{-# LANGUAGE RecordWildCards #-}
module AtCoder.FenwickTree
(
FenwickTree (nFt),
new,
build,
add,
sum,
sumMaybe,
maxRight,
maxRightM,
minLeft,
minLeftM,
)
where
import AtCoder.Internal.Assert qualified as ACIA
import Control.Monad (when)
import Control.Monad.Fix (fix)
import Control.Monad.Primitive (PrimMonad, PrimState, stToPrim)
import Data.Bits
import Data.Vector.Generic.Mutable qualified as VGM
import Data.Vector.Unboxed qualified as VU
import Data.Vector.Unboxed.Mutable qualified as VUM
import GHC.Stack (HasCallStack)
import Prelude hiding (sum)
data FenwickTree s a = FenwickTree
{
forall s a. FenwickTree s a -> Int
nFt :: {-# UNPACK #-} !Int,
forall s a. FenwickTree s a -> MVector s a
dataFt :: !(VUM.MVector s a)
}
{-# INLINE new #-}
new :: (HasCallStack, PrimMonad m, Num a, VU.Unbox a) => Int -> m (FenwickTree (PrimState m) a)
new :: forall (m :: * -> *) a.
(HasCallStack, PrimMonad m, Num a, Unbox a) =>
Int -> m (FenwickTree (PrimState m) a)
new Int
nFt
| Int
nFt Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0 = do
MVector (PrimState m) a
dataFt <- Int -> a -> m (MVector (PrimState m) a)
forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
Int -> a -> m (MVector (PrimState m) a)
VUM.replicate Int
nFt a
0
FenwickTree (PrimState m) a -> m (FenwickTree (PrimState m) a)
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure FenwickTree {Int
MVector (PrimState m) a
nFt :: Int
dataFt :: MVector (PrimState m) a
nFt :: Int
dataFt :: MVector (PrimState m) a
..}
| Bool
otherwise = [Char] -> m (FenwickTree (PrimState m) a)
forall a. HasCallStack => [Char] -> a
error ([Char] -> m (FenwickTree (PrimState m) a))
-> [Char] -> m (FenwickTree (PrimState m) a)
forall a b. (a -> b) -> a -> b
$ [Char]
"AtCoder.FenwickTree.new: given negative size `" [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ Int -> [Char]
forall a. Show a => a -> [Char]
show Int
nFt [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ [Char]
"`"
build :: (PrimMonad m, Num a, VU.Unbox a) => VU.Vector a -> m (FenwickTree (PrimState m) a)
{-# INLINE build #-}
build :: forall (m :: * -> *) a.
(PrimMonad m, Num a, Unbox a) =>
Vector a -> m (FenwickTree (PrimState m) a)
build Vector a
xs = do
FenwickTree (PrimState m) a
ft <- Int -> m (FenwickTree (PrimState m) a)
forall (m :: * -> *) a.
(HasCallStack, PrimMonad m, Num a, Unbox a) =>
Int -> m (FenwickTree (PrimState m) a)
new (Int -> m (FenwickTree (PrimState m) a))
-> Int -> m (FenwickTree (PrimState m) a)
forall a b. (a -> b) -> a -> b
$ Vector a -> Int
forall a. Unbox a => Vector a -> Int
VU.length Vector a
xs
Vector a -> (Int -> a -> m ()) -> m ()
forall (m :: * -> *) a b.
(Monad m, Unbox a) =>
Vector a -> (Int -> a -> m b) -> m ()
VU.iforM_ Vector a
xs ((Int -> a -> m ()) -> m ()) -> (Int -> a -> m ()) -> m ()
forall a b. (a -> b) -> a -> b
$ FenwickTree (PrimState m) a -> Int -> a -> m ()
forall (m :: * -> *) a.
(HasCallStack, PrimMonad m, Num a, Unbox a) =>
FenwickTree (PrimState m) a -> Int -> a -> m ()
add FenwickTree (PrimState m) a
ft
FenwickTree (PrimState m) a -> m (FenwickTree (PrimState m) a)
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure FenwickTree (PrimState m) a
ft
{-# INLINE add #-}
add :: (HasCallStack, PrimMonad m, Num a, VU.Unbox a) => FenwickTree (PrimState m) a -> Int -> a -> m ()
add :: forall (m :: * -> *) a.
