Safe Haskell | None |
---|---|
Language | Haskell2010 |
Data.Tax
Contents
Description
This library provides combinators for constructing taxes. It is based on the dollaridoos library.
Synopsis
- newtype Tax a b = Tax {
- getTax :: a -> b
- type MoneyTax a = Tax (Money a) (Money a)
- lump :: a -> Tax b a
- flat :: Num a => a -> Tax (Money a) (Money a)
- threshold :: (Num a, Ord a) => Money a -> a -> Tax (Money a) (Money a)
- threshold' :: (Ord b, Monoid a) => b -> Tax b a -> Tax b a
- thresholds :: (Num a, Ord a) => [(Money a, a)] -> Tax (Money a) (Money a)
- above :: (Num a, Ord a) => Money a -> a -> Tax (Money a) (Money a)
- above' :: (Num b, Ord b) => Money b -> Tax (Money b) a -> Tax (Money b) a
- marginal :: (Num a, Ord a) => [(Money a, a)] -> Tax (Money a) (Money a)
- lesserOf :: Ord a => Tax b a -> Tax b a -> Tax b a
- greaterOf :: Ord a => Tax b a -> Tax b a -> Tax b a
- limit :: Ord a => a -> Tax b a -> Tax b a
- effective :: Fractional a => Money a -> Tax (Money a) (Money a) -> Tax (Money a) (Money a)
- module Data.Money
- class Semigroup a where
- class Semigroup a => Monoid a where
- class Profunctor (p :: Type -> Type -> Type) where
Overview
The most basic tax is a flat rate tax:
businessTax = flat
0.3
To compute the tax, use getTax
:
λ> getTax
businessTax (Money 1000000)
$300000.0
Taxes form a semigroup (sum of tax outputs) and monoid:
λ> getTax (flat 0.1 <> flat 0.2) (Money 10) $3.0 λ> getTax mempty (Money 10) $0
Progressive taxes can be constructed using the above
combinator,
which taxes the amount above a given threshold at a flat rate.
individualIncomeTax =above
(Money 18200 ) (0.19 - 0 ) <>above
(Money 45000 ) (0.325 - 0.19 ) <>above
(Money 120000) (0.37 - 0.325 ) <>above
(Money 180000) (0.45 - 0.37 )
The marginal
function provides a shorthand for the above.
individualIncomeTax = marginal
[ ( Money 18200, 0.19 - 0 )
, ( Money 45000, 0.325 - 0.19 )
, ( Money 120000, 0.37 - 0.325 )
, ( Money 180000, 0.45 - 0.37 ) ]
Taxes can be negative. For example, the lump
, above
and limit
combinators can be used to construct a low-income tax offset that
starts at $445 and reduces at a rate of 1.5c per dollar earned over
$37000:
lowIncomeTaxOffset =limit
mempty (lump
(Money (-445)) <>above
(Money 37000) 0.015)
The threshold
combinator applies a tax to the full input amount,
if it exceeds the threshold.
medicareLevySurcharge =threshold
(review money 90000 ) 0.0100 <>threshold
(review money 105000) 0.0025 <>threshold
(review money 140000) 0.0025
Some taxes have "shade-in" where the amount above some threshold is
taxed at a higher rate to "catch up" to some lower flat rate. The
above
and lesserOf
combinators can be used to construct this
tax:
medicareLevy l =lesserOf
(above
l 0.1) (flat
0.02)
Although some of the combinators deal directory with Money
, a
Tax
can be defined for other types. For example, you can tax a
person a certain number of days labour, based on their age.
data Sex = M | F newtype Years = Years Int newtype Days = Days Int data Person = Person Years Sex corvée :: Tax Person Days corvée = Tax f where f (Person (Years age) sex) = Days $ if age >= 18 && age <= maxAge sex then 10 else 0 maxAge sex = case sex of M -> 45 ; F -> 35
API
A function from an amount or value subject to taxation, to the amount or value of tax due.
Taxes form a semigroup where the tax payable is the sum of tax payable of consituent taxes.
Taxes form a monoid where the identity is a tax of 0%
Taxes are a profunctor, making it trivial to perform simple transformations of the input and/or output (e.g. rounding down to whole dollars).
threshold :: (Num a, Ord a) => Money a -> a -> Tax (Money a) (Money a) Source #
Tax full amount at flat rate if input >= threshold
threshold' :: (Ord b, Monoid a) => b -> Tax b a -> Tax b a Source #
Levy the tax if input >= threshold, otherwise don't
thresholds :: (Num a, Ord a) => [(Money a, a)] -> Tax (Money a) (Money a) Source #
Convert a [(threshold, rate)]
into a flat tax whose rate is
the sum of the rates that apply for a given input. The rates
are cumulative. For example, if you want to tax people earning
>$30,000 20%, and people earning >$50,000 30%, you only tax an
extra 10% at 50000:
tax = thresholds [(30000, 0.2), (50000, 0.1)]
above :: (Num a, Ord a) => Money a -> a -> Tax (Money a) (Money a) Source #
Tax the amount exceeding the threshold at a flat rate.
above' :: (Num b, Ord b) => Money b -> Tax (Money b) a -> Tax (Money b) a Source #
Tax the amount exceeding the threshold
marginal :: (Num a, Ord a) => [(Money a, a)] -> Tax (Money a) (Money a) Source #
Convert a [(threshold, rate)]
into a progressive tax.
