -> b -> Rec1 f a -> b # foldr1 :: (a -> a -> a) -> Rec1 f a -> a # foldl1 :: (a -> a -> a) -> Rec1 f a -> a # elem :: Eq a => a -> Rec1 f a -> Bool # maximum :: Ord a => Rec1 f a -> a # minimum :: Ord a => Rec1 f a -> a # | |
| (Foldable f, Foldable g) => Foldable (Product f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product Methods fold :: Monoid m => Product f g m -> m # foldMap :: Monoid m => (a -> m) -> Product f g a -> m # foldMap' :: Monoid m => (a -> m) -> Product f g a -> m # foldr :: (a -> b -> b) -> b -> Product f g a -> b # foldr' :: (a -> b -> b) -> b -> Product f g a -> b # foldl :: (b -> a -> b) -> b -> Product f g a -> b # foldl' :: (b -> a -> b) -> b -> Product f g a -> b # foldr1 :: (a -> a -> a) -> Product f g a -> a # foldl1 :: (a -> a -> a) -> Product f g a -> a # toList :: Product f g a -> [a] # null :: Product f g a -> Bool # length :: Product f g a -> Int # elem :: Eq a => a -> Product f g a -> Bool # maximum :: Ord a => Product f g a -> a # minimum :: Ord a => Product f g a -> a # | |
| (Foldable f, Foldable g) => Foldable (Sum f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Sum Methods fold :: Monoid m => Sum f g m -> m # foldMap :: Monoid m => (a -> m) -> Sum f g a -> m # foldMap' :: Monoid m => (a -> m) -> Sum f g a -> m # foldr :: (a -> b -> b) -> b -> Sum f g a -> b # foldr' :: (a -> b -> b) -> b -> Sum f g a -> b # foldl :: (b -> a -> b) -> b -> Sum f g a -> b # foldl' :: (b -> a -> b) -> b -> Sum f g a -> b # foldr1 :: (a -> a -> a) -> Sum f g a -> a # foldl1 :: (a -> a -> a) -> Sum f g a -> a # elem :: Eq a => a -> Sum f g a -> Bool # maximum :: Ord a => Sum f g a -> a # minimum :: Ord a => Sum f g a -> a # | |
| (Foldable f, Foldable g) => Foldable (f :*: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :*: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :*: g) a -> m # foldMap' :: Monoid m => (a -> m) -> (f :*: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldr1 :: (a -> a -> a) -> (f :*: g) a -> a # foldl1 :: (a -> a -> a) -> (f :*: g) a -> a # toList :: (f :*: g) a -> [a] # length :: (f :*: g) a -> Int # elem :: Eq a => a -> (f :*: g) a -> Bool # maximum :: Ord a => (f :*: g) a -> a # minimum :: Ord a => (f :*: g) a -> a # | |
| (Foldable f, Foldable g) => Foldable (f :+: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :+: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :+: g) a -> m # foldMap' :: Monoid m => (a -> m) -> (f :+: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldr1 :: (a -> a -> a) -> (f :+: g) a -> a # foldl1 :: (a -> a -> a) -> (f :+: g) a -> a # toList :: (f :+: g) a -> [a] # length :: (f :+: g) a -> Int # elem :: Eq a => a -> (f :+: g) a -> Bool # maximum :: Ord a => (f :+: g) a -> a # minimum :: Ord a => (f :+: g) a -> a # | |
| Foldable (K1 i c :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => K1 i c m -> m # foldMap :: Monoid m => (a -> m) -> K1 i c a -> m # foldMap' :: Monoid m => (a -> m) -> K1 i c a -> m # foldr :: (a -> b -> b) -> b -> K1 i c a -> b # foldr' :: (a -> b -> b) -> b -> K1 i c a -> b # foldl :: (b -> a -> b) -> b -> K1 i c a -> b # foldl' :: (b -> a -> b) -> b -> K1 i c a -> b # foldr1 :: (a -> a -> a) -> K1 i c a -> a # foldl1 :: (a -> a -> a) -> K1 i c a -> a # elem :: Eq a => a -> K1 i c a -> Bool # maximum :: Ord a => K1 i c a -> a # minimum :: Ord a => K1 i c a -> a # | |
| (Foldable f, Foldable g) => Foldable (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose Methods fold :: Monoid m => Compose f g m -> m # foldMap :: Monoid m => (a -> m) -> Compose f g a -> m # foldMap' :: Monoid m => (a -> m) -> Compose f g a -> m # foldr :: (a -> b -> b) -> b -> Compose f g a -> b # foldr' :: (a -> b -> b) -> b -> Compose f g a -> b # foldl :: (b -> a -> b) -> b -> Compose f g a -> b # foldl' :: (b -> a -> b) -> b -> Compose f g a -> b # foldr1 :: (a -> a -> a) -> Compose f g a -> a # foldl1 :: (a -> a -> a) -> Compose f g a -> a # toList :: Compose f g a -> [a] # null :: Compose f g a -> Bool # length :: Compose f g a -> Int # elem :: Eq a => a -> Compose f g a -> Bool # maximum :: Ord a => Compose f g a -> a # minimum :: Ord a => Compose f g a -> a # | |
| (Foldable f, Foldable g) => Foldable (f :.: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :.: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :.: g) a -> m # foldMap' :: Monoid m => (a -> m) -> (f :.: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldr1 :: (a -> a -> a) -> (f :.: g) a -> a # foldl1 :: (a -> a -> a) -> (f :.: g) a -> a # toList :: (f :.: g) a -> [a] # length :: (f :.: g) a -> Int # elem :: Eq a => a -> (f :.: g) a -> Bool # maximum :: Ord a => (f :.: g) a -> a # minimum :: Ord a => (f :.: g) a -> a # | |
| Foldable f => Foldable (M1 i c f) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => M1 i c f m -> m # foldMap :: Monoid m => (a -> m) -> M1 i c f a -> m # foldMap' :: Monoid m => (a -> m) -> M1 i c f a -> m # foldr :: (a -> b -> b) -> b -> M1 i c f a -> b # foldr' :: (a -> b -> b) -> b -> M1 i c f a -> b # foldl :: (b -> a -> b) -> b -> M1 i c f a -> b # foldl' :: (b -> a -> b) -> b -> M1 i c f a -> b # foldr1 :: (a -> a -> a) -> M1 i c f a -> a # foldl1 :: (a -> a -> a) -> M1 i c f a -> a # elem :: Eq a => a -> M1 i c f a -> Bool # maximum :: Ord a => M1 i c f a -> a # minimum :: Ord a => M1 i c f a -> a # | |
class Num a => Fractional a #
Fractional numbers, supporting real division.
The Haskell Report defines no laws for Fractional. However, ( and
+)( are customarily expected to define a division ring and have the
following properties:*)
recipgives the multiplicative inversex * recip x=recip x * x=fromInteger 1- Totality of
toRational toRationalis total- Coherence with
toRational - if the type also implements
Real, thenfromRationalis a left inverse fortoRational, i.e.fromRational (toRational i) = i
Note that it isn't customarily expected that a type instance of
Fractional implement a field. However, all instances in base do.
Minimal complete definition
fromRational, (recip | (/))
Instances
| RealFloat a => Fractional (Complex a) | Since: base-2.1 |
| Fractional a => Fractional (Identity a) | Since: base-4.9.0.0 |
| Integral a => Fractional (Ratio a) | Since: base-2.0.1 |
| Fractional a => Fractional (Op a b) | |
| Fractional a => Fractional (Const a b) | Since: base-4.9.0.0 |
class Functor (f :: Type -> Type) #
A type f is a Functor if it provides a function fmap which, given any types a and b
lets you apply any function from (a -> b) to turn an f a into an f b, preserving the
structure of f. Furthermore f needs to adhere to the following:
Note, that the second law follows from the free theorem of the type fmap and
the first law, so you need only check that the former condition holds.
See https://www.schoolofhaskell.com/user/edwardk/snippets/fmap or
https://github.com/quchen/articles/blob/master/second_functor_law.md
for an explanation.
Minimal complete definition
Instances
| Functor ZipList | Since: base-2.1 |
| Functor Handler | Since: base-4.6.0.0 |
| Functor Complex | Since: base-4.9.0.0 |
| Functor Identity | Since: base-4.8.0.0 |
| Functor First | Since: base-4.8.0.0 |
| Functor Last | Since: base-4.8.0.0 |
| Functor First | Since: base-4.9.0.0 |
| Functor Last | Since: base-4.9.0.0 |
| Functor Max | Since: base-4.9.0.0 |
| Functor Min | Since: base-4.9.0.0 |
| Functor Dual | Since: base-4.8.0.0 |
| Functor Product | Since: base-4.8.0.0 |
| Functor Sum | Since: base-4.8.0.0 |
| Functor NonEmpty | Since: base-4.9.0.0 |
| Functor STM | Since: base-4.3.0.0 |
| Functor P | Since: base-4.8.0.0 |
Defined in Text.ParserCombinators.ReadP | |
| Functor ReadP | Since: base-2.1 |
| Functor ReadPrec | Since: base-2.1 |
| Functor IO | Since: base-2.1 |
| Functor Maybe | Since: base-2.1 |
| Functor Solo | Since: base-4.15 |
| Functor List | Since: base-2.1 |
| Monad m => Functor (WrappedMonad m) | Since: base-2.1 |
Defined in Control.Applicative Methods fmap :: (a -> b) -> WrappedMonad m a -> WrappedMonad m b # (<$) :: a -> WrappedMonad m b -> WrappedMonad m a # | |
| Functor (ST s) | Since: base-2.1 |
| Functor (Either a) | Since: base-3.0 |
| Functor (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
| Functor (Arg a) | Since: base-4.9.0.0 |
| Functor (ST s) | Since: base-2.1 |
| Functor ((,) a) | Since: base-2.1 |
| Arrow a => Functor (WrappedArrow a b) | Since: base-2.1 |
Defined in Control.Applicative Methods fmap :: (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 # (<$) :: a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 # | |
| Functor (Const m :: Type -> Type) | Since: base-2.1 |
| Functor f => Functor (Ap f) | Since: base-4.12.0.0 |
| Functor f => Functor (Alt f) | Since: base-4.8.0.0 |
| Functor ((,,) a b) | Since: base-4.14.0.0 |
| (Functor f, Functor g) => Functor (Product f g) | Since: base-4.9.0.0 |
| (Functor f, Functor g) => Functor (Sum f g) | Since: base-4.9.0.0 |
| Functor ((,,,) a b c) | Since: base-4.14.0.0 |
| Functor ((->) r) | Since: base-2.1 |
| (Functor f, Functor g) => Functor (Compose f g) | Since: base-4.9.0.0 |
| Functor ((,,,,) a b c d) | Since: base-4.18.0.0 |
| Functor ((,,,,,) a b c d e) | Since: base-4.18.0.0 |
| Functor ((,,,,,,) a b c d e f) | Since: base-4.18.0.0 |
class (Real a, Enum a) => Integral a #
Integral numbers, supporting integer division.