(HasCallStack, PrimMonad m, Num a, Unbox a) =>
FenwickTree (PrimState m) a -> Int -> a -> m ()
add FenwickTree {Int
MVector (PrimState m) a
nFt :: forall s a. FenwickTree s a -> Int
dataFt :: forall s a. FenwickTree s a -> MVector s a
nFt :: Int
dataFt :: MVector (PrimState m) a
..} Int
p0 a
x = do
let !()
_ = HasCallStack => [Char] -> Int -> Int -> ()
[Char] -> Int -> Int -> ()
ACIA.checkIndex [Char]
"AtCoder.FenwickTree.add" Int
p0 Int
nFt
let p1 :: Int
p1 = Int
p0 Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1
(((Int -> m ()) -> Int -> m ()) -> Int -> m ())
-> Int -> ((Int -> m ()) -> Int -> m ()) -> m ()
forall a b c. (a -> b -> c) -> b -> a -> c
flip ((Int -> m ()) -> Int -> m ()) -> Int -> m ()
forall a. (a -> a) -> a
fix Int
p1 (((Int -> m ()) -> Int -> m ()) -> m ())
-> ((Int -> m ()) -> Int -> m ()) -> m ()
forall a b. (a -> b) -> a -> b
$ \Int -> m ()
loop Int
p -> do
Bool -> m () -> m ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Int
p Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
nFt) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ do
MVector (PrimState m) a -> (a -> a) -> Int -> m ()
forall (m :: * -> *) (v :: * -> * -> *) a.
(HasCallStack, PrimMonad m, MVector v a) =>
v (PrimState m) a -> (a -> a) -> Int -> m ()
VGM.modify MVector (PrimState m) a
dataFt (a -> a -> a
forall a. Num a => a -> a -> a
+ a
x) (Int
p Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1)
Int -> m ()
loop (Int -> m ()) -> Int -> m ()
forall a b. (a -> b) -> a -> b
$! Int
p Int -> Int -> Int
forall a. Num a => a -> a -> a
+ (Int
p Int -> Int -> Int
forall a. Bits a => a -> a -> a
.&. (-Int
p))
{-# INLINE prefixSum #-}
prefixSum :: (PrimMonad m, Num a, VU.Unbox a) => FenwickTree (PrimState m) a -> Int -> m a
prefixSum :: forall (m :: * -> *) a.
(PrimMonad m, Num a, Unbox a) =>
FenwickTree (PrimState m) a -> Int -> m a
prefixSum FenwickTree {Int
MVector (PrimState m) a
nFt :: forall s a. FenwickTree s a -> Int
dataFt :: forall s a. FenwickTree s a -> MVector s a
nFt :: Int
dataFt :: MVector (PrimState m) a
..} = a -> Int -> m a
forall {f :: * -> *}.
(PrimState f ~ PrimState m, PrimMonad f) =>
a -> Int -> f a
inner a
0
where
inner :: a -> Int -> f a
inner !a
acc !Int
r
| Int
r Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
0 = a -> f a
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure a
acc
| Bool
otherwise = do
a
dx <- MVector (PrimState f) a -> Int -> f a
forall (m :: * -> *) (v :: * -> * -> *) a.
(HasCallStack, PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> m a
VGM.read MVector (PrimState m) a
MVector (PrimState f) a
dataFt (Int
r Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1)
a -> Int -> f a
inner (a
acc a -> a -> a
forall a. Num a => a -> a -> a
+ a
dx) (Int
r Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
r Int -> Int -> Int
forall a. Bits a => a -> a -> a
.&. (-Int
r))
{-# INLINE sum #-}
sum :: (HasCallStack, PrimMonad m, Num a, VU.Unbox a) => FenwickTree (PrimState m) a -> Int -> Int -> m a
sum :: forall (m :: * -> *) a.
