----------------------------------------------------------------------------- -- | -- Module : Documentation.SBV.Examples.Uninterpreted.Sort -- Copyright : (c) Levent Erkok -- License : BSD3 -- Maintainer: erkokl@gmail.com -- Stability : experimental -- -- Demonstrates uninterpreted sorts, together with axioms. ----------------------------------------------------------------------------- {-# LANGUAGE DeriveAnyClass #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE TemplateHaskell #-} {-# OPTIONS_GHC -Wall -Werror #-} module Documentation.SBV.Examples.Uninterpreted.Sort where import Data.SBV -- | A new data-type that we expect to use in an uninterpreted fashion -- in the backend SMT solver. data Q -- | Make 'Q' an uinterpreted sort. This will automatically introduce the -- type 'SQ' into our environment, which is the symbolic version of the -- carrier type 'Q'. mkUninterpretedSort ''Q -- | Declare an uninterpreted function that works over Q's f :: SQ -> SQ f :: SQ -> SQ f = String -> SQ -> SQ forall a. SMTDefinable a => String -> a uninterpret String "f" -- | A satisfiable example, stating that there is an element of the domain -- 'Q' such that 'f' returns a different element. Note that this is valid only -- when the domain 'Q' has at least two elements. We have: -- -- >>> t1 -- Satisfiable. Model: -- x = Q_0 :: Q -- <BLANKLINE> -- f :: Q -> Q -- f _ = Q_1 t1 :: IO SatResult t1 :: IO SatResult t1 = SymbolicT IO SBool -> IO SatResult forall a. Satisfiable a => a -> IO SatResult sat (SymbolicT IO SBool -> IO SatResult) -> SymbolicT IO SBool -> IO SatResult forall a b. (a -> b) -> a -> b $ do x <- String -> Symbolic SQ forall a. SymVal a => String -> Symbolic (SBV a) free String "x" return $ f x ./= x -- | This is a variant on the first example, except we also add an axiom -- for the sort, stating that the domain 'Q' has only one element. In this case -- the problem naturally becomes unsat. We have: -- -- >>> t2 -- Unsatisfiable t2 :: IO SatResult t2 :: IO SatResult t2 = SymbolicT IO SBool -> IO SatResult forall a. Satisfiable a => a -> IO SatResult sat (SymbolicT IO SBool -> IO SatResult) -> SymbolicT IO SBool -> IO SatResult forall a b. (a -> b) -> a -> b $ do x <- String -> Symbolic SQ forall a. SymVal a => String -> Symbolic (SBV a) free String "x" constrain $ \(Forall SQ a) (Forall SQ b) -> SQ a SQ -> SQ -> SBool forall a. EqSymbolic a => a -> a -> SBool .== (SQ b :: SQ) return $ f x ./= x