The rates are cumulative, i.e. the top marginal rate is the
sum of the rates that apply for a given input.
limit :: Ord a => a -> Tax b a -> Tax b a Source #
Limit the tax payable to the given amount
This could be used e.g. to limit a compulsory loan repayment to the balance of the loan, or ensure a (negative) tax offset does not become a (positive) tax.
effective :: Fractional a => Money a -> Tax (Money a) (Money a) -> Tax (Money a) (Money a) Source #
Given a tax and an amount construct the effective flat tax rate
Re-exports
module Data.Money
The class of semigroups (types with an associative binary operation).
Instances should satisfy the following:
You can alternatively define sconcat
instead of (<>
), in which case the
laws are:
Since: base-4.9.0.0
Methods
(<>) :: a -> a -> a infixr 6 #
An associative operation.
Examples
>>>
[1,2,3] <> [4,5,6]
[1,2,3,4,5,6]
>>>
Just [1, 2, 3] <> Just [4, 5, 6]
Just [1,2,3,4,5,6]
>>>
putStr "Hello, " <> putStrLn "World!"
Hello, World!
Reduce a non-empty list with <>
The default definition should be sufficient, but this can be overridden for efficiency.
Examples
For the following examples, we will assume that we have:
>>>
import Data.List.NonEmpty (NonEmpty (..))
>>>
sconcat $ "Hello" :| [" ", "Haskell", "!"]
"Hello Haskell!"
>>>
sconcat $ Just [1, 2, 3] :| [Nothing, Just [4, 5, 6]]
Just [1,2,3,4,5,6]
>>>
sconcat $ Left 1 :| [Right 2, Left 3, Right 4]
Right 2
stimes :: Integral b => b -> a -> a #
Repeat a value n
times.
The default definition will raise an exception for a multiplier that is <= 0
.
This may be overridden with an implementation that is total. For monoids
it is preferred to use stimesMonoid
.
By making this a member of the class, idempotent semigroups
and monoids can upgrade this to execute in \(\mathcal{O}(1)\) by
picking stimes =
or stimesIdempotent
stimes =
respectively.stimesIdempotentMonoid
Examples
>>>
stimes 4 [1]
[1,1,1,1]
>>>
stimes 5 (putStr "hi!")
hi!hi!hi!hi!hi!
>>>
stimes 3 (Right ":)")
Right ":)"
Instances
Semigroup ByteArray | Since: base-4.17.0.0 |
Semigroup Void | Since: base-4.9.0.0 |
Semigroup Ordering | Since: base-4.9.0.0 |
Semigroup () | Since: base-4.9.0.0 |
Bits a => Semigroup (And a) | Since: base-4.16 |
FiniteBits a => Semigroup (Iff a) | This constraint is arguably
too strong. However, as some types (such as Since: base-4.16 |
Bits a => Semigroup (Ior a) | Since: base-4.16 |
Bits a => Semigroup (Xor a) | Since: base-4.16 |
Semigroup (FromMaybe b) | |
Semigroup a => Semigroup (JoinWith a) | |
Semigroup (NonEmptyDList a) | |
Semigroup (Comparison a) |
(<>) :: Comparison a -> Comparison a -> Comparison a Comparison cmp <> Comparison cmp' = Comparison a a' -> cmp a a' <> cmp a a' |
Defined in Data.Functor.Contravariant Methods (<>) :: Comparison a -> Comparison a -> Comparison a # sconcat :: NonEmpty (Comparison a) -> Comparison a # stimes :: Integral b => b -> Comparison a -> Comparison a # | |
Semigroup (Equivalence a) |
(<>) :: Equivalence a -> Equivalence a -> Equivalence a Equivalence equiv <> Equivalence equiv' = Equivalence a b -> equiv a b && equiv' a b |
Defined in Data.Functor.Contravariant Methods (<>) :: Equivalence a -> Equivalence a -> Equivalence a # sconcat :: NonEmpty (Equivalence a) -> Equivalence a # stimes :: Integral b => b -> Equivalence a -> Equivalence a # | |
Semigroup (Predicate a) |
(<>) :: Predicate a -> Predicate a -> Predicate a Predicate pred <> Predicate pred' = Predicate a -> pred a && pred' a |
Semigroup a => Semigroup (Identity a) | Since: base-4.9.0.0 |
Semigroup (First a) | Since: base-4.9.0.0 |
Semigroup (Last a) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (Down a) | Since: base-4.11.0.0 |
Semigroup (First a) | Since: base-4.9.0.0 |
Semigroup (Last a) | Since: base-4.9.0.0 |
Ord a => Semigroup (Max a) | Since: base-4.9.0.0 |
Ord a => Semigroup (Min a) | Since: base-4.9.0.0 |
Monoid m => Semigroup (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods (<>) :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # sconcat :: NonEmpty (WrappedMonoid m) -> WrappedMonoid m # stimes :: Integral b => b -> WrappedMonoid m -> WrappedMonoid m # | |
