| Copyright | (c) Roman Leshchinskiy 2008-2010 |
|---|---|
| License | BSD-style |
| Maintainer | Roman Leshchinskiy <rl@cse.unsw.edu.au> |
| Stability | experimental |
| Portability | non-portable |
| Safe Haskell | None |
| Language | Haskell2010 |
Data.Vector.Primitive.Mutable
Contents
Description
Mutable primitive vectors.
- data MVector s a = MVector !Int !Int !(MutableByteArray s)
- type IOVector = MVector RealWorld
- type STVector s = MVector s
- class Prim a
- length :: Prim a => MVector s a -> Int
- null :: Prim a => MVector s a -> Bool
- slice :: Prim a => Int -> Int -> MVector s a -> MVector s a
- init :: Prim a => MVector s a -> MVector s a
- tail :: Prim a => MVector s a -> MVector s a
- take :: Prim a => Int -> MVector s a -> MVector s a
- drop :: Prim a => Int -> MVector s a -> MVector s a
- splitAt :: Prim a => Int -> MVector s a -> (MVector s a, MVector s a)
- unsafeSlice :: Prim a => Int -> Int -> MVector s a -> MVector s a
- unsafeInit :: Prim a => MVector s a -> MVector s a
- unsafeTail :: Prim a => MVector s a -> MVector s a
- unsafeTake :: Prim a => Int -> MVector s a -> MVector s a
- unsafeDrop :: Prim a => Int -> MVector s a -> MVector s a
- overlaps :: Prim a => MVector s a -> MVector s a -> Bool
- new :: (PrimMonad m, Prim a) => Int -> m (MVector (PrimState m) a)
- unsafeNew :: (PrimMonad m, Prim a) => Int -> m (MVector (PrimState m) a)
- replicate :: (PrimMonad m, Prim a) => Int -> a -> m (MVector (PrimState m) a)
- replicateM :: (PrimMonad m, Prim a) => Int -> m a -> m (MVector (PrimState m) a)
- clone :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> m (MVector (PrimState m) a)
- grow :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)
- unsafeGrow :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)
- clear :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> m ()
- read :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> m a
- write :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> a -> m ()
- swap :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> Int -> m ()
- unsafeRead :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> m a
- unsafeWrite :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> a -> m ()
- unsafeSwap :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> Int -> m ()
- set :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> a -> m ()
- copy :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> MVector (PrimState m) a -> m ()
- move :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> MVector (PrimState m) a -> m ()
- unsafeCopy :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> MVector (PrimState m) a -> m ()
- unsafeMove :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> MVector (PrimState m) a -> m ()
Mutable vectors of primitive types
Mutable vectors of primitive types.
Constructors
| MVector !Int !Int !(MutableByteArray s) | offset, length, underlying mutable byte array |
class Prim a
Class of types supporting primitive array operations
Minimal complete definition
sizeOf#, alignment#, indexByteArray#, readByteArray#, writeByteArray#, setByteArray#, indexOffAddr#, readOffAddr#, writeOffAddr#, setOffAddr#
Accessors
Length information
Extracting subvectors
slice :: Prim a => Int -> Int -> MVector s a -> MVector s a Source
Yield a part of the mutable vector without copying it.
Yield a part of the mutable vector without copying it. No bounds checks are performed.
unsafeInit :: Prim a => MVector s a -> MVector s a Source
unsafeTail :: Prim a => MVector s a -> MVector s a Source
Overlapping
Construction
Initialisation
new :: (PrimMonad m, Prim a) => Int -> m (MVector (PrimState m) a) Source
Create a mutable vector of the given length.
unsafeNew :: (PrimMonad m, Prim a) => Int -> m (MVector (PrimState m) a) Source
Create a mutable vector of the given length. The length is not checked.
replicate :: (PrimMonad m, Prim a) => Int -> a -> m (MVector (PrimState m) a) Source
Create a mutable vector of the given length (0 if the length is negative) and fill it with an initial value.
replicateM :: (PrimMonad m, Prim a) => Int -> m a -> m (MVector (PrimState m) a) Source
Create a mutable vector of the given length (0 if the length is negative) and fill it with values produced by repeatedly executing the monadic action.
clone :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> m (MVector (PrimState m) a) Source
Create a copy of a mutable vector.
Growing
grow :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a) Source
Grow a vector by the given number of elements. The number must be positive.
unsafeGrow :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a) Source
Grow a vector by the given number of elements. The number must be positive but this is not checked.
Restricting memory usage
clear :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> m () Source
Reset all elements of the vector to some undefined value, clearing all references to external objects. This is usually a noop for unboxed vectors.
Accessing individual elements
read :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> m a Source
Yield the element at the given position.
write :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> a -> m () Source
Replace the element at the given position.
swap :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> Int -> m () Source
Swap the elements at the given positions.
unsafeRead :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> m a Source
Yield the element at the given position. No bounds checks are performed.
unsafeWrite :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> a -> m () Source
Replace the element at the given position. No bounds checks are performed.
unsafeSwap :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> Int -> m () Source
Swap the elements at the given positions. No bounds checks are performed.
Modifying vectors
Filling and copying
set :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> a -> m () Source
Set all elements of the vector to the given value.
copy :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> MVector (PrimState m) a -> m () Source
Copy a vector. The two vectors must have the same length and may not overlap.
move :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> MVector (PrimState m) a -> m () Source
Move the contents of a vector. The two vectors must have the same length.
If the vectors do not overlap, then this is equivalent to copy.
Otherwise, the copying is performed as if the source vector were
copied to a temporary vector and then the temporary vector was copied
to the target vector.
Arguments
| :: (PrimMonad m, Prim a) | |
| => MVector (PrimState m) a | target |
| -> MVector (PrimState m) a | source |
| -> m () |
Copy a vector. The two vectors must have the same length and may not overlap. This is not checked.
Arguments
| :: (PrimMonad m, Prim a) | |
| => MVector (PrimState m) a | target |
| -> MVector (PrimState m) a | source |
| -> m () |
Move the contents of a vector. The two vectors must have the same length, but this is not checked.
If the vectors do not overlap, then this is equivalent to unsafeCopy.
Otherwise, the copying is performed as if the source vector were
copied to a temporary vector and then the temporary vector was copied
to the target vector.