The Haskell Report defines no laws for Integral. However, Integral
instances are customarily expected to define a Euclidean domain and have the
following properties for the div/mod and quot/rem pairs, given
suitable Euclidean functions f and g:
x=y * quot x y + rem x ywithrem x y=fromInteger 0org (rem x y)<g yx=y * div x y + mod x ywithmod x y=fromInteger 0orf (mod x y)<f y
An example of a suitable Euclidean function, for Integer's instance, is
abs.
In addition, toInteger should be total, and fromInteger should be a left
inverse for it, i.e. fromInteger (toInteger i) = i.
Instances
| Integral IntPtr | |
Defined in Foreign.Ptr | |
| Integral WordPtr | |
Defined in Foreign.Ptr | |
| Integral Int16 | Since: base-2.1 |
| Integral Int32 | Since: base-2.1 |
| Integral Int64 | Since: base-2.1 |
| Integral Int8 | Since: base-2.1 |
| Integral Word16 | Since: base-2.1 |
| Integral Word32 | Since: base-2.1 |
| Integral Word64 | Since: base-2.1 |
| Integral Word8 | Since: base-2.1 |
| Integral Integer | Since: base-2.0.1 |
Defined in GHC.Real | |
| Integral Natural | Since: base-4.8.0.0 |
Defined in GHC.Real | |
| Integral Int | Since: base-2.0.1 |
| Integral Word | Since: base-2.1 |
| Integral a => Integral (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Identity Methods quot :: Identity a -> Identity a -> Identity a # rem :: Identity a -> Identity a -> Identity a # div :: Identity a -> Identity a -> Identity a # mod :: Identity a -> Identity a -> Identity a # quotRem :: Identity a -> Identity a -> (Identity a, Identity a) # divMod :: Identity a -> Identity a -> (Identity a, Identity a) # | |
| Integral a => Integral (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods quot :: Const a b -> Const a b -> Const a b # rem :: Const a b -> Const a b -> Const a b # div :: Const a b -> Const a b -> Const a b # mod :: Const a b -> Const a b -> Const a b # quotRem :: Const a b -> Const a b -> (Const a b, Const a b) # divMod :: Const a b -> Const a b -> (Const a b, Const a b) # | |
class Applicative m => Monad (m :: Type -> Type) #
The Monad class defines the basic operations over a monad,
a concept from a branch of mathematics known as category theory.
From the perspective of a Haskell programmer, however, it is best to
think of a monad as an abstract datatype of actions.
Haskell's do expressions provide a convenient syntax for writing
monadic expressions.
Instances of Monad should satisfy the following:
- Left identity
returna>>=k = k a- Right identity
m>>=return= m- Associativity
m>>=(\x -> k x>>=h) = (m>>=k)>>=h
Furthermore, the Monad and Applicative operations should relate as follows:
The above laws imply:
and that pure and (<*>) satisfy the applicative functor laws.
The instances of Monad for lists, Maybe and IO
defined in the Prelude satisfy these laws.
Minimal complete definition
Instances
| Monad Complex | Since: base-4.9.0.0 |
| Monad Identity | Since: base-4.8.0.0 |
| Monad First | Since: base-4.8.0.0 |
| Monad Last | Since: base-4.8.0.0 |
| Monad First | Since: base-4.9.0.0 |
| Monad Last | Since: base-4.9.0.0 |
| Monad Max | Since: base-4.9.0.0 |
| Monad Min | Since: base-4.9.0.0 |
| Monad Dual | Since: base-4.8.0.0 |
| Monad Product | Since: base-4.8.0.0 |
| Monad Sum | Since: base-4.8.0.0 |
| Monad NonEmpty | Since: base-4.9.0.0 |
| Monad STM | Since: base-4.3.0.0 |
| Monad P | Since: base-2.1 |
| Monad ReadP | Since: base-2.1 |
| Monad ReadPrec | Since: base-2.1 |
| Monad IO | Since: base-2.1 |
| Monad Maybe | Since: base-2.1 |
| Monad Solo | Since: base-4.15 |
| Monad List | Since: base-2.1 |
| Monad m => Monad (WrappedMonad m) | Since: base-4.7.0.0 |
Defined in Control.Applicative Methods (>>=) :: WrappedMonad m a -> (a -> WrappedMonad m b) -> WrappedMonad m b # (>>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b # return :: a -> WrappedMonad m a # | |
| Monad (ST s) | Since: base-2.1 |
| Monad (Either e) | Since: base-4.4.0.0 |
| Monad (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
| Monad (ST s) | Since: base-2.1 |
| Monoid a => Monad ((,) a) | Since: base-4.9.0.0 |
| Monad f => Monad (Ap f) | Since: base-4.12.0.0 |
| Monad f => Monad (Alt f) | Since: base-4.8.0.0 |
| (Monoid a, Monoid b) => Monad ((,,) a b) | Since: base-4.14.0.0 |
| (Monad f, Monad g) => Monad (Product f g) | Since: base-4.9.0.0 |
| (Monoid a, Monoid b, Monoid c) => Monad ((,,,) a b c) | Since: base-4.14.0.0 |
| Monad ((->) r) | Since: base-2.1 |
class Monad m => MonadFail (m :: Type -> Type) #
When a value is bound in do-notation, the pattern on the left
hand side of <- might not match. In this case, this class
provides a function to recover.
A Monad without a MonadFail instance may only be used in conjunction
with pattern that always match, such as newtypes, tuples, data types with
only a single data constructor, and irrefutable patterns (~pat).
Instances of MonadFail should satisfy the following law: fail s should
be a left zero for >>=,
fail s >>= f = fail s
If your Monad is also MonadPlus, a popular definition is
fail _ = mzero
fail s should be an action that runs in the monad itself, not an
exception (except in instances of MonadIO). In particular,
fail should not be implemented in terms of error.
Since: base-4.9.0.0
Minimal complete definition
Instances
| MonadFail P | Since: base-4.9.0.0 |
Defined in Text.ParserCombinators.ReadP | |
| MonadFail ReadP | Since: base-4.9.0.0 |
Defined in Text.ParserCombinators.ReadP | |
| MonadFail ReadPrec | Since: base-4.9.0.0 |
Defined in Text.ParserCombinators.ReadPrec | |
| MonadFail IO | Since: base-4.9.0.0 |
Defined in Control.Monad.Fail | |
| MonadFail Maybe | Since: base-4.9.0.0 |
Defined in Control.Monad.Fail | |
| MonadFail List | Since: base-4.9.0.0 |
Defined in Control.Monad.Fail | |
| MonadFail f => MonadFail (Ap f) | Since: base-4.12.0.0 |
Defined in Data.Monoid | |
class Semigroup a => Monoid a #
The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following:
- Right identity
x<>mempty= x- Left identity
mempty<>x = x- Associativity
x(<>(y<>z) = (x<>y)<>zSemigrouplaw)- Concatenation
mconcat=foldr(<>)mempty
You can alternatively define mconcat instead of mempty, in which case the
laws are:
- Unit
mconcat(purex) = x- Multiplication
mconcat(joinxss) =mconcat(fmapmconcatxss)- Subclass
mconcat(toListxs) =sconcatxs
The method names refer to the monoid of lists under concatenation, but there are many other instances.
Some types can be viewed as a monoid in more than one way,
e.g. both addition and multiplication on numbers.
In such cases we often define newtypes and make those instances
of Monoid, e.g. Sum and Product.
NOTE: Semigroup is a superclass of Monoid since base-4.11.0.0.
