Safe Haskell | Trustworthy |
---|---|
Language | Haskell2010 |
Distribution.Compat.Prelude
Contents
- Prelude
- Common type-classes
- Some types
- Data.Either
- Data.Maybe
- Data.List
- Data.List.NonEmpty
- Data.Foldable
- Data.Traversable
- Data.Function
- Data.Ord
- Control.Arrow
- Control.Monad
- Control.Exception
- Control.DeepSeq
- Data.Char
- Data.Void
- Data.Word & Data.Int
- Text.PrettyPrint
- System.Exit
- Text.Read
- Debug.Trace (as deprecated functions)
Description
This module does two things:
- Acts as a compatibility layer, like
base-compat
. - Provides commonly used imports.
Synopsis
- data Int
- data Float
- data Char
- data IO a
- data Bool
- data Double
- data Ordering
- data Maybe a
- class a ~# b => (a :: k) ~ (b :: k)
- data Integer
- data Either a b
- class (Real a, Enum a) => Integral a where
- type Rational = Ratio Integer
- type String = [Char]
- class Read a where
- class Show a where
- type IOError = IOException
- class Bounded a where
- class Enum a where
- succ :: a -> a
- pred :: a -> a
- toEnum :: Int -> a
- fromEnum :: a -> Int
- enumFrom :: a -> [a]
- enumFromThen :: a -> a -> [a]
- enumFromTo :: a -> a -> [a]
- enumFromThenTo :: a -> a -> a -> [a]
- class Eq a where
- class Fractional a => Floating a where
- class Num a => Fractional a where
- (/) :: a -> a -> a
- recip :: a -> a
- fromRational :: Rational -> a
- class Applicative m => Monad (m :: Type -> Type) where
- class Functor (f :: Type -> Type) where
- class Num a where
- class Eq a => Ord a where
- class (Num a, Ord a) => Real a where
- toRational :: a -> Rational
- class (RealFrac a, Floating a) => RealFloat a where
- floatRadix :: a -> Integer
- floatDigits :: a -> Int
- floatRange :: a -> (Int, Int)
- decodeFloat :: a -> (Integer, Int)
- encodeFloat :: Integer -> Int -> a
- exponent :: a -> Int
- significand :: a -> a
- scaleFloat :: Int -> a -> a
- isNaN :: a -> Bool
- isInfinite :: a -> Bool
- isDenormalized :: a -> Bool
- isNegativeZero :: a -> Bool
- isIEEE :: a -> Bool
- atan2 :: a -> a -> a
- class (Real a, Fractional a) => RealFrac a where
- class Monad m => MonadFail (m :: Type -> Type) where
- class Functor f => Applicative (f :: Type -> Type) where
- class Semigroup a => Monoid a where
- type ShowS = String -> String
- type ReadS a = String -> [(a, String)]
- type FilePath = String
- error :: forall (r :: RuntimeRep) (a :: TYPE r). HasCallStack => [Char] -> a
- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
- even :: Integral a => a -> Bool
- (<$>) :: Functor f => (a -> b) -> f a -> f b
- ($) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b
- fst :: (a, b) -> a
- uncurry :: (a -> b -> c) -> (a, b) -> c
- id :: a -> a
- writeFile :: FilePath -> String -> IO ()
- getLine :: IO String
- putStrLn :: String -> IO ()
- filter :: (a -> Bool) -> [a] -> [a]
- foldl :: Foldable t => (b -> a -> b) -> b -> t a -> b
- sum :: (Foldable t, Num a) => t a -> a
- product :: (Foldable t, Num a) => t a -> a
- maximum :: (Foldable t, Ord a) => t a -> a
- minimum :: (Foldable t, Ord a) => t a -> a
- elem :: (Foldable t, Eq a) => a -> t a -> Bool
- cycle :: HasCallStack => [a] -> [a]
- (++) :: [a] -> [a] -> [a]
- seq :: forall {r :: RuntimeRep} a (b :: TYPE r). a -> b -> b
- concat :: Foldable t => t [a] -> [a]
- zip :: [a] -> [b] -> [(a, b)]
- print :: Show a => a -> IO ()
- otherwise :: Bool
- map :: (a -> b) -> [a] -> [b]
- fromIntegral :: (Integral a, Num b) => a -> b
- realToFrac :: (Real a, Fractional b) => a -> b
- (^) :: (Num a, Integral b) => a -> b -> a
- (&&) :: Bool -> Bool -> Bool
- (||) :: Bool -> Bool -> Bool
- not :: Bool -> Bool
- errorWithoutStackTrace :: forall (r :: RuntimeRep) (a :: TYPE r). [Char] -> a
- undefined :: forall (r :: RuntimeRep) (a :: TYPE r). HasCallStack => a
- (=<<) :: Monad m => (a -> m b) -> m a -> m b
- const :: a -> b -> a
- (.) :: (b -> c) -> (a -> b) -> a -> c
- flip :: (a -> b -> c) -> b -> a -> c
- ($!) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b
- until :: (a -> Bool) -> (a -> a) -> a -> a
- asTypeOf :: a -> a -> a
- subtract :: Num a => a -> a -> a
- maybe :: b -> (a -> b) -> Maybe a -> b
- scanl :: (b -> a -> b) -> b -> [a] -> [b]
- scanl1 :: (a -> a -> a) -> [a] -> [a]
- scanr :: (a -> b -> b) -> b -> [a] -> [b]
- scanr1 :: (a -> a -> a) -> [a] -> [a]
- iterate :: (a -> a) -> a -> [a]
- repeat :: a -> [a]
- replicate :: Int -> a -> [a]
- takeWhile :: (a -> Bool) -> [a] -> [a]
- dropWhile :: (a -> Bool) -> [a] -> [a]
- take :: Int -> [a] -> [a]
- drop :: Int -> [a] -> [a]
- splitAt :: Int -> [a] -> ([a], [a])
- span :: (a -> Bool) -> [a] -> ([a], [a])
- break :: (a -> Bool) -> [a] -> ([a], [a])
- reverse :: [a] -> [a]
- and :: Foldable t => t Bool -> Bool
- or :: Foldable t => t Bool -> Bool
- notElem :: (Foldable t, Eq a) => a -> t a -> Bool
- lookup :: Eq a => a -> [(a, b)] -> Maybe b
- concatMap :: Foldable t => (a -> [b]) -> t a -> [b]
- (!!) :: HasCallStack => [a] -> Int -> a
- zip3 :: [a] -> [b] -> [c] -> [(a, b, c)]
- zipWith3 :: (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d]
- unzip :: [(a, b)] -> ([a], [b])
- unzip3 :: [(a, b, c)] -> ([a], [b], [c])
- shows :: Show a => a -> ShowS
- showChar :: Char -> ShowS
- showString :: String -> ShowS
- showParen :: Bool -> ShowS -> ShowS
- odd :: Integral a => a -> Bool
- (^^) :: (Fractional a, Integral b) => a -> b -> a
- gcd :: Integral a => a -> a -> a
- lcm :: Integral a => a -> a -> a
- snd :: (a, b) -> b
- curry :: ((a, b) -> c) -> a -> b -> c
- lex :: ReadS String
- readParen :: Bool -> ReadS a -> ReadS a
- either :: (a -> c) -> (b -> c) -> Either a b -> c
- reads :: Read a => ReadS a
- sequence_ :: (Foldable t, Monad m) => t (m a) -> m ()
- lines :: String -> [String]
- unlines :: [String] -> String
- words :: String -> [String]
- unwords :: [String] -> String
- userError :: String -> IOError
- ioError :: IOError -> IO a
- putChar :: Char -> IO ()
- putStr :: String -> IO ()
- getChar :: IO Char
- getContents :: IO String
- interact :: (String -> String) -> IO ()
- readFile :: FilePath -> IO String
- appendFile :: FilePath -> String -> IO ()
- readLn :: Read a => IO a
- readIO :: Read a => String -> IO a
- class Semigroup a where
- (<>) :: a -> a -> a
- gmappend :: (Generic a, GSemigroup (Rep a)) => a -> a -> a
- gmempty :: (Generic a, GMonoid (Rep a)) => a
- class Typeable (a :: k)
- type TypeRep = SomeTypeRep
- typeRep :: forall {k} proxy (a :: k). Typeable a => proxy a -> TypeRep
- class Typeable a => Data a
- class Generic a
- class NFData a where
- rnf :: a -> ()
- genericRnf :: (Generic a, GNFData (Rep a)) => a -> ()
- class Binary t where
- class Typeable a => Structured a
- class Applicative f => Alternative (f :: Type -> Type) where
- class (Alternative m, Monad m) => MonadPlus (m :: Type -> Type) where
- class IsString a where
- fromString :: String -> a
- data Map k a
- data Set a
- data NonEmptySet a
- newtype Identity a = Identity {
- runIdentity :: a
- data Proxy (t :: k) = Proxy
- newtype Const a (b :: k) = Const {
- getConst :: a
- data Void
- partitionEithers :: [Either a b] -> ([a], [b])
- catMaybes :: [Maybe a] -> [a]
- mapMaybe :: (a -> Maybe b) -> [a] -> [b]
- fromMaybe :: a -> Maybe a -> a
- maybeToList :: Maybe a -> [a]
- listToMaybe :: [a] -> Maybe a
- isNothing :: Maybe a -> Bool
- isJust :: Maybe a -> Bool
- unfoldr :: (b -> Maybe (a, b)) -> b -> [a]
- isPrefixOf :: Eq a => [a] -> [a] -> Bool
- isSuffixOf :: Eq a => [a] -> [a] -> Bool
- intercalate :: [a] -> [[a]] -> [a]
- intersperse :: a -> [a] -> [a]
- sort :: Ord a => [a] -> [a]
- sortBy :: (a -> a -> Ordering) -> [a] -> [a]
- nub :: Eq a => [a] -> [a]
- nubBy :: (a -> a -> Bool) -> [a] -> [a]
- partition :: (a -> Bool) -> [a] -> ([a], [a])
- dropWhileEnd :: (a -> Bool) -> [a] -> [a]
- data NonEmpty a = a :| [a]
- nonEmpty :: [a] -> Maybe (NonEmpty a)
- foldl1 :: (a -> a -> a) -> NonEmpty a -> a
- foldr1 :: (a -> a -> a) -> NonEmpty a -> a
- head :: NonEmpty a -> a
- tail :: NonEmpty a -> [a]
- last :: NonEmpty a -> a
- init :: NonEmpty a -> [a]
- class Foldable (t :: Type -> Type)
- foldMap :: (Foldable t, Monoid m) => (a -> m) -> t a -> m
- foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b
- null :: Foldable t => t a -> Bool
- length :: Foldable t => t a -> Int
- find :: Foldable t => (a -> Bool) -> t a -> Maybe a
- foldl' :: Foldable t => (b -> a -> b) -> b -> t a -> b
- traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f ()
- for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f ()
- any :: Foldable t => (a -> Bool) -> t a -> Bool
- all :: Foldable t => (a -> Bool) -> t a -> Bool
- toList :: Foldable t => t a -> [a]
- class (Functor t, Foldable t) => Traversable (t :: Type -> Type)
- traverse :: (Traversable t, Applicative f) => (a -> f b) -> t a -> f (t b)
- sequenceA :: (Traversable t, Applicative f) => t (f a) -> f (t a)
- for :: (Traversable t, Applicative f) => t a -> (a -> f b) -> f (t b)
- on :: (b -> b -> c) -> (a -> b) -> a -> a -> c
- comparing :: Ord a => (b -> a) -> b -> b -> Ordering
- first :: Arrow a => a b c -> a (b, d) (c, d)
- liftM :: Monad m => (a1 -> r) -> m a1 -> m r
- liftM2 :: Monad m => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r
- unless :: Applicative f => Bool -> f () -> f ()
- when :: Applicative f => Bool -> f () -> f ()
- ap :: Monad m => m (a -> b) -> m a -> m b
- void :: Functor f => f a -> f ()
- foldM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b
- filterM :: Applicative m => (a -> m Bool) -> [a] -> m [a]
- join :: Monad m => m (m a) -> m a
- guard :: Alternative f => Bool -> f ()
- catch :: Exception e => IO a -> (e -> IO a) -> IO a
- throwIO :: Exception e => e -> IO a
- evaluate :: a -> IO a
- class (Typeable e, Show e) => Exception e where
- toException :: e -> SomeException
- fromException :: SomeException -> Maybe e
- displayException :: e -> String
- data IOException
- data SomeException = Exception e => SomeException e
- tryIO :: IO a -> IO (Either IOException a)
- catchIO :: IO a -> (IOException -> IO a) -> IO a
- catchExit :: IO a -> (ExitCode -> IO a) -> IO a
- deepseq :: NFData a => a -> b -> b
- force :: NFData a => a -> a
- isSpace :: Char -> Bool
- isDigit :: Char -> Bool
- isUpper :: Char -> Bool
- isAlpha :: Char -> Bool
- isAlphaNum :: Char -> Bool
- chr :: Int -> Char
- ord :: Char -> Int
- toLower :: Char -> Char
- toUpper :: Char -> Char
- absurd :: Void -> a
- vacuous :: Functor f => f Void -> f a
- data Word
- data Word8
- data Word16
- data Word32
- data Word64
- data Int8
- data Int16
- data Int32
- data Int64
- (<<>>) :: Doc -> Doc -> Doc
- (<+>) :: Doc -> Doc -> Doc
- data ExitCode
- exitWith :: ExitCode -> IO a
- exitSuccess :: IO a
- exitFailure :: IO a
- readMaybe :: Read a => String -> Maybe a
- trace :: String -> a -> a
- traceShow :: Show a => a -> b -> b
- traceShowId :: Show a => a -> a
- traceM :: Applicative f => String -> f ()
- traceShowM :: (Show a, Applicative f) => a -> f ()
Prelude
A fixed-precision integer type with at least the range [-2^29 .. 2^29-1]
.
The exact range for a given implementation can be determined by using
minBound
and maxBound
from the Bounded
class.
Instances
Pretty Int Source # | |
Defined in Distribution.Pretty | |
Structured Int Source # | |
Defined in Distribution.Utils.Structured | |
Data Int | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int -> c Int # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int # dataTypeOf :: Int -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int) # gmapT :: (forall b. Data b => b -> b) -> Int -> Int # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r # gmapQ :: (forall d. Data d => d -> u) -> Int -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int -> m Int # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int # | |
Bits Int | Since: base-2.1 |
Defined in GHC.Bits | |
FiniteBits Int | Since: base-4.6.0.0 |
Defined in GHC.Bits Methods finiteBitSize :: Int -> Int # countLeadingZeros :: Int -> Int # countTrailingZeros :: Int -> Int # | |
Bounded Int | Since: base-2.1 |
Enum Int | Since: base-2.1 |
Ix Int | Since: base-2.1 |
Num Int | Since: base-2.1 |
Read Int | Since: base-2.1 |
Integral Int | Since: base-2.0.1 |
Real Int | Since: base-2.0.1 |
Defined in GHC.Real Methods toRational :: Int -> Rational # | |
Show Int | Since: base-2.1 |
Binary Int | |
NFData Int | |
Defined in Control.DeepSeq | |
Eq Int | |
Ord Int | |
IArray UArray Int | |
Defined in Data.Array.Base Methods bounds :: Ix i => UArray i Int -> (i, i) # numElements :: Ix i => UArray i Int -> Int unsafeArray :: Ix i => (i, i) -> [(Int, Int)] -> UArray i Int unsafeAt :: Ix i => UArray i Int -> Int -> Int unsafeReplace :: Ix i => UArray i Int -> [(Int, Int)] -> UArray i Int unsafeAccum :: Ix i => (Int -> e' -> Int) -> UArray i Int -> [(Int, e')] -> UArray i Int unsafeAccumArray :: Ix i => (Int -> e' -> Int) -> Int -> (i, i) -> [(Int, e')] -> UArray i Int | |
Lift Int | |
Generic1 (URec Int :: k -> Type) | |
Foldable (UInt :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UInt m -> m # foldMap :: Monoid m => (a -> m) -> UInt a -> m # foldMap' :: Monoid m => (a -> m) -> UInt a -> m # foldr :: (a -> b -> b) -> b -> UInt a -> b # foldr' :: (a -> b -> b) -> b -> UInt a -> b # foldl :: (b -> a -> b) -> b -> UInt a -> b # foldl' :: (b -> a -> b) -> b -> UInt a -> b # foldr1 :: (a -> a -> a) -> UInt a -> a # foldl1 :: (a -> a -> a) -> UInt a -> a # elem :: Eq a => a -> UInt a -> Bool # maximum :: Ord a => UInt a -> a # | |
Traversable (UInt :: Type -> Type) | Since: base-4.9.0.0 |
MArray (STUArray s) Int (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Int -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Int -> ST s Int newArray :: Ix i => (i, i) -> Int -> ST s (STUArray s i Int) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Int) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Int) unsafeRead :: Ix i => STUArray s i Int -> Int -> ST s Int unsafeWrite :: Ix i => STUArray s i Int -> Int -> Int -> ST s () | |
Functor (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
Generic (URec Int p) | |
Show (URec Int p) | Since: base-4.9.0.0 |
Eq (URec Int p) | Since: base-4.9.0.0 |
Ord (URec Int p) | Since: base-4.9.0.0 |
data URec Int (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
type Rep1 (URec Int :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (URec Int p) | Since: base-4.9.0.0 |
Defined in GHC.Generics |
Single-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE single-precision type.
Instances
Structured Float Source # | |
Defined in Distribution.Utils.Structured | |
Data Float | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Float -> c Float # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Float # dataTypeOf :: Float -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Float) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Float) # gmapT :: (forall b. Data b => b -> b) -> Float -> Float # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r # gmapQ :: (forall d. Data d => d -> u) -> Float -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Float -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Float -> m Float # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float # | |
Floating Float | Since: base-2.1 |
RealFloat Float | Since: base-2.1 |
Defined in GHC.Float Methods floatRadix :: Float -> Integer # floatDigits :: Float -> Int # floatRange :: Float -> (Int, Int) # decodeFloat :: Float -> (Integer, Int) # encodeFloat :: Integer -> Int -> Float # significand :: Float -> Float # scaleFloat :: Int -> Float -> Float # isInfinite :: Float -> Bool # isDenormalized :: Float -> Bool # isNegativeZero :: Float -> Bool # | |
Read Float | Since: base-2.1 |
Binary Float | |
NFData Float | |
Defined in Control.DeepSeq | |
Eq Float | Note that due to the presence of
Also note that
|
Ord Float | Note that due to the presence of
Also note that, due to the same,
|
IArray UArray Float | |
Defined in Data.Array.Base Methods bounds :: Ix i => UArray i Float -> (i, i) # numElements :: Ix i => UArray i Float -> Int unsafeArray :: Ix i => (i, i) -> [(Int, Float)] -> UArray i Float unsafeAt :: Ix i => UArray i Float -> Int -> Float unsafeReplace :: Ix i => UArray i Float -> [(Int, Float)] -> UArray i Float unsafeAccum :: Ix i => (Float -> e' -> Float) -> UArray i Float -> [(Int, e')] -> UArray i Float unsafeAccumArray :: Ix i => (Float -> e' -> Float) -> Float -> (i, i) -> [(Int, e')] -> UArray i Float | |
Lift Float | |
Generic1 (URec Float :: k -> Type) | |
Foldable (UFloat :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UFloat m -> m # foldMap :: Monoid m => (a -> m) -> UFloat a -> m # foldMap' :: Monoid m => (a -> m) -> UFloat a -> m # foldr :: (a -> b -> b) -> b -> UFloat a -> b # foldr' :: (a -> b -> b) -> b -> UFloat a -> b # foldl :: (b -> a -> b) -> b -> UFloat a -> b # foldl' :: (b -> a -> b) -> b -> UFloat a -> b # foldr1 :: (a -> a -> a) -> UFloat a -> a # foldl1 :: (a -> a -> a) -> UFloat a -> a # elem :: Eq a => a -> UFloat a -> Bool # maximum :: Ord a => UFloat a -> a # minimum :: Ord a => UFloat a -> a # | |
Traversable (UFloat :: Type -> Type) | Since: base-4.9.0.0 |
MArray (STUArray s) Float (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Float -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Float -> ST s Int newArray :: Ix i => (i, i) -> Float -> ST s (STUArray s i Float) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Float) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Float) unsafeRead :: Ix i => STUArray s i Float -> Int -> ST s Float unsafeWrite :: Ix i => STUArray s i Float -> Int -> Float -> ST s () | |
Functor (URec Float :: Type -> Type) | Since: base-4.9.0.0 |
Generic (URec Float p) | |
Show (URec Float p) | |
Eq (URec Float p) | |
Ord (URec Float p) | |
Defined in GHC.Generics | |
data URec Float (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
type Rep1 (URec Float :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (URec Float p) | |
Defined in GHC.Generics |
The character type Char
is an enumeration whose values represent
Unicode (or equivalently ISO/IEC 10646) code points (i.e. characters, see
http://www.unicode.org/ for details). This set extends the ISO 8859-1
(Latin-1) character set (the first 256 characters), which is itself an extension
of the ASCII character set (the first 128 characters). A character literal in
Haskell has type Char
.
To convert a Char
to or from the corresponding Int
value defined
by Unicode, use toEnum
and fromEnum
from the
Enum
class respectively (or equivalently ord
and
chr
).
Instances
Structured Char Source # | |
Defined in Distribution.Utils.Structured | |
Data Char | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Char -> c Char # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Char # dataTypeOf :: Char -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Char) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Char) # gmapT :: (forall b. Data b => b -> b) -> Char -> Char # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r # gmapQ :: (forall d. Data d => d -> u) -> Char -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Char -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Char -> m Char # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char # | |
Bounded Char | Since: base-2.1 |
Enum Char | Since: base-2.1 |
Ix Char | Since: base-2.1 |
Read Char | Since: base-2.1 |
Show Char | Since: base-2.1 |
Binary Char | |
NFData Char | |
Defined in Control.DeepSeq | |
Eq Char | |
Ord Char | |
Newtype String FilePathNT Source # | |
Defined in Distribution.FieldGrammar.Newtypes | |
Newtype String Token Source # | |
Newtype String Token' Source # | |
IArray UArray Char | |
Defined in Data.Array.Base Methods bounds :: Ix i => UArray i Char -> (i, i) # numElements :: Ix i => UArray i Char -> Int unsafeArray :: Ix i => (i, i) -> [(Int, Char)] -> UArray i Char unsafeAt :: Ix i => UArray i Char -> Int -> Char unsafeReplace :: Ix i => UArray i Char -> [(Int, Char)] -> UArray i Char unsafeAccum :: Ix i => (Char -> e' -> Char) -> UArray i Char -> [(Int, e')] -> UArray i Char unsafeAccumArray :: Ix i => (Char -> e' -> Char) -> Char -> (i, i) -> [(Int, e')] -> UArray i Char | |
TestCoercion SChar | Since: base-4.18.0.0 |
Defined in GHC.TypeLits | |
TestEquality SChar | Since: base-4.18.0.0 |
Defined in GHC.TypeLits | |
Lift Char | |
Monad m => Stream FieldLineStream m Char Source # | |
Defined in Distribution.Parsec.FieldLineStream Methods uncons :: FieldLineStream -> m (Maybe (Char, FieldLineStream)) # | |
Monad m => Stream ByteString m Char | |
Defined in Text.Parsec.Prim Methods uncons :: ByteString -> m (Maybe (Char, ByteString)) # | |
Monad m => Stream ByteString m Char | |
Defined in Text.Parsec.Prim Methods uncons :: ByteString -> m (Maybe (Char, ByteString)) # | |
Monad m => Stream Text m Char | |
Monad m => Stream Text m Char | |
Generic1 (URec Char :: k -> Type) | |
Foldable (UChar :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UChar m -> m # foldMap :: Monoid m => (a -> m) -> UChar a -> m # foldMap' :: Monoid m => (a -> m) -> UChar a -> m # foldr :: (a -> b -> b) -> b -> UChar a -> b # foldr' :: (a -> b -> b) -> b -> UChar a -> b # foldl :: (b -> a -> b) -> b -> UChar a -> b # foldl' :: (b -> a -> b) -> b -> UChar a -> b # foldr1 :: (a -> a -> a) -> UChar a -> a # foldl1 :: (a -> a -> a) -> UChar a -> a # elem :: Eq a => a -> UChar a -> Bool # maximum :: Ord a => UChar a -> a # minimum :: Ord a => UChar a -> a # | |
Traversable (UChar :: Type -> Type) | Since: base-4.9.0.0 |
MArray (STUArray s) Char (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Char -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Char -> ST s Int newArray :: Ix i => (i, i) -> Char -> ST s (STUArray s i Char) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Char) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Char) unsafeRead :: Ix i => STUArray s i Char -> Int -> ST s Char unsafeWrite :: Ix i => STUArray s i Char -> Int -> Char -> ST s () | |
Functor (URec Char :: Type -> Type) | Since: base-4.9.0.0 |
Generic (URec Char p) | |
Show (URec Char p) | Since: base-4.9.0.0 |
Eq (URec Char p) | Since: base-4.9.0.0 |
Ord (URec Char p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
data URec Char (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
type Compare (a :: Char) (b :: Char) | |
Defined in Data.Type.Ord | |
type Rep1 (URec Char :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (URec Char p) | Since: base-4.9.0.0 |
Defined in GHC.Generics |
A value of type
is a computation which, when performed,
does some I/O before returning a value of type IO
aa
.
There is really only one way to "perform" an I/O action: bind it to
Main.main
in your program. When your program is run, the I/O will
be performed. It isn't possible to perform I/O from an arbitrary
function, unless that function is itself in the IO
monad and called
at some point, directly or indirectly, from Main.main
.
IO
is a monad, so IO
actions can be combined using either the do-notation
or the >>
and >>=
operations from the Monad
class.
Instances
Instances
Parsec Bool Source # | |
Defined in Distribution.Parsec Methods parsec :: CabalParsing m => m Bool Source # | |
Pretty Bool Source # | |
Defined in Distribution.Pretty | |
Structured Bool Source # | |
Defined in Distribution.Utils.Structured | |
Data Bool | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bool -> c Bool # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bool # dataTypeOf :: Bool -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Bool) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bool) # gmapT :: (forall b. Data b => b -> b) -> Bool -> Bool # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r # gmapQ :: (forall d. Data d => d -> u) -> Bool -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Bool -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bool -> m Bool # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool # | |
Bits Bool | Interpret Since: base-4.7.0.0 |
Defined in GHC.Bits Methods (.&.) :: Bool -> Bool -> Bool # (.|.) :: Bool -> Bool -> Bool # complement :: Bool -> Bool # shift :: Bool -> Int -> Bool # rotate :: Bool -> Int -> Bool # setBit :: Bool -> Int -> Bool # clearBit :: Bool -> Int -> Bool # complementBit :: Bool -> Int -> Bool # testBit :: Bool -> Int -> Bool # bitSizeMaybe :: Bool -> Maybe Int # shiftL :: Bool -> Int -> Bool # unsafeShiftL :: Bool -> Int -> Bool # shiftR :: Bool -> Int -> Bool # unsafeShiftR :: Bool -> Int -> Bool # rotateL :: Bool -> Int -> Bool # | |
FiniteBits Bool | Since: base-4.7.0.0 |
Defined in GHC.Bits Methods finiteBitSize :: Bool -> Int # countLeadingZeros :: Bool -> Int # countTrailingZeros :: Bool -> Int # | |
Bounded Bool | Since: base-2.1 |
Enum Bool | Since: base-2.1 |
Generic Bool | |
SingKind Bool | Since: base-4.9.0.0 |
Defined in GHC.Generics Associated Types type DemoteRep Bool | |
Ix Bool | Since: base-2.1 |
Read Bool | Since: base-2.1 |
Show Bool | Since: base-2.1 |
Binary Bool | |
NFData Bool | |
Defined in Control.DeepSeq | |
Eq Bool | |
Ord Bool | |
IArray UArray Bool | |
Defined in Data.Array.Base Methods bounds :: Ix i => UArray i Bool -> (i, i) # numElements :: Ix i => UArray i Bool -> Int unsafeArray :: Ix i => (i, i) -> [(Int, Bool)] -> UArray i Bool unsafeAt :: Ix i => UArray i Bool -> Int -> Bool unsafeReplace :: Ix i => UArray i Bool -> [(Int, Bool)] -> UArray i Bool unsafeAccum :: Ix i => (Bool -> e' -> Bool) -> UArray i Bool -> [(Int, e')] -> UArray i Bool unsafeAccumArray :: Ix i => (Bool -> e' -> Bool) -> Bool -> (i, i) -> [(Int, e')] -> UArray i Bool | |
SingI 'False | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
SingI 'True | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Lift Bool | |
MArray (STUArray s) Bool (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Bool -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Bool -> ST s Int newArray :: Ix i => (i, i) -> Bool -> ST s (STUArray s i Bool) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Bool) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Bool) unsafeRead :: Ix i => STUArray s i Bool -> Int -> ST s Bool unsafeWrite :: Ix i => STUArray s i Bool -> Int -> Bool -> ST s () | |
type DemoteRep Bool | |
Defined in GHC.Generics | |
type Rep Bool | Since: base-4.6.0.0 |
data Sing (a :: Bool) | |
Double-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE double-precision type.
Instances
Structured Double Source # | |
Defined in Distribution.Utils.Structured | |
Data Double | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Double -> c Double # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Double # toConstr :: Double -> Constr # dataTypeOf :: Double -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Double) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Double) # gmapT :: (forall b. Data b => b -> b) -> Double -> Double # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r # gmapQ :: (forall d. Data d => d -> u) -> Double -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Double -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Double -> m Double # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double # | |
Floating Double | Since: base-2.1 |
RealFloat Double | Since: base-2.1 |
Defined in GHC.Float Methods floatRadix :: Double -> Integer # floatDigits :: Double -> Int # floatRange :: Double -> (Int, Int) # decodeFloat :: Double -> (Integer, Int) # encodeFloat :: Integer -> Int -> Double # significand :: Double -> Double # scaleFloat :: Int -> Double -> Double # isInfinite :: Double -> Bool # isDenormalized :: Double -> Bool # isNegativeZero :: Double -> Bool # | |
Read Double | Since: base-2.1 |
Binary Double | |
NFData Double | |
Defined in Control.DeepSeq | |
Eq Double | Note that due to the presence of
Also note that
|
Ord Double | Note that due to the presence of
Also note that, due to the same,
|
IArray UArray Double | |
Defined in Data.Array.Base Methods bounds :: Ix i => UArray i Double -> (i, i) # numElements :: Ix i => UArray i Double -> Int unsafeArray :: Ix i => (i, i) -> [(Int, Double)] -> UArray i Double unsafeAt :: Ix i => UArray i Double -> Int -> Double unsafeReplace :: Ix i => UArray i Double -> [(Int, Double)] -> UArray i Double unsafeAccum :: Ix i => (Double -> e' -> Double) -> UArray i Double -> [(Int, e')] -> UArray i Double unsafeAccumArray :: Ix i => (Double -> e' -> Double) -> Double -> (i, i) -> [(Int, e')] -> UArray i Double | |
Lift Double | |
Generic1 (URec Double :: k -> Type) | |
Foldable (UDouble :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UDouble m -> m # foldMap :: Monoid m => (a -> m) -> UDouble a -> m # foldMap' :: Monoid m => (a -> m) -> UDouble a -> m # foldr :: (a -> b -> b) -> b -> UDouble a -> b # foldr' :: (a -> b -> b) -> b -> UDouble a -> b # foldl :: (b -> a -> b) -> b -> UDouble a -> b # foldl' :: (b -> a -> b) -> b -> UDouble a -> b # foldr1 :: (a -> a -> a) -> UDouble a -> a # foldl1 :: (a -> a -> a) -> UDouble a -> a # elem :: Eq a => a -> UDouble a -> Bool # maximum :: Ord a => UDouble a -> a # minimum :: Ord a => UDouble a -> a # | |
Traversable (UDouble :: Type -> Type) | Since: base-4.9.0.0 |
MArray (STUArray s) Double (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Double -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Double -> ST s Int newArray :: Ix i => (i, i) -> Double -> ST s (STUArray s i Double) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Double) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Double) unsafeRead :: Ix i => STUArray s i Double -> Int -> ST s Double unsafeWrite :: Ix i => STUArray s i Double -> Int -> Double -> ST s () | |
Functor (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
Generic (URec Double p) | |
Show (URec Double p) | Since: base-4.9.0.0 |
Eq (URec Double p) | Since: base-4.9.0.0 |
Ord (URec Double p) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: URec Double p -> URec Double p -> Ordering # (<) :: URec Double p -> URec Double p -> Bool # (<=) :: URec Double p -> URec Double p -> Bool # (>) :: URec Double p -> URec Double p -> Bool # (>=) :: URec Double p -> URec Double p -> Bool # | |
data URec Double (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
type Rep1 (URec Double :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (URec Double p) | Since: base-4.9.0.0 |
Defined in GHC.Generics |
Instances
Structured Ordering Source # | |
Defined in Distribution.Utils.Structured | |
Data Ordering | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ordering -> c Ordering # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Ordering # toConstr :: Ordering -> Constr # dataTypeOf :: Ordering -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Ordering) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Ordering) # gmapT :: (forall b. Data b => b -> b) -> Ordering -> Ordering # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r # gmapQ :: (forall d. Data d => d -> u) -> Ordering -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ordering -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # | |
Monoid Ordering | Since: base-2.1 |
Semigroup Ordering | Since: base-4.9.0.0 |
Bounded Ordering | Since: base-2.1 |
Enum Ordering | Since: base-2.1 |
Generic Ordering | |
Ix Ordering | Since: base-2.1 |
Defined in GHC.Ix Methods range :: (Ordering, Ordering) -> [Ordering] # index :: (Ordering, Ordering) -> Ordering -> Int # unsafeIndex :: (Ordering, Ordering) -> Ordering -> Int # inRange :: (Ordering, Ordering) -> Ordering -> Bool # rangeSize :: (Ordering, Ordering) -> Int # unsafeRangeSize :: (Ordering, Ordering) -> Int # | |
Read Ordering | Since: base-2.1 |
Show Ordering | Since: base-2.1 |
Binary Ordering | |
NFData Ordering | |
Defined in Control.DeepSeq | |
Eq Ordering | |
Ord Ordering | |
Defined in GHC.Classes | |
type Rep Ordering | Since: base-4.6.0.0 |
The Maybe
type encapsulates an optional value. A value of type
either contains a value of type Maybe
aa
(represented as
),
or it is empty (represented as Just
aNothing
). Using Maybe
is a good way to
deal with errors or exceptional cases without resorting to drastic
measures such as error
.
The Maybe
type is also a monad. It is a simple kind of error
monad, where all errors are represented by Nothing
. A richer
error monad can be built using the Either
type.
Instances
MonadFail Maybe | Since: base-4.9.0.0 |
Defined in Control.Monad.Fail | |
Foldable Maybe | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldMap' :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |
Traversable Maybe | Since: base-2.1 |
Alternative Maybe | Picks the leftmost Since: base-2.1 |
Applicative Maybe | Since: base-2.1 |
Functor Maybe | Since: base-2.1 |
Monad Maybe | Since: base-2.1 |
MonadPlus Maybe | Picks the leftmost Since: base-2.1 |
NFData1 Maybe | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Generic1 Maybe | |
Lift a => Lift (Maybe a :: Type) | |
Structured a => Structured (Maybe a) Source # | |
Defined in Distribution.Utils.Structured | |
Data a => Data (Maybe a) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Maybe a -> c (Maybe a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Maybe a) # toConstr :: Maybe a -> Constr # dataTypeOf :: Maybe a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Maybe a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Maybe a)) # gmapT :: (forall b. Data b => b -> b) -> Maybe a -> Maybe a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r # gmapQ :: (forall d. Data d => d -> u) -> Maybe a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Maybe a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # | |
Semigroup a => Monoid (Maybe a) | Lift a semigroup into Since 4.11.0: constraint on inner Since: base-2.1 |
Semigroup a => Semigroup (Maybe a) | Since: base-4.9.0.0 |
Generic (Maybe a) | |
SingKind a => SingKind (Maybe a) | Since: base-4.9.0.0 |
Defined in GHC.Generics Associated Types type DemoteRep (Maybe a) | |
Read a => Read (Maybe a) | Since: base-2.1 |
Show a => Show (Maybe a) | Since: base-2.1 |
Binary a => Binary (Maybe a) | |
NFData a => NFData (Maybe a) | |
Defined in Control.DeepSeq | |
Eq a => Eq (Maybe a) | Since: base-2.1 |
Ord a => Ord (Maybe a) | Since: base-2.1 |
SingI ('Nothing :: Maybe a) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
SingI a2 => SingI ('Just a2 :: Maybe a1) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep1 Maybe | Since: base-4.6.0.0 |
type DemoteRep (Maybe a) | |
Defined in GHC.Generics | |
type Rep (Maybe a) | Since: base-4.6.0.0 |
Defined in GHC.Generics | |
data Sing (b :: Maybe a) | |
class a ~# b => (a :: k) ~ (b :: k) infix 4 #
Lifted, homogeneous equality. By lifted, we mean that it
can be bogus (deferred type error). By homogeneous, the two
types a
and b
must have the same kinds.
Arbitrary precision integers. In contrast with fixed-size integral types
such as Int
, the Integer
type represents the entire infinite range of
integers.
Integers are stored in a kind of sign-magnitude form, hence do not expect two's complement form when using bit operations.
If the value is small (fit into an Int
), IS
constructor is used.
Otherwise Integer
and IN
constructors are used to store a BigNat
representing respectively the positive or the negative value magnitude.
Invariant: Integer
and IN
are used iff value doesn't fit in IS
Instances
Structured Integer Source # | |
Defined in Distribution.Utils.Structured | |
Data Integer | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Integer -> c Integer # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Integer # toConstr :: Integer -> Constr # dataTypeOf :: Integer -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Integer) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Integer) # gmapT :: (forall b. Data b => b -> b) -> Integer -> Integer # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r # gmapQ :: (forall d. Data d => d -> u) -> Integer -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Integer -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Integer -> m Integer # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer # | |
Bits Integer | Since: base-2.1 |
Defined in GHC.Bits Methods (.&.) :: Integer -> Integer -> Integer # (.|.) :: Integer -> Integer -> Integer # xor :: Integer -> Integer -> Integer # complement :: Integer -> Integer # shift :: Integer -> Int -> Integer # rotate :: Integer -> Int -> Integer # setBit :: Integer -> Int -> Integer # clearBit :: Integer -> Int -> Integer # complementBit :: Integer -> Int -> Integer # testBit :: Integer -> Int -> Bool # bitSizeMaybe :: Integer -> Maybe Int # shiftL :: Integer -> Int -> Integer # unsafeShiftL :: Integer -> Int -> Integer # shiftR :: Integer -> Int -> Integer # unsafeShiftR :: Integer -> Int -> Integer # rotateL :: Integer -> Int -> Integer # | |
Enum Integer | Since: base-2.1 |
Ix Integer | Since: base-2.1 |
Defined in GHC.Ix | |
Num Integer | Since: base-2.1 |
Read Integer | Since: base-2.1 |
Integral Integer | Since: base-2.0.1 |
Defined in GHC.Real | |
Real Integer | Since: base-2.0.1 |
Defined in GHC.Real Methods toRational :: Integer -> Rational # | |
Show Integer | Since: base-2.1 |
Binary Integer | |
NFData Integer | |
Defined in Control.DeepSeq | |
Eq Integer | |
Ord Integer | |
Lift Integer | |
The Either
type represents values with two possibilities: a value of
type
is either Either
a b
or Left
a
.Right
b
The Either
type is sometimes used to represent a value which is
either correct or an error; by convention, the Left
constructor is
used to hold an error value and the Right
constructor is used to
hold a correct value (mnemonic: "right" also means "correct").
Examples
The type
is the type of values which can be either
a Either
String
Int
String
or an Int
. The Left
constructor can be used only on
String
s, and the Right
constructor can be used only on Int
s:
>>>
let s = Left "foo" :: Either String Int
>>>
s
Left "foo">>>
let n = Right 3 :: Either String Int
>>>
n
Right 3>>>
:type s
s :: Either String Int>>>
:type n
n :: Either String Int
The fmap
from our Functor
instance will ignore Left
values, but
will apply the supplied function to values contained in a Right
:
>>>
let s = Left "foo" :: Either String Int
>>>
let n = Right 3 :: Either String Int
>>>
fmap (*2) s
Left "foo">>>
fmap (*2) n
Right 6
The Monad
instance for Either
allows us to chain together multiple
actions which may fail, and fail overall if any of the individual
steps failed. First we'll write a function that can either parse an
Int
from a Char
, or fail.
>>>
import Data.Char ( digitToInt, isDigit )
>>>
:{
let parseEither :: Char -> Either String Int parseEither c | isDigit c = Right (digitToInt c) | otherwise = Left "parse error">>>
:}
The following should work, since both '1'
and '2'
can be
parsed as Int
s.
>>>
:{
let parseMultiple :: Either String Int parseMultiple = do x <- parseEither '1' y <- parseEither '2' return (x + y)>>>
:}
>>>
parseMultiple
Right 3
But the following should fail overall, since the first operation where
we attempt to parse 'm'
as an Int
will fail:
>>>
:{
let parseMultiple :: Either String Int parseMultiple = do x <- parseEither 'm' y <- parseEither '2' return (x + y)>>>
:}
>>>
parseMultiple
Left "parse error"
Instances
NFData2 Either | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Generic1 (Either a :: Type -> Type) | |
(Lift a, Lift b) => Lift (Either a b :: Type) | |
Foldable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Either a m -> m # foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # toList :: Either a a0 -> [a0] # length :: Either a a0 -> Int # elem :: Eq a0 => a0 -> Either a a0 -> Bool # maximum :: Ord a0 => Either a a0 -> a0 # minimum :: Ord a0 => Either a a0 -> a0 # | |
Traversable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Traversable | |
Applicative (Either e) | Since: base-3.0 |
Functor (Either a) | Since: base-3.0 |
Monad (Either e) | Since: base-4.4.0.0 |
NFData a => NFData1 (Either a) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
(IsNode a, IsNode b, Key a ~ Key b) => IsNode (Either a b) Source # | |
(Structured a, Structured b) => Structured (Either a b) Source # | |
Defined in Distribution.Utils.Structured | |
(Data a, Data b) => Data (Either a b) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Either a b -> c (Either a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Either a b) # toConstr :: Either a b -> Constr # dataTypeOf :: Either a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Either a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Either a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Either a b -> Either a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Either a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Either a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # | |
Semigroup (Either a b) | Since: base-4.9.0.0 |
Generic (Either a b) | |
(Read a, Read b) => Read (Either a b) | Since: base-3.0 |
(Show a, Show b) => Show (Either a b) | Since: base-3.0 |
(Binary a, Binary b) => Binary (Either a b) | |
(NFData a, NFData b) => NFData (Either a b) | |
Defined in Control.DeepSeq | |
(Eq a, Eq b) => Eq (Either a b) | Since: base-2.1 |
(Ord a, Ord b) => Ord (Either a b) | Since: base-2.1 |
Newtype (Either License License) SpecLicense Source # | |
Defined in Distribution.FieldGrammar.Newtypes | |
type Rep1 (Either a :: Type -> Type) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep1 (Either a :: Type -> Type) = D1 ('MetaData "Either" "Data.Either" "base" 'False) (C1 ('MetaCons "Left" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :+: C1 ('MetaCons "Right" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1)) | |
type Key (Either a b) Source # | |
Defined in Distribution.Compat.Graph | |
type Rep (Either a b) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep (Either a b) = D1 ('MetaData "Either" "Data.Either" "base" 'False) (C1 ('MetaCons "Left" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :+: C1 ('MetaCons "Right" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b))) |
class (Real a, Enum a) => Integral a where #
Integral numbers, supporting integer division.
The Haskell Report defines no laws for Integral
. However, Integral
instances are customarily expected to define a Euclidean domain and have the
following properties for the div
/mod
and quot
/rem
pairs, given
suitable Euclidean functions f
and g
:
x
=y * quot x y + rem x y
withrem x y
=fromInteger 0
org (rem x y)
<g y
x
=y * div x y + mod x y
withmod x y
=fromInteger 0
orf (mod x y)
<f y
An example of a suitable Euclidean function, for Integer
's instance, is
abs
.
In addition, toInteger
should be total, and fromInteger
should be a left
inverse for it, i.e. fromInteger (toInteger i) = i
.
Methods
quot :: a -> a -> a infixl 7 #
integer division truncated toward zero
WARNING: This function is partial (because it throws when 0 is passed as
the divisor) for all the integer types in base
.
integer remainder, satisfying
(x `quot` y)*y + (x `rem` y) == x
WARNING: This function is partial (because it throws when 0 is passed as
the divisor) for all the integer types in base
.
integer division truncated toward negative infinity
WARNING: This function is partial (because it throws when 0 is passed as
the divisor) for all the integer types in base
.
integer modulus, satisfying
(x `div` y)*y + (x `mod` y) == x
WARNING: This function is partial (because it throws when 0 is passed as
the divisor) for all the integer types in base
.
WARNING: This function is partial (because it throws when 0 is passed as
the divisor) for all the integer types in base
.
WARNING: This function is partial (because it throws when 0 is passed as
the divisor) for all the integer types in base
.
conversion to Integer
Instances
Parsing of String
s, producing values.
Derived instances of Read
make the following assumptions, which
derived instances of Show
obey:
- If the constructor is defined to be an infix operator, then the
derived
Read
instance will parse only infix applications of the constructor (not the prefix form). - Associativity is not used to reduce the occurrence of parentheses, although precedence may be.
- If the constructor is defined using record syntax, the derived
Read
will parse only the record-syntax form, and furthermore, the fields must be given in the same order as the original declaration. - The derived
Read
instance allows arbitrary Haskell whitespace between tokens of the input string. Extra parentheses are also allowed.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Read
in Haskell 2010 is equivalent to
instance (Read a) => Read (Tree a) where readsPrec d r = readParen (d > app_prec) (\r -> [(Leaf m,t) | ("Leaf",s) <- lex r, (m,t) <- readsPrec (app_prec+1) s]) r ++ readParen (d > up_prec) (\r -> [(u:^:v,w) | (u,s) <- readsPrec (up_prec+1) r, (":^:",t) <- lex s, (v,w) <- readsPrec (up_prec+1) t]) r where app_prec = 10 up_prec = 5
Note that right-associativity of :^:
is unused.
The derived instance in GHC is equivalent to
instance (Read a) => Read (Tree a) where readPrec = parens $ (prec app_prec $ do Ident "Leaf" <- lexP m <- step readPrec return (Leaf m)) +++ (prec up_prec $ do u <- step readPrec Symbol ":^:" <- lexP v <- step readPrec return (u :^: v)) where app_prec = 10 up_prec = 5 readListPrec = readListPrecDefault
Why do both readsPrec
and readPrec
exist, and why does GHC opt to
implement readPrec
in derived Read
instances instead of readsPrec
?
The reason is that readsPrec
is based on the ReadS
type, and although
ReadS
is mentioned in the Haskell 2010 Report, it is not a very efficient
parser data structure.
readPrec
, on the other hand, is based on a much more efficient ReadPrec
datatype (a.k.a "new-style parsers"), but its definition relies on the use
of the RankNTypes
language extension. Therefore, readPrec
(and its
cousin, readListPrec
) are marked as GHC-only. Nevertheless, it is
recommended to use readPrec
instead of readsPrec
whenever possible
for the efficiency improvements it brings.
As mentioned above, derived Read
instances in GHC will implement
readPrec
instead of readsPrec
. The default implementations of
readsPrec
(and its cousin, readList
) will simply use readPrec
under
the hood. If you are writing a Read
instance by hand, it is recommended
to write it like so:
instanceRead
T wherereadPrec
= ...readListPrec
=readListPrecDefault
Methods
Arguments
:: Int | the operator precedence of the enclosing
context (a number from |
-> ReadS a |
attempts to parse a value from the front of the string, returning a list of (parsed value, remaining string) pairs. If there is no successful parse, the returned list is empty.
Derived instances of Read
and Show
satisfy the following:
That is, readsPrec
parses the string produced by
showsPrec
, and delivers the value that
showsPrec
started with.
Instances
Conversion of values to readable String
s.
Derived instances of Show
have the following properties, which
are compatible with derived instances of Read
:
- The result of
show
is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used. - If the constructor is defined to be an infix operator, then
showsPrec
will produce infix applications of the constructor. - the representation will be enclosed in parentheses if the
precedence of the top-level constructor in
x
is less thand
(associativity is ignored). Thus, ifd
is0
then the result is never surrounded in parentheses; ifd
is11
it is always surrounded in parentheses, unless it is an atomic expression. - If the constructor is defined using record syntax, then
show
will produce the record-syntax form, with the fields given in the same order as the original declaration.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Show
is equivalent to
instance (Show a) => Show (Tree a) where showsPrec d (Leaf m) = showParen (d > app_prec) $ showString "Leaf " . showsPrec (app_prec+1) m where app_prec = 10 showsPrec d (u :^: v) = showParen (d > up_prec) $ showsPrec (up_prec+1) u . showString " :^: " . showsPrec (up_prec+1) v where up_prec = 5
Note that right-associativity of :^:
is ignored. For example,
produces the stringshow
(Leaf 1 :^: Leaf 2 :^: Leaf 3)"Leaf 1 :^: (Leaf 2 :^: Leaf 3)"
.
