{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE OverloadedLists #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TemplateHaskell #-}
{-# OPTIONS_GHC -Wall -Werror #-}
module Documentation.SBV.Examples.Lists.BoundedMutex where
import Data.SBV
import Data.SBV.Control
import Prelude hiding ((!!))
import Data.SBV.List ((!!))
import qualified Data.SBV.List as L
data State = Idle
| Ready
| Critical
mkSymbolicEnumeration ''State
mutex :: SList State -> SList State -> SBool
mutex :: SList State -> SList State -> SBool
mutex SList State
p1s SList State
p2s = SList Bool -> SBool
L.and (SList Bool -> SBool) -> SList Bool -> SBool
forall a b. (a -> b) -> a -> b
$ (SBV State -> SBV State -> SBool)
-> SList State -> SList State -> SList Bool
forall a b c.
(SymVal a, SymVal b, SymVal c) =>
(SBV a -> SBV b -> SBV c) -> SList a -> SList b -> SList c
L.zipWith (\SBV State
p1 SBV State
p2 -> SBV State
p1 SBV State -> SBV State -> SBool
forall a. EqSymbolic a => a -> a -> SBool
./= SBV State
sCritical SBool -> SBool -> SBool
.|| SBV State
p2 SBV State -> SBV State -> SBool
forall a. EqSymbolic a => a -> a -> SBool
./= SBV State
sCritical) SList State
p1s SList State
p2s
validSequence :: Int -> Integer -> SList Integer -> SList State -> SBool
validSequence :: Int -> Integer -> SList Integer -> SList State -> SBool
validSequence Int
b Integer
me SList Integer
pturns SList State
proc = [SBool] -> SBool
sAnd [ SList State -> SInteger
forall a. SymVal a => SList a -> SInteger
L.length SList State
proc SInteger -> SInteger -> SBool
forall a. EqSymbolic a => a -> a -> SBool
.== Int -> SInteger
forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
b
, SBV State
sIdle SBV State -> SBV State -> SBool
forall a. EqSymbolic a => a -> a -> SBool
.== SList State -> SBV State
forall a. SymVal a => SList a -> SBV a
L.head SList State
proc
, Int -> SList Integer -> SList State -> SBV State -> SBool
forall {t}.
(Eq t, Num t) =>
t -> SList Integer -> SList State -> SBV State -> SBool
check Int
b SList Integer
pturns SList State
proc SBV State
sIdle
]
where check :: t -> SList Integer -> SList State -> SBV State -> SBool
check t
0 SList Integer
_ SList State
_ SBV State
_ = SBool
sTrue
check t
i SList Integer
ts SList State
ps SBV State
prev = let (SBV State
cur, SList State
rest) = SList State -> (SBV State, SList State)
forall a. SymVal a => SList a -> (SBV a, SList a)
L.uncons SList State
ps
(SInteger
turn, SList Integer
turns) = SList Integer -> (SInteger, SList Integer)
forall a. SymVal a => SList a -> (SBV a, SList a)
L.uncons SList Integer
ts
ok :: SBool
ok = SBool -> SBool -> SBool -> SBool
forall a. Mergeable a => SBool -> a -> a -> a
ite (SBV State
prev SBV State -> SBV State -> SBool
forall a. EqSymbolic a => a -> a -> SBool
.== SBV State
sIdle) (SBV State
cur SBV State -> [SBV State] -> SBool
forall a. EqSymbolic a => a -> [a] -> SBool
`sElem` [Item [SBV State]
SBV State
sIdle, Item [SBV State]
SBV State
sReady])
(SBool -> SBool) -> SBool -> SBool
forall a b. (a -> b) -> a -> b
$ SBool -> SBool -> SBool -> SBool
forall a. Mergeable a => SBool -> a -> a -> a
ite (SBV State
prev SBV State -> SBV State -> SBool
forall a. EqSymbolic a => a -> a -> SBool
.== SBV State
sReady SBool -> SBool -> SBool
.&& SInteger
turn SInteger -> SInteger -> SBool
forall a. EqSymbolic a => a -> a -> SBool
.== Integer -> SInteger
forall a. SymVal a => a -> SBV a
literal Integer
me) (SBV State
cur SBV State -> [SBV State] -> SBool
forall a. EqSymbolic a => a -> [a] -> SBool
`sElem` [Item [SBV State]
SBV State
sCritical])
(SBool -> SBool) -> SBool -> SBool
forall a b. (a -> b) -> a -> b
$ SBool -> SBool -> SBool -> SBool
forall a. Mergeable a => SBool -> a -> a -> a
