{-# LANGUAGE FlexibleInstances #-}
{-# OPTIONS_GHC -Wall -Werror -Wno-orphans #-}
module Data.SBV.Rational (
(.%)
) where
import qualified Data.Ratio as R
import Data.SBV.Core.Data
import Data.SBV.Core.Model
infixl 7 .%
(.%) :: SInteger -> SInteger -> SRational
SInteger
top .% :: SInteger -> SInteger -> SRational
.% SInteger
bot
| Just Integer
t <- SInteger -> Maybe Integer
forall a. SymVal a => SBV a -> Maybe a
unliteral SInteger
top
, Just Integer
b <- SInteger -> Maybe Integer
forall a. SymVal a => SBV a -> Maybe a
unliteral SInteger
bot
= Rational -> SRational
forall a. SymVal a => a -> SBV a
literal (Rational -> SRational) -> Rational -> SRational
forall a b. (a -> b) -> a -> b
$ Integer
t Integer -> Integer -> Rational
forall a. Integral a => a -> a -> Ratio a
R.% Integer
b
| Bool
True
= SVal -> SRational
forall a. SVal -> SBV a
SBV (SVal -> SRational) -> SVal -> SRational
forall a b. (a -> b) -> a -> b
$ Kind -> Either CV (Cached SV) -> SVal
SVal Kind
KRational (Either CV (Cached SV) -> SVal) -> Either CV (Cached SV) -> SVal
forall a b. (a -> b) -> a -> b
$ Cached SV -> Either CV (Cached SV)
forall a b. b -> Either a b
Right (Cached SV -> Either CV (Cached SV))
-> Cached SV -> Either CV (Cached SV)
forall a b. (a -> b) -> a -> b
$ (State -> IO SV) -> Cached SV
forall a. (State -> IO a) -> Cached a
cache State -> IO SV
res
where res :: State -> IO SV
res State
st = do SV
t <- State -> SInteger -> IO SV
forall a. State -> SBV a -> IO SV
sbvToSV State
st SInteger
top
SV
b <- State -> SInteger -> IO SV
forall a. State -> SBV a -> IO SV
sbvToSV State
st SInteger
bot
State -> Kind -> SBVExpr -> IO SV
newExpr State
st Kind
KRational (SBVExpr -> IO SV) -> SBVExpr -> IO SV
forall a b. (a -> b) -> a -> b
$ Op -> [SV] -> SBVExpr
SBVApp Op
RationalConstructor [SV
t, SV
b]
doNotExport_numerator :: SRational -> SInteger
doNotExport_numerator :: SRational -> SInteger
doNotExport_numerator SRational
x = SVal -> SInteger
forall a. SVal -> SBV a
SBV (SVal -> SInteger) -> SVal -> SInteger
forall a b. (a -> b) -> a -> b
$ Kind -> Either CV (Cached SV) -> SVal
SVal Kind
KUnbounded (Either CV (Cached SV) -> SVal) -> Either CV (Cached SV) -> SVal
forall a b. (a -> b) -> a -> b
$ Cached SV -> Either CV (Cached SV)
forall a b. b -> Either a b
Right (Cached SV -> Either CV (Cached SV))
-> Cached SV -> Either CV (Cached SV)
forall a b. (a -> b) -> a -> b
$ (State -> IO SV) -> Cached SV
forall a. (State -> IO a) -> Cached a
cache State -> IO SV
res
where res :: State -> IO SV
res State
st = do SV
xv <- State -> SRational -> IO SV
forall a. State -> SBV a -> IO SV
sbvToSV State
st SRational
x
State -> Kind -> SBVExpr -> IO SV
newExpr State
st Kind
KUnbounded (SBVExpr -> IO SV) -> SBVExpr -> IO SV
forall a b. (a -> b) -> a -> b
$ Op -> [SV] -> SBVExpr
SBVApp (String -> Op
Uninterpreted String
"sbv.rat.numerator") [SV
xv]
doNotExport_denominator :: SRational -> SInteger
doNotExport_denominator :: SRational -> SInteger
doNotExport_denominator SRational
x = SVal -> SInteger
forall a. SVal -> SBV a
SBV (SVal -> SInteger) -> SVal -> SInteger
forall a b. (a -> b) -> a -> b
$ Kind -> Either CV (Cached SV) -> SVal
SVal Kind
KUnbounded (Either CV (Cached SV) -> SVal) -> Either CV (Cached SV) -> SVal