Instances
| Monoid All | Since: base-2.1 |
| Monoid Any | Since: base-2.1 |
| Monoid Ordering | Since: base-2.1 |
| Monoid () | Since: base-2.1 |
| FiniteBits a => Monoid (And a) | This constraint is arguably too strong. However,
as some types (such as Since: base-4.16 |
| FiniteBits a => Monoid (Iff a) | This constraint is arguably
too strong. However, as some types (such as Since: base-4.16 |
| Bits a => Monoid (Ior a) | Since: base-4.16 |
| Bits a => Monoid (Xor a) | Since: base-4.16 |
| Monoid (Comparison a) |
mempty :: Comparison a mempty = Comparison _ _ -> EQ |
Defined in Data.Functor.Contravariant Methods mempty :: Comparison a # mappend :: Comparison a -> Comparison a -> Comparison a # mconcat :: [Comparison a] -> Comparison a # | |
| Monoid (Equivalence a) |
mempty :: Equivalence a mempty = Equivalence _ _ -> True |
Defined in Data.Functor.Contravariant Methods mempty :: Equivalence a # mappend :: Equivalence a -> Equivalence a -> Equivalence a # mconcat :: [Equivalence a] -> Equivalence a # | |
| Monoid (Predicate a) |
mempty :: Predicate a mempty = _ -> True |
| Monoid a => Monoid (Identity a) | Since: base-4.9.0.0 |
| Monoid (First a) | Since: base-2.1 |
| Monoid (Last a) | Since: base-2.1 |
| (Ord a, Bounded a) => Monoid (Max a) | Since: base-4.9.0.0 |
| (Ord a, Bounded a) => Monoid (Min a) | Since: base-4.9.0.0 |
| Monoid m => Monoid (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods mempty :: WrappedMonoid m # mappend :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # mconcat :: [WrappedMonoid m] -> WrappedMonoid m # | |
| Monoid a => Monoid (Dual a) | Since: base-2.1 |
| Monoid (Endo a) | Since: base-2.1 |
| Num a => Monoid (Product a) | Since: base-2.1 |
| Num a => Monoid (Sum a) | Since: base-2.1 |
| Monoid a => Monoid (STM a) | Since: base-4.17.0.0 |
| Monoid a => Monoid (IO a) | Since: base-4.9.0.0 |
| Semigroup a => Monoid (Maybe a) | Lift a semigroup into Since 4.11.0: constraint on inner Since: base-2.1 |
| Monoid a => Monoid (a) | Since: base-4.15 |
| Monoid [a] | Since: base-2.1 |
| Monoid a => Monoid (Op a b) |
mempty :: Op a b mempty = Op _ -> mempty |
| Monoid (Proxy s) | Since: base-4.7.0.0 |
| Monoid a => Monoid (ST s a) | Since: base-4.11.0.0 |
| (Monoid a, Monoid b) => Monoid (a, b) | Since: base-2.1 |
| Monoid b => Monoid (a -> b) | Since: base-2.1 |
| Monoid a => Monoid (Const a b) | Since: base-4.9.0.0 |
| (Applicative f, Monoid a) => Monoid (Ap f a) | Since: base-4.12.0.0 |
| Alternative f => Monoid (Alt f a) | Since: base-4.8.0.0 |
| (Monoid a, Monoid b, Monoid c) => Monoid (a, b, c) | Since: base-2.1 |
| (Monoid (f a), Monoid (g a)) => Monoid (Product f g a) | Since: base-4.16.0.0 |
| (Monoid a, Monoid b, Monoid c, Monoid d) => Monoid (a, b, c, d) | Since: base-2.1 |
| Monoid (f (g a)) => Monoid (Compose f g a) | Since: base-4.16.0.0 |
| (Monoid a, Monoid b, Monoid c, Monoid d, Monoid e) => Monoid (a, b, c, d, e) | Since: base-2.1 |
Basic numeric class.
The Haskell Report defines no laws for Num. However, ( and +)( are
customarily expected to define a ring and have the following properties:*)
- Associativity of
(+) (x + y) + z=x + (y + z)- Commutativity of
(+) x + y=y + xis the additive identityfromInteger0x + fromInteger 0=xnegategives the additive inversex + negate x=fromInteger 0- Associativity of
(*) (x * y) * z=x * (y * z)is the multiplicative identityfromInteger1x * fromInteger 1=xandfromInteger 1 * x=x- Distributivity of
(with respect to*)(+) a * (b + c)=(a * b) + (a * c)and(b + c) * a=(b * a) + (c * a)- Coherence with
toInteger - if the type also implements
Integral, thenfromIntegeris a left inverse fortoInteger, i.e.fromInteger (toInteger i) == i
Note that it isn't customarily expected that a type instance of both Num
and Ord implement an ordered ring. Indeed, in base only Integer and
Rational do.
Methods
fromInteger :: Integer -> a #
Conversion from an Integer.
An integer literal represents the application of the function
fromInteger to the appropriate value of type Integer,
so such literals have type (.Num a) => a
Instances
| Num IntPtr | |
| Num WordPtr | |
| Num Int16 | Since: base-2.1 |
| Num Int32 | Since: base-2.1 |
| Num Int64 | Since: base-2.1 |
| Num Int8 | Since: base-2.1 |
| Num Word16 | Since: base-2.1 |
| Num Word32 | Since: base-2.1 |
| Num Word64 | Since: base-2.1 |
| Num Word8 | Since: base-2.1 |
| Num Integer | Since: base-2.1 |
| Num Natural | Note that Since: base-4.8.0.0 |
| Num Int | Since: base-2.1 |
| Num Word | Since: base-2.1 |
| RealFloat a => Num (Complex a) | Since: base-2.1 |
| Num a => Num (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Identity | |
| Num a => Num (Max a) | Since: base-4.9.0.0 |
| Num a => Num (Min a) | Since: base-4.9.0.0 |
| Num a => Num (Product a) | Since: base-4.7.0.0 |
Defined in Data.Semigroup.Internal | |
| Num a => Num (Sum a) | Since: base-4.7.0.0 |
| Integral a => Num (Ratio a) | Since: base-2.0.1 |
| Num a => Num (Op a b) | |
| Num a => Num (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
| (Applicative f, Num a) => Num (Ap f a) | Note that even if the underlying Commutativity:
Additive inverse:
Distributivity:
Since: base-4.12.0.0 |
| Num (f a) => Num (Alt f a) | Since: base-4.8.0.0 |
The Ord class is used for totally ordered datatypes.
Instances of Ord can be derived for any user-defined datatype whose
constituent types are in Ord. The declared order of the constructors in
the data declaration determines the ordering in derived Ord instances. The
Ordering datatype allows a single comparison to determine the precise
ordering of two objects.
Ord, as defined by the Haskell report, implements a total order and has the
following properties:
- Comparability
x <= y || y <= x=True- Transitivity
- if
x <= y && y <= z=True, thenx <= z=True - Reflexivity
x <= x=True- Antisymmetry
- if
x <= y && y <= x=True, thenx == y=True
The following operator interactions are expected to hold:
x >= y=y <= xx < y=x <= y && x /= yx > y=y < xx < y=compare x y == LTx > y=compare x y == GTx == y=compare x y == EQmin x y == if x <= y then x else y=Truemax x y == if x >= y then x else y=True
Note that (7.) and (8.) do not require min and max to return either of
their arguments. The result is merely required to equal one of the
arguments in terms of (==).
Minimal complete definition: either compare or <=.
Using compare can be more efficient for complex types.
