| Safe Haskell | Safe |
|---|---|
| Language | Haskell98 |
Data.Set.Ordered
Description
Synopsis
- data OSet a
- empty :: OSet a
- singleton :: a -> OSet a
- (<|) :: Ord a => a -> OSet a -> OSet a
- (|<) :: Ord a => a -> OSet a -> OSet a
- (>|) :: Ord a => OSet a -> a -> OSet a
- (|>) :: Ord a => OSet a -> a -> OSet a
- (<>|) :: Ord a => OSet a -> OSet a -> OSet a
- (|<>) :: Ord a => OSet a -> OSet a -> OSet a
- newtype Bias (dir :: IndexPreference) a = Bias {
- unbiased :: a
- type L = L
- type R = R
- null :: OSet a -> Bool
- size :: OSet a -> Int
- member :: Ord a => a -> OSet a -> Bool
- notMember :: Ord a => a -> OSet a -> Bool
- delete :: Ord a => a -> OSet a -> OSet a
- filter :: Ord a => (a -> Bool) -> OSet a -> OSet a
- (\\) :: Ord a => OSet a -> OSet a -> OSet a
- (|/\) :: Ord a => OSet a -> OSet a -> OSet a
- (/\|) :: Ord a => OSet a -> OSet a -> OSet a
- type Index = Int
- findIndex :: Ord a => a -> OSet a -> Maybe Index
- elemAt :: OSet a -> Index -> Maybe a
- fromList :: Ord a => [a] -> OSet a
- toAscList :: OSet a -> [a]
Documentation
Instances
| Foldable OSet Source # | Values appear in insertion order, not ascending order. |
Defined in Data.Set.Ordered Methods fold :: Monoid m => OSet m -> m # foldMap :: Monoid m => (a -> m) -> OSet a -> m # foldr :: (a -> b -> b) -> b -> OSet a -> b # foldr' :: (a -> b -> b) -> b -> OSet a -> b # foldl :: (b -> a -> b) -> b -> OSet a -> b # foldl' :: (b -> a -> b) -> b -> OSet a -> b # foldr1 :: (a -> a -> a) -> OSet a -> a # foldl1 :: (a -> a -> a) -> OSet a -> a # elem :: Eq a => a -> OSet a -> Bool # maximum :: Ord a => OSet a -> a # | |
| Eq a => Eq (OSet a) Source # | |
| (Data a, Ord a) => Data (OSet a) Source # | |
Defined in Data.Set.Ordered Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> OSet a -> c (OSet a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (OSet a) # toConstr :: OSet a -> Constr # dataTypeOf :: OSet a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (OSet a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (OSet a)) # gmapT :: (forall b. Data b => b -> b) -> OSet a -> OSet a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> OSet a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> OSet a -> r # gmapQ :: (forall d. Data d => d -> u) -> OSet a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> OSet a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> OSet a -> m (OSet a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> OSet a -> m (OSet a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> OSet a -> m (OSet a) # | |
| Ord a => Ord (OSet a) Source # | |
| (Ord a, Read a) => Read (OSet a) Source # | |
| Show a => Show (OSet a) Source # | |
| Ord a => Semigroup (Bias R (OSet a)) Source # | |
| Ord a => Semigroup (Bias L (OSet a)) Source # | |
| Ord a => Monoid (Bias R (OSet a)) Source # | Empty sets and set union. When combining two sets that share elements, the indices of the right argument are preferred. See the asymptotics of ( |
| Ord a => Monoid (Bias L (OSet a)) Source # | Empty sets and set union. When combining two sets that share elements, the indices of the left argument are preferred. See the asymptotics of ( |
Trivial sets
Insertion
Conventions:
- The open side of an angle bracket points to an
OSet - The pipe appears on the side whose indices take precedence for keys that appear on both sides
- The left argument's indices are lower than the right argument's indices
(<>|) :: Ord a => OSet a -> OSet a -> OSet a infixr 6 Source #
O(m*log(n)+n), where m is the size of the smaller set and n is the size of the larger set.
(|<>) :: Ord a => OSet a -> OSet a -> OSet a infixr 6 Source #
O(m*log(n)+n), where m is the size of the smaller set and n is the size of the larger set.
newtype Bias (dir :: IndexPreference) a Source #
A newtype to hand a Monoid instance on. The phantom first parameter
tells whether mappend will prefer the indices of its first or second
argument if there are shared elements in both.
Instances
| (Ord k, Semigroup v) => Semigroup (Bias R (OMap k v)) Source # | |
| Ord a => Semigroup (Bias R (OSet a)) Source # | |
| (Ord k, Semigroup v) => Semigroup (Bias L (OMap k v)) Source # | |
| Ord a => Semigroup (Bias L (OSet a)) Source # | |
| (Ord k, Monoid v) => Monoid (Bias R (OMap k v)) Source # | Empty maps and map union. When combining two sets that share elements, the
indices of the right argument are preferred, and the values are combined
with See the asymptotics of |
| Ord a => Monoid (Bias R (OSet a)) Source # | Empty sets and set union. When combining two sets that share elements, the indices of the right argument are preferred. See the asymptotics of ( |
| (Ord k, Monoid v) => Monoid (Bias L (OMap k v)) Source # | Empty maps and map union. When combining two sets that share elements, the
indices of the left argument are preferred, and the values are combined with
See the asymptotics of |
| Ord a => Monoid (Bias L (OSet a)) Source # | Empty sets and set union. When combining two sets that share elements, the indices of the left argument are preferred. See the asymptotics of ( |
Query
Deletion
(\\) :: Ord a => OSet a -> OSet a -> OSet a Source #
Set difference: r \\ s deletes all the values in s from r. The
order of r is unchanged.
O(m*log(n)) where m is the size of the smaller set and n is the size of the larger set.
(|/\) :: Ord a => OSet a -> OSet a -> OSet a Source #
Intersection. (/\ is meant to look a bit like the standard mathematical
notation for intersection.)
O(m*log(n/(m+1)) + r*log(r)), where m is the size of the smaller set, n the size of the larger set, and r the size of the result.
Indexing
A 0-based index, much like the indices used by lists' !! operation. All
indices are with respect to insertion order.