forall a b. (a -> b) -> a -> b
$ Cached SV -> Either CV (Cached SV)
forall a b. b -> Either a b
Right (Cached SV -> Either CV (Cached SV))
-> Cached SV -> Either CV (Cached SV)
forall a b. (a -> b) -> a -> b
$ (State -> IO SV) -> Cached SV
forall a. (State -> IO a) -> Cached a
cache State -> IO SV
res
where res :: State -> IO SV
res State
st = do SV
xv <- State -> SRational -> IO SV
forall a. State -> SBV a -> IO SV
sbvToSV State
st SRational
x
State -> Kind -> SBVExpr -> IO SV
newExpr State
st Kind
KUnbounded (SBVExpr -> IO SV) -> SBVExpr -> IO SV
forall a b. (a -> b) -> a -> b
$ Op -> [SV] -> SBVExpr
SBVApp (String -> Op
Uninterpreted String
"sbv.rat.denominator") [SV
xv]
instance Num SRational where
fromInteger :: Integer -> SRational
fromInteger Integer
i = SVal -> SRational
forall a. SVal -> SBV a
SBV (SVal -> SRational) -> SVal -> SRational
forall a b. (a -> b) -> a -> b
$ Kind -> Either CV (Cached SV) -> SVal
SVal Kind
KRational (Either CV (Cached SV) -> SVal) -> Either CV (Cached SV) -> SVal
forall a b. (a -> b) -> a -> b
$ CV -> Either CV (Cached SV)
forall a b. a -> Either a b
Left (CV -> Either CV (Cached SV)) -> CV -> Either CV (Cached SV)
forall a b. (a -> b) -> a -> b
$ Kind -> Integer -> CV
forall a. Integral a => Kind -> a -> CV
mkConstCV Kind
KRational (Integer -> Integer
forall a b. (Integral a, Num b) => a -> b
fromIntegral Integer
i :: Integer)
+ :: SRational -> SRational -> SRational
(+) = (Rational -> Rational -> Rational)
-> ((SInteger, SInteger) -> (SInteger, SInteger) -> SRational)
-> SRational
-> SRational
-> SRational
forall t.
SymVal t =>
(Rational -> Rational -> t)
-> ((SInteger, SInteger) -> (SInteger, SInteger) -> SBV t)
-> SRational
-> SRational
-> SBV t
lift2 Rational -> Rational -> Rational
forall a. Num a => a -> a -> a
(+) (\(SInteger
t1, SInteger
b1) (SInteger
t2, SInteger
b2) -> (SInteger
t1 SInteger -> SInteger -> SInteger
forall a. Num a => a -> a -> a
* SInteger
b2 SInteger -> SInteger -> SInteger
forall a. Num a => a -> a -> a
+ SInteger
t2 SInteger -> SInteger -> SInteger
forall a. Num a => a -> a -> a
* SInteger
b1) SInteger -> SInteger -> SRational
.% (SInteger
b1 SInteger -> SInteger -> SInteger
forall a. Num a => a -> a -> a
* SInteger
b2))
(-) = (Rational -> Rational -> Rational)
-> ((SInteger, SInteger) -> (SInteger, SInteger) -> SRational)
-> SRational
-> SRational
-> SRational
forall t.
SymVal t =>
(Rational -> Rational -> t)
-> ((SInteger, SInteger) -> (SInteger, SInteger) -> SBV t)
-> SRational
-> SRational
-> SBV t
lift2 (-) (\(SInteger
t1, SInteger
b1) (SInteger
t2, SInteger
b2) -> (SInteger
t1 SInteger -> SInteger -> SInteger
forall a. Num a => a -> a -> a
* SInteger
b2 SInteger -> SInteger -> SInteger
forall a. Num a => a -> a -> a
- SInteger
t2 SInteger -> SInteger -> SInteger
forall a. Num a => a -> a -> a
* SInteger
b1) SInteger -> SInteger -> SRational
.% (SInteger
b1 SInteger -> SInteger -> SInteger
forall a. Num a => a -> a -> a
* SInteger
b2))
* :: SRational -> SRational -> SRational
(*) = (Rational -> Rational -> Rational)
-> ((SInteger, SInteger) -> (SInteger, SInteger) -> SRational)
-> SRational
-> SRational
-> SRational
forall t.