Instances
| Ord All | Since: base-2.1 |
| Ord Any | Since: base-2.1 |
| Ord SomeTypeRep | |
Defined in Data.Typeable.Internal Methods compare :: SomeTypeRep -> SomeTypeRep -> Ordering # (<) :: SomeTypeRep -> SomeTypeRep -> Bool # (<=) :: SomeTypeRep -> SomeTypeRep -> Bool # (>) :: SomeTypeRep -> SomeTypeRep -> Bool # (>=) :: SomeTypeRep -> SomeTypeRep -> Bool # max :: SomeTypeRep -> SomeTypeRep -> SomeTypeRep # min :: SomeTypeRep -> SomeTypeRep -> SomeTypeRep # | |
| Ord Version | Since: base-2.1 |
| Ord IntPtr | |
| Ord WordPtr | |
| Ord Void | Since: base-4.8.0.0 |
| Ord BlockReason | Since: base-4.3.0.0 |
Defined in GHC.Conc.Sync Methods compare :: BlockReason -> BlockReason -> Ordering # (<) :: BlockReason -> BlockReason -> Bool # (<=) :: BlockReason -> BlockReason -> Bool # (>) :: BlockReason -> BlockReason -> Bool # (>=) :: BlockReason -> BlockReason -> Bool # max :: BlockReason -> BlockReason -> BlockReason # min :: BlockReason -> BlockReason -> BlockReason # | |
| Ord ThreadId | Since: base-4.2.0.0 |
Defined in GHC.Conc.Sync | |
| Ord ThreadStatus | Since: base-4.3.0.0 |
Defined in GHC.Conc.Sync Methods compare :: ThreadStatus -> ThreadStatus -> Ordering # (<) :: ThreadStatus -> ThreadStatus -> Bool # (<=) :: ThreadStatus -> ThreadStatus -> Bool # (>) :: ThreadStatus -> ThreadStatus -> Bool # (>=) :: ThreadStatus -> ThreadStatus -> Bool # max :: ThreadStatus -> ThreadStatus -> ThreadStatus # min :: ThreadStatus -> ThreadStatus -> ThreadStatus # | |
| Ord ErrorCall | Since: base-4.7.0.0 |
| Ord ArithException | Since: base-3.0 |
Defined in GHC.Exception.Type Methods compare :: ArithException -> ArithException -> Ordering # (<) :: ArithException -> ArithException -> Bool # (<=) :: ArithException -> ArithException -> Bool # (>) :: ArithException -> ArithException -> Bool # (>=) :: ArithException -> ArithException -> Bool # max :: ArithException -> ArithException -> ArithException # min :: ArithException -> ArithException -> ArithException # | |
| Ord Fingerprint | Since: base-4.4.0.0 |
Defined in GHC.Fingerprint.Type Methods compare :: Fingerprint -> Fingerprint -> Ordering # (<) :: Fingerprint -> Fingerprint -> Bool # (<=) :: Fingerprint -> Fingerprint -> Bool # (>) :: Fingerprint -> Fingerprint -> Bool # (>=) :: Fingerprint -> Fingerprint -> Bool # max :: Fingerprint -> Fingerprint -> Fingerprint # min :: Fingerprint -> Fingerprint -> Fingerprint # | |
| Ord SeekMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Device | |
| Ord ArrayException | Since: base-4.2.0.0 |
Defined in GHC.IO.Exception Methods compare :: ArrayException -> ArrayException -> Ordering # (<) :: ArrayException -> ArrayException -> Bool # (<=) :: ArrayException -> ArrayException -> Bool # (>) :: ArrayException -> ArrayException -> Bool # (>=) :: ArrayException -> ArrayException -> Bool # max :: ArrayException -> ArrayException -> ArrayException # min :: ArrayException -> ArrayException -> ArrayException # | |
| Ord AsyncException | Since: base-4.2.0.0 |
Defined in GHC.IO.Exception Methods compare :: AsyncException -> AsyncException -> Ordering # (<) :: AsyncException -> AsyncException -> Bool # (<=) :: AsyncException -> AsyncException -> Bool # (>) :: AsyncException -> AsyncException -> Bool # (>=) :: AsyncException -> AsyncException -> Bool # max :: AsyncException -> AsyncException -> AsyncException # min :: AsyncException -> AsyncException -> AsyncException # | |
| Ord ExitCode | |
Defined in GHC.IO.Exception | |
| Ord BufferMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types Methods compare :: BufferMode -> BufferMode -> Ordering # (<) :: BufferMode -> BufferMode -> Bool # (<=) :: BufferMode -> BufferMode -> Bool # (>) :: BufferMode -> BufferMode -> Bool # (>=) :: BufferMode -> BufferMode -> Bool # max :: BufferMode -> BufferMode -> BufferMode # min :: BufferMode -> BufferMode -> BufferMode # | |
| Ord Newline | Since: base-4.3.0.0 |
| Ord NewlineMode | Since: base-4.3.0.0 |
Defined in GHC.IO.Handle.Types Methods compare :: NewlineMode -> NewlineMode -> Ordering # (<) :: NewlineMode -> NewlineMode -> Bool # (<=) :: NewlineMode -> NewlineMode -> Bool # (>) :: NewlineMode -> NewlineMode -> Bool # (>=) :: NewlineMode -> NewlineMode -> Bool # max :: NewlineMode -> NewlineMode -> NewlineMode # min :: NewlineMode -> NewlineMode -> NewlineMode # | |
| Ord IOMode | Since: base-4.2.0.0 |
| Ord Int16 | Since: base-2.1 |
| Ord Int32 | Since: base-2.1 |
| Ord Int64 | Since: base-2.1 |
| Ord Int8 | Since: base-2.1 |
| Ord Word16 | Since: base-2.1 |
| Ord Word32 | Since: base-2.1 |
| Ord Word64 | Since: base-2.1 |
| Ord Word8 | Since: base-2.1 |
| Ord Ordering | |
Defined in GHC.Classes | |
| Ord TyCon | |
| Ord Integer | |
| Ord Natural | |
| Ord () | |
| Ord Bool | |
| Ord Char | |
| Ord Double | Note that due to the presence of
Also note that, due to the same,
|
| Ord Float | Note that due to the presence of
Also note that, due to the same,
|
| Ord Int | |
| Ord Word | |
| Ord a => Ord (ZipList a) | Since: base-4.7.0.0 |
| Ord a => Ord (Identity a) | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity | |
| Ord a => Ord (First a) | Since: base-2.1 |
| Ord a => Ord (Last a) | Since: base-2.1 |
| Ord a => Ord (First a) | Since: base-4.9.0.0 |
| Ord a => Ord (Last a) | Since: base-4.9.0.0 |
| Ord a => Ord (Max a) | Since: base-4.9.0.0 |
| Ord a => Ord (Min a) | Since: base-4.9.0.0 |
| Ord m => Ord (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods compare :: WrappedMonoid m -> WrappedMonoid m -> Ordering # (<) :: WrappedMonoid m -> WrappedMonoid m -> Bool # (<=) :: WrappedMonoid m -> WrappedMonoid m -> Bool # (>) :: WrappedMonoid m -> WrappedMonoid m -> Bool # (>=) :: WrappedMonoid m -> WrappedMonoid m -> Bool # max :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # min :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # | |
| Ord a => Ord (Dual a) | Since: base-2.1 |
| Ord a => Ord (Product a) | Since: base-2.1 |
| Ord a => Ord (Sum a) | Since: base-2.1 |
| Ord a => Ord (NonEmpty a) | Since: base-4.9.0.0 |
| Ord (ForeignPtr a) | Since: base-2.1 |
Defined in GHC.ForeignPtr Methods compare :: ForeignPtr a -> ForeignPtr a -> Ordering # (<) :: ForeignPtr a -> ForeignPtr a -> Bool # (<=) :: ForeignPtr a -> ForeignPtr a -> Bool # (>) :: ForeignPtr a -> ForeignPtr a -> Bool # (>=) :: ForeignPtr a -> ForeignPtr a -> Bool # max :: ForeignPtr a -> ForeignPtr a -> ForeignPtr a # min :: ForeignPtr a -> ForeignPtr a -> ForeignPtr a # | |
| Ord (FunPtr a) | |
Defined in GHC.Ptr | |
| Ord (Ptr a) | Since: base-2.1 |
| Integral a => Ord (Ratio a) | Since: base-2.0.1 |
| Ord a => Ord (Maybe a) | Since: base-2.1 |
| Ord a => Ord (a) | |
| Ord a => Ord [a] | |
| (Ord a, Ord b) => Ord (Either a b) | Since: base-2.1 |
| Ord (Proxy s) | Since: base-4.7.0.0 |
| Ord a => Ord (Arg a b) | Since: base-4.9.0.0 |
| Ord (TypeRep a) | Since: base-4.4.0.0 |
| (Ord a, Ord b) => Ord (a, b) | |
| Ord a => Ord (Const a b) | Since: base-4.9.0.0 |
| Ord (f a) => Ord (Ap f a) | Since: base-4.12.0.0 |
| Ord (f a) => Ord (Alt f a) | Since: base-4.8.0.0 |
Defined in Data.Semigroup.Internal | |
| Ord (Coercion a b) | Since: base-4.7.0.0 |
Defined in Data.Type.Coercion | |
| Ord (a :~: b) | Since: base-4.7.0.0 |
Defined in Data.Type.Equality | |
| (Ord a, Ord b, Ord c) => Ord (a, b, c) | |
| (Ord (f a), Ord (g a)) => Ord (Product f g a) | Since: base-4.18.0.0 |
Defined in Data.Functor.Product Methods compare :: Product f g a -> Product f g a -> Ordering # (<) :: Product f g a -> Product f g a -> Bool # (<=) :: Product f g a -> Product f g a -> Bool # (>) :: Product f g a -> Product f g a -> Bool # (>=) :: Product f g a -> Product f g a -> Bool # | |
| (Ord (f a), Ord (g a)) => Ord (Sum f g a) | Since: base-4.18.0.0 |
| Ord (a :~~: b) | Since: base-4.10.0.0 |
| (Ord a, Ord b, Ord c, Ord d) => Ord (a, b, c, d) | |
Defined in GHC.Classes | |
| Ord (f (g a)) => Ord (Compose f g a) | Since: base-4.18.0.0 |
Defined in Data.Functor.Compose Methods compare :: Compose f g a -> Compose f g a -> Ordering # (<) :: Compose f g a -> Compose f g a -> Bool # (<=) :: Compose f g a -> Compose f g a -> Bool # (>) :: Compose f g a -> Compose f g a -> Bool # (>=) :: Compose f g a -> Compose f g a -> Bool # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e) => Ord (a, b, c, d, e) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e) -> (a, b, c, d, e) -> Ordering # (<) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # (<=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # (>) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # (>=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # max :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) # min :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f) => Ord (a, b, c, d, e, f) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Ordering # (<) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # (<=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # (>) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # (>=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # max :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) # min :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g) => Ord (a, b, c, d, e, f, g) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Ordering # (<) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # (<=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # (>) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # (>=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # max :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) # min :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h) => Ord (a, b, c, d, e, f, g, h) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Ordering # (<) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # (<=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # (>) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # (>=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # max :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) # min :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i) => Ord (a, b, c, d, e, f, g, h, i) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # max :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) # min :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j) => Ord (a, b, c, d, e, f, g, h, i, j) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) # min :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k) => Ord (a, b, c, d, e, f, g, h, i, j, k) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) # min :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l) => Ord (a, b, c, d, e, f, g, h, i, j, k, l) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) # min :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) # min :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) # min :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n, Ord o) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) # min :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) # | |
Parsing of Strings, producing values.
Derived instances of Read make the following assumptions, which
derived instances of Show obey:
- If the constructor is defined to be an infix operator, then the
derived
Readinstance will parse only infix applications of the constructor (not the prefix form). - Associativity is not used to reduce the occurrence of parentheses, although precedence may be.
- If the constructor is defined using record syntax, the derived
Readwill parse only the record-syntax form, and furthermore, the fields must be given in the same order as the original declaration. - The derived
Readinstance allows arbitrary Haskell whitespace between tokens of the input string. Extra parentheses are also allowed.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Read in Haskell 2010 is equivalent to
instance (Read a) => Read (Tree a) where
readsPrec d r = readParen (d > app_prec)
(\r -> [(Leaf m,t) |
("Leaf",s) <- lex r,
(m,t) <- readsPrec (app_prec+1) s]) r
++ readParen (d > up_prec)
(\r -> [(u:^:v,w) |
(u,s) <- readsPrec (up_prec+1) r,
(":^:",t) <- lex s,
(v,w) <- readsPrec (up_prec+1) t]) r
where app_prec = 10
up_prec = 5Note that right-associativity of :^: is unused.
