| Safe Haskell | Trustworthy |
|---|---|
| Language | Haskell2010 |
Protolude.Monad
Synopsis
- class Applicative m => Monad (m :: Type -> Type) where
- class (Alternative m, Monad m) => MonadPlus (m :: Type -> Type) where
- (=<<) :: Monad m => (a -> m b) -> m a -> m b
- (>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c
- (<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c
- (>>) :: Monad m => m a -> m b -> m b
- forever :: Applicative f => f a -> f b
- join :: Monad m => m (m a) -> m a
- mfilter :: MonadPlus m => (a -> Bool) -> m a -> m a
- filterM :: Applicative m => (a -> m Bool) -> [a] -> m [a]
- mapAndUnzipM :: Applicative m => (a -> m (b, c)) -> [a] -> m ([b], [c])
- zipWithM :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m [c]
- zipWithM_ :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m ()
- foldM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b
- foldM_ :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m ()
- replicateM :: Applicative m => Int -> m a -> m [a]
- replicateM_ :: Applicative m => Int -> m a -> m ()
- concatMapM :: Monad m => (a -> m [b]) -> [a] -> m [b]
- guard :: Alternative f => Bool -> f ()
- when :: Applicative f => Bool -> f () -> f ()
- unless :: Applicative f => Bool -> f () -> f ()
- liftM :: Monad m => (a1 -> r) -> m a1 -> m r
- liftM2 :: Monad m => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r
- liftM3 :: Monad m => (a1 -> a2 -> a3 -> r) -> m a1 -> m a2 -> m a3 -> m r
- liftM4 :: Monad m => (a1 -> a2 -> a3 -> a4 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m r
- liftM5 :: Monad m => (a1 -> a2 -> a3 -> a4 -> a5 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m a5 -> m r
- liftM' :: Monad m => (a -> b) -> m a -> m b
- liftM2' :: Monad m => (a -> b -> c) -> m a -> m b -> m c
- ap :: Monad m => m (a -> b) -> m a -> m b
- (<$!>) :: Monad m => (a -> b) -> m a -> m b
Documentation
class Applicative m => Monad (m :: Type -> Type) where #
The Monad class defines the basic operations over a monad,
a concept from a branch of mathematics known as category theory.
From the perspective of a Haskell programmer, however, it is best to
think of a monad as an abstract datatype of actions.
Haskell's do expressions provide a convenient syntax for writing
monadic expressions.
Instances of Monad should satisfy the following:
- Left identity
returna>>=k = k a- Right identity
m>>=return= m- Associativity
m>>=(\x -> k x>>=h) = (m>>=k)>>=h
Furthermore, the Monad and Applicative operations should relate as follows:
The above laws imply:
and that pure and (<*>) satisfy the applicative functor laws.
The instances of Monad for lists, Maybe and IO
defined in the Prelude satisfy these laws.
Minimal complete definition
Methods
(>>=) :: m a -> (a -> m b) -> m b infixl 1 #
Sequentially compose two actions, passing any value produced by the first as an argument to the second.
'as ' can be understood as the >>= bsdo expression
do a <- as bs a
Inject a value into the monadic type.
