-----------------------------------------------------------------------------
-- |
-- Module    : Documentation.SBV.Examples.Misc.Floating
-- Copyright : (c) Levent Erkok
-- License   : BSD3
-- Maintainer: erkokl@gmail.com
-- Stability : experimental
--
-- Several examples involving IEEE-754 floating point numbers, i.e., single
-- precision 'Float' ('SFloat'), double precision 'Double' ('SDouble'), and
-- the generic 'SFloatingPoint' @eb@ @sb@ type where the user can specify the
-- exponent and significand bit-widths. (Note that there is always an extra
-- sign-bit, and the value of @sb@ includes the hidden bit.)
--
-- Arithmetic with floating point is full of surprises; due to precision
-- issues associativity of arithmetic operations typically do not hold. Also,
-- the presence of @NaN@ is always something to look out for.
-----------------------------------------------------------------------------

{-# LANGUAGE CPP                 #-}
{-# LANGUAGE DataKinds           #-}
{-# LANGUAGE ScopedTypeVariables #-}

{-# OPTIONS_GHC -Wall -Werror #-}

module Documentation.SBV.Examples.Misc.Floating where

import Data.SBV

#ifndef HADDOCK
-- $setup
-- >>> -- For doctest purposes only:
-- >>> import Data.SBV
#endif

-----------------------------------------------------------------------------
-- * FP addition is not associative
-----------------------------------------------------------------------------

-- | Prove that floating point addition is not associative. For illustration purposes,
-- we will require one of the inputs to be a @NaN@. We have:
--
-- >>> prove $ assocPlus (0/0)
-- Falsifiable. Counter-example:
--   s0 = 0.0 :: Float
--   s1 = 0.0 :: Float
--
-- Indeed:
--
-- >>> let i = 0/0 :: Float
-- >>> i + (0.0 + 0.0)
-- NaN
-- >>> ((i + 0.0) + 0.0)
-- NaN
--
-- But keep in mind that @NaN@ does not equal itself in the floating point world! We have:
--
-- >>> let nan = 0/0 :: Float in nan == nan
-- False
assocPlus :: SFloat -> SFloat -> SFloat -> SBool
assocPlus :: SBV Float -> SBV Float -> SBV Float -> SBool
assocPlus SBV Float
x SBV Float
y SBV Float
z = SBV Float
x SBV Float -> SBV Float -> SBV Float
forall a. Num a => a -> a -> a
+ (SBV Float
y SBV Float -> SBV Float -> SBV Float
forall a. Num a => a -> a -> a
+ SBV Float
z) SBV Float -> SBV Float -> SBool
forall a. EqSymbolic a => a -> a -> SBool
.== (SBV Float
x SBV Float -> SBV Float -> SBV Float
forall a. Num a => a -> a -> a
+ SBV Float
y) SBV Float -> SBV Float -> SBV Float
forall a. Num a => a -> a -> a
+ SBV Float
z

-- | Prove that addition is not associative, even if we ignore @NaN@/@Infinity@ values.
-- To do this, we use the predicate 'fpIsPoint', which is true of a floating point
-- number ('SFloat' or 'SDouble') if it is neither @NaN@ nor @Infinity@. (That is, it's a
-- representable point in the real-number line.)
--
-- We have:
--
-- >>> assocPlusRegular
-- Falsifiable. Counter-example:
--   x =  1.9258643e-34 :: Float
--   y =  -1.925931e-34 :: Float
--   z = -3.8518585e-34 :: Float
--
-- Indeed, we have:
--
-- >>> let x =  1.9258643e-34 :: Float
-- >>> let y =  -1.925931e-34 :: Float
-- >>> let z = -3.8518585e-34 :: Float
-- >>> x + (y + z)
-- -3.8519256e-34
-- >>> (x + y) + z
-- -3.851925e-34
--
-- Note the significant difference in the results!
assocPlusRegular :: IO ThmResult
assocPlusRegular :: IO ThmResult
assocPlusRegular = SymbolicT IO SBool -> IO ThmResult
forall a. Provable a => a -> IO ThmResult
prove (SymbolicT IO SBool -> IO ThmResult)
-> SymbolicT IO SBool -> IO ThmResult
forall a b. (a -> b) -> a -> b
$ do [x, y, z] <- [String] -> Symbolic [SBV Float]
sFloats [String
"x", String
"y", String
"z"]
                              let lhs = SBV Float
xSBV Float -> SBV Float -> SBV Float
forall a. Num a => a -> a -> a
+(SBV Float
ySBV Float -> SBV Float -> SBV Float
forall a. Num a => a -> a -> a
+SBV Float
z)
                                  rhs = (SBV Float
xSBV Float -> SBV Float -> SBV Float
forall a. Num a => a -> a -> a
+SBV Float
y)SBV Float -> SBV Float -> SBV Float
forall a. Num a => a -> a -> a
+SBV Float
z
                              -- make sure we do not overflow at the intermediate points
                              constrain $ fpIsPoint lhs
                              constrain $ fpIsPoint rhs
                              return $ lhs .== rhs