The derived instance in GHC is equivalent to
instance (Read a) => Read (Tree a) where
readPrec = parens $ (prec app_prec $ do
Ident "Leaf" <- lexP
m <- step readPrec
return (Leaf m))
+++ (prec up_prec $ do
u <- step readPrec
Symbol ":^:" <- lexP
v <- step readPrec
return (u :^: v))
where app_prec = 10
up_prec = 5
readListPrec = readListPrecDefaultWhy do both readsPrec and readPrec exist, and why does GHC opt to
implement readPrec in derived Read instances instead of readsPrec?
The reason is that readsPrec is based on the ReadS type, and although
ReadS is mentioned in the Haskell 2010 Report, it is not a very efficient
parser data structure.
readPrec, on the other hand, is based on a much more efficient ReadPrec
datatype (a.k.a "new-style parsers"), but its definition relies on the use
of the RankNTypes language extension. Therefore, readPrec (and its
cousin, readListPrec) are marked as GHC-only. Nevertheless, it is
recommended to use readPrec instead of readsPrec whenever possible
for the efficiency improvements it brings.
As mentioned above, derived Read instances in GHC will implement
readPrec instead of readsPrec. The default implementations of
readsPrec (and its cousin, readList) will simply use readPrec under
the hood. If you are writing a Read instance by hand, it is recommended
to write it like so:
instanceReadT wherereadPrec= ...readListPrec=readListPrecDefault
Instances
| Read All | Since: base-2.1 |
| Read Any | Since: base-2.1 |
| Read Version | Since: base-2.1 |
| Read IntPtr | |
| Read WordPtr | |
| Read Void | Reading a Since: base-4.8.0.0 |
| Read SeekMode | Since: base-4.2.0.0 |
| Read ExitCode | |
| Read BufferMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types Methods readsPrec :: Int -> ReadS BufferMode # readList :: ReadS [BufferMode] # readPrec :: ReadPrec BufferMode # readListPrec :: ReadPrec [BufferMode] # | |
| Read Newline | Since: base-4.3.0.0 |
| Read NewlineMode | Since: base-4.3.0.0 |
Defined in GHC.IO.Handle.Types Methods readsPrec :: Int -> ReadS NewlineMode # readList :: ReadS [NewlineMode] # readPrec :: ReadPrec NewlineMode # readListPrec :: ReadPrec [NewlineMode] # | |
| Read IOMode | Since: base-4.2.0.0 |
| Read Int16 | Since: base-2.1 |
| Read Int32 | Since: base-2.1 |
| Read Int64 | Since: base-2.1 |
| Read Int8 | Since: base-2.1 |
| Read GeneralCategory | Since: base-2.1 |
Defined in GHC.Read Methods readsPrec :: Int -> ReadS GeneralCategory # readList :: ReadS [GeneralCategory] # | |
| Read Word16 | Since: base-2.1 |
| Read Word32 | Since: base-2.1 |
| Read Word64 | Since: base-2.1 |
| Read Word8 | Since: base-2.1 |
| Read Lexeme | Since: base-2.1 |
| Read Ordering | Since: base-2.1 |
| Read Integer | Since: base-2.1 |
| Read Natural | Since: base-4.8.0.0 |
| Read () | Since: base-2.1 |
| Read Bool | Since: base-2.1 |
| Read Char | Since: base-2.1 |
| Read Double | Since: base-2.1 |
| Read Float | Since: base-2.1 |
| Read Int | Since: base-2.1 |
| Read Word | Since: base-4.5.0.0 |
| Read a => Read (ZipList a) | Since: base-4.7.0.0 |
| Read a => Read (And a) | Since: base-4.16 |
| Read a => Read (Iff a) | Since: base-4.16 |
| Read a => Read (Ior a) | Since: base-4.16 |
| Read a => Read (Xor a) | Since: base-4.16 |
| Read a => Read (Complex a) | Since: base-2.1 |
| Read a => Read (Identity a) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
| Read a => Read (First a) | Since: base-2.1 |
| Read a => Read (Last a) | Since: base-2.1 |
| Read a => Read (First a) | Since: base-4.9.0.0 |
| Read a => Read (Last a) | Since: base-4.9.0.0 |
| Read a => Read (Max a) | Since: base-4.9.0.0 |
| Read a => Read (Min a) | Since: base-4.9.0.0 |
| Read m => Read (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods readsPrec :: Int -> ReadS (WrappedMonoid m) # readList :: ReadS [WrappedMonoid m] # readPrec :: ReadPrec (WrappedMonoid m) # readListPrec :: ReadPrec [WrappedMonoid m] # | |
| Read a => Read (Dual a) | Since: base-2.1 |
| Read a => Read (Product a) | Since: base-2.1 |
| Read a => Read (Sum a) | Since: base-2.1 |
| Read a => Read (NonEmpty a) | Since: base-4.11.0.0 |
| (Integral a, Read a) => Read (Ratio a) | Since: base-2.1 |
| Read a => Read (Maybe a) | Since: base-2.1 |
| Read a => Read (a) | Since: base-4.15 |
| Read a => Read [a] | Since: base-2.1 |
| (Read a, Read b) => Read (Either a b) | Since: base-3.0 |
| Read (Proxy t) | Since: base-4.7.0.0 |
| (Read a, Read b) => Read (Arg a b) | Since: base-4.9.0.0 |
| (Ix a, Read a, Read b) => Read (Array a b) | Since: base-2.1 |
| (Read a, Read b) => Read (a, b) | Since: base-2.1 |
| Read a => Read (Const a b) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
| Read (f a) => Read (Ap f a) | Since: base-4.12.0.0 |
| Read (f a) => Read (Alt f a) | Since: base-4.8.0.0 |
| Coercible a b => Read (Coercion a b) | Since: base-4.7.0.0 |
| a ~ b => Read (a :~: b) | Since: base-4.7.0.0 |
| (Read a, Read b, Read c) => Read (a, b, c) | Since: base-2.1 |
| (Read (f a), Read (g a)) => Read (Product f g a) | Since: base-4.18.0.0 |
| (Read (f a), Read (g a)) => Read (Sum f g a) | Since: base-4.18.0.0 |
| a ~~ b => Read (a :~~: b) | Since: base-4.10.0.0 |
| (Read a, Read b, Read c, Read d) => Read (a, b, c, d) | Since: base-2.1 |
| Read (f (g a)) => Read (Compose f g a) | Since: base-4.18.0.0 |
| (Read a, Read b, Read c, Read d, Read e) => Read (a, b, c, d, e) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f) => Read (a, b, c, d, e, f) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g) => Read (a, b, c, d, e, f, g) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h) => Read (a, b, c, d, e, f, g, h) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i) => Read (a, b, c, d, e, f, g, h, i) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j) => Read (a, b, c, d, e, f, g, h, i, j) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k) => Read (a, b, c, d, e, f, g, h, i, j, k) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l) => Read (a, b, c, d, e, f, g, h, i, j, k, l) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n, Read o) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | Since: base-2.1 |
Defined in GHC.Read | |
class (Num a, Ord a) => Real a #
Real numbers.
The Haskell report defines no laws for Real, however Real instances
are customarily expected to adhere to the following law:
- Coherence with
fromRational - if the type also implements
Fractional, thenfromRationalis a left inverse fortoRational, i.e.fromRational (toRational i) = i
Minimal complete definition
Instances
| Real IntPtr | |
Defined in Foreign.Ptr Methods toRational :: IntPtr -> Rational # | |
| Real WordPtr | |
Defined in Foreign.Ptr Methods toRational :: WordPtr -> Rational # | |
| Real Int16 | Since: base-2.1 |
Defined in GHC.Int Methods toRational :: Int16 -> Rational # | |
| Real Int32 | Since: base-2.1 |
Defined in GHC.Int Methods toRational :: Int32 -> Rational # | |
| Real Int64 | Since: base-2.1 |
Defined in GHC.Int Methods toRational :: Int64 -> Rational # | |
| Real Int8 | Since: base-2.1 |
Defined in GHC.Int Methods toRational :: Int8 -> Rational # | |
| Real Word16 | Since: base-2.1 |
Defined in GHC.Word Methods toRational :: Word16 -> Rational # | |
| Real Word32 | Since: base-2.1 |
Defined in GHC.Word Methods toRational :: Word32 -> Rational # | |
| Real Word64 | Since: base-2.1 |
Defined in GHC.Word Methods toRational :: Word64 -> Rational # | |
| Real Word8 | Since: base-2.1 |
Defined in GHC.Word Methods toRational :: Word8 -> Rational # | |
| Real Integer | Since: base-2.0.1 |
Defined in GHC.Real Methods toRational :: Integer -> Rational # | |
| Real Natural | Since: base-4.8.0.0 |
Defined in GHC.Real Methods toRational :: Natural -> Rational # | |
| Real Int | Since: base-2.0.1 |
Defined in GHC.Real Methods toRational :: Int -> Rational # | |
| Real Word | Since: base-2.1 |
Defined in GHC.Real Methods toRational :: Word -> Rational # | |
| Real a => Real (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Identity Methods toRational :: Identity a -> Rational # | |
| Integral a => Real (Ratio a) | Since: base-2.0.1 |
Defined in GHC.Real Methods toRational :: Ratio a -> Rational # | |
| Real a => Real (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods toRational :: Const a b -> Rational # | |
class (RealFrac a, Floating a) => RealFloat a #
Efficient, machine-independent access to the components of a floating-point number.