Instances
| Monad [] | Since: base-2.1 |
| Monad Maybe | Since: base-2.1 |
| Monad IO | Since: base-2.1 |
| Monad Par1 | Since: base-4.9.0.0 |
| Monad Complex | Since: base-4.9.0.0 |
| Monad Min | Since: base-4.9.0.0 |
| Monad Max | Since: base-4.9.0.0 |
| Monad First | Since: base-4.9.0.0 |
| Monad Last | Since: base-4.9.0.0 |
| Monad Option | Since: base-4.9.0.0 |
| Monad Identity | Since: base-4.8.0.0 |
| Monad STM | Since: base-4.3.0.0 |
| Monad First | Since: base-4.8.0.0 |
| Monad Last | Since: base-4.8.0.0 |
| Monad Dual | Since: base-4.8.0.0 |
| Monad Sum | Since: base-4.8.0.0 |
| Monad Product | Since: base-4.8.0.0 |
| Monad Down | Since: base-4.11.0.0 |
| Monad ReadP | Since: base-2.1 |
| Monad NonEmpty | Since: base-4.9.0.0 |
| Monad Seq | |
| Monad P | Since: base-2.1 |
| Monad (Either e) | Since: base-4.4.0.0 |
| Monad (U1 :: Type -> Type) | Since: base-4.9.0.0 |
| Monoid a => Monad ((,) a) | Since: base-4.9.0.0 |
| Monad (ST s) | Since: base-2.1 |
| Monad m => Monad (WrappedMonad m) | Since: base-4.7.0.0 |
Defined in Control.Applicative Methods (>>=) :: WrappedMonad m a -> (a -> WrappedMonad m b) -> WrappedMonad m b # (>>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b # return :: a -> WrappedMonad m a # | |
| ArrowApply a => Monad (ArrowMonad a) | Since: base-2.1 |
Defined in Control.Arrow Methods (>>=) :: ArrowMonad a a0 -> (a0 -> ArrowMonad a b) -> ArrowMonad a b # (>>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b # return :: a0 -> ArrowMonad a a0 # | |
| Monad (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
| Monad m => Monad (ListT m) | |
| Monad m => Monad (MaybeT m) | |
| Monad f => Monad (Rec1 f) | Since: base-4.9.0.0 |
| (Monoid a, Monoid b) => Monad ((,,) a b) | Since: base-4.14.0.0 |
| Monad m => Monad (Kleisli m a) | Since: base-4.14.0.0 |
| Monad f => Monad (Ap f) | Since: base-4.12.0.0 |
| Monad f => Monad (Alt f) | Since: base-4.8.0.0 |
| (Applicative f, Monad f) => Monad (WhenMissing f x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods (>>=) :: WhenMissing f x a -> (a -> WhenMissing f x b) -> WhenMissing f x b # (>>) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x b # return :: a -> WhenMissing f x a # | |
| Monad m => Monad (IdentityT m) | |
| (Monad m, Error e) => Monad (ErrorT e m) | |
| Monad m => Monad (ExceptT e m) | |
| Monad m => Monad (ReaderT r m) | |
| Monad m => Monad (StateT s m) | |
| Monad m => Monad (StateT s m) | |
| (Monoid w, Monad m) => Monad (WriterT w m) | |
| (Monoid w, Monad m) => Monad (WriterT w m) | |
| Monad ((->) r :: Type -> Type) | Since: base-2.1 |
| (Monad f, Monad g) => Monad (f :*: g) | Since: base-4.9.0.0 |
| (Monoid a, Monoid b, Monoid c) => Monad ((,,,) a b c) | Since: base-4.14.0.0 |
| (Monad f, Monad g) => Monad (Product f g) | Since: base-4.9.0.0 |
| (Monad f, Applicative f) => Monad (WhenMatched f x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods (>>=) :: WhenMatched f x y a -> (a -> WhenMatched f x y b) -> WhenMatched f x y b # (>>) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y b # return :: a -> WhenMatched f x y a # | |
| (Applicative f, Monad f) => Monad (WhenMissing f k x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods (>>=) :: WhenMissing f k x a -> (a -> WhenMissing f k x b) -> WhenMissing f k x b # (>>) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x b # return :: a -> WhenMissing f k x a # | |
| Monad f => Monad (M1 i c f) | Since: base-4.9.0.0 |
| (Monad f, Applicative f) => Monad (WhenMatched f k x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods (>>=) :: WhenMatched f k x y a -> (a -> WhenMatched f k x y b) -> WhenMatched f k x y b # (>>) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y b # return :: a -> WhenMatched f k x y a # | |
| (Monoid w, Monad m) => Monad (RWST r w s m) | |
| (Monoid w, Monad m) => Monad (RWST r w s m) | |
class (Alternative m, Monad m) => MonadPlus (m :: Type -> Type) where #
Monads that also support choice and failure.