ite (SBV State
prev SBV State -> SBV State -> SBool
forall a. EqSymbolic a => a -> a -> SBool
.== SBV State
sCritical) (SBV State
cur SBV State -> [SBV State] -> SBool
forall a. EqSymbolic a => a -> [a] -> SBool
`sElem` [Item [SBV State]
SBV State
sCritical, Item [SBV State]
SBV State
sIdle])
(SBV State
cur SBV State -> [SBV State] -> SBool
forall a. EqSymbolic a => a -> [a] -> SBool
`sElem` [Item [SBV State]
SBV State
prev])
in SBool
ok SBool -> SBool -> SBool
.&& t -> SList Integer -> SList State -> SBV State -> SBool
check (t
it -> t -> t
forall a. Num a => a -> a -> a
-t
1) SList Integer
turns SList State
rest SBV State
cur
validTurns :: Int -> SList Integer -> SList State -> SList State -> SBool
validTurns :: Int -> SList Integer -> SList State -> SList State -> SBool
validTurns Int
b SList Integer
turns SList State
process1 SList State
process2 = [SBool] -> SBool
sAnd [ SList Integer -> SInteger
forall a. SymVal a => SList a -> SInteger
L.length SList Integer
turns SInteger -> SInteger -> SBool
forall a. EqSymbolic a => a -> a -> SBool
.== Int -> SInteger
forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
b
, SInteger
1 SInteger -> SInteger -> SBool
forall a. EqSymbolic a => a -> a -> SBool
.== SList Integer -> SInteger
forall a. SymVal a => SList a -> SBV a
L.head SList Integer
turns
, Int
-> SList Integer -> SList State -> SList State -> SInteger -> SBool
forall {t} {a}.
(Eq t, Num t, Num (SBV a), SymVal a) =>
t -> SList a -> SList State -> SList State -> SBV a -> SBool
check Int
b SList Integer
turns SList State
process1 SList State
process2 SInteger
1
]
where check :: t -> SList a -> SList State -> SList State -> SBV a -> SBool
check t
0 SList a
_ SList State
_ SList State
_ SBV a
_ = SBool
sTrue
check t
i SList a
ts SList State
proc1 SList State
proc2 SBV a
prev = SBV a
cur SBV a -> [SBV a] -> SBool
forall a. EqSymbolic a => a -> [a] -> SBool
`sElem` [Item [SBV a]
SBV a
1, Item [SBV a]
SBV a
2]
SBool -> SBool -> SBool
.&& (SBV State
p1 SBV State -> SBV State -> SBool
forall a. EqSymbolic a => a -> a -> SBool
.== SBV State
sCritical SBool -> SBool -> SBool
.|| SBV State
p2 SBV State -> SBV State -> SBool
forall a. EqSymbolic a => a -> a -> SBool
.== SBV State
sCritical SBool -> SBool -> SBool
.=> SBV a
cur SBV a -> SBV a -> SBool
forall a. EqSymbolic a => a -> a -> SBool
.== SBV a
prev)
SBool -> SBool -> SBool
.&& t -> SList a -> SList State -> SList State -> SBV a -> SBool
check (t
it -> t -> t
forall a. Num a => a -> a -> a
-t
1) SList a
rest SList State
p1s SList State
p2s SBV a
cur
where (SBV a
cur, SList a
rest) = SList a -> (SBV a, SList a)
forall a. SymVal a => SList a -> (SBV a, SList a)
L.uncons SList a
ts
(SBV State
p1, SList State
p1s) = SList State -> (SBV State, SList State)
forall a. SymVal a => SList a -> (SBV a, SList a)
L.uncons SList State
proc1
(SBV State
p2, SList State
p2s) = SList State -> (SBV State, SList State)
forall a. SymVal a => SList a -> (SBV a, SList a)
L.uncons SList State
proc2
checkMutex :: Int -> IO ()
checkMutex :: Int -> IO ()
checkMutex Int
b = Symbolic () -> IO ()
forall a. Symbolic a -> IO a
runSMT (Symbolic () -> IO ()) -> Symbolic () -> IO ()
forall a b. (a -> b) -> a -> b
$ do
p1 :: SList State <- String -> Symbolic (SList State)
forall a. SymVal a => String -> Symbolic (SList a)
sList String
"p1"
p2 :: SList State <- sList "p2"
turns :: SList Integer <- sList "turns"
constrain $ validSequence b 1 turns p1
constrain $ validSequence b 2 turns p2
constrain $ validTurns b turns p1 p2
constrain $ sNot $ mutex p1 p2
query $ do cs <- checkSat
case cs of
CheckSatResult
Unk -> String -> Query ()
forall a. HasCallStack => String -> a
error String
"Solver said Unknown!"