Minimal complete definition
floatRadix, floatDigits, floatRange, decodeFloat, encodeFloat, isNaN, isInfinite, isDenormalized, isNegativeZero, isIEEE
Instances
class (Real a, Fractional a) => RealFrac a #
Extracting components of fractions.
Minimal complete definition
The class of semigroups (types with an associative binary operation).
Instances should satisfy the following:
You can alternatively define sconcat instead of (<>), in which case the
laws are:
Since: base-4.9.0.0
Instances
| Semigroup All | Since: base-4.9.0.0 |
| Semigroup Any | Since: base-4.9.0.0 |
| Semigroup Void | Since: base-4.9.0.0 |
| Semigroup Ordering | Since: base-4.9.0.0 |
| Semigroup () | Since: base-4.9.0.0 |
| Bits a => Semigroup (And a) | Since: base-4.16 |
| FiniteBits a => Semigroup (Iff a) | This constraint is arguably
too strong. However, as some types (such as Since: base-4.16 |
| Bits a => Semigroup (Ior a) | Since: base-4.16 |
| Bits a => Semigroup (Xor a) | Since: base-4.16 |
| Semigroup (FromMaybe b) | |
| Semigroup a => Semigroup (JoinWith a) | |
| Semigroup (NonEmptyDList a) | |
| Semigroup (Comparison a) |
(<>) :: Comparison a -> Comparison a -> Comparison a Comparison cmp <> Comparison cmp' = Comparison a a' -> cmp a a' <> cmp a a' |
Defined in Data.Functor.Contravariant Methods (<>) :: Comparison a -> Comparison a -> Comparison a # sconcat :: NonEmpty (Comparison a) -> Comparison a # stimes :: Integral b => b -> Comparison a -> Comparison a # | |
| Semigroup (Equivalence a) |
(<>) :: Equivalence a -> Equivalence a -> Equivalence a Equivalence equiv <> Equivalence equiv' = Equivalence a b -> equiv a b && equiv' a b |
Defined in Data.Functor.Contravariant Methods (<>) :: Equivalence a -> Equivalence a -> Equivalence a # sconcat :: NonEmpty (Equivalence a) -> Equivalence a # stimes :: Integral b => b -> Equivalence a -> Equivalence a # | |
| Semigroup (Predicate a) |
(<>) :: Predicate a -> Predicate a -> Predicate a Predicate pred <> Predicate pred' = Predicate a -> pred a && pred' a |
| Semigroup a => Semigroup (Identity a) | Since: base-4.9.0.0 |
| Semigroup (First a) | Since: base-4.9.0.0 |
| Semigroup (Last a) | Since: base-4.9.0.0 |
| Semigroup (First a) | Since: base-4.9.0.0 |
| Semigroup (Last a) | Since: base-4.9.0.0 |
| Ord a => Semigroup (Max a) | Since: base-4.9.0.0 |
| Ord a => Semigroup (Min a) | Since: base-4.9.0.0 |
| Monoid m => Semigroup (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods (<>) :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # sconcat :: NonEmpty (WrappedMonoid m) -> WrappedMonoid m # stimes :: Integral b => b -> WrappedMonoid m -> WrappedMonoid m # | |
| Semigroup a => Semigroup (Dual a) | Since: base-4.9.0.0 |
| Semigroup (Endo a) | Since: base-4.9.0.0 |
| Num a => Semigroup (Product a) | Since: base-4.9.0.0 |
| Num a => Semigroup (Sum a) | Since: base-4.9.0.0 |
| Semigroup (NonEmpty a) | Since: base-4.9.0.0 |
| Semigroup a => Semigroup (STM a) | Since: base-4.17.0.0 |
| Semigroup a => Semigroup (IO a) | Since: base-4.10.0.0 |
| Semigroup a => Semigroup (Maybe a) | Since: base-4.9.0.0 |
| Semigroup a => Semigroup (a) | Since: base-4.15 |
| Semigroup [a] | Since: base-4.9.0.0 |
| Semigroup (Either a b) | Since: base-4.9.0.0 |
| Semigroup a => Semigroup (Op a b) |
(<>) :: Op a b -> Op a b -> Op a b Op f <> Op g = Op a -> f a <> g a |
| Semigroup (Proxy s) | Since: base-4.9.0.0 |
| Semigroup a => Semigroup (ST s a) | Since: base-4.11.0.0 |
| (Semigroup a, Semigroup b) => Semigroup (a, b) | Since: base-4.9.0.0 |
| Semigroup b => Semigroup (a -> b) | Since: base-4.9.0.0 |
| Semigroup a => Semigroup (Const a b) | Since: base-4.9.0.0 |
| (Applicative f, Semigroup a) => Semigroup (Ap f a) | Since: base-4.12.0.0 |
| Alternative f => Semigroup (Alt f a) | Since: base-4.9.0.0 |
| (Semigroup a, Semigroup b, Semigroup c) => Semigroup (a, b, c) | Since: base-4.9.0.0 |
| (Semigroup (f a), Semigroup (g a)) => Semigroup (Product f g a) | Since: base-4.16.0.0 |
| (Semigroup a, Semigroup b, Semigroup c, Semigroup d) => Semigroup (a, b, c, d) | Since: base-4.9.0.0 |
| Semigroup (f (g a)) => Semigroup (Compose f g a) | Since: base-4.16.0.0 |
| (Semigroup a, Semigroup b, Semigroup c, Semigroup d, Semigroup e) => Semigroup (a, b, c, d, e) | Since: base-4.9.0.0 |
Conversion of values to readable Strings.
Derived instances of Show have the following properties, which
are compatible with derived instances of Read:
- The result of
showis a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used. - If the constructor is defined to be an infix operator, then
showsPrecwill produce infix applications of the constructor. - the representation will be enclosed in parentheses if the
precedence of the top-level constructor in
xis less thand(associativity is ignored). Thus, ifdis0then the result is never surrounded in parentheses; ifdis11it is always surrounded in parentheses, unless it is an atomic expression. - If the constructor is defined using record syntax, then
showwill produce the record-syntax form, with the fields given in the same order as the original declaration.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Show is equivalent to
instance (Show a) => Show (Tree a) where
showsPrec d (Leaf m) = showParen (d > app_prec) $
showString "Leaf " . showsPrec (app_prec+1) m
where app_prec = 10
showsPrec d (u :^: v) = showParen (d > up_prec) $
showsPrec (up_prec+1) u .
showString " :^: " .
showsPrec (up_prec+1) v
where up_prec = 5Note that right-associativity of :^: is ignored. For example,
produces the stringshow(Leaf 1 :^: Leaf 2 :^: Leaf 3)"Leaf 1 :^: (Leaf 2 :^: Leaf 3)".
Instances
class (Functor t, Foldable t) => Traversable (t :: Type -> Type) #
Functors representing data structures that can be transformed to
structures of the same shape by performing an Applicative (or,
therefore, Monad) action on each element from left to right.
A more detailed description of what same shape means, the various methods, how traversals are constructed, and example advanced use-cases can be found in the Overview section of Data.Traversable.
For the class laws see the Laws section of Data.Traversable.
Instances
| Traversable ZipList | Since: base-4.9.0.0 |
| Traversable Complex | Since: base-4.9.0.0 |
| Traversable Identity | Since: base-4.9.0.0 |
| Traversable First | Since: base-4.8.0.0 |
| Traversable Last | Since: base-4.8.0.0 |
| Traversable Down | Since: base-4.12.0.0 |
| Traversable First | Since: base-4.9.0.0 |
| Traversable Last | Since: base-4.9.0.0 |
| Traversable Max | Since: base-4.9.0.0 |
| Traversable Min | Since: base-4.9.0.0 |
| Traversable Dual | Since: base-4.8.0.0 |
| Traversable Product | Since: base-4.8.0.0 |
| Traversable Sum | Since: base-4.8.0.0 |
| Traversable NonEmpty | Since: base-4.9.0.0 |
| Traversable Par1 | Since: base-4.9.0.0 |
| Traversable Maybe | Since: base-2.1 |
| Traversable Solo | Since: base-4.15 |
| Traversable List | Since: base-2.1 |
Defined in Data.Traversable | |
| Traversable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Traversable | |
| Traversable (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
| Traversable (Arg a) | Since: base-4.9.0.0 |
| Ix i => Traversable (Array i) | Since: base-2.1 |
| Traversable (U1 :: Type -> Type) | Since: base-4.9.0.0 |
| Traversable (UAddr :: Type -> Type) | Since: base-4.9.0.0 |
| Traversable (UChar :: Type -> Type) | Since: base-4.9.0.0 |
| Traversable (UDouble :: Type -> Type) | Since: base-4.9.0.0 |
| Traversable (UFloat :: Type -> Type) | Since: base-4.9.0.0 |
| Traversable (UInt :: Type -> Type) | Since: base-4.9.0.0 |
| Traversable (UWord :: Type -> Type) | Since: base-4.9.0.0 |
| Traversable (V1 :: Type -> Type) | Since: base-4.9.0.0 |
| Traversable ((,) a) | Since: base-4.7.0.0 |
Defined in Data.Traversable | |
| Traversable (Const m :: Type -> Type) | Since: base-4.7.0.0 |
| Traversable f => Traversable (Ap f) | Since: base-4.12.0.0 |
| Traversable f => Traversable (Alt f) | Since: base-4.12.0.0 |
| Traversable f => Traversable (Rec1 f) | Since: base-4.9.0.0 |
| (Traversable f, Traversable g) => Traversable (Product f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product | |
| (Traversable f, Traversable g) => Traversable (Sum f g) | Since: base-4.9.0.0 |
| (Traversable f, Traversable g) => Traversable (f :*: g) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
| (Traversable f, Traversable g) => Traversable (f :+: g) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
| Traversable (K1 i c :: Type -> Type) | Since: base-4.9.0.0 |
| (Traversable f, Traversable g) => Traversable (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose | |
| (Traversable f, Traversable g) => Traversable (f :.: g) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
| Traversable f => Traversable (M1 i c f) | Since: base-4.9.0.0 |
A value of type is a computation which, when performed,
does some I/O before returning a value of type IO aa.