Methods
Arguments
:: Int | the operator precedence of the enclosing
context (a number from |
-> a | the value to be converted to a |
-> ShowS |
Convert a value to a readable String
.
showsPrec
should satisfy the law
showsPrec d x r ++ s == showsPrec d x (r ++ s)
Derived instances of Read
and Show
satisfy the following:
That is, readsPrec
parses the string produced by
showsPrec
, and delivers the value that showsPrec
started with.
Instances
type IOError = IOException #
The Haskell 2010 type for exceptions in the IO
monad.
Any I/O operation may raise an IOException
instead of returning a result.
For a more general type of exception, including also those that arise
in pure code, see Exception
.
In Haskell 2010, this is an opaque type.
The Bounded
class is used to name the upper and lower limits of a
type. Ord
is not a superclass of Bounded
since types that are not
totally ordered may also have upper and lower bounds.
The Bounded
class may be derived for any enumeration type;
minBound
is the first constructor listed in the data
declaration
and maxBound
is the last.
Bounded
may also be derived for single-constructor datatypes whose
constituent types are in Bounded
.
Instances
Class Enum
defines operations on sequentially ordered types.
The enumFrom
... methods are used in Haskell's translation of
arithmetic sequences.
Instances of Enum
may be derived for any enumeration type (types
whose constructors have no fields). The nullary constructors are
assumed to be numbered left-to-right by fromEnum
from 0
through n-1
.
See Chapter 10 of the Haskell Report for more details.
For any type that is an instance of class Bounded
as well as Enum
,
the following should hold:
- The calls
andsucc
maxBound
should result in a runtime error.pred
minBound
fromEnum
andtoEnum
should give a runtime error if the result value is not representable in the result type. For example,
is an error.toEnum
7 ::Bool
enumFrom
andenumFromThen
should be defined with an implicit bound, thus:
enumFrom x = enumFromTo x maxBound enumFromThen x y = enumFromThenTo x y bound where bound | fromEnum y >= fromEnum x = maxBound | otherwise = minBound
Methods
the successor of a value. For numeric types, succ
adds 1.
the predecessor of a value. For numeric types, pred
subtracts 1.
Convert from an Int
.
Convert to an Int
.
It is implementation-dependent what fromEnum
returns when
applied to a value that is too large to fit in an Int
.
Used in Haskell's translation of [n..]
with [n..] = enumFrom n
,
a possible implementation being enumFrom n = n : enumFrom (succ n)
.
For example:
enumFrom 4 :: [Integer] = [4,5,6,7,...]
enumFrom 6 :: [Int] = [6,7,8,9,...,maxBound :: Int]
enumFromThen :: a -> a -> [a] #
Used in Haskell's translation of [n,n'..]
with [n,n'..] = enumFromThen n n'
, a possible implementation being
enumFromThen n n' = n : n' : worker (f x) (f x n')
,
worker s v = v : worker s (s v)
, x = fromEnum n' - fromEnum n
and
f n y
| n > 0 = f (n - 1) (succ y)
| n < 0 = f (n + 1) (pred y)
| otherwise = y
For example:
enumFromThen 4 6 :: [Integer] = [4,6,8,10...]
enumFromThen 6 2 :: [Int] = [6,2,-2,-6,...,minBound :: Int]
enumFromTo :: a -> a -> [a] #
Used in Haskell's translation of [n..m]
with
[n..m] = enumFromTo n m
, a possible implementation being
enumFromTo n m
| n <= m = n : enumFromTo (succ n) m
| otherwise = []
.
For example:
enumFromTo 6 10 :: [Int] = [6,7,8,9,10]
enumFromTo 42 1 :: [Integer] = []
enumFromThenTo :: a -> a -> a -> [a] #
Used in Haskell's translation of [n,n'..m]
with
[n,n'..m] = enumFromThenTo n n' m
, a possible implementation
being enumFromThenTo n n' m = worker (f x) (c x) n m
,
x = fromEnum n' - fromEnum n
, c x = bool (>=) ((x 0)
f n y
| n > 0 = f (n - 1) (succ y)
| n < 0 = f (n + 1) (pred y)
| otherwise = y
and
worker s c v m
| c v m = v : worker s c (s v) m
| otherwise = []
For example:
enumFromThenTo 4 2 -6 :: [Integer] = [4,2,0,-2,-4,-6]
enumFromThenTo 6 8 2 :: [Int] = []
Instances
The Eq
class defines equality (==
) and inequality (/=
).
All the basic datatypes exported by the Prelude are instances of Eq
,
and Eq
may be derived for any datatype whose constituents are also
instances of Eq
.
The Haskell Report defines no laws for Eq
. However, instances are
encouraged to follow these properties:
Instances
class Fractional a => Floating a where #
Trigonometric and hyperbolic functions and related functions.
The Haskell Report defines no laws for Floating
. However, (
, +
)(
and *
)exp
are customarily expected to define an exponential field and have
the following properties:
exp (a + b)
=exp a * exp b
exp (fromInteger 0)
=fromInteger 1
Minimal complete definition
pi, exp, log, sin, cos, asin, acos, atan, sinh, cosh, asinh, acosh, atanh
Instances
class Num a => Fractional a where #
Fractional numbers, supporting real division.
The Haskell Report defines no laws for Fractional
. However, (
and
+
)(
are customarily expected to define a division ring and have the
following properties:*
)
recip
gives the multiplicative inversex * recip x
=recip x * x
=fromInteger 1
- Totality of
toRational
toRational
is total- Coherence with
toRational
- if the type also implements
Real
, thenfromRational
is a left inverse fortoRational
, i.e.fromRational (toRational i) = i
Note that it isn't customarily expected that a type instance of
Fractional
implement a field. However, all instances in base
do.
Minimal complete definition
fromRational, (recip | (/))
Methods
Fractional division.
Reciprocal fraction.
fromRational :: Rational -> a #
Conversion from a Rational
(that is
).
A floating literal stands for an application of Ratio
Integer
fromRational
to a value of type Rational
, so such literals have type
(
.Fractional
a) => a
Instances
Fractional CDouble | |
Fractional CFloat | |
Fractional DiffTime | |
Fractional NominalDiffTime | |
Defined in Data.Time.Clock.Internal.NominalDiffTime Methods (/) :: NominalDiffTime -> NominalDiffTime -> NominalDiffTime # recip :: NominalDiffTime -> NominalDiffTime # fromRational :: Rational -> NominalDiffTime # | |
RealFloat a => Fractional (Complex a) | Since: base-2.1 |
Fractional a => Fractional (Identity a) | Since: base-4.9.0.0 |
Fractional a => Fractional (Down a) | Since: base-4.14.0.0 |
Integral a => Fractional (Ratio a) | Since: base-2.0.1 |
Fractional a => Fractional (Const a b) | Since: base-4.9.0.0 |
class Applicative m => Monad (m :: Type -> Type) where #
The Monad
class defines the basic operations over a monad,
a concept from a branch of mathematics known as category theory.
From the perspective of a Haskell programmer, however, it is best to
think of a monad as an abstract datatype of actions.
Haskell's do
expressions provide a convenient syntax for writing
monadic expressions.
Instances of Monad
should satisfy the following:
- Left identity
return
a>>=
k = k a- Right identity
m
>>=
return
= m- Associativity
m
>>=
(\x -> k x>>=
h) = (m>>=
k)>>=
h
Furthermore, the Monad
and Applicative
operations should relate as follows:
The above laws imply:
and that pure
and (<*>
) satisfy the applicative functor laws.
The instances of Monad
for lists, Maybe
and IO
defined in the Prelude satisfy these laws.
Minimal complete definition
Methods
(>>=) :: m a -> (a -> m b) -> m b infixl 1 #
Sequentially compose two actions, passing any value produced by the first as an argument to the second.
'as
' can be understood as the >>=
bsdo
expression
do a <- as bs a
(>>) :: m a -> m b -> m b infixl 1 #
Sequentially compose two actions, discarding any value produced by the first, like sequencing operators (such as the semicolon) in imperative languages.
'as
' can be understood as the >>
bsdo
expression
do as bs
Inject a value into the monadic type.
Instances
Monad Lex Source # | |
Monad ParseResult Source # | |
Defined in Distribution.Fields.ParseResult Methods (>>=) :: ParseResult a -> (a -> ParseResult b) -> ParseResult b # (>>) :: ParseResult a -> ParseResult b -> ParseResult b # return :: a -> ParseResult a # | |
Monad ParsecParser Source # | |
Defined in Distribution.Parsec Methods (>>=) :: ParsecParser a -> (a -> ParsecParser b) -> ParsecParser b # (>>) :: ParsecParser a -> ParsecParser b -> ParsecParser b # return :: a -> ParsecParser a # | |
Monad Condition Source # | |
Monad Complex | Since: base-4.9.0.0 |
Monad Identity | Since: base-4.8.0.0 |
Monad First | Since: base-4.8.0.0 |
Monad Last | Since: base-4.8.0.0 |
Monad Down | Since: base-4.11.0.0 |
Monad First | Since: base-4.9.0.0 |
Monad Last | Since: base-4.9.0.0 |
Monad Max | Since: base-4.9.0.0 |
Monad Min | Since: base-4.9.0.0 |
Monad Dual | Since: base-4.8.0.0 |
Monad Product | Since: base-4.8.0.0 |
Monad Sum | Since: base-4.8.0.0 |
Monad NonEmpty | Since: base-4.9.0.0 |
Monad Par1 | Since: base-4.9.0.0 |
Monad P | Since: base-2.1 |
Monad ReadP | Since: base-2.1 |
Monad ReadPrec | Since: base-2.1 |
Monad Get | |
Monad PutM | |
Monad Put | |
Monad Seq | |
Monad Tree | |
Monad IO | Since: base-2.1 |
Monad Q | |
Monad Maybe | Since: base-2.1 |
Monad Solo | Since: base-4.15 |
Monad List | Since: base-2.1 |
Monad m => Monad (WrappedMonad m) | Since: base-4.7.0.0 |
Defined in Control.Applicative Methods (>>=) :: WrappedMonad m a -> (a -> WrappedMonad m b) -> WrappedMonad m b # (>>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b # return :: a -> WrappedMonad m a # | |
ArrowApply a => Monad (ArrowMonad a) | Since: base-2.1 |
Defined in Control.Arrow Methods (>>=) :: ArrowMonad a a0 -> (a0 -> ArrowMonad a b) -> ArrowMonad a b # (>>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b # return :: a0 -> ArrowMonad a a0 # | |
Monad (Either e) | Since: base-4.4.0.0 |
Monad (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Monad (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Monad (SetM s) | |
Monad m => Monad (MaybeT m) | |
Monoid a => Monad ((,) a) | Since: base-4.9.0.0 |
Monad m => Monad (Kleisli m a) | Since: base-4.14.0.0 |
Monad f => Monad (Ap f) | Since: base-4.12.0.0 |
Monad f => Monad (Alt f) | Since: base-4.8.0.0 |
Monad f => Monad (Rec1 f) | Since: base-4.9.0.0 |
(Applicative f, Monad f) => Monad (WhenMissing f x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods (>>=) :: WhenMissing f x a -> (a -> WhenMissing f x b) -> WhenMissing f x b # (>>) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x b # return :: a -> WhenMissing f x a # | |
(Monoid w, Functor m, Monad m) => Monad (AccumT w m) | |
Monad m => Monad (ExceptT e m) | |
Monad m => Monad (IdentityT m) | |
Monad m => Monad (ReaderT r m) | |
Monad m => Monad (SelectT r m) | |
Monad m => Monad (StateT s m) | |
Monad m => Monad (StateT s m) | |
Monad m => Monad (WriterT w m) | |
(Monoid w, Monad m) => Monad (WriterT w m) | |
(Monoid w, Monad m) => Monad (WriterT w m) | |
(Monoid a, Monoid b) => Monad ((,,) a b) | Since: base-4.14.0.0 |
(Monad f, Monad g) => Monad (Product f g) | Since: base-4.9.0.0 |
(Monad f, Monad g) => Monad (f :*: g) | Since: base-4.9.0.0 |
(Monad f, Applicative f) => Monad (WhenMatched f x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods (>>=) :: WhenMatched f x y a -> (a -> WhenMatched f x y b) -> WhenMatched f x y b # (>>) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y b # return :: a -> WhenMatched f x y a # | |
(Applicative f, Monad f) => Monad (WhenMissing f k x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods (>>=) :: WhenMissing f k x a -> (a -> WhenMissing f k x b) -> WhenMissing f k x b # (>>) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x b # return :: a -> WhenMissing f k x a # | |
Monad (ParsecT s u m) | |
Monad (ContT r m) | |
(Monoid a, Monoid b, Monoid c) => Monad ((,,,) a b c) | Since: base-4.14.0.0 |
Monad ((->) r) | Since: base-2.1 |
Monad f => Monad (M1 i c f) | Since: base-4.9.0.0 |
(Monad f, Applicative f) => Monad (WhenMatched f k x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods (>>=) :: WhenMatched f k x y a -> (a -> WhenMatched f k x y b) -> WhenMatched f k x y b # (>>) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y b # return :: a -> WhenMatched f k x y a # | |
Monad m => Monad (RWST r w s m) | |
(Monoid w, Monad m) => Monad (RWST r w s m) | |
(Monoid w, Monad m) => Monad (RWST r w s m) | |
class Functor (f :: Type -> Type) where #
A type f
is a Functor if it provides a function fmap
which, given any types a
and b
lets you apply any function from (a -> b)
to turn an f a
into an f b
, preserving the
structure of f
. Furthermore f
needs to adhere to the following:
Note, that the second law follows from the free theorem of the type fmap
and
the first law, so you need only check that the former condition holds.
See https://www.schoolofhaskell.com/user/edwardk/snippets/fmap or
https://github.com/quchen/articles/blob/master/second_functor_law.md
for an explanation.
Minimal complete definition
Methods
fmap :: (a -> b) -> f a -> f b #
fmap
is used to apply a function of type (a -> b)
to a value of type f a
,
where f is a functor, to produce a value of type f b
.
Note that for any type constructor with more than one parameter (e.g., Either
),
only the last type parameter can be modified with fmap
(e.g., b
in `Either a b`).
Some type constructors with two parameters or more have a
instance that allows
both the last and the penultimate parameters to be mapped over.Bifunctor
Examples
Convert from a
to a Maybe
IntMaybe String
using show
:
>>>
fmap show Nothing
Nothing>>>
fmap show (Just 3)
Just "3"
Convert from an
to an
Either
Int IntEither Int String
using show
:
>>>
fmap show (Left 17)
Left 17>>>
fmap show (Right 17)
Right "17"
Double each element of a list:
>>>
fmap (*2) [1,2,3]
[2,4,6]
Apply even
to the second element of a pair:
>>>
fmap even (2,2)
(2,True)
It may seem surprising that the function is only applied to the last element of the tuple
compared to the list example above which applies it to every element in the list.
To understand, remember that tuples are type constructors with multiple type parameters:
a tuple of 3 elements (a,b,c)
can also be written (,,) a b c
and its Functor
instance
is defined for Functor ((,,) a b)
(i.e., only the third parameter is free to be mapped over
with fmap
).
It explains why fmap
can be used with tuples containing values of different types as in the
following example:
>>>
fmap even ("hello", 1.0, 4)
("hello",1.0,True)
Instances
Basic numeric class.
The Haskell Report defines no laws for Num
. However, (
and +
)(
are
customarily expected to define a ring and have the following properties:*
)
- Associativity of
(
+
) (x + y) + z
=x + (y + z)
- Commutativity of
(
+
) x + y
=y + x
is the additive identityfromInteger
0x + fromInteger 0
=x
negate
gives the additive inversex + negate x
=fromInteger 0
- Associativity of
(
*
) (x * y) * z
=x * (y * z)
is the multiplicative identityfromInteger
1x * fromInteger 1
=x
andfromInteger 1 * x
=x
- Distributivity of
(
with respect to*
)(
+
) a * (b + c)
=(a * b) + (a * c)
and(b + c) * a
=(b * a) + (c * a)
- Coherence with
toInteger
- if the type also implements
Integral
, thenfromInteger
is a left inverse fortoInteger
, i.e.fromInteger (toInteger i) == i
Note that it isn't customarily expected that a type instance of both Num
and Ord
implement an ordered ring. Indeed, in base
only Integer
and
Rational
do.
Methods
Unary negation.
Absolute value.
Sign of a number.
The functions abs
and signum
should satisfy the law:
abs x * signum x == x
For real numbers, the signum
is either -1
(negative), 0
(zero)
or 1
(positive).
fromInteger :: Integer -> a #
Conversion from an Integer
.
An integer literal represents the application of the function
fromInteger
to the appropriate value of type Integer
,
so such literals have type (
.Num
a) => a
Instances
Num CBool | |
Num CChar | |
Num CClock | |
Num CDouble | |
Num CFloat | |
Num CInt | |
Num CIntMax | |
Num CIntPtr | |
Num CLLong | |
Num CLong | |
Num CPtrdiff | |
Num CSChar | |
Num CSUSeconds | |
Defined in Foreign.C.Types Methods (+) :: CSUSeconds -> CSUSeconds -> CSUSeconds # (-) :: CSUSeconds -> CSUSeconds -> CSUSeconds # (*) :: CSUSeconds -> CSUSeconds -> CSUSeconds # negate :: CSUSeconds -> CSUSeconds # abs :: CSUSeconds -> CSUSeconds # signum :: CSUSeconds -> CSUSeconds # fromInteger :: Integer -> CSUSeconds # | |
Num CShort | |
Num CSigAtomic | |
Defined in Foreign.C.Types Methods (+) :: CSigAtomic -> CSigAtomic -> CSigAtomic # (-) :: CSigAtomic -> CSigAtomic -> CSigAtomic # (*) :: CSigAtomic -> CSigAtomic -> CSigAtomic # negate :: CSigAtomic -> CSigAtomic # abs :: CSigAtomic -> CSigAtomic # signum :: CSigAtomic -> CSigAtomic # fromInteger :: Integer -> CSigAtomic # | |
Num CSize | |
Num CTime | |
Num CUChar | |
Num CUInt | |
Num CUIntMax | |
Num CUIntPtr | |
Num CULLong | |
Num CULong | |
Num CUSeconds | |
Defined in Foreign.C.Types | |
Num CUShort | |
Num CWchar | |
Num IntPtr | |
Num WordPtr | |
Num Int16 | Since: base-2.1 |
Num Int32 | Since: base-2.1 |
Num Int64 | Since: base-2.1 |
Num Int8 | Since: base-2.1 |
Num Word16 | Since: base-2.1 |
Num Word32 | Since: base-2.1 |
Num Word64 | Since: base-2.1 |
Num Word8 | Since: base-2.1 |
Num DiffTime | |
Defined in Data.Time.Clock.Internal.DiffTime | |
Num NominalDiffTime | |
Defined in Data.Time.Clock.Internal.NominalDiffTime Methods (+) :: NominalDiffTime -> NominalDiffTime -> NominalDiffTime # (-) :: NominalDiffTime -> NominalDiffTime -> NominalDiffTime # (*) :: NominalDiffTime -> NominalDiffTime -> NominalDiffTime # negate :: NominalDiffTime -> NominalDiffTime # abs :: NominalDiffTime -> NominalDiffTime # signum :: NominalDiffTime -> NominalDiffTime # fromInteger :: Integer -> NominalDiffTime # | |
Num Integer | Since: base-2.1 |
Num Natural | Note that Since: base-4.8.0.0 |
Num Int | Since: base-2.1 |
Num Word | Since: base-2.1 |
RealFloat a => Num (Complex a) | Since: base-2.1 |
Num a => Num (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Identity | |
Num a => Num (Down a) | Since: base-4.11.0.0 |
Num a => Num (Max a) | Since: base-4.9.0.0 |
Num a => Num (Min a) | Since: base-4.9.0.0 |
Num a => Num (Product a) | Since: base-4.7.0.0 |
Defined in Data.Semigroup.Internal | |
Num a => Num (Sum a) | Since: base-4.7.0.0 |
Integral a => Num (Ratio a) | Since: base-2.0.1 |
Num a => Num (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
(Applicative f, Num a) => Num (Ap f a) | Note that even if the underlying Commutativity:
Additive inverse:
Distributivity:
Since: base-4.12.0.0 |
Num (f a) => Num (Alt f a) | Since: base-4.8.0.0 |
The Ord
class is used for totally ordered datatypes.
Instances of Ord
can be derived for any user-defined datatype whose
constituent types are in Ord
. The declared order of the constructors in
the data declaration determines the ordering in derived Ord
instances. The
Ordering
datatype allows a single comparison to determine the precise
ordering of two objects.
Ord
, as defined by the Haskell report, implements a total order and has the
following properties:
- Comparability
x <= y || y <= x
=True
- Transitivity
- if
x <= y && y <= z
=True
, thenx <= z
=True
- Reflexivity
x <= x
=True
- Antisymmetry
- if
x <= y && y <= x
=True
, thenx == y
=True
The following operator interactions are expected to hold:
x >= y
=y <= x
x < y
=x <= y && x /= y
x > y
=y < x
x < y
=compare x y == LT
x > y
=compare x y == GT
x == y
=compare x y == EQ
min x y == if x <= y then x else y
=True
max x y == if x >= y then x else y
=True
Note that (7.) and (8.) do not require min
and max
to return either of
their arguments. The result is merely required to equal one of the
arguments in terms of (==)
.
Minimal complete definition: either compare
or <=
.
Using compare
can be more efficient for complex types.
Methods
compare :: a -> a -> Ordering #
(<) :: a -> a -> Bool infix 4 #
(<=) :: a -> a -> Bool infix 4 #
(>) :: a -> a -> Bool infix 4 #
Instances
class (Num a, Ord a) => Real a where #
Real numbers.
The Haskell report defines no laws for Real
, however Real
instances
are customarily expected to adhere to the following law:
- Coherence with
fromRational
- if the type also implements
Fractional
, thenfromRational
is a left inverse fortoRational
, i.e.fromRational (toRational i) = i
Methods
toRational :: a -> Rational #
the rational equivalent of its real argument with full precision
Instances
class (RealFrac a, Floating a) => RealFloat a where #
Efficient, machine-independent access to the components of a floating-point number.
Minimal complete definition
floatRadix, floatDigits, floatRange, decodeFloat, encodeFloat, isNaN, isInfinite, isDenormalized, isNegativeZero, isIEEE
Methods
floatRadix :: a -> Integer #
a constant function, returning the radix of the representation
(often 2
)
floatDigits :: a -> Int #
a constant function, returning the number of digits of
floatRadix
in the significand
floatRange :: a -> (Int, Int) #
a constant function, returning the lowest and highest values the exponent may assume
decodeFloat :: a -> (Integer, Int) #
The function decodeFloat
applied to a real floating-point
number returns the significand expressed as an Integer
and an
appropriately scaled exponent (an Int
). If
yields decodeFloat
x(m,n)
, then x
is equal in value to m*b^^n
, where b
is the floating-point radix, and furthermore, either m
and n
are both zero or else b^(d-1) <=
, where abs
m < b^dd
is
the value of
.
In particular, floatDigits
x
. If the type
contains a negative zero, also decodeFloat
0 = (0,0)
.
The result of decodeFloat
(-0.0) = (0,0)
is unspecified if either of
decodeFloat
x
or isNaN
x
is isInfinite
xTrue
.
encodeFloat :: Integer -> Int -> a #
encodeFloat
performs the inverse of decodeFloat
in the
sense that for finite x
with the exception of -0.0
,
.
uncurry
encodeFloat
(decodeFloat
x) = x
is one of the two closest representable
floating-point numbers to encodeFloat
m nm*b^^n
(or ±Infinity
if overflow
occurs); usually the closer, but if m
contains too many bits,
the result may be rounded in the wrong direction.
exponent
corresponds to the second component of decodeFloat
.
and for finite nonzero exponent
0 = 0x
,
.
If exponent
x = snd (decodeFloat
x) + floatDigits
xx
is a finite floating-point number, it is equal in value to
, where significand
x * b ^^ exponent
xb
is the
floating-point radix.
The behaviour is unspecified on infinite or NaN
values.
significand :: a -> a #
The first component of decodeFloat
, scaled to lie in the open
interval (-1
,1
), either 0.0
or of absolute value >= 1/b
,
where b
is the floating-point radix.
The behaviour is unspecified on infinite or NaN
values.
scaleFloat :: Int -> a -> a #
multiplies a floating-point number by an integer power of the radix
True
if the argument is an IEEE "not-a-number" (NaN) value
isInfinite :: a -> Bool #
True
if the argument is an IEEE infinity or negative infinity
isDenormalized :: a -> Bool #
True
if the argument is too small to be represented in
normalized format
isNegativeZero :: a -> Bool #
True
if the argument is an IEEE negative zero
True
if the argument is an IEEE floating point number
a version of arctangent taking two real floating-point arguments.
For real floating x
and y
,
computes the angle
(from the positive x-axis) of the vector from the origin to the
point atan2
y x(x,y)
.
returns a value in the range [atan2
y x-pi
,
pi
]. It follows the Common Lisp semantics for the origin when
signed zeroes are supported.
, with atan2
y 1y
in a type
that is RealFloat
, should return the same value as
.
A default definition of atan
yatan2
is provided, but implementors
can provide a more accurate implementation.
Instances
class (Real a, Fractional a) => RealFrac a where #
Extracting components of fractions.
Minimal complete definition
Methods
properFraction :: Integral b => a -> (b, a) #
The function properFraction
takes a real fractional number x
and returns a pair (n,f)
such that x = n+f
, and:
n
is an integral number with the same sign asx
; andf
is a fraction with the same type and sign asx
, and with absolute value less than1
.
The default definitions of the ceiling
, floor
, truncate
and round
functions are in terms of properFraction
.
truncate :: Integral b => a -> b #
returns the integer nearest truncate
xx
between zero and x
round :: Integral b => a -> b #
returns the nearest integer to round
xx
;
the even integer if x
is equidistant between two integers
ceiling :: Integral b => a -> b #
returns the least integer not less than ceiling
xx
floor :: Integral b => a -> b #
returns the greatest integer not greater than floor
xx
Instances
RealFrac CDouble | |
RealFrac CFloat | |
RealFrac DiffTime | |
RealFrac NominalDiffTime | |
Defined in Data.Time.Clock.Internal.NominalDiffTime Methods properFraction :: Integral b => NominalDiffTime -> (b, NominalDiffTime) # truncate :: Integral b => NominalDiffTime -> b # round :: Integral b => NominalDiffTime -> b # ceiling :: Integral b => NominalDiffTime -> b # floor :: Integral b => NominalDiffTime -> b # | |
RealFrac a => RealFrac (Identity a) | Since: base-4.9.0.0 |
RealFrac a => RealFrac (Down a) | Since: base-4.14.0.0 |
Integral a => RealFrac (Ratio a) | Since: base-2.0.1 |
RealFrac a => RealFrac (Const a b) | Since: base-4.9.0.0 |
class Monad m => MonadFail (m :: Type -> Type) where #
When a value is bound in do
-notation, the pattern on the left
hand side of <-
might not match. In this case, this class
provides a function to recover.
A Monad
without a MonadFail
instance may only be used in conjunction
with pattern that always match, such as newtypes, tuples, data types with
only a single data constructor, and irrefutable patterns (~pat
).
Instances of MonadFail
should satisfy the following law: fail s
should
be a left zero for >>=
,
fail s >>= f = fail s
If your Monad
is also MonadPlus
, a popular definition is
fail _ = mzero
fail s
should be an action that runs in the monad itself, not an
exception (except in instances of MonadIO
). In particular,
fail
should not be implemented in terms of error
.
Since: base-4.9.0.0
Instances
class Functor f => Applicative (f :: Type -> Type) where #
A functor with application, providing operations to
A minimal complete definition must include implementations of pure
and of either <*>
or liftA2
. If it defines both, then they must behave
the same as their default definitions:
(<*>
) =liftA2
id
liftA2
f x y = f<$>
x<*>
y
Further, any definition must satisfy the following:
- Identity
pure
id
<*>
v = v- Composition
pure
(.)<*>
u<*>
v<*>
w = u<*>
(v<*>
w)- Homomorphism
pure
f<*>
pure
x =pure
(f x)- Interchange
u
<*>
pure
y =pure
($
y)<*>
u
The other methods have the following default definitions, which may be overridden with equivalent specialized implementations:
As a consequence of these laws, the Functor
instance for f
will satisfy
It may be useful to note that supposing
forall x y. p (q x y) = f x . g y
it follows from the above that
liftA2
p (liftA2
q u v) =liftA2
f u .liftA2
g v
If f
is also a Monad
, it should satisfy
(which implies that pure
and <*>
satisfy the applicative functor laws).
Methods
Lift a value.
(<*>) :: f (a -> b) -> f a -> f b infixl 4 #
Sequential application.
A few functors support an implementation of <*>
that is more
efficient than the default one.
Example
Used in combination with (
, <$>
)(
can be used to build a record.<*>
)
>>>
data MyState = MyState {arg1 :: Foo, arg2 :: Bar, arg3 :: Baz}
>>>
produceFoo :: Applicative f => f Foo
>>>
produceBar :: Applicative f => f Bar
>>>
produceBaz :: Applicative f => f Baz
>>>
mkState :: Applicative f => f MyState
>>>
mkState = MyState <$> produceFoo <*> produceBar <*> produceBaz
liftA2 :: (a -> b -> c) -> f a -> f b -> f c #
Lift a binary function to actions.
Some functors support an implementation of liftA2
that is more
efficient than the default one. In particular, if fmap
is an
expensive operation, it is likely better to use liftA2
than to
fmap
over the structure and then use <*>
.
This became a typeclass method in 4.10.0.0. Prior to that, it was
a function defined in terms of <*>
and fmap
.
Example
>>>
liftA2 (,) (Just 3) (Just 5)
Just (3,5)
(*>) :: f a -> f b -> f b infixl 4 #
Sequence actions, discarding the value of the first argument.
Examples
If used in conjunction with the Applicative instance for Maybe
,
you can chain Maybe computations, with a possible "early return"
in case of Nothing
.
>>>
Just 2 *> Just 3
Just 3
>>>
Nothing *> Just 3
Nothing
Of course a more interesting use case would be to have effectful computations instead of just returning pure values.
>>>
import Data.Char
>>>
import Text.ParserCombinators.ReadP
>>>
let p = string "my name is " *> munch1 isAlpha <* eof
>>>
readP_to_S p "my name is Simon"
[("Simon","")]
(<*) :: f a -> f b -> f a infixl 4 #
Sequence actions, discarding the value of the second argument.
Instances
class Semigroup a => Monoid a where #
The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following:
- Right identity
x
<>
mempty
= x- Left identity
mempty
<>
x = x- Associativity
x
(<>
(y<>
z) = (x<>
y)<>
zSemigroup
law)- Concatenation
mconcat
=foldr
(<>
)mempty
You can alternatively define mconcat
instead of mempty
, in which case the
laws are:
- Unit
mconcat
(pure
x) = x- Multiplication
mconcat
(join
xss) =mconcat
(fmap
mconcat
xss)- Subclass
mconcat
(toList
xs) =sconcat
xs
The method names refer to the monoid of lists under concatenation, but there are many other instances.
Some types can be viewed as a monoid in more than one way,
e.g. both addition and multiplication on numbers.
In such cases we often define newtype
s and make those instances
of Monoid
, e.g. Sum
and Product
.
NOTE: Semigroup
is a superclass of Monoid
since base-4.11.0.0.
Methods
Identity of mappend
>>>
"Hello world" <> mempty
"Hello world"
An associative operation
NOTE: This method is redundant and has the default
implementation
since base-4.11.0.0.
Should it be implemented manually, since mappend
= (<>
)mappend
is a synonym for
(<>
), it is expected that the two functions are defined the same
way. In a future GHC release mappend
will be removed from Monoid
.
Fold a list using the monoid.
For most types, the default definition for mconcat
will be
used, but the function is included in the class definition so
that an optimized version can be provided for specific types.
>>>
mconcat ["Hello", " ", "Haskell", "!"]
"Hello Haskell!"
Instances
File and directory names are values of type String
, whose precise
meaning is operating system dependent. Files can be opened, yielding a
handle which can then be used to operate on the contents of that file.
error :: forall (r :: RuntimeRep) (a :: TYPE r). HasCallStack => [Char] -> a #
error
stops execution and displays an error message.
zipWith :: (a -> b -> c) -> [a] -> [b] -> [c] #
\(\mathcal{O}(\min(m,n))\). zipWith
generalises zip
by zipping with the
function given as the first argument, instead of a tupling function.
zipWith (,) xs ys == zip xs ys zipWith f [x1,x2,x3..] [y1,y2,y3..] == [f x1 y1, f x2 y2, f x3 y3..]
For example,
is applied to two lists to produce the list of
corresponding sums:zipWith
(+)
>>>
zipWith (+) [1, 2, 3] [4, 5, 6]
[5,7,9]
zipWith
is right-lazy:
>>>
let f = undefined
>>>
zipWith f [] undefined
[]
zipWith
is capable of list fusion, but it is restricted to its
first list argument and its resulting list.
(<$>) :: Functor f => (a -> b) -> f a -> f b infixl 4 #
An infix synonym for fmap
.
The name of this operator is an allusion to $
.
Note the similarities between their types:
($) :: (a -> b) -> a -> b (<$>) :: Functor f => (a -> b) -> f a -> f b
Whereas $
is function application, <$>
is function
application lifted over a Functor
.
Examples
Convert from a
to a Maybe
Int
using Maybe
String
show
:
>>>
show <$> Nothing
Nothing>>>
show <$> Just 3
Just "3"
Convert from an
to an
Either
Int
Int
Either
Int
String
using show
:
>>>
show <$> Left 17
Left 17>>>
show <$> Right 17
Right "17"
Double each element of a list:
>>>
(*2) <$> [1,2,3]
[2,4,6]
Apply even
to the second element of a pair:
>>>
even <$> (2,2)
(2,True)
($) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b infixr 0 #
Application operator. This operator is redundant, since ordinary
application (f x)
means the same as (f
. However, $
x)$
has
low, right-associative binding precedence, so it sometimes allows
parentheses to be omitted; for example:
f $ g $ h x = f (g (h x))
It is also useful in higher-order situations, such as
,
or map
($
0) xs
.zipWith
($
) fs xs
Note that (
is representation-polymorphic in its result type, so that
$
)foo
where $
Truefoo :: Bool -> Int#
is well-typed.
uncurry :: (a -> b -> c) -> (a, b) -> c #
uncurry
converts a curried function to a function on pairs.
Examples
>>>
uncurry (+) (1,2)
3
>>>
uncurry ($) (show, 1)
"1"
>>>
map (uncurry max) [(1,2), (3,4), (6,8)]
[2,4,8]
writeFile :: FilePath -> String -> IO () #
The computation writeFile
file str
function writes the string str
,
to the file file
.
filter :: (a -> Bool) -> [a] -> [a] #
\(\mathcal{O}(n)\). filter
, applied to a predicate and a list, returns
the list of those elements that satisfy the predicate; i.e.,
filter p xs = [ x | x <- xs, p x]
>>>
filter odd [1, 2, 3]
[1,3]
foldl :: Foldable t => (b -> a -> b) -> b -> t a -> b #
Left-associative fold of a structure, lazy in the accumulator. This is rarely what you want, but can work well for structures with efficient right-to-left sequencing and an operator that is lazy in its left argument.
In the case of lists, foldl
, when applied to a binary operator, a
starting value (typically the left-identity of the operator), and a
list, reduces the list using the binary operator, from left to right:
foldl f z [x1, x2, ..., xn] == (...((z `f` x1) `f` x2) `f`...) `f` xn
Note that to produce the outermost application of the operator the
entire input list must be traversed. Like all left-associative folds,
foldl
will diverge if given an infinite list.
If you want an efficient strict left-fold, you probably want to use
foldl'
instead of foldl
. The reason for this is that the latter
does not force the inner results (e.g. z `f` x1
in the above
example) before applying them to the operator (e.g. to (`f` x2)
).
This results in a thunk chain O(n) elements long, which then must be
evaluated from the outside-in.
For a general Foldable
structure this should be semantically identical
to:
foldl f z =foldl
f z .toList
Examples
The first example is a strict fold, which in practice is best performed
with foldl'
.
>>>
foldl (+) 42 [1,2,3,4]
52
Though the result below is lazy, the input is reversed before prepending it to the initial accumulator, so corecursion begins only after traversing the entire input string.
>>>
foldl (\acc c -> c : acc) "abcd" "efgh"
"hgfeabcd"
A left fold of a structure that is infinite on the right cannot terminate, even when for any finite input the fold just returns the initial accumulator:
>>>
foldl (\a _ -> a) 0 $ repeat 1
* Hangs forever *
WARNING: When it comes to lists, you always want to use either foldl'
or foldr
instead.
sum :: (Foldable t, Num a) => t a -> a #
The sum
function computes the sum of the numbers of a structure.
Examples
Basic usage:
>>>
sum []
0
>>>
sum [42]
42
>>>
sum [1..10]
55
>>>
sum [4.1, 2.0, 1.7]
7.8
>>>
sum [1..]
* Hangs forever *
Since: base-4.8.0.0
product :: (Foldable t, Num a) => t a -> a #
The product
function computes the product of the numbers of a
structure.
Examples
Basic usage:
>>>
product []
1
>>>
product [42]
42
>>>
product [1..10]
3628800
>>>
product [4.1, 2.0, 1.7]
13.939999999999998
>>>
product [1..]
* Hangs forever *
Since: base-4.8.0.0
maximum :: (Foldable t, Ord a) => t a -> a #
The largest element of a non-empty structure.
This function is non-total and will raise a runtime exception if the structure happens to be empty. A structure that supports random access and maintains its elements in order should provide a specialised implementation to return the maximum in faster than linear time.
Examples
Basic usage:
>>>
maximum [1..10]
10
>>>
maximum []
*** Exception: Prelude.maximum: empty list
>>>
maximum Nothing
*** Exception: maximum: empty structure
WARNING: This function is partial for possibly-empty structures like lists.
Since: base-4.8.0.0
minimum :: (Foldable t, Ord a) => t a -> a #
The least element of a non-empty structure.
This function is non-total and will raise a runtime exception if the structure happens to be empty. A structure that supports random access and maintains its elements in order should provide a specialised implementation to return the minimum in faster than linear time.
Examples
Basic usage:
>>>
minimum [1..10]
1
>>>
minimum []
*** Exception: Prelude.minimum: empty list
>>>
minimum Nothing
*** Exception: minimum: empty structure
WARNING: This function is partial for possibly-empty structures like lists.
Since: base-4.8.0.0
elem :: (Foldable t, Eq a) => a -> t a -> Bool infix 4 #
Does the element occur in the structure?
Note: elem
is often used in infix form.
Examples
Basic usage:
>>>
3 `elem` []
False
>>>
3 `elem` [1,2]
False
>>>
3 `elem` [1,2,3,4,5]
True
For infinite structures, the default implementation of elem
terminates if the sought-after value exists at a finite distance
from the left side of the structure:
>>>
3 `elem` [1..]
True
>>>
3 `elem` ([4..] ++ [3])
* Hangs forever *
Since: base-4.8.0.0
cycle :: HasCallStack => [a] -> [a] #
cycle
ties a finite list into a circular one, or equivalently,
the infinite repetition of the original list. It is the identity
on infinite lists.
>>>
cycle []
*** Exception: Prelude.cycle: empty list>>>
cycle [42]
[42,42,42,42,42,42,42,42,42,42...>>>
cycle [2, 5, 7]
[2,5,7,2,5,7,2,5,7,2,5,7...
(++) :: [a] -> [a] -> [a] infixr 5 #
Append two lists, i.e.,
[x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn] [x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]
If the first list is not finite, the result is the first list.
WARNING: This function takes linear time in the number of elements of the first list.
seq :: forall {r :: RuntimeRep} a (b :: TYPE r). a -> b -> b infixr 0 #
The value of
is bottom if seq
a ba
is bottom, and
otherwise equal to b
. In other words, it evaluates the first
argument a
to weak head normal form (WHNF). seq
is usually
introduced to improve performance by avoiding unneeded laziness.
A note on evaluation order: the expression
does
not guarantee that seq
a ba
will be evaluated before b
.
The only guarantee given by seq
is that the both a
and b
will be evaluated before seq
returns a value.
In particular, this means that b
may be evaluated before
a
. If you need to guarantee a specific order of evaluation,
you must use the function pseq
from the "parallel" package.
concat :: Foldable t => t [a] -> [a] #
The concatenation of all the elements of a container of lists.
Examples
Basic usage:
>>>
concat (Just [1, 2, 3])
[1,2,3]
>>>
concat (Left 42)
[]
>>>
concat [[1, 2, 3], [4, 5], [6], []]
[1,2,3,4,5,6]
zip :: [a] -> [b] -> [(a, b)] #
\(\mathcal{O}(\min(m,n))\). zip
takes two lists and returns a list of
corresponding pairs.
>>>
zip [1, 2] ['a', 'b']
[(1,'a'),(2,'b')]
If one input list is shorter than the other, excess elements of the longer list are discarded, even if one of the lists is infinite:
>>>
zip [1] ['a', 'b']
[(1,'a')]>>>
zip [1, 2] ['a']
[(1,'a')]>>>
zip [] [1..]
[]>>>
zip [1..] []
[]
zip
is right-lazy:
>>>
zip [] undefined
[]>>>
zip undefined []
*** Exception: Prelude.undefined ...
zip
is capable of list fusion, but it is restricted to its
first list argument and its resulting list.
print :: Show a => a -> IO () #
The print
function outputs a value of any printable type to the
standard output device.
Printable types are those that are instances of class Show
; print
converts values to strings for output using the show
operation and
adds a newline.
For example, a program to print the first 20 integers and their powers of 2 could be written as:
main = print ([(n, 2^n) | n <- [0..19]])
map :: (a -> b) -> [a] -> [b] #
\(\mathcal{O}(n)\). map
f xs
is the list obtained by applying f
to
each element of xs
, i.e.,
map f [x1, x2, ..., xn] == [f x1, f x2, ..., f xn] map f [x1, x2, ...] == [f x1, f x2, ...]
>>>
map (+1) [1, 2, 3]
[2,3,4]
fromIntegral :: (Integral a, Num b) => a -> b #
General coercion from Integral
types.
WARNING: This function performs silent truncation if the result type is not at least as big as the argument's type.
realToFrac :: (Real a, Fractional b) => a -> b #
General coercion to Fractional
types.
WARNING: This function goes through the Rational
type, which does not have values for NaN
for example.
This means it does not round-trip.
For Double
it also behaves differently with or without -O0:
Prelude> realToFrac nan -- With -O0 -Infinity Prelude> realToFrac nan NaN
errorWithoutStackTrace :: forall (r :: RuntimeRep) (a :: TYPE r). [Char] -> a #
A variant of error
that does not produce a stack trace.
Since: base-4.9.0.0
undefined :: forall (r :: RuntimeRep) (a :: TYPE r). HasCallStack => a #
(=<<) :: Monad m => (a -> m b) -> m a -> m b infixr 1 #
Same as >>=
, but with the arguments interchanged.
const x y
always evaluates to x
, ignoring its second argument.
>>>
const 42 "hello"
42
>>>
map (const 42) [0..3]
[42,42,42,42]
flip :: (a -> b -> c) -> b -> a -> c #
takes its (first) two arguments in the reverse order of flip
ff
.
>>>
flip (++) "hello" "world"
"worldhello"
($!) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b infixr 0 #
Strict (call-by-value) application operator. It takes a function and an argument, evaluates the argument to weak head normal form (WHNF), then calls the function with that value.
until :: (a -> Bool) -> (a -> a) -> a -> a #
yields the result of applying until
p ff
until p
holds.
maybe :: b -> (a -> b) -> Maybe a -> b #
The maybe
function takes a default value, a function, and a Maybe
value. If the Maybe
value is Nothing
, the function returns the
default value. Otherwise, it applies the function to the value inside
the Just
and returns the result.
Examples
Basic usage:
>>>
maybe False odd (Just 3)
True
>>>
maybe False odd Nothing
False
Read an integer from a string using readMaybe
. If we succeed,
return twice the integer; that is, apply (*2)
to it. If instead
we fail to parse an integer, return 0
by default:
>>>
import Text.Read ( readMaybe )
>>>
maybe 0 (*2) (readMaybe "5")
10>>>
maybe 0 (*2) (readMaybe "")
0
Apply show
to a Maybe Int
. If we have Just n
, we want to show
the underlying Int
n
. But if we have Nothing
, we return the
empty string instead of (for example) "Nothing":
>>>
maybe "" show (Just 5)
"5">>>
maybe "" show Nothing
""
scanl :: (b -> a -> b) -> b -> [a] -> [b] #
\(\mathcal{O}(n)\). scanl
is similar to foldl
, but returns a list of
successive reduced values from the left:
scanl f z [x1, x2, ...] == [z, z `f` x1, (z `f` x1) `f` x2, ...]
Note that
last (scanl f z xs) == foldl f z xs
>>>
scanl (+) 0 [1..4]
[0,1,3,6,10]>>>
scanl (+) 42 []
[42]>>>
scanl (-) 100 [1..4]
[100,99,97,94,90]>>>
scanl (\reversedString nextChar -> nextChar : reversedString) "foo" ['a', 'b', 'c', 'd']
["foo","afoo","bafoo","cbafoo","dcbafoo"]>>>
scanl (+) 0 [1..]
* Hangs forever *
scanl1 :: (a -> a -> a) -> [a] -> [a] #
\(\mathcal{O}(n)\). scanl1
is a variant of scanl
that has no starting
value argument:
scanl1 f [x1, x2, ...] == [x1, x1 `f` x2, ...]
>>>
scanl1 (+) [1..4]
[1,3,6,10]>>>
scanl1 (+) []
[]>>>
scanl1 (-) [1..4]
[1,-1,-4,-8]>>>
scanl1 (&&) [True, False, True, True]
[True,False,False,False]>>>
scanl1 (||) [False, False, True, True]
[False,False,True,True]>>>
scanl1 (+) [1..]
* Hangs forever *
scanr :: (a -> b -> b) -> b -> [a] -> [b] #
\(\mathcal{O}(n)\). scanr
is the right-to-left dual of scanl
. Note that the order of parameters on the accumulating function are reversed compared to scanl
.
Also note that
head (scanr f z xs) == foldr f z xs.
>>>
scanr (+) 0 [1..4]
[10,9,7,4,0]>>>
scanr (+) 42 []
[42]>>>
scanr (-) 100 [1..4]
[98,-97,99,-96,100]>>>
scanr (\nextChar reversedString -> nextChar : reversedString) "foo" ['a', 'b', 'c', 'd']
["abcdfoo","bcdfoo","cdfoo","dfoo","foo"]>>>
force $ scanr (+) 0 [1..]
*** Exception: stack overflow
scanr1 :: (a -> a -> a) -> [a] -> [a] #
\(\mathcal{O}(n)\). scanr1
is a variant of scanr
that has no starting
value argument.
>>>
scanr1 (+) [1..4]
[10,9,7,4]>>>
scanr1 (+) []
[]>>>
scanr1 (-) [1..4]
[-2,3,-1,4]>>>
scanr1 (&&) [True, False, True, True]
[False,False,True,True]>>>
scanr1 (||) [True, True, False, False]
[True,True,False,False]>>>
force $ scanr1 (+) [1..]
*** Exception: stack overflow
iterate :: (a -> a) -> a -> [a] #
iterate
f x
returns an infinite list of repeated applications
of f
to x
:
iterate f x == [x, f x, f (f x), ...]
Note that iterate
is lazy, potentially leading to thunk build-up if
the consumer doesn't force each iterate. See iterate'
for a strict
variant of this function.
>>>
take 10 $ iterate not True
[True,False,True,False...>>>
take 10 $ iterate (+3) 42
[42,45,48,51,54,57,60,63...
repeat
x
is an infinite list, with x
the value of every element.
>>>
repeat 17
[17,17,17,17,17,17,17,17,17...
replicate :: Int -> a -> [a] #
replicate
n x
is a list of length n
with x
the value of
every element.
It is an instance of the more general genericReplicate
,
in which n
may be of any integral type.
>>>
replicate 0 True
[]>>>
replicate (-1) True
[]>>>
replicate 4 True
[True,True,True,True]
takeWhile :: (a -> Bool) -> [a] -> [a] #
takeWhile
, applied to a predicate p
and a list xs
, returns the
longest prefix (possibly empty) of xs
of elements that satisfy p
.