Semigroup (NonEmpty a) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (STM a) | Since: base-4.17.0.0 |
(Generic a, Semigroup (Rep a ())) => Semigroup (Generically a) | Since: base-4.17.0.0 |
Defined in GHC.Generics Methods (<>) :: Generically a -> Generically a -> Generically a # sconcat :: NonEmpty (Generically a) -> Generically a # stimes :: Integral b => b -> Generically a -> Generically a # | |
Semigroup p => Semigroup (Par1 p) | Since: base-4.12.0.0 |
Num a => Semigroup (Money a) | |
Semigroup a => Semigroup (IO a) | Since: base-4.10.0.0 |
Semigroup a => Semigroup (Maybe a) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (Solo a) | Since: base-4.15 |
Semigroup [a] | Since: base-4.9.0.0 |
Semigroup (Either a b) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (Op a b) |
(<>) :: Op a b -> Op a b -> Op a b Op f <> Op g = Op a -> f a <> g a |
Semigroup (Proxy s) | Since: base-4.9.0.0 |
Semigroup (U1 p) | Since: base-4.12.0.0 |
Semigroup (V1 p) | Since: base-4.12.0.0 |
Semigroup a => Semigroup (ST s a) | Since: base-4.11.0.0 |
Semigroup b => Semigroup (Tax a b) Source # | |
(Semigroup a, Semigroup b) => Semigroup (a, b) | Since: base-4.9.0.0 |
Semigroup b => Semigroup (a -> b) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (Const a b) | Since: base-4.9.0.0 |
(Applicative f, Semigroup a) => Semigroup (Ap f a) | Since: base-4.12.0.0 |
Semigroup (f p) => Semigroup (Rec1 f p) | Since: base-4.12.0.0 |
(Profunctor p, Arrow p, Semigroup b) => Semigroup (Closure p a b) | |
ArrowPlus p => Semigroup (Tambara p a b) | |
(Semigroup a, Semigroup b, Semigroup c) => Semigroup (a, b, c) | Since: base-4.9.0.0 |
(Semigroup (f a), Semigroup (g a)) => Semigroup (Product f g a) | Since: base-4.16.0.0 |
(Semigroup (f p), Semigroup (g p)) => Semigroup ((f :*: g) p) | Since: base-4.12.0.0 |
Semigroup c => Semigroup (K1 i c p) | Since: base-4.12.0.0 |
Semigroup r => Semigroup (Forget r a b) | Via Since: profunctors-5.6.2 |
(Semigroup a, Semigroup b, Semigroup c, Semigroup d) => Semigroup (a, b, c, d) | Since: base-4.9.0.0 |
Semigroup (f (g a)) => Semigroup (Compose f g a) | Since: base-4.16.0.0 |
Semigroup (f (g p)) => Semigroup ((f :.: g) p) | Since: base-4.12.0.0 |
Semigroup (f p) => Semigroup (M1 i c f p) | Since: base-4.12.0.0 |
(Semigroup a, Semigroup b, Semigroup c, Semigroup d, Semigroup e) => Semigroup (a, b, c, d, e) | Since: base-4.9.0.0 |
class Semigroup a => Monoid a where #
The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following:
- Right identity
x
<>
mempty
= x- Left identity
mempty
<>
x = x- Associativity
x
(<>
(y<>
z) = (x<>
y)<>
zSemigroup
law)- Concatenation
mconcat
=foldr
(<>
)mempty
You can alternatively define mconcat
instead of mempty
, in which case the
laws are:
- Unit
mconcat
(pure
x) = x- Multiplication
mconcat
(join
xss) =mconcat
(fmap
mconcat
xss)- Subclass
mconcat
(toList
xs) =sconcat
xs
The method names refer to the monoid of lists under concatenation, but there are many other instances.
Some types can be viewed as a monoid in more than one way,
e.g. both addition and multiplication on numbers.
In such cases we often define newtype
s and make those instances
of Monoid
, e.g. Sum
and Product
.
NOTE: Semigroup
is a superclass of Monoid
since base-4.11.0.0.
Methods
Identity of mappend
Examples
>>>
"Hello world" <> mempty
"Hello world"
>>>
mempty <> [1, 2, 3]
[1,2,3]
An associative operation
NOTE: This method is redundant and has the default
implementation
since base-4.11.0.0.
Should it be implemented manually, since mappend
= (<>
)mappend
is a synonym for
(<>
), it is expected that the two functions are defined the same
way. In a future GHC release mappend
will be removed from Monoid
.
Fold a list using the monoid.
For most types, the default definition for mconcat
will be
used, but the function is included in the class definition so
that an optimized version can be provided for specific types.
>>>
mconcat ["Hello", " ", "Haskell", "!"]
"Hello Haskell!"