There is really only one way to "perform" an I/O action: bind it to
Main.main in your program. When your program is run, the I/O will
be performed. It isn't possible to perform I/O from an arbitrary
function, unless that function is itself in the IO monad and called
at some point, directly or indirectly, from Main.main.
IO is a monad, so IO actions can be combined using either the do-notation
or the >> and >>= operations from the Monad
class.
Instances
| MonadFail IO | Since: base-4.9.0.0 |
Defined in Control.Monad.Fail | |
| MonadIO IO | Since: base-4.9.0.0 |
Defined in Control.Monad.IO.Class | |
| Alternative IO | Takes the first non-throwing Since: base-4.9.0.0 |
| Applicative IO | Since: base-2.1 |
| Functor IO | Since: base-2.1 |
| Monad IO | Since: base-2.1 |
| MonadPlus IO | Takes the first non-throwing Since: base-4.9.0.0 |
| Monoid a => Monoid (IO a) | Since: base-4.9.0.0 |
| Semigroup a => Semigroup (IO a) | Since: base-4.10.0.0 |
The character type Char is an enumeration whose values represent
Unicode (or equivalently ISO/IEC 10646) code points (i.e. characters, see
http://www.unicode.org/ for details). This set extends the ISO 8859-1
(Latin-1) character set (the first 256 characters), which is itself an extension
of the ASCII character set (the first 128 characters). A character literal in
Haskell has type Char.
To convert a Char to or from the corresponding Int value defined
by Unicode, use toEnum and fromEnum from the
Enum class respectively (or equivalently ord and
chr).
Instances
| Storable Char | Since: base-2.1 |
Defined in Foreign.Storable | |
| Bounded Char | Since: base-2.1 |
| Enum Char | Since: base-2.1 |
| Read Char | Since: base-2.1 |
| Show Char | Since: base-2.1 |
| Eq Char | |
| Ord Char | |
| Foldable (UChar :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UChar m -> m # foldMap :: Monoid m => (a -> m) -> UChar a -> m # foldMap' :: Monoid m => (a -> m) -> UChar a -> m # foldr :: (a -> b -> b) -> b -> UChar a -> b # foldr' :: (a -> b -> b) -> b -> UChar a -> b # foldl :: (b -> a -> b) -> b -> UChar a -> b # foldl' :: (b -> a -> b) -> b -> UChar a -> b # foldr1 :: (a -> a -> a) -> UChar a -> a # foldl1 :: (a -> a -> a) -> UChar a -> a # elem :: Eq a => a -> UChar a -> Bool # maximum :: Ord a => UChar a -> a # minimum :: Ord a => UChar a -> a # | |
| Traversable (UChar :: Type -> Type) | Since: base-4.9.0.0 |
Double-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE double-precision type.
Instances
| Storable Double | Since: base-2.1 |
| Floating Double | Since: base-2.1 |
| RealFloat Double | Since: base-2.1 |
Defined in GHC.Float Methods floatRadix :: Double -> Integer # floatDigits :: Double -> Int # floatRange :: Double -> (Int, Int) # decodeFloat :: Double -> (Integer, Int) # encodeFloat :: Integer -> Int -> Double # significand :: Double -> Double # scaleFloat :: Int -> Double -> Double # isInfinite :: Double -> Bool # isDenormalized :: Double -> Bool # isNegativeZero :: Double -> Bool # | |
| Read Double | Since: base-2.1 |
| Eq Double | Note that due to the presence of
Also note that
|
| Ord Double | Note that due to the presence of
Also note that, due to the same,
|
| Foldable (UDouble :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UDouble m -> m # foldMap :: Monoid m => (a -> m) -> UDouble a -> m # foldMap' :: Monoid m => (a -> m) -> UDouble a -> m # foldr :: (a -> b -> b) -> b -> UDouble a -> b # foldr' :: (a -> b -> b) -> b -> UDouble a -> b # foldl :: (b -> a -> b) -> b -> UDouble a -> b # foldl' :: (b -> a -> b) -> b -> UDouble a -> b # foldr1 :: (a -> a -> a) -> UDouble a -> a # foldl1 :: (a -> a -> a) -> UDouble a -> a # elem :: Eq a => a -> UDouble a -> Bool # maximum :: Ord a => UDouble a -> a # minimum :: Ord a => UDouble a -> a # | |
| Traversable (UDouble :: Type -> Type) | Since: base-4.9.0.0 |
Single-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE single-precision type.
Instances
| Storable Float | Since: base-2.1 |
| Floating Float | Since: base-2.1 |
| RealFloat Float | Since: base-2.1 |
Defined in GHC.Float Methods floatRadix :: Float -> Integer # floatDigits :: Float -> Int # floatRange :: Float -> (Int, Int) # decodeFloat :: Float -> (Integer, Int) # encodeFloat :: Integer -> Int -> Float # significand :: Float -> Float # scaleFloat :: Int -> Float -> Float # isInfinite :: Float -> Bool # isDenormalized :: Float -> Bool # isNegativeZero :: Float -> Bool # | |
| Read Float | Since: base-2.1 |
| Eq Float | Note that due to the presence of
Also note that
|
| Ord Float | Note that due to the presence of
Also note that, due to the same,
|
| Foldable (UFloat :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UFloat m -> m # foldMap :: Monoid m => (a -> m) -> UFloat a -> m # foldMap' :: Monoid m => (a -> m) -> UFloat a -> m # foldr :: (a -> b -> b) -> b -> UFloat a -> b # foldr' :: (a -> b -> b) -> b -> UFloat a -> b # foldl :: (b -> a -> b) -> b -> UFloat a -> b # foldl' :: (b -> a -> b) -> b -> UFloat a -> b # foldr1 :: (a -> a -> a) -> UFloat a -> a # foldl1 :: (a -> a -> a) -> UFloat a -> a # elem :: Eq a => a -> UFloat a -> Bool # maximum :: Ord a => UFloat a -> a # minimum :: Ord a => UFloat a -> a # | |
| Traversable (UFloat :: Type -> Type) | Since: base-4.9.0.0 |
A fixed-precision integer type with at least the range [-2^29 .. 2^29-1].
The exact range for a given implementation can be determined by using
minBound and maxBound from the Bounded class.
Instances
| Storable Int | Since: base-2.1 |
Defined in Foreign.Storable | |
| Bits Int | Since: base-2.1 |
Defined in GHC.Bits | |
| FiniteBits Int | Since: base-4.6.0.0 |
Defined in GHC.Bits Methods finiteBitSize :: Int -> Int # countLeadingZeros :: Int -> Int # countTrailingZeros :: Int -> Int # | |
| Bounded Int | Since: base-2.1 |
| Enum Int | Since: base-2.1 |
| Num Int | Since: base-2.1 |
| Read Int | Since: base-2.1 |
| Integral Int | Since: base-2.0.1 |
| Real Int | Since: base-2.0.1 |
Defined in GHC.Real Methods toRational :: Int -> Rational # | |
| Show Int | Since: base-2.1 |
| Eq Int | |
| Ord Int | |
| Foldable (UInt :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UInt m -> m # foldMap :: Monoid m => (a -> m) -> UInt a -> m # foldMap' :: Monoid m => (a -> m) -> UInt a -> m # foldr :: (a -> b -> b) -> b -> UInt a -> b # foldr' :: (a -> b -> b) -> b -> UInt a -> b # foldl :: (b -> a -> b) -> b -> UInt a -> b # foldl' :: (b -> a -> b) -> b -> UInt a -> b # foldr1 :: (a -> a -> a) -> UInt a -> a # foldl1 :: (a -> a -> a) -> UInt a -> a # elem :: Eq a => a -> UInt a -> Bool # maximum :: Ord a => UInt a -> a # | |
| Traversable (UInt :: Type -> Type) | Since: base-4.9.0.0 |
Arbitrary precision integers. In contrast with fixed-size integral types
such as Int, the Integer type represents the entire infinite range of
integers.
Integers are stored in a kind of sign-magnitude form, hence do not expect two's complement form when using bit operations.
If the value is small (fit into an Int), IS constructor is used.
Otherwise Integer and IN constructors are used to store a BigNat
representing respectively the positive or the negative value magnitude.