>>>
takeWhile (< 3) [1,2,3,4,1,2,3,4]
[1,2]>>>
takeWhile (< 9) [1,2,3]
[1,2,3]>>>
takeWhile (< 0) [1,2,3]
[]
take
n
, applied to a list xs
, returns the prefix of xs
of length n
, or xs
itself if n >=
.length
xs
>>>
take 5 "Hello World!"
"Hello">>>
take 3 [1,2,3,4,5]
[1,2,3]>>>
take 3 [1,2]
[1,2]>>>
take 3 []
[]>>>
take (-1) [1,2]
[]>>>
take 0 [1,2]
[]
It is an instance of the more general genericTake
,
in which n
may be of any integral type.
drop
n xs
returns the suffix of xs
after the first n
elements, or []
if n >=
.length
xs
>>>
drop 6 "Hello World!"
"World!">>>
drop 3 [1,2,3,4,5]
[4,5]>>>
drop 3 [1,2]
[]>>>
drop 3 []
[]>>>
drop (-1) [1,2]
[1,2]>>>
drop 0 [1,2]
[1,2]
It is an instance of the more general genericDrop
,
in which n
may be of any integral type.
splitAt :: Int -> [a] -> ([a], [a]) #
splitAt
n xs
returns a tuple where first element is xs
prefix of
length n
and second element is the remainder of the list:
>>>
splitAt 6 "Hello World!"
("Hello ","World!")>>>
splitAt 3 [1,2,3,4,5]
([1,2,3],[4,5])>>>
splitAt 1 [1,2,3]
([1],[2,3])>>>
splitAt 3 [1,2,3]
([1,2,3],[])>>>
splitAt 4 [1,2,3]
([1,2,3],[])>>>
splitAt 0 [1,2,3]
([],[1,2,3])>>>
splitAt (-1) [1,2,3]
([],[1,2,3])
It is equivalent to (
when take
n xs, drop
n xs)n
is not _|_
(splitAt _|_ xs = _|_
).
splitAt
is an instance of the more general genericSplitAt
,
in which n
may be of any integral type.
span :: (a -> Bool) -> [a] -> ([a], [a]) #
span
, applied to a predicate p
and a list xs
, returns a tuple where
first element is longest prefix (possibly empty) of xs
of elements that
satisfy p
and second element is the remainder of the list:
>>>
span (< 3) [1,2,3,4,1,2,3,4]
([1,2],[3,4,1,2,3,4])>>>
span (< 9) [1,2,3]
([1,2,3],[])>>>
span (< 0) [1,2,3]
([],[1,2,3])
break :: (a -> Bool) -> [a] -> ([a], [a]) #
break
, applied to a predicate p
and a list xs
, returns a tuple where
first element is longest prefix (possibly empty) of xs
of elements that
do not satisfy p
and second element is the remainder of the list:
>>>
break (> 3) [1,2,3,4,1,2,3,4]
([1,2,3],[4,1,2,3,4])>>>
break (< 9) [1,2,3]
([],[1,2,3])>>>
break (> 9) [1,2,3]
([1,2,3],[])
reverse
xs
returns the elements of xs
in reverse order.
xs
must be finite.
>>>
reverse []
[]>>>
reverse [42]
[42]>>>
reverse [2,5,7]
[7,5,2]>>>
reverse [1..]
* Hangs forever *
and :: Foldable t => t Bool -> Bool #
and
returns the conjunction of a container of Bools. For the
result to be True
, the container must be finite; False
, however,
results from a False
value finitely far from the left end.
Examples
Basic usage:
>>>
and []
True
>>>
and [True]
True
>>>
and [False]
False
>>>
and [True, True, False]
False
>>>
and (False : repeat True) -- Infinite list [False,True,True,True,...
False
>>>
and (repeat True)
* Hangs forever *
or :: Foldable t => t Bool -> Bool #
or
returns the disjunction of a container of Bools. For the
result to be False
, the container must be finite; True
, however,
results from a True
value finitely far from the left end.
Examples
Basic usage:
>>>
or []
False
>>>
or [True]
True
>>>
or [False]
False
>>>
or [True, True, False]
True
>>>
or (True : repeat False) -- Infinite list [True,False,False,False,...
True
>>>
or (repeat False)
* Hangs forever *
notElem :: (Foldable t, Eq a) => a -> t a -> Bool infix 4 #
notElem
is the negation of elem
.
Examples
Basic usage:
>>>
3 `notElem` []
True
>>>
3 `notElem` [1,2]
True
>>>
3 `notElem` [1,2,3,4,5]
False
For infinite structures, notElem
terminates if the value exists at a
finite distance from the left side of the structure:
>>>
3 `notElem` [1..]
False
>>>
3 `notElem` ([4..] ++ [3])
* Hangs forever *
concatMap :: Foldable t => (a -> [b]) -> t a -> [b] #
Map a function over all the elements of a container and concatenate the resulting lists.
Examples
Basic usage:
>>>
concatMap (take 3) [[1..], [10..], [100..], [1000..]]
[1,2,3,10,11,12,100,101,102,1000,1001,1002]
>>>
concatMap (take 3) (Just [1..])
[1,2,3]
(!!) :: HasCallStack => [a] -> Int -> a infixl 9 #
List index (subscript) operator, starting from 0.
It is an instance of the more general genericIndex
,
which takes an index of any integral type.
>>>
['a', 'b', 'c'] !! 0
'a'>>>
['a', 'b', 'c'] !! 2
'c'>>>
['a', 'b', 'c'] !! 3
*** Exception: Prelude.!!: index too large>>>
['a', 'b', 'c'] !! (-1)
*** Exception: Prelude.!!: negative index
WARNING: This function is partial. You can use atMay instead.
zipWith3 :: (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d] #
The zipWith3
function takes a function which combines three
elements, as well as three lists and returns a list of the function applied
to corresponding elements, analogous to zipWith
.
It is capable of list fusion, but it is restricted to its
first list argument and its resulting list.
zipWith3 (,,) xs ys zs == zip3 xs ys zs zipWith3 f [x1,x2,x3..] [y1,y2,y3..] [z1,z2,z3..] == [f x1 y1 z1, f x2 y2 z2, f x3 y3 z3..]
unzip :: [(a, b)] -> ([a], [b]) #
unzip
transforms a list of pairs into a list of first components
and a list of second components.
>>>
unzip []
([],[])>>>
unzip [(1, 'a'), (2, 'b')]
([1,2],"ab")
utility function converting a Char
to a show function that
simply prepends the character unchanged.
showString :: String -> ShowS #
utility function converting a String
to a show function that
simply prepends the string unchanged.
(^^) :: (Fractional a, Integral b) => a -> b -> a infixr 8 #
raise a number to an integral power
gcd :: Integral a => a -> a -> a #
is the non-negative factor of both gcd
x yx
and y
of which
every common factor of x
and y
is also a factor; for example
, gcd
4 2 = 2
, gcd
(-4) 6 = 2
= gcd
0 44
.
= gcd
0 00
.
(That is, the common divisor that is "greatest" in the divisibility
preordering.)
Note: Since for signed fixed-width integer types,
,
the result may be negative if one of the arguments is abs
minBound
< 0
(and
necessarily is if the other is minBound
0
or
) for such types.minBound
lcm :: Integral a => a -> a -> a #
is the smallest positive integer that both lcm
x yx
and y
divide.
The lex
function reads a single lexeme from the input, discarding
initial white space, and returning the characters that constitute the
lexeme. If the input string contains only white space, lex
returns a
single successful `lexeme' consisting of the empty string. (Thus
.) If there is no legal lexeme at the
beginning of the input string, lex
"" = [("","")]lex
fails (i.e. returns []
).
This lexer is not completely faithful to the Haskell lexical syntax in the following respects:
- Qualified names are not handled properly
- Octal and hexadecimal numerics are not recognized as a single token
- Comments are not treated properly
either :: (a -> c) -> (b -> c) -> Either a b -> c #
Case analysis for the Either
type.
If the value is
, apply the first function to Left
aa
;
if it is
, apply the second function to Right
bb
.
Examples
We create two values of type
, one using the
Either
String
Int
Left
constructor and another using the Right
constructor. Then
we apply "either" the length
function (if we have a String
)
or the "times-two" function (if we have an Int
):
>>>
let s = Left "foo" :: Either String Int
>>>
let n = Right 3 :: Either String Int
>>>
either length (*2) s
3>>>
either length (*2) n
6
sequence_ :: (Foldable t, Monad m) => t (m a) -> m () #
Evaluate each monadic action in the structure from left to right,
and ignore the results. For a version that doesn't ignore the
results see sequence
.
sequence_
is just like sequenceA_
, but specialised to monadic
actions.
Splits the argument into a list of lines stripped of their terminating
\n
characters. The \n
terminator is optional in a final non-empty
line of the argument string.
For example:
>>>
lines "" -- empty input contains no lines
[]>>>
lines "\n" -- single empty line
[""]>>>
lines "one" -- single unterminated line
["one"]>>>
lines "one\n" -- single non-empty line
["one"]>>>
lines "one\n\n" -- second line is empty
["one",""]>>>
lines "one\ntwo" -- second line is unterminated
["one","two"]>>>
lines "one\ntwo\n" -- two non-empty lines
["one","two"]
When the argument string is empty, or ends in a \n
character, it can be
recovered by passing the result of lines
to the unlines
function.
Otherwise, unlines
appends the missing terminating \n
. This makes
unlines . lines
idempotent:
(unlines . lines) . (unlines . lines) = (unlines . lines)
userError :: String -> IOError #
Construct an IOException
value with a string describing the error.
The fail
method of the IO
instance of the Monad
class raises a
userError
, thus:
instance Monad IO where ... fail s = ioError (userError s)
getContents :: IO String #
The getContents
operation returns all user input as a single string,
which is read lazily as it is needed
(same as hGetContents
stdin
).
interact :: (String -> String) -> IO () #
The interact
function takes a function of type String->String
as its argument. The entire input from the standard input device is
passed to this function as its argument, and the resulting string is
output on the standard output device.
readFile :: FilePath -> IO String #
The readFile
function reads a file and
returns the contents of the file as a string.
The file is read lazily, on demand, as with getContents
.
appendFile :: FilePath -> String -> IO () #
The computation appendFile
file str
function appends the string str
,
to the file file
.
Note that writeFile
and appendFile
write a literal string
to a file. To write a value of any printable type, as with print
,
use the show
function to convert the value to a string first.
main = appendFile "squares" (show [(x,x*x) | x <- [0,0.1..2]])
Common type-classes
The class of semigroups (types with an associative binary operation).
Instances should satisfy the following:
You can alternatively define sconcat
instead of (<>
), in which case the
laws are:
Since: base-4.9.0.0
Instances
The class Typeable
allows a concrete representation of a type to
be calculated.
Minimal complete definition
typeRep#
type TypeRep = SomeTypeRep #
A quantified type representation.
typeRep :: forall {k} proxy (a :: k). Typeable a => proxy a -> TypeRep #
Takes a value of type a
and returns a concrete representation
of that type.
Since: base-4.7.0.0
The Data
class comprehends a fundamental primitive gfoldl
for
folding over constructor applications, say terms. This primitive can
be instantiated in several ways to map over the immediate subterms
of a term; see the gmap
combinators later in this class. Indeed, a
generic programmer does not necessarily need to use the ingenious gfoldl
primitive but rather the intuitive gmap
combinators. The gfoldl
primitive is completed by means to query top-level constructors, to
turn constructor representations into proper terms, and to list all
possible datatype constructors. This completion allows us to serve
generic programming scenarios like read, show, equality, term generation.
The combinators gmapT
, gmapQ
, gmapM
, etc are all provided with
default definitions in terms of gfoldl
, leaving open the opportunity
to provide datatype-specific definitions.
(The inclusion of the gmap
combinators as members of class Data
allows the programmer or the compiler to derive specialised, and maybe
more efficient code per datatype. Note: gfoldl
is more higher-order
than the gmap
combinators. This is subject to ongoing benchmarking
experiments. It might turn out that the gmap
combinators will be
moved out of the class Data
.)
Conceptually, the definition of the gmap
combinators in terms of the
primitive gfoldl
requires the identification of the gfoldl
function
arguments. Technically, we also need to identify the type constructor
c
for the construction of the result type from the folded term type.
In the definition of gmapQ
x combinators, we use phantom type
constructors for the c
in the type of gfoldl
because the result type
of a query does not involve the (polymorphic) type of the term argument.
In the definition of gmapQl
we simply use the plain constant type
constructor because gfoldl
is left-associative anyway and so it is
readily suited to fold a left-associative binary operation over the
immediate subterms. In the definition of gmapQr, extra effort is
needed. We use a higher-order accumulation trick to mediate between
left-associative constructor application vs. right-associative binary
operation (e.g., (:)
). When the query is meant to compute a value
of type r
, then the result type within generic folding is r -> r
.
So the result of folding is a function to which we finally pass the
right unit.
With the -XDeriveDataTypeable
option, GHC can generate instances of the
Data
class automatically. For example, given the declaration
data T a b = C1 a b | C2 deriving (Typeable, Data)
GHC will generate an instance that is equivalent to
instance (Data a, Data b) => Data (T a b) where gfoldl k z (C1 a b) = z C1 `k` a `k` b gfoldl k z C2 = z C2 gunfold k z c = case constrIndex c of 1 -> k (k (z C1)) 2 -> z C2 toConstr (C1 _ _) = con_C1 toConstr C2 = con_C2 dataTypeOf _ = ty_T con_C1 = mkConstr ty_T "C1" [] Prefix con_C2 = mkConstr ty_T "C2" [] Prefix ty_T = mkDataType "Module.T" [con_C1, con_C2]
This is suitable for datatypes that are exported transparently.
Minimal complete definition
Instances
Data OpenModule Source # | |
Defined in Distribution.Backpack Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> OpenModule -> c OpenModule # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c OpenModule # toConstr :: OpenModule -> Constr # dataTypeOf :: OpenModule -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c OpenModule) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c OpenModule) # gmapT :: (forall b. Data b => b -> b) -> OpenModule -> OpenModule # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> OpenModule -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> OpenModule -> r # gmapQ :: (forall d. Data d => d -> u) -> OpenModule -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> OpenModule -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> OpenModule -> m OpenModule # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> OpenModule -> m OpenModule # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> OpenModule -> m OpenModule # | |
Data OpenUnitId Source # | |
Defined in Distribution.Backpack Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> OpenUnitId -> c OpenUnitId # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c OpenUnitId # toConstr :: OpenUnitId -> Constr # dataTypeOf :: OpenUnitId -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c OpenUnitId) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c OpenUnitId) # gmapT :: (forall b. Data b => b -> b) -> OpenUnitId -> OpenUnitId # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> OpenUnitId -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> OpenUnitId -> r # gmapQ :: (forall d. Data d => d -> u) -> OpenUnitId -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> OpenUnitId -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> OpenUnitId -> m OpenUnitId # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> OpenUnitId -> m OpenUnitId # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> OpenUnitId -> m OpenUnitId # | |
Data CabalSpecVersion Source # | |
Defined in Distribution.CabalSpecVersion Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> CabalSpecVersion -> c CabalSpecVersion # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c CabalSpecVersion # toConstr :: CabalSpecVersion -> Constr # dataTypeOf :: CabalSpecVersion -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c CabalSpecVersion) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c CabalSpecVersion) # gmapT :: (forall b. Data b => b -> b) -> CabalSpecVersion -> CabalSpecVersion # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> CabalSpecVersion -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> CabalSpecVersion -> r # gmapQ :: (forall d. Data d => d -> u) -> CabalSpecVersion -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> CabalSpecVersion -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> CabalSpecVersion -> m CabalSpecVersion # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> CabalSpecVersion -> m CabalSpecVersion # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> CabalSpecVersion -> m CabalSpecVersion # | |
Data CompilerFlavor Source # | |
Defined in Distribution.Compiler Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> CompilerFlavor -> c CompilerFlavor # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c CompilerFlavor # toConstr :: CompilerFlavor -> Constr # dataTypeOf :: CompilerFlavor -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c CompilerFlavor) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c CompilerFlavor) # gmapT :: (forall b. Data b => b -> b) -> CompilerFlavor -> CompilerFlavor # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> CompilerFlavor -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> CompilerFlavor -> r # gmapQ :: (forall d. Data d => d -> u) -> CompilerFlavor -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> CompilerFlavor -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> CompilerFlavor -> m CompilerFlavor # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> CompilerFlavor -> m CompilerFlavor # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> CompilerFlavor -> m CompilerFlavor # | |
Data License Source # | |
Defined in Distribution.License Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> License -> c License # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c License # toConstr :: License -> Constr # dataTypeOf :: License -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c License) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c License) # gmapT :: (forall b. Data b => b -> b) -> License -> License # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> License -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> License -> r # gmapQ :: (forall d. Data d => d -> u) -> License -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> License -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> License -> m License # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> License -> m License # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> License -> m License # | |
Data ModuleName Source # | |
Defined in Distribution.ModuleName Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ModuleName -> c ModuleName # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ModuleName # toConstr :: ModuleName -> Constr # dataTypeOf :: ModuleName -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ModuleName) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ModuleName) # gmapT :: (forall b. Data b => b -> b) -> ModuleName -> ModuleName # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ModuleName -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ModuleName -> r # gmapQ :: (forall d. Data d => d -> u) -> ModuleName -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ModuleName -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ModuleName -> m ModuleName # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleName -> m ModuleName # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleName -> m ModuleName # | |
Data License Source # | |
Defined in Distribution.SPDX.License Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> License -> c License # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c License # toConstr :: License -> Constr # dataTypeOf :: License -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c License) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c License) # gmapT :: (forall b. Data b => b -> b) -> License -> License # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> License -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> License -> r # gmapQ :: (forall d. Data d => d -> u) -> License -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> License -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> License -> m License # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> License -> m License # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> License -> m License # | |
Data LicenseExceptionId Source # | |
Defined in Distribution.SPDX.LicenseExceptionId Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LicenseExceptionId -> c LicenseExceptionId # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LicenseExceptionId # toConstr :: LicenseExceptionId -> Constr # dataTypeOf :: LicenseExceptionId -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c LicenseExceptionId) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LicenseExceptionId) # gmapT :: (forall b. Data b => b -> b) -> LicenseExceptionId -> LicenseExceptionId # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LicenseExceptionId -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LicenseExceptionId -> r # gmapQ :: (forall d. Data d => d -> u) -> LicenseExceptionId -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> LicenseExceptionId -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> LicenseExceptionId -> m LicenseExceptionId # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LicenseExceptionId -> m LicenseExceptionId # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LicenseExceptionId -> m LicenseExceptionId # | |
Data LicenseExpression Source # | |
Defined in Distribution.SPDX.LicenseExpression Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LicenseExpression -> c LicenseExpression # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LicenseExpression # toConstr :: LicenseExpression -> Constr # dataTypeOf :: LicenseExpression -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c LicenseExpression) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LicenseExpression) # gmapT :: (forall b. Data b => b -> b) -> LicenseExpression -> LicenseExpression # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LicenseExpression -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LicenseExpression -> r # gmapQ :: (forall d. Data d => d -> u) -> LicenseExpression -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> LicenseExpression -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> LicenseExpression -> m LicenseExpression # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LicenseExpression -> m LicenseExpression # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LicenseExpression -> m LicenseExpression # | |
Data SimpleLicenseExpression Source # | |
Defined in Distribution.SPDX.LicenseExpression Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SimpleLicenseExpression -> c SimpleLicenseExpression # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SimpleLicenseExpression # toConstr :: SimpleLicenseExpression -> Constr # dataTypeOf :: SimpleLicenseExpression -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SimpleLicenseExpression) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SimpleLicenseExpression) # gmapT :: (forall b. Data b => b -> b) -> SimpleLicenseExpression -> SimpleLicenseExpression # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SimpleLicenseExpression -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SimpleLicenseExpression -> r # gmapQ :: (forall d. Data d => d -> u) -> SimpleLicenseExpression -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SimpleLicenseExpression -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SimpleLicenseExpression -> m SimpleLicenseExpression # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SimpleLicenseExpression -> m SimpleLicenseExpression # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SimpleLicenseExpression -> m SimpleLicenseExpression # | |
Data LicenseId Source # | |
Defined in Distribution.SPDX.LicenseId Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LicenseId -> c LicenseId # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LicenseId # toConstr :: LicenseId -> Constr # dataTypeOf :: LicenseId -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c LicenseId) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LicenseId) # gmapT :: (forall b. Data b => b -> b) -> LicenseId -> LicenseId # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LicenseId -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LicenseId -> r # gmapQ :: (forall d. Data d => d -> u) -> LicenseId -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> LicenseId -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> LicenseId -> m LicenseId # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LicenseId -> m LicenseId # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LicenseId -> m LicenseId # | |
Data LicenseRef Source # | |
Defined in Distribution.SPDX.LicenseReference Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LicenseRef -> c LicenseRef # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LicenseRef # toConstr :: LicenseRef -> Constr # dataTypeOf :: LicenseRef -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c LicenseRef) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LicenseRef) # gmapT :: (forall b. Data b => b -> b) -> LicenseRef -> LicenseRef # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LicenseRef -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LicenseRef -> r # gmapQ :: (forall d. Data d => d -> u) -> LicenseRef -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> LicenseRef -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> LicenseRef -> m LicenseRef # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LicenseRef -> m LicenseRef # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LicenseRef -> m LicenseRef # | |
Data Arch Source # | |
Defined in Distribution.System Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Arch -> c Arch # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Arch # dataTypeOf :: Arch -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Arch) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Arch) # gmapT :: (forall b. Data b => b -> b) -> Arch -> Arch # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Arch -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Arch -> r # gmapQ :: (forall d. Data d => d -> u) -> Arch -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Arch -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Arch -> m Arch # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Arch -> m Arch # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Arch -> m Arch # | |
Data OS Source # | |
Defined in Distribution.System Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> OS -> c OS # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c OS # dataTypeOf :: OS -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c OS) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c OS) # gmapT :: (forall b. Data b => b -> b) -> OS -> OS # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> OS -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> OS -> r # gmapQ :: (forall d. Data d => d -> u) -> OS -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> OS -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> OS -> m OS # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> OS -> m OS # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> OS -> m OS # | |
Data Platform Source # | |
Defined in Distribution.System Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Platform -> c Platform # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Platform # toConstr :: Platform -> Constr # dataTypeOf :: Platform -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Platform) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Platform) # gmapT :: (forall b. Data b => b -> b) -> Platform -> Platform # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Platform -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Platform -> r # gmapQ :: (forall d. Data d => d -> u) -> Platform -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Platform -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Platform -> m Platform # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Platform -> m Platform # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Platform -> m Platform # | |
Data Benchmark Source # | |
Defined in Distribution.Types.Benchmark Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Benchmark -> c Benchmark # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Benchmark # toConstr :: Benchmark -> Constr # dataTypeOf :: Benchmark -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Benchmark) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Benchmark) # gmapT :: (forall b. Data b => b -> b) -> Benchmark -> Benchmark # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Benchmark -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Benchmark -> r # gmapQ :: (forall d. Data d => d -> u) -> Benchmark -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Benchmark -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Benchmark -> m Benchmark # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Benchmark -> m Benchmark # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Benchmark -> m Benchmark # | |
Data BenchmarkInterface Source # | |
Defined in Distribution.Types.BenchmarkInterface Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> BenchmarkInterface -> c BenchmarkInterface # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c BenchmarkInterface # toConstr :: BenchmarkInterface -> Constr # dataTypeOf :: BenchmarkInterface -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c BenchmarkInterface) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c BenchmarkInterface) # gmapT :: (forall b. Data b => b -> b) -> BenchmarkInterface -> BenchmarkInterface # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> BenchmarkInterface -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> BenchmarkInterface -> r # gmapQ :: (forall d. Data d => d -> u) -> BenchmarkInterface -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> BenchmarkInterface -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> BenchmarkInterface -> m BenchmarkInterface # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> BenchmarkInterface -> m BenchmarkInterface # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> BenchmarkInterface -> m BenchmarkInterface # | |
Data BenchmarkType Source # | |
Defined in Distribution.Types.BenchmarkType Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> BenchmarkType -> c BenchmarkType # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c BenchmarkType # toConstr :: BenchmarkType -> Constr # dataTypeOf :: BenchmarkType -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c BenchmarkType) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c BenchmarkType) # gmapT :: (forall b. Data b => b -> b) -> BenchmarkType -> BenchmarkType # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> BenchmarkType -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> BenchmarkType -> r # gmapQ :: (forall d. Data d => d -> u) -> BenchmarkType -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> BenchmarkType -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> BenchmarkType -> m BenchmarkType # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> BenchmarkType -> m BenchmarkType # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> BenchmarkType -> m BenchmarkType # | |
Data BuildInfo Source # | |
Defined in Distribution.Types.BuildInfo Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> BuildInfo -> c BuildInfo # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c BuildInfo # toConstr :: BuildInfo -> Constr # dataTypeOf :: BuildInfo -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c BuildInfo) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c BuildInfo) # gmapT :: (forall b. Data b => b -> b) -> BuildInfo -> BuildInfo # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> BuildInfo -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> BuildInfo -> r # gmapQ :: (forall d. Data d => d -> u) -> BuildInfo -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> BuildInfo -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> BuildInfo -> m BuildInfo # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> BuildInfo -> m BuildInfo # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> BuildInfo -> m BuildInfo # | |
Data BuildType Source # | |
Defined in Distribution.Types.BuildType Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> BuildType -> c BuildType # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c BuildType # toConstr :: BuildType -> Constr # dataTypeOf :: BuildType -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c BuildType) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c BuildType) # gmapT :: (forall b. Data b => b -> b) -> BuildType -> BuildType # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> BuildType -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> BuildType -> r # gmapQ :: (forall d. Data d => d -> u) -> BuildType -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> BuildType -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> BuildType -> m BuildType # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> BuildType -> m BuildType # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> BuildType -> m BuildType # | |
Data ComponentId Source # | |
Defined in Distribution.Types.ComponentId Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ComponentId -> c ComponentId # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ComponentId # toConstr :: ComponentId -> Constr # dataTypeOf :: ComponentId -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ComponentId) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ComponentId) # gmapT :: (forall b. Data b => b -> b) -> ComponentId -> ComponentId # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ComponentId -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ComponentId -> r # gmapQ :: (forall d. Data d => d -> u) -> ComponentId -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ComponentId -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ComponentId -> m ComponentId # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ComponentId -> m ComponentId # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ComponentId -> m ComponentId # | |
Data ConfVar Source # | |
Defined in Distribution.Types.ConfVar Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ConfVar -> c ConfVar # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ConfVar # toConstr :: ConfVar -> Constr # dataTypeOf :: ConfVar -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ConfVar) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ConfVar) # gmapT :: (forall b. Data b => b -> b) -> ConfVar -> ConfVar # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ConfVar -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ConfVar -> r # gmapQ :: (forall d. Data d => d -> u) -> ConfVar -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ConfVar -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ConfVar -> m ConfVar # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ConfVar -> m ConfVar # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ConfVar -> m ConfVar # | |
Data Dependency Source # | |
Defined in Distribution.Types.Dependency Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Dependency -> c Dependency # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Dependency # toConstr :: Dependency -> Constr # dataTypeOf :: Dependency -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Dependency) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Dependency) # gmapT :: (forall b. Data b => b -> b) -> Dependency -> Dependency # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Dependency -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Dependency -> r # gmapQ :: (forall d. Data d => d -> u) -> Dependency -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Dependency -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Dependency -> m Dependency # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Dependency -> m Dependency # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Dependency -> m Dependency # | |
Data ExeDependency Source # | |
Defined in Distribution.Types.ExeDependency Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ExeDependency -> c ExeDependency # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ExeDependency # toConstr :: ExeDependency -> Constr # dataTypeOf :: ExeDependency -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ExeDependency) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ExeDependency) # gmapT :: (forall b. Data b => b -> b) -> ExeDependency -> ExeDependency # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ExeDependency -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ExeDependency -> r # gmapQ :: (forall d. Data d => d -> u) -> ExeDependency -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ExeDependency -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ExeDependency -> m ExeDependency # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ExeDependency -> m ExeDependency # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ExeDependency -> m ExeDependency # | |
Data Executable Source # | |
Defined in Distribution.Types.Executable Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Executable -> c Executable # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Executable # toConstr :: Executable -> Constr # dataTypeOf :: Executable -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Executable) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Executable) # gmapT :: (forall b. Data b => b -> b) -> Executable -> Executable # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Executable -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Executable -> r # gmapQ :: (forall d. Data d => d -> u) -> Executable -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Executable -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Executable -> m Executable # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Executable -> m Executable # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Executable -> m Executable # | |
Data ExecutableScope Source # | |
Defined in Distribution.Types.ExecutableScope Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ExecutableScope -> c ExecutableScope # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ExecutableScope # toConstr :: ExecutableScope -> Constr # dataTypeOf :: ExecutableScope -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ExecutableScope) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ExecutableScope) # gmapT :: (forall b. Data b => b -> b) -> ExecutableScope -> ExecutableScope # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ExecutableScope -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ExecutableScope -> r # gmapQ :: (forall d. Data d => d -> u) -> ExecutableScope -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ExecutableScope -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ExecutableScope -> m ExecutableScope # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ExecutableScope -> m ExecutableScope # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ExecutableScope -> m ExecutableScope # | |
Data FlagName Source # | |
Defined in Distribution.Types.Flag Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FlagName -> c FlagName # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c FlagName # toConstr :: FlagName -> Constr # dataTypeOf :: FlagName -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c FlagName) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c FlagName) # gmapT :: (forall b. Data b => b -> b) -> FlagName -> FlagName # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FlagName -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FlagName -> r # gmapQ :: (forall d. Data d => d -> u) -> FlagName -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> FlagName -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FlagName -> m FlagName # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FlagName -> m FlagName # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FlagName -> m FlagName # | |
Data PackageFlag Source # | |
Defined in Distribution.Types.Flag Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PackageFlag -> c PackageFlag # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PackageFlag # toConstr :: PackageFlag -> Constr # dataTypeOf :: PackageFlag -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PackageFlag) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PackageFlag) # gmapT :: (forall b. Data b => b -> b) -> PackageFlag -> PackageFlag # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PackageFlag -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PackageFlag -> r # gmapQ :: (forall d. Data d => d -> u) -> PackageFlag -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PackageFlag -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PackageFlag -> m PackageFlag # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PackageFlag -> m PackageFlag # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PackageFlag -> m PackageFlag # | |
Data ForeignLib Source # | |
Defined in Distribution.Types.ForeignLib Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ForeignLib -> c ForeignLib # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ForeignLib # toConstr :: ForeignLib -> Constr # dataTypeOf :: ForeignLib -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ForeignLib) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ForeignLib) # gmapT :: (forall b. Data b => b -> b) -> ForeignLib -> ForeignLib # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ForeignLib -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ForeignLib -> r # gmapQ :: (forall d. Data d => d -> u) -> ForeignLib -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ForeignLib -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ForeignLib -> m ForeignLib # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignLib -> m ForeignLib # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignLib -> m ForeignLib # | |
Data LibVersionInfo Source # | |
Defined in Distribution.Types.ForeignLib Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LibVersionInfo -> c LibVersionInfo # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LibVersionInfo # toConstr :: LibVersionInfo -> Constr # dataTypeOf :: LibVersionInfo -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c LibVersionInfo) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LibVersionInfo) # gmapT :: (forall b. Data b => b -> b) -> LibVersionInfo -> LibVersionInfo # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LibVersionInfo -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LibVersionInfo -> r # gmapQ :: (forall d. Data d => d -> u) -> LibVersionInfo -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> LibVersionInfo -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> LibVersionInfo -> m LibVersionInfo # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LibVersionInfo -> m LibVersionInfo # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LibVersionInfo -> m LibVersionInfo # | |
Data ForeignLibOption Source # | |
Defined in Distribution.Types.ForeignLibOption Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ForeignLibOption -> c ForeignLibOption # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ForeignLibOption # toConstr :: ForeignLibOption -> Constr # dataTypeOf :: ForeignLibOption -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ForeignLibOption) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ForeignLibOption) # gmapT :: (forall b. Data b => b -> b) -> ForeignLibOption -> ForeignLibOption # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ForeignLibOption -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ForeignLibOption -> r # gmapQ :: (forall d. Data d => d -> u) -> ForeignLibOption -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ForeignLibOption -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ForeignLibOption -> m ForeignLibOption # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignLibOption -> m ForeignLibOption # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignLibOption -> m ForeignLibOption # | |
Data ForeignLibType Source # | |
Defined in Distribution.Types.ForeignLibType Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ForeignLibType -> c ForeignLibType # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ForeignLibType # toConstr :: ForeignLibType -> Constr # dataTypeOf :: ForeignLibType -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ForeignLibType) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ForeignLibType) # gmapT :: (forall b. Data b => b -> b) -> ForeignLibType -> ForeignLibType # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ForeignLibType -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ForeignLibType -> r # gmapQ :: (forall d. Data d => d -> u) -> ForeignLibType -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ForeignLibType -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ForeignLibType -> m ForeignLibType # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignLibType -> m ForeignLibType # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignLibType -> m ForeignLibType # | |
Data GenericPackageDescription Source # | |
Defined in Distribution.Types.GenericPackageDescription Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> GenericPackageDescription -> c GenericPackageDescription # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c GenericPackageDescription # toConstr :: GenericPackageDescription -> Constr # dataTypeOf :: GenericPackageDescription -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c GenericPackageDescription) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c GenericPackageDescription) # gmapT :: (forall b. Data b => b -> b) -> GenericPackageDescription -> GenericPackageDescription # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> GenericPackageDescription -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> GenericPackageDescription -> r # gmapQ :: (forall d. Data d => d -> u) -> GenericPackageDescription -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> GenericPackageDescription -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> GenericPackageDescription -> m GenericPackageDescription # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> GenericPackageDescription -> m GenericPackageDescription # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> GenericPackageDescription -> m GenericPackageDescription # | |
Data IncludeRenaming Source # | |
Defined in Distribution.Types.IncludeRenaming Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IncludeRenaming -> c IncludeRenaming # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c IncludeRenaming # toConstr :: IncludeRenaming -> Constr # dataTypeOf :: IncludeRenaming -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c IncludeRenaming) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c IncludeRenaming) # gmapT :: (forall b. Data b => b -> b) -> IncludeRenaming -> IncludeRenaming # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IncludeRenaming -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IncludeRenaming -> r # gmapQ :: (forall d. Data d => d -> u) -> IncludeRenaming -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> IncludeRenaming -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IncludeRenaming -> m IncludeRenaming # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IncludeRenaming -> m IncludeRenaming # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IncludeRenaming -> m IncludeRenaming # | |
Data LegacyExeDependency Source # | |
Defined in Distribution.Types.LegacyExeDependency Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LegacyExeDependency -> c LegacyExeDependency # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LegacyExeDependency # toConstr :: LegacyExeDependency -> Constr # dataTypeOf :: LegacyExeDependency -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c LegacyExeDependency) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LegacyExeDependency) # gmapT :: (forall b. Data b => b -> b) -> LegacyExeDependency -> LegacyExeDependency # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LegacyExeDependency -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LegacyExeDependency -> r # gmapQ :: (forall d. Data d => d -> u) -> LegacyExeDependency -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> LegacyExeDependency -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> LegacyExeDependency -> m LegacyExeDependency # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LegacyExeDependency -> m LegacyExeDependency # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LegacyExeDependency -> m LegacyExeDependency # | |
Data Library Source # | |
Defined in Distribution.Types.Library Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Library -> c Library # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Library # toConstr :: Library -> Constr # dataTypeOf :: Library -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Library) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Library) # gmapT :: (forall b. Data b => b -> b) -> Library -> Library # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Library -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Library -> r # gmapQ :: (forall d. Data d => d -> u) -> Library -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Library -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Library -> m Library # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Library -> m Library # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Library -> m Library # | |
Data LibraryName Source # | |
Defined in Distribution.Types.LibraryName Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LibraryName -> c LibraryName # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LibraryName # toConstr :: LibraryName -> Constr # dataTypeOf :: LibraryName -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c LibraryName) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LibraryName) # gmapT :: (forall b. Data b => b -> b) -> LibraryName -> LibraryName # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LibraryName -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LibraryName -> r # gmapQ :: (forall d. Data d => d -> u) -> LibraryName -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> LibraryName -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> LibraryName -> m LibraryName # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LibraryName -> m LibraryName # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LibraryName -> m LibraryName # | |
Data LibraryVisibility Source # | |
Defined in Distribution.Types.LibraryVisibility Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LibraryVisibility -> c LibraryVisibility # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LibraryVisibility # toConstr :: LibraryVisibility -> Constr # dataTypeOf :: LibraryVisibility -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c LibraryVisibility) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LibraryVisibility) # gmapT :: (forall b. Data b => b -> b) -> LibraryVisibility -> LibraryVisibility # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LibraryVisibility -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LibraryVisibility -> r # gmapQ :: (forall d. Data d => d -> u) -> LibraryVisibility -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> LibraryVisibility -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> LibraryVisibility -> m LibraryVisibility # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LibraryVisibility -> m LibraryVisibility # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LibraryVisibility -> m LibraryVisibility # | |
Data Mixin Source # | |
Defined in Distribution.Types.Mixin Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Mixin -> c Mixin # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Mixin # dataTypeOf :: Mixin -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Mixin) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Mixin) # gmapT :: (forall b. Data b => b -> b) -> Mixin -> Mixin # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Mixin -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Mixin -> r # gmapQ :: (forall d. Data d => d -> u) -> Mixin -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Mixin -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Mixin -> m Mixin # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Mixin -> m Mixin # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Mixin -> m Mixin # | |
Data Module Source # | |
Defined in Distribution.Types.Module Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Module -> c Module # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Module # toConstr :: Module -> Constr # dataTypeOf :: Module -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Module) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Module) # gmapT :: (forall b. Data b => b -> b) -> Module -> Module # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Module -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Module -> r # gmapQ :: (forall d. Data d => d -> u) -> Module -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Module -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Module -> m Module # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Module -> m Module # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Module -> m Module # | |
Data ModuleReexport Source # | |
Defined in Distribution.Types.ModuleReexport Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ModuleReexport -> c ModuleReexport # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ModuleReexport # toConstr :: ModuleReexport -> Constr # dataTypeOf :: ModuleReexport -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ModuleReexport) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ModuleReexport) # gmapT :: (forall b. Data b => b -> b) -> ModuleReexport -> ModuleReexport # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ModuleReexport -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ModuleReexport -> r # gmapQ :: (forall d. Data d => d -> u) -> ModuleReexport -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ModuleReexport -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ModuleReexport -> m ModuleReexport # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleReexport -> m ModuleReexport # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleReexport -> m ModuleReexport # | |
Data ModuleRenaming Source # | |
Defined in Distribution.Types.ModuleRenaming Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ModuleRenaming -> c ModuleRenaming # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ModuleRenaming # toConstr :: ModuleRenaming -> Constr # dataTypeOf :: ModuleRenaming -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ModuleRenaming) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ModuleRenaming) # gmapT :: (forall b. Data b => b -> b) -> ModuleRenaming -> ModuleRenaming # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ModuleRenaming -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ModuleRenaming -> r # gmapQ :: (forall d. Data d => d -> u) -> ModuleRenaming -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ModuleRenaming -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ModuleRenaming -> m ModuleRenaming # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleRenaming -> m ModuleRenaming # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleRenaming -> m ModuleRenaming # | |
Data MungedPackageId Source # | |
Defined in Distribution.Types.MungedPackageId Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> MungedPackageId -> c MungedPackageId # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c MungedPackageId # toConstr :: MungedPackageId -> Constr # dataTypeOf :: MungedPackageId -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c MungedPackageId) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c MungedPackageId) # gmapT :: (forall b. Data b => b -> b) -> MungedPackageId -> MungedPackageId # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> MungedPackageId -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> MungedPackageId -> r # gmapQ :: (forall d. Data d => d -> u) -> MungedPackageId -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> MungedPackageId -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> MungedPackageId -> m MungedPackageId # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> MungedPackageId -> m MungedPackageId # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> MungedPackageId -> m MungedPackageId # | |
Data MungedPackageName Source # | |
Defined in Distribution.Types.MungedPackageName Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> MungedPackageName -> c MungedPackageName # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c MungedPackageName # toConstr :: MungedPackageName -> Constr # dataTypeOf :: MungedPackageName -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c MungedPackageName) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c MungedPackageName) # gmapT :: (forall b. Data b => b -> b) -> MungedPackageName -> MungedPackageName # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> MungedPackageName -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> MungedPackageName -> r # gmapQ :: (forall d. Data d => d -> u) -> MungedPackageName -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> MungedPackageName -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> MungedPackageName -> m MungedPackageName # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> MungedPackageName -> m MungedPackageName # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> MungedPackageName -> m MungedPackageName # | |
Data PackageDescription Source # | |
Defined in Distribution.Types.PackageDescription Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PackageDescription -> c PackageDescription # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PackageDescription # toConstr :: PackageDescription -> Constr # dataTypeOf :: PackageDescription -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PackageDescription) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PackageDescription) # gmapT :: (forall b. Data b => b -> b) -> PackageDescription -> PackageDescription # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PackageDescription -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PackageDescription -> r # gmapQ :: (forall d. Data d => d -> u) -> PackageDescription -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PackageDescription -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PackageDescription -> m PackageDescription # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PackageDescription -> m PackageDescription # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PackageDescription -> m PackageDescription # | |
Data PackageIdentifier Source # | |
Defined in Distribution.Types.PackageId Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PackageIdentifier -> c PackageIdentifier # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PackageIdentifier # toConstr :: PackageIdentifier -> Constr # dataTypeOf :: PackageIdentifier -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PackageIdentifier) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PackageIdentifier) # gmapT :: (forall b. Data b => b -> b) -> PackageIdentifier -> PackageIdentifier # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PackageIdentifier -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PackageIdentifier -> r # gmapQ :: (forall d. Data d => d -> u) -> PackageIdentifier -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PackageIdentifier -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PackageIdentifier -> m PackageIdentifier # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PackageIdentifier -> m PackageIdentifier # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PackageIdentifier -> m PackageIdentifier # | |
Data PackageName Source # | |
Defined in Distribution.Types.PackageName Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PackageName -> c PackageName # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PackageName # toConstr :: PackageName -> Constr # dataTypeOf :: PackageName -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PackageName) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PackageName) # gmapT :: (forall b. Data b => b -> b) -> PackageName -> PackageName # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PackageName -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PackageName -> r # gmapQ :: (forall d. Data d => d -> u) -> PackageName -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PackageName -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PackageName -> m PackageName # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PackageName -> m PackageName # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PackageName -> m PackageName # | |
Data PackageVersionConstraint Source # | |
Defined in Distribution.Types.PackageVersionConstraint Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PackageVersionConstraint -> c PackageVersionConstraint # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PackageVersionConstraint # toConstr :: PackageVersionConstraint -> Constr # dataTypeOf :: PackageVersionConstraint -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PackageVersionConstraint) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PackageVersionConstraint) # gmapT :: (forall b. Data b => b -> b) -> PackageVersionConstraint -> PackageVersionConstraint # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PackageVersionConstraint -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PackageVersionConstraint -> r # gmapQ :: (forall d. Data d => d -> u) -> PackageVersionConstraint -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PackageVersionConstraint -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PackageVersionConstraint -> m PackageVersionConstraint # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PackageVersionConstraint -> m PackageVersionConstraint # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PackageVersionConstraint -> m PackageVersionConstraint # | |
Data PkgconfigDependency Source # | |
Defined in Distribution.Types.PkgconfigDependency Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PkgconfigDependency -> c PkgconfigDependency # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PkgconfigDependency # toConstr :: PkgconfigDependency -> Constr # dataTypeOf :: PkgconfigDependency -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PkgconfigDependency) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PkgconfigDependency) # gmapT :: (forall b. Data b => b -> b) -> PkgconfigDependency -> PkgconfigDependency # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PkgconfigDependency -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PkgconfigDependency -> r # gmapQ :: (forall d. Data d => d -> u) -> PkgconfigDependency -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PkgconfigDependency -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PkgconfigDependency -> m PkgconfigDependency # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PkgconfigDependency -> m PkgconfigDependency # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PkgconfigDependency -> m PkgconfigDependency # | |
Data PkgconfigName Source # | |
Defined in Distribution.Types.PkgconfigName Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PkgconfigName -> c PkgconfigName # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PkgconfigName # toConstr :: PkgconfigName -> Constr # dataTypeOf :: PkgconfigName -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PkgconfigName) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PkgconfigName) # gmapT :: (forall b. Data b => b -> b) -> PkgconfigName -> PkgconfigName # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PkgconfigName -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PkgconfigName -> r # gmapQ :: (forall d. Data d => d -> u) -> PkgconfigName -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PkgconfigName -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PkgconfigName -> m PkgconfigName # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PkgconfigName -> m PkgconfigName # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PkgconfigName -> m PkgconfigName # | |
Data PkgconfigVersion Source # | |
Defined in Distribution.Types.PkgconfigVersion Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PkgconfigVersion -> c PkgconfigVersion # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PkgconfigVersion # toConstr :: PkgconfigVersion -> Constr # dataTypeOf :: PkgconfigVersion -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PkgconfigVersion) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PkgconfigVersion) # gmapT :: (forall b. Data b => b -> b) -> PkgconfigVersion -> PkgconfigVersion # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PkgconfigVersion -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PkgconfigVersion -> r # gmapQ :: (forall d. Data d => d -> u) -> PkgconfigVersion -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PkgconfigVersion -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PkgconfigVersion -> m PkgconfigVersion # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PkgconfigVersion -> m PkgconfigVersion # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PkgconfigVersion -> m PkgconfigVersion # | |
Data PkgconfigVersionRange Source # | |
Defined in Distribution.Types.PkgconfigVersionRange Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PkgconfigVersionRange -> c PkgconfigVersionRange # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PkgconfigVersionRange # toConstr :: PkgconfigVersionRange -> Constr # dataTypeOf :: PkgconfigVersionRange -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PkgconfigVersionRange) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PkgconfigVersionRange) # gmapT :: (forall b. Data b => b -> b) -> PkgconfigVersionRange -> PkgconfigVersionRange # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PkgconfigVersionRange -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PkgconfigVersionRange -> r # gmapQ :: (forall d. Data d => d -> u) -> PkgconfigVersionRange -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PkgconfigVersionRange -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PkgconfigVersionRange -> m PkgconfigVersionRange # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PkgconfigVersionRange -> m PkgconfigVersionRange # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PkgconfigVersionRange -> m PkgconfigVersionRange # | |
Data SetupBuildInfo Source # | |
Defined in Distribution.Types.SetupBuildInfo Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SetupBuildInfo -> c SetupBuildInfo # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SetupBuildInfo # toConstr :: SetupBuildInfo -> Constr # dataTypeOf :: SetupBuildInfo -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SetupBuildInfo) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SetupBuildInfo) # gmapT :: (forall b. Data b => b -> b) -> SetupBuildInfo -> SetupBuildInfo # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SetupBuildInfo -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SetupBuildInfo -> r # gmapQ :: (forall d. Data d => d -> u) -> SetupBuildInfo -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SetupBuildInfo -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SetupBuildInfo -> m SetupBuildInfo # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SetupBuildInfo -> m SetupBuildInfo # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SetupBuildInfo -> m SetupBuildInfo # | |
Data KnownRepoType Source # | |
Defined in Distribution.Types.SourceRepo Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> KnownRepoType -> c KnownRepoType # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c KnownRepoType # toConstr :: KnownRepoType -> Constr # dataTypeOf :: KnownRepoType -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c KnownRepoType) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c KnownRepoType) # gmapT :: (forall b. Data b => b -> b) -> KnownRepoType -> KnownRepoType # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> KnownRepoType -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> KnownRepoType -> r # gmapQ :: (forall d. Data d => d -> u) -> KnownRepoType -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> KnownRepoType -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> KnownRepoType -> m KnownRepoType # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> KnownRepoType -> m KnownRepoType # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> KnownRepoType -> m KnownRepoType # | |
Data RepoKind Source # | |
Defined in Distribution.Types.SourceRepo Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> RepoKind -> c RepoKind # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c RepoKind # toConstr :: RepoKind -> Constr # dataTypeOf :: RepoKind -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c RepoKind) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c RepoKind) # gmapT :: (forall b. Data b => b -> b) -> RepoKind -> RepoKind # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> RepoKind -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> RepoKind -> r # gmapQ :: (forall d. Data d => d -> u) -> RepoKind -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> RepoKind -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> RepoKind -> m RepoKind # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> RepoKind -> m RepoKind # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> RepoKind -> m RepoKind # | |
Data RepoType Source # | |
Defined in Distribution.Types.SourceRepo Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> RepoType -> c RepoType # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c RepoType # toConstr :: RepoType -> Constr # dataTypeOf :: RepoType -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c RepoType) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c RepoType) # gmapT :: (forall b. Data b => b -> b) -> RepoType -> RepoType # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> RepoType -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> RepoType -> r # gmapQ :: (forall d. Data d => d -> u) -> RepoType -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> RepoType -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> RepoType -> m RepoType # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> RepoType -> m RepoType # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> RepoType -> m RepoType # | |
Data SourceRepo Source # | |
Defined in Distribution.Types.SourceRepo Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceRepo -> c SourceRepo # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceRepo # toConstr :: SourceRepo -> Constr # dataTypeOf :: SourceRepo -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourceRepo) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceRepo) # gmapT :: (forall b. Data b => b -> b) -> SourceRepo -> SourceRepo # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceRepo -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceRepo -> r # gmapQ :: (forall d. Data d => d -> u) -> SourceRepo -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceRepo -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceRepo -> m SourceRepo # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceRepo -> m SourceRepo # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceRepo -> m SourceRepo # | |
Data TestSuite Source # | |
Defined in Distribution.Types.TestSuite Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TestSuite -> c TestSuite # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TestSuite # toConstr :: TestSuite -> Constr # dataTypeOf :: TestSuite -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TestSuite) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TestSuite) # gmapT :: (forall b. Data b => b -> b) -> TestSuite -> TestSuite # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TestSuite -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TestSuite -> r # gmapQ :: (forall d. Data d => d -> u) -> TestSuite -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TestSuite -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TestSuite -> m TestSuite # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TestSuite -> m TestSuite # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TestSuite -> m TestSuite # | |
Data TestSuiteInterface Source # | |
Defined in Distribution.Types.TestSuiteInterface Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TestSuiteInterface -> c TestSuiteInterface # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TestSuiteInterface # toConstr :: TestSuiteInterface -> Constr # dataTypeOf :: TestSuiteInterface -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TestSuiteInterface) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TestSuiteInterface) # gmapT :: (forall b. Data b => b -> b) -> TestSuiteInterface -> TestSuiteInterface # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TestSuiteInterface -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TestSuiteInterface -> r # gmapQ :: (forall d. Data d => d -> u) -> TestSuiteInterface -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TestSuiteInterface -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TestSuiteInterface -> m TestSuiteInterface # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TestSuiteInterface -> m TestSuiteInterface # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TestSuiteInterface -> m TestSuiteInterface # | |
Data TestType Source # | |
Defined in Distribution.Types.TestType Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TestType -> c TestType # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TestType # toConstr :: TestType -> Constr # dataTypeOf :: TestType -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TestType) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TestType) # gmapT :: (forall b. Data b => b -> b) -> TestType -> TestType # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TestType -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TestType -> r # gmapQ :: (forall d. Data d => d -> u) -> TestType -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TestType -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TestType -> m TestType # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TestType -> m TestType # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TestType -> m TestType # | |
Data DefUnitId Source # | |
Defined in Distribution.Types.UnitId Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DefUnitId -> c DefUnitId # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DefUnitId # toConstr :: DefUnitId -> Constr # dataTypeOf :: DefUnitId -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DefUnitId) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DefUnitId) # gmapT :: (forall b. Data b => b -> b) -> DefUnitId -> DefUnitId # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DefUnitId -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DefUnitId -> r # gmapQ :: (forall d. Data d => d -> u) -> DefUnitId -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DefUnitId -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DefUnitId -> m DefUnitId # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DefUnitId -> m DefUnitId # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DefUnitId -> m DefUnitId # | |
Data UnitId Source # | |
Defined in Distribution.Types.UnitId Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> UnitId -> c UnitId # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c UnitId # toConstr :: UnitId -> Constr # dataTypeOf :: UnitId -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c UnitId) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c UnitId) # gmapT :: (forall b. Data b => b -> b) -> UnitId -> UnitId # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> UnitId -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> UnitId -> r # gmapQ :: (forall d. Data d => d -> u) -> UnitId -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> UnitId -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> UnitId -> m UnitId # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> UnitId -> m UnitId # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> UnitId -> m UnitId # | |
Data UnqualComponentName Source # | |
Defined in Distribution.Types.UnqualComponentName Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> UnqualComponentName -> c UnqualComponentName # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c UnqualComponentName # toConstr :: UnqualComponentName -> Constr # dataTypeOf :: UnqualComponentName -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c UnqualComponentName) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c UnqualComponentName) # gmapT :: (forall b. Data b => b -> b) -> UnqualComponentName -> UnqualComponentName # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> UnqualComponentName -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> UnqualComponentName -> r # gmapQ :: (forall d. Data d => d -> u) -> UnqualComponentName -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> UnqualComponentName -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> UnqualComponentName -> m UnqualComponentName # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> UnqualComponentName -> m UnqualComponentName # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> UnqualComponentName -> m UnqualComponentName # | |