SymVal t =>
(Rational -> Rational -> t)
-> ((SInteger, SInteger) -> (SInteger, SInteger) -> SBV t)
-> SRational
-> SRational
-> SBV t
lift2 Rational -> Rational -> Rational
forall a. Num a => a -> a -> a
(*) (\(SInteger
t1, SInteger
b1) (SInteger
t2, SInteger
b2) -> (SInteger
t1 SInteger -> SInteger -> SInteger
forall a. Num a => a -> a -> a
* SInteger
t2 ) SInteger -> SInteger -> SRational
.% (SInteger
b1 SInteger -> SInteger -> SInteger
forall a. Num a => a -> a -> a
* SInteger
b2))
abs :: SRational -> SRational
abs = (Rational -> Rational)
-> ((SInteger, SInteger) -> SRational) -> SRational -> SRational
forall t.
SymVal t =>
(Rational -> t)
-> ((SInteger, SInteger) -> SBV t) -> SRational -> SBV t
lift1 Rational -> Rational
forall a. Num a => a -> a
abs (\(SInteger
t, SInteger
b) -> SInteger -> SInteger
forall a. Num a => a -> a
abs SInteger
t SInteger -> SInteger -> SRational
.% SInteger
b)
negate :: SRational -> SRational
negate = (Rational -> Rational)
-> ((SInteger, SInteger) -> SRational) -> SRational -> SRational
forall t.
SymVal t =>
(Rational -> t)
-> ((SInteger, SInteger) -> SBV t) -> SRational -> SBV t
lift1 Rational -> Rational
forall a. Num a => a -> a
negate (\(SInteger
t, SInteger
b) -> SInteger -> SInteger
forall a. Num a => a -> a
negate SInteger
t SInteger -> SInteger -> SRational
.% SInteger
b)
signum :: SRational -> SRational
signum SRational
a = SBool -> SRational -> SRational -> SRational
forall a. Mergeable a => SBool -> a -> a -> a
ite (SRational
a SRational -> SRational -> SBool
forall a. OrdSymbolic a => a -> a -> SBool
.> SRational
0) SRational
1 (SRational -> SRational) -> SRational -> SRational
forall a b. (a -> b) -> a -> b
$ SBool -> SRational -> SRational -> SRational
forall a. Mergeable a => SBool -> a -> a -> a
ite (SRational
a SRational -> SRational -> SBool
forall a. OrdSymbolic a => a -> a -> SBool
.< SRational
0) (-SRational
1) SRational
0
instance OrdSymbolic SRational where
.< :: SRational -> SRational -> SBool
(.<) = (Rational -> Rational -> Bool)
-> ((SInteger, SInteger) -> (SInteger, SInteger) -> SBool)
-> SRational
-> SRational
-> SBool
forall t.
SymVal t =>
(Rational -> Rational -> t)
-> ((SInteger, SInteger) -> (SInteger, SInteger) -> SBV t)
-> SRational
-> SRational
-> SBV t
lift2 Rational -> Rational -> Bool
forall a. Ord a => a -> a -> Bool
(<) (\(SInteger
t1, SInteger
b1) (SInteger
t2, SInteger
b2) -> (SInteger
t1 SInteger -> SInteger -> SInteger
forall a. Num a => a -> a -> a
* SInteger
b2) SInteger -> SInteger -> SBool
forall a. OrdSymbolic a => a -> a -> SBool
.< (SInteger
b1 SInteger -> SInteger -> SInteger
forall a. Num a => a -> a -> a
* SInteger
t2))
.<= :: SRational -> SRational -> SBool
(.<=) = (Rational -> Rational -> Bool)
-> ((SInteger, SInteger) -> (SInteger, SInteger) -> SBool)
-> SRational
-> SRational
-> SBool
forall t.
SymVal t =>
(Rational -> Rational -> t)
-> ((SInteger, SInteger) -> (SInteger, SInteger) -> SBV t)
-> SRational
-> SRational
-> SBV t
lift2 Rational -> Rational -> Bool
forall a. Ord a => a -> a -> Bool
(<=) (\(SInteger
t1, SInteger
b1) (SInteger
t2, SInteger
b2) -> (SInteger
t1 SInteger -> SInteger -> SInteger
forall a. Num a => a -> a -> a
* SInteger
b2) SInteger -> SInteger -> SBool
forall a. OrdSymbolic a => a -> a -> SBool
.<= (SInteger
b1 SInteger -> SInteger -> SInteger
forall a. Num a => a -> a -> a
* SInteger
t2))
.> :: SRational -> SRational -> SBool
(.>) = (Rational -> Rational -> Bool)
-> ((SInteger, SInteger) -> (SInteger, SInteger) -> SBool)
-> SRational
-> SRational
-> SBool
forall t.