(HasCallStack, PrimMonad m, Num a, Unbox a) =>
FenwickTree (PrimState m) a -> Int -> Int -> m a
sum ft :: FenwickTree (PrimState m) a
ft@FenwickTree {Int
nFt :: forall s a. FenwickTree s a -> Int
nFt :: Int
nFt} Int
l Int
r
| Bool -> Bool
not (Int -> Int -> Int -> Bool
ACIA.testInterval Int
l Int
r Int
nFt) = [Char] -> Int -> Int -> Int -> m a
forall a. HasCallStack => [Char] -> Int -> Int -> Int -> a
ACIA.errorInterval [Char]
"AtCoder.FenwickTree.sum" Int
l Int
r Int
nFt
| Bool
otherwise = FenwickTree (PrimState m) a -> Int -> Int -> m a
forall (m :: * -> *) a.
(HasCallStack, PrimMonad m, Num a, Unbox a) =>
FenwickTree (PrimState m) a -> Int -> Int -> m a
unsafeSum FenwickTree (PrimState m) a
ft Int
l Int
r
{-# INLINE sumMaybe #-}
sumMaybe :: (HasCallStack, PrimMonad m, Num a, VU.Unbox a) => FenwickTree (PrimState m) a -> Int -> Int -> m (Maybe a)
sumMaybe :: forall (m :: * -> *) a.
(HasCallStack, PrimMonad m, Num a, Unbox a) =>
FenwickTree (PrimState m) a -> Int -> Int -> m (Maybe a)
sumMaybe ft :: FenwickTree (PrimState m) a
ft@FenwickTree {Int
nFt :: forall s a. FenwickTree s a -> Int
nFt :: Int
nFt} Int
l Int
r
| Bool -> Bool
not (Int -> Int -> Int -> Bool
ACIA.testInterval Int
l Int
r Int
nFt) = Maybe a -> m (Maybe a)
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe a
forall a. Maybe a
Nothing
| Bool
otherwise = a -> Maybe a
forall a. a -> Maybe a
Just (a -> Maybe a) -> m a -> m (Maybe a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> FenwickTree (PrimState m) a -> Int -> Int -> m a
forall (m :: * -> *) a.
(HasCallStack, PrimMonad m, Num a, Unbox a) =>
FenwickTree (PrimState m) a -> Int -> Int -> m a
unsafeSum FenwickTree (PrimState m) a
ft Int
l Int
r
{-# INLINE unsafeSum #-}
unsafeSum :: (HasCallStack, PrimMonad m, Num a, VU.Unbox a) => FenwickTree (PrimState m) a -> Int -> Int -> m a
unsafeSum :: forall (m :: * -> *) a.
(HasCallStack, PrimMonad m, Num a, Unbox a) =>
FenwickTree (PrimState m) a -> Int -> Int -> m a
unsafeSum FenwickTree (PrimState m) a
ft Int
l Int
r = do
a
xr <- FenwickTree (PrimState m) a -> Int -> m a
forall (m :: * -> *) a.
(PrimMonad m, Num a, Unbox a) =>
FenwickTree (PrimState m) a -> Int -> m a
prefixSum FenwickTree (PrimState m) a
ft Int
r
a
xl <- FenwickTree (PrimState m) a -> Int -> m a
forall (m :: * -> *) a.
(PrimMonad m, Num a, Unbox a) =>
FenwickTree (PrimState m) a -> Int -> m a
prefixSum FenwickTree (PrimState m) a
ft Int
l
a -> m a
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (a -> m a) -> a -> m a
forall a b. (a -> b) -> a -> b
$! a
xr a -> a -> a
forall a. Num a => a -> a -> a
- a
xl
{-# INLINE maxRight #-}
maxRight ::
(HasCallStack, PrimMonad m, Num a, VU.Unbox a) =>
FenwickTree (PrimState m) a ->
Int ->
(a -> Bool) ->
m Int
maxRight :: forall (m :: * -> *) a.
(HasCallStack, PrimMonad m, Num a, Unbox a) =>
FenwickTree (PrimState m) a -> Int -> (a -> Bool) -> m Int
maxRight FenwickTree (PrimState m) a
ft Int
l0 a -> Bool
f = FenwickTree (PrimState m) a -> Int -> (a -> m Bool) -> m Int
forall (m :: * -> *) a.