Data Version Source # | |
Defined in Distribution.Types.Version Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Version -> c Version # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Version # toConstr :: Version -> Constr # dataTypeOf :: Version -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Version) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Version) # gmapT :: (forall b. Data b => b -> b) -> Version -> Version # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Version -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Version -> r # gmapQ :: (forall d. Data d => d -> u) -> Version -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Version -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Version -> m Version # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Version -> m Version # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Version -> m Version # | |
Data VersionRange Source # | |
Defined in Distribution.Types.VersionRange.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> VersionRange -> c VersionRange # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c VersionRange # toConstr :: VersionRange -> Constr # dataTypeOf :: VersionRange -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c VersionRange) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c VersionRange) # gmapT :: (forall b. Data b => b -> b) -> VersionRange -> VersionRange # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> VersionRange -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> VersionRange -> r # gmapQ :: (forall d. Data d => d -> u) -> VersionRange -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> VersionRange -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> VersionRange -> m VersionRange # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> VersionRange -> m VersionRange # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> VersionRange -> m VersionRange # | |
Data ShortText Source # | |
Defined in Distribution.Utils.ShortText Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ShortText -> c ShortText # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ShortText # toConstr :: ShortText -> Constr # dataTypeOf :: ShortText -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ShortText) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ShortText) # gmapT :: (forall b. Data b => b -> b) -> ShortText -> ShortText # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ShortText -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ShortText -> r # gmapQ :: (forall d. Data d => d -> u) -> ShortText -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ShortText -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ShortText -> m ShortText # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ShortText -> m ShortText # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ShortText -> m ShortText # | |
Data Extension Source # | |
Defined in Language.Haskell.Extension Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Extension -> c Extension # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Extension # toConstr :: Extension -> Constr # dataTypeOf :: Extension -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Extension) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Extension) # gmapT :: (forall b. Data b => b -> b) -> Extension -> Extension # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Extension -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Extension -> r # gmapQ :: (forall d. Data d => d -> u) -> Extension -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Extension -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Extension -> m Extension # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Extension -> m Extension # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Extension -> m Extension # | |
Data KnownExtension Source # | |
Defined in Language.Haskell.Extension Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> KnownExtension -> c KnownExtension # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c KnownExtension # toConstr :: KnownExtension -> Constr # dataTypeOf :: KnownExtension -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c KnownExtension) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c KnownExtension) # gmapT :: (forall b. Data b => b -> b) -> KnownExtension -> KnownExtension # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> KnownExtension -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> KnownExtension -> r # gmapQ :: (forall d. Data d => d -> u) -> KnownExtension -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> KnownExtension -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> KnownExtension -> m KnownExtension # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> KnownExtension -> m KnownExtension # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> KnownExtension -> m KnownExtension # | |
Data Language Source # | |
Defined in Language.Haskell.Extension Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Language -> c Language # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Language # toConstr :: Language -> Constr # dataTypeOf :: Language -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Language) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Language) # gmapT :: (forall b. Data b => b -> b) -> Language -> Language # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Language -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Language -> r # gmapQ :: (forall d. Data d => d -> u) -> Language -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Language -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Language -> m Language # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Language -> m Language # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Language -> m Language # | |
Data ByteArray | Since: base-4.17.0.0 |
Defined in Data.Array.Byte Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ByteArray -> c ByteArray # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ByteArray # toConstr :: ByteArray -> Constr # dataTypeOf :: ByteArray -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ByteArray) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ByteArray) # gmapT :: (forall b. Data b => b -> b) -> ByteArray -> ByteArray # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ByteArray -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ByteArray -> r # gmapQ :: (forall d. Data d => d -> u) -> ByteArray -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ByteArray -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ByteArray -> m ByteArray # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteArray -> m ByteArray # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteArray -> m ByteArray # | |
Data All | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> All -> c All # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c All # dataTypeOf :: All -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c All) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c All) # gmapT :: (forall b. Data b => b -> b) -> All -> All # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> All -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> All -> r # gmapQ :: (forall d. Data d => d -> u) -> All -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> All -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> All -> m All # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> All -> m All # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> All -> m All # | |
Data Any | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Any -> c Any # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Any # dataTypeOf :: Any -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Any) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Any) # gmapT :: (forall b. Data b => b -> b) -> Any -> Any # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Any -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Any -> r # gmapQ :: (forall d. Data d => d -> u) -> Any -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Any -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Any -> m Any # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Any -> m Any # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Any -> m Any # | |
Data Version | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Version -> c Version # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Version # toConstr :: Version -> Constr # dataTypeOf :: Version -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Version) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Version) # gmapT :: (forall b. Data b => b -> b) -> Version -> Version # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Version -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Version -> r # gmapQ :: (forall d. Data d => d -> u) -> Version -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Version -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Version -> m Version # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Version -> m Version # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Version -> m Version # | |
Data IntPtr | Since: base-4.11.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntPtr -> c IntPtr # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c IntPtr # toConstr :: IntPtr -> Constr # dataTypeOf :: IntPtr -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c IntPtr) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c IntPtr) # gmapT :: (forall b. Data b => b -> b) -> IntPtr -> IntPtr # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntPtr -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntPtr -> r # gmapQ :: (forall d. Data d => d -> u) -> IntPtr -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> IntPtr -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntPtr -> m IntPtr # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntPtr -> m IntPtr # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntPtr -> m IntPtr # | |
Data WordPtr | Since: base-4.11.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> WordPtr -> c WordPtr # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c WordPtr # toConstr :: WordPtr -> Constr # dataTypeOf :: WordPtr -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c WordPtr) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c WordPtr) # gmapT :: (forall b. Data b => b -> b) -> WordPtr -> WordPtr # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WordPtr -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WordPtr -> r # gmapQ :: (forall d. Data d => d -> u) -> WordPtr -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> WordPtr -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> WordPtr -> m WordPtr # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> WordPtr -> m WordPtr # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> WordPtr -> m WordPtr # | |
Data Void | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Void -> c Void # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Void # dataTypeOf :: Void -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Void) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Void) # gmapT :: (forall b. Data b => b -> b) -> Void -> Void # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r # gmapQ :: (forall d. Data d => d -> u) -> Void -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Void -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Void -> m Void # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void # | |
Data SpecConstrAnnotation | Since: base-4.3.0.0 |
Defined in GHC.Exts Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SpecConstrAnnotation -> c SpecConstrAnnotation # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SpecConstrAnnotation # toConstr :: SpecConstrAnnotation -> Constr # dataTypeOf :: SpecConstrAnnotation -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SpecConstrAnnotation) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SpecConstrAnnotation) # gmapT :: (forall b. Data b => b -> b) -> SpecConstrAnnotation -> SpecConstrAnnotation # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SpecConstrAnnotation -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SpecConstrAnnotation -> r # gmapQ :: (forall d. Data d => d -> u) -> SpecConstrAnnotation -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SpecConstrAnnotation -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SpecConstrAnnotation -> m SpecConstrAnnotation # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SpecConstrAnnotation -> m SpecConstrAnnotation # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SpecConstrAnnotation -> m SpecConstrAnnotation # | |
Data Associativity | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Associativity -> c Associativity # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Associativity # toConstr :: Associativity -> Constr # dataTypeOf :: Associativity -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Associativity) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Associativity) # gmapT :: (forall b. Data b => b -> b) -> Associativity -> Associativity # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Associativity -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Associativity -> r # gmapQ :: (forall d. Data d => d -> u) -> Associativity -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Associativity -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Associativity -> m Associativity # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Associativity -> m Associativity # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Associativity -> m Associativity # | |
Data DecidedStrictness | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DecidedStrictness -> c DecidedStrictness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DecidedStrictness # toConstr :: DecidedStrictness -> Constr # dataTypeOf :: DecidedStrictness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DecidedStrictness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DecidedStrictness) # gmapT :: (forall b. Data b => b -> b) -> DecidedStrictness -> DecidedStrictness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DecidedStrictness -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DecidedStrictness -> r # gmapQ :: (forall d. Data d => d -> u) -> DecidedStrictness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DecidedStrictness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # | |
Data Fixity | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Fixity -> c Fixity # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Fixity # toConstr :: Fixity -> Constr # dataTypeOf :: Fixity -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Fixity) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Fixity) # gmapT :: (forall b. Data b => b -> b) -> Fixity -> Fixity # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r # gmapQ :: (forall d. Data d => d -> u) -> Fixity -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Fixity -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # | |
Data SourceStrictness | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceStrictness -> c SourceStrictness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceStrictness # toConstr :: SourceStrictness -> Constr # dataTypeOf :: SourceStrictness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourceStrictness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceStrictness) # gmapT :: (forall b. Data b => b -> b) -> SourceStrictness -> SourceStrictness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceStrictness -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceStrictness -> r # gmapQ :: (forall d. Data d => d -> u) -> SourceStrictness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceStrictness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # | |
Data SourceUnpackedness | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceUnpackedness -> c SourceUnpackedness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceUnpackedness # toConstr :: SourceUnpackedness -> Constr # dataTypeOf :: SourceUnpackedness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourceUnpackedness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceUnpackedness) # gmapT :: (forall b. Data b => b -> b) -> SourceUnpackedness -> SourceUnpackedness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceUnpackedness -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceUnpackedness -> r # gmapQ :: (forall d. Data d => d -> u) -> SourceUnpackedness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceUnpackedness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # | |
Data Int16 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int16 -> c Int16 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int16 # dataTypeOf :: Int16 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int16) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int16) # gmapT :: (forall b. Data b => b -> b) -> Int16 -> Int16 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int16 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int16 -> r # gmapQ :: (forall d. Data d => d -> u) -> Int16 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int16 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 # | |
Data Int32 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int32 -> c Int32 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int32 # dataTypeOf :: Int32 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int32) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int32) # gmapT :: (forall b. Data b => b -> b) -> Int32 -> Int32 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int32 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int32 -> r # gmapQ :: (forall d. Data d => d -> u) -> Int32 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int32 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 # | |
Data Int64 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int64 -> c Int64 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int64 # dataTypeOf :: Int64 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int64) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int64) # gmapT :: (forall b. Data b => b -> b) -> Int64 -> Int64 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int64 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int64 -> r # gmapQ :: (forall d. Data d => d -> u) -> Int64 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int64 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 # | |
Data Int8 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int8 -> c Int8 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int8 # dataTypeOf :: Int8 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int8) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int8) # gmapT :: (forall b. Data b => b -> b) -> Int8 -> Int8 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int8 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int8 -> r # gmapQ :: (forall d. Data d => d -> u) -> Int8 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int8 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 # | |
Data Word16 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word16 -> c Word16 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word16 # toConstr :: Word16 -> Constr # dataTypeOf :: Word16 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word16) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word16) # gmapT :: (forall b. Data b => b -> b) -> Word16 -> Word16 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word16 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word16 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word16 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word16 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 # | |
Data Word32 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word32 -> c Word32 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word32 # toConstr :: Word32 -> Constr # dataTypeOf :: Word32 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word32) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word32) # gmapT :: (forall b. Data b => b -> b) -> Word32 -> Word32 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word32 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word32 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word32 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word32 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 # | |
Data Word64 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word64 -> c Word64 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word64 # toConstr :: Word64 -> Constr # dataTypeOf :: Word64 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word64) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word64) # gmapT :: (forall b. Data b => b -> b) -> Word64 -> Word64 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word64 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word64 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word64 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word64 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 # | |
Data Word8 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word8 -> c Word8 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word8 # dataTypeOf :: Word8 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word8) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word8) # gmapT :: (forall b. Data b => b -> b) -> Word8 -> Word8 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word8 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word8 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word8 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word8 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 # | |
Data ByteString | |
Defined in Data.ByteString.Internal.Type Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ByteString -> c ByteString # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ByteString # toConstr :: ByteString -> Constr # dataTypeOf :: ByteString -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ByteString) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ByteString) # gmapT :: (forall b. Data b => b -> b) -> ByteString -> ByteString # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r # gmapQ :: (forall d. Data d => d -> u) -> ByteString -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ByteString -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # | |
Data ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ByteString -> c ByteString # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ByteString # toConstr :: ByteString -> Constr # dataTypeOf :: ByteString -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ByteString) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ByteString) # gmapT :: (forall b. Data b => b -> b) -> ByteString -> ByteString # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r # gmapQ :: (forall d. Data d => d -> u) -> ByteString -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ByteString -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # | |
Data ShortByteString | |
Defined in Data.ByteString.Short.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ShortByteString -> c ShortByteString # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ShortByteString # toConstr :: ShortByteString -> Constr # dataTypeOf :: ShortByteString -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ShortByteString) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ShortByteString) # gmapT :: (forall b. Data b => b -> b) -> ShortByteString -> ShortByteString # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ShortByteString -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ShortByteString -> r # gmapQ :: (forall d. Data d => d -> u) -> ShortByteString -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ShortByteString -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ShortByteString -> m ShortByteString # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ShortByteString -> m ShortByteString # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ShortByteString -> m ShortByteString # | |
Data IntSet | |
Defined in Data.IntSet.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntSet -> c IntSet # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c IntSet # toConstr :: IntSet -> Constr # dataTypeOf :: IntSet -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c IntSet) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c IntSet) # gmapT :: (forall b. Data b => b -> b) -> IntSet -> IntSet # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntSet -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntSet -> r # gmapQ :: (forall d. Data d => d -> u) -> IntSet -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> IntSet -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet # | |
Data Ordering | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ordering -> c Ordering # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Ordering # toConstr :: Ordering -> Constr # dataTypeOf :: Ordering -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Ordering) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Ordering) # gmapT :: (forall b. Data b => b -> b) -> Ordering -> Ordering # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r # gmapQ :: (forall d. Data d => d -> u) -> Ordering -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ordering -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # | |
Data SourcePos | |
Defined in Text.Parsec.Pos Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourcePos -> c SourcePos # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourcePos # toConstr :: SourcePos -> Constr # dataTypeOf :: SourcePos -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourcePos) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourcePos) # gmapT :: (forall b. Data b => b -> b) -> SourcePos -> SourcePos # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourcePos -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourcePos -> r # gmapQ :: (forall d. Data d => d -> u) -> SourcePos -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourcePos -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourcePos -> m SourcePos # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourcePos -> m SourcePos # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourcePos -> m SourcePos # | |
Data AnnLookup | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> AnnLookup -> c AnnLookup # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c AnnLookup # toConstr :: AnnLookup -> Constr # dataTypeOf :: AnnLookup -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c AnnLookup) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c AnnLookup) # gmapT :: (forall b. Data b => b -> b) -> AnnLookup -> AnnLookup # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> AnnLookup -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> AnnLookup -> r # gmapQ :: (forall d. Data d => d -> u) -> AnnLookup -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> AnnLookup -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> AnnLookup -> m AnnLookup # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnLookup -> m AnnLookup # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnLookup -> m AnnLookup # | |
Data AnnTarget | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> AnnTarget -> c AnnTarget # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c AnnTarget # toConstr :: AnnTarget -> Constr # dataTypeOf :: AnnTarget -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c AnnTarget) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c AnnTarget) # gmapT :: (forall b. Data b => b -> b) -> AnnTarget -> AnnTarget # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> AnnTarget -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> AnnTarget -> r # gmapQ :: (forall d. Data d => d -> u) -> AnnTarget -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> AnnTarget -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> AnnTarget -> m AnnTarget # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnTarget -> m AnnTarget # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnTarget -> m AnnTarget # | |
Data Bang | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bang -> c Bang # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bang # dataTypeOf :: Bang -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Bang) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bang) # gmapT :: (forall b. Data b => b -> b) -> Bang -> Bang # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bang -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bang -> r # gmapQ :: (forall d. Data d => d -> u) -> Bang -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Bang -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bang -> m Bang # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bang -> m Bang # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bang -> m Bang # | |
Data Body | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Body -> c Body # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Body # dataTypeOf :: Body -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Body) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Body) # gmapT :: (forall b. Data b => b -> b) -> Body -> Body # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Body -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Body -> r # gmapQ :: (forall d. Data d => d -> u) -> Body -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Body -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Body -> m Body # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Body -> m Body # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Body -> m Body # | |
Data Bytes | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bytes -> c Bytes # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bytes # dataTypeOf :: Bytes -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Bytes) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bytes) # gmapT :: (forall b. Data b => b -> b) -> Bytes -> Bytes # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bytes -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bytes -> r # gmapQ :: (forall d. Data d => d -> u) -> Bytes -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Bytes -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bytes -> m Bytes # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bytes -> m Bytes # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bytes -> m Bytes # | |
Data Callconv | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Callconv -> c Callconv # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Callconv # toConstr :: Callconv -> Constr # dataTypeOf :: Callconv -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Callconv) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Callconv) # gmapT :: (forall b. Data b => b -> b) -> Callconv -> Callconv # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Callconv -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Callconv -> r # gmapQ :: (forall d. Data d => d -> u) -> Callconv -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Callconv -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Callconv -> m Callconv # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Callconv -> m Callconv # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Callconv -> m Callconv # | |
Data Clause | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Clause -> c Clause # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Clause # toConstr :: Clause -> Constr # dataTypeOf :: Clause -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Clause) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Clause) # gmapT :: (forall b. Data b => b -> b) -> Clause -> Clause # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Clause -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Clause -> r # gmapQ :: (forall d. Data d => d -> u) -> Clause -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Clause -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Clause -> m Clause # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Clause -> m Clause # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Clause -> m Clause # | |
Data Con | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Con -> c Con # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Con # dataTypeOf :: Con -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Con) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Con) # gmapT :: (forall b. Data b => b -> b) -> Con -> Con # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Con -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Con -> r # gmapQ :: (forall d. Data d => d -> u) -> Con -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Con -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Con -> m Con # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Con -> m Con # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Con -> m Con # | |
Data Dec | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Dec -> c Dec # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Dec # dataTypeOf :: Dec -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Dec) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Dec) # gmapT :: (forall b. Data b => b -> b) -> Dec -> Dec # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Dec -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Dec -> r # gmapQ :: (forall d. Data d => d -> u) -> Dec -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Dec -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Dec -> m Dec # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Dec -> m Dec # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Dec -> m Dec # | |
Data DecidedStrictness | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DecidedStrictness -> c DecidedStrictness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DecidedStrictness # toConstr :: DecidedStrictness -> Constr # dataTypeOf :: DecidedStrictness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DecidedStrictness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DecidedStrictness) # gmapT :: (forall b. Data b => b -> b) -> DecidedStrictness -> DecidedStrictness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DecidedStrictness -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DecidedStrictness -> r # gmapQ :: (forall d. Data d => d -> u) -> DecidedStrictness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DecidedStrictness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # | |
Data DerivClause | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DerivClause -> c DerivClause # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DerivClause # toConstr :: DerivClause -> Constr # dataTypeOf :: DerivClause -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DerivClause) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DerivClause) # gmapT :: (forall b. Data b => b -> b) -> DerivClause -> DerivClause # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DerivClause -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DerivClause -> r # gmapQ :: (forall d. Data d => d -> u) -> DerivClause -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DerivClause -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DerivClause -> m DerivClause # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DerivClause -> m DerivClause # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DerivClause -> m DerivClause # | |
Data DerivStrategy | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DerivStrategy -> c DerivStrategy # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DerivStrategy # toConstr :: DerivStrategy -> Constr # dataTypeOf :: DerivStrategy -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DerivStrategy) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DerivStrategy) # gmapT :: (forall b. Data b => b -> b) -> DerivStrategy -> DerivStrategy # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DerivStrategy -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DerivStrategy -> r # gmapQ :: (forall d. Data d => d -> u) -> DerivStrategy -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DerivStrategy -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DerivStrategy -> m DerivStrategy # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DerivStrategy -> m DerivStrategy # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DerivStrategy -> m DerivStrategy # | |
Data DocLoc | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DocLoc -> c DocLoc # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DocLoc # toConstr :: DocLoc -> Constr # dataTypeOf :: DocLoc -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DocLoc) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DocLoc) # gmapT :: (forall b. Data b => b -> b) -> DocLoc -> DocLoc # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DocLoc -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DocLoc -> r # gmapQ :: (forall d. Data d => d -> u) -> DocLoc -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DocLoc -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DocLoc -> m DocLoc # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DocLoc -> m DocLoc # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DocLoc -> m DocLoc # | |
Data Exp | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Exp -> c Exp # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Exp # dataTypeOf :: Exp -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Exp) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Exp) # gmapT :: (forall b. Data b => b -> b) -> Exp -> Exp # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Exp -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Exp -> r # gmapQ :: (forall d. Data d => d -> u) -> Exp -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Exp -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Exp -> m Exp # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Exp -> m Exp # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Exp -> m Exp # | |
Data FamilyResultSig | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FamilyResultSig -> c FamilyResultSig # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c FamilyResultSig # toConstr :: FamilyResultSig -> Constr # dataTypeOf :: FamilyResultSig -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c FamilyResultSig) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c FamilyResultSig) # gmapT :: (forall b. Data b => b -> b) -> FamilyResultSig -> FamilyResultSig # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FamilyResultSig -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FamilyResultSig -> r # gmapQ :: (forall d. Data d => d -> u) -> FamilyResultSig -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> FamilyResultSig -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FamilyResultSig -> m FamilyResultSig # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FamilyResultSig -> m FamilyResultSig # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FamilyResultSig -> m FamilyResultSig # | |
Data Fixity | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Fixity -> c Fixity # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Fixity # toConstr :: Fixity -> Constr # dataTypeOf :: Fixity -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Fixity) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Fixity) # gmapT :: (forall b. Data b => b -> b) -> Fixity -> Fixity # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r # gmapQ :: (forall d. Data d => d -> u) -> Fixity -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Fixity -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # | |
Data FixityDirection | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FixityDirection -> c FixityDirection # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c FixityDirection # toConstr :: FixityDirection -> Constr # dataTypeOf :: FixityDirection -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c FixityDirection) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c FixityDirection) # gmapT :: (forall b. Data b => b -> b) -> FixityDirection -> FixityDirection # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FixityDirection -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FixityDirection -> r # gmapQ :: (forall d. Data d => d -> u) -> FixityDirection -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> FixityDirection -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FixityDirection -> m FixityDirection # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FixityDirection -> m FixityDirection # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FixityDirection -> m FixityDirection # | |
Data Foreign | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Foreign -> c Foreign # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Foreign # toConstr :: Foreign -> Constr # dataTypeOf :: Foreign -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Foreign) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Foreign) # gmapT :: (forall b. Data b => b -> b) -> Foreign -> Foreign # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Foreign -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Foreign -> r # gmapQ :: (forall d. Data d => d -> u) -> Foreign -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Foreign -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Foreign -> m Foreign # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Foreign -> m Foreign # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Foreign -> m Foreign # | |
Data FunDep | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FunDep -> c FunDep # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c FunDep # toConstr :: FunDep -> Constr # dataTypeOf :: FunDep -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c FunDep) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c FunDep) # gmapT :: (forall b. Data b => b -> b) -> FunDep -> FunDep # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FunDep -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FunDep -> r # gmapQ :: (forall d. Data d => d -> u) -> FunDep -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> FunDep -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FunDep -> m FunDep # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FunDep -> m FunDep # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FunDep -> m FunDep # | |
Data Guard | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Guard -> c Guard # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Guard # dataTypeOf :: Guard -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Guard) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Guard) # gmapT :: (forall b. Data b => b -> b) -> Guard -> Guard # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Guard -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Guard -> r # gmapQ :: (forall d. Data d => d -> u) -> Guard -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Guard -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Guard -> m Guard # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Guard -> m Guard # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Guard -> m Guard # | |
Data Info | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Info -> c Info # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Info # dataTypeOf :: Info -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Info) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Info) # gmapT :: (forall b. Data b => b -> b) -> Info -> Info # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Info -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Info -> r # gmapQ :: (forall d. Data d => d -> u) -> Info -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Info -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Info -> m Info # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Info -> m Info # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Info -> m Info # | |
Data InjectivityAnn | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> InjectivityAnn -> c InjectivityAnn # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c InjectivityAnn # toConstr :: InjectivityAnn -> Constr # dataTypeOf :: InjectivityAnn -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c InjectivityAnn) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c InjectivityAnn) # gmapT :: (forall b. Data b => b -> b) -> InjectivityAnn -> InjectivityAnn # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> InjectivityAnn -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> InjectivityAnn -> r # gmapQ :: (forall d. Data d => d -> u) -> InjectivityAnn -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> InjectivityAnn -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> InjectivityAnn -> m InjectivityAnn # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> InjectivityAnn -> m InjectivityAnn # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> InjectivityAnn -> m InjectivityAnn # | |
Data Inline | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Inline -> c Inline # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Inline # toConstr :: Inline -> Constr # dataTypeOf :: Inline -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Inline) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Inline) # gmapT :: (forall b. Data b => b -> b) -> Inline -> Inline # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Inline -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Inline -> r # gmapQ :: (forall d. Data d => d -> u) -> Inline -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Inline -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Inline -> m Inline # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Inline -> m Inline # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Inline -> m Inline # | |
Data Lit | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Lit -> c Lit # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Lit # dataTypeOf :: Lit -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Lit) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Lit) # gmapT :: (forall b. Data b => b -> b) -> Lit -> Lit # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Lit -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Lit -> r # gmapQ :: (forall d. Data d => d -> u) -> Lit -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Lit -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Lit -> m Lit # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Lit -> m Lit # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Lit -> m Lit # | |
Data Loc | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Loc -> c Loc # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Loc # dataTypeOf :: Loc -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Loc) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Loc) # gmapT :: (forall b. Data b => b -> b) -> Loc -> Loc # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Loc -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Loc -> r # gmapQ :: (forall d. Data d => d -> u) -> Loc -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Loc -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Loc -> m Loc # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Loc -> m Loc # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Loc -> m Loc # | |
Data Match | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Match -> c Match # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Match # dataTypeOf :: Match -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Match) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Match) # gmapT :: (forall b. Data b => b -> b) -> Match -> Match # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Match -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Match -> r # gmapQ :: (forall d. Data d => d -> u) -> Match -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Match -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Match -> m Match # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Match -> m Match # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Match -> m Match # | |
Data ModName | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ModName -> c ModName # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ModName # toConstr :: ModName -> Constr # dataTypeOf :: ModName -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ModName) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ModName) # gmapT :: (forall b. Data b => b -> b) -> ModName -> ModName # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ModName -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ModName -> r # gmapQ :: (forall d. Data d => d -> u) -> ModName -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ModName -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ModName -> m ModName # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ModName -> m ModName # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ModName -> m ModName # | |
Data Module | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Module -> c Module # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Module # toConstr :: Module -> Constr # dataTypeOf :: Module -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Module) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Module) # gmapT :: (forall b. Data b => b -> b) -> Module -> Module # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Module -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Module -> r # gmapQ :: (forall d. Data d => d -> u) -> Module -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Module -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Module -> m Module # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Module -> m Module # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Module -> m Module # | |
Data ModuleInfo | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ModuleInfo -> c ModuleInfo # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ModuleInfo # toConstr :: ModuleInfo -> Constr # dataTypeOf :: ModuleInfo -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ModuleInfo) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ModuleInfo) # gmapT :: (forall b. Data b => b -> b) -> ModuleInfo -> ModuleInfo # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ModuleInfo -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ModuleInfo -> r # gmapQ :: (forall d. Data d => d -> u) -> ModuleInfo -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ModuleInfo -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ModuleInfo -> m ModuleInfo # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleInfo -> m ModuleInfo # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleInfo -> m ModuleInfo # | |
Data Name | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Name -> c Name # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Name # dataTypeOf :: Name -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Name) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Name) # gmapT :: (forall b. Data b => b -> b) -> Name -> Name # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Name -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Name -> r # gmapQ :: (forall d. Data d => d -> u) -> Name -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Name -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Name -> m Name # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Name -> m Name # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Name -> m Name # | |
Data NameFlavour | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NameFlavour -> c NameFlavour # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c NameFlavour # toConstr :: NameFlavour -> Constr # dataTypeOf :: NameFlavour -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c NameFlavour) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c NameFlavour) # gmapT :: (forall b. Data b => b -> b) -> NameFlavour -> NameFlavour # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NameFlavour -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NameFlavour -> r # gmapQ :: (forall d. Data d => d -> u) -> NameFlavour -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> NameFlavour -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NameFlavour -> m NameFlavour # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NameFlavour -> m NameFlavour # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NameFlavour -> m NameFlavour # | |
Data NameSpace | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NameSpace -> c NameSpace # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c NameSpace # toConstr :: NameSpace -> Constr # dataTypeOf :: NameSpace -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c NameSpace) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c NameSpace) # gmapT :: (forall b. Data b => b -> b) -> NameSpace -> NameSpace # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NameSpace -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NameSpace -> r # gmapQ :: (forall d. Data d => d -> u) -> NameSpace -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> NameSpace -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NameSpace -> m NameSpace # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NameSpace -> m NameSpace # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NameSpace -> m NameSpace # | |
Data OccName | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> OccName -> c OccName # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c OccName # toConstr :: OccName -> Constr # dataTypeOf :: OccName -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c OccName) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c OccName) # gmapT :: (forall b. Data b => b -> b) -> OccName -> OccName # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> OccName -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> OccName -> r # gmapQ :: (forall d. Data d => d -> u) -> OccName -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> OccName -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> OccName -> m OccName # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> OccName -> m OccName # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> OccName -> m OccName # | |
Data Overlap | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Overlap -> c Overlap # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Overlap # toConstr :: Overlap -> Constr # dataTypeOf :: Overlap -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Overlap) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Overlap) # gmapT :: (forall b. Data b => b -> b) -> Overlap -> Overlap # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Overlap -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Overlap -> r # gmapQ :: (forall d. Data d => d -> u) -> Overlap -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Overlap -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Overlap -> m Overlap # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Overlap -> m Overlap # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Overlap -> m Overlap # | |
Data Pat | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Pat -> c Pat # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Pat # dataTypeOf :: Pat -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Pat) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Pat) # gmapT :: (forall b. Data b => b -> b) -> Pat -> Pat # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Pat -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Pat -> r # gmapQ :: (forall d. Data d => d -> u) -> Pat -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Pat -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Pat -> m Pat # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Pat -> m Pat # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Pat -> m Pat # | |
Data PatSynArgs | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PatSynArgs -> c PatSynArgs # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PatSynArgs # toConstr :: PatSynArgs -> Constr # dataTypeOf :: PatSynArgs -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PatSynArgs) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PatSynArgs) # gmapT :: (forall b. Data b => b -> b) -> PatSynArgs -> PatSynArgs # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PatSynArgs -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PatSynArgs -> r # gmapQ :: (forall d. Data d => d -> u) -> PatSynArgs -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PatSynArgs -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PatSynArgs -> m PatSynArgs # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PatSynArgs -> m PatSynArgs # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PatSynArgs -> m PatSynArgs # | |
Data PatSynDir | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PatSynDir -> c PatSynDir # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PatSynDir # toConstr :: PatSynDir -> Constr # dataTypeOf :: PatSynDir -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PatSynDir) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PatSynDir) # gmapT :: (forall b. Data b => b -> b) -> PatSynDir -> PatSynDir # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PatSynDir -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PatSynDir -> r # gmapQ :: (forall d. Data d => d -> u) -> PatSynDir -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PatSynDir -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PatSynDir -> m PatSynDir # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PatSynDir -> m PatSynDir # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PatSynDir -> m PatSynDir # | |
Data Phases | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Phases -> c Phases # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Phases # toConstr :: Phases -> Constr # dataTypeOf :: Phases -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Phases) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Phases) # gmapT :: (forall b. Data b => b -> b) -> Phases -> Phases # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Phases -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Phases -> r # gmapQ :: (forall d. Data d => d -> u) -> Phases -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Phases -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Phases -> m Phases # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Phases -> m Phases # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Phases -> m Phases # | |
Data PkgName | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PkgName -> c PkgName # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PkgName # toConstr :: PkgName -> Constr # dataTypeOf :: PkgName -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PkgName) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PkgName) # gmapT :: (forall b. Data b => b -> b) -> PkgName -> PkgName # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PkgName -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PkgName -> r # gmapQ :: (forall d. Data d => d -> u) -> PkgName -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PkgName -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PkgName -> m PkgName # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PkgName -> m PkgName # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PkgName -> m PkgName # | |
Data Pragma | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Pragma -> c Pragma # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Pragma # toConstr :: Pragma -> Constr # dataTypeOf :: Pragma -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Pragma) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Pragma) # gmapT :: (forall b. Data b => b -> b) -> Pragma -> Pragma # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Pragma -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Pragma -> r # gmapQ :: (forall d. Data d => d -> u) -> Pragma -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Pragma -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Pragma -> m Pragma # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Pragma -> m Pragma # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Pragma -> m Pragma # | |
Data Range | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Range -> c Range # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Range # dataTypeOf :: Range -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Range) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Range) # gmapT :: (forall b. Data b => b -> b) -> Range -> Range # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Range -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Range -> r # gmapQ :: (forall d. Data d => d -> u) -> Range -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Range -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Range -> m Range # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Range -> m Range # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Range -> m Range # | |
Data Role | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Role -> c Role # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Role # dataTypeOf :: Role -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Role) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Role) # gmapT :: (forall b. Data b => b -> b) -> Role -> Role # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Role -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Role -> r # gmapQ :: (forall d. Data d => d -> u) -> Role -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Role -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Role -> m Role # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Role -> m Role # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Role -> m Role # | |
Data RuleBndr | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> RuleBndr -> c RuleBndr # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c RuleBndr # toConstr :: RuleBndr -> Constr # dataTypeOf :: RuleBndr -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c RuleBndr) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c RuleBndr) # gmapT :: (forall b. Data b => b -> b) -> RuleBndr -> RuleBndr # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> RuleBndr -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> RuleBndr -> r # gmapQ :: (forall d. Data d => d -> u) -> RuleBndr -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> RuleBndr -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> RuleBndr -> m RuleBndr # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleBndr -> m RuleBndr # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleBndr -> m RuleBndr # | |
Data RuleMatch | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> RuleMatch -> c RuleMatch # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c RuleMatch # toConstr :: RuleMatch -> Constr # dataTypeOf :: RuleMatch -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c RuleMatch) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c RuleMatch) # gmapT :: (forall b. Data b => b -> b) -> RuleMatch -> RuleMatch # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> RuleMatch -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> RuleMatch -> r # gmapQ :: (forall d. Data d => d -> u) -> RuleMatch -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> RuleMatch -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> RuleMatch -> m RuleMatch # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleMatch -> m RuleMatch # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleMatch -> m RuleMatch # | |
Data Safety | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Safety -> c Safety # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Safety # toConstr :: Safety -> Constr # dataTypeOf :: Safety -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Safety) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Safety) # gmapT :: (forall b. Data b => b -> b) -> Safety -> Safety # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Safety -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Safety -> r # gmapQ :: (forall d. Data d => d -> u) -> Safety -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Safety -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Safety -> m Safety # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Safety -> m Safety # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Safety -> m Safety # | |
Data SourceStrictness | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceStrictness -> c SourceStrictness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceStrictness # toConstr :: SourceStrictness -> Constr # dataTypeOf :: SourceStrictness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourceStrictness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceStrictness) # gmapT :: (forall b. Data b => b -> b) -> SourceStrictness -> SourceStrictness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceStrictness -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceStrictness -> r # gmapQ :: (forall d. Data d => d -> u) -> SourceStrictness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceStrictness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # | |
Data SourceUnpackedness | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceUnpackedness -> c SourceUnpackedness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceUnpackedness # toConstr :: SourceUnpackedness -> Constr # dataTypeOf :: SourceUnpackedness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourceUnpackedness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceUnpackedness) # gmapT :: (forall b. Data b => b -> b) -> SourceUnpackedness -> SourceUnpackedness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceUnpackedness -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceUnpackedness -> r # gmapQ :: (forall d. Data d => d -> u) -> SourceUnpackedness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceUnpackedness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # | |
Data Specificity | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Specificity -> c Specificity # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Specificity # toConstr :: Specificity -> Constr # dataTypeOf :: Specificity -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Specificity) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Specificity) # gmapT :: (forall b. Data b => b -> b) -> Specificity -> Specificity # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Specificity -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Specificity -> r # gmapQ :: (forall d. Data d => d -> u) -> Specificity -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Specificity -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Specificity -> m Specificity # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Specificity -> m Specificity # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Specificity -> m Specificity # | |
Data Stmt | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Stmt -> c Stmt # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Stmt # dataTypeOf :: Stmt -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Stmt) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Stmt) # gmapT :: (forall b. Data b => b -> b) -> Stmt -> Stmt # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Stmt -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Stmt -> r # gmapQ :: (forall d. Data d => d -> u) -> Stmt -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Stmt -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Stmt -> m Stmt # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Stmt -> m Stmt # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Stmt -> m Stmt # | |
Data TyLit | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TyLit -> c TyLit # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TyLit # dataTypeOf :: TyLit -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TyLit) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TyLit) # gmapT :: (forall b. Data b => b -> b) -> TyLit -> TyLit # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TyLit -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TyLit -> r # gmapQ :: (forall d. Data d => d -> u) -> TyLit -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TyLit -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TyLit -> m TyLit # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TyLit -> m TyLit # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TyLit -> m TyLit # | |
Data TySynEqn | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TySynEqn -> c TySynEqn # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TySynEqn # toConstr :: TySynEqn -> Constr # dataTypeOf :: TySynEqn -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TySynEqn) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TySynEqn) # gmapT :: (forall b. Data b => b -> b) -> TySynEqn -> TySynEqn # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TySynEqn -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TySynEqn -> r # gmapQ :: (forall d. Data d => d -> u) -> TySynEqn -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TySynEqn -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TySynEqn -> m TySynEqn # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TySynEqn -> m TySynEqn # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TySynEqn -> m TySynEqn # | |
Data Type | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Type -> c Type # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Type # dataTypeOf :: Type -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Type) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Type) # gmapT :: (forall b. Data b => b -> b) -> Type -> Type # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Type -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Type -> r # gmapQ :: (forall d. Data d => d -> u) -> Type -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Type -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Type -> m Type # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Type -> m Type # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Type -> m Type # | |
Data TypeFamilyHead | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TypeFamilyHead -> c TypeFamilyHead # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TypeFamilyHead # toConstr :: TypeFamilyHead -> Constr # dataTypeOf :: TypeFamilyHead -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TypeFamilyHead) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TypeFamilyHead) # gmapT :: (forall b. Data b => b -> b) -> TypeFamilyHead -> TypeFamilyHead # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TypeFamilyHead -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TypeFamilyHead -> r # gmapQ :: (forall d. Data d => d -> u) -> TypeFamilyHead -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TypeFamilyHead -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TypeFamilyHead -> m TypeFamilyHead # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TypeFamilyHead -> m TypeFamilyHead # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TypeFamilyHead -> m TypeFamilyHead # | |
Data Day | |
Defined in Data.Time.Calendar.Days Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Day -> c Day # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Day # dataTypeOf :: Day -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Day) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Day) # gmapT :: (forall b. Data b => b -> b) -> Day -> Day # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Day -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Day -> r # gmapQ :: (forall d. Data d => d -> u) -> Day -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Day -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Day -> m Day # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Day -> m Day # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Day -> m Day # | |
Data DiffTime | |
Defined in Data.Time.Clock.Internal.DiffTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DiffTime -> c DiffTime # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DiffTime # toConstr :: DiffTime -> Constr # dataTypeOf :: DiffTime -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DiffTime) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DiffTime) # gmapT :: (forall b. Data b => b -> b) -> DiffTime -> DiffTime # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DiffTime -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DiffTime -> r # gmapQ :: (forall d. Data d => d -> u) -> DiffTime -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DiffTime -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DiffTime -> m DiffTime # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DiffTime -> m DiffTime # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DiffTime -> m DiffTime # | |
Data NominalDiffTime | |
Defined in Data.Time.Clock.Internal.NominalDiffTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NominalDiffTime -> c NominalDiffTime # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c NominalDiffTime # toConstr :: NominalDiffTime -> Constr # dataTypeOf :: NominalDiffTime -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c NominalDiffTime) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c NominalDiffTime) # gmapT :: (forall b. Data b => b -> b) -> NominalDiffTime -> NominalDiffTime # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NominalDiffTime -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NominalDiffTime -> r # gmapQ :: (forall d. Data d => d -> u) -> NominalDiffTime -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> NominalDiffTime -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NominalDiffTime -> m NominalDiffTime # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NominalDiffTime -> m NominalDiffTime # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NominalDiffTime -> m NominalDiffTime # | |
Data UTCTime | |
Defined in Data.Time.Clock.Internal.UTCTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> UTCTime -> c UTCTime # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c UTCTime # toConstr :: UTCTime -> Constr # dataTypeOf :: UTCTime -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c UTCTime) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c UTCTime) # gmapT :: (forall b. Data b => b -> b) -> UTCTime -> UTCTime # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> UTCTime -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> UTCTime -> r # gmapQ :: (forall d. Data d => d -> u) -> UTCTime -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> UTCTime -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> UTCTime -> m UTCTime # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> UTCTime -> m UTCTime # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> UTCTime -> m UTCTime # | |
Data UniversalTime | |
Defined in Data.Time.Clock.Internal.UniversalTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> UniversalTime -> c UniversalTime # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c UniversalTime # toConstr :: UniversalTime -> Constr # dataTypeOf :: UniversalTime -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c UniversalTime) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c UniversalTime) # gmapT :: (forall b. Data b => b -> b) -> UniversalTime -> UniversalTime # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> UniversalTime -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> UniversalTime -> r # gmapQ :: (forall d. Data d => d -> u) -> UniversalTime -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> UniversalTime -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> UniversalTime -> m UniversalTime # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> UniversalTime -> m UniversalTime # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> UniversalTime -> m UniversalTime # | |
Data LocalTime | |
Defined in Data.Time.LocalTime.Internal.LocalTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LocalTime -> c LocalTime # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LocalTime # toConstr :: LocalTime -> Constr # dataTypeOf :: LocalTime -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c LocalTime) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LocalTime) # gmapT :: (forall b. Data b => b -> b) -> LocalTime -> LocalTime # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LocalTime -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LocalTime -> r # gmapQ :: (forall d. Data d => d -> u) -> LocalTime -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> LocalTime -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> LocalTime -> m LocalTime # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LocalTime -> m LocalTime # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LocalTime -> m LocalTime # | |