Instances
Monoid ByteArray | Since: base-4.17.0.0 |
Monoid Ordering | Since: base-2.1 |
Monoid () | Since: base-2.1 |
FiniteBits a => Monoid (And a) | This constraint is arguably too strong. However,
as some types (such as Since: base-4.16 |
FiniteBits a => Monoid (Iff a) | This constraint is arguably
too strong. However, as some types (such as Since: base-4.16 |
Bits a => Monoid (Ior a) | Since: base-4.16 |
Bits a => Monoid (Xor a) | Since: base-4.16 |
Monoid (Comparison a) |
mempty :: Comparison a mempty = Comparison _ _ -> EQ |
Defined in Data.Functor.Contravariant Methods mempty :: Comparison a # mappend :: Comparison a -> Comparison a -> Comparison a # mconcat :: [Comparison a] -> Comparison a # | |
Monoid (Equivalence a) |
mempty :: Equivalence a mempty = Equivalence _ _ -> True |
Defined in Data.Functor.Contravariant Methods mempty :: Equivalence a # mappend :: Equivalence a -> Equivalence a -> Equivalence a # mconcat :: [Equivalence a] -> Equivalence a # | |
Monoid (Predicate a) |
mempty :: Predicate a mempty = _ -> True |
Monoid a => Monoid (Identity a) | Since: base-4.9.0.0 |
Monoid (First a) | Since: base-2.1 |
Monoid (Last a) | Since: base-2.1 |
Monoid a => Monoid (Down a) | Since: base-4.11.0.0 |
(Ord a, Bounded a) => Monoid (Max a) | Since: base-4.9.0.0 |
(Ord a, Bounded a) => Monoid (Min a) | Since: base-4.9.0.0 |
Monoid m => Monoid (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods mempty :: WrappedMonoid m # mappend :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # mconcat :: [WrappedMonoid m] -> WrappedMonoid m # | |
Monoid a => Monoid (STM a) | Since: base-4.17.0.0 |
(Generic a, Monoid (Rep a ())) => Monoid (Generically a) | Since: base-4.17.0.0 |
Defined in GHC.Generics Methods mempty :: Generically a # mappend :: Generically a -> Generically a -> Generically a # mconcat :: [Generically a] -> Generically a # | |
Monoid p => Monoid (Par1 p) | Since: base-4.12.0.0 |
Num a => Monoid (Money a) | |
Monoid a => Monoid (IO a) | Since: base-4.9.0.0 |
Semigroup a => Monoid (Maybe a) | Lift a semigroup into Since 4.11.0: constraint on inner Since: base-2.1 |
Monoid a => Monoid (Solo a) | Since: base-4.15 |
Monoid [a] | Since: base-2.1 |
Monoid a => Monoid (Op a b) |
mempty :: Op a b mempty = Op _ -> mempty |
Monoid (Proxy s) | Since: base-4.7.0.0 |
Monoid (U1 p) | Since: base-4.12.0.0 |
Monoid a => Monoid (ST s a) | Since: base-4.11.0.0 |
Monoid b => Monoid (Tax a b) Source # | |
(Monoid a, Monoid b) => Monoid (a, b) | Since: base-2.1 |
Monoid b => Monoid (a -> b) | Since: base-2.1 |
Monoid a => Monoid (Const a b) | Since: base-4.9.0.0 |
(Applicative f, Monoid a) => Monoid (Ap f a) | Since: base-4.12.0.0 |
Monoid (f p) => Monoid (Rec1 f p) | Since: base-4.12.0.0 |
(Profunctor p, Arrow p, Semigroup b, Monoid b) => Monoid (Closure p a b) | |
ArrowPlus p => Monoid (Tambara p a b) | |
(Monoid a, Monoid b, Monoid c) => Monoid (a, b, c) | Since: base-2.1 |
(Monoid (f a), Monoid (g a)) => Monoid (Product f g a) | Since: base-4.16.0.0 |
(Monoid (f p), Monoid (g p)) => Monoid ((f :*: g) p) | Since: base-4.12.0.0 |
Monoid c => Monoid (K1 i c p) | Since: base-4.12.0.0 |
Monoid r => Monoid (Forget r a b) | Via Since: profunctors-5.6.2 |
(Monoid a, Monoid b, Monoid c, Monoid d) => Monoid (a, b, c, d) | Since: base-2.1 |
Monoid (f (g a)) => Monoid (Compose f g a) | Since: base-4.16.0.0 |
Monoid (f (g p)) => Monoid ((f :.: g) p) | Since: base-4.12.0.0 |
Monoid (f p) => Monoid (M1 i c f p) | Since: base-4.12.0.0 |
(Monoid a, Monoid b, Monoid c, Monoid d, Monoid e) => Monoid (a, b, c, d, e) | Since: base-2.1 |
class Profunctor (p :: Type -> Type -> Type) where #
Formally, the class Profunctor
represents a profunctor
from Hask
-> Hask
.
Intuitively it is a bifunctor where the first argument is contravariant and the second argument is covariant.
You can define a Profunctor
by either defining dimap
or by defining both
lmap
and rmap
.
If you supply dimap
, you should ensure that:
dimap
id
id
≡id
If you supply lmap
and rmap
, ensure:
lmap
id
≡id
rmap
id
≡id
If you supply both, you should also ensure:
dimap
f g ≡lmap
f.
rmap
g
These ensure by parametricity:
dimap
(f.
g) (h.
i) ≡dimap
g h.
dimap
f ilmap
(f.
g) ≡lmap
g.
lmap
frmap
(f.
g) ≡rmap
f.