SymVal t =>
(Rational -> Rational -> t)
-> ((SInteger, SInteger) -> (SInteger, SInteger) -> SBV t)
-> SRational
-> SRational
-> SBV t
lift2 Rational -> Rational -> Bool
forall a. Ord a => a -> a -> Bool
(>) (\(SInteger
t1, SInteger
b1) (SInteger
t2, SInteger
b2) -> (SInteger
t1 SInteger -> SInteger -> SInteger
forall a. Num a => a -> a -> a
* SInteger
b2) SInteger -> SInteger -> SBool
forall a. OrdSymbolic a => a -> a -> SBool
.> (SInteger
b1 SInteger -> SInteger -> SInteger
forall a. Num a => a -> a -> a
* SInteger
t2))
.>= :: SRational -> SRational -> SBool
(.>=) = (Rational -> Rational -> Bool)
-> ((SInteger, SInteger) -> (SInteger, SInteger) -> SBool)
-> SRational
-> SRational
-> SBool
forall t.
SymVal t =>
(Rational -> Rational -> t)
-> ((SInteger, SInteger) -> (SInteger, SInteger) -> SBV t)
-> SRational
-> SRational
-> SBV t
lift2 Rational -> Rational -> Bool
forall a. Ord a => a -> a -> Bool
(>=) (\(SInteger
t1, SInteger
b1) (SInteger
t2, SInteger
b2) -> (SInteger
t1 SInteger -> SInteger -> SInteger
forall a. Num a => a -> a -> a
* SInteger
b2) SInteger -> SInteger -> SBool
forall a. OrdSymbolic a => a -> a -> SBool
.>= (SInteger
b1 SInteger -> SInteger -> SInteger
forall a. Num a => a -> a -> a
* SInteger
t2))
doNotExport_getTB :: SRational -> (SInteger, SInteger)
doNotExport_getTB :: SRational -> (SInteger, SInteger)
doNotExport_getTB SRational
a = (SRational -> SInteger
doNotExport_numerator SRational
a, SRational -> SInteger
doNotExport_denominator SRational
a)
lift1 :: SymVal t => (Rational -> t) -> ((SInteger, SInteger) -> SBV t) -> SRational -> SBV t
lift1 :: forall t.
SymVal t =>
(Rational -> t)
-> ((SInteger, SInteger) -> SBV t) -> SRational -> SBV t
lift1 Rational -> t
cf (SInteger, SInteger) -> SBV t
f SRational
a
| Just Rational
va <- SRational -> Maybe Rational
forall a. SymVal a => SBV a -> Maybe a
unliteral SRational
a
= t -> SBV t
forall a. SymVal a => a -> SBV a
literal (Rational -> t
cf Rational
va)
| Bool
True
= (SInteger, SInteger) -> SBV t
f (SRational -> (SInteger, SInteger)
doNotExport_getTB SRational
a)
lift2 :: SymVal t => (Rational -> Rational -> t) -> ((SInteger, SInteger) -> (SInteger, SInteger) -> SBV t) -> SRational -> SRational -> SBV t
lift2 :: forall t.
SymVal t =>
(Rational -> Rational -> t)
-> ((SInteger, SInteger) -> (SInteger, SInteger) -> SBV t)
-> SRational
-> SRational
-> SBV t
lift2 Rational -> Rational -> t
cf (SInteger, SInteger) -> (SInteger, SInteger) -> SBV t
f SRational
a SRational
b
| Just Rational
va <- SRational -> Maybe Rational
forall a. SymVal a => SBV a -> Maybe a
unliteral SRational
a, Just Rational
vb <- SRational -> Maybe Rational
forall a. SymVal a => SBV a -> Maybe a
unliteral SRational
b
= t -> SBV t
forall a. SymVal a => a -> SBV a
literal (Rational
va Rational -> Rational -> t
`cf` Rational
vb)
| Bool
True
= (SInteger, SInteger) -> (SInteger, SInteger) -> SBV t
f (SRational -> (SInteger, SInteger)
doNotExport_getTB SRational
a) (SRational -> (SInteger, SInteger)
doNotExport_getTB SRational
b)