Data TimeOfDay | |
Defined in Data.Time.LocalTime.Internal.TimeOfDay Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TimeOfDay -> c TimeOfDay # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TimeOfDay # toConstr :: TimeOfDay -> Constr # dataTypeOf :: TimeOfDay -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TimeOfDay) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TimeOfDay) # gmapT :: (forall b. Data b => b -> b) -> TimeOfDay -> TimeOfDay # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TimeOfDay -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TimeOfDay -> r # gmapQ :: (forall d. Data d => d -> u) -> TimeOfDay -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TimeOfDay -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TimeOfDay -> m TimeOfDay # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TimeOfDay -> m TimeOfDay # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TimeOfDay -> m TimeOfDay # | |
Data TimeZone | |
Defined in Data.Time.LocalTime.Internal.TimeZone Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TimeZone -> c TimeZone # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TimeZone # toConstr :: TimeZone -> Constr # dataTypeOf :: TimeZone -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TimeZone) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TimeZone) # gmapT :: (forall b. Data b => b -> b) -> TimeZone -> TimeZone # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TimeZone -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TimeZone -> r # gmapQ :: (forall d. Data d => d -> u) -> TimeZone -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TimeZone -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TimeZone -> m TimeZone # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TimeZone -> m TimeZone # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TimeZone -> m TimeZone # | |
Data ZonedTime | |
Defined in Data.Time.LocalTime.Internal.ZonedTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ZonedTime -> c ZonedTime # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ZonedTime # toConstr :: ZonedTime -> Constr # dataTypeOf :: ZonedTime -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ZonedTime) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ZonedTime) # gmapT :: (forall b. Data b => b -> b) -> ZonedTime -> ZonedTime # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ZonedTime -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ZonedTime -> r # gmapQ :: (forall d. Data d => d -> u) -> ZonedTime -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ZonedTime -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ZonedTime -> m ZonedTime # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ZonedTime -> m ZonedTime # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ZonedTime -> m ZonedTime # | |
Data Integer | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Integer -> c Integer # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Integer # toConstr :: Integer -> Constr # dataTypeOf :: Integer -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Integer) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Integer) # gmapT :: (forall b. Data b => b -> b) -> Integer -> Integer # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r # gmapQ :: (forall d. Data d => d -> u) -> Integer -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Integer -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Integer -> m Integer # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer # | |
Data Natural | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Natural -> c Natural # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Natural # toConstr :: Natural -> Constr # dataTypeOf :: Natural -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Natural) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Natural) # gmapT :: (forall b. Data b => b -> b) -> Natural -> Natural # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Natural -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Natural -> r # gmapQ :: (forall d. Data d => d -> u) -> Natural -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Natural -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Natural -> m Natural # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Natural -> m Natural # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Natural -> m Natural # | |
Data () | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> () -> c () # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c () # dataTypeOf :: () -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ()) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ()) # gmapT :: (forall b. Data b => b -> b) -> () -> () # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> () -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> () -> r # gmapQ :: (forall d. Data d => d -> u) -> () -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> () -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> () -> m () # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> () -> m () # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> () -> m () # | |
Data Bool | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bool -> c Bool # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bool # dataTypeOf :: Bool -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Bool) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bool) # gmapT :: (forall b. Data b => b -> b) -> Bool -> Bool # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r # gmapQ :: (forall d. Data d => d -> u) -> Bool -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Bool -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bool -> m Bool # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool # | |
Data Char | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Char -> c Char # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Char # dataTypeOf :: Char -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Char) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Char) # gmapT :: (forall b. Data b => b -> b) -> Char -> Char # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r # gmapQ :: (forall d. Data d => d -> u) -> Char -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Char -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Char -> m Char # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char # | |
Data Double | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Double -> c Double # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Double # toConstr :: Double -> Constr # dataTypeOf :: Double -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Double) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Double) # gmapT :: (forall b. Data b => b -> b) -> Double -> Double # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r # gmapQ :: (forall d. Data d => d -> u) -> Double -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Double -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Double -> m Double # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double # | |
Data Float | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Float -> c Float # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Float # dataTypeOf :: Float -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Float) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Float) # gmapT :: (forall b. Data b => b -> b) -> Float -> Float # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r # gmapQ :: (forall d. Data d => d -> u) -> Float -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Float -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Float -> m Float # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float # | |
Data Int | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int -> c Int # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int # dataTypeOf :: Int -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int) # gmapT :: (forall b. Data b => b -> b) -> Int -> Int # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r # gmapQ :: (forall d. Data d => d -> u) -> Int -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int -> m Int # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int # | |
Data Word | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word -> c Word # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word # dataTypeOf :: Word -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word) # gmapT :: (forall b. Data b => b -> b) -> Word -> Word # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r # gmapQ :: (forall d. Data d => d -> u) -> Word -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word -> m Word # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word # | |
(Data a, Ord a) => Data (NonEmptySet a) Source # | |
Defined in Distribution.Compat.NonEmptySet Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NonEmptySet a -> c (NonEmptySet a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (NonEmptySet a) # toConstr :: NonEmptySet a -> Constr # dataTypeOf :: NonEmptySet a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (NonEmptySet a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (NonEmptySet a)) # gmapT :: (forall b. Data b => b -> b) -> NonEmptySet a -> NonEmptySet a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NonEmptySet a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NonEmptySet a -> r # gmapQ :: (forall d. Data d => d -> u) -> NonEmptySet a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> NonEmptySet a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NonEmptySet a -> m (NonEmptySet a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmptySet a -> m (NonEmptySet a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmptySet a -> m (NonEmptySet a) # | |
Data v => Data (PerCompilerFlavor v) Source # | |
Defined in Distribution.Compiler Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PerCompilerFlavor v -> c (PerCompilerFlavor v) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (PerCompilerFlavor v) # toConstr :: PerCompilerFlavor v -> Constr # dataTypeOf :: PerCompilerFlavor v -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (PerCompilerFlavor v)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (PerCompilerFlavor v)) # gmapT :: (forall b. Data b => b -> b) -> PerCompilerFlavor v -> PerCompilerFlavor v # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PerCompilerFlavor v -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PerCompilerFlavor v -> r # gmapQ :: (forall d. Data d => d -> u) -> PerCompilerFlavor v -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PerCompilerFlavor v -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PerCompilerFlavor v -> m (PerCompilerFlavor v) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PerCompilerFlavor v -> m (PerCompilerFlavor v) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PerCompilerFlavor v -> m (PerCompilerFlavor v) # | |
Data c => Data (Condition c) Source # | |
Defined in Distribution.Types.Condition Methods gfoldl :: (forall d b. Data d => c0 (d -> b) -> d -> c0 b) -> (forall g. g -> c0 g) -> Condition c -> c0 (Condition c) # gunfold :: (forall b r. Data b => c0 (b -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (Condition c) # toConstr :: Condition c -> Constr # dataTypeOf :: Condition c -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (Condition c)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (Condition c)) # gmapT :: (forall b. Data b => b -> b) -> Condition c -> Condition c # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Condition c -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Condition c -> r # gmapQ :: (forall d. Data d => d -> u) -> Condition c -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Condition c -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Condition c -> m (Condition c) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Condition c -> m (Condition c) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Condition c -> m (Condition c) # | |
Data a => Data (VersionRangeF a) Source # | |
Defined in Distribution.Types.VersionRange.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> VersionRangeF a -> c (VersionRangeF a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (VersionRangeF a) # toConstr :: VersionRangeF a -> Constr # dataTypeOf :: VersionRangeF a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (VersionRangeF a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (VersionRangeF a)) # gmapT :: (forall b. Data b => b -> b) -> VersionRangeF a -> VersionRangeF a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> VersionRangeF a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> VersionRangeF a -> r # gmapQ :: (forall d. Data d => d -> u) -> VersionRangeF a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> VersionRangeF a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> VersionRangeF a -> m (VersionRangeF a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> VersionRangeF a -> m (VersionRangeF a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> VersionRangeF a -> m (VersionRangeF a) # | |
Data a => Data (ZipList a) | Since: base-4.14.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ZipList a -> c (ZipList a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ZipList a) # toConstr :: ZipList a -> Constr # dataTypeOf :: ZipList a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ZipList a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ZipList a)) # gmapT :: (forall b. Data b => b -> b) -> ZipList a -> ZipList a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ZipList a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ZipList a -> r # gmapQ :: (forall d. Data d => d -> u) -> ZipList a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ZipList a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ZipList a -> m (ZipList a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ZipList a -> m (ZipList a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ZipList a -> m (ZipList a) # | |
Typeable s => Data (MutableByteArray s) | Since: base-4.17.0.0 |
Defined in Data.Array.Byte Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> MutableByteArray s -> c (MutableByteArray s) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (MutableByteArray s) # toConstr :: MutableByteArray s -> Constr # dataTypeOf :: MutableByteArray s -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (MutableByteArray s)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (MutableByteArray s)) # gmapT :: (forall b. Data b => b -> b) -> MutableByteArray s -> MutableByteArray s # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> MutableByteArray s -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> MutableByteArray s -> r # gmapQ :: (forall d. Data d => d -> u) -> MutableByteArray s -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> MutableByteArray s -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> MutableByteArray s -> m (MutableByteArray s) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> MutableByteArray s -> m (MutableByteArray s) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> MutableByteArray s -> m (MutableByteArray s) # | |
Data a => Data (Complex a) | Since: base-2.1 |
Defined in Data.Complex Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Complex a -> c (Complex a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Complex a) # toConstr :: Complex a -> Constr # dataTypeOf :: Complex a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Complex a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Complex a)) # gmapT :: (forall b. Data b => b -> b) -> Complex a -> Complex a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Complex a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Complex a -> r # gmapQ :: (forall d. Data d => d -> u) -> Complex a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Complex a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Complex a -> m (Complex a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Complex a -> m (Complex a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Complex a -> m (Complex a) # | |
Data a => Data (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Identity a -> c (Identity a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Identity a) # toConstr :: Identity a -> Constr # dataTypeOf :: Identity a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Identity a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Identity a)) # gmapT :: (forall b. Data b => b -> b) -> Identity a -> Identity a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Identity a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Identity a -> r # gmapQ :: (forall d. Data d => d -> u) -> Identity a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Identity a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Identity a -> m (Identity a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Identity a -> m (Identity a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Identity a -> m (Identity a) # | |
Data a => Data (First a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> First a -> c (First a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (First a) # toConstr :: First a -> Constr # dataTypeOf :: First a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (First a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (First a)) # gmapT :: (forall b. Data b => b -> b) -> First a -> First a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r # gmapQ :: (forall d. Data d => d -> u) -> First a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> First a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> First a -> m (First a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) # | |
Data a => Data (Last a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Last a -> c (Last a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Last a) # toConstr :: Last a -> Constr # dataTypeOf :: Last a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Last a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Last a)) # gmapT :: (forall b. Data b => b -> b) -> Last a -> Last a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r # gmapQ :: (forall d. Data d => d -> u) -> Last a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Last a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # | |
Data a => Data (Down a) | Since: base-4.12.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Down a -> c (Down a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Down a) # toConstr :: Down a -> Constr # dataTypeOf :: Down a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Down a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Down a)) # gmapT :: (forall b. Data b => b -> b) -> Down a -> Down a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Down a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Down a -> r # gmapQ :: (forall d. Data d => d -> u) -> Down a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Down a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Down a -> m (Down a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Down a -> m (Down a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Down a -> m (Down a) # | |
Data a => Data (First a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> First a -> c (First a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (First a) # toConstr :: First a -> Constr # dataTypeOf :: First a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (First a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (First a)) # gmapT :: (forall b. Data b => b -> b) -> First a -> First a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r # gmapQ :: (forall d. Data d => d -> u) -> First a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> First a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> First a -> m (First a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) # | |
Data a => Data (Last a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Last a -> c (Last a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Last a) # toConstr :: Last a -> Constr # dataTypeOf :: Last a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Last a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Last a)) # gmapT :: (forall b. Data b => b -> b) -> Last a -> Last a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r # gmapQ :: (forall d. Data d => d -> u) -> Last a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Last a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # | |
Data a => Data (Max a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Max a -> c (Max a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Max a) # dataTypeOf :: Max a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Max a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Max a)) # gmapT :: (forall b. Data b => b -> b) -> Max a -> Max a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Max a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Max a -> r # gmapQ :: (forall d. Data d => d -> u) -> Max a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Max a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Max a -> m (Max a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Max a -> m (Max a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Max a -> m (Max a) # | |
Data a => Data (Min a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Min a -> c (Min a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Min a) # dataTypeOf :: Min a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Min a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Min a)) # gmapT :: (forall b. Data b => b -> b) -> Min a -> Min a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Min a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Min a -> r # gmapQ :: (forall d. Data d => d -> u) -> Min a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Min a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Min a -> m (Min a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Min a -> m (Min a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Min a -> m (Min a) # | |
Data m => Data (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> WrappedMonoid m -> c (WrappedMonoid m) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (WrappedMonoid m) # toConstr :: WrappedMonoid m -> Constr # dataTypeOf :: WrappedMonoid m -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (WrappedMonoid m)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (WrappedMonoid m)) # gmapT :: (forall b. Data b => b -> b) -> WrappedMonoid m -> WrappedMonoid m # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonoid m -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonoid m -> r # gmapQ :: (forall d. Data d => d -> u) -> WrappedMonoid m -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> WrappedMonoid m -> u # gmapM :: Monad m0 => (forall d. Data d => d -> m0 d) -> WrappedMonoid m -> m0 (WrappedMonoid m) # gmapMp :: MonadPlus m0 => (forall d. Data d => d -> m0 d) -> WrappedMonoid m -> m0 (WrappedMonoid m) # gmapMo :: MonadPlus m0 => (forall d. Data d => d -> m0 d) -> WrappedMonoid m -> m0 (WrappedMonoid m) # | |
Data a => Data (Dual a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Dual a -> c (Dual a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Dual a) # toConstr :: Dual a -> Constr # dataTypeOf :: Dual a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Dual a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Dual a)) # gmapT :: (forall b. Data b => b -> b) -> Dual a -> Dual a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Dual a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Dual a -> r # gmapQ :: (forall d. Data d => d -> u) -> Dual a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Dual a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) # | |
Data a => Data (Product a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Product a -> c (Product a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Product a) # toConstr :: Product a -> Constr # dataTypeOf :: Product a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Product a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Product a)) # gmapT :: (forall b. Data b => b -> b) -> Product a -> Product a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Product a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Product a -> r # gmapQ :: (forall d. Data d => d -> u) -> Product a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Product a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) # | |
Data a => Data (Sum a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Sum a -> c (Sum a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Sum a) # dataTypeOf :: Sum a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Sum a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Sum a)) # gmapT :: (forall b. Data b => b -> b) -> Sum a -> Sum a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Sum a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Sum a -> r # gmapQ :: (forall d. Data d => d -> u) -> Sum a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Sum a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) # | |
Data a => Data (ConstPtr a) | Since: base-4.18.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ConstPtr a -> c (ConstPtr a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ConstPtr a) # toConstr :: ConstPtr a -> Constr # dataTypeOf :: ConstPtr a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ConstPtr a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ConstPtr a)) # gmapT :: (forall b. Data b => b -> b) -> ConstPtr a -> ConstPtr a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ConstPtr a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ConstPtr a -> r # gmapQ :: (forall d. Data d => d -> u) -> ConstPtr a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ConstPtr a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ConstPtr a -> m (ConstPtr a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ConstPtr a -> m (ConstPtr a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ConstPtr a -> m (ConstPtr a) # | |
Data a => Data (NonEmpty a) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NonEmpty a -> c (NonEmpty a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (NonEmpty a) # toConstr :: NonEmpty a -> Constr # dataTypeOf :: NonEmpty a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (NonEmpty a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (NonEmpty a)) # gmapT :: (forall b. Data b => b -> b) -> NonEmpty a -> NonEmpty a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NonEmpty a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NonEmpty a -> r # gmapQ :: (forall d. Data d => d -> u) -> NonEmpty a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> NonEmpty a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) # | |
Data a => Data (ForeignPtr a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ForeignPtr a -> c (ForeignPtr a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ForeignPtr a) # toConstr :: ForeignPtr a -> Constr # dataTypeOf :: ForeignPtr a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ForeignPtr a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ForeignPtr a)) # gmapT :: (forall b. Data b => b -> b) -> ForeignPtr a -> ForeignPtr a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ForeignPtr a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ForeignPtr a -> r # gmapQ :: (forall d. Data d => d -> u) -> ForeignPtr a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ForeignPtr a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ForeignPtr a -> m (ForeignPtr a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignPtr a -> m (ForeignPtr a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignPtr a -> m (ForeignPtr a) # | |
Data p => Data (Par1 p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Par1 p -> c (Par1 p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Par1 p) # toConstr :: Par1 p -> Constr # dataTypeOf :: Par1 p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Par1 p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Par1 p)) # gmapT :: (forall b. Data b => b -> b) -> Par1 p -> Par1 p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Par1 p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Par1 p -> r # gmapQ :: (forall d. Data d => d -> u) -> Par1 p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Par1 p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Par1 p -> m (Par1 p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Par1 p -> m (Par1 p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Par1 p -> m (Par1 p) # | |
Data a => Data (Ptr a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ptr a -> c (Ptr a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ptr a) # dataTypeOf :: Ptr a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Ptr a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ptr a)) # gmapT :: (forall b. Data b => b -> b) -> Ptr a -> Ptr a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ptr a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ptr a -> r # gmapQ :: (forall d. Data d => d -> u) -> Ptr a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ptr a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) # | |
(Data a, Integral a) => Data (Ratio a) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ratio a -> c (Ratio a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ratio a) # toConstr :: Ratio a -> Constr # dataTypeOf :: Ratio a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Ratio a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ratio a)) # gmapT :: (forall b. Data b => b -> b) -> Ratio a -> Ratio a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ratio a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ratio a -> r # gmapQ :: (forall d. Data d => d -> u) -> Ratio a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ratio a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) # | |
Data vertex => Data (SCC vertex) | Since: containers-0.5.9 |
Defined in Data.Graph Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SCC vertex -> c (SCC vertex) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (SCC vertex) # toConstr :: SCC vertex -> Constr # dataTypeOf :: SCC vertex -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (SCC vertex)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (SCC vertex)) # gmapT :: (forall b. Data b => b -> b) -> SCC vertex -> SCC vertex # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SCC vertex -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SCC vertex -> r # gmapQ :: (forall d. Data d => d -> u) -> SCC vertex -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SCC vertex -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SCC vertex -> m (SCC vertex) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SCC vertex -> m (SCC vertex) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SCC vertex -> m (SCC vertex) # | |
Data a => Data (IntMap a) | |
Defined in Data.IntMap.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntMap a -> c (IntMap a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (IntMap a) # toConstr :: IntMap a -> Constr # dataTypeOf :: IntMap a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (IntMap a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (IntMap a)) # gmapT :: (forall b. Data b => b -> b) -> IntMap a -> IntMap a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntMap a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntMap a -> r # gmapQ :: (forall d. Data d => d -> u) -> IntMap a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> IntMap a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) # | |
Data a => Data (Seq a) | |
Defined in Data.Sequence.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Seq a -> c (Seq a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Seq a) # dataTypeOf :: Seq a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Seq a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Seq a)) # gmapT :: (forall b. Data b => b -> b) -> Seq a -> Seq a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Seq a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Seq a -> r # gmapQ :: (forall d. Data d => d -> u) -> Seq a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Seq a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) # | |
Data a => Data (ViewL a) | |
Defined in Data.Sequence.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ViewL a -> c (ViewL a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ViewL a) # toConstr :: ViewL a -> Constr # dataTypeOf :: ViewL a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ViewL a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ViewL a)) # gmapT :: (forall b. Data b => b -> b) -> ViewL a -> ViewL a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ViewL a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ViewL a -> r # gmapQ :: (forall d. Data d => d -> u) -> ViewL a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ViewL a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ViewL a -> m (ViewL a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ViewL a -> m (ViewL a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ViewL a -> m (ViewL a) # | |
Data a => Data (ViewR a) | |
Defined in Data.Sequence.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ViewR a -> c (ViewR a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ViewR a) # toConstr :: ViewR a -> Constr # dataTypeOf :: ViewR a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ViewR a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ViewR a)) # gmapT :: (forall b. Data b => b -> b) -> ViewR a -> ViewR a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ViewR a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ViewR a -> r # gmapQ :: (forall d. Data d => d -> u) -> ViewR a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ViewR a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ViewR a -> m (ViewR a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ViewR a -> m (ViewR a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ViewR a -> m (ViewR a) # | |
(Data a, Ord a) => Data (Set a) | |
Defined in Data.Set.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Set a -> c (Set a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Set a) # dataTypeOf :: Set a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Set a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Set a)) # gmapT :: (forall b. Data b => b -> b) -> Set a -> Set a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Set a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Set a -> r # gmapQ :: (forall d. Data d => d -> u) -> Set a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Set a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # | |
Data a => Data (Tree a) | |
Defined in Data.Tree Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Tree a -> c (Tree a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Tree a) # toConstr :: Tree a -> Constr # dataTypeOf :: Tree a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Tree a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Tree a)) # gmapT :: (forall b. Data b => b -> b) -> Tree a -> Tree a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Tree a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Tree a -> r # gmapQ :: (forall d. Data d => d -> u) -> Tree a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Tree a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Tree a -> m (Tree a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Tree a -> m (Tree a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Tree a -> m (Tree a) # | |
Data flag => Data (TyVarBndr flag) | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TyVarBndr flag -> c (TyVarBndr flag) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (TyVarBndr flag) # toConstr :: TyVarBndr flag -> Constr # dataTypeOf :: TyVarBndr flag -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (TyVarBndr flag)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (TyVarBndr flag)) # gmapT :: (forall b. Data b => b -> b) -> TyVarBndr flag -> TyVarBndr flag # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TyVarBndr flag -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TyVarBndr flag -> r # gmapQ :: (forall d. Data d => d -> u) -> TyVarBndr flag -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TyVarBndr flag -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TyVarBndr flag -> m (TyVarBndr flag) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TyVarBndr flag -> m (TyVarBndr flag) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TyVarBndr flag -> m (TyVarBndr flag) # | |
Data a => Data (Maybe a) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Maybe a -> c (Maybe a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Maybe a) # toConstr :: Maybe a -> Constr # dataTypeOf :: Maybe a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Maybe a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Maybe a)) # gmapT :: (forall b. Data b => b -> b) -> Maybe a -> Maybe a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r # gmapQ :: (forall d. Data d => d -> u) -> Maybe a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Maybe a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # | |
Data a => Data (a) | Since: base-4.15 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> (a) -> c (a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a) # dataTypeOf :: (a) -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (a)) # gmapT :: (forall b. Data b => b -> b) -> (a) -> (a) # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a) -> r # gmapQ :: (forall d. Data d => d -> u) -> (a) -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (a) -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a) -> m (a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a) -> m (a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a) -> m (a) # | |
Data a => Data [a] | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> [a] -> c [a] # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c [a] # dataTypeOf :: [a] -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c [a]) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c [a]) # gmapT :: (forall b. Data b => b -> b) -> [a] -> [a] # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> [a] -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> [a] -> r # gmapQ :: (forall d. Data d => d -> u) -> [a] -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> [a] -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> [a] -> m [a] # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> [a] -> m [a] # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> [a] -> m [a] # | |
(Typeable m, Typeable a, Data (m a)) => Data (WrappedMonad m a) | Since: base-4.14.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> WrappedMonad m a -> c (WrappedMonad m a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (WrappedMonad m a) # toConstr :: WrappedMonad m a -> Constr # dataTypeOf :: WrappedMonad m a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (WrappedMonad m a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (WrappedMonad m a)) # gmapT :: (forall b. Data b => b -> b) -> WrappedMonad m a -> WrappedMonad m a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonad m a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonad m a -> r # gmapQ :: (forall d. Data d => d -> u) -> WrappedMonad m a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> WrappedMonad m a -> u # gmapM :: Monad m0 => (forall d. Data d => d -> m0 d) -> WrappedMonad m a -> m0 (WrappedMonad m a) # gmapMp :: MonadPlus m0 => (forall d. Data d => d -> m0 d) -> WrappedMonad m a -> m0 (WrappedMonad m a) # gmapMo :: MonadPlus m0 => (forall d. Data d => d -> m0 d) -> WrappedMonad m a -> m0 (WrappedMonad m a) # | |
(Data a, Data b) => Data (Either a b) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Either a b -> c (Either a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Either a b) # toConstr :: Either a b -> Constr # dataTypeOf :: Either a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Either a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Either a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Either a b -> Either a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Either a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Either a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # | |
Data t => Data (Proxy t) | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Proxy t -> c (Proxy t) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Proxy t) # toConstr :: Proxy t -> Constr # dataTypeOf :: Proxy t -> DataType # dataCast1 :: Typeable t0 => (forall d. Data d => c (t0 d)) -> Maybe (c (Proxy t)) # dataCast2 :: Typeable t0 => (forall d e. (Data d, Data e) => c (t0 d e)) -> Maybe (c (Proxy t)) # gmapT :: (forall b. Data b => b -> b) -> Proxy t -> Proxy t # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Proxy t -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Proxy t -> r # gmapQ :: (forall d. Data d => d -> u) -> Proxy t -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Proxy t -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) # | |
(Data a, Data b) => Data (Arg a b) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Arg a b -> c (Arg a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Arg a b) # toConstr :: Arg a b -> Constr # dataTypeOf :: Arg a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Arg a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Arg a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Arg a b -> Arg a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Arg a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Arg a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Arg a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Arg a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Arg a b -> m (Arg a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Arg a b -> m (Arg a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Arg a b -> m (Arg a b) # | |
(Data a, Data b, Ix a) => Data (Array a b) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Array a b -> c (Array a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Array a b) # toConstr :: Array a b -> Constr # dataTypeOf :: Array a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Array a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Array a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Array a b -> Array a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Array a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Array a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Array a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Array a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Array a b -> m (Array a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Array a b -> m (Array a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Array a b -> m (Array a b) # | |
Data p => Data (U1 p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> U1 p -> c (U1 p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (U1 p) # dataTypeOf :: U1 p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (U1 p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (U1 p)) # gmapT :: (forall b. Data b => b -> b) -> U1 p -> U1 p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> U1 p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> U1 p -> r # gmapQ :: (forall d. Data d => d -> u) -> U1 p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> U1 p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> U1 p -> m (U1 p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> U1 p -> m (U1 p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> U1 p -> m (U1 p) # | |
Data p => Data (V1 p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> V1 p -> c (V1 p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (V1 p) # dataTypeOf :: V1 p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (V1 p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (V1 p)) # gmapT :: (forall b. Data b => b -> b) -> V1 p -> V1 p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> V1 p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> V1 p -> r # gmapQ :: (forall d. Data d => d -> u) -> V1 p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> V1 p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) # | |
(Data k, Data a, Ord k) => Data (Map k a) | |
Defined in Data.Map.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Map k a -> c (Map k a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Map k a) # toConstr :: Map k a -> Constr # dataTypeOf :: Map k a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Map k a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Map k a)) # gmapT :: (forall b. Data b => b -> b) -> Map k a -> Map k a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Map k a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Map k a -> r # gmapQ :: (forall d. Data d => d -> u) -> Map k a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Map k a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) # | |
(Data a, Data b) => Data (a, b) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> (a, b) -> c (a, b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a, b) # toConstr :: (a, b) -> Constr # dataTypeOf :: (a, b) -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (a, b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (a, b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b) -> (a, b) # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a, b) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a, b) -> r # gmapQ :: (forall d. Data d => d -> u) -> (a, b) -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (a, b) -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a, b) -> m (a, b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a, b) -> m (a, b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a, b) -> m (a, b) # | |
(Data v, Data c, Data a) => Data (CondBranch v c a) Source # | |
Defined in Distribution.Types.CondTree Methods gfoldl :: (forall d b. Data d => c0 (d -> b) -> d -> c0 b) -> (forall g. g -> c0 g) -> CondBranch v c a -> c0 (CondBranch v c a) # gunfold :: (forall b r. Data b => c0 (b -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (CondBranch v c a) # toConstr :: CondBranch v c a -> Constr # dataTypeOf :: CondBranch v c a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (CondBranch v c a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (CondBranch v c a)) # gmapT :: (forall b. Data b => b -> b) -> CondBranch v c a -> CondBranch v c a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> CondBranch v c a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> CondBranch v c a -> r # gmapQ :: (forall d. Data d => d -> u) -> CondBranch v c a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> CondBranch v c a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> CondBranch v c a -> m (CondBranch v c a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> CondBranch v c a -> m (CondBranch v c a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> CondBranch v c a -> m (CondBranch v c a) # | |
(Data v, Data a, Data c) => Data (CondTree v c a) Source # | |
Defined in Distribution.Types.CondTree Methods gfoldl :: (forall d b. Data d => c0 (d -> b) -> d -> c0 b) -> (forall g. g -> c0 g) -> CondTree v c a -> c0 (CondTree v c a) # gunfold :: (forall b r. Data b => c0 (b -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (CondTree v c a) # toConstr :: CondTree v c a -> Constr # dataTypeOf :: CondTree v c a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (CondTree v c a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (CondTree v c a)) # gmapT :: (forall b. Data b => b -> b) -> CondTree v c a -> CondTree v c a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> CondTree v c a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> CondTree v c a -> r # gmapQ :: (forall d. Data d => d -> u) -> CondTree v c a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> CondTree v c a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> CondTree v c a -> m (CondTree v c a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> CondTree v c a -> m (CondTree v c a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> CondTree v c a -> m (CondTree v c a) # | |
(Typeable from, Typeable allowAbsolute, Typeable to) => Data (SymbolicPathX allowAbsolute from to) Source # | |
Defined in Distribution.Utils.Path Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SymbolicPathX allowAbsolute from to -> c (SymbolicPathX allowAbsolute from to) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (SymbolicPathX allowAbsolute from to) # toConstr :: SymbolicPathX allowAbsolute from to -> Constr # dataTypeOf :: SymbolicPathX allowAbsolute from to -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (SymbolicPathX allowAbsolute from to)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (SymbolicPathX allowAbsolute from to)) # gmapT :: (forall b. Data b => b -> b) -> SymbolicPathX allowAbsolute from to -> SymbolicPathX allowAbsolute from to # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SymbolicPathX allowAbsolute from to -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SymbolicPathX allowAbsolute from to -> r # gmapQ :: (forall d. Data d => d -> u) -> SymbolicPathX allowAbsolute from to -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SymbolicPathX allowAbsolute from to -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SymbolicPathX allowAbsolute from to -> m (SymbolicPathX allowAbsolute from to) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SymbolicPathX allowAbsolute from to -> m (SymbolicPathX allowAbsolute from to) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SymbolicPathX allowAbsolute from to -> m (SymbolicPathX allowAbsolute from to) # | |
(Typeable a, Typeable b, Typeable c, Data (a b c)) => Data (WrappedArrow a b c) | Since: base-4.14.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c0 (d -> b0) -> d -> c0 b0) -> (forall g. g -> c0 g) -> WrappedArrow a b c -> c0 (WrappedArrow a b c) # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (WrappedArrow a b c) # toConstr :: WrappedArrow a b c -> Constr # dataTypeOf :: WrappedArrow a b c -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (WrappedArrow a b c)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (WrappedArrow a b c)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> WrappedArrow a b c -> WrappedArrow a b c # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WrappedArrow a b c -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WrappedArrow a b c -> r # gmapQ :: (forall d. Data d => d -> u) -> WrappedArrow a b c -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> WrappedArrow a b c -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> WrappedArrow a b c -> m (WrappedArrow a b c) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> WrappedArrow a b c -> m (WrappedArrow a b c) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> WrappedArrow a b c -> m (WrappedArrow a b c) # | |
(Typeable k, Data a, Typeable b) => Data (Const a b) | Since: base-4.10.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Const a b -> c (Const a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Const a b) # toConstr :: Const a b -> Constr # dataTypeOf :: Const a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Const a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Const a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Const a b -> Const a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Const a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Const a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # | |
(Data (f a), Data a, Typeable f) => Data (Ap f a) | Since: base-4.12.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ap f a -> c (Ap f a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ap f a) # toConstr :: Ap f a -> Constr # dataTypeOf :: Ap f a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Ap f a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ap f a)) # gmapT :: (forall b. Data b => b -> b) -> Ap f a -> Ap f a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ap f a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ap f a -> r # gmapQ :: (forall d. Data d => d -> u) -> Ap f a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ap f a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ap f a -> m (Ap f a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ap f a -> m (Ap f a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ap f a -> m (Ap f a) # | |
(Data (f a), Data a, Typeable f) => Data (Alt f a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Alt f a -> c (Alt f a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Alt f a) # toConstr :: Alt f a -> Constr # dataTypeOf :: Alt f a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Alt f a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Alt f a)) # gmapT :: (forall b. Data b => b -> b) -> Alt f a -> Alt f a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Alt f a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Alt f a -> r # gmapQ :: (forall d. Data d => d -> u) -> Alt f a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Alt f a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Alt f a -> m (Alt f a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Alt f a -> m (Alt f a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Alt f a -> m (Alt f a) # | |
(Coercible a b, Data a, Data b) => Data (Coercion a b) | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Coercion a b -> c (Coercion a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Coercion a b) # toConstr :: Coercion a b -> Constr # dataTypeOf :: Coercion a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Coercion a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Coercion a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Coercion a b -> Coercion a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Coercion a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Coercion a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Coercion a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Coercion a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Coercion a b -> m (Coercion a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Coercion a b -> m (Coercion a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Coercion a b -> m (Coercion a b) # | |
(a ~ b, Data a) => Data (a :~: b) | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> (a :~: b) -> c (a :~: b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a :~: b) # toConstr :: (a :~: b) -> Constr # dataTypeOf :: (a :~: b) -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (a :~: b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (a :~: b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a :~: b) -> a :~: b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a :~: b) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a :~: b) -> r # gmapQ :: (forall d. Data d => d -> u) -> (a :~: b) -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (a :~: b) -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) # | |
(Data (f p), Typeable f, Data p) => Data (Rec1 f p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Rec1 f p -> c (Rec1 f p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Rec1 f p) # toConstr :: Rec1 f p -> Constr # dataTypeOf :: Rec1 f p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Rec1 f p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Rec1 f p)) # gmapT :: (forall b. Data b => b -> b) -> Rec1 f p -> Rec1 f p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Rec1 f p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Rec1 f p -> r # gmapQ :: (forall d. Data d => d -> u) -> Rec1 f p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Rec1 f p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Rec1 f p -> m (Rec1 f p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Rec1 f p -> m (Rec1 f p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Rec1 f p -> m (Rec1 f p) # | |
(Data a, Data b, Data c) => Data (a, b, c) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c0 (d -> b0) -> d -> c0 b0) -> (forall g. g -> c0 g) -> (a, b, c) -> c0 (a, b, c) # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c) # toConstr :: (a, b, c) -> Constr # dataTypeOf :: (a, b, c) -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (a, b, c)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (a, b, c)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c) -> (a, b, c) # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a, b, c) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a, b, c) -> r # gmapQ :: (forall d. Data d => d -> u) -> (a, b, c) -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (a, b, c) -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a, b, c) -> m (a, b, c) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a, b, c) -> m (a, b, c) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a, b, c) -> m (a, b, c) # | |
(Typeable a, Typeable f, Typeable g, Typeable k, Data (f a), Data (g a)) => Data (Product f g a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> Product f g a -> c (Product f g a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Product f g a) # toConstr :: Product f g a -> Constr # dataTypeOf :: Product f g a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Product f g a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Product f g a)) # gmapT :: (forall b. Data b => b -> b) -> Product f g a -> Product f g a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Product f g a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Product f g a -> r # gmapQ :: (forall d. Data d => d -> u) -> Product f g a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Product f g a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Product f g a -> m (Product f g a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Product f g a -> m (Product f g a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Product f g a -> m (Product f g a) # | |
(Typeable a, Typeable f, Typeable g, Typeable k, Data (f a), Data (g a)) => Data (Sum f g a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Sum Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> Sum f g a -> c (Sum f g a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Sum f g a) # toConstr :: Sum f g a -> Constr # dataTypeOf :: Sum f g a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Sum f g a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Sum f g a)) # gmapT :: (forall b. Data b => b -> b) -> Sum f g a -> Sum f g a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Sum f g a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Sum f g a -> r # gmapQ :: (forall d. Data d => d -> u) -> Sum f g a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Sum f g a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Sum f g a -> m (Sum f g a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum f g a -> m (Sum f g a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum f g a -> m (Sum f g a) # | |
(Typeable i, Typeable j, Typeable a, Typeable b, a ~~ b) => Data (a :~~: b) | Since: base-4.10.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> (a :~~: b) -> c (a :~~: b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a :~~: b) # toConstr :: (a :~~: b) -> Constr # dataTypeOf :: (a :~~: b) -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (a :~~: b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (a :~~: b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a :~~: b) -> a :~~: b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a :~~: b) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a :~~: b) -> r # gmapQ :: (forall d. Data d => d -> u) -> (a :~~: b) -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (a :~~: b) -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a :~~: b) -> m (a :~~: b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~~: b) -> m (a :~~: b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~~: b) -> m (a :~~: b) # | |
(Typeable f, Typeable g, Data p, Data (f p), Data (g p)) => Data ((f :*: g) p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (f :*: g) p -> c ((f :*: g) p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :*: g) p) # toConstr :: (f :*: g) p -> Constr # dataTypeOf :: (f :*: g) p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ((f :*: g) p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :*: g) p)) # gmapT :: (forall b. Data b => b -> b) -> (f :*: g) p -> (f :*: g) p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :*: g) p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :*: g) p -> r # gmapQ :: (forall d. Data d => d -> u) -> (f :*: g) p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :*: g) p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) # | |
(Typeable f, Typeable g, Data p, Data (f p), Data (g p)) => Data ((f :+: g) p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (f :+: g) p -> c ((f :+: g) p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :+: g) p) # toConstr :: (f :+: g) p -> Constr # dataTypeOf :: (f :+: g) p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ((f :+: g) p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :+: g) p)) # gmapT :: (forall b. Data b => b -> b) -> (f :+: g) p -> (f :+: g) p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :+: g) p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :+: g) p -> r # gmapQ :: (forall d. Data d => d -> u) -> (f :+: g) p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :+: g) p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) # | |
(Typeable i, Data p, Data c) => Data (K1 i c p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c0 (d -> b) -> d -> c0 b) -> (forall g. g -> c0 g) -> K1 i c p -> c0 (K1 i c p) # gunfold :: (forall b r. Data b => c0 (b -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (K1 i c p) # toConstr :: K1 i c p -> Constr # dataTypeOf :: K1 i c p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (K1 i c p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (K1 i c p)) # gmapT :: (forall b. Data b => b -> b) -> K1 i c p -> K1 i c p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> K1 i c p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> K1 i c p -> r # gmapQ :: (forall d. Data d => d -> u) -> K1 i c p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> K1 i c p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> K1 i c p -> m (K1 i c p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> K1 i c p -> m (K1 i c p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> K1 i c p -> m (K1 i c p) # | |
(Data a, Data b, Data c, Data d) => Data (a, b, c, d) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d0 b0. Data d0 => c0 (d0 -> b0) -> d0 -> c0 b0) -> (forall g. g -> c0 g) -> (a, b, c, d) -> c0 (a, b, c, d) # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c, d) # toConstr :: (a, b, c, d) -> Constr # dataTypeOf :: (a, b, c, d) -> DataType # dataCast1 :: Typeable t => (forall d0. Data d0 => c0 (t d0)) -> Maybe (c0 (a, b, c, d)) # dataCast2 :: Typeable t => (forall d0 e. (Data d0, Data e) => c0 (t d0 e)) -> Maybe (c0 (a, b, c, d)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c, d) -> (a, b, c, d) # gmapQl :: (r -> r' -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d) -> r # gmapQ :: (forall d0. Data d0 => d0 -> u) -> (a, b, c, d) -> [u] # gmapQi :: Int -> (forall d0. Data d0 => d0 -> u) -> (a, b, c, d) -> u # gmapM :: Monad m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d) -> m (a, b, c, d) # gmapMp :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d) -> m (a, b, c, d) # gmapMo :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d) -> m (a, b, c, d) # | |
(Typeable a, Typeable f, Typeable g, Typeable k1, Typeable k2, Data (f (g a))) => Data (Compose f g a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> Compose f g a -> c (Compose f g a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Compose f g a) # toConstr :: Compose f g a -> Constr # dataTypeOf :: Compose f g a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Compose f g a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Compose f g a)) # gmapT :: (forall b. Data b => b -> b) -> Compose f g a -> Compose f g a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Compose f g a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Compose f g a -> r # gmapQ :: (forall d. Data d => d -> u) -> Compose f g a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Compose f g a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Compose f g a -> m (Compose f g a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Compose f g a -> m (Compose f g a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Compose f g a -> m (Compose f g a) # | |
(Typeable f, Typeable g, Data p, Data (f (g p))) => Data ((f :.: g) p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (f :.: g) p -> c ((f :.: g) p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :.: g) p) # toConstr :: (f :.: g) p -> Constr # dataTypeOf :: (f :.: g) p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ((f :.: g) p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :.: g) p)) # gmapT :: (forall b. Data b => b -> b) -> (f :.: g) p -> (f :.: g) p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :.: g) p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :.: g) p -> r # gmapQ :: (forall d. Data d => d -> u) -> (f :.: g) p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :.: g) p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :.: g) p -> m ((f :.: g) p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :.: g) p -> m ((f :.: g) p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :.: g) p -> m ((f :.: g) p) # | |
(Data p, Data (f p), Typeable c, Typeable i, Typeable f) => Data (M1 i c f p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c0 (d -> b) -> d -> c0 b) -> (forall g. g -> c0 g) -> M1 i c f p -> c0 (M1 i c f p) # gunfold :: (forall b r. Data b => c0 (b -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (M1 i c f p) # toConstr :: M1 i c f p -> Constr # dataTypeOf :: M1 i c f p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (M1 i c f p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (M1 i c f p)) # gmapT :: (forall b. Data b => b -> b) -> M1 i c f p -> M1 i c f p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> M1 i c f p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> M1 i c f p -> r # gmapQ :: (forall d. Data d => d -> u) -> M1 i c f p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> M1 i c f p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> M1 i c f p -> m (M1 i c f p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> M1 i c f p -> m (M1 i c f p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> M1 i c f p -> m (M1 i c f p) # | |
(Data a, Data b, Data c, Data d, Data e) => Data (a, b, c, d, e) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d0 b0. Data d0 => c0 (d0 -> b0) -> d0 -> c0 b0) -> (forall g. g -> c0 g) -> (a, b, c, d, e) -> c0 (a, b, c, d, e) # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c, d, e) # toConstr :: (a, b, c, d, e) -> Constr # dataTypeOf :: (a, b, c, d, e) -> DataType # dataCast1 :: Typeable t => (forall d0. Data d0 => c0 (t d0)) -> Maybe (c0 (a, b, c, d, e)) # dataCast2 :: Typeable t => (forall d0 e0. (Data d0, Data e0) => c0 (t d0 e0)) -> Maybe (c0 (a, b, c, d, e)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c, d, e) -> (a, b, c, d, e) # gmapQl :: (r -> r' -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e) -> r # gmapQ :: (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e) -> [u] # gmapQi :: Int -> (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e) -> u # gmapM :: Monad m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e) -> m (a, b, c, d, e) # gmapMp :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e) -> m (a, b, c, d, e) # gmapMo :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e) -> m (a, b, c, d, e) # | |
(Data a, Data b, Data c, Data d, Data e, Data f) => Data (a, b, c, d, e, f) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d0 b0. Data d0 => c0 (d0 -> b0) -> d0 -> c0 b0) -> (forall g. g -> c0 g) -> (a, b, c, d, e, f) -> c0 (a, b, c, d, e, f) # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c, d, e, f) # toConstr :: (a, b, c, d, e, f) -> Constr # dataTypeOf :: (a, b, c, d, e, f) -> DataType # dataCast1 :: Typeable t => (forall d0. Data d0 => c0 (t d0)) -> Maybe (c0 (a, b, c, d, e, f)) # dataCast2 :: Typeable t => (forall d0 e0. (Data d0, Data e0) => c0 (t d0 e0)) -> Maybe (c0 (a, b, c, d, e, f)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) # gmapQl :: (r -> r' -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e, f) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e, f) -> r # gmapQ :: (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e, f) -> [u] # gmapQi :: Int -> (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e, f) -> u # gmapM :: Monad m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f) -> m (a, b, c, d, e, f) # gmapMp :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f) -> m (a, b, c, d, e, f) # gmapMo :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f) -> m (a, b, c, d, e, f) # | |
(Data a, Data b, Data c, Data d, Data e, Data f, Data g) => Data (a, b, c, d, e, f, g) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d0 b0. Data d0 => c0 (d0 -> b0) -> d0 -> c0 b0) -> (forall g0. g0 -> c0 g0) -> (a, b, c, d, e, f, g) -> c0 (a, b, c, d, e, f, g) # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c, d, e, f, g) # toConstr :: (a, b, c, d, e, f, g) -> Constr # dataTypeOf :: (a, b, c, d, e, f, g) -> DataType # dataCast1 :: Typeable t => (forall d0. Data d0 => c0 (t d0)) -> Maybe (c0 (a, b, c, d, e, f, g)) # dataCast2 :: Typeable t => (forall d0 e0. (Data d0, Data e0) => c0 (t d0 e0)) -> Maybe (c0 (a, b, c, d, e, f, g)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) # gmapQl :: (r -> r' -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e, f, g) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e, f, g) -> r # gmapQ :: (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e, f, g) -> [u] # gmapQi :: Int -> (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e, f, g) -> u # gmapM :: Monad m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f, g) -> m (a, b, c, d, e, f, g) # gmapMp :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f, g) -> m (a, b, c, d, e, f, g) # gmapMo :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f, g) -> m (a, b, c, d, e, f, g) # |
Representable types of kind *
.
This class is derivable in GHC with the DeriveGeneric
flag on.
A Generic
instance must satisfy the following laws:
from
.to
≡id
to
.from
≡id
Instances
A class of types that can be fully evaluated.
Since: deepseq-1.1.0.0
Minimal complete definition
Nothing
Methods
rnf
should reduce its argument to normal form (that is, fully
evaluate all sub-components), and then return ()
.
Generic
NFData
deriving
Starting with GHC 7.2, you can automatically derive instances
for types possessing a Generic
instance.
Note: Generic1
can be auto-derived starting with GHC 7.4
{-# LANGUAGE DeriveGeneric #-} import GHC.Generics (Generic, Generic1) import Control.DeepSeq data Foo a = Foo a String deriving (Eq, Generic, Generic1) instance NFData a => NFData (Foo a) instance NFData1 Foo data Colour = Red | Green | Blue deriving Generic instance NFData Colour
Starting with GHC 7.10, the example above can be written more
concisely by enabling the new DeriveAnyClass
extension:
{-# LANGUAGE DeriveGeneric, DeriveAnyClass #-} import GHC.Generics (Generic) import Control.DeepSeq data Foo a = Foo a String deriving (Eq, Generic, Generic1, NFData, NFData1) data Colour = Red | Green | Blue deriving (Generic, NFData)
Compatibility with previous deepseq
versions
Prior to version 1.4.0.0, the default implementation of the rnf
method was defined as
rnf
a =seq
a ()
However, starting with deepseq-1.4.0.0
, the default
implementation is based on DefaultSignatures
allowing for
more accurate auto-derived NFData
instances. If you need the
previously used exact default rnf
method implementation
semantics, use
instance NFData Colour where rnf x = seq x ()
or alternatively
instance NFData Colour where rnf = rwhnf
or
{-# LANGUAGE BangPatterns #-} instance NFData Colour where rnf !_ = ()
Instances
genericRnf :: (Generic a, GNFData (Rep a)) => a -> () Source #
GHC.Generics-based rnf
implementation
This is needed in order to support deepseq < 1.4
which didn't
have a Generic
-based default rnf
implementation yet.
In order to define instances, use e.g.
instance NFData MyType where rnf = genericRnf
The implementation has been taken from deepseq-1.4.2
's default
rnf
implementation.
The Binary
class provides put
and get
, methods to encode and
decode a Haskell value to a lazy ByteString
. It mirrors the Read
and
Show
classes for textual representation of Haskell types, and is
suitable for serialising Haskell values to disk, over the network.
For decoding and generating simple external binary formats (e.g. C
structures), Binary may be used, but in general is not suitable
for complex protocols. Instead use the PutM
and Get
primitives
directly.
Instances of Binary should satisfy the following property:
decode . encode == id
That is, the get
and put
methods should be the inverse of each
other. A range of instances are provided for basic Haskell types.
Minimal complete definition
Nothing
Methods
Encode a value in the Put monad.
Decode a value in the Get monad
Encode a list of values in the Put monad. The default implementation may be overridden to be more efficient but must still have the same encoding format.
Instances
class Typeable a => Structured a Source #
Class of types with a known Structure
.
For regular data types Structured
can be derived generically.
data Record = Record { a :: Int, b :: Bool, c :: [Char] } deriving (Generic
) instanceStructured
Record
Since: 3.2.0.0
Instances
class Applicative f => Alternative (f :: Type -> Type) where #
A monoid on applicative functors.
If defined, some
and many
should be the least solutions
of the equations:
Methods
The identity of <|>
(<|>) :: f a -> f a -> f a infixl 3 #
An associative binary operation
One or more.
Zero or more.
Instances
class (Alternative m, Monad m) => MonadPlus (m :: Type -> Type) where #
Monads that also support choice and failure.
Minimal complete definition
Nothing
Methods
The identity of mplus
. It should also satisfy the equations
mzero >>= f = mzero v >> mzero = mzero
The default definition is
mzero = empty
An associative operation. The default definition is
mplus = (<|>
)
Instances
MonadPlus ParsecParser Source # | |
Defined in Distribution.Parsec | |
MonadPlus Condition Source # | |
MonadPlus P | Since: base-2.1 |
Defined in Text.ParserCombinators.ReadP | |
MonadPlus ReadP | Since: base-2.1 |
MonadPlus ReadPrec | Since: base-2.1 |
MonadPlus Get | Since: binary-0.7.1.0 |
MonadPlus Seq | |
MonadPlus IO | Takes the first non-throwing Since: base-4.9.0.0 |
MonadPlus Maybe | Picks the leftmost Since: base-2.1 |
MonadPlus List | Combines lists by concatenation, starting from the empty list. Since: base-2.1 |
(ArrowApply a, ArrowPlus a) => MonadPlus (ArrowMonad a) | Since: base-4.6.0.0 |
Defined in Control.Arrow | |
MonadPlus (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
MonadPlus (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Monad m => MonadPlus (MaybeT m) | |
MonadPlus m => MonadPlus (Kleisli m a) | Since: base-4.14.0.0 |
MonadPlus f => MonadPlus (Ap f) | Since: base-4.12.0.0 |
MonadPlus f => MonadPlus (Alt f) | Since: base-4.8.0.0 |
MonadPlus f => MonadPlus (Rec1 f) | Since: base-4.9.0.0 |
(Monoid w, Functor m, MonadPlus m) => MonadPlus (AccumT w m) | |
(Monad m, Monoid e) => MonadPlus (ExceptT e m) | |
MonadPlus m => MonadPlus (IdentityT m) | |
MonadPlus m => MonadPlus (ReaderT r m) | |
MonadPlus m => MonadPlus (SelectT r m) | |
MonadPlus m => MonadPlus (StateT s m) | |
MonadPlus m => MonadPlus (StateT s m) | |
(Functor m, MonadPlus m) => MonadPlus (WriterT w m) | |
(Monoid w, MonadPlus m) => MonadPlus (WriterT w m) | |
(Monoid w, MonadPlus m) => MonadPlus (WriterT w m) | |
(MonadPlus f, MonadPlus g) => MonadPlus (Product f g) | Since: base-4.9.0.0 |
(MonadPlus f, MonadPlus g) => MonadPlus (f :*: g) | Since: base-4.9.0.0 |
MonadPlus (ParsecT s u m) | |
MonadPlus f => MonadPlus (M1 i c f) | Since: base-4.9.0.0 |
(Functor m, MonadPlus m) => MonadPlus (RWST r w s m) | |
(Monoid w, MonadPlus m) => MonadPlus (RWST r w s m) | |
(Monoid w, MonadPlus m) => MonadPlus (RWST r w s m) | |
Class for string-like datastructures; used by the overloaded string extension (-XOverloadedStrings in GHC).
