module Verismith.Circuit.Internal
( fromNode,
filterGr,
only,
inputs,
outputs,
)
where
import Data.Graph.Inductive (Graph, Node)
import qualified Data.Graph.Inductive as G
import qualified Data.Text as T
fromNode :: Int -> T.Text
fromNode :: Int -> Text
fromNode Int
node = String -> Text
T.pack (String -> Text) -> String -> Text
forall a b. (a -> b) -> a -> b
$ String
"w" String -> String -> String
forall a. Semigroup a => a -> a -> a
<> Int -> String
forall a. Show a => a -> String
show Int
node
filterGr :: (Graph gr) => gr n e -> (Node -> Bool) -> [Node]
filterGr :: forall (gr :: * -> * -> *) n e.
Graph gr =>
gr n e -> (Int -> Bool) -> [Int]
filterGr gr n e
graph Int -> Bool
f = (Int -> Bool) -> [Int] -> [Int]
forall a. (a -> Bool) -> [a] -> [a]
filter Int -> Bool
f ([Int] -> [Int]) -> [Int] -> [Int]
forall a b. (a -> b) -> a -> b
$ gr n e -> [Int]
forall (gr :: * -> * -> *) a b. Graph gr => gr a b -> [Int]
G.nodes gr n e
graph
only ::
(Graph gr) =>
gr n e ->
(gr n e -> Node -> Int) ->
(gr n e -> Node -> Int) ->
Node ->
Bool
only :: forall (gr :: * -> * -> *) n e.
Graph gr =>
gr n e
-> (gr n e -> Int -> Int) -> (gr n e -> Int -> Int) -> Int -> Bool
only gr n e
graph gr n e -> Int -> Int
fun1 gr n e -> Int -> Int
fun2 Int
n = gr n e -> Int -> Int
fun1 gr n e
graph Int
n Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 Bool -> Bool -> Bool
&& gr n e -> Int -> Int
fun2 gr n e
graph Int
n Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int
0
inputs :: (Graph gr) => gr n e -> [Node]
inputs :: forall (gr :: * -> * -> *) a b. Graph gr => gr a b -> [Int]
inputs gr n e
graph = gr n e -> (Int -> Bool) -> [Int]
forall (gr :: * -> * -> *) n e.
Graph gr =>
gr n e -> (Int -> Bool) -> [Int]
filterGr gr n e
graph ((Int -> Bool) -> [Int]) -> (Int -> Bool) -> [Int]
forall a b. (a -> b) -> a -> b
$ gr n e
-> (gr n e -> Int -> Int) -> (gr n e -> Int -> Int) -> Int -> Bool
forall (gr :: * -> * -> *) n e.
Graph gr =>
gr n e
-> (gr n e -> Int -> Int) -> (gr n e -> Int -> Int) -> Int -> Bool
only gr n e
graph gr n e -> Int -> Int
forall (gr :: * -> * -> *) a b. Graph gr => gr a b -> Int -> Int
G.indeg gr n e -> Int -> Int
forall (gr :: * -> * -> *) a b. Graph gr => gr a b -> Int -> Int
G.outdeg
outputs :: (Graph gr) => gr n e -> [Node]
outputs :: forall (gr :: * -> * -> *) a b. Graph gr => gr a b -> [Int]
outputs gr n e
graph = gr n e -> (Int -> Bool) -> [Int]
forall (gr :: * -> * -> *) n e.
Graph gr =>
gr n e -> (Int -> Bool) -> [Int]
filterGr gr n e
graph ((Int -> Bool) -> [Int]) -> (Int -> Bool) -> [Int]
forall a b. (a -> b) -> a -> b
$ gr n e
-> (gr n e -> Int -> Int) -> (gr n e -> Int -> Int) -> Int -> Bool
forall (gr :: * -> * -> *) n e.
Graph gr =>
gr n e
-> (gr n e -> Int -> Int) -> (gr n e -> Int -> Int) -> Int -> Bool
only gr n e
graph gr n e -> Int -> Int
forall (gr :: * -> * -> *) a b. Graph gr => gr a b -> Int -> Int
G.outdeg gr n e -> Int -> Int
forall (gr :: * -> * -> *) a b. Graph gr => gr a b -> Int -> Int
G.indeg