DSat{} -> String -> Query ()
forall a. HasCallStack => String -> a
error String
"Solver said delta-satisfiable!"
CheckSatResult
Unsat -> IO () -> Query ()
forall a. IO a -> Query a
io (IO () -> Query ()) -> (String -> IO ()) -> String -> Query ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. String -> IO ()
putStrLn (String -> Query ()) -> String -> Query ()
forall a b. (a -> b) -> a -> b
$ String
"All is good!"
CheckSatResult
Sat -> do IO () -> Query ()
forall a. IO a -> Query a
io (IO () -> Query ()) -> (String -> IO ()) -> String -> Query ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. String -> IO ()
putStrLn (String -> Query ()) -> String -> Query ()
forall a b. (a -> b) -> a -> b
$ String
"Violation detected!"
do p1V <- SList State -> Query [State]
forall a. SymVal a => SBV a -> Query a
getValue SList State
p1
p2V <- getValue p2
ts <- getValue turns
io . putStrLn $ "P1: " ++ show p1V
io . putStrLn $ "P2: " ++ show p2V
io . putStrLn $ "Ts: " ++ show ts
notFair :: Int -> IO ()
notFair :: Int -> IO ()
notFair Int
b = Symbolic () -> IO ()
forall a. Symbolic a -> IO a
runSMT (Symbolic () -> IO ()) -> Symbolic () -> IO ()
forall a b. (a -> b) -> a -> b
$ do p1 :: SList State <- String -> Symbolic (SList State)
forall a. SymVal a => String -> Symbolic (SList a)
sList String
"p1"
p2 :: SList State <- sList "p2"
turns :: SList Integer <- sList "turns"
constrain $ validSequence b 1 turns p1
constrain $ validSequence b 2 turns p2
constrain $ validTurns b turns p1 p2
constrain $ p2 !! 1 .== sReady
constrain $ sNot $ sCritical `L.elem` p2
query $ do cs <- checkSat
case cs of
CheckSatResult
Unk -> String -> Query ()
forall a. HasCallStack => String -> a
error String
"Solver said Unknown!"
DSat{} -> String -> Query ()
forall a. HasCallStack => String -> a
error String
"Solver said delta-satisfiable!"
CheckSatResult
Unsat -> String -> Query ()
forall a. HasCallStack => String -> a
error String
"Solver couldn't find a violating trace!"
CheckSatResult
Sat -> do IO () -> Query ()
forall a. IO a -> Query a
io (IO () -> Query ()) -> (String -> IO ()) -> String -> Query ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. String -> IO ()
putStrLn (String -> Query ()) -> String -> Query ()
forall a b. (a -> b) -> a -> b
$ String
"Fairness is violated at bound: " String -> ShowS
forall a. [a] -> [a] -> [a]
++ Int -> String
forall a. Show a => a -> String
show Int
b
do p1V <- SList State -> Query [State]
forall a. SymVal a => SBV a -> Query a
getValue SList State
p1
p2V <- getValue p2
ts <- getValue turns
io . putStrLn $ "P1: " ++ show p1V
io . putStrLn $ "P2: " ++ show p2V
io . putStrLn $ "Ts: " ++ show ts