Methods
fromString :: String -> a #
Instances
Some types
A Map from keys k
to values a
.
The Semigroup
operation for Map
is union
, which prefers
values from the left operand. If m1
maps a key k
to a value
a1
, and m2
maps the same key to a different value a2
, then
their union m1 <> m2
maps k
to a1
.
Instances
Bifoldable Map | Since: containers-0.6.3.1 |
Eq2 Map | Since: containers-0.5.9 |
Ord2 Map | Since: containers-0.5.9 |
Defined in Data.Map.Internal | |
Show2 Map | Since: containers-0.5.9 |
(Lift k, Lift a) => Lift (Map k a :: Type) | Since: containers-0.6.6 |
Foldable (Map k) | Folds in order of increasing key. |
Defined in Data.Map.Internal Methods fold :: Monoid m => Map k m -> m # foldMap :: Monoid m => (a -> m) -> Map k a -> m # foldMap' :: Monoid m => (a -> m) -> Map k a -> m # foldr :: (a -> b -> b) -> b -> Map k a -> b # foldr' :: (a -> b -> b) -> b -> Map k a -> b # foldl :: (b -> a -> b) -> b -> Map k a -> b # foldl' :: (b -> a -> b) -> b -> Map k a -> b # foldr1 :: (a -> a -> a) -> Map k a -> a # foldl1 :: (a -> a -> a) -> Map k a -> a # elem :: Eq a => a -> Map k a -> Bool # maximum :: Ord a => Map k a -> a # minimum :: Ord a => Map k a -> a # | |
Eq k => Eq1 (Map k) | Since: containers-0.5.9 |
Ord k => Ord1 (Map k) | Since: containers-0.5.9 |
Defined in Data.Map.Internal | |
(Ord k, Read k) => Read1 (Map k) | Since: containers-0.5.9 |
Defined in Data.Map.Internal | |
Show k => Show1 (Map k) | Since: containers-0.5.9 |
Traversable (Map k) | Traverses in order of increasing key. |
Functor (Map k) | |
(Structured k, Structured v) => Structured (Map k v) Source # | |
Defined in Distribution.Utils.Structured | |
(Data k, Data a, Ord k) => Data (Map k a) | |
Defined in Data.Map.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Map k a -> c (Map k a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Map k a) # toConstr :: Map k a -> Constr # dataTypeOf :: Map k a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Map k a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Map k a)) # gmapT :: (forall b. Data b => b -> b) -> Map k a -> Map k a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Map k a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Map k a -> r # gmapQ :: (forall d. Data d => d -> u) -> Map k a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Map k a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) # | |
Ord k => Monoid (Map k v) | |
Ord k => Semigroup (Map k v) | |
Ord k => IsList (Map k v) | Since: containers-0.5.6.2 |
(Ord k, Read k, Read e) => Read (Map k e) | |
(Show k, Show a) => Show (Map k a) | |
(Binary k, Binary e) => Binary (Map k e) | |
(NFData k, NFData a) => NFData (Map k a) | |
Defined in Data.Map.Internal | |
(Eq k, Eq a) => Eq (Map k a) | |
(Ord k, Ord v) => Ord (Map k v) | |
type Item (Map k v) | |
Defined in Data.Map.Internal |
A set of values a
.
Instances
Foldable Set | Folds in order of increasing key. |
Defined in Data.Set.Internal Methods fold :: Monoid m => Set m -> m # foldMap :: Monoid m => (a -> m) -> Set a -> m # foldMap' :: Monoid m => (a -> m) -> Set a -> m # foldr :: (a -> b -> b) -> b -> Set a -> b # foldr' :: (a -> b -> b) -> b -> Set a -> b # foldl :: (b -> a -> b) -> b -> Set a -> b # foldl' :: (b -> a -> b) -> b -> Set a -> b # foldr1 :: (a -> a -> a) -> Set a -> a # foldl1 :: (a -> a -> a) -> Set a -> a # elem :: Eq a => a -> Set a -> Bool # maximum :: Ord a => Set a -> a # | |
Eq1 Set | Since: containers-0.5.9 |
Ord1 Set | Since: containers-0.5.9 |
Defined in Data.Set.Internal | |
Show1 Set | Since: containers-0.5.9 |
Lift a => Lift (Set a :: Type) | Since: containers-0.6.6 |
Structured k => Structured (Set k) Source # | |
Defined in Distribution.Utils.Structured | |
(Data a, Ord a) => Data (Set a) | |
Defined in Data.Set.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Set a -> c (Set a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Set a) # dataTypeOf :: Set a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Set a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Set a)) # gmapT :: (forall b. Data b => b -> b) -> Set a -> Set a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Set a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Set a -> r # gmapQ :: (forall d. Data d => d -> u) -> Set a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Set a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # | |
Ord a => Monoid (Set a) | |
Ord a => Semigroup (Set a) | Since: containers-0.5.7 |
Ord a => IsList (Set a) | Since: containers-0.5.6.2 |
(Read a, Ord a) => Read (Set a) | |
Show a => Show (Set a) | |
Binary a => Binary (Set a) | |
NFData a => NFData (Set a) | |
Defined in Data.Set.Internal | |
Eq a => Eq (Set a) | |
Ord a => Ord (Set a) | |
Newtype (Set a) (Set' sep wrapper a) Source # | |
type Item (Set a) | |
Defined in Data.Set.Internal |
data NonEmptySet a Source #
Since: 3.4.0.0
Instances
Identity functor and monad. (a non-strict monad)
Since: base-4.8.0.0
Constructors
Identity | |
Fields
|
Instances
MonadFix Identity | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity | |
Foldable Identity | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity Methods fold :: Monoid m => Identity m -> m # foldMap :: Monoid m => (a -> m) -> Identity a -> m # foldMap' :: Monoid m => (a -> m) -> Identity a -> m # foldr :: (a -> b -> b) -> b -> Identity a -> b # foldr' :: (a -> b -> b) -> b -> Identity a -> b # foldl :: (b -> a -> b) -> b -> Identity a -> b # foldl' :: (b -> a -> b) -> b -> Identity a -> b # foldr1 :: (a -> a -> a) -> Identity a -> a # foldl1 :: (a -> a -> a) -> Identity a -> a # elem :: Eq a => a -> Identity a -> Bool # maximum :: Ord a => Identity a -> a # minimum :: Ord a => Identity a -> a # | |
Foldable1 Identity | Since: base-4.18.0.0 |
Defined in Data.Foldable1 Methods fold1 :: Semigroup m => Identity m -> m # foldMap1 :: Semigroup m => (a -> m) -> Identity a -> m # foldMap1' :: Semigroup m => (a -> m) -> Identity a -> m # toNonEmpty :: Identity a -> NonEmpty a # maximum :: Ord a => Identity a -> a # minimum :: Ord a => Identity a -> a # foldrMap1 :: (a -> b) -> (a -> b -> b) -> Identity a -> b # foldlMap1' :: (a -> b) -> (b -> a -> b) -> Identity a -> b # foldlMap1 :: (a -> b) -> (b -> a -> b) -> Identity a -> b # foldrMap1' :: (a -> b) -> (a -> b -> b) -> Identity a -> b # | |
Traversable Identity | Since: base-4.9.0.0 |
Applicative Identity | Since: base-4.8.0.0 |
Functor Identity | Since: base-4.8.0.0 |
Monad Identity | Since: base-4.8.0.0 |
NFData1 Identity | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Generic1 Identity | |
Newtype a (Identity a) Source # | |
Parsec a => Parsec (Identity a) Source # | |
Defined in Distribution.Parsec Methods parsec :: CabalParsing m => m (Identity a) Source # | |
Pretty a => Pretty (Identity a) Source # | |
Defined in Distribution.Pretty | |
Data a => Data (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Identity a -> c (Identity a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Identity a) # toConstr :: Identity a -> Constr # dataTypeOf :: Identity a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Identity a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Identity a)) # gmapT :: (forall b. Data b => b -> b) -> Identity a -> Identity a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Identity a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Identity a -> r # gmapQ :: (forall d. Data d => d -> u) -> Identity a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Identity a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Identity a -> m (Identity a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Identity a -> m (Identity a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Identity a -> m (Identity a) # | |
IsString a => IsString (Identity a) | Since: base-4.9.0.0 |
Defined in Data.String Methods fromString :: String -> Identity a # | |
Storable a => Storable (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Identity Methods alignment :: Identity a -> Int # peekElemOff :: Ptr (Identity a) -> Int -> IO (Identity a) # pokeElemOff :: Ptr (Identity a) -> Int -> Identity a -> IO () # peekByteOff :: Ptr b -> Int -> IO (Identity a) # pokeByteOff :: Ptr b -> Int -> Identity a -> IO () # | |
Monoid a => Monoid (Identity a) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (Identity a) | Since: base-4.9.0.0 |
Bits a => Bits (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Identity Methods (.&.) :: Identity a -> Identity a -> Identity a # (.|.) :: Identity a -> Identity a -> Identity a # xor :: Identity a -> Identity a -> Identity a # complement :: Identity a -> Identity a # shift :: Identity a -> Int -> Identity a # rotate :: Identity a -> Int -> Identity a # setBit :: Identity a -> Int -> Identity a # clearBit :: Identity a -> Int -> Identity a # complementBit :: Identity a -> Int -> Identity a # testBit :: Identity a -> Int -> Bool # bitSizeMaybe :: Identity a -> Maybe Int # bitSize :: Identity a -> Int # isSigned :: Identity a -> Bool # shiftL :: Identity a -> Int -> Identity a # unsafeShiftL :: Identity a -> Int -> Identity a # shiftR :: Identity a -> Int -> Identity a # unsafeShiftR :: Identity a -> Int -> Identity a # rotateL :: Identity a -> Int -> Identity a # | |
FiniteBits a => FiniteBits (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Identity Methods finiteBitSize :: Identity a -> Int # countLeadingZeros :: Identity a -> Int # countTrailingZeros :: Identity a -> Int # | |
Bounded a => Bounded (Identity a) | Since: base-4.9.0.0 |
Enum a => Enum (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Identity Methods succ :: Identity a -> Identity a # pred :: Identity a -> Identity a # fromEnum :: Identity a -> Int # enumFrom :: Identity a -> [Identity a] # enumFromThen :: Identity a -> Identity a -> [Identity a] # enumFromTo :: Identity a -> Identity a -> [Identity a] # enumFromThenTo :: Identity a -> Identity a -> Identity a -> [Identity a] # | |
Floating a => Floating (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Identity Methods exp :: Identity a -> Identity a # log :: Identity a -> Identity a # sqrt :: Identity a -> Identity a # (**) :: Identity a -> Identity a -> Identity a # logBase :: Identity a -> Identity a -> Identity a # sin :: Identity a -> Identity a # cos :: Identity a -> Identity a # tan :: Identity a -> Identity a # asin :: Identity a -> Identity a # acos :: Identity a -> Identity a # atan :: Identity a -> Identity a # sinh :: Identity a -> Identity a # cosh :: Identity a -> Identity a # tanh :: Identity a -> Identity a # asinh :: Identity a -> Identity a # acosh :: Identity a -> Identity a # atanh :: Identity a -> Identity a # log1p :: Identity a -> Identity a # expm1 :: Identity a -> Identity a # | |
RealFloat a => RealFloat (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Identity Methods floatRadix :: Identity a -> Integer # floatDigits :: Identity a -> Int # floatRange :: Identity a -> (Int, Int) # decodeFloat :: Identity a -> (Integer, Int) # encodeFloat :: Integer -> Int -> Identity a # exponent :: Identity a -> Int # significand :: Identity a -> Identity a # scaleFloat :: Int -> Identity a -> Identity a # isInfinite :: Identity a -> Bool # isDenormalized :: Identity a -> Bool # isNegativeZero :: Identity a -> Bool # | |
Generic (Identity a) | |
Ix a => Ix (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Identity Methods range :: (Identity a, Identity a) -> [Identity a] # index :: (Identity a, Identity a) -> Identity a -> Int # unsafeIndex :: (Identity a, Identity a) -> Identity a -> Int # inRange :: (Identity a, Identity a) -> Identity a -> Bool # rangeSize :: (Identity a, Identity a) -> Int # unsafeRangeSize :: (Identity a, Identity a) -> Int # | |
Num a => Num (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Identity | |
Read a => Read (Identity a) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
Fractional a => Fractional (Identity a) | Since: base-4.9.0.0 |
Integral a => Integral (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Identity Methods quot :: Identity a -> Identity a -> Identity a # rem :: Identity a -> Identity a -> Identity a # div :: Identity a -> Identity a -> Identity a # mod :: Identity a -> Identity a -> Identity a # quotRem :: Identity a -> Identity a -> (Identity a, Identity a) # divMod :: Identity a -> Identity a -> (Identity a, Identity a) # | |
Real a => Real (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Identity Methods toRational :: Identity a -> Rational # | |
RealFrac a => RealFrac (Identity a) | Since: base-4.9.0.0 |
Show a => Show (Identity a) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
Binary a => Binary (Identity a) | |
NFData a => NFData (Identity a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
Eq a => Eq (Identity a) | Since: base-4.8.0.0 |
Ord a => Ord (Identity a) | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity | |
type Rep1 Identity | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity | |
type Rep (Identity a) | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity |
Proxy
is a type that holds no data, but has a phantom parameter of
arbitrary type (or even kind). Its use is to provide type information, even
though there is no value available of that type (or it may be too costly to
create one).
Historically,
is a safer alternative to the
Proxy
:: Proxy
a
idiom.undefined
:: a
>>>
Proxy :: Proxy (Void, Int -> Int)
Proxy
Proxy can even hold types of higher kinds,
>>>
Proxy :: Proxy Either
Proxy
>>>
Proxy :: Proxy Functor
Proxy
>>>
Proxy :: Proxy complicatedStructure
Proxy
Constructors
Proxy |
Instances
Generic1 (Proxy :: k -> Type) | |
Foldable (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Proxy m -> m # foldMap :: Monoid m => (a -> m) -> Proxy a -> m # foldMap' :: Monoid m => (a -> m) -> Proxy a -> m # foldr :: (a -> b -> b) -> b -> Proxy a -> b # foldr' :: (a -> b -> b) -> b -> Proxy a -> b # foldl :: (b -> a -> b) -> b -> Proxy a -> b # foldl' :: (b -> a -> b) -> b -> Proxy a -> b # foldr1 :: (a -> a -> a) -> Proxy a -> a # foldl1 :: (a -> a -> a) -> Proxy a -> a # elem :: Eq a => a -> Proxy a -> Bool # maximum :: Ord a => Proxy a -> a # minimum :: Ord a => Proxy a -> a # | |
Traversable (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Alternative (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
Applicative (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Functor (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Monad (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
MonadPlus (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
NFData1 (Proxy :: Type -> Type) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Data t => Data (Proxy t) | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Proxy t -> c (Proxy t) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Proxy t) # toConstr :: Proxy t -> Constr # dataTypeOf :: Proxy t -> DataType # dataCast1 :: Typeable t0 => (forall d. Data d => c (t0 d)) -> Maybe (c (Proxy t)) # dataCast2 :: Typeable t0 => (forall d e. (Data d, Data e) => c (t0 d e)) -> Maybe (c (Proxy t)) # gmapT :: (forall b. Data b => b -> b) -> Proxy t -> Proxy t # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Proxy t -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Proxy t -> r # gmapQ :: (forall d. Data d => d -> u) -> Proxy t -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Proxy t -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) # | |
Monoid (Proxy s) | Since: base-4.7.0.0 |
Semigroup (Proxy s) | Since: base-4.9.0.0 |
Bounded (Proxy t) | Since: base-4.7.0.0 |
Enum (Proxy s) | Since: base-4.7.0.0 |
Generic (Proxy t) | |
Ix (Proxy s) | Since: base-4.7.0.0 |
Defined in Data.Proxy | |
Read (Proxy t) | Since: base-4.7.0.0 |
Show (Proxy s) | Since: base-4.7.0.0 |
NFData (Proxy a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
Eq (Proxy s) | Since: base-4.7.0.0 |
Ord (Proxy s) | Since: base-4.7.0.0 |
type Rep1 (Proxy :: k -> Type) | Since: base-4.6.0.0 |
type Rep (Proxy t) | Since: base-4.6.0.0 |
The Const
functor.
Instances
Generic1 (Const a :: k -> Type) | |
NFData2 (Const :: Type -> Type -> Type) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Foldable (Const m :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Functor.Const Methods fold :: Monoid m0 => Const m m0 -> m0 # foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldMap' :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldr :: (a -> b -> b) -> b -> Const m a -> b # foldr' :: (a -> b -> b) -> b -> Const m a -> b # foldl :: (b -> a -> b) -> b -> Const m a -> b # foldl' :: (b -> a -> b) -> b -> Const m a -> b # foldr1 :: (a -> a -> a) -> Const m a -> a # foldl1 :: (a -> a -> a) -> Const m a -> a # elem :: Eq a => a -> Const m a -> Bool # maximum :: Ord a => Const m a -> a # minimum :: Ord a => Const m a -> a # | |
Traversable (Const m :: Type -> Type) | Since: base-4.7.0.0 |
Monoid m => Applicative (Const m :: Type -> Type) | Since: base-2.0.1 |
Functor (Const m :: Type -> Type) | Since: base-2.1 |
NFData a => NFData1 (Const a :: Type -> Type) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
(Typeable k, Data a, Typeable b) => Data (Const a b) | Since: base-4.10.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Const a b -> c (Const a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Const a b) # toConstr :: Const a b -> Constr # dataTypeOf :: Const a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Const a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Const a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Const a b -> Const a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Const a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Const a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # | |
IsString a => IsString (Const a b) | Since: base-4.9.0.0 |
Defined in Data.String Methods fromString :: String -> Const a b # | |
Storable a => Storable (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
Monoid a => Monoid (Const a b) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (Const a b) | Since: base-4.9.0.0 |
Bits a => Bits (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods (.&.) :: Const a b -> Const a b -> Const a b # (.|.) :: Const a b -> Const a b -> Const a b # xor :: Const a b -> Const a b -> Const a b # complement :: Const a b -> Const a b # shift :: Const a b -> Int -> Const a b # rotate :: Const a b -> Int -> Const a b # setBit :: Const a b -> Int -> Const a b # clearBit :: Const a b -> Int -> Const a b # complementBit :: Const a b -> Int -> Const a b # testBit :: Const a b -> Int -> Bool # bitSizeMaybe :: Const a b -> Maybe Int # isSigned :: Const a b -> Bool # shiftL :: Const a b -> Int -> Const a b # unsafeShiftL :: Const a b -> Int -> Const a b # shiftR :: Const a b -> Int -> Const a b # unsafeShiftR :: Const a b -> Int -> Const a b # rotateL :: Const a b -> Int -> Const a b # | |
FiniteBits a => FiniteBits (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods finiteBitSize :: Const a b -> Int # countLeadingZeros :: Const a b -> Int # countTrailingZeros :: Const a b -> Int # | |
Bounded a => Bounded (Const a b) | Since: base-4.9.0.0 |
Enum a => Enum (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods succ :: Const a b -> Const a b # pred :: Const a b -> Const a b # fromEnum :: Const a b -> Int # enumFrom :: Const a b -> [Const a b] # enumFromThen :: Const a b -> Const a b -> [Const a b] # enumFromTo :: Const a b -> Const a b -> [Const a b] # enumFromThenTo :: Const a b -> Const a b -> Const a b -> [Const a b] # | |
Floating a => Floating (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods exp :: Const a b -> Const a b # log :: Const a b -> Const a b # sqrt :: Const a b -> Const a b # (**) :: Const a b -> Const a b -> Const a b # logBase :: Const a b -> Const a b -> Const a b # sin :: Const a b -> Const a b # cos :: Const a b -> Const a b # tan :: Const a b -> Const a b # asin :: Const a b -> Const a b # acos :: Const a b -> Const a b # atan :: Const a b -> Const a b # sinh :: Const a b -> Const a b # cosh :: Const a b -> Const a b # tanh :: Const a b -> Const a b # asinh :: Const a b -> Const a b # acosh :: Const a b -> Const a b # atanh :: Const a b -> Const a b # log1p :: Const a b -> Const a b # expm1 :: Const a b -> Const a b # | |
RealFloat a => RealFloat (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods floatRadix :: Const a b -> Integer # floatDigits :: Const a b -> Int # floatRange :: Const a b -> (Int, Int) # decodeFloat :: Const a b -> (Integer, Int) # encodeFloat :: Integer -> Int -> Const a b # exponent :: Const a b -> Int # significand :: Const a b -> Const a b # scaleFloat :: Int -> Const a b -> Const a b # isInfinite :: Const a b -> Bool # isDenormalized :: Const a b -> Bool # isNegativeZero :: Const a b -> Bool # | |
Generic (Const a b) | |
Ix a => Ix (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods range :: (Const a b, Const a b) -> [Const a b] # index :: (Const a b, Const a b) -> Const a b -> Int # unsafeIndex :: (Const a b, Const a b) -> Const a b -> Int # inRange :: (Const a b, Const a b) -> Const a b -> Bool # rangeSize :: (Const a b, Const a b) -> Int # unsafeRangeSize :: (Const a b, Const a b) -> Int # | |
Num a => Num (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
Read a => Read (Const a b) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
Fractional a => Fractional (Const a b) | Since: base-4.9.0.0 |
Integral a => Integral (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods quot :: Const a b -> Const a b -> Const a b # rem :: Const a b -> Const a b -> Const a b # div :: Const a b -> Const a b -> Const a b # mod :: Const a b -> Const a b -> Const a b # quotRem :: Const a b -> Const a b -> (Const a b, Const a b) # divMod :: Const a b -> Const a b -> (Const a b, Const a b) # | |
Real a => Real (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods toRational :: Const a b -> Rational # | |
RealFrac a => RealFrac (Const a b) | Since: base-4.9.0.0 |
Show a => Show (Const a b) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
NFData a => NFData (Const a b) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
Eq a => Eq (Const a b) | Since: base-4.9.0.0 |
Ord a => Ord (Const a b) | Since: base-4.9.0.0 |
type Rep1 (Const a :: k -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
type Rep (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const |
Uninhabited data type
Since: base-4.8.0.0
Instances
Data Void | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Void -> c Void # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Void # dataTypeOf :: Void -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Void) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Void) # gmapT :: (forall b. Data b => b -> b) -> Void -> Void # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r # gmapQ :: (forall d. Data d => d -> u) -> Void -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Void -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Void -> m Void # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void # | |
Semigroup Void | Since: base-4.9.0.0 |
Exception Void | Since: base-4.8.0.0 |
Defined in GHC.Exception.Type Methods toException :: Void -> SomeException # fromException :: SomeException -> Maybe Void # displayException :: Void -> String # | |
Generic Void | |
Ix Void | Since: base-4.8.0.0 |
Read Void | Reading a Since: base-4.8.0.0 |
Show Void | Since: base-4.8.0.0 |
Binary Void | Since: binary-0.8.0.0 |
NFData Void | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
Eq Void | Since: base-4.8.0.0 |
Ord Void | Since: base-4.8.0.0 |
Lift Void | Since: template-haskell-2.15.0.0 |
type Rep Void | Since: base-4.8.0.0 |
Data.Either
partitionEithers :: [Either a b] -> ([a], [b]) #
Partitions a list of Either
into two lists.
All the Left
elements are extracted, in order, to the first
component of the output. Similarly the Right
elements are extracted
to the second component of the output.
Examples
Basic usage:
>>>
let list = [ Left "foo", Right 3, Left "bar", Right 7, Left "baz" ]
>>>
partitionEithers list
(["foo","bar","baz"],[3,7])
The pair returned by
should be the same
pair as partitionEithers
x(
:lefts
x, rights
x)
>>>
let list = [ Left "foo", Right 3, Left "bar", Right 7, Left "baz" ]
>>>
partitionEithers list == (lefts list, rights list)
True
Data.Maybe
catMaybes :: [Maybe a] -> [a] #
The catMaybes
function takes a list of Maybe
s and returns
a list of all the Just
values.
Examples
Basic usage:
>>>
catMaybes [Just 1, Nothing, Just 3]
[1,3]
When constructing a list of Maybe
values, catMaybes
can be used
to return all of the "success" results (if the list is the result
of a map
, then mapMaybe
would be more appropriate):
>>>
import Text.Read ( readMaybe )
>>>
[readMaybe x :: Maybe Int | x <- ["1", "Foo", "3"] ]
[Just 1,Nothing,Just 3]>>>
catMaybes $ [readMaybe x :: Maybe Int | x <- ["1", "Foo", "3"] ]
[1,3]
mapMaybe :: (a -> Maybe b) -> [a] -> [b] #
The mapMaybe
function is a version of map
which can throw
out elements. In particular, the functional argument returns
something of type
. If this is Maybe
bNothing
, no element
is added on to the result list. If it is
, then Just
bb
is
included in the result list.
Examples
Using
is a shortcut for mapMaybe
f x
in most cases:catMaybes
$ map
f x
>>>
import Text.Read ( readMaybe )
>>>
let readMaybeInt = readMaybe :: String -> Maybe Int
>>>
mapMaybe readMaybeInt ["1", "Foo", "3"]
[1,3]>>>
catMaybes $ map readMaybeInt ["1", "Foo", "3"]
[1,3]
If we map the Just
constructor, the entire list should be returned:
>>>
mapMaybe Just [1,2,3]
[1,2,3]
fromMaybe :: a -> Maybe a -> a #
The fromMaybe
function takes a default value and a Maybe
value. If the Maybe
is Nothing
, it returns the default value;
otherwise, it returns the value contained in the Maybe
.
Examples
Basic usage:
>>>
fromMaybe "" (Just "Hello, World!")
"Hello, World!"
>>>
fromMaybe "" Nothing
""
Read an integer from a string using readMaybe
. If we fail to
parse an integer, we want to return 0
by default:
>>>
import Text.Read ( readMaybe )
>>>
fromMaybe 0 (readMaybe "5")
5>>>
fromMaybe 0 (readMaybe "")
0
maybeToList :: Maybe a -> [a] #
The maybeToList
function returns an empty list when given
Nothing
or a singleton list when given Just
.
Examples
Basic usage:
>>>
maybeToList (Just 7)
[7]
>>>
maybeToList Nothing
[]
One can use maybeToList
to avoid pattern matching when combined
with a function that (safely) works on lists:
>>>
import Text.Read ( readMaybe )
>>>
sum $ maybeToList (readMaybe "3")
3>>>
sum $ maybeToList (readMaybe "")
0
listToMaybe :: [a] -> Maybe a #
The listToMaybe
function returns Nothing
on an empty list
or
where Just
aa
is the first element of the list.
Examples
Basic usage:
>>>
listToMaybe []
Nothing
>>>
listToMaybe [9]
Just 9
>>>
listToMaybe [1,2,3]
Just 1
Composing maybeToList
with listToMaybe
should be the identity
on singleton/empty lists:
>>>
maybeToList $ listToMaybe [5]
[5]>>>
maybeToList $ listToMaybe []
[]
But not on lists with more than one element:
>>>
maybeToList $ listToMaybe [1,2,3]
[1]
Data.List
unfoldr :: (b -> Maybe (a, b)) -> b -> [a] #
The unfoldr
function is a `dual' to foldr
: while foldr
reduces a list to a summary value, unfoldr
builds a list from
a seed value. The function takes the element and returns Nothing
if it is done producing the list or returns Just
(a,b)
, in which
case, a
is a prepended to the list and b
is used as the next
element in a recursive call. For example,
iterate f == unfoldr (\x -> Just (x, f x))
In some cases, unfoldr
can undo a foldr
operation:
unfoldr f' (foldr f z xs) == xs
if the following holds:
f' (f x y) = Just (x,y) f' z = Nothing
A simple use of unfoldr:
>>>
unfoldr (\b -> if b == 0 then Nothing else Just (b, b-1)) 10
[10,9,8,7,6,5,4,3,2,1]
isPrefixOf :: Eq a => [a] -> [a] -> Bool #
\(\mathcal{O}(\min(m,n))\). The isPrefixOf
function takes two lists and
returns True
iff the first list is a prefix of the second.
>>>
"Hello" `isPrefixOf` "Hello World!"
True>>>
"Hello" `isPrefixOf` "Wello Horld!"
False
For the result to be True
, the first list must be finite;
False
, however, results from any mismatch:
>>>
[0..] `isPrefixOf` [1..]
False>>>
[0..] `isPrefixOf` [0..99]
False>>>
[0..99] `isPrefixOf` [0..]
True>>>
[0..] `isPrefixOf` [0..]
* Hangs forever *
isSuffixOf :: Eq a => [a] -> [a] -> Bool #
The isSuffixOf
function takes two lists and returns True
iff
the first list is a suffix of the second.
>>>
"ld!" `isSuffixOf` "Hello World!"
True>>>
"World" `isSuffixOf` "Hello World!"
False
The second list must be finite; however the first list may be infinite:
>>>
[0..] `isSuffixOf` [0..99]
False>>>
[0..99] `isSuffixOf` [0..]
* Hangs forever *
intercalate :: [a] -> [[a]] -> [a] #
intercalate
xs xss
is equivalent to (
.
It inserts the list concat
(intersperse
xs xss))xs
in between the lists in xss
and concatenates the
result.
>>>
intercalate ", " ["Lorem", "ipsum", "dolor"]
"Lorem, ipsum, dolor"
intersperse :: a -> [a] -> [a] #
\(\mathcal{O}(n)\). The intersperse
function takes an element and a list
and `intersperses' that element between the elements of the list. For
example,
>>>
intersperse ',' "abcde"
"a,b,c,d,e"
The sort
function implements a stable sorting algorithm.
It is a special case of sortBy
, which allows the programmer to supply
their own comparison function.
Elements are arranged from lowest to highest, keeping duplicates in the order they appeared in the input.
>>>
sort [1,6,4,3,2,5]
[1,2,3,4,5,6]
The argument must be finite.
sortBy :: (a -> a -> Ordering) -> [a] -> [a] #
The sortBy
function is the non-overloaded version of sort
.
The argument must be finite.
>>>
sortBy (\(a,_) (b,_) -> compare a b) [(2, "world"), (4, "!"), (1, "Hello")]
[(1,"Hello"),(2,"world"),(4,"!")]
The supplied comparison relation is supposed to be reflexive and antisymmetric,
otherwise, e. g., for _ _ -> GT
, the ordered list simply does not exist.
The relation is also expected to be transitive: if it is not then sortBy
might fail to find an ordered permutation, even if it exists.
\(\mathcal{O}(n^2)\). The nub
function removes duplicate elements from a
list. In particular, it keeps only the first occurrence of each element. (The
name nub
means `essence'.) It is a special case of nubBy
, which allows
the programmer to supply their own equality test.
>>>
nub [1,2,3,4,3,2,1,2,4,3,5]
[1,2,3,4,5]
If the order of outputs does not matter and there exists instance Ord a
,
it's faster to use
map
Data.List.NonEmpty.
head
. Data.List.NonEmpty.
group
. sort
,
which takes only \(\mathcal{O}(n \log n)\) time.
partition :: (a -> Bool) -> [a] -> ([a], [a]) #
The partition
function takes a predicate and a list, and returns
the pair of lists of elements which do and do not satisfy the
predicate, respectively; i.e.,
partition p xs == (filter p xs, filter (not . p) xs)
>>>
partition (`elem` "aeiou") "Hello World!"
("eoo","Hll Wrld!")
dropWhileEnd :: (a -> Bool) -> [a] -> [a] #
The dropWhileEnd
function drops the largest suffix of a list
in which the given predicate holds for all elements. For example:
>>>
dropWhileEnd isSpace "foo\n"
"foo"
>>>
dropWhileEnd isSpace "foo bar"
"foo bar"
dropWhileEnd isSpace ("foo\n" ++ undefined) == "foo" ++ undefined
Since: base-4.5.0.0
Data.List.NonEmpty
Non-empty (and non-strict) list type.
Since: base-4.9.0.0
Constructors
a :| [a] infixr 5 |
Instances
Foldable NonEmpty | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => NonEmpty m -> m # foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m # foldMap' :: Monoid m => (a -> m) -> NonEmpty a -> m # foldr :: (a -> b -> b) -> b -> NonEmpty a -> b # foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b # foldl :: (b -> a -> b) -> b -> NonEmpty a -> b # foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b # foldr1 :: (a -> a -> a) -> NonEmpty a -> a # foldl1 :: (a -> a -> a) -> NonEmpty a -> a # elem :: Eq a => a -> NonEmpty a -> Bool # maximum :: Ord a => NonEmpty a -> a # minimum :: Ord a => NonEmpty a -> a # | |
Foldable1 NonEmpty | Since: base-4.18.0.0 |
Defined in Data.Foldable1 Methods fold1 :: Semigroup m => NonEmpty m -> m # foldMap1 :: Semigroup m => (a -> m) -> NonEmpty a -> m # foldMap1' :: Semigroup m => (a -> m) -> NonEmpty a -> m # toNonEmpty :: NonEmpty a -> NonEmpty a # maximum :: Ord a => NonEmpty a -> a # minimum :: Ord a => NonEmpty a -> a # foldrMap1 :: (a -> b) -> (a -> b -> b) -> NonEmpty a -> b # foldlMap1' :: (a -> b) -> (b -> a -> b) -> NonEmpty a -> b # foldlMap1 :: (a -> b) -> (b -> a -> b) -> NonEmpty a -> b # foldrMap1' :: (a -> b) -> (a -> b -> b) -> NonEmpty a -> b # | |
Traversable NonEmpty | Since: base-4.9.0.0 |
Applicative NonEmpty | Since: base-4.9.0.0 |
Functor NonEmpty | Since: base-4.9.0.0 |
Monad NonEmpty | Since: base-4.9.0.0 |
NFData1 NonEmpty | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Generic1 NonEmpty | |
Lift a => Lift (NonEmpty a :: Type) | Since: template-haskell-2.15.0.0 |
Structured a => Structured (NonEmpty a) Source # | |
Defined in Distribution.Utils.Structured | |
Data a => Data (NonEmpty a) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NonEmpty a -> c (NonEmpty a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (NonEmpty a) # toConstr :: NonEmpty a -> Constr # dataTypeOf :: NonEmpty a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (NonEmpty a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (NonEmpty a)) # gmapT :: (forall b. Data b => b -> b) -> NonEmpty a -> NonEmpty a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NonEmpty a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NonEmpty a -> r # gmapQ :: (forall d. Data d => d -> u) -> NonEmpty a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> NonEmpty a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) # | |
Semigroup (NonEmpty a) | Since: base-4.9.0.0 |
Generic (NonEmpty a) | |
IsList (NonEmpty a) | Since: base-4.9.0.0 |
Read a => Read (NonEmpty a) | Since: base-4.11.0.0 |
Show a => Show (NonEmpty a) | Since: base-4.11.0.0 |
Binary a => Binary (NonEmpty a) | Since: binary-0.8.4.0 |
NFData a => NFData (NonEmpty a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
Eq a => Eq (NonEmpty a) | Since: base-4.9.0.0 |
Ord a => Ord (NonEmpty a) | Since: base-4.9.0.0 |
Newtype (NonEmpty a) (NonEmpty' sep wrapper a) Source # | |
type Rep1 NonEmpty | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep1 NonEmpty = D1 ('MetaData "NonEmpty" "GHC.Base" "base" 'False) (C1 ('MetaCons ":|" ('InfixI 'RightAssociative 5) 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1 :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 List))) | |
type Rep (NonEmpty a) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep (NonEmpty a) = D1 ('MetaData "NonEmpty" "GHC.Base" "base" 'False) (C1 ('MetaCons ":|" ('InfixI 'RightAssociative 5) 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [a]))) | |
type Item (NonEmpty a) | |
Defined in GHC.IsList |
Data.Foldable
class Foldable (t :: Type -> Type) #
The Foldable class represents data structures that can be reduced to a summary value one element at a time. Strict left-associative folds are a good fit for space-efficient reduction, while lazy right-associative folds are a good fit for corecursive iteration, or for folds that short-circuit after processing an initial subsequence of the structure's elements.
Instances can be derived automatically by enabling the DeriveFoldable
extension. For example, a derived instance for a binary tree might be:
{-# LANGUAGE DeriveFoldable #-} data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a) deriving Foldable
A more detailed description can be found in the Overview section of Data.Foldable.
For the class laws see the Laws section of Data.Foldable.