rmap
g
Instances
Profunctor Tax Source # | |
Defined in Data.Tax | |
Monad m => Profunctor (Kleisli m) | |
Defined in Data.Profunctor.Unsafe Methods dimap :: (a -> b) -> (c -> d) -> Kleisli m b c -> Kleisli m a d # lmap :: (a -> b) -> Kleisli m b c -> Kleisli m a c # rmap :: (b -> c) -> Kleisli m a b -> Kleisli m a c # (#.) :: forall a b c q. Coercible c b => q b c -> Kleisli m a b -> Kleisli m a c # (.#) :: forall a b c q. Coercible b a => Kleisli m b c -> q a b -> Kleisli m a c # | |
Profunctor (CopastroSum p) | |
Defined in Data.Profunctor.Choice Methods dimap :: (a -> b) -> (c -> d) -> CopastroSum p b c -> CopastroSum p a d # lmap :: (a -> b) -> CopastroSum p b c -> CopastroSum p a c # rmap :: (b -> c) -> CopastroSum p a b -> CopastroSum p a c # (#.) :: forall a b c q. Coercible c b => q b c -> CopastroSum p a b -> CopastroSum p a c # (.#) :: forall a b c q. Coercible b a => CopastroSum p b c -> q a b -> CopastroSum p a c # | |
Profunctor (CotambaraSum p) | |
Defined in Data.Profunctor.Choice Methods dimap :: (a -> b) -> (c -> d) -> CotambaraSum p b c -> CotambaraSum p a d # lmap :: (a -> b) -> CotambaraSum p b c -> CotambaraSum p a c # rmap :: (b -> c) -> CotambaraSum p a b -> CotambaraSum p a c # (#.) :: forall a b c q. Coercible c b => q b c -> CotambaraSum p a b -> CotambaraSum p a c # (.#) :: forall a b c q. Coercible b a => CotambaraSum p b c -> q a b -> CotambaraSum p a c # | |
Profunctor (PastroSum p) | |
Defined in Data.Profunctor.Choice Methods dimap :: (a -> b) -> (c -> d) -> PastroSum p b c -> PastroSum p a d # lmap :: (a -> b) -> PastroSum p b c -> PastroSum p a c # rmap :: (b -> c) -> PastroSum p a b -> PastroSum p a c # (#.) :: forall a b c q. Coercible c b => q b c -> PastroSum p a b -> PastroSum p a c # (.#) :: forall a b c q. Coercible b a => PastroSum p b c -> q a b -> PastroSum p a c # | |
Profunctor p => Profunctor (TambaraSum p) | |
Defined in Data.Profunctor.Choice Methods dimap :: (a -> b) -> (c -> d) -> TambaraSum p b c -> TambaraSum p a d # lmap :: (a -> b) -> TambaraSum p b c -> TambaraSum p a c # rmap :: (b -> c) -> TambaraSum p a b -> TambaraSum p a c # (#.) :: forall a b c q. Coercible c b => q b c -> TambaraSum p a b -> TambaraSum p a c # (.#) :: forall a b c q. Coercible b a => TambaraSum p b c -> q a b -> TambaraSum p a c # | |
Profunctor p => Profunctor (Closure p) | |
Defined in Data.Profunctor.Closed Methods dimap :: (a -> b) -> (c -> d) -> Closure p b c -> Closure p a d # lmap :: (a -> b) -> Closure p b c -> Closure p a c # rmap :: (b -> c) -> Closure p a b -> Closure p a c # (#.) :: forall a b c q. Coercible c b => q b c -> Closure p a b -> Closure p a c # (.#) :: forall a b c q. Coercible b a => Closure p b c -> q a b -> Closure p a c # | |
Profunctor (Environment p) | |
Defined in Data.Profunctor.Closed Methods dimap :: (a -> b) -> (c -> d) -> Environment p b c -> Environment p a d # lmap :: (a -> b) -> Environment p b c -> Environment p a c # rmap :: (b -> c) -> Environment p a b -> Environment p a c # (#.) :: forall a b c q. Coercible c b => q b c -> Environment p a b -> Environment p a c # (.#) :: forall a b c q. Coercible b a => Environment p b c -> q a b -> Environment p a c # | |
Profunctor p => Profunctor (CofreeMapping p) | |
Defined in Data.Profunctor.Mapping Methods dimap :: (a -> b) -> (c -> d) -> CofreeMapping p b c -> CofreeMapping p a d # lmap :: (a -> b) -> CofreeMapping p b c -> CofreeMapping p a c # rmap :: (b -> c) -> CofreeMapping p a b -> CofreeMapping p a c # (#.) :: forall a b c q. Coercible c b => q b c -> CofreeMapping p a b -> CofreeMapping p a c # (.#) :: forall a b c q. Coercible b a => CofreeMapping p b c -> q a b -> CofreeMapping p a c # | |
Profunctor (FreeMapping p) | |
Defined in Data.Profunctor.Mapping Methods dimap :: (a -> b) -> (c -> d) -> FreeMapping p b c -> FreeMapping p a d # lmap :: (a -> b) -> FreeMapping p b c -> FreeMapping p a c # rmap :: (b -> c) -> FreeMapping p a b -> FreeMapping p a c # (#.) :: forall a b c q. Coercible c b => q b c -> FreeMapping p a b -> FreeMapping p a c # (.#) :: forall a b c q. Coercible b a => FreeMapping p b c -> q a b -> FreeMapping p a c # | |
