| Copyright | (c) Levent Erkok |
|---|---|
| License | BSD3 |
| Maintainer | erkokl@gmail.com |
| Stability | experimental |
| Safe Haskell | None |
| Language | Haskell2010 |
Documentation.SBV.Examples.TP.Tao
Description
A question posed by Terrence Tao: https://mathstodon.xyz/@tao/110736805384878353. Essentially, for an arbitrary binary operation op, we prove that
(x op x) op y == y op x
Implies op must be commutative.
Documentation
Create an uninterpreted type to do the proofs over.
Instances
| Arbitrary T Source # | |
| SymVal T Source # | |
Defined in Documentation.SBV.Examples.TP.Tao Methods mkSymVal :: MonadSymbolic m => VarContext -> Maybe String -> m (SBV T) Source # mkSymValInit :: State -> SBV T -> IO () Source # literal :: T -> SBV T Source # isConcretely :: SBV T -> (T -> Bool) -> Bool Source # minMaxBound :: Maybe (T, T) Source # free :: MonadSymbolic m => String -> m (SBV T) Source # free_ :: MonadSymbolic m => m (SBV T) Source # mkFreeVars :: MonadSymbolic m => Int -> m [SBV T] Source # symbolic :: MonadSymbolic m => String -> m (SBV T) Source # symbolics :: MonadSymbolic m => [String] -> m [SBV T] Source # unliteral :: SBV T -> Maybe T Source # unlitCV :: SBV T -> Maybe (Kind, CVal) Source # | |
| HasKind T Source # | |
Defined in Documentation.SBV.Examples.TP.Tao | |
_undefiner_T :: a Source #
Autogenerated definition to avoid unused-variable warnings from GHC.