squeal


Github
Hackage
Stackage
installation
stack install squeal-postgresql
usage
Squeal is a deep embedding of PostgreSQL in Haskell. Let's see an example!
First, we need some language extensions because Squeal uses modern GHC
features.
>>> :set -XDataKinds -XDeriveGeneric -XOverloadedLabels
>>> :set -XOverloadedStrings -XTypeApplications -XTypeOperators
We'll need some imports.
>>> import Control.Monad (void)
>>> import Control.Monad.Base (liftBase)
>>> import Data.Int (Int32)
>>> import Data.Text (Text)
>>> import Squeal.PostgreSQL
We'll use generics to easily convert between Haskell and PostgreSQL values.
>>> import qualified Generics.SOP as SOP
>>> import qualified GHC.Generics as GHC
The first step is to define the schema of our database. This is where
we use DataKinds
and TypeOperators
. The schema consists of a type-level
list of tables, a :::
pairing of a type level string or
Symbol
and a list a columns, itself a :::
pairing of a
Symbol
and a ColumnType
. The ColumnType
describes the
PostgreSQL type of the column as well as whether or not it may contain
NULL
and whether or not inserts and updates can use a DEFAULT
. For our
schema, we'll define two tables, a users table and an emails table.
>>> :{
type Schema =
'[ "users" :::
'[ "pk_users" ::: 'PrimaryKey '["id"] ] :=>
'[ "id" ::: 'Def :=> 'NotNull 'PGint4
, "name" ::: 'NoDef :=> 'NotNull 'PGtext
]
, "emails" :::
'[ "pk_emails" ::: 'PrimaryKey '["id"]
, "fk_user_id" ::: 'ForeignKey '["user_id"] "users" '["id"]
] :=>
'[ "id" ::: 'Def :=> 'NotNull 'PGint4
, "user_id" ::: 'NoDef :=> 'NotNull 'PGint4
, "email" ::: 'NoDef :=> 'Null 'PGtext
]
]
:}
Next, we'll write Definition
s to set up and tear down the schema. In
Squeal, a Definition
is a createTable
, alterTable
or dropTable
command and has two type parameters, corresponding to the schema
before being run and the schema after. We can compose definitions using
>>>
. Here and in the rest of our commands we make use of overloaded
labels to refer to named tables and columns in our schema.
>>> :{
let
setup :: Definition '[] Schema
setup =
createTable #users
( serial `As` #id :*
(text & notNull) `As` #name :* Nil )
( primaryKey (Column #id :* Nil) `As` #pk_users :* Nil ) >>>
createTable #emails
( serial `As` #id :*
(int & notNull) `As` #user_id :*
text `As` #email :* Nil )
( primaryKey (Column #id :* Nil) `As` #pk_emails :*
foreignKey (Column #user_id :* Nil) #users (Column #id :* Nil)
OnDeleteCascade OnUpdateCascade `As` #fk_user_id :* Nil )
:}
We can easily see the generated SQL is unsuprising looking.
>>> renderDefinition setup
"CREATE TABLE users (id serial, name text NOT NULL, CONSTRAINT pk_users PRIMARY KEY (id)); CREATE TABLE emails (id serial, user_id int NOT NULL, email text, CONSTRAINT pk_emails PRIMARY KEY (id), CONSTRAINT fk_user_id FOREIGN KEY (user_id) REFERENCES rs (id) ON DELETE CASCADE ON UPDATE CASCADE);"
Notice that setup
starts with an empty schema '[]
and produces Schema
.
In our createTable
commands we included TableConstraint
s to define
primary and foreign keys, making them somewhat complex. Our tear down
Definition
is simpler.
>>> :{
let
teardown :: Definition Schema '[]
teardown = dropTable #emails >>> dropTable #users
:}
>>> renderDefinition teardown
"DROP TABLE emails; DROP TABLE users;"
Next, we'll write Manipulation
s to insert data into our two tables.