Profunctor (Copastro p) | |
Defined in Data.Profunctor.Strong Methods dimap :: (a -> b) -> (c -> d) -> Copastro p b c -> Copastro p a d # lmap :: (a -> b) -> Copastro p b c -> Copastro p a c # rmap :: (b -> c) -> Copastro p a b -> Copastro p a c # (#.) :: forall a b c q. Coercible c b => q b c -> Copastro p a b -> Copastro p a c # (.#) :: forall a b c q. Coercible b a => Copastro p b c -> q a b -> Copastro p a c # | |
Profunctor (Cotambara p) | |
Defined in Data.Profunctor.Strong Methods dimap :: (a -> b) -> (c -> d) -> Cotambara p b c -> Cotambara p a d # lmap :: (a -> b) -> Cotambara p b c -> Cotambara p a c # rmap :: (b -> c) -> Cotambara p a b -> Cotambara p a c # (#.) :: forall a b c q. Coercible c b => q b c -> Cotambara p a b -> Cotambara p a c # (.#) :: forall a b c q. Coercible b a => Cotambara p b c -> q a b -> Cotambara p a c # | |
Profunctor (Pastro p) | |
Defined in Data.Profunctor.Strong Methods dimap :: (a -> b) -> (c -> d) -> Pastro p b c -> Pastro p a d # lmap :: (a -> b) -> Pastro p b c -> Pastro p a c # rmap :: (b -> c) -> Pastro p a b -> Pastro p a c # (#.) :: forall a b c q. Coercible c b => q b c -> Pastro p a b -> Pastro p a c # (.#) :: forall a b c q. Coercible b a => Pastro p b c -> q a b -> Pastro p a c # | |
Profunctor p => Profunctor (Tambara p) | |
Defined in Data.Profunctor.Strong Methods dimap :: (a -> b) -> (c -> d) -> Tambara p b c -> Tambara p a d # lmap :: (a -> b) -> Tambara p b c -> Tambara p a c # rmap :: (b -> c) -> Tambara p a b -> Tambara p a c # (#.) :: forall a b c q. Coercible c b => q b c -> Tambara p a b -> Tambara p a c # (.#) :: forall a b c q. Coercible b a => Tambara p b c -> q a b -> Tambara p a c # | |
Profunctor (Baz t) | |
Defined in Data.Profunctor.Traversing Methods dimap :: (a -> b) -> (c -> d) -> Baz t b c -> Baz t a d # lmap :: (a -> b) -> Baz t b c -> Baz t a c # rmap :: (b -> c) -> Baz t a b -> Baz t a c # (#.) :: forall a b c q. Coercible c b => q b c -> Baz t a b -> Baz t a c # (.#) :: forall a b c q. Coercible b a => Baz t b c -> q a b -> Baz t a c # | |
Profunctor (Bazaar a) | |
Defined in Data.Profunctor.Traversing Methods dimap :: (a0 -> b) -> (c -> d) -> Bazaar a b c -> Bazaar a a0 d # lmap :: (a0 -> b) -> Bazaar a b c -> Bazaar a a0 c # rmap :: (b -> c) -> Bazaar a a0 b -> Bazaar a a0 c # (#.) :: forall a0 b c q. Coercible c b => q b c -> Bazaar a a0 b -> Bazaar a a0 c # (.#) :: forall a0 b c q. Coercible b a0 => Bazaar a b c -> q a0 b -> Bazaar a a0 c # | |
Profunctor p => Profunctor (CofreeTraversing p) | |
Defined in Data.Profunctor.Traversing Methods dimap :: (a -> b) -> (c -> d) -> CofreeTraversing p b c -> CofreeTraversing p a d # lmap :: (a -> b) -> CofreeTraversing p b c -> CofreeTraversing p a c # rmap :: (b -> c) -> CofreeTraversing p a b -> CofreeTraversing p a c # (#.) :: forall a b c q. Coercible c b => q b c -> CofreeTraversing p a b -> CofreeTraversing p a c # (.#) :: forall a b c q. Coercible b a => CofreeTraversing p b c -> q a b -> CofreeTraversing p a c # | |
Profunctor (FreeTraversing p) | |
Defined in Data.Profunctor.Traversing Methods dimap :: (a -> b) -> (c -> d) -> FreeTraversing p b c -> FreeTraversing p a d # lmap :: (a -> b) -> FreeTraversing p b c -> FreeTraversing p a c # rmap :: (b -> c) -> FreeTraversing p a b -> FreeTraversing p a c # (#.) :: forall a b c q. Coercible c b => q b c -> FreeTraversing p a b -> FreeTraversing p a c # (.#) :: forall a b c q. Coercible b a => FreeTraversing p b c -> q a b -> FreeTraversing p a c # | |
Profunctor (Coyoneda p) | |
Defined in Data.Profunctor.Yoneda Methods dimap :: (a -> b) -> (c -> d) -> Coyoneda p b c -> Coyoneda p a d # lmap :: (a -> b) -> Coyoneda p b c -> Coyoneda p a c # rmap :: (b -> c) -> Coyoneda p a b -> Coyoneda p a c # (#.) :: forall a b c q. Coercible c b => q b c -> Coyoneda p a b -> Coyoneda p a c # (.#) :: forall a b c q. Coercible b a => Coyoneda p b c -> q a b -> Coyoneda p a c # | |
