ac-library-hs-1.2.2.0: Data structures and algorithms
Safe HaskellSafe-Inferred
LanguageGHC2021

AtCoder.FenwickTree

Description

A Fenwick tree, also known as binary indexed tree. Given an array of length \(n\), it processes the following queries in \(O(\log n)\) time.

  • Updating an element
  • Calculating the sum of the elements of an interval

Example

Expand

Create a FenwickTree with new:

>>> import AtCoder.FenwickTree qualified as FT
>>> ft <- FT.new @_ @Int 4 -- [0, 0, 0, 0]
>>> FT.nFt ft
4

It can perform point add and range sum in \(O(\log n)\) time:

>>> FT.add ft 0 3          -- [3, 0, 0, 0]
>>> FT.sum ft 0 3
3
>>> FT.add ft 2 3          -- [3, 0, 3, 0]
>>> FT.sum ft 0 3
6

Create a FenwickTree with initial values using build:

>>> ft <- FT.build @_ @Int $ VU.fromList [3, 0, 3, 0]
>>> FT.add ft 1 2          -- [3, 2, 3, 0]
>>> FT.sum ft 0 3
8

Since: 1.0.0.0

Synopsis

Fenwick tree

data FenwickTree s a Source #

A Fenwick tree.

Since: 1.0.0.0

Constructors

new :: (HasCallStack, PrimMonad m, Num a, Unbox a) => Int -> m (FenwickTree (PrimState m) a) Source #

Creates an array \([a_0, a_1, \cdots, a_{n-1}]\) of length \(n\). All the elements are initialized to \(0\).

Constraints

  • \(0 \leq n\)

Complexity

  • \(O(n)\)

Since: 1.0.0.0

build :: (PrimMonad m, Num a, Unbox a) => Vector a -> m (FenwickTree (PrimState m) a) Source #

Creates FenwickTree with initial values.

Complexity

  • \(O(n)\)

Since: 1.0.0.0

Adding

add :: (HasCallStack, PrimMonad m, Num a, Unbox a) => FenwickTree (PrimState m) a -> Int -> a -> m () Source #

Adds \(x\) to \(p\)-th value of the array.

Constraints

  • \(0 \leq l \lt n\)

Complexity

  • \(O(\log n)\)

Since: 1.0.0.0

Accessors

sum :: (HasCallStack, PrimMonad m, Num a, Unbox a) => FenwickTree (PrimState m) a -> Int -> Int -> m a Source #

Calculates the sum in a half-open interval \([l, r)\).

Constraints

  • \(0 \leq l \leq r \leq n\)

Complexity

  • \(O(\log n)\)

Since: 1.0.0.0

sumMaybe :: (HasCallStack, PrimMonad m, Num a, Unbox a) => FenwickTree (PrimState m) a -> Int -> Int -> m (Maybe a) Source #

Total variant of sum. Calculates the sum in a half-open interval \([l, r)\). It returns Nothing if the interval is invalid.

Complexity

  • \(O(\log n)\)

Since: 1.0.0.0

Bisection methods

maxRight Source #

Arguments

:: (HasCallStack, PrimMonad m, Num a, Unbox a) 
=> FenwickTree (PrimState m) a

The Fenwick tree

-> Int

\(l\)

-> (a -> Bool)

\(p\): user predicate

-> m Int

\(r\): \(p\) holds for \([l, r)\)

(Extra API) Applies a binary search on the Fenwick tree. It returns an index \(r\) that satisfies both of the following.

  • \(r = l\) or \(f(a[l] + a[l + 1] + ... + a[r - 1])\) returns True.
  • \(r = n\) or \(f(a[l] + a[l + 1] + ... + a[r]))\) returns False.

If \(f\) is monotone, this is the maximum \(r\) that satisfies \(f(a[l] + a[l + 1] + ... + a[r - 1])\).

Constraints

  • if \(f\) is called with the same argument, it returns the same value, i.e., \(f\) has no side effect.
  • \(f(0)\) returns True
  • \(0 \leq l \leq n\)

Complexity

  • \(O(\log n)\)

Since: 1.2.2.0

maxRightM Source #

Arguments

:: forall m a. (HasCallStack, PrimMonad m, Num a, Unbox a) 
=> FenwickTree (PrimState m) a

The Fenwick tree

-> Int

\(l\)

-> (a -> m Bool)

\(p\): user predicate

-> m Int

\(r\): \(p\) holds for \([l, r)\)

(Extra API) Monadic variant of maxRight.

Constraints

  • if \(f\) is called with the same argument, it returns the same value, i.e., \(f\) has no side effect.
  • \(f(0)\) returns True
  • \(0 \leq l \leq n\)

Complexity

  • \(O(\log n)\)

Since: 1.2.2.0

minLeft Source #

Arguments

:: (HasCallStack, PrimMonad m, Num a, Unbox a) 
=> FenwickTree (PrimState m) a

The Fenwick tree

-> Int

\(r\)

-> (a -> Bool)

\(p\): user prediate

-> m Int

\(l\): \(p\) holds for \([l, r)\)

Applies a binary search on the Fenwick tree. It returns an index \(l\) that satisfies both of the following.

  • \(l = r\) or \(f(a[l] + a[l + 1] + ... + a[r - 1])\) returns True.
  • \(l = 0\) or \(f(a[l - 1] + a[l] + ... + a[r - 1])\) returns False.

If \(f\) is monotone, this is the minimum \(l\) that satisfies \(f(a[l] + a[l + 1] + ... + a[r - 1])\).

Constraints

  • if \(f\) is called with the same argument, it returns the same value, i.e., \(f\) has no side effect.
  • \(f(0)\) returns True
  • \(0 \leq r \leq n\)

Complexity

  • \(O(\log n)\)

Since: 1.2.2.0

minLeftM Source #

Arguments

:: forall m a. (HasCallStack, PrimMonad m, Num a, Unbox a) 
=> FenwickTree (PrimState m) a

The Fenwick tree

-> Int

\(r\)

-> (a -> m Bool)

\(p\): user prediate

-> m Int

\(l\): \(p\) holds for \([l, r)\)

(Extra API) Monadic variant of minLeft.

Constraints

  • if \(f\) is called with the same argument, it returns the same value, i.e., \(f\) has no side effect.
  • \(f(0)\) returns True
  • \(0 \leq l \leq n\)

Complexity

  • \(O(\log n)\)

Since: 1.2.2.0