A Manipulation
is a insertInto
, update
or deleteFrom
command and
has three type parameters, the schema it refers to, a list of parameters
it can take as input, and a list of columns it produces as output. When
we insert into the users table, we will need a parameter for the name
field but not for the id
field. Since it's optional, we can use a default
value. However, since the emails table refers to the users table, we will
need to retrieve the user id that the insert generates and insert it into
the emails table. Take a careful look at the type and definition of both
of our inserts.
>>> :{
let
insertUser :: Manipulation Schema '[ 'NotNull 'PGtext ]
'[ "fromOnly" ::: 'NotNull 'PGint4 ]
insertUser = insertRow #users
(Default `As` #id :* Set (param `1) `As` #name :* Nil)
OnConflictDoNothing (Returning (#id `As` #fromOnly :* Nil))
:}
>>> :{
let
insertEmail :: Manipulation Schema '[ 'NotNull 'PGint4, 'Null 'PGtext] '[]
insertEmail = insertRow #emails
( Default `As` #id :*
Set (param `1) `As` #user_id :*
Set (param `2) `As` #email :* Nil )
OnConflictDoNothing (Returning Nil)
:}
>>> renderManipulation insertUser
"INSERT INTO users (id, name) VALUES (DEFAULT, ($1 :: text)) ON CONFLICT DO NOTHING URNING id AS fromOnly;"
>>> renderManipulation insertEmail
"INSERT INTO emails (id, user_id, email) VALUES (DEFAULT, ($1 :: int4), ($2 :: text)N CONFLICT DO NOTHING;"
Next we write a Query
to retrieve users from the database. We're not
interested in the ids here, just the usernames and email addresses. We
need to use an inner join to get the right result. A Query
is like a
Manipulation
with the same kind of type parameters.
>>> :{
let
getUsers :: Query Schema '[]
'[ "userName" ::: 'NotNull 'PGtext
, "userEmail" ::: 'Null 'PGtext ]
getUsers = select
(#u ! #name `As` #userName :* #e ! #email `As` #userEmail :* Nil)
( from (table (#users `As` #u)
& innerJoin (table (#emails `As` #e))
(#u ! #id .== #e ! #user_id)) )
:}
>>> renderQuery getUsers
"SELECT u.name AS userName, e.email AS userEmail FROM users AS u INNER JOIN emails e ON (u.id = e.user_id)"
Now that we've defined the SQL side of things, we'll need a Haskell type
for users. We give the type Generics.SOP.Generic
and
Generics.SOP.HasDatatypeInfo
instances so that we can decode the rows
we receive when we run getUsers
. Notice that the record fields of the
User
type match the column names of getUsers
.
>>> data User = User { userName :: Text, userEmail :: Maybe Text } deriving (Show, .Generic)
>>> instance SOP.Generic User
>>> instance SOP.HasDatatypeInfo User
Let's also create some users to add to the database.
>>> :{
let
users :: [User]
users =
[ User "Alice" (Just "alice`gmail.com")
, User "Bob" Nothing
, User "Carole" (Just "carole`hotmail.com")
]
:}
Now we can put together all the pieces into a program. The program
connects to the database, sets up the schema, inserts the user data
(using prepared statements as an optimization), queries the user
data and prints it out and finally closes the connection. We can thread
the changing schema information through by using the indexed PQ
monad
transformer and when the schema doesn't change we can use Monad
and
MonadPQ
functionality.
>>> :{
let
session :: PQ Schema Schema IO ()
session = do
idResults <- traversePrepared insertUser (Only . userName <$> users)
ids <- traverse (fmap fromOnly . getRow (RowNumber 0)) idResults
traversePrepared_ insertEmail (zip (ids :: [Int32]) (userEmail <$> users))
usersResult <- runQuery getUsers
usersRows <- getRows usersResult
liftBase $ print (usersRows :: [User])
:}
>>> :{
void . withConnection "host=localhost port=5432 dbname=exampledb" $
define setup
& pqThen session
& thenDefine teardown
:}
[User {userName = "Alice", userEmail = Just "alice`gmail.com"},User {userName = "Bob", userEmail = Nothing},User {userName = "Carole", userEmail = Just role`hotmail.com"}]