| Copyright | (c) Erich Gut |
|---|---|
| License | BSD3 |
| Maintainer | zerich.gut@gmail.com |
| Safe Haskell | Safe-Inferred |
| Language | Haskell2010 |
OAlg.Entity.Slice.Definition
Description
definition of slicing a Multiplicative structures according a given indexed Point.
Synopsis
- data Slice s i c where
- slice :: Slice s i c -> c
- data SliceFactor s i c = SliceFactor (Slice s i c) (Slice s i c) c
- slfDrop :: SliceFactor s i c -> c
- class (Entity1 i, Singleton1 i) => Sliced i c where
- slicePoint :: i c -> Point c
- data SliceFactorDrop s x y where
- SliceFactorFromDrop :: (Multiplicative c, Sliced i c) => SliceFactorDrop From (SliceFactor From i c) c
- SliceFactorToDrop :: (Multiplicative c, Sliced i c) => SliceFactorDrop To (SliceFactor To i c) c
- data DiagramSlicedCenter i t n m c where
- DiagramSlicedCenter :: Sliced i c => i c -> Diagram (Star t) n m c -> DiagramSlicedCenter i t n m c
- data LimesSlicedTip i s p t n m c where
- LimesSlicedTip :: Sliced i c => i c -> Limes s p t n m c -> LimesSlicedTip i s p t n m c
- lstLimes :: LimesSlicedTip i s p t n m c -> Limes s p t n m c
- slfTerminalPoint :: (Multiplicative c, Sliced i c) => TerminalPoint (SliceFactor To i c)
- slfPullback :: Multiplicative c => Products n (SliceFactor To i c) -> DiagramSlicedCenter i To (n + 1) n c -> Pullback n c
- slfLimitsInjective :: (Multiplicative c, Sliced i c) => Limits Mlt Injective t n m c -> Limits Mlt Injective t n m (SliceFactor To i c)
- xSliceTo :: Sliced i c => XOrtSite To c -> i c -> X (Slice To i c)
- xSliceFrom :: Sliced i c => XOrtSite From c -> i c -> X (Slice From i c)
- xosXOrtSiteToSliceFactorTo :: (Multiplicative c, Sliced i c) => XOrtSite To c -> i c -> XOrtSite To (SliceFactor To i c)
- xosXOrtSiteFromSliceFactorFrom :: (Multiplicative c, Sliced i c) => XOrtSite From c -> i c -> XOrtSite From (SliceFactor From i c)
Slice
data Slice s i c where Source #
slice over c by a given Site and indexed by i.
Instances
| (Show1 i, Show c) => Show (Slice s i c) Source # | |
| (Eq1 i, Eq c) => Eq (Slice s i c) Source # | |
| (Oriented c, Sliced i c) => Validable (Slice s i c) Source # | |
| (Multiplicative c, Sliced i c, XStandardOrtSite 'From c) => XStandard (Slice 'From i c) Source # | |
| (Multiplicative c, Sliced i c, XStandardOrtSite 'To c) => XStandard (Slice 'To i c) Source # | |
| (Oriented c, Sliced i c, Typeable s) => Entity (Slice s i c) Source # | |
Defined in OAlg.Entity.Slice.Definition | |
| type Dual (Slice s i c :: Type) Source # | |
Factor
data SliceFactor s i c Source #
factor between two slices.
Property Let SliceFactor a b f be in
for a SliceFactor s i cMultiplicative structure c
constrained by then holds:Sliced i c
Constructors
| SliceFactor (Slice s i c) (Slice s i c) c |
Instances
slfDrop :: SliceFactor s i c -> c Source #
the underlying factor.
Sliced
class (Entity1 i, Singleton1 i) => Sliced i c where Source #
Slicing a Multiplicative structures at the Point given by the type of the index
i.
Note The constraint ensures that the distinguished point
depends only on the type Singleton1 ii c.
Hom
data SliceFactorDrop s x y where Source #
dropping a slice factor.
Constructors
| SliceFactorFromDrop :: (Multiplicative c, Sliced i c) => SliceFactorDrop From (SliceFactor From i c) c | |
| SliceFactorToDrop :: (Multiplicative c, Sliced i c) => SliceFactorDrop To (SliceFactor To i c) c |
Instances
Limes
data DiagramSlicedCenter i t n m c where Source #
predicate for a diagram with center Star tPoint given by the index type
i c.
Property Let be in
DiagramSlicedCenter i d then holds:
DiagramSlicedCenter i t n m c.slicePoint i == dgCenter d
Constructors
| DiagramSlicedCenter :: Sliced i c => i c -> Diagram (Star t) n m c -> DiagramSlicedCenter i t n m c |
Instances
| Oriented c => Show (DiagramSlicedCenter i t n m c) Source # | |
Defined in OAlg.Entity.Slice.Definition Methods showsPrec :: Int -> DiagramSlicedCenter i t n m c -> ShowS # show :: DiagramSlicedCenter i t n m c -> String # showList :: [DiagramSlicedCenter i t n m c] -> ShowS # | |
| Oriented c => Validable (DiagramSlicedCenter i t n m c) Source # | |
Defined in OAlg.Entity.Slice.Definition Methods valid :: DiagramSlicedCenter i t n m c -> Statement Source # | |
data LimesSlicedTip i s p t n m c where Source #
predicate for a limes with a sliced tip of the universal cone.
Property Let be in
LimesSlicedTip i l then holds:
LimesSlicedTip i s p t n m c.tip (universalCone l) == slicePoint i
Constructors
| LimesSlicedTip :: Sliced i c => i c -> Limes s p t n m c -> LimesSlicedTip i s p t n m c |
Instances
| Oriented c => Show (LimesSlicedTip i s p t n m c) Source # | |
Defined in OAlg.Entity.Slice.Definition Methods showsPrec :: Int -> LimesSlicedTip i s p t n m c -> ShowS # show :: LimesSlicedTip i s p t n m c -> String # showList :: [LimesSlicedTip i s p t n m c] -> ShowS # | |
| (Oriented c, Validable (Limes s p t n m c)) => Validable (LimesSlicedTip i s p t n m c) Source # | |
Defined in OAlg.Entity.Slice.Definition Methods valid :: LimesSlicedTip i s p t n m c -> Statement Source # | |
lstLimes :: LimesSlicedTip i s p t n m c -> Limes s p t n m c Source #
the underlying limes.
Projective
slfTerminalPoint :: (Multiplicative c, Sliced i c) => TerminalPoint (SliceFactor To i c) Source #
terminal point for factors sliced to a Point.
slfPullback :: Multiplicative c => Products n (SliceFactor To i c) -> DiagramSlicedCenter i To (n + 1) n c -> Pullback n c Source #
the induced pullback.
Injective
slfLimitsInjective :: (Multiplicative c, Sliced i c) => Limits Mlt Injective t n m c -> Limits Mlt Injective t n m (SliceFactor To i c) Source #
X
xSliceTo :: Sliced i c => XOrtSite To c -> i c -> X (Slice To i c) Source #
the induced random variable.
xSliceFrom :: Sliced i c => XOrtSite From c -> i c -> X (Slice From i c) Source #
the induced random variable.
xosXOrtSiteToSliceFactorTo :: (Multiplicative c, Sliced i c) => XOrtSite To c -> i c -> XOrtSite To (SliceFactor To i c) Source #
the induced random variable.
xosXOrtSiteFromSliceFactorFrom :: (Multiplicative c, Sliced i c) => XOrtSite From c -> i c -> XOrtSite From (SliceFactor From i c) Source #
the induced random variable.