(HasCallStack, PrimMonad m, Num a, Unbox a) =>
FenwickTree (PrimState m) a -> Int -> (a -> m Bool) -> m Int
maxRightM FenwickTree (PrimState m) a
ft Int
l0 (Bool -> m Bool
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Bool -> m Bool) -> (a -> Bool) -> a -> m Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Bool
f)
{-# INLINEABLE maxRightM #-}
maxRightM ::
forall m a.
(HasCallStack, PrimMonad m, Num a, VU.Unbox a) =>
FenwickTree (PrimState m) a ->
Int ->
(a -> m Bool) ->
m Int
maxRightM :: forall (m :: * -> *) a.
(HasCallStack, PrimMonad m, Num a, Unbox a) =>
FenwickTree (PrimState m) a -> Int -> (a -> m Bool) -> m Int
maxRightM FenwickTree {Int
MVector (PrimState m) a
nFt :: forall s a. FenwickTree s a -> Int
dataFt :: forall s a. FenwickTree s a -> MVector s a
nFt :: Int
dataFt :: MVector (PrimState m) a
..} Int
l0 a -> m Bool
f = do
Bool
b0 <- a -> m Bool
f a
0
let !()
_ = HasCallStack => Bool -> [Char] -> ()
Bool -> [Char] -> ()
ACIA.runtimeAssert Bool
b0 [Char]
"AtCoder.FenwickTree.maxRightM: `f 0` must return `True`"
let inner :: Int -> a -> m (Int, Int, a)
inner Int
i !a
s
| Int -> Bool
forall a. Integral a => a -> Bool
odd Int
i = do
a
ds <- ST (PrimState m) a -> m a
forall (m :: * -> *) a. PrimMonad m => ST (PrimState m) a -> m a
stToPrim (ST (PrimState m) a -> m a) -> ST (PrimState m) a -> m a
forall a b. (a -> b) -> a -> b
$ MVector (PrimState (ST (PrimState m))) a
-> Int -> ST (PrimState m) a
forall (m :: * -> *) (v :: * -> * -> *) a.
(HasCallStack, PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> m a
VGM.read MVector (PrimState m) a
MVector (PrimState (ST (PrimState m))) a
dataFt (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1)
Int -> a -> m (Int, Int, a)
inner (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1) (a -> m (Int, Int, a)) -> a -> m (Int, Int, a)
forall a b. (a -> b) -> a -> b
$! a
s a -> a -> a
forall a. Num a => a -> a -> a
- a
ds
| Int
i Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 = (Int, Int, a) -> m (Int, Int, a)
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Int
i, Int
64 Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int -> Int
forall b. FiniteBits b => b -> Int
countLeadingZeros Int
nFt, a
s)
| Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int -> Int
forall a. Bits a => Int -> a
bit Int
k Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
nFt = (Int, Int, a) -> m (Int, Int, a)
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Int
i, Int
k, a
s)
| Bool
otherwise = do
a
t <- ST (PrimState m) a -> m a
forall (m :: * -> *) a. PrimMonad m => ST (PrimState m) a -> m a
stToPrim (ST (PrimState m) a -> m a) -> ST (PrimState m) a -> m a
forall a b. (a -> b) -> a -> b
$ (a
s +) (a -> a) -> ST (PrimState m) a -> ST (PrimState m) a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> MVector (PrimState (ST (PrimState m))) a
-> Int -> ST (PrimState m) a
forall (m :: * -> *) (v :: * -> * -> *) a.
(HasCallStack, PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> m a
VGM.read MVector (PrimState m) a
MVector (PrimState (ST (PrimState m))) a
dataFt (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int -> Int
forall a. Bits a => Int -> a
bit Int
k Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1)
Bool
b <- a -> m Bool
f a
t
if Bool -> Bool
not Bool
b
then (Int, Int, a) -> m (Int, Int, a)
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Int
i, Int
k, a
s)
else do
a
di <- ST (PrimState m) a -> m a
forall (m :: * -> *) a. PrimMonad m => ST (PrimState m) a -> m a
stToPrim (ST (PrimState m) a -> m a) -> ST (PrimState m) a -> m a
forall a b. (a -> b) -> a -> b
$ MVector (PrimState (ST (PrimState m))) a
-> Int -> ST (PrimState m) a
forall (m :: * -> *) (v :: * -> * -> *) a.