Instances
Foldable Graph Source # | |
Defined in Distribution.Compat.Graph Methods fold :: Monoid m => Graph m -> m # foldMap :: Monoid m => (a -> m) -> Graph a -> m # foldMap' :: Monoid m => (a -> m) -> Graph a -> m # foldr :: (a -> b -> b) -> b -> Graph a -> b # foldr' :: (a -> b -> b) -> b -> Graph a -> b # foldl :: (b -> a -> b) -> b -> Graph a -> b # foldl' :: (b -> a -> b) -> b -> Graph a -> b # foldr1 :: (a -> a -> a) -> Graph a -> a # foldl1 :: (a -> a -> a) -> Graph a -> a # elem :: Eq a => a -> Graph a -> Bool # maximum :: Ord a => Graph a -> a # minimum :: Ord a => Graph a -> a # | |
Foldable NonEmptySet Source # | |
Defined in Distribution.Compat.NonEmptySet Methods fold :: Monoid m => NonEmptySet m -> m # foldMap :: Monoid m => (a -> m) -> NonEmptySet a -> m # foldMap' :: Monoid m => (a -> m) -> NonEmptySet a -> m # foldr :: (a -> b -> b) -> b -> NonEmptySet a -> b # foldr' :: (a -> b -> b) -> b -> NonEmptySet a -> b # foldl :: (b -> a -> b) -> b -> NonEmptySet a -> b # foldl' :: (b -> a -> b) -> b -> NonEmptySet a -> b # foldr1 :: (a -> a -> a) -> NonEmptySet a -> a # foldl1 :: (a -> a -> a) -> NonEmptySet a -> a # toList :: NonEmptySet a -> [a] # null :: NonEmptySet a -> Bool # length :: NonEmptySet a -> Int # elem :: Eq a => a -> NonEmptySet a -> Bool # maximum :: Ord a => NonEmptySet a -> a # minimum :: Ord a => NonEmptySet a -> a # sum :: Num a => NonEmptySet a -> a # product :: Num a => NonEmptySet a -> a # | |
Foldable PerCompilerFlavor Source # | |
Defined in Distribution.Compiler Methods fold :: Monoid m => PerCompilerFlavor m -> m # foldMap :: Monoid m => (a -> m) -> PerCompilerFlavor a -> m # foldMap' :: Monoid m => (a -> m) -> PerCompilerFlavor a -> m # foldr :: (a -> b -> b) -> b -> PerCompilerFlavor a -> b # foldr' :: (a -> b -> b) -> b -> PerCompilerFlavor a -> b # foldl :: (b -> a -> b) -> b -> PerCompilerFlavor a -> b # foldl' :: (b -> a -> b) -> b -> PerCompilerFlavor a -> b # foldr1 :: (a -> a -> a) -> PerCompilerFlavor a -> a # foldl1 :: (a -> a -> a) -> PerCompilerFlavor a -> a # toList :: PerCompilerFlavor a -> [a] # null :: PerCompilerFlavor a -> Bool # length :: PerCompilerFlavor a -> Int # elem :: Eq a => a -> PerCompilerFlavor a -> Bool # maximum :: Ord a => PerCompilerFlavor a -> a # minimum :: Ord a => PerCompilerFlavor a -> a # sum :: Num a => PerCompilerFlavor a -> a # product :: Num a => PerCompilerFlavor a -> a # | |
Foldable Field Source # | |
Defined in Distribution.Fields.Field Methods fold :: Monoid m => Field m -> m # foldMap :: Monoid m => (a -> m) -> Field a -> m # foldMap' :: Monoid m => (a -> m) -> Field a -> m # foldr :: (a -> b -> b) -> b -> Field a -> b # foldr' :: (a -> b -> b) -> b -> Field a -> b # foldl :: (b -> a -> b) -> b -> Field a -> b # foldl' :: (b -> a -> b) -> b -> Field a -> b # foldr1 :: (a -> a -> a) -> Field a -> a # foldl1 :: (a -> a -> a) -> Field a -> a # elem :: Eq a => a -> Field a -> Bool # maximum :: Ord a => Field a -> a # minimum :: Ord a => Field a -> a # | |
Foldable FieldLine Source # | |
Defined in Distribution.Fields.Field Methods fold :: Monoid m => FieldLine m -> m # foldMap :: Monoid m => (a -> m) -> FieldLine a -> m # foldMap' :: Monoid m => (a -> m) -> FieldLine a -> m # foldr :: (a -> b -> b) -> b -> FieldLine a -> b # foldr' :: (a -> b -> b) -> b -> FieldLine a -> b # foldl :: (b -> a -> b) -> b -> FieldLine a -> b # foldl' :: (b -> a -> b) -> b -> FieldLine a -> b # foldr1 :: (a -> a -> a) -> FieldLine a -> a # foldl1 :: (a -> a -> a) -> FieldLine a -> a # toList :: FieldLine a -> [a] # length :: FieldLine a -> Int # elem :: Eq a => a -> FieldLine a -> Bool # maximum :: Ord a => FieldLine a -> a # minimum :: Ord a => FieldLine a -> a # | |
Foldable Name Source # | |
Defined in Distribution.Fields.Field Methods fold :: Monoid m => Name m -> m # foldMap :: Monoid m => (a -> m) -> Name a -> m # foldMap' :: Monoid m => (a -> m) -> Name a -> m # foldr :: (a -> b -> b) -> b -> Name a -> b # foldr' :: (a -> b -> b) -> b -> Name a -> b # foldl :: (b -> a -> b) -> b -> Name a -> b # foldl' :: (b -> a -> b) -> b -> Name a -> b # foldr1 :: (a -> a -> a) -> Name a -> a # foldl1 :: (a -> a -> a) -> Name a -> a # elem :: Eq a => a -> Name a -> Bool # maximum :: Ord a => Name a -> a # | |
Foldable SectionArg Source # | |
Defined in Distribution.Fields.Field Methods fold :: Monoid m => SectionArg m -> m # foldMap :: Monoid m => (a -> m) -> SectionArg a -> m # foldMap' :: Monoid m => (a -> m) -> SectionArg a -> m # foldr :: (a -> b -> b) -> b -> SectionArg a -> b # foldr' :: (a -> b -> b) -> b -> SectionArg a -> b # foldl :: (b -> a -> b) -> b -> SectionArg a -> b # foldl' :: (b -> a -> b) -> b -> SectionArg a -> b # foldr1 :: (a -> a -> a) -> SectionArg a -> a # foldl1 :: (a -> a -> a) -> SectionArg a -> a # toList :: SectionArg a -> [a] # null :: SectionArg a -> Bool # length :: SectionArg a -> Int # elem :: Eq a => a -> SectionArg a -> Bool # maximum :: Ord a => SectionArg a -> a # minimum :: Ord a => SectionArg a -> a # sum :: Num a => SectionArg a -> a # product :: Num a => SectionArg a -> a # | |
Foldable PrettyField Source # | |
Defined in Distribution.Fields.Pretty Methods fold :: Monoid m => PrettyField m -> m # foldMap :: Monoid m => (a -> m) -> PrettyField a -> m # foldMap' :: Monoid m => (a -> m) -> PrettyField a -> m # foldr :: (a -> b -> b) -> b -> PrettyField a -> b # foldr' :: (a -> b -> b) -> b -> PrettyField a -> b # foldl :: (b -> a -> b) -> b -> PrettyField a -> b # foldl' :: (b -> a -> b) -> b -> PrettyField a -> b # foldr1 :: (a -> a -> a) -> PrettyField a -> a # foldl1 :: (a -> a -> a) -> PrettyField a -> a # toList :: PrettyField a -> [a] # null :: PrettyField a -> Bool # length :: PrettyField a -> Int # elem :: Eq a => a -> PrettyField a -> Bool # maximum :: Ord a => PrettyField a -> a # minimum :: Ord a => PrettyField a -> a # sum :: Num a => PrettyField a -> a # product :: Num a => PrettyField a -> a # | |
Foldable Condition Source # | |
Defined in Distribution.Types.Condition Methods fold :: Monoid m => Condition m -> m # foldMap :: Monoid m => (a -> m) -> Condition a -> m # foldMap' :: Monoid m => (a -> m) -> Condition a -> m # foldr :: (a -> b -> b) -> b -> Condition a -> b # foldr' :: (a -> b -> b) -> b -> Condition a -> b # foldl :: (b -> a -> b) -> b -> Condition a -> b # foldl' :: (b -> a -> b) -> b -> Condition a -> b # foldr1 :: (a -> a -> a) -> Condition a -> a # foldl1 :: (a -> a -> a) -> Condition a -> a # toList :: Condition a -> [a] # length :: Condition a -> Int # elem :: Eq a => a -> Condition a -> Bool # maximum :: Ord a => Condition a -> a # minimum :: Ord a => Condition a -> a # | |
Foldable VersionRangeF Source # | |
Defined in Distribution.Types.VersionRange.Internal Methods fold :: Monoid m => VersionRangeF m -> m # foldMap :: Monoid m => (a -> m) -> VersionRangeF a -> m # foldMap' :: Monoid m => (a -> m) -> VersionRangeF a -> m # foldr :: (a -> b -> b) -> b -> VersionRangeF a -> b # foldr' :: (a -> b -> b) -> b -> VersionRangeF a -> b # foldl :: (b -> a -> b) -> b -> VersionRangeF a -> b # foldl' :: (b -> a -> b) -> b -> VersionRangeF a -> b # foldr1 :: (a -> a -> a) -> VersionRangeF a -> a # foldl1 :: (a -> a -> a) -> VersionRangeF a -> a # toList :: VersionRangeF a -> [a] # null :: VersionRangeF a -> Bool # length :: VersionRangeF a -> Int # elem :: Eq a => a -> VersionRangeF a -> Bool # maximum :: Ord a => VersionRangeF a -> a # minimum :: Ord a => VersionRangeF a -> a # sum :: Num a => VersionRangeF a -> a # product :: Num a => VersionRangeF a -> a # | |
Foldable ZipList | Since: base-4.9.0.0 |
Defined in Control.Applicative Methods fold :: Monoid m => ZipList m -> m # foldMap :: Monoid m => (a -> m) -> ZipList a -> m # foldMap' :: Monoid m => (a -> m) -> ZipList a -> m # foldr :: (a -> b -> b) -> b -> ZipList a -> b # foldr' :: (a -> b -> b) -> b -> ZipList a -> b # foldl :: (b -> a -> b) -> b -> ZipList a -> b # foldl' :: (b -> a -> b) -> b -> ZipList a -> b # foldr1 :: (a -> a -> a) -> ZipList a -> a # foldl1 :: (a -> a -> a) -> ZipList a -> a # elem :: Eq a => a -> ZipList a -> Bool # maximum :: Ord a => ZipList a -> a # minimum :: Ord a => ZipList a -> a # | |
Foldable Complex | Since: base-4.9.0.0 |
Defined in Data.Complex Methods fold :: Monoid m => Complex m -> m # foldMap :: Monoid m => (a -> m) -> Complex a -> m # foldMap' :: Monoid m => (a -> m) -> Complex a -> m # foldr :: (a -> b -> b) -> b -> Complex a -> b # foldr' :: (a -> b -> b) -> b -> Complex a -> b # foldl :: (b -> a -> b) -> b -> Complex a -> b # foldl' :: (b -> a -> b) -> b -> Complex a -> b # foldr1 :: (a -> a -> a) -> Complex a -> a # foldl1 :: (a -> a -> a) -> Complex a -> a # elem :: Eq a => a -> Complex a -> Bool # maximum :: Ord a => Complex a -> a # minimum :: Ord a => Complex a -> a # | |
Foldable Identity | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity Methods fold :: Monoid m => Identity m -> m # foldMap :: Monoid m => (a -> m) -> Identity a -> m # foldMap' :: Monoid m => (a -> m) -> Identity a -> m # foldr :: (a -> b -> b) -> b -> Identity a -> b # foldr' :: (a -> b -> b) -> b -> Identity a -> b # foldl :: (b -> a -> b) -> b -> Identity a -> b # foldl' :: (b -> a -> b) -> b -> Identity a -> b # foldr1 :: (a -> a -> a) -> Identity a -> a # foldl1 :: (a -> a -> a) -> Identity a -> a # elem :: Eq a => a -> Identity a -> Bool # maximum :: Ord a => Identity a -> a # minimum :: Ord a => Identity a -> a # | |
Foldable First | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldMap' :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |
Foldable Last | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldMap' :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
Foldable Down | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Down m -> m # foldMap :: Monoid m => (a -> m) -> Down a -> m # foldMap' :: Monoid m => (a -> m) -> Down a -> m # foldr :: (a -> b -> b) -> b -> Down a -> b # foldr' :: (a -> b -> b) -> b -> Down a -> b # foldl :: (b -> a -> b) -> b -> Down a -> b # foldl' :: (b -> a -> b) -> b -> Down a -> b # foldr1 :: (a -> a -> a) -> Down a -> a # foldl1 :: (a -> a -> a) -> Down a -> a # elem :: Eq a => a -> Down a -> Bool # maximum :: Ord a => Down a -> a # | |
Foldable First | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldMap' :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |
Foldable Last | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldMap' :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
Foldable Max | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Max m -> m # foldMap :: Monoid m => (a -> m) -> Max a -> m # foldMap' :: Monoid m => (a -> m) -> Max a -> m # foldr :: (a -> b -> b) -> b -> Max a -> b # foldr' :: (a -> b -> b) -> b -> Max a -> b # foldl :: (b -> a -> b) -> b -> Max a -> b # foldl' :: (b -> a -> b) -> b -> Max a -> b # foldr1 :: (a -> a -> a) -> Max a -> a # foldl1 :: (a -> a -> a) -> Max a -> a # elem :: Eq a => a -> Max a -> Bool # maximum :: Ord a => Max a -> a # | |
Foldable Min | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Min m -> m # foldMap :: Monoid m => (a -> m) -> Min a -> m # foldMap' :: Monoid m => (a -> m) -> Min a -> m # foldr :: (a -> b -> b) -> b -> Min a -> b # foldr' :: (a -> b -> b) -> b -> Min a -> b # foldl :: (b -> a -> b) -> b -> Min a -> b # foldl' :: (b -> a -> b) -> b -> Min a -> b # foldr1 :: (a -> a -> a) -> Min a -> a # foldl1 :: (a -> a -> a) -> Min a -> a # elem :: Eq a => a -> Min a -> Bool # maximum :: Ord a => Min a -> a # | |
Foldable Dual | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Dual m -> m # foldMap :: Monoid m => (a -> m) -> Dual a -> m # foldMap' :: Monoid m => (a -> m) -> Dual a -> m # foldr :: (a -> b -> b) -> b -> Dual a -> b # foldr' :: (a -> b -> b) -> b -> Dual a -> b # foldl :: (b -> a -> b) -> b -> Dual a -> b # foldl' :: (b -> a -> b) -> b -> Dual a -> b # foldr1 :: (a -> a -> a) -> Dual a -> a # foldl1 :: (a -> a -> a) -> Dual a -> a # elem :: Eq a => a -> Dual a -> Bool # maximum :: Ord a => Dual a -> a # | |
Foldable Product | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Product m -> m # foldMap :: Monoid m => (a -> m) -> Product a -> m # foldMap' :: Monoid m => (a -> m) -> Product a -> m # foldr :: (a -> b -> b) -> b -> Product a -> b # foldr' :: (a -> b -> b) -> b -> Product a -> b # foldl :: (b -> a -> b) -> b -> Product a -> b # foldl' :: (b -> a -> b) -> b -> Product a -> b # foldr1 :: (a -> a -> a) -> Product a -> a # foldl1 :: (a -> a -> a) -> Product a -> a # elem :: Eq a => a -> Product a -> Bool # maximum :: Ord a => Product a -> a # minimum :: Ord a => Product a -> a # | |
Foldable Sum | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Sum m -> m # foldMap :: Monoid m => (a -> m) -> Sum a -> m # foldMap' :: Monoid m => (a -> m) -> Sum a -> m # foldr :: (a -> b -> b) -> b -> Sum a -> b # foldr' :: (a -> b -> b) -> b -> Sum a -> b # foldl :: (b -> a -> b) -> b -> Sum a -> b # foldl' :: (b -> a -> b) -> b -> Sum a -> b # foldr1 :: (a -> a -> a) -> Sum a -> a # foldl1 :: (a -> a -> a) -> Sum a -> a # elem :: Eq a => a -> Sum a -> Bool # maximum :: Ord a => Sum a -> a # | |
Foldable NonEmpty | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => NonEmpty m -> m # foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m # foldMap' :: Monoid m => (a -> m) -> NonEmpty a -> m # foldr :: (a -> b -> b) -> b -> NonEmpty a -> b # foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b # foldl :: (b -> a -> b) -> b -> NonEmpty a -> b # foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b # foldr1 :: (a -> a -> a) -> NonEmpty a -> a # foldl1 :: (a -> a -> a) -> NonEmpty a -> a # elem :: Eq a => a -> NonEmpty a -> Bool # maximum :: Ord a => NonEmpty a -> a # minimum :: Ord a => NonEmpty a -> a # | |
Foldable Par1 | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Par1 m -> m # foldMap :: Monoid m => (a -> m) -> Par1 a -> m # foldMap' :: Monoid m => (a -> m) -> Par1 a -> m # foldr :: (a -> b -> b) -> b -> Par1 a -> b # foldr' :: (a -> b -> b) -> b -> Par1 a -> b # foldl :: (b -> a -> b) -> b -> Par1 a -> b # foldl' :: (b -> a -> b) -> b -> Par1 a -> b # foldr1 :: (a -> a -> a) -> Par1 a -> a # foldl1 :: (a -> a -> a) -> Par1 a -> a # elem :: Eq a => a -> Par1 a -> Bool # maximum :: Ord a => Par1 a -> a # | |
Foldable SCC | Since: containers-0.5.9 |
Defined in Data.Graph Methods fold :: Monoid m => SCC m -> m # foldMap :: Monoid m => (a -> m) -> SCC a -> m # foldMap' :: Monoid m => (a -> m) -> SCC a -> m # foldr :: (a -> b -> b) -> b -> SCC a -> b # foldr' :: (a -> b -> b) -> b -> SCC a -> b # foldl :: (b -> a -> b) -> b -> SCC a -> b # foldl' :: (b -> a -> b) -> b -> SCC a -> b # foldr1 :: (a -> a -> a) -> SCC a -> a # foldl1 :: (a -> a -> a) -> SCC a -> a # elem :: Eq a => a -> SCC a -> Bool # maximum :: Ord a => SCC a -> a # | |
Foldable IntMap | Folds in order of increasing key. |
Defined in Data.IntMap.Internal Methods fold :: Monoid m => IntMap m -> m # foldMap :: Monoid m => (a -> m) -> IntMap a -> m # foldMap' :: Monoid m => (a -> m) -> IntMap a -> m # foldr :: (a -> b -> b) -> b -> IntMap a -> b # foldr' :: (a -> b -> b) -> b -> IntMap a -> b # foldl :: (b -> a -> b) -> b -> IntMap a -> b # foldl' :: (b -> a -> b) -> b -> IntMap a -> b # foldr1 :: (a -> a -> a) -> IntMap a -> a # foldl1 :: (a -> a -> a) -> IntMap a -> a # elem :: Eq a => a -> IntMap a -> Bool # maximum :: Ord a => IntMap a -> a # minimum :: Ord a => IntMap a -> a # | |
Foldable Digit | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Digit m -> m # foldMap :: Monoid m => (a -> m) -> Digit a -> m # foldMap' :: Monoid m => (a -> m) -> Digit a -> m # foldr :: (a -> b -> b) -> b -> Digit a -> b # foldr' :: (a -> b -> b) -> b -> Digit a -> b # foldl :: (b -> a -> b) -> b -> Digit a -> b # foldl' :: (b -> a -> b) -> b -> Digit a -> b # foldr1 :: (a -> a -> a) -> Digit a -> a # foldl1 :: (a -> a -> a) -> Digit a -> a # elem :: Eq a => a -> Digit a -> Bool # maximum :: Ord a => Digit a -> a # minimum :: Ord a => Digit a -> a # | |
Foldable Elem | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Elem m -> m # foldMap :: Monoid m => (a -> m) -> Elem a -> m # foldMap' :: Monoid m => (a -> m) -> Elem a -> m # foldr :: (a -> b -> b) -> b -> Elem a -> b # foldr' :: (a -> b -> b) -> b -> Elem a -> b # foldl :: (b -> a -> b) -> b -> Elem a -> b # foldl' :: (b -> a -> b) -> b -> Elem a -> b # foldr1 :: (a -> a -> a) -> Elem a -> a # foldl1 :: (a -> a -> a) -> Elem a -> a # elem :: Eq a => a -> Elem a -> Bool # maximum :: Ord a => Elem a -> a # | |
Foldable FingerTree | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => FingerTree m -> m # foldMap :: Monoid m => (a -> m) -> FingerTree a -> m # foldMap' :: Monoid m => (a -> m) -> FingerTree a -> m # foldr :: (a -> b -> b) -> b -> FingerTree a -> b # foldr' :: (a -> b -> b) -> b -> FingerTree a -> b # foldl :: (b -> a -> b) -> b -> FingerTree a -> b # foldl' :: (b -> a -> b) -> b -> FingerTree a -> b # foldr1 :: (a -> a -> a) -> FingerTree a -> a # foldl1 :: (a -> a -> a) -> FingerTree a -> a # toList :: FingerTree a -> [a] # null :: FingerTree a -> Bool # length :: FingerTree a -> Int # elem :: Eq a => a -> FingerTree a -> Bool # maximum :: Ord a => FingerTree a -> a # minimum :: Ord a => FingerTree a -> a # sum :: Num a => FingerTree a -> a # product :: Num a => FingerTree a -> a # | |
Foldable Node | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Node m -> m # foldMap :: Monoid m => (a -> m) -> Node a -> m # foldMap' :: Monoid m => (a -> m) -> Node a -> m # foldr :: (a -> b -> b) -> b -> Node a -> b # foldr' :: (a -> b -> b) -> b -> Node a -> b # foldl :: (b -> a -> b) -> b -> Node a -> b # foldl' :: (b -> a -> b) -> b -> Node a -> b # foldr1 :: (a -> a -> a) -> Node a -> a # foldl1 :: (a -> a -> a) -> Node a -> a # elem :: Eq a => a -> Node a -> Bool # maximum :: Ord a => Node a -> a # | |
Foldable Seq | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Seq m -> m # foldMap :: Monoid m => (a -> m) -> Seq a -> m # foldMap' :: Monoid m => (a -> m) -> Seq a -> m # foldr :: (a -> b -> b) -> b -> Seq a -> b # foldr' :: (a -> b -> b) -> b -> Seq a -> b # foldl :: (b -> a -> b) -> b -> Seq a -> b # foldl' :: (b -> a -> b) -> b -> Seq a -> b # foldr1 :: (a -> a -> a) -> Seq a -> a # foldl1 :: (a -> a -> a) -> Seq a -> a # elem :: Eq a => a -> Seq a -> Bool # maximum :: Ord a => Seq a -> a # | |
Foldable ViewL | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => ViewL m -> m # foldMap :: Monoid m => (a -> m) -> ViewL a -> m # foldMap' :: Monoid m => (a -> m) -> ViewL a -> m # foldr :: (a -> b -> b) -> b -> ViewL a -> b # foldr' :: (a -> b -> b) -> b -> ViewL a -> b # foldl :: (b -> a -> b) -> b -> ViewL a -> b # foldl' :: (b -> a -> b) -> b -> ViewL a -> b # foldr1 :: (a -> a -> a) -> ViewL a -> a # foldl1 :: (a -> a -> a) -> ViewL a -> a # elem :: Eq a => a -> ViewL a -> Bool # maximum :: Ord a => ViewL a -> a # minimum :: Ord a => ViewL a -> a # | |
Foldable ViewR | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => ViewR m -> m # foldMap :: Monoid m => (a -> m) -> ViewR a -> m # foldMap' :: Monoid m => (a -> m) -> ViewR a -> m # foldr :: (a -> b -> b) -> b -> ViewR a -> b # foldr' :: (a -> b -> b) -> b -> ViewR a -> b # foldl :: (b -> a -> b) -> b -> ViewR a -> b # foldl' :: (b -> a -> b) -> b -> ViewR a -> b # foldr1 :: (a -> a -> a) -> ViewR a -> a # foldl1 :: (a -> a -> a) -> ViewR a -> a # elem :: Eq a => a -> ViewR a -> Bool # maximum :: Ord a => ViewR a -> a # minimum :: Ord a => ViewR a -> a # | |
Foldable Set | Folds in order of increasing key. |
Defined in Data.Set.Internal Methods fold :: Monoid m => Set m -> m # foldMap :: Monoid m => (a -> m) -> Set a -> m # foldMap' :: Monoid m => (a -> m) -> Set a -> m # foldr :: (a -> b -> b) -> b -> Set a -> b # foldr' :: (a -> b -> b) -> b -> Set a -> b # foldl :: (b -> a -> b) -> b -> Set a -> b # foldl' :: (b -> a -> b) -> b -> Set a -> b # foldr1 :: (a -> a -> a) -> Set a -> a # foldl1 :: (a -> a -> a) -> Set a -> a # elem :: Eq a => a -> Set a -> Bool # maximum :: Ord a => Set a -> a # | |
Foldable Tree | Folds in preorder |
Defined in Data.Tree Methods fold :: Monoid m => Tree m -> m # foldMap :: Monoid m => (a -> m) -> Tree a -> m # foldMap' :: Monoid m => (a -> m) -> Tree a -> m # foldr :: (a -> b -> b) -> b -> Tree a -> b # foldr' :: (a -> b -> b) -> b -> Tree a -> b # foldl :: (b -> a -> b) -> b -> Tree a -> b # foldl' :: (b -> a -> b) -> b -> Tree a -> b # foldr1 :: (a -> a -> a) -> Tree a -> a # foldl1 :: (a -> a -> a) -> Tree a -> a # elem :: Eq a => a -> Tree a -> Bool # maximum :: Ord a => Tree a -> a # | |
Foldable Maybe | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldMap' :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |
Foldable Solo | Since: base-4.15 |
Defined in Data.Foldable Methods fold :: Monoid m => Solo m -> m # foldMap :: Monoid m => (a -> m) -> Solo a -> m # foldMap' :: Monoid m => (a -> m) -> Solo a -> m # foldr :: (a -> b -> b) -> b -> Solo a -> b # foldr' :: (a -> b -> b) -> b -> Solo a -> b # foldl :: (b -> a -> b) -> b -> Solo a -> b # foldl' :: (b -> a -> b) -> b -> Solo a -> b # foldr1 :: (a -> a -> a) -> Solo a -> a # foldl1 :: (a -> a -> a) -> Solo a -> a # elem :: Eq a => a -> Solo a -> Bool # maximum :: Ord a => Solo a -> a # | |
Foldable List | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => [m] -> m # foldMap :: Monoid m => (a -> m) -> [a] -> m # foldMap' :: Monoid m => (a -> m) -> [a] -> m # foldr :: (a -> b -> b) -> b -> [a] -> b # foldr' :: (a -> b -> b) -> b -> [a] -> b # foldl :: (b -> a -> b) -> b -> [a] -> b # foldl' :: (b -> a -> b) -> b -> [a] -> b # foldr1 :: (a -> a -> a) -> [a] -> a # foldl1 :: (a -> a -> a) -> [a] -> a # elem :: Eq a => a -> [a] -> Bool # maximum :: Ord a => [a] -> a # | |
Foldable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Either a m -> m # foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # toList :: Either a a0 -> [a0] # length :: Either a a0 -> Int # elem :: Eq a0 => a0 -> Either a a0 -> Bool # maximum :: Ord a0 => Either a a0 -> a0 # minimum :: Ord a0 => Either a a0 -> a0 # | |
Foldable (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Proxy m -> m # foldMap :: Monoid m => (a -> m) -> Proxy a -> m # foldMap' :: Monoid m => (a -> m) -> Proxy a -> m # foldr :: (a -> b -> b) -> b -> Proxy a -> b # foldr' :: (a -> b -> b) -> b -> Proxy a -> b # foldl :: (b -> a -> b) -> b -> Proxy a -> b # foldl' :: (b -> a -> b) -> b -> Proxy a -> b # foldr1 :: (a -> a -> a) -> Proxy a -> a # foldl1 :: (a -> a -> a) -> Proxy a -> a # elem :: Eq a => a -> Proxy a -> Bool # maximum :: Ord a => Proxy a -> a # minimum :: Ord a => Proxy a -> a # | |
Foldable (Arg a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Arg a m -> m # foldMap :: Monoid m => (a0 -> m) -> Arg a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Arg a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Arg a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Arg a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Arg a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Arg a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 # elem :: Eq a0 => a0 -> Arg a a0 -> Bool # maximum :: Ord a0 => Arg a a0 -> a0 # minimum :: Ord a0 => Arg a a0 -> a0 # | |
Foldable (Array i) | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Array i m -> m # foldMap :: Monoid m => (a -> m) -> Array i a -> m # foldMap' :: Monoid m => (a -> m) -> Array i a -> m # foldr :: (a -> b -> b) -> b -> Array i a -> b # foldr' :: (a -> b -> b) -> b -> Array i a -> b # foldl :: (b -> a -> b) -> b -> Array i a -> b # foldl' :: (b -> a -> b) -> b -> Array i a -> b # foldr1 :: (a -> a -> a) -> Array i a -> a # foldl1 :: (a -> a -> a) -> Array i a -> a # elem :: Eq a => a -> Array i a -> Bool # maximum :: Ord a => Array i a -> a # minimum :: Ord a => Array i a -> a # | |
Foldable (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => U1 m -> m # foldMap :: Monoid m => (a -> m) -> U1 a -> m # foldMap' :: Monoid m => (a -> m) -> U1 a -> m # foldr :: (a -> b -> b) -> b -> U1 a -> b # foldr' :: (a -> b -> b) -> b -> U1 a -> b # foldl :: (b -> a -> b) -> b -> U1 a -> b # foldl' :: (b -> a -> b) -> b -> U1 a -> b # foldr1 :: (a -> a -> a) -> U1 a -> a # foldl1 :: (a -> a -> a) -> U1 a -> a # elem :: Eq a => a -> U1 a -> Bool # maximum :: Ord a => U1 a -> a # | |
Foldable (UAddr :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UAddr m -> m # foldMap :: Monoid m => (a -> m) -> UAddr a -> m # foldMap' :: Monoid m => (a -> m) -> UAddr a -> m # foldr :: (a -> b -> b) -> b -> UAddr a -> b # foldr' :: (a -> b -> b) -> b -> UAddr a -> b # foldl :: (b -> a -> b) -> b -> UAddr a -> b # foldl' :: (b -> a -> b) -> b -> UAddr a -> b # foldr1 :: (a -> a -> a) -> UAddr a -> a # foldl1 :: (a -> a -> a) -> UAddr a -> a # elem :: Eq a => a -> UAddr a -> Bool # maximum :: Ord a => UAddr a -> a # minimum :: Ord a => UAddr a -> a # | |
Foldable (UChar :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UChar m -> m # foldMap :: Monoid m => (a -> m) -> UChar a -> m # foldMap' :: Monoid m => (a -> m) -> UChar a -> m # foldr :: (a -> b -> b) -> b -> UChar a -> b # foldr' :: (a -> b -> b) -> b -> UChar a -> b # foldl :: (b -> a -> b) -> b -> UChar a -> b # foldl' :: (b -> a -> b) -> b -> UChar a -> b # foldr1 :: (a -> a -> a) -> UChar a -> a # foldl1 :: (a -> a -> a) -> UChar a -> a # elem :: Eq a => a -> UChar a -> Bool # maximum :: Ord a => UChar a -> a # minimum :: Ord a => UChar a -> a # | |
Foldable (UDouble :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UDouble m -> m # foldMap :: Monoid m => (a -> m) -> UDouble a -> m # foldMap' :: Monoid m => (a -> m) -> UDouble a -> m # foldr :: (a -> b -> b) -> b -> UDouble a -> b # foldr' :: (a -> b -> b) -> b -> UDouble a -> b # foldl :: (b -> a -> b) -> b -> UDouble a -> b # foldl' :: (b -> a -> b) -> b -> UDouble a -> b # foldr1 :: (a -> a -> a) -> UDouble a -> a # foldl1 :: (a -> a -> a) -> UDouble a -> a # elem :: Eq a => a -> UDouble a -> Bool # maximum :: Ord a => UDouble a -> a # minimum :: Ord a => UDouble a -> a # | |
Foldable (UFloat :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UFloat m -> m # foldMap :: Monoid m => (a -> m) -> UFloat a -> m # foldMap' :: Monoid m => (a -> m) -> UFloat a -> m # foldr :: (a -> b -> b) -> b -> UFloat a -> b # foldr' :: (a -> b -> b) -> b -> UFloat a -> b # foldl :: (b -> a -> b) -> b -> UFloat a -> b # foldl' :: (b -> a -> b) -> b -> UFloat a -> b # foldr1 :: (a -> a -> a) -> UFloat a -> a # foldl1 :: (a -> a -> a) -> UFloat a -> a # elem :: Eq a => a -> UFloat a -> Bool # maximum :: Ord a => UFloat a -> a # minimum :: Ord a => UFloat a -> a # | |
Foldable (UInt :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UInt m -> m # foldMap :: Monoid m => (a -> m) -> UInt a -> m # foldMap' :: Monoid m => (a -> m) -> UInt a -> m # foldr :: (a -> b -> b) -> b -> UInt a -> b # foldr' :: (a -> b -> b) -> b -> UInt a -> b # foldl :: (b -> a -> b) -> b -> UInt a -> b # foldl' :: (b -> a -> b) -> b -> UInt a -> b # foldr1 :: (a -> a -> a) -> UInt a -> a # foldl1 :: (a -> a -> a) -> UInt a -> a # elem :: Eq a => a -> UInt a -> Bool # maximum :: Ord a => UInt a -> a # | |
Foldable (UWord :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UWord m -> m # foldMap :: Monoid m => (a -> m) -> UWord a -> m # foldMap' :: Monoid m => (a -> m) -> UWord a -> m # foldr :: (a -> b -> b) -> b -> UWord a -> b # foldr' :: (a -> b -> b) -> b -> UWord a -> b # foldl :: (b -> a -> b) -> b -> UWord a -> b # foldl' :: (b -> a -> b) -> b -> UWord a -> b # foldr1 :: (a -> a -> a) -> UWord a -> a # foldl1 :: (a -> a -> a) -> UWord a -> a # elem :: Eq a => a -> UWord a -> Bool # maximum :: Ord a => UWord a -> a # minimum :: Ord a => UWord a -> a # | |
Foldable (V1 :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => V1 m -> m # foldMap :: Monoid m => (a -> m) -> V1 a -> m # foldMap' :: Monoid m => (a -> m) -> V1 a -> m # foldr :: (a -> b -> b) -> b -> V1 a -> b # foldr' :: (a -> b -> b) -> b -> V1 a -> b # foldl :: (b -> a -> b) -> b -> V1 a -> b # foldl' :: (b -> a -> b) -> b -> V1 a -> b # foldr1 :: (a -> a -> a) -> V1 a -> a # foldl1 :: (a -> a -> a) -> V1 a -> a # elem :: Eq a => a -> V1 a -> Bool # maximum :: Ord a => V1 a -> a # | |
Foldable (Map k) | Folds in order of increasing key. |
Defined in Data.Map.Internal Methods fold :: Monoid m => Map k m -> m # foldMap :: Monoid m => (a -> m) -> Map k a -> m # foldMap' :: Monoid m => (a -> m) -> Map k a -> m # foldr :: (a -> b -> b) -> b -> Map k a -> b # foldr' :: (a -> b -> b) -> b -> Map k a -> b # foldl :: (b -> a -> b) -> b -> Map k a -> b # foldl' :: (b -> a -> b) -> b -> Map k a -> b # foldr1 :: (a -> a -> a) -> Map k a -> a # foldl1 :: (a -> a -> a) -> Map k a -> a # elem :: Eq a => a -> Map k a -> Bool # maximum :: Ord a => Map k a -> a # minimum :: Ord a => Map k a -> a # | |
Foldable f => Foldable (MaybeT f) | |
Defined in Control.Monad.Trans.Maybe Methods fold :: Monoid m => MaybeT f m -> m # foldMap :: Monoid m => (a -> m) -> MaybeT f a -> m # foldMap' :: Monoid m => (a -> m) -> MaybeT f a -> m # foldr :: (a -> b -> b) -> b -> MaybeT f a -> b # foldr' :: (a -> b -> b) -> b -> MaybeT f a -> b # foldl :: (b -> a -> b) -> b -> MaybeT f a -> b # foldl' :: (b -> a -> b) -> b -> MaybeT f a -> b # foldr1 :: (a -> a -> a) -> MaybeT f a -> a # foldl1 :: (a -> a -> a) -> MaybeT f a -> a # elem :: Eq a => a -> MaybeT f a -> Bool # maximum :: Ord a => MaybeT f a -> a # minimum :: Ord a => MaybeT f a -> a # | |
Foldable ((,) a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (a, m) -> m # foldMap :: Monoid m => (a0 -> m) -> (a, a0) -> m # foldMap' :: Monoid m => (a0 -> m) -> (a, a0) -> m # foldr :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldr' :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldl :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldl' :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldr1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # foldl1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # elem :: Eq a0 => a0 -> (a, a0) -> Bool # maximum :: Ord a0 => (a, a0) -> a0 # minimum :: Ord a0 => (a, a0) -> a0 # | |
Foldable (CondBranch v c) Source # | |
Defined in Distribution.Types.CondTree Methods fold :: Monoid m => CondBranch v c m -> m # foldMap :: Monoid m => (a -> m) -> CondBranch v c a -> m # foldMap' :: Monoid m => (a -> m) -> CondBranch v c a -> m # foldr :: (a -> b -> b) -> b -> CondBranch v c a -> b # foldr' :: (a -> b -> b) -> b -> CondBranch v c a -> b # foldl :: (b -> a -> b) -> b -> CondBranch v c a -> b # foldl' :: (b -> a -> b) -> b -> CondBranch v c a -> b # foldr1 :: (a -> a -> a) -> CondBranch v c a -> a # foldl1 :: (a -> a -> a) -> CondBranch v c a -> a # toList :: CondBranch v c a -> [a] # null :: CondBranch v c a -> Bool # length :: CondBranch v c a -> Int # elem :: Eq a => a -> CondBranch v c a -> Bool # maximum :: Ord a => CondBranch v c a -> a # minimum :: Ord a => CondBranch v c a -> a # sum :: Num a => CondBranch v c a -> a # product :: Num a => CondBranch v c a -> a # | |
Foldable (CondTree v c) Source # | |
Defined in Distribution.Types.CondTree Methods fold :: Monoid m => CondTree v c m -> m # foldMap :: Monoid m => (a -> m) -> CondTree v c a -> m # foldMap' :: Monoid m => (a -> m) -> CondTree v c a -> m # foldr :: (a -> b -> b) -> b -> CondTree v c a -> b # foldr' :: (a -> b -> b) -> b -> CondTree v c a -> b # foldl :: (b -> a -> b) -> b -> CondTree v c a -> b # foldl' :: (b -> a -> b) -> b -> CondTree v c a -> b # foldr1 :: (a -> a -> a) -> CondTree v c a -> a # foldl1 :: (a -> a -> a) -> CondTree v c a -> a # toList :: CondTree v c a -> [a] # null :: CondTree v c a -> Bool # length :: CondTree v c a -> Int # elem :: Eq a => a -> CondTree v c a -> Bool # maximum :: Ord a => CondTree v c a -> a # minimum :: Ord a => CondTree v c a -> a # | |
Foldable (Const m :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Functor.Const Methods fold :: Monoid m0 => Const m m0 -> m0 # foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldMap' :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldr :: (a -> b -> b) -> b -> Const m a -> b # foldr' :: (a -> b -> b) -> b -> Const m a -> b # foldl :: (b -> a -> b) -> b -> Const m a -> b # foldl' :: (b -> a -> b) -> b -> Const m a -> b # foldr1 :: (a -> a -> a) -> Const m a -> a # foldl1 :: (a -> a -> a) -> Const m a -> a # elem :: Eq a => a -> Const m a -> Bool # maximum :: Ord a => Const m a -> a # minimum :: Ord a => Const m a -> a # | |
Foldable f => Foldable (Ap f) | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Ap f m -> m # foldMap :: Monoid m => (a -> m) -> Ap f a -> m # foldMap' :: Monoid m => (a -> m) -> Ap f a -> m # foldr :: (a -> b -> b) -> b -> Ap f a -> b # foldr' :: (a -> b -> b) -> b -> Ap f a -> b # foldl :: (b -> a -> b) -> b -> Ap f a -> b # foldl' :: (b -> a -> b) -> b -> Ap f a -> b # foldr1 :: (a -> a -> a) -> Ap f a -> a # foldl1 :: (a -> a -> a) -> Ap f a -> a # elem :: Eq a => a -> Ap f a -> Bool # maximum :: Ord a => Ap f a -> a # | |
Foldable f => Foldable (Alt f) | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Alt f m -> m # foldMap :: Monoid m => (a -> m) -> Alt f a -> m # foldMap' :: Monoid m => (a -> m) -> Alt f a -> m # foldr :: (a -> b -> b) -> b -> Alt f a -> b # foldr' :: (a -> b -> b) -> b -> Alt f a -> b # foldl :: (b -> a -> b) -> b -> Alt f a -> b # foldl' :: (b -> a -> b) -> b -> Alt f a -> b # foldr1 :: (a -> a -> a) -> Alt f a -> a # foldl1 :: (a -> a -> a) -> Alt f a -> a # elem :: Eq a => a -> Alt f a -> Bool # maximum :: Ord a => Alt f a -> a # minimum :: Ord a => Alt f a -> a # | |
Foldable f => Foldable (Rec1 f) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Rec1 f m -> m # foldMap :: Monoid m => (a -> m) -> Rec1 f a -> m # foldMap' :: Monoid m => (a -> m) -> Rec1 f a -> m # foldr :: (a -> b -> b) -> b -> Rec1 f a -> b # foldr' :: (a -> b -> b) -> b -> Rec1 f a -> b # foldl :: (b -> a -> b) -> b -> Rec1 f a -> b # foldl' :: (b -> a -> b) -> b -> Rec1 f a -> b # foldr1 :: (a -> a -> a) -> Rec1 f a -> a # foldl1 :: (a -> a -> a) -> Rec1 f a -> a # elem :: Eq a => a -> Rec1 f a -> Bool # maximum :: Ord a => Rec1 f a -> a # minimum :: Ord a => Rec1 f a -> a # | |
Foldable f => Foldable (ExceptT e f) | |
Defined in Control.Monad.Trans.Except Methods fold :: Monoid m => ExceptT e f m -> m # foldMap :: Monoid m => (a -> m) -> ExceptT e f a -> m # foldMap' :: Monoid m => (a -> m) -> ExceptT e f a -> m # foldr :: (a -> b -> b) -> b -> ExceptT e f a -> b # foldr' :: (a -> b -> b) -> b -> ExceptT e f a -> b # foldl :: (b -> a -> b) -> b -> ExceptT e f a -> b # foldl' :: (b -> a -> b) -> b -> ExceptT e f a -> b # foldr1 :: (a -> a -> a) -> ExceptT e f a -> a # foldl1 :: (a -> a -> a) -> ExceptT e f a -> a # toList :: ExceptT e f a -> [a] # null :: ExceptT e f a -> Bool # length :: ExceptT e f a -> Int # elem :: Eq a => a -> ExceptT e f a -> Bool # maximum :: Ord a => ExceptT e f a -> a # minimum :: Ord a => ExceptT e f a -> a # | |
Foldable f => Foldable (IdentityT f) | |
Defined in Control.Monad.Trans.Identity Methods fold :: Monoid m => IdentityT f m -> m # foldMap :: Monoid m => (a -> m) -> IdentityT f a -> m # foldMap' :: Monoid m => (a -> m) -> IdentityT f a -> m # foldr :: (a -> b -> b) -> b -> IdentityT f a -> b # foldr' :: (a -> b -> b) -> b -> IdentityT f a -> b # foldl :: (b -> a -> b) -> b -> IdentityT f a -> b # foldl' :: (b -> a -> b) -> b -> IdentityT f a -> b # foldr1 :: (a -> a -> a) -> IdentityT f a -> a # foldl1 :: (a -> a -> a) -> IdentityT f a -> a # toList :: IdentityT f a -> [a] # null :: IdentityT f a -> Bool # length :: IdentityT f a -> Int # elem :: Eq a => a -> IdentityT f a -> Bool # maximum :: Ord a => IdentityT f a -> a # minimum :: Ord a => IdentityT f a -> a # | |
Foldable f => Foldable (WriterT w f) | |
Defined in Control.Monad.Trans.Writer.Lazy Methods fold :: Monoid m => WriterT w f m -> m # foldMap :: Monoid m => (a -> m) -> WriterT w f a -> m # foldMap' :: Monoid m => (a -> m) -> WriterT w f a -> m # foldr :: (a -> b -> b) -> b -> WriterT w f a -> b # foldr' :: (a -> b -> b) -> b -> WriterT w f a -> b # foldl :: (b -> a -> b) -> b -> WriterT w f a -> b # foldl' :: (b -> a -> b) -> b -> WriterT w f a -> b # foldr1 :: (a -> a -> a) -> WriterT w f a -> a # foldl1 :: (a -> a -> a) -> WriterT w f a -> a # toList :: WriterT w f a -> [a] # null :: WriterT w f a -> Bool # length :: WriterT w f a -> Int # elem :: Eq a => a -> WriterT w f a -> Bool # maximum :: Ord a => WriterT w f a -> a # minimum :: Ord a => WriterT w f a -> a # | |
Foldable f => Foldable (WriterT w f) | |
Defined in Control.Monad.Trans.Writer.Strict Methods fold :: Monoid m => WriterT w f m -> m # foldMap :: Monoid m => (a -> m) -> WriterT w f a -> m # foldMap' :: Monoid m => (a -> m) -> WriterT w f a -> m # foldr :: (a -> b -> b) -> b -> WriterT w f a -> b # foldr' :: (a -> b -> b) -> b -> WriterT w f a -> b # foldl :: (b -> a -> b) -> b -> WriterT w f a -> b # foldl' :: (b -> a -> b) -> b -> WriterT w f a -> b # foldr1 :: (a -> a -> a) -> WriterT w f a -> a # foldl1 :: (a -> a -> a) -> WriterT w f a -> a # toList :: WriterT w f a -> [a] # null :: WriterT w f a -> Bool # length :: WriterT w f a -> Int # elem :: Eq a => a -> WriterT w f a -> Bool # maximum :: Ord a => WriterT w f a -> a # minimum :: Ord a => WriterT w f a -> a # | |
(Foldable f, Foldable g) => Foldable (Product f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product Methods fold :: Monoid m => Product f g m -> m # foldMap :: Monoid m => (a -> m) -> Product f g a -> m # foldMap' :: Monoid m => (a -> m) -> Product f g a -> m # foldr :: (a -> b -> b) -> b -> Product f g a -> b # foldr' :: (a -> b -> b) -> b -> Product f g a -> b # foldl :: (b -> a -> b) -> b -> Product f g a -> b # foldl' :: (b -> a -> b) -> b -> Product f g a -> b # foldr1 :: (a -> a -> a) -> Product f g a -> a # foldl1 :: (a -> a -> a) -> Product f g a -> a # toList :: Product f g a -> [a] # null :: Product f g a -> Bool # length :: Product f g a -> Int # elem :: Eq a => a -> Product f g a -> Bool # maximum :: Ord a => Product f g a -> a # minimum :: Ord a => Product f g a -> a # | |
(Foldable f, Foldable g) => Foldable (Sum f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Sum Methods fold :: Monoid m => Sum f g m -> m # foldMap :: Monoid m => (a -> m) -> Sum f g a -> m # foldMap' :: Monoid m => (a -> m) -> Sum f g a -> m # foldr :: (a -> b -> b) -> b -> Sum f g a -> b # foldr' :: (a -> b -> b) -> b -> Sum f g a -> b # foldl :: (b -> a -> b) -> b -> Sum f g a -> b # foldl' :: (b -> a -> b) -> b -> Sum f g a -> b # foldr1 :: (a -> a -> a) -> Sum f g a -> a # foldl1 :: (a -> a -> a) -> Sum f g a -> a # elem :: Eq a => a -> Sum f g a -> Bool # maximum :: Ord a => Sum f g a -> a # minimum :: Ord a => Sum f g a -> a # | |
(Foldable f, Foldable g) => Foldable (f :*: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :*: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :*: g) a -> m # foldMap' :: Monoid m => (a -> m) -> (f :*: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldr1 :: (a -> a -> a) -> (f :*: g) a -> a # foldl1 :: (a -> a -> a) -> (f :*: g) a -> a # toList :: (f :*: g) a -> [a] # length :: (f :*: g) a -> Int # elem :: Eq a => a -> (f :*: g) a -> Bool # maximum :: Ord a => (f :*: g) a -> a # minimum :: Ord a => (f :*: g) a -> a # | |
(Foldable f, Foldable g) => Foldable (f :+: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :+: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :+: g) a -> m # foldMap' :: Monoid m => (a -> m) -> (f :+: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldr1 :: (a -> a -> a) -> (f :+: g) a -> a # foldl1 :: (a -> a -> a) -> (f :+: g) a -> a # toList :: (f :+: g) a -> [a] # length :: (f :+: g) a -> Int # elem :: Eq a => a -> (f :+: g) a -> Bool # maximum :: Ord a => (f :+: g) a -> a # minimum :: Ord a => (f :+: g) a -> a # | |
Foldable (K1 i c :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => K1 i c m -> m # foldMap :: Monoid m => (a -> m) -> K1 i c a -> m # foldMap' :: Monoid m => (a -> m) -> K1 i c a -> m # foldr :: (a -> b -> b) -> b -> K1 i c a -> b # foldr' :: (a -> b -> b) -> b -> K1 i c a -> b # foldl :: (b -> a -> b) -> b -> K1 i c a -> b # foldl' :: (b -> a -> b) -> b -> K1 i c a -> b # foldr1 :: (a -> a -> a) -> K1 i c a -> a # foldl1 :: (a -> a -> a) -> K1 i c a -> a # elem :: Eq a => a -> K1 i c a -> Bool # maximum :: Ord a => K1 i c a -> a # minimum :: Ord a => K1 i c a -> a # | |
(Foldable f, Foldable g) => Foldable (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose Methods fold :: Monoid m => Compose f g m -> m # foldMap :: Monoid m => (a -> m) -> Compose f g a -> m # foldMap' :: Monoid m => (a -> m) -> Compose f g a -> m # foldr :: (a -> b -> b) -> b -> Compose f g a -> b # foldr' :: (a -> b -> b) -> b -> Compose f g a -> b # foldl :: (b -> a -> b) -> b -> Compose f g a -> b # foldl' :: (b -> a -> b) -> b -> Compose f g a -> b # foldr1 :: (a -> a -> a) -> Compose f g a -> a # foldl1 :: (a -> a -> a) -> Compose f g a -> a # toList :: Compose f g a -> [a] # null :: Compose f g a -> Bool # length :: Compose f g a -> Int # elem :: Eq a => a -> Compose f g a -> Bool # maximum :: Ord a => Compose f g a -> a # minimum :: Ord a => Compose f g a -> a # | |
(Foldable f, Foldable g) => Foldable (f :.: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :.: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :.: g) a -> m # foldMap' :: Monoid m => (a -> m) -> (f :.: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldr1 :: (a -> a -> a) -> (f :.: g) a -> a # foldl1 :: (a -> a -> a) -> (f :.: g) a -> a # toList :: (f :.: g) a -> [a] # length :: (f :.: g) a -> Int # elem :: Eq a => a -> (f :.: g) a -> Bool # maximum :: Ord a => (f :.: g) a -> a # minimum :: Ord a => (f :.: g) a -> a # | |
Foldable f => Foldable (M1 i c f) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => M1 i c f m -> m # foldMap :: Monoid m => (a -> m) -> M1 i c f a -> m # foldMap' :: Monoid m => (a -> m) -> M1 i c f a -> m # foldr :: (a -> b -> b) -> b -> M1 i c f a -> b # foldr' :: (a -> b -> b) -> b -> M1 i c f a -> b # foldl :: (b -> a -> b) -> b -> M1 i c f a -> b # foldl' :: (b -> a -> b) -> b -> M1 i c f a -> b # foldr1 :: (a -> a -> a) -> M1 i c f a -> a # foldl1 :: (a -> a -> a) -> M1 i c f a -> a # elem :: Eq a => a -> M1 i c f a -> Bool # maximum :: Ord a => M1 i c f a -> a # minimum :: Ord a => M1 i c f a -> a # |
foldMap :: (Foldable t, Monoid m) => (a -> m) -> t a -> m #
Map each element of the structure into a monoid, and combine the
results with (
. This fold is right-associative and lazy in the
accumulator. For strict left-associative folds consider <>
)foldMap'
instead.
Examples
Basic usage:
>>>
foldMap Sum [1, 3, 5]
Sum {getSum = 9}
>>>
foldMap Product [1, 3, 5]
Product {getProduct = 15}
>>>
foldMap (replicate 3) [1, 2, 3]
[1,1,1,2,2,2,3,3,3]
When a Monoid's (
is lazy in its second argument, <>
)foldMap
can
return a result even from an unbounded structure. For example, lazy
accumulation enables Data.ByteString.Builder to efficiently serialise
large data structures and produce the output incrementally:
>>>
import qualified Data.ByteString.Lazy as L
>>>
import qualified Data.ByteString.Builder as B
>>>
let bld :: Int -> B.Builder; bld i = B.intDec i <> B.word8 0x20
>>>
let lbs = B.toLazyByteString $ foldMap bld [0..]
>>>
L.take 64 lbs
"0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24"
foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b #
Right-associative fold of a structure, lazy in the accumulator.
In the case of lists, foldr
, when applied to a binary operator, a
starting value (typically the right-identity of the operator), and a
list, reduces the list using the binary operator, from right to left:
foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...)
Note that since the head of the resulting expression is produced by an
application of the operator to the first element of the list, given an
operator lazy in its right argument, foldr
can produce a terminating
expression from an unbounded list.
For a general Foldable
structure this should be semantically identical
to,
foldr f z =foldr
f z .toList
Examples
Basic usage:
>>>
foldr (||) False [False, True, False]
True
>>>
foldr (||) False []
False
>>>
foldr (\c acc -> acc ++ [c]) "foo" ['a', 'b', 'c', 'd']
"foodcba"
Infinite structures
⚠️ Applying foldr
to infinite structures usually doesn't terminate.
It may still terminate under one of the following conditions:
- the folding function is short-circuiting
- the folding function is lazy on its second argument
Short-circuiting
(
short-circuits on ||
)True
values, so the following terminates
because there is a True
value finitely far from the left side:
>>>
foldr (||) False (True : repeat False)
True
But the following doesn't terminate:
>>>
foldr (||) False (repeat False ++ [True])
* Hangs forever *
Laziness in the second argument
Applying foldr
to infinite structures terminates when the operator is
lazy in its second argument (the initial accumulator is never used in
this case, and so could be left undefined
, but []
is more clear):
>>>
take 5 $ foldr (\i acc -> i : fmap (+3) acc) [] (repeat 1)
[1,4,7,10,13]
null :: Foldable t => t a -> Bool #
Test whether the structure is empty. The default implementation is Left-associative and lazy in both the initial element and the accumulator. Thus optimised for structures where the first element can be accessed in constant time. Structures where this is not the case should have a non-default implementation.
Examples
Basic usage:
>>>
null []
True
>>>
null [1]
False
null
is expected to terminate even for infinite structures.
The default implementation terminates provided the structure
is bounded on the left (there is a leftmost element).
>>>
null [1..]
False
Since: base-4.8.0.0
length :: Foldable t => t a -> Int #
Returns the size/length of a finite structure as an Int
. The
default implementation just counts elements starting with the leftmost.
Instances for structures that can compute the element count faster
than via element-by-element counting, should provide a specialised
implementation.
Examples
Basic usage:
>>>
length []
0
>>>
length ['a', 'b', 'c']
3>>>
length [1..]
* Hangs forever *
Since: base-4.8.0.0
foldl' :: Foldable t => (b -> a -> b) -> b -> t a -> b #
Left-associative fold of a structure but with strict application of the operator.
This ensures that each step of the fold is forced to Weak Head Normal
Form before being applied, avoiding the collection of thunks that would
otherwise occur. This is often what you want to strictly reduce a
finite structure to a single strict result (e.g. sum
).
For a general Foldable
structure this should be semantically identical
to,
foldl' f z =foldl'
f z .toList
Since: base-4.6.0.0
traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f () #
Map each element of a structure to an Applicative
action, evaluate these
actions from left to right, and ignore the results. For a version that
doesn't ignore the results see traverse
.
traverse_
is just like mapM_
, but generalised to Applicative
actions.
Examples
Basic usage:
>>>
traverse_ print ["Hello", "world", "!"]
"Hello" "world" "!"
for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f () #
for_
is traverse_
with its arguments flipped. For a version
that doesn't ignore the results see for
. This
is forM_
generalised to Applicative
actions.
for_
is just like forM_
, but generalised to Applicative
actions.
Examples
Basic usage:
>>>
for_ [1..4] print
1 2 3 4
any :: Foldable t => (a -> Bool) -> t a -> Bool #
Determines whether any element of the structure satisfies the predicate.
Examples
Basic usage:
>>>
any (> 3) []
False
>>>
any (> 3) [1,2]
False
>>>
any (> 3) [1,2,3,4,5]
True
>>>
any (> 3) [1..]
True
>>>
any (> 3) [0, -1..]
* Hangs forever *
all :: Foldable t => (a -> Bool) -> t a -> Bool #
Determines whether all elements of the structure satisfy the predicate.
Examples
Basic usage:
>>>
all (> 3) []
True
>>>
all (> 3) [1,2]
False
>>>
all (> 3) [1,2,3,4,5]
False
>>>
all (> 3) [1..]
False
>>>
all (> 3) [4..]
* Hangs forever *
toList :: Foldable t => t a -> [a] #
List of elements of a structure, from left to right. If the entire list is intended to be reduced via a fold, just fold the structure directly bypassing the list.
Examples
Basic usage:
>>>
toList Nothing
[]
>>>
toList (Just 42)
[42]
>>>
toList (Left "foo")
[]
>>>
toList (Node (Leaf 5) 17 (Node Empty 12 (Leaf 8)))
[5,17,12,8]
For lists, toList
is the identity:
>>>
toList [1, 2, 3]
[1,2,3]
Since: base-4.8.0.0
Data.Traversable
class (Functor t, Foldable t) => Traversable (t :: Type -> Type) #
Functors representing data structures that can be transformed to
structures of the same shape by performing an Applicative
(or,
therefore, Monad
) action on each element from left to right.
A more detailed description of what same shape means, the various methods, how traversals are constructed, and example advanced use-cases can be found in the Overview section of Data.Traversable.
For the class laws see the Laws section of Data.Traversable.
Instances
traverse :: (Traversable t, Applicative f) => (a -> f b) -> t a -> f (t b) #
Map each element of a structure to an action, evaluate these actions
from left to right, and collect the results. For a version that ignores
the results see traverse_
.
Examples
Basic usage:
In the first two examples we show each evaluated action mapping to the output structure.
>>>
traverse Just [1,2,3,4]
Just [1,2,3,4]
>>>
traverse id [Right 1, Right 2, Right 3, Right 4]
Right [1,2,3,4]
In the next examples, we show that Nothing
and Left
values short
circuit the created structure.
>>>
traverse (const Nothing) [1,2,3,4]
Nothing
>>>
traverse (\x -> if odd x then Just x else Nothing) [1,2,3,4]
Nothing
>>>
traverse id [Right 1, Right 2, Right 3, Right 4, Left 0]
Left 0
sequenceA :: (Traversable t, Applicative f) => t (f a) -> f (t a) #
Evaluate each action in the structure from left to right, and
collect the results. For a version that ignores the results
see sequenceA_
.
Examples
Basic usage:
For the first two examples we show sequenceA fully evaluating a a structure and collecting the results.