-----------------------------------------------------------------------------
-- * FP addition by non-zero can result in no change
-----------------------------------------------------------------------------

-- | Demonstrate that @a+b = a@ does not necessarily mean @b@ is @0@ in the floating point world,
-- even when we disallow the obvious solution when @a@ and @b@ are @Infinity.@
-- We have:
--
-- >>> nonZeroAddition
-- Falsifiable. Counter-example:
--   a = 2.9670994e34 :: Float
--   b = -7.208359e-5 :: Float
--
-- Indeed, we have:
--
-- >>> let a = 2.9670994e34 :: Float
-- >>> let b = -7.208359e-5 :: Float
-- >>> a + b == a
-- True
-- >>> b == 0
-- False
nonZeroAddition :: IO ThmResult
nonZeroAddition :: IO ThmResult
nonZeroAddition = SymbolicT IO SBool -> IO ThmResult
forall a. Provable a => a -> IO ThmResult
prove (SymbolicT IO SBool -> IO ThmResult)
-> SymbolicT IO SBool -> IO ThmResult
forall a b. (a -> b) -> a -> b
$ do [a, b] <- [String] -> Symbolic [SBV Float]
sFloats [String
"a", String
"b"]
                             constrain $ fpIsPoint a
                             constrain $ fpIsPoint b
                             constrain $ a + b .== a
                             return $ b .== 0

-----------------------------------------------------------------------------
-- * FP multiplicative inverses may not exist
-----------------------------------------------------------------------------

-- | This example illustrates that @a * (1/a)@ does not necessarily equal @1@. Again,
-- we protect against division by @0@ and @NaN@/@Infinity@.
--
-- We have:
--
-- >>> multInverse
-- Falsifiable. Counter-example:
--   a = -1.0669042e-38 :: Float
--
-- Indeed, we have:
--
-- >>> let a = -1.0669042e-38 :: Float
-- >>> a * (1/a)
-- 0.99999994
multInverse :: IO ThmResult
multInverse :: IO ThmResult
multInverse = SymbolicT IO SBool -> IO ThmResult
forall a. Provable a => a -> IO ThmResult
prove (SymbolicT IO SBool -> IO ThmResult)
-> SymbolicT IO SBool -> IO ThmResult
forall a b. (a -> b) -> a -> b
$ do a <- String -> Symbolic (SBV Float)
sFloat String
"a"
                         constrain $ fpIsPoint a
                         constrain $ fpIsPoint (1/a)
                         return $ a * (1/a) .== 1

-----------------------------------------------------------------------------
-- * Effect of rounding modes
-----------------------------------------------------------------------------