(HasCallStack, PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> m a
VGM.read MVector (PrimState m) a
MVector (PrimState (ST (PrimState m))) a
dataFt (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1)
Int -> a -> m (Int, Int, a)
inner (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
i Int -> Int -> Int
forall a. Bits a => a -> a -> a
.&. (-Int
i)) (a -> m (Int, Int, a)) -> a -> m (Int, Int, a)
forall a b. (a -> b) -> a -> b
$! a
s a -> a -> a
forall a. Num a => a -> a -> a
- a
di
where
k :: Int
k = Int -> Int
forall b. FiniteBits b => b -> Int
countTrailingZeros Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1
(!Int
i0, !Int
k0, !a
s0) <- Int -> a -> m (Int, Int, a)
inner Int
l0 (a
0 :: a)
let inner2 :: Int -> Int -> a -> m Int
inner2 Int
i Int
k_ !a
s
| Int
k_ Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 = Int -> m Int
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Int
i
| Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int -> Int
forall a. Bits a => Int -> a
bit Int
k Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< MVector (PrimState m) a -> Int
forall (v :: * -> * -> *) a s. MVector v a => v s a -> Int
VGM.length MVector (PrimState m) a
dataFt = do
a
t <- ST (PrimState m) a -> m a
forall (m :: * -> *) a. PrimMonad m => ST (PrimState m) a -> m a
stToPrim (ST (PrimState m) a -> m a) -> ST (PrimState m) a -> m a
forall a b. (a -> b) -> a -> b
$ (a
s +) (a -> a) -> ST (PrimState m) a -> ST (PrimState m) a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> MVector (PrimState (ST (PrimState m))) a
-> Int -> ST (PrimState m) a
forall (m :: * -> *) (v :: * -> * -> *) a.
(HasCallStack, PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> m a
VGM.read MVector (PrimState m) a
MVector (PrimState (ST (PrimState m))) a
dataFt (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int -> Int
forall a. Bits a => Int -> a
bit Int
k Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1)
Bool
b <- a -> m Bool
f a
t
if Bool
b
then Int -> Int -> a -> m Int
inner2 (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int -> Int
forall a. Bits a => Int -> a
bit Int
k) Int
k a
t
else Int -> Int -> a -> m Int
inner2 Int
i Int
k a
s
| Bool
otherwise = Int -> Int -> a -> m Int
inner2 Int
i Int
k a
s
where
k :: Int
k = Int
k_ Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1
Int -> Int -> a -> m Int
inner2 Int
i0 Int
k0 a
s0
{-# INLINE minLeft #-}
minLeft ::
(HasCallStack, PrimMonad m, Num a, VU.Unbox a) =>
FenwickTree (PrimState m) a ->
Int ->
(a -> Bool) ->
m Int
minLeft :: forall (m :: * -> *) a.
(HasCallStack, PrimMonad m, Num a, Unbox a) =>
FenwickTree (PrimState m) a -> Int -> (a -> Bool) -> m Int
minLeft FenwickTree (PrimState m) a
ft Int
r0 a -> Bool
f = FenwickTree (PrimState m) a -> Int -> (a -> m Bool) -> m Int
forall (m :: * -> *) a.
(HasCallStack, PrimMonad m, Num a, Unbox a) =>
FenwickTree (PrimState m) a -> Int -> (a -> m Bool) -> m Int
minLeftM FenwickTree (PrimState m) a
ft Int
r0 (Bool -> m Bool
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Bool -> m Bool) -> (a -> Bool) -> a -> m Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Bool
f)
{-# INLINEABLE minLeftM #-}
minLeftM ::
forall m a.
(HasCallStack, PrimMonad m, Num a, VU.Unbox a) =>
FenwickTree (PrimState m) a ->
Int ->
(a -> m Bool) ->
m Int
minLeftM :: forall (m :: * -> *) a.