>>>
sequenceA [Just 1, Just 2, Just 3]
Just [1,2,3]
>>>
sequenceA [Right 1, Right 2, Right 3]
Right [1,2,3]
The next two example show Nothing
and Just
will short circuit
the resulting structure if present in the input. For more context,
check the Traversable
instances for Either
and Maybe
.
>>>
sequenceA [Just 1, Just 2, Just 3, Nothing]
Nothing
>>>
sequenceA [Right 1, Right 2, Right 3, Left 4]
Left 4
for :: (Traversable t, Applicative f) => t a -> (a -> f b) -> f (t b) #
Data.Function
Data.Ord
comparing :: Ord a => (b -> a) -> b -> b -> Ordering #
comparing p x y = compare (p x) (p y)
Useful combinator for use in conjunction with the xxxBy
family
of functions from Data.List, for example:
... sortBy (comparing fst) ...
Control.Arrow
first :: Arrow a => a b c -> a (b, d) (c, d) #
Send the first component of the input through the argument arrow, and copy the rest unchanged to the output.
Control.Monad
liftM2 :: Monad m => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r #
Promote a function to a monad, scanning the monadic arguments from left to right. For example,
liftM2 (+) [0,1] [0,2] = [0,2,1,3] liftM2 (+) (Just 1) Nothing = Nothing
unless :: Applicative f => Bool -> f () -> f () #
The reverse of when
.
when :: Applicative f => Bool -> f () -> f () #
Conditional execution of Applicative
expressions. For example,
when debug (putStrLn "Debugging")
will output the string Debugging
if the Boolean value debug
is True
, and otherwise do nothing.
void :: Functor f => f a -> f () #
discards or ignores the result of evaluation, such
as the return value of an void
valueIO
action.
Examples
Replace the contents of a
with unit:Maybe
Int
>>>
void Nothing
Nothing>>>
void (Just 3)
Just ()
Replace the contents of an
with unit, resulting in an Either
Int
Int
:Either
Int
()
>>>
void (Left 8675309)
Left 8675309>>>
void (Right 8675309)
Right ()
Replace every element of a list with unit:
>>>
void [1,2,3]
[(),(),()]
Replace the second element of a pair with unit:
>>>
void (1,2)
(1,())
Discard the result of an IO
action:
>>>
mapM print [1,2]
1 2 [(),()]>>>
void $ mapM print [1,2]
1 2
foldM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b #
The foldM
function is analogous to foldl
, except that its result is
encapsulated in a monad. Note that foldM
works from left-to-right over
the list arguments. This could be an issue where (
and the `folded
function' are not commutative.>>
)
foldM f a1 [x1, x2, ..., xm] == do a2 <- f a1 x1 a3 <- f a2 x2 ... f am xm
If right-to-left evaluation is required, the input list should be reversed.
filterM :: Applicative m => (a -> m Bool) -> [a] -> m [a] #
This generalizes the list-based filter
function.
join :: Monad m => m (m a) -> m a #
The join
function is the conventional monad join operator. It
is used to remove one level of monadic structure, projecting its
bound argument into the outer level.
'
' can be understood as the join
bssdo
expression
do bs <- bss bs
Examples
A common use of join
is to run an IO
computation returned from
an STM
transaction, since STM
transactions
can't perform IO
directly. Recall that
atomically
:: STM a -> IO a
is used to run STM
transactions atomically. So, by
specializing the types of atomically
and join
to
atomically
:: STM (IO b) -> IO (IO b)join
:: IO (IO b) -> IO b
we can compose them as
join
.atomically
:: STM (IO b) -> IO b
guard :: Alternative f => Bool -> f () #
Conditional failure of Alternative
computations. Defined by
guard True =pure
() guard False =empty
Examples
Common uses of guard
include conditionally signaling an error in
an error monad and conditionally rejecting the current choice in an
Alternative
-based parser.
As an example of signaling an error in the error monad Maybe
,
consider a safe division function safeDiv x y
that returns
Nothing
when the denominator y
is zero and
otherwise. For example:Just
(x `div`
y)
>>>
safeDiv 4 0
Nothing
>>>
safeDiv 4 2
Just 2
A definition of safeDiv
using guards, but not guard
:
safeDiv :: Int -> Int -> Maybe Int safeDiv x y | y /= 0 = Just (x `div` y) | otherwise = Nothing
A definition of safeDiv
using guard
and Monad
do
-notation:
safeDiv :: Int -> Int -> Maybe Int safeDiv x y = do guard (y /= 0) return (x `div` y)
Control.Exception
Arguments
:: Exception e | |
=> IO a | The computation to run |
-> (e -> IO a) | Handler to invoke if an exception is raised |
-> IO a |
This is the simplest of the exception-catching functions. It takes a single argument, runs it, and if an exception is raised the "handler" is executed, with the value of the exception passed as an argument. Otherwise, the result is returned as normal. For example:
catch (readFile f) (\e -> do let err = show (e :: IOException) hPutStr stderr ("Warning: Couldn't open " ++ f ++ ": " ++ err) return "")
Note that we have to give a type signature to e
, or the program
will not typecheck as the type is ambiguous. While it is possible
to catch exceptions of any type, see the section "Catching all
exceptions" (in Control.Exception) for an explanation of the problems with doing so.
For catching exceptions in pure (non-IO
) expressions, see the
function evaluate
.
Note that due to Haskell's unspecified evaluation order, an
expression may throw one of several possible exceptions: consider
the expression (error "urk") + (1 `div` 0)
. Does
the expression throw
ErrorCall "urk"
, or DivideByZero
?
The answer is "it might throw either"; the choice is
non-deterministic. If you are catching any type of exception then you
might catch either. If you are calling catch
with type
IO Int -> (ArithException -> IO Int) -> IO Int
then the handler may
get run with DivideByZero
as an argument, or an ErrorCall "urk"
exception may be propagated further up. If you call it again, you
might get the opposite behaviour. This is ok, because catch
is an
IO
computation.
throwIO :: Exception e => e -> IO a #
A variant of throw
that can only be used within the IO
monad.
Although throwIO
has a type that is an instance of the type of throw
, the
two functions are subtly different:
throw e `seq` () ===> throw e throwIO e `seq` () ===> ()
The first example will cause the exception e
to be raised,
whereas the second one won't. In fact, throwIO
will only cause
an exception to be raised when it is used within the IO
monad.
The throwIO
variant should be used in preference to throw
to
raise an exception within the IO
monad because it guarantees
ordering with respect to other operations, whereas throw
does not. We say that throwIO
throws *precise* exceptions and
throw
, error
, etc. all throw *imprecise* exceptions.
For example
throw e + error "boom" ===> error "boom" throw e + error "boom" ===> throw e
are both valid reductions and the compiler may pick any (loop, even), whereas
throwIO e >> error "boom" ===> throwIO e
will always throw e
when executed.
See also the GHC wiki page on precise exceptions for a more technical introduction to how GHC optimises around precise vs. imprecise exceptions.
Evaluate the argument to weak head normal form.
evaluate
is typically used to uncover any exceptions that a lazy value
may contain, and possibly handle them.
evaluate
only evaluates to weak head normal form. If deeper
evaluation is needed, the force
function from Control.DeepSeq
may be handy:
evaluate $ force x
There is a subtle difference between
and evaluate
x
,
analogous to the difference between return
$!
xthrowIO
and throw
. If the lazy
value x
throws an exception,
will fail to return an
return
$!
xIO
action and will throw an exception instead.
, on the
other hand, always produces an evaluate
xIO
action; that action will throw an
exception upon execution iff x
throws an exception upon evaluation.
The practical implication of this difference is that due to the imprecise exceptions semantics,
(return $! error "foo") >> error "bar"
may throw either "foo"
or "bar"
, depending on the optimizations
performed by the compiler. On the other hand,
evaluate (error "foo") >> error "bar"
is guaranteed to throw "foo"
.
The rule of thumb is to use evaluate
to force or handle exceptions in
lazy values. If, on the other hand, you are forcing a lazy value for
efficiency reasons only and do not care about exceptions, you may
use
.return
$!
x
class (Typeable e, Show e) => Exception e where #
Any type that you wish to throw or catch as an exception must be an
instance of the Exception
class. The simplest case is a new exception
type directly below the root:
data MyException = ThisException | ThatException deriving Show instance Exception MyException
The default method definitions in the Exception
class do what we need
in this case. You can now throw and catch ThisException
and
ThatException
as exceptions:
*Main> throw ThisException `catch` \e -> putStrLn ("Caught " ++ show (e :: MyException)) Caught ThisException
In more complicated examples, you may wish to define a whole hierarchy of exceptions:
--------------------------------------------------------------------- -- Make the root exception type for all the exceptions in a compiler data SomeCompilerException = forall e . Exception e => SomeCompilerException e instance Show SomeCompilerException where show (SomeCompilerException e) = show e instance Exception SomeCompilerException compilerExceptionToException :: Exception e => e -> SomeException compilerExceptionToException = toException . SomeCompilerException compilerExceptionFromException :: Exception e => SomeException -> Maybe e compilerExceptionFromException x = do SomeCompilerException a <- fromException x cast a --------------------------------------------------------------------- -- Make a subhierarchy for exceptions in the frontend of the compiler data SomeFrontendException = forall e . Exception e => SomeFrontendException e instance Show SomeFrontendException where show (SomeFrontendException e) = show e instance Exception SomeFrontendException where toException = compilerExceptionToException fromException = compilerExceptionFromException frontendExceptionToException :: Exception e => e -> SomeException frontendExceptionToException = toException . SomeFrontendException frontendExceptionFromException :: Exception e => SomeException -> Maybe e frontendExceptionFromException x = do SomeFrontendException a <- fromException x cast a --------------------------------------------------------------------- -- Make an exception type for a particular frontend compiler exception data MismatchedParentheses = MismatchedParentheses deriving Show instance Exception MismatchedParentheses where toException = frontendExceptionToException fromException = frontendExceptionFromException
We can now catch a MismatchedParentheses
exception as
MismatchedParentheses
, SomeFrontendException
or
SomeCompilerException
, but not other types, e.g. IOException
:
*Main> throw MismatchedParentheses `catch` \e -> putStrLn ("Caught " ++ show (e :: MismatchedParentheses)) Caught MismatchedParentheses *Main> throw MismatchedParentheses `catch` \e -> putStrLn ("Caught " ++ show (e :: SomeFrontendException)) Caught MismatchedParentheses *Main> throw MismatchedParentheses `catch` \e -> putStrLn ("Caught " ++ show (e :: SomeCompilerException)) Caught MismatchedParentheses *Main> throw MismatchedParentheses `catch` \e -> putStrLn ("Caught " ++ show (e :: IOException)) *** Exception: MismatchedParentheses
Minimal complete definition
Nothing
Methods
toException :: e -> SomeException #
fromException :: SomeException -> Maybe e #
displayException :: e -> String #
Render this exception value in a human-friendly manner.
Default implementation:
.show
Since: base-4.8.0.0
Instances
data IOException #
Exceptions that occur in the IO
monad.
An IOException
records a more specific error type, a descriptive
string and maybe the handle that was used when the error was
flagged.
Instances
Exception IOException | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods toException :: IOException -> SomeException # fromException :: SomeException -> Maybe IOException # displayException :: IOException -> String # | |
Show IOException | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods showsPrec :: Int -> IOException -> ShowS # show :: IOException -> String # showList :: [IOException] -> ShowS # | |
Eq IOException | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception |
data SomeException #
The SomeException
type is the root of the exception type hierarchy.
When an exception of type e
is thrown, behind the scenes it is
encapsulated in a SomeException
.
Constructors
Exception e => SomeException e |
Instances
Exception SomeException | Since: base-3.0 |
Defined in GHC.Exception.Type Methods toException :: SomeException -> SomeException # fromException :: SomeException -> Maybe SomeException # displayException :: SomeException -> String # | |
Show SomeException | Since: base-3.0 |
Defined in GHC.Exception.Type Methods showsPrec :: Int -> SomeException -> ShowS # show :: SomeException -> String # showList :: [SomeException] -> ShowS # |
Control.DeepSeq
deepseq :: NFData a => a -> b -> b infixr 0 #
deepseq
: fully evaluates the first argument, before returning the
second.
The name deepseq
is used to illustrate the relationship to seq
:
where seq
is shallow in the sense that it only evaluates the top
level of its argument, deepseq
traverses the entire data structure
evaluating it completely.
deepseq
can be useful for forcing pending exceptions,
eradicating space leaks, or forcing lazy I/O to happen. It is
also useful in conjunction with parallel Strategies (see the
parallel
package).
There is no guarantee about the ordering of evaluation. The
implementation may evaluate the components of the structure in
any order or in parallel. To impose an actual order on
evaluation, use pseq
from Control.Parallel in the
parallel
package.
Since: deepseq-1.1.0.0
a variant of deepseq
that is useful in some circumstances:
force x = x `deepseq` x
force x
fully evaluates x
, and then returns it. Note that
force x
only performs evaluation when the value of force x
itself is demanded, so essentially it turns shallow evaluation into
deep evaluation.
force
can be conveniently used in combination with ViewPatterns
:
{-# LANGUAGE BangPatterns, ViewPatterns #-} import Control.DeepSeq someFun :: ComplexData -> SomeResult someFun (force -> !arg) = {- 'arg' will be fully evaluated -}
Another useful application is to combine force
with
evaluate
in order to force deep evaluation
relative to other IO
operations:
import Control.Exception (evaluate) import Control.DeepSeq main = do result <- evaluate $ force $ pureComputation {- 'result' will be fully evaluated at this point -} return ()
Finally, here's an exception safe variant of the readFile'
example:
readFile' :: FilePath -> IO String readFile' fn = bracket (openFile fn ReadMode) hClose $ \h -> evaluate . force =<< hGetContents h
Since: deepseq-1.2.0.0
Data.Char
Returns True
for any Unicode space character, and the control
characters \t
, \n
, \r
, \f
, \v
.
Selects upper-case or title-case alphabetic Unicode characters (letters). Title case is used by a small number of letter ligatures like the single-character form of Lj.
Note: this predicate does not work for letter-like characters such as:
'Ⓐ'
(U+24B6
circled Latin capital letter A) and
'Ⅳ'
(U+2163
Roman numeral four). This is due to selecting only
characters with the GeneralCategory
UppercaseLetter
or TitlecaseLetter
.
See isUpperCase
for a more intuitive predicate. Note that
unlike isUpperCase
, isUpper
does select title-case characters such as
'Dž'
(U+01C5
Latin capital letter d with small letter z with caron) or
'ᾯ'
(U+1FAF
Greek capital letter omega with dasia and perispomeni and
prosgegrammeni).
Selects alphabetic Unicode characters (lower-case, upper-case and
title-case letters, plus letters of caseless scripts and modifiers letters).
This function is equivalent to isLetter
.
isAlphaNum :: Char -> Bool #
Selects alphabetic or numeric Unicode characters.
Note that numeric digits outside the ASCII range, as well as numeric
characters which aren't digits, are selected by this function but not by
isDigit
. Such characters may be part of identifiers but are not used by
the printer and reader to represent numbers.
Convert a letter to the corresponding lower-case letter, if any. Any other character is returned unchanged.
Convert a letter to the corresponding upper-case letter, if any. Any other character is returned unchanged.
Data.Void
Since Void
values logically don't exist, this witnesses the
logical reasoning tool of "ex falso quodlibet".
>>>
let x :: Either Void Int; x = Right 5
>>>
:{
case x of Right r -> r Left l -> absurd l :} 5
Since: base-4.8.0.0
Data.Word & Data.Int
Instances
Structured Word Source # | |
Defined in Distribution.Utils.Structured | |
Data Word | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word -> c Word # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word # dataTypeOf :: Word -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word) # gmapT :: (forall b. Data b => b -> b) -> Word -> Word # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r # gmapQ :: (forall d. Data d => d -> u) -> Word -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word -> m Word # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word # | |
Bits Word | Since: base-2.1 |
Defined in GHC.Bits Methods (.&.) :: Word -> Word -> Word # (.|.) :: Word -> Word -> Word # complement :: Word -> Word # shift :: Word -> Int -> Word # rotate :: Word -> Int -> Word # setBit :: Word -> Int -> Word # clearBit :: Word -> Int -> Word # complementBit :: Word -> Int -> Word # testBit :: Word -> Int -> Bool # bitSizeMaybe :: Word -> Maybe Int # shiftL :: Word -> Int -> Word # unsafeShiftL :: Word -> Int -> Word # shiftR :: Word -> Int -> Word # unsafeShiftR :: Word -> Int -> Word # rotateL :: Word -> Int -> Word # | |
FiniteBits Word | Since: base-4.6.0.0 |
Defined in GHC.Bits Methods finiteBitSize :: Word -> Int # countLeadingZeros :: Word -> Int # countTrailingZeros :: Word -> Int # | |
Bounded Word | Since: base-2.1 |
Enum Word | Since: base-2.1 |
Ix Word | Since: base-4.6.0.0 |
Num Word | Since: base-2.1 |
Read Word | Since: base-4.5.0.0 |
Integral Word | Since: base-2.1 |
Real Word | Since: base-2.1 |
Defined in GHC.Real Methods toRational :: Word -> Rational # | |
Show Word | Since: base-2.1 |
Binary Word | |
NFData Word | |
Defined in Control.DeepSeq | |
Eq Word | |
Ord Word | |
IArray UArray Word | |
Defined in Data.Array.Base Methods bounds :: Ix i => UArray i Word -> (i, i) # numElements :: Ix i => UArray i Word -> Int unsafeArray :: Ix i => (i, i) -> [(Int, Word)] -> UArray i Word unsafeAt :: Ix i => UArray i Word -> Int -> Word unsafeReplace :: Ix i => UArray i Word -> [(Int, Word)] -> UArray i Word unsafeAccum :: Ix i => (Word -> e' -> Word) -> UArray i Word -> [(Int, e')] -> UArray i Word unsafeAccumArray :: Ix i => (Word -> e' -> Word) -> Word -> (i, i) -> [(Int, e')] -> UArray i Word | |
Lift Word | |
Generic1 (URec Word :: k -> Type) | |
Foldable (UWord :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UWord m -> m # foldMap :: Monoid m => (a -> m) -> UWord a -> m # foldMap' :: Monoid m => (a -> m) -> UWord a -> m # foldr :: (a -> b -> b) -> b -> UWord a -> b # foldr' :: (a -> b -> b) -> b -> UWord a -> b # foldl :: (b -> a -> b) -> b -> UWord a -> b # foldl' :: (b -> a -> b) -> b -> UWord a -> b # foldr1 :: (a -> a -> a) -> UWord a -> a # foldl1 :: (a -> a -> a) -> UWord a -> a # elem :: Eq a => a -> UWord a -> Bool # maximum :: Ord a => UWord a -> a # minimum :: Ord a => UWord a -> a # | |
Traversable (UWord :: Type -> Type) | Since: base-4.9.0.0 |
MArray (STUArray s) Word (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Word -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Word -> ST s Int newArray :: Ix i => (i, i) -> Word -> ST s (STUArray s i Word) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word) unsafeRead :: Ix i => STUArray s i Word -> Int -> ST s Word unsafeWrite :: Ix i => STUArray s i Word -> Int -> Word -> ST s () | |
Functor (URec Word :: Type -> Type) | Since: base-4.9.0.0 |
Generic (URec Word p) | |
Show (URec Word p) | Since: base-4.9.0.0 |
Eq (URec Word p) | Since: base-4.9.0.0 |
Ord (URec Word p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
data URec Word (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
type Rep1 (URec Word :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (URec Word p) | Since: base-4.9.0.0 |
Defined in GHC.Generics |
8-bit unsigned integer type
Instances
Structured Word8 Source # | |
Defined in Distribution.Utils.Structured | |
Data Word8 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word8 -> c Word8 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word8 # dataTypeOf :: Word8 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word8) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word8) # gmapT :: (forall b. Data b => b -> b) -> Word8 -> Word8 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word8 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word8 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word8 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word8 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 # | |
Bits Word8 | Since: base-2.1 |
Defined in GHC.Word Methods (.&.) :: Word8 -> Word8 -> Word8 # (.|.) :: Word8 -> Word8 -> Word8 # xor :: Word8 -> Word8 -> Word8 # complement :: Word8 -> Word8 # shift :: Word8 -> Int -> Word8 # rotate :: Word8 -> Int -> Word8 # setBit :: Word8 -> Int -> Word8 # clearBit :: Word8 -> Int -> Word8 # complementBit :: Word8 -> Int -> Word8 # testBit :: Word8 -> Int -> Bool # bitSizeMaybe :: Word8 -> Maybe Int # shiftL :: Word8 -> Int -> Word8 # unsafeShiftL :: Word8 -> Int -> Word8 # shiftR :: Word8 -> Int -> Word8 # unsafeShiftR :: Word8 -> Int -> Word8 # rotateL :: Word8 -> Int -> Word8 # | |
FiniteBits Word8 | Since: base-4.6.0.0 |
Defined in GHC.Word Methods finiteBitSize :: Word8 -> Int # countLeadingZeros :: Word8 -> Int # countTrailingZeros :: Word8 -> Int # | |
Bounded Word8 | Since: base-2.1 |
Enum Word8 | Since: base-2.1 |
Ix Word8 | Since: base-2.1 |
Num Word8 | Since: base-2.1 |
Read Word8 | Since: base-2.1 |
Integral Word8 | Since: base-2.1 |
Real Word8 | Since: base-2.1 |
Defined in GHC.Word Methods toRational :: Word8 -> Rational # | |
Show Word8 | Since: base-2.1 |
Binary Word8 | |
NFData Word8 | |
Defined in Control.DeepSeq | |
Eq Word8 | Since: base-2.1 |
Ord Word8 | Since: base-2.1 |
IArray UArray Word8 | |
Defined in Data.Array.Base Methods bounds :: Ix i => UArray i Word8 -> (i, i) # numElements :: Ix i => UArray i Word8 -> Int unsafeArray :: Ix i => (i, i) -> [(Int, Word8)] -> UArray i Word8 unsafeAt :: Ix i => UArray i Word8 -> Int -> Word8 unsafeReplace :: Ix i => UArray i Word8 -> [(Int, Word8)] -> UArray i Word8 unsafeAccum :: Ix i => (Word8 -> e' -> Word8) -> UArray i Word8 -> [(Int, e')] -> UArray i Word8 unsafeAccumArray :: Ix i => (Word8 -> e' -> Word8) -> Word8 -> (i, i) -> [(Int, e')] -> UArray i Word8 | |
Lift Word8 | |
MArray (STUArray s) Word8 (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Word8 -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Word8 -> ST s Int newArray :: Ix i => (i, i) -> Word8 -> ST s (STUArray s i Word8) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word8) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word8) unsafeRead :: Ix i => STUArray s i Word8 -> Int -> ST s Word8 unsafeWrite :: Ix i => STUArray s i Word8 -> Int -> Word8 -> ST s () |
16-bit unsigned integer type
Instances
Structured Word16 Source # | |
Defined in Distribution.Utils.Structured | |
Data Word16 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word16 -> c Word16 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word16 # toConstr :: Word16 -> Constr # dataTypeOf :: Word16 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word16) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word16) # gmapT :: (forall b. Data b => b -> b) -> Word16 -> Word16 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word16 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word16 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word16 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word16 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 # | |
Bits Word16 | Since: base-2.1 |
Defined in GHC.Word Methods (.&.) :: Word16 -> Word16 -> Word16 # (.|.) :: Word16 -> Word16 -> Word16 # xor :: Word16 -> Word16 -> Word16 # complement :: Word16 -> Word16 # shift :: Word16 -> Int -> Word16 # rotate :: Word16 -> Int -> Word16 # setBit :: Word16 -> Int -> Word16 # clearBit :: Word16 -> Int -> Word16 # complementBit :: Word16 -> Int -> Word16 # testBit :: Word16 -> Int -> Bool # bitSizeMaybe :: Word16 -> Maybe Int # shiftL :: Word16 -> Int -> Word16 # unsafeShiftL :: Word16 -> Int -> Word16 # shiftR :: Word16 -> Int -> Word16 # unsafeShiftR :: Word16 -> Int -> Word16 # rotateL :: Word16 -> Int -> Word16 # | |
FiniteBits Word16 | Since: base-4.6.0.0 |
Defined in GHC.Word Methods finiteBitSize :: Word16 -> Int # countLeadingZeros :: Word16 -> Int # countTrailingZeros :: Word16 -> Int # | |
Bounded Word16 | Since: base-2.1 |
Enum Word16 | Since: base-2.1 |
Defined in GHC.Word | |
Ix Word16 | Since: base-2.1 |
Num Word16 | Since: base-2.1 |
Read Word16 | Since: base-2.1 |
Integral Word16 | Since: base-2.1 |
Real Word16 | Since: base-2.1 |
Defined in GHC.Word Methods toRational :: Word16 -> Rational # | |
Show Word16 | Since: base-2.1 |
Binary Word16 | |
NFData Word16 | |
Defined in Control.DeepSeq | |
Eq Word16 | Since: base-2.1 |
Ord Word16 | Since: base-2.1 |
IArray UArray Word16 | |
Defined in Data.Array.Base Methods bounds :: Ix i => UArray i Word16 -> (i, i) # numElements :: Ix i => UArray i Word16 -> Int unsafeArray :: Ix i => (i, i) -> [(Int, Word16)] -> UArray i Word16 unsafeAt :: Ix i => UArray i Word16 -> Int -> Word16 unsafeReplace :: Ix i => UArray i Word16 -> [(Int, Word16)] -> UArray i Word16 unsafeAccum :: Ix i => (Word16 -> e' -> Word16) -> UArray i Word16 -> [(Int, e')] -> UArray i Word16 unsafeAccumArray :: Ix i => (Word16 -> e' -> Word16) -> Word16 -> (i, i) -> [(Int, e')] -> UArray i Word16 | |
Lift Word16 | |
MArray (STUArray s) Word16 (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Word16 -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Word16 -> ST s Int newArray :: Ix i => (i, i) -> Word16 -> ST s (STUArray s i Word16) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word16) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word16) unsafeRead :: Ix i => STUArray s i Word16 -> Int -> ST s Word16 unsafeWrite :: Ix i => STUArray s i Word16 -> Int -> Word16 -> ST s () |
32-bit unsigned integer type
Instances
Structured Word32 Source # | |
Defined in Distribution.Utils.Structured | |
Data Word32 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word32 -> c Word32 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word32 # toConstr :: Word32 -> Constr # dataTypeOf :: Word32 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word32) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word32) # gmapT :: (forall b. Data b => b -> b) -> Word32 -> Word32 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word32 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word32 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word32 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word32 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 # | |
Bits Word32 | Since: base-2.1 |
Defined in GHC.Word Methods (.&.) :: Word32 -> Word32 -> Word32 # (.|.) :: Word32 -> Word32 -> Word32 # xor :: Word32 -> Word32 -> Word32 # complement :: Word32 -> Word32 # shift :: Word32 -> Int -> Word32 # rotate :: Word32 -> Int -> Word32 # setBit :: Word32 -> Int -> Word32 # clearBit :: Word32 -> Int -> Word32 # complementBit :: Word32 -> Int -> Word32 # testBit :: Word32 -> Int -> Bool # bitSizeMaybe :: Word32 -> Maybe Int # shiftL :: Word32 -> Int -> Word32 # unsafeShiftL :: Word32 -> Int -> Word32 # shiftR :: Word32 -> Int -> Word32 # unsafeShiftR :: Word32 -> Int -> Word32 # rotateL :: Word32 -> Int -> Word32 # | |
FiniteBits Word32 | Since: base-4.6.0.0 |
Defined in GHC.Word Methods finiteBitSize :: Word32 -> Int # countLeadingZeros :: Word32 -> Int # countTrailingZeros :: Word32 -> Int # | |
Bounded Word32 | Since: base-2.1 |
Enum Word32 | Since: base-2.1 |
Defined in GHC.Word | |
Ix Word32 | Since: base-2.1 |
Num Word32 | Since: base-2.1 |
Read Word32 | Since: base-2.1 |
Integral Word32 | Since: base-2.1 |
Real Word32 | Since: base-2.1 |
Defined in GHC.Word Methods toRational :: Word32 -> Rational # | |
Show Word32 | Since: base-2.1 |
Binary Word32 | |
NFData Word32 | |
Defined in Control.DeepSeq | |
Eq Word32 | Since: base-2.1 |
Ord Word32 | Since: base-2.1 |
IArray UArray Word32 | |
Defined in Data.Array.Base Methods bounds :: Ix i => UArray i Word32 -> (i, i) # numElements :: Ix i => UArray i Word32 -> Int unsafeArray :: Ix i => (i, i) -> [(Int, Word32)] -> UArray i Word32 unsafeAt :: Ix i => UArray i Word32 -> Int -> Word32 unsafeReplace :: Ix i => UArray i Word32 -> [(Int, Word32)] -> UArray i Word32 unsafeAccum :: Ix i => (Word32 -> e' -> Word32) -> UArray i Word32 -> [(Int, e')] -> UArray i Word32 unsafeAccumArray :: Ix i => (Word32 -> e' -> Word32) -> Word32 -> (i, i) -> [(Int, e')] -> UArray i Word32 | |
Lift Word32 | |
MArray (STUArray s) Word32 (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Word32 -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Word32 -> ST s Int newArray :: Ix i => (i, i) -> Word32 -> ST s (STUArray s i Word32) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word32) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word32) unsafeRead :: Ix i => STUArray s i Word32 -> Int -> ST s Word32 unsafeWrite :: Ix i => STUArray s i Word32 -> Int -> Word32 -> ST s () |
64-bit unsigned integer type
Instances
Structured Word64 Source # | |
Defined in Distribution.Utils.Structured | |
Data Word64 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word64 -> c Word64 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word64 # toConstr :: Word64 -> Constr # dataTypeOf :: Word64 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word64) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word64) # gmapT :: (forall b. Data b => b -> b) -> Word64 -> Word64 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word64 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word64 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word64 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word64 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 # | |
Bits Word64 | Since: base-2.1 |
Defined in GHC.Word Methods (.&.) :: Word64 -> Word64 -> Word64 # (.|.) :: Word64 -> Word64 -> Word64 # xor :: Word64 -> Word64 -> Word64 # complement :: Word64 -> Word64 # shift :: Word64 -> Int -> Word64 # rotate :: Word64 -> Int -> Word64 # setBit :: Word64 -> Int -> Word64 # clearBit :: Word64 -> Int -> Word64 # complementBit :: Word64 -> Int -> Word64 # testBit :: Word64 -> Int -> Bool # bitSizeMaybe :: Word64 -> Maybe Int # shiftL :: Word64 -> Int -> Word64 # unsafeShiftL :: Word64 -> Int -> Word64 # shiftR :: Word64 -> Int -> Word64 # unsafeShiftR :: Word64 -> Int -> Word64 # rotateL :: Word64 -> Int -> Word64 # | |
FiniteBits Word64 | Since: base-4.6.0.0 |
Defined in GHC.Word Methods finiteBitSize :: Word64 -> Int # countLeadingZeros :: Word64 -> Int # countTrailingZeros :: Word64 -> Int # | |
Bounded Word64 | Since: base-2.1 |
Enum Word64 | Since: base-2.1 |
Defined in GHC.Word | |
Ix Word64 | Since: base-2.1 |
Num Word64 | Since: base-2.1 |
Read Word64 | Since: base-2.1 |
Integral Word64 | Since: base-2.1 |
Real Word64 | Since: base-2.1 |
Defined in GHC.Word Methods toRational :: Word64 -> Rational # | |
Show Word64 | Since: base-2.1 |
Binary Word64 | |
NFData Word64 | |
Defined in Control.DeepSeq | |
Eq Word64 | Since: base-2.1 |
Ord Word64 | Since: base-2.1 |
IArray UArray Word64 | |
Defined in Data.Array.Base Methods bounds :: Ix i => UArray i Word64 -> (i, i) # numElements :: Ix i => UArray i Word64 -> Int unsafeArray :: Ix i => (i, i) -> [(Int, Word64)] -> UArray i Word64 unsafeAt :: Ix i => UArray i Word64 -> Int -> Word64 unsafeReplace :: Ix i => UArray i Word64 -> [(Int, Word64)] -> UArray i Word64 unsafeAccum :: Ix i => (Word64 -> e' -> Word64) -> UArray i Word64 -> [(Int, e')] -> UArray i Word64 unsafeAccumArray :: Ix i => (Word64 -> e' -> Word64) -> Word64 -> (i, i) -> [(Int, e')] -> UArray i Word64 | |
Lift Word64 | |
MArray (STUArray s) Word64 (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Word64 -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Word64 -> ST s Int newArray :: Ix i => (i, i) -> Word64 -> ST s (STUArray s i Word64) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word64) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word64) unsafeRead :: Ix i => STUArray s i Word64 -> Int -> ST s Word64 unsafeWrite :: Ix i => STUArray s i Word64 -> Int -> Word64 -> ST s () |
8-bit signed integer type
Instances
Structured Int8 Source # | |
Defined in Distribution.Utils.Structured | |
Data Int8 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int8 -> c Int8 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int8 # dataTypeOf :: Int8 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int8) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int8) # gmapT :: (forall b. Data b => b -> b) -> Int8 -> Int8 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int8 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int8 -> r # gmapQ :: (forall d. Data d => d -> u) -> Int8 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int8 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 # | |
Bits Int8 | Since: base-2.1 |
Defined in GHC.Int Methods (.&.) :: Int8 -> Int8 -> Int8 # (.|.) :: Int8 -> Int8 -> Int8 # complement :: Int8 -> Int8 # shift :: Int8 -> Int -> Int8 # rotate :: Int8 -> Int -> Int8 # setBit :: Int8 -> Int -> Int8 # clearBit :: Int8 -> Int -> Int8 # complementBit :: Int8 -> Int -> Int8 # testBit :: Int8 -> Int -> Bool # bitSizeMaybe :: Int8 -> Maybe Int # shiftL :: Int8 -> Int -> Int8 # unsafeShiftL :: Int8 -> Int -> Int8 # shiftR :: Int8 -> Int -> Int8 # unsafeShiftR :: Int8 -> Int -> Int8 # rotateL :: Int8 -> Int -> Int8 # | |
FiniteBits Int8 | Since: base-4.6.0.0 |
Defined in GHC.Int Methods finiteBitSize :: Int8 -> Int # countLeadingZeros :: Int8 -> Int # countTrailingZeros :: Int8 -> Int # | |
Bounded Int8 | Since: base-2.1 |
Enum Int8 | Since: base-2.1 |
Ix Int8 | Since: base-2.1 |
Num Int8 | Since: base-2.1 |
Read Int8 | Since: base-2.1 |
Integral Int8 | Since: base-2.1 |
Real Int8 | Since: base-2.1 |
Defined in GHC.Int Methods toRational :: Int8 -> Rational # | |
Show Int8 | Since: base-2.1 |
Binary Int8 | |
NFData Int8 | |
Defined in Control.DeepSeq | |
Eq Int8 | Since: base-2.1 |
Ord Int8 | Since: base-2.1 |
IArray UArray Int8 | |
Defined in Data.Array.Base Methods bounds :: Ix i => UArray i Int8 -> (i, i) # numElements :: Ix i => UArray i Int8 -> Int unsafeArray :: Ix i => (i, i) -> [(Int, Int8)] -> UArray i Int8 unsafeAt :: Ix i => UArray i Int8 -> Int -> Int8 unsafeReplace :: Ix i => UArray i Int8 -> [(Int, Int8)] -> UArray i Int8 unsafeAccum :: Ix i => (Int8 -> e' -> Int8) -> UArray i Int8 -> [(Int, e')] -> UArray i Int8 unsafeAccumArray :: Ix i => (Int8 -> e' -> Int8) -> Int8 -> (i, i) -> [(Int, e')] -> UArray i Int8 | |
Lift Int8 | |
MArray (STUArray s) Int8 (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Int8 -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Int8 -> ST s Int newArray :: Ix i => (i, i) -> Int8 -> ST s (STUArray s i Int8) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Int8) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Int8) unsafeRead :: Ix i => STUArray s i Int8 -> Int -> ST s Int8 unsafeWrite :: Ix i => STUArray s i Int8 -> Int -> Int8 -> ST s () |
16-bit signed integer type
Instances
Structured Int16 Source # | |
Defined in Distribution.Utils.Structured | |
Data Int16 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int16 -> c Int16 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int16 # dataTypeOf :: Int16 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int16) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int16) # gmapT :: (forall b. Data b => b -> b) -> Int16 -> Int16 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int16 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int16 -> r # gmapQ :: (forall d. Data d => d -> u) -> Int16 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int16 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 # | |
Bits Int16 | Since: base-2.1 |
Defined in GHC.Int Methods (.&.) :: Int16 -> Int16 -> Int16 # (.|.) :: Int16 -> Int16 -> Int16 # xor :: Int16 -> Int16 -> Int16 # complement :: Int16 -> Int16 # shift :: Int16 -> Int -> Int16 # rotate :: Int16 -> Int -> Int16 # setBit :: Int16 -> Int -> Int16 # clearBit :: Int16 -> Int -> Int16 # complementBit :: Int16 -> Int -> Int16 # testBit :: Int16 -> Int -> Bool # bitSizeMaybe :: Int16 -> Maybe Int # shiftL :: Int16 -> Int -> Int16 # unsafeShiftL :: Int16 -> Int -> Int16 # shiftR :: Int16 -> Int -> Int16 # unsafeShiftR :: Int16 -> Int -> Int16 # rotateL :: Int16 -> Int -> Int16 # | |
FiniteBits Int16 | Since: base-4.6.0.0 |
Defined in GHC.Int Methods finiteBitSize :: Int16 -> Int # countLeadingZeros :: Int16 -> Int # countTrailingZeros :: Int16 -> Int # | |
Bounded Int16 | Since: base-2.1 |
Enum Int16 | Since: base-2.1 |
Ix Int16 | Since: base-2.1 |
Num Int16 | Since: base-2.1 |
Read Int16 | Since: base-2.1 |
Integral Int16 | Since: base-2.1 |
Real Int16 | Since: base-2.1 |
Defined in GHC.Int Methods toRational :: Int16 -> Rational # | |
Show Int16 | Since: base-2.1 |
Binary Int16 | |
NFData Int16 | |
Defined in Control.DeepSeq | |
Eq Int16 | Since: base-2.1 |
Ord Int16 | Since: base-2.1 |
IArray UArray Int16 | |
Defined in Data.Array.Base Methods bounds :: Ix i => UArray i Int16 -> (i, i) # numElements :: Ix i => UArray i Int16 -> Int unsafeArray :: Ix i => (i, i) -> [(Int, Int16)] -> UArray i Int16 unsafeAt :: Ix i => UArray i Int16 -> Int -> Int16 unsafeReplace :: Ix i => UArray i Int16 -> [(Int, Int16)] -> UArray i Int16 unsafeAccum :: Ix i => (Int16 -> e' -> Int16) -> UArray i Int16 -> [(Int, e')] -> UArray i Int16 unsafeAccumArray :: Ix i => (Int16 -> e' -> Int16) -> Int16 -> (i, i) -> [(Int, e')] -> UArray i Int16 | |
Lift Int16 | |
MArray (STUArray s) Int16 (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Int16 -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Int16 -> ST s Int newArray :: Ix i => (i, i) -> Int16 -> ST s (STUArray s i Int16) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Int16) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Int16) unsafeRead :: Ix i => STUArray s i Int16 -> Int -> ST s Int16 unsafeWrite :: Ix i => STUArray s i Int16 -> Int -> Int16 -> ST s () |
32-bit signed integer type
Instances
Structured Int32 Source # | |
Defined in Distribution.Utils.Structured | |
Data Int32 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int32 -> c Int32 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int32 # dataTypeOf :: Int32 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int32) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int32) # gmapT :: (forall b. Data b => b -> b) -> Int32 -> Int32 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int32 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int32 -> r # gmapQ :: (forall d. Data d => d -> u) -> Int32 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int32 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 # | |
Bits Int32 | Since: base-2.1 |
Defined in GHC.Int Methods (.&.) :: Int32 -> Int32 -> Int32 # (.|.) :: Int32 -> Int32 -> Int32 # xor :: Int32 -> Int32 -> Int32 # complement :: Int32 -> Int32 # shift :: Int32 -> Int -> Int32 # rotate :: Int32 -> Int -> Int32 # setBit :: Int32 -> Int -> Int32 # clearBit :: Int32 -> Int -> Int32 # complementBit :: Int32 -> Int -> Int32 # testBit :: Int32 -> Int -> Bool # bitSizeMaybe :: Int32 -> Maybe Int # shiftL :: Int32 -> Int -> Int32 # unsafeShiftL :: Int32 -> Int -> Int32 # shiftR :: Int32 -> Int -> Int32 # unsafeShiftR :: Int32 -> Int -> Int32 # rotateL :: Int32 -> Int -> Int32 # | |
FiniteBits Int32 | Since: base-4.6.0.0 |
Defined in GHC.Int Methods finiteBitSize :: Int32 -> Int # countLeadingZeros :: Int32 -> Int # countTrailingZeros :: Int32 -> Int # | |
Bounded Int32 | Since: base-2.1 |
Enum Int32 | Since: base-2.1 |
Ix Int32 | Since: base-2.1 |
Num Int32 | Since: base-2.1 |
Read Int32 | Since: base-2.1 |
Integral Int32 | Since: base-2.1 |
Real Int32 | Since: base-2.1 |
Defined in GHC.Int Methods toRational :: Int32 -> Rational # | |
Show Int32 | Since: base-2.1 |
Binary Int32 | |
NFData Int32 | |
Defined in Control.DeepSeq | |
Eq Int32 | Since: base-2.1 |
Ord Int32 | Since: base-2.1 |
IArray UArray Int32 | |
Defined in Data.Array.Base Methods bounds :: Ix i => UArray i Int32 -> (i, i) # numElements :: Ix i => UArray i Int32 -> Int unsafeArray :: Ix i => (i, i) -> [(Int, Int32)] -> UArray i Int32 unsafeAt :: Ix i => UArray i Int32 -> Int -> Int32 unsafeReplace :: Ix i => UArray i Int32 -> [(Int, Int32)] -> UArray i Int32 unsafeAccum :: Ix i => (Int32 -> e' -> Int32) -> UArray i Int32 -> [(Int, e')] -> UArray i Int32 unsafeAccumArray :: Ix i => (Int32 -> e' -> Int32) -> Int32 -> (i, i) -> [(Int, e')] -> UArray i Int32 | |
Lift Int32 | |
MArray (STUArray s) Int32 (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Int32 -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Int32 -> ST s Int newArray :: Ix i => (i, i) -> Int32 -> ST s (STUArray s i Int32) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Int32) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Int32) unsafeRead :: Ix i => STUArray s i Int32 -> Int -> ST s Int32 unsafeWrite :: Ix i => STUArray s i Int32 -> Int -> Int32 -> ST s () |
64-bit signed integer type
Instances
Structured Int64 Source # | |
Defined in Distribution.Utils.Structured | |
Data Int64 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int64 -> c Int64 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int64 # dataTypeOf :: Int64 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int64) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int64) # gmapT :: (forall b. Data b => b -> b) -> Int64 -> Int64 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int64 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int64 -> r # gmapQ :: (forall d. Data d => d -> u) -> Int64 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int64 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 # | |
Bits Int64 | Since: base-2.1 |
Defined in GHC.Int Methods (.&.) :: Int64 -> Int64 -> Int64 # (.|.) :: Int64 -> Int64 -> Int64 # xor :: Int64 -> Int64 -> Int64 # complement :: Int64 -> Int64 # shift :: Int64 -> Int -> Int64 # rotate :: Int64 -> Int -> Int64 # setBit :: Int64 -> Int -> Int64 # clearBit :: Int64 -> Int -> Int64 # complementBit :: Int64 -> Int -> Int64 # testBit :: Int64 -> Int -> Bool # bitSizeMaybe :: Int64 -> Maybe Int # shiftL :: Int64 -> Int -> Int64 # unsafeShiftL :: Int64 -> Int -> Int64 # shiftR :: Int64 -> Int -> Int64 # unsafeShiftR :: Int64 -> Int -> Int64 # rotateL :: Int64 -> Int -> Int64 # | |
FiniteBits Int64 | Since: base-4.6.0.0 |
Defined in GHC.Int Methods finiteBitSize :: Int64 -> Int # countLeadingZeros :: Int64 -> Int # countTrailingZeros :: Int64 -> Int # | |
Bounded Int64 | Since: base-2.1 |
Enum Int64 | Since: base-2.1 |
Ix Int64 | Since: base-2.1 |
Num Int64 | Since: base-2.1 |
Read Int64 | Since: base-2.1 |
Integral Int64 | Since: base-2.1 |
Real Int64 | Since: base-2.1 |
Defined in GHC.Int Methods toRational :: Int64 -> Rational # | |
Show Int64 | Since: base-2.1 |
Binary Int64 | |
NFData Int64 | |
Defined in Control.DeepSeq | |
Eq Int64 | Since: base-2.1 |
Ord Int64 | Since: base-2.1 |
IArray UArray Int64 | |
Defined in Data.Array.Base Methods bounds :: Ix i => UArray i Int64 -> (i, i) # numElements :: Ix i => UArray i Int64 -> Int unsafeArray :: Ix i => (i, i) -> [(Int, Int64)] -> UArray i Int64 unsafeAt :: Ix i => UArray i Int64 -> Int -> Int64 unsafeReplace :: Ix i => UArray i Int64 -> [(Int, Int64)] -> UArray i Int64 unsafeAccum :: Ix i => (Int64 -> e' -> Int64) -> UArray i Int64 -> [(Int, e')] -> UArray i Int64 unsafeAccumArray :: Ix i => (Int64 -> e' -> Int64) -> Int64 -> (i, i) -> [(Int, e')] -> UArray i Int64 | |
Lift Int64 | |
MArray (STUArray s) Int64 (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Int64 -> ST s (i, i) # getNumElements :: Ix i => STUArray s i Int64 -> ST s Int newArray :: Ix i => (i, i) -> Int64 -> ST s (STUArray s i Int64) # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Int64) # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Int64) unsafeRead :: Ix i => STUArray s i Int64 -> Int -> ST s Int64 unsafeWrite :: Ix i => STUArray s i Int64 -> Int -> Int64 -> ST s () |
Text.PrettyPrint
System.Exit
Defines the exit codes that a program can return.
Constructors
ExitSuccess | indicates successful termination; |
ExitFailure Int | indicates program failure with an exit code. The exact interpretation of the code is operating-system dependent. In particular, some values may be prohibited (e.g. 0 on a POSIX-compliant system). |
Instances
Exception ExitCode | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods toException :: ExitCode -> SomeException # fromException :: SomeException -> Maybe ExitCode # displayException :: ExitCode -> String # | |
Generic ExitCode | |
Read ExitCode | |
Show ExitCode | |
NFData ExitCode | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
Eq ExitCode | |
Ord ExitCode | |
Defined in GHC.IO.Exception | |
type Rep ExitCode | |
Defined in GHC.IO.Exception type Rep ExitCode = D1 ('MetaData "ExitCode" "GHC.IO.Exception" "base" 'False) (C1 ('MetaCons "ExitSuccess" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ExitFailure" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int))) |
exitWith :: ExitCode -> IO a #
Computation exitWith
code
throws ExitCode
code
.
Normally this terminates the program, returning code
to the
program's caller.
On program termination, the standard Handle
s stdout
and
stderr
are flushed automatically; any other buffered Handle
s
need to be flushed manually, otherwise the buffered data will be
discarded.
A program that fails in any other way is treated as if it had
called exitFailure
.
A program that terminates successfully without calling exitWith
explicitly is treated as if it had called exitWith
ExitSuccess
.
As an ExitCode
is an Exception
, it can be
caught using the functions of Control.Exception. This means that
cleanup computations added with bracket
(from
Control.Exception) are also executed properly on exitWith
.
Note: in GHC, exitWith
should be called from the main program
thread in order to exit the process. When called from another
thread, exitWith
will throw an ExitCode
as normal, but the
exception will not cause the process itself to exit.
exitSuccess :: IO a #
The computation exitSuccess
is equivalent to
exitWith
ExitSuccess
, It terminates the program
successfully.
exitFailure :: IO a #
The computation exitFailure
is equivalent to
exitWith
(
ExitFailure
exitfail)
,
where exitfail is implementation-dependent.
Text.Read
readMaybe :: Read a => String -> Maybe a #
Parse a string using the Read
instance.
Succeeds if there is exactly one valid result.
>>>
readMaybe "123" :: Maybe Int
Just 123
>>>
readMaybe "hello" :: Maybe Int
Nothing
Since: base-4.6.0.0
Debug.Trace (as deprecated functions)
traceShowId :: Show a => a -> a Source #
Deprecated: Don't leave me in the code
traceM :: Applicative f => String -> f () Source #
Deprecated: Don't leave me in the code
traceShowM :: (Show a, Applicative f) => a -> f () Source #
Deprecated: Don't leave me in the code