Copyright | (c) Masahiro Sakai 2011 |
---|---|
License | BSD-style |
Maintainer | masahiro.sakai@gmail.com |
Stability | provisional |
Portability | non-portable |
Safe Haskell | Safe-Inferred |
Language | Haskell2010 |
Extensions |
|
ToySolver.Data.OrdRel
Contents
Description
Ordering relations
Relational operators
flipOp :: RelOp -> RelOp Source #
flipping relational operator
rel (flipOp op) a b
is equivalent to rel op b a
negOp :: RelOp -> RelOp Source #
negating relational operator
rel (negOp op) a b
is equivalent to notB (rel op a b)
Relation
Atomic formula
Instances
Functor OrdRel Source # | |
IsEqRel e (OrdRel e) Source # | |
IsOrdRel e (OrdRel e) Source # | |
(Eval m e a, Ord a) => Eval m (OrdRel e) Bool Source # | |
Show e => Show (OrdRel e) Source # | |
Eq e => Eq (OrdRel e) Source # | |
Ord e => Ord (OrdRel e) Source # | |
Defined in ToySolver.Data.OrdRel | |
Complement (OrdRel c) Source # | |
Variables e => Variables (OrdRel e) Source # | |
IsEqRel (Expr c) (Formula (Atom c)) Source # | |
IsOrdRel (Expr c) (Formula (Atom c)) Source # | |
Defined in ToySolver.Data.FOL.Arith |
fromOrdRel :: IsOrdRel e r => OrdRel e -> r Source #
DSL
class IsEqRel e r | r -> e where Source #
type class for constructing relational formula
class IsEqRel e r => IsOrdRel e r | r -> e where Source #
type class for constructing relational formula
Methods
(.<.) :: e -> e -> r infix 4 Source #
(.<=.) :: e -> e -> r infix 4 Source #
(.>.) :: e -> e -> r infix 4 Source #
Instances
IsOrdRel Expr Expr Source # | |
IsOrdRel e (OrdRel e) Source # | |
IsOrdRel (Expr Integer) QFFormula Source # | |
Defined in ToySolver.Arith.Cooper.Base Methods (.<.) :: Expr Integer -> Expr Integer -> QFFormula Source # (.<=.) :: Expr Integer -> Expr Integer -> QFFormula Source # (.>.) :: Expr Integer -> Expr Integer -> QFFormula Source # (.>=.) :: Expr Integer -> Expr Integer -> QFFormula Source # ordRel :: RelOp -> Expr Integer -> Expr Integer -> QFFormula Source # | |
IsOrdRel (Expr c) (Formula (Atom c)) Source # | |
Defined in ToySolver.Data.FOL.Arith |