(HasCallStack, PrimMonad m, Num a, Unbox a) =>
FenwickTree (PrimState m) a -> Int -> (a -> m Bool) -> m Int
minLeftM FenwickTree {Int
MVector (PrimState m) a
nFt :: forall s a. FenwickTree s a -> Int
dataFt :: forall s a. FenwickTree s a -> MVector s a
nFt :: Int
dataFt :: MVector (PrimState m) a
..} Int
r0 a -> m Bool
f = do
Bool
b0 <- a -> m Bool
f a
0
let !()
_ = HasCallStack => Bool -> [Char] -> ()
Bool -> [Char] -> ()
ACIA.runtimeAssert Bool
b0 [Char]
"AtCoder.FenwickTree.minLeftM: `f 0` must return `True`"
let inner :: Int -> Int -> a -> m (Int, Int, a)
inner Int
i Int
k !a
s
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
0 = (Int, Int, a) -> m (Int, Int, a)
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Int
i, Int
k, a
s)
| Bool
otherwise = do
Bool
b <- a -> m Bool
f a
s
if Bool -> Bool
not Bool
b
then (Int, Int, a) -> m (Int, Int, a)
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Int
i, Int
k, a
s)
else do
a
s' <- ST (PrimState m) a -> m a
forall (m :: * -> *) a. PrimMonad m => ST (PrimState m) a -> m a
stToPrim (ST (PrimState m) a -> m a) -> ST (PrimState m) a -> m a
forall a b. (a -> b) -> a -> b
$ (a
s +) (a -> a) -> ST (PrimState m) a -> ST (PrimState m) a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> MVector (PrimState (ST (PrimState m))) a
-> Int -> ST (PrimState m) a
forall (m :: * -> *) (v :: * -> * -> *) a.
(HasCallStack, PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> m a
VGM.read MVector (PrimState m) a
MVector (PrimState (ST (PrimState m))) a
dataFt (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1)
Int -> Int -> a -> m (Int, Int, a)
inner (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
i Int -> Int -> Int
forall a. Bits a => a -> a -> a
.&. (-Int
i)) (Int -> Int
forall b. FiniteBits b => b -> Int
countTrailingZeros Int
i) a
s'
(!Int
i0, !Int
k0, !a
s0) <- Int -> Int -> a -> m (Int, Int, a)
inner Int
r0 (Int
0 :: Int) (a
0 :: a)
Bool
b0_ <- a -> m Bool
f a
s0
if Bool
b0_
then do
let !()
_ = HasCallStack => Bool -> [Char] -> ()
Bool -> [Char] -> ()
ACIA.runtimeAssert (Int
i0 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0) [Char]
"AtCoder.FenwickTree.minLeftM: implementation error"
Int -> m Int
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Int
0
else do
let inner2 :: Int -> Int -> a -> m Int
inner2 Int
i Int
k_ !a
s
| Int
k_ Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 = Int -> m Int
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Int
i
| Bool
otherwise = do
let k :: Int
k = Int
k_ Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1
a
t <- ST (PrimState m) a -> m a
forall (m :: * -> *) a. PrimMonad m => ST (PrimState m) a -> m a
stToPrim (ST (PrimState m) a -> m a) -> ST (PrimState m) a -> m a
forall a b. (a -> b) -> a -> b
$ (a
s -) (a -> a) -> ST (PrimState m) a -> ST (PrimState m) a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> MVector (PrimState (ST (PrimState m))) a
-> Int -> ST (PrimState m) a
forall (m :: * -> *) (v :: * -> * -> *) a.
(HasCallStack, PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> m a
VGM.read MVector (PrimState m) a
MVector (PrimState (ST (PrimState m))) a
dataFt (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int -> Int
forall a. Bits a => Int -> a
bit Int
k Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1)
Bool
b <- a -> m Bool
f a
t
if Bool
b
then Int -> Int -> a -> m Int
inner2 Int
i Int
k a
s
else Int -> Int -> a -> m Int
inner2 (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int -> Int
forall a. Bits a => Int -> a
bit Int
k) Int
k a
t
(Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1) (Int -> Int) -> m Int -> m Int
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> Int -> a -> m Int
inner2 Int
i0 Int
k0 a
s0