Profunctor (Yoneda p) | |
Defined in Data.Profunctor.Yoneda Methods dimap :: (a -> b) -> (c -> d) -> Yoneda p b c -> Yoneda p a d # lmap :: (a -> b) -> Yoneda p b c -> Yoneda p a c # rmap :: (b -> c) -> Yoneda p a b -> Yoneda p a c # (#.) :: forall a b c q. Coercible c b => q b c -> Yoneda p a b -> Yoneda p a c # (.#) :: forall a b c q. Coercible b a => Yoneda p b c -> q a b -> Yoneda p a c # | |
Profunctor (Tagged :: Type -> Type -> Type) | |
Defined in Data.Profunctor.Unsafe Methods dimap :: (a -> b) -> (c -> d) -> Tagged b c -> Tagged a d # lmap :: (a -> b) -> Tagged b c -> Tagged a c # rmap :: (b -> c) -> Tagged a b -> Tagged a c # (#.) :: forall a b c q. Coercible c b => q b c -> Tagged a b -> Tagged a c # (.#) :: forall a b c q. Coercible b a => Tagged b c -> q a b -> Tagged a c # | |
Functor w => Profunctor (Cokleisli w) | |
Defined in Data.Profunctor.Unsafe Methods dimap :: (a -> b) -> (c -> d) -> Cokleisli w b c -> Cokleisli w a d # lmap :: (a -> b) -> Cokleisli w b c -> Cokleisli w a c # rmap :: (b -> c) -> Cokleisli w a b -> Cokleisli w a c # (#.) :: forall a b c q. Coercible c b => q b c -> Cokleisli w a b -> Cokleisli w a c # (.#) :: forall a b c q. Coercible b a => Cokleisli w b c -> q a b -> Cokleisli w a c # | |
Functor f => Profunctor (Costar f) | |
Defined in Data.Profunctor.Types Methods dimap :: (a -> b) -> (c -> d) -> Costar f b c -> Costar f a d # lmap :: (a -> b) -> Costar f b c -> Costar f a c # rmap :: (b -> c) -> Costar f a b -> Costar f a c # (#.) :: forall a b c q. Coercible c b => q b c -> Costar f a b -> Costar f a c # (.#) :: forall a b c q. Coercible b a => Costar f b c -> q a b -> Costar f a c # | |
Profunctor (Forget r :: Type -> Type -> Type) | |
Defined in Data.Profunctor.Types Methods dimap :: (a -> b) -> (c -> d) -> Forget r b c -> Forget r a d # lmap :: (a -> b) -> Forget r b c -> Forget r a c # rmap :: (b -> c) -> Forget r a b -> Forget r a c # (#.) :: forall a b c q. Coercible c b => q b c -> Forget r a b -> Forget r a c # (.#) :: forall a b c q. Coercible b a => Forget r b c -> q a b -> Forget r a c # | |
Functor f => Profunctor (Star f) | |
Defined in Data.Profunctor.Types Methods dimap :: (a -> b) -> (c -> d) -> Star f b c -> Star f a d # lmap :: (a -> b) -> Star f b c -> Star f a c # rmap :: (b -> c) -> Star f a b -> Star f a c # (#.) :: forall a b c q. Coercible c b => q b c -> Star f a b -> Star f a c # (.#) :: forall a b c q. Coercible b a => Star f b c -> q a b -> Star f a c # | |
Profunctor (->) | |
Defined in Data.Profunctor.Unsafe | |
Contravariant f => Profunctor (Clown f :: Type -> Type -> Type) | |
Defined in Data.Profunctor.Unsafe Methods dimap :: (a -> b) -> (c -> d) -> Clown f b c -> Clown f a d # lmap :: (a -> b) -> Clown f b c -> Clown f a c # rmap :: (b -> c) -> Clown f a b -> Clown f a c # (#.) :: forall a b c q. Coercible c b => q b c -> Clown f a b -> Clown f a c # (.#) :: forall a b c q. Coercible b a => Clown f b c -> q a b -> Clown f a c # | |
Functor f => Profunctor (Joker f :: Type -> Type -> Type) | |
Defined in Data.Profunctor.Unsafe Methods dimap :: (a -> b) -> (c -> d) -> Joker f b c -> Joker f a d # lmap :: (a -> b) -> Joker f b c -> Joker f a c # rmap :: (b -> c) -> Joker f a b -> Joker f a c # (#.) :: forall a b c q. Coercible c b => q b c -> Joker f a b -> Joker f a c # (.#) :: forall a b c q. Coercible b a => Joker f b c -> q a b -> Joker f a c # | |
Profunctor p => Profunctor (Codensity p) | |
Defined in Data.Profunctor.Ran Methods dimap :: (a -> b) -> (c -> d) -> Codensity p b c -> Codensity p a d # lmap :: (a -> b) -> Codensity p b c -> Codensity p a c # rmap :: (b -> c) -> Codensity p a b -> Codensity p a c # (#.) :: forall a b c q. Coercible c b => q b c -> Codensity p a b -> Codensity p a c # (.#) :: forall a b c q. Coercible b a => Codensity p b c -> q a b -> Codensity p a c # | |
Arrow p => Profunctor (WrappedArrow p) | |