Minimal complete definition
Nothing
Methods
The identity of mplus. It should also satisfy the equations
mzero >>= f = mzero v >> mzero = mzero
The default definition is
mzero = empty
An associative operation. The default definition is
mplus = (<|>)
Instances
| MonadPlus [] | Since: base-2.1 |
| MonadPlus Maybe | Since: base-2.1 |
| MonadPlus IO | Since: base-4.9.0.0 |
| MonadPlus Option | Since: base-4.9.0.0 |
| MonadPlus STM | Since: base-4.3.0.0 |
| MonadPlus ReadP | Since: base-2.1 |
| MonadPlus Seq | |
| MonadPlus P | Since: base-2.1 |
Defined in Text.ParserCombinators.ReadP | |
| MonadPlus (U1 :: Type -> Type) | Since: base-4.9.0.0 |
| (ArrowApply a, ArrowPlus a) => MonadPlus (ArrowMonad a) | Since: base-4.6.0.0 |
Defined in Control.Arrow | |
| MonadPlus (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
| Monad m => MonadPlus (ListT m) | |
| Monad m => MonadPlus (MaybeT m) | |
| MonadPlus f => MonadPlus (Rec1 f) | Since: base-4.9.0.0 |
| MonadPlus m => MonadPlus (Kleisli m a) | Since: base-4.14.0.0 |
| MonadPlus f => MonadPlus (Ap f) | Since: base-4.12.0.0 |
| MonadPlus f => MonadPlus (Alt f) | Since: base-4.8.0.0 |
| MonadPlus m => MonadPlus (IdentityT m) | |
| (Monad m, Error e) => MonadPlus (ErrorT e m) | |
| (Monad m, Monoid e) => MonadPlus (ExceptT e m) | |
| MonadPlus m => MonadPlus (ReaderT r m) | |
| MonadPlus m => MonadPlus (StateT s m) | |
| MonadPlus m => MonadPlus (StateT s m) | |
| (Monoid w, MonadPlus m) => MonadPlus (WriterT w m) | |
| (Monoid w, MonadPlus m) => MonadPlus (WriterT w m) | |
| (MonadPlus f, MonadPlus g) => MonadPlus (f :*: g) | Since: base-4.9.0.0 |
| (MonadPlus f, MonadPlus g) => MonadPlus (Product f g) | Since: base-4.9.0.0 |
| MonadPlus f => MonadPlus (M1 i c f) | Since: base-4.9.0.0 |
| (Monoid w, MonadPlus m) => MonadPlus (RWST r w s m) | |
| (Monoid w, MonadPlus m) => MonadPlus (RWST r w s m) | |
(=<<) :: Monad m => (a -> m b) -> m a -> m b infixr 1 #
Same as >>=, but with the arguments interchanged.
(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c infixr 1 #
Left-to-right composition of Kleisli arrows.
'(bs ' can be understood as the >=> cs) ado expression
do b <- bs a cs b
(>>) :: Monad m => m a -> m b -> m b infixl 1 #
Sequentially compose two actions, discarding any value produced by the first, like sequencing operators (such as the semicolon) in imperative languages.
'as ' can be understood as the >> bsdo expression
do as bs
forever :: Applicative f => f a -> f b #
Repeat an action indefinitely.
Using ApplicativeDo: '' can be understood as the
pseudo-forever asdo expression
do as as ..
with as repeating.
Examples
A common use of forever is to process input from network sockets,
Handles, and channels
(e.g. MVar and
Chan).
For example, here is how we might implement an echo
server, using
forever both to listen for client connections on a network socket
and to echo client input on client connection handles:
echoServer :: Socket -> IO () echoServer socket =forever$ do client <- accept socketforkFinally(echo client) (\_ -> hClose client) where echo :: Handle -> IO () echo client =forever$ hGetLine client >>= hPutStrLn client
join :: Monad m => m (m a) -> m a #
The join function is the conventional monad join operator. It
is used to remove one level of monadic structure, projecting its
bound argument into the outer level.