Invariant: Integer and IN are used iff value doesn't fit in IS
Instances
| Bits Integer | Since: base-2.1 |
Defined in GHC.Bits Methods (.&.) :: Integer -> Integer -> Integer # (.|.) :: Integer -> Integer -> Integer # xor :: Integer -> Integer -> Integer # complement :: Integer -> Integer # shift :: Integer -> Int -> Integer # rotate :: Integer -> Int -> Integer # setBit :: Integer -> Int -> Integer # clearBit :: Integer -> Int -> Integer # complementBit :: Integer -> Int -> Integer # testBit :: Integer -> Int -> Bool # bitSizeMaybe :: Integer -> Maybe Int # shiftL :: Integer -> Int -> Integer # unsafeShiftL :: Integer -> Int -> Integer # shiftR :: Integer -> Int -> Integer # unsafeShiftR :: Integer -> Int -> Integer # rotateL :: Integer -> Int -> Integer # | |
| Enum Integer | Since: base-2.1 |
| Num Integer | Since: base-2.1 |
| Read Integer | Since: base-2.1 |
| Integral Integer | Since: base-2.0.1 |
Defined in GHC.Real | |
| Real Integer | Since: base-2.0.1 |
Defined in GHC.Real Methods toRational :: Integer -> Rational # | |
| Show Integer | Since: base-2.1 |
| Eq Integer | |
| Ord Integer | |
Instances
| Storable Word | Since: base-2.1 |
Defined in Foreign.Storable | |
| Bits Word | Since: base-2.1 |
Defined in GHC.Bits Methods (.&.) :: Word -> Word -> Word # (.|.) :: Word -> Word -> Word # complement :: Word -> Word # shift :: Word -> Int -> Word # rotate :: Word -> Int -> Word # setBit :: Word -> Int -> Word # clearBit :: Word -> Int -> Word # complementBit :: Word -> Int -> Word # testBit :: Word -> Int -> Bool # bitSizeMaybe :: Word -> Maybe Int # shiftL :: Word -> Int -> Word # unsafeShiftL :: Word -> Int -> Word # shiftR :: Word -> Int -> Word # unsafeShiftR :: Word -> Int -> Word # rotateL :: Word -> Int -> Word # | |
| FiniteBits Word | Since: base-4.6.0.0 |
Defined in GHC.Bits Methods finiteBitSize :: Word -> Int # countLeadingZeros :: Word -> Int # countTrailingZeros :: Word -> Int # | |
| Bounded Word | Since: base-2.1 |
| Enum Word | Since: base-2.1 |
| Num Word | Since: base-2.1 |
| Read Word | Since: base-4.5.0.0 |
| Integral Word | Since: base-2.1 |
| Real Word | Since: base-2.1 |
Defined in GHC.Real Methods toRational :: Word -> Rational # | |
| Show Word | Since: base-2.1 |
| Eq Word | |
| Ord Word | |
| Foldable (UWord :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UWord m -> m # foldMap :: Monoid m => (a -> m) -> UWord a -> m # foldMap' :: Monoid m => (a -> m) -> UWord a -> m # foldr :: (a -> b -> b) -> b -> UWord a -> b # foldr' :: (a -> b -> b) -> b -> UWord a -> b # foldl :: (b -> a -> b) -> b -> UWord a -> b # foldl' :: (b -> a -> b) -> b -> UWord a -> b # foldr1 :: (a -> a -> a) -> UWord a -> a # foldl1 :: (a -> a -> a) -> UWord a -> a # elem :: Eq a => a -> UWord a -> Bool # maximum :: Ord a => UWord a -> a # minimum :: Ord a => UWord a -> a # | |
| Traversable (UWord :: Type -> Type) | Since: base-4.9.0.0 |
Instances
| Storable Bool | Since: base-2.1 |
Defined in Foreign.Storable | |
| Bits Bool | Interpret Since: base-4.7.0.0 |
Defined in GHC.Bits Methods (.&.) :: Bool -> Bool -> Bool # (.|.) :: Bool -> Bool -> Bool # complement :: Bool -> Bool # shift :: Bool -> Int -> Bool # rotate :: Bool -> Int -> Bool # setBit :: Bool -> Int -> Bool # clearBit :: Bool -> Int -> Bool # complementBit :: Bool -> Int -> Bool # testBit :: Bool -> Int -> Bool # bitSizeMaybe :: Bool -> Maybe Int # shiftL :: Bool -> Int -> Bool # unsafeShiftL :: Bool -> Int -> Bool # shiftR :: Bool -> Int -> Bool # unsafeShiftR :: Bool -> Int -> Bool # rotateL :: Bool -> Int -> Bool # | |
| FiniteBits Bool | Since: base-4.7.0.0 |
Defined in GHC.Bits Methods finiteBitSize :: Bool -> Int # countLeadingZeros :: Bool -> Int # countTrailingZeros :: Bool -> Int # | |
| Bounded Bool | Since: base-2.1 |
| Enum Bool | Since: base-2.1 |
| Read Bool | Since: base-2.1 |
| Show Bool | Since: base-2.1 |
| Eq Bool | |
| Ord Bool | |
The Either type represents values with two possibilities: a value of
type is either Either a b or Left a.Right b
The Either type is sometimes used to represent a value which is
either correct or an error; by convention, the Left constructor is
used to hold an error value and the Right constructor is used to
hold a correct value (mnemonic: "right" also means "correct").
Examples
The type is the type of values which can be either
a Either String IntString or an Int. The Left constructor can be used only on
Strings, and the Right constructor can be used only on Ints:
>>>let s = Left "foo" :: Either String Int>>>sLeft "foo">>>let n = Right 3 :: Either String Int>>>nRight 3>>>:type ss :: Either String Int>>>:type nn :: Either String Int
The fmap from our Functor instance will ignore Left values, but
will apply the supplied function to values contained in a Right:
>>>let s = Left "foo" :: Either String Int>>>let n = Right 3 :: Either String Int>>>fmap (*2) sLeft "foo">>>fmap (*2) nRight 6
The Monad instance for Either allows us to chain together multiple
actions which may fail, and fail overall if any of the individual
steps failed. First we'll write a function that can either parse an
Int from a Char, or fail.
>>>import Data.Char ( digitToInt, isDigit )>>>:{let parseEither :: Char -> Either String Int parseEither c | isDigit c = Right (digitToInt c) | otherwise = Left "parse error">>>:}
The following should work, since both '1' and '2' can be
parsed as Ints.
>>>:{let parseMultiple :: Either String Int parseMultiple = do x <- parseEither '1' y <- parseEither '2' return (x + y)>>>:}
>>>parseMultipleRight 3
But the following should fail overall, since the first operation where
we attempt to parse 'm' as an Int will fail:
>>>:{let parseMultiple :: Either String Int parseMultiple = do x <- parseEither 'm' y <- parseEither '2' return (x + y)>>>:}
>>>parseMultipleLeft "parse error"
Instances
| Bifoldable Either | Since: base-4.10.0.0 |
| Bifoldable1 Either | |
Defined in Data.Bifoldable1 | |
| Bifunctor Either | Since: base-4.8.0.0 |
| Bitraversable Either | Since: base-4.10.0.0 |
Defined in Data.Bitraversable Methods bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Either a b -> f (Either c d) # | |
| Foldable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Either a m -> m # foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # toList :: Either a a0 -> [a0] # length :: Either a a0 -> Int # elem :: Eq a0 => a0 -> Either a a0 -> Bool # maximum :: Ord a0 => Either a a0 -> a0 # minimum :: Ord a0 => Either a a0 -> a0 # | |
| Traversable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Traversable | |
| Applicative (Either e) | Since: base-3.0 |
| Functor (Either a) | Since: base-3.0 |
| Monad (Either e) | Since: base-4.4.0.0 |
| Semigroup (Either a b) | Since: base-4.9.0.0 |
| (Read a, Read b) => Read (Either a b) | Since: base-3.0 |
| (Show a, Show b) => Show (Either a b) | Since: base-3.0 |
| (Eq a, Eq b) => Eq (Either a b) | Since: base-2.1 |
| (Ord a, Ord b) => Ord (Either a b) | Since: base-2.1 |
The Maybe type encapsulates an optional value. A value of type
either contains a value of type Maybe aa (represented as ),
or it is empty (represented as Just aNothing). Using Maybe is a good way to
deal with errors or exceptional cases without resorting to drastic
measures such as error.
The Maybe type is also a monad. It is a simple kind of error
monad, where all errors are represented by Nothing. A richer
error monad can be built using the Either type.
Instances
| MonadFail Maybe | Since: base-4.9.0.0 |
Defined in Control.Monad.Fail | |
| Foldable Maybe | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldMap' :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |
| Traversable Maybe | Since: base-2.1 |
| Alternative Maybe | Picks the leftmost Since: base-2.1 |
| Applicative Maybe | Since: base-2.1 |
| Functor Maybe | Since: base-2.1 |
| Monad Maybe | Since: base-2.1 |
| MonadPlus Maybe | Picks the leftmost Since: base-2.1 |
| Semigroup a => Monoid (Maybe a) | Lift a semigroup into Since 4.11.0: constraint on inner Since: base-2.1 |
| Semigroup a => Semigroup (Maybe a) | Since: base-4.9.0.0 |
| Read a => Read (Maybe a) | Since: base-2.1 |
| Show a => Show (Maybe a) | Since: base-2.1 |
| Eq a => Eq (Maybe a) | Since: base-2.1 |
| Ord a => Ord (Maybe a) | Since: base-2.1 |
Instances
| Monoid Ordering | Since: base-2.1 |
| Semigroup Ordering | Since: base-4.9.0.0 |
| Bounded Ordering | Since: base-2.1 |
| Enum Ordering | Since: base-2.1 |
| Read Ordering | Since: base-2.1 |
| Show Ordering | Since: base-2.1 |
| Eq Ordering | |
| Ord Ordering | |
Defined in GHC.Classes | |
File and directory names are values of type String, whose precise
meaning is operating system dependent. Files can be opened, yielding a
handle which can then be used to operate on the contents of that file.
type IOError = IOException #
The Haskell 2010 type for exceptions in the IO monad.
Any I/O operation may raise an IOException instead of returning a result.
For a more general type of exception, including also those that arise
in pure code, see Exception.
In Haskell 2010, this is an opaque type.