Defined in Data.Profunctor.Types Methods dimap :: (a -> b) -> (c -> d) -> WrappedArrow p b c -> WrappedArrow p a d # lmap :: (a -> b) -> WrappedArrow p b c -> WrappedArrow p a c # rmap :: (b -> c) -> WrappedArrow p a b -> WrappedArrow p a c # (#.) :: forall a b c q. Coercible c b => q b c -> WrappedArrow p a b -> WrappedArrow p a c # (.#) :: forall a b c q. Coercible b a => WrappedArrow p b c -> q a b -> WrappedArrow p a c # | |
(Profunctor p, Profunctor q) => Profunctor (Product p q) | |
Defined in Data.Profunctor.Unsafe Methods dimap :: (a -> b) -> (c -> d) -> Product p q b c -> Product p q a d # lmap :: (a -> b) -> Product p q b c -> Product p q a c # rmap :: (b -> c) -> Product p q a b -> Product p q a c # (#.) :: forall a b c q0. Coercible c b => q0 b c -> Product p q a b -> Product p q a c # (.#) :: forall a b c q0. Coercible b a => Product p q b c -> q0 a b -> Product p q a c # | |
(Profunctor p, Profunctor q) => Profunctor (Sum p q) | |
Defined in Data.Profunctor.Unsafe Methods dimap :: (a -> b) -> (c -> d) -> Sum p q b c -> Sum p q a d # lmap :: (a -> b) -> Sum p q b c -> Sum p q a c # rmap :: (b -> c) -> Sum p q a b -> Sum p q a c # (#.) :: forall a b c q0. Coercible c b => q0 b c -> Sum p q a b -> Sum p q a c # (.#) :: forall a b c q0. Coercible b a => Sum p q b c -> q0 a b -> Sum p q a c # | |
(Functor f, Profunctor p) => Profunctor (Tannen f p) | |
Defined in Data.Profunctor.Unsafe Methods dimap :: (a -> b) -> (c -> d) -> Tannen f p b c -> Tannen f p a d # lmap :: (a -> b) -> Tannen f p b c -> Tannen f p a c # rmap :: (b -> c) -> Tannen f p a b -> Tannen f p a c # (#.) :: forall a b c q. Coercible c b => q b c -> Tannen f p a b -> Tannen f p a c # (.#) :: forall a b c q. Coercible b a => Tannen f p b c -> q a b -> Tannen f p a c # | |
(Functor f, Profunctor p) => Profunctor (Cayley f p) | |
Defined in Data.Profunctor.Cayley Methods dimap :: (a -> b) -> (c -> d) -> Cayley f p b c -> Cayley f p a d # lmap :: (a -> b) -> Cayley f p b c -> Cayley f p a c # rmap :: (b -> c) -> Cayley f p a b -> Cayley f p a c # (#.) :: forall a b c q. Coercible c b => q b c -> Cayley f p a b -> Cayley f p a c # (.#) :: forall a b c q. Coercible b a => Cayley f p b c -> q a b -> Cayley f p a c # | |
(Profunctor p, Profunctor q) => Profunctor (Procompose p q) | |
Defined in Data.Profunctor.Composition Methods dimap :: (a -> b) -> (c -> d) -> Procompose p q b c -> Procompose p q a d # lmap :: (a -> b) -> Procompose p q b c -> Procompose p q a c # rmap :: (b -> c) -> Procompose p q a b -> Procompose p q a c # (#.) :: forall a b c q0. Coercible c b => q0 b c -> Procompose p q a b -> Procompose p q a c # (.#) :: forall a b c q0. Coercible b a => Procompose p q b c -> q0 a b -> Procompose p q a c # | |
(Profunctor p, Profunctor q) => Profunctor (Rift p q) | |
Defined in Data.Profunctor.Composition Methods dimap :: (a -> b) -> (c -> d) -> Rift p q b c -> Rift p q a d # lmap :: (a -> b) -> Rift p q b c -> Rift p q a c # rmap :: (b -> c) -> Rift p q a b -> Rift p q a c # (#.) :: forall a b c q0. Coercible c b => q0 b c -> Rift p q a b -> Rift p q a c # (.#) :: forall a b c q0. Coercible b a => Rift p q b c -> q0 a b -> Rift p q a c # | |
(Profunctor p, Profunctor q) => Profunctor (Ran p q) | |
Defined in Data.Profunctor.Ran Methods dimap :: (a -> b) -> (c -> d) -> Ran p q b c -> Ran p q a d # lmap :: (a -> b) -> Ran p q b c -> Ran p q a c # rmap :: (b -> c) -> Ran p q a b -> Ran p q a c # (#.) :: forall a b c q0. Coercible c b => q0 b c -> Ran p q a b -> Ran p q a c # (.#) :: forall a b c q0. Coercible b a => Ran p q b c -> q0 a b -> Ran p q a c # | |
(Profunctor p, Functor f, Functor g) => Profunctor (Biff p f g) | |
Defined in Data.Profunctor.Unsafe Methods dimap :: (a -> b) -> (c -> d) -> Biff p f g b c -> Biff p f g a d # lmap :: (a -> b) -> Biff p f g b c -> Biff p f g a c # rmap :: (b -> c) -> Biff p f g a b -> Biff p f g a c # (#.) :: forall a b c q. Coercible c b => q b c -> Biff p f g a b -> Biff p f g a c # (.#) :: forall a b c q. Coercible b a => Biff p f g b c -> q a b -> Biff p f g a c # |