-- | One interesting aspect of floating-point is that the chosen rounding-mode
-- can effect the results of a computation if the exact result cannot be precisely
-- represented. SBV exports the functions 'fpAdd', 'fpSub', 'fpMul', 'fpDiv', 'fpFMA'
-- and 'fpSqrt' which allows users to specify the IEEE supported 'RoundingMode' for
-- the operation. This example illustrates how SBV can be used to find rounding-modes
-- where, for instance, addition can produce different results. We have:
--
-- >>> roundingAdd
-- Satisfiable. Model:
--   rm = RoundTowardPositive :: RoundingMode
--   x  =          -4.0039067 :: Float
--   y  =            131076.0 :: Float
--
-- (Note that depending on your version of Z3, you might get a different result.)
-- Unfortunately Haskell floats do not allow computation with arbitrary rounding modes, but SBV's
-- 'SFloatingPoint' type does. We have:
--
-- >>> sat $ \x -> x .== (fpAdd sRoundTowardPositive (-4.0039067) 131076.0 :: SFloat)
-- Satisfiable. Model:
--   s0 = 131072.0 :: Float
-- >>> (-4.0039067) + 131076.0 :: Float
-- 131071.99
--
-- We can see why these two results are indeed different: The 'RoundTowardPositive
-- (which rounds towards positive infinity) produces a larger result.
--
-- >>> (-4.0039067) + 131076.0 :: Double
-- 131071.9960933
--
-- we see that the "more precise" result is larger than what the 'Float' value is, justifying the
-- larger value with 'RoundTowardPositive. A more detailed study is beyond our current scope, so we'll
-- merely note that floating point representation and semantics is indeed a thorny
-- subject, and point to <http://ece.uwaterloo.ca/~dwharder/NumericalAnalysis/02Numerics/Double/paper.pdf> as
-- an excellent guide.
roundingAdd :: IO SatResult
roundingAdd :: IO SatResult
roundingAdd = SymbolicT IO SBool -> IO SatResult
forall a. Satisfiable a => a -> IO SatResult
sat (SymbolicT IO SBool -> IO SatResult)
-> SymbolicT IO SBool -> IO SatResult
forall a b. (a -> b) -> a -> b
$ do m :: SRoundingMode <- String -> Symbolic SRoundingMode
forall a. SymVal a => String -> Symbolic (SBV a)
free String
"rm"
                       constrain $ m ./= literal RoundNearestTiesToEven
                       x <- sFloat "x"
                       y <- sFloat "y"
                       let lhs = SRoundingMode -> SBV Float -> SBV Float -> SBV Float
forall a.
IEEEFloating a =>
SRoundingMode -> SBV a -> SBV a -> SBV a
fpAdd SRoundingMode
m SBV Float
x SBV Float
y
                       let rhs = SBV Float
x SBV Float -> SBV Float -> SBV Float
forall a. Num a => a -> a -> a
+ SBV Float
y
                       constrain $ fpIsPoint lhs
                       constrain $ fpIsPoint rhs
                       return $ lhs ./= rhs

-- | Arbitrary precision floating-point numbers. SBV can talk about floating point numbers with arbitrary
-- exponent and significand sizes as well. Here is a simple example demonstrating the minimum non-zero positive
-- and maximum floating point values with exponent width 5 and significand width 4, which is actually 3
-- bits for the significand explicitly stored, includes the hidden bit. We have:
--
-- >>> fp54Bounds
-- Objective "toMetricSpace(max)": Optimal model:
--   x = 61440 :: FloatingPoint 5 4
-- Objective "toMetricSpace(min)": Optimal model:
--   x = 0.000007629 :: FloatingPoint 5 4
--
-- An important note is in order. When printing floats in decimal, one can get correct yet surprising results.
-- There's a large body of publications in how to render floats in decimal, or in bases that are not powers of
-- two in general. So, when looking at such values in decimal, keep in mind that what you see might be
-- a representative value: That is, it preserves the value when translated back to the format. For instance,
-- the more precise answer for the min value would be 2^-17, which is 0.00000762939453125. But we see
-- it truncated here. In fact, any number between 2^-16 and 2^-17 would be correct as they all map to the same
-- underlying representation in this format. Moral of the story is that when reading floating-point numbers in
-- decimal notation one should be very careful about the printed representation and the numeric value; while
-- they will match in value (if there are no bugs!), they can print quite differently! (Also keep in
-- mind the rounding modes that impact how the conversion is done.)
--
-- One final note: When printing the models, we skip optimization variables that are not named @x@. See the
-- call to `Data.SBV.Core.Symbolic.isNonModelVal`. When we optimize floating-point values, the underlying engine actually optimizes
-- with bit-vector values, producing intermediate results. We skip those here to simplify the presentation.
fp54Bounds :: IO OptimizeResult
fp54Bounds :: IO OptimizeResult
fp54Bounds = SMTConfig
-> OptimizeStyle -> SymbolicT IO SBool -> IO OptimizeResult
forall a.
Satisfiable a =>
SMTConfig -> OptimizeStyle -> a -> IO OptimizeResult
optimizeWith SMTConfig
z3{isNonModelVar = (/= "x")}
                          OptimizeStyle
Independent (SymbolicT IO SBool -> IO OptimizeResult)
-> SymbolicT IO SBool -> IO OptimizeResult
forall a b. (a -> b) -> a -> b
$ do x :: SFloatingPoint 5 4 <- String -> Symbolic (SFloatingPoint 5 4)
forall (eb :: Nat) (sb :: Nat).
ValidFloat eb sb =>
String -> Symbolic (SFloatingPoint eb sb)
sFloatingPoint String
"x"

                                           constrain $ fpIsPoint x
                                           constrain $ x .> 0

                                           maximize "max" x
                                           minimize "min" x

                                           pure sTrue