'' can be understood as the join bssdo expression
do bs <- bss bs
Examples
A common use of join is to run an IO computation returned from
an STM transaction, since STM transactions
can't perform IO directly. Recall that
atomically :: STM a -> IO a
is used to run STM transactions atomically. So, by
specializing the types of atomically and join to
atomically:: STM (IO b) -> IO (IO b)join:: IO (IO b) -> IO b
we can compose them as
join.atomically:: STM (IO b) -> IO b
filterM :: Applicative m => (a -> m Bool) -> [a] -> m [a] #
This generalizes the list-based filter function.
mapAndUnzipM :: Applicative m => (a -> m (b, c)) -> [a] -> m ([b], [c]) #
The mapAndUnzipM function maps its first argument over a list, returning
the result as a pair of lists. This function is mainly used with complicated
data structures or a state monad.
zipWithM :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m [c] #
zipWithM_ :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m () #
foldM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b #
The foldM function is analogous to foldl, except that its result is
encapsulated in a monad. Note that foldM works from left-to-right over
the list arguments. This could be an issue where ( and the `folded
function' are not commutative.>>)
foldM f a1 [x1, x2, ..., xm] == do a2 <- f a1 x1 a3 <- f a2 x2 ... f am xm
If right-to-left evaluation is required, the input list should be reversed.
foldM_ :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m () #
Like foldM, but discards the result.
replicateM :: Applicative m => Int -> m a -> m [a] #
performs the action replicateM n actn times,
gathering the results.
Using ApplicativeDo: '' can be understood as
the replicateM 5 asdo expression
do a1 <- as a2 <- as a3 <- as a4 <- as a5 <- as pure [a1,a2,a3,a4,a5]
Note the Applicative constraint.
replicateM_ :: Applicative m => Int -> m a -> m () #
Like replicateM, but discards the result.
concatMapM :: Monad m => (a -> m [b]) -> [a] -> m [b] Source #
guard :: Alternative f => Bool -> f () #
Conditional failure of Alternative computations. Defined by
guard True =pure() guard False =empty
Examples
Common uses of guard include conditionally signaling an error in
an error monad and conditionally rejecting the current choice in an
Alternative-based parser.
As an example of signaling an error in the error monad Maybe,
consider a safe division function safeDiv x y that returns
Nothing when the denominator y is zero and otherwise. For example:Just (x `div`
y)
>>> safeDiv 4 0 Nothing >>> safeDiv 4 2 Just 2
A definition of safeDiv using guards, but not guard:
safeDiv :: Int -> Int -> Maybe Int
safeDiv x y | y /= 0 = Just (x `div` y)
| otherwise = Nothing
A definition of safeDiv using guard and Monad do-notation:
safeDiv :: Int -> Int -> Maybe Int safeDiv x y = do guard (y /= 0) return (x `div` y)
when :: Applicative f => Bool -> f () -> f () #
Conditional execution of Applicative expressions. For example,
when debug (putStrLn "Debugging")
will output the string Debugging if the Boolean value debug
is True, and otherwise do nothing.
unless :: Applicative f => Bool -> f () -> f () #
The reverse of when.
liftM2 :: Monad m => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r #
Promote a function to a monad, scanning the monadic arguments from left to right. For example,
liftM2 (+) [0,1] [0,2] = [0,2,1,3] liftM2 (+) (Just 1) Nothing = Nothing
liftM3 :: Monad m => (a1 -> a2 -> a3 -> r) -> m a1 -> m a2 -> m a3 -> m r #
Promote a function to a monad, scanning the monadic arguments from
left to right (cf. liftM2).
liftM4 :: Monad m => (a1 -> a2 -> a3 -> a4 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m r #
Promote a function to a monad, scanning the monadic arguments from
left to right (cf. liftM2).
liftM5 :: Monad m => (a1 -> a2 -> a3 -> a4 -> a5 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m a5 -> m r #
Promote a function to a monad, scanning the monadic arguments from
left to right (cf. liftM2).