{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE LinearTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE NoImplicitPrelude #-}
{-# OPTIONS_GHC -Wno-orphans #-}
module Data.List.Linear
(
(++),
map,
filter,
NonLinear.head,
uncons,
NonLinear.tail,
NonLinear.last,
NonLinear.init,
reverse,
NonLinear.lookup,
length,
NonLinear.null,
traverse',
take,
drop,
splitAt,
span,
partition,
takeWhile,
dropWhile,
NonLinear.find,
intersperse,
intercalate,
transpose,
foldl,
foldl',
foldl1,
foldl1',
foldr,
foldr1,
foldMap,
foldMap',
concat,
concatMap,
and,
or,
any,
all,
sum,
product,
scanl,
scanl1,
scanr,
scanr1,
repeat,
replicate,
cycle,
iterate,
unfoldr,
NonLinear.sort,
NonLinear.sortOn,
NonLinear.insert,
zip,
zip',
zip3,
zipWith,
zipWith',
zipWith3,
unzip,
unzip3,
)
where
import Data.Bool.Linear
import Data.Functor.Linear
import qualified Data.Functor.Linear as Data
import qualified Data.List as NonLinear
import Data.List.NonEmpty (NonEmpty ((:|)))
import Data.Monoid.Linear
import Data.Num.Linear
import Data.Unrestricted.Linear
import GHC.Stack
import Prelude.Linear.Internal
import qualified Unsafe.Linear as Unsafe
import Prelude (Either (..), Int, Maybe (..))
import qualified Prelude as Prelude
(++) :: [a] %1 -> [a] %1 -> [a]
++ :: forall a. [a] %1 -> [a] %1 -> [a]
(++) = ([a] -> [a] -> [a]) %1 -> [a] %1 -> [a] %1 -> [a]
forall a b c (p :: Multiplicity) (q :: Multiplicity)
(x :: Multiplicity) (y :: Multiplicity).
(a %p -> b %q -> c) %1 -> a %x -> b %y -> c
Unsafe.toLinear2 [a] -> [a] -> [a]
forall a. [a] -> [a] -> [a]
(NonLinear.++)
infixr 5 ++
map :: (a %1 -> b) -> [a] %1 -> [b]
map :: forall a b. (a %1 -> b) -> [a] %1 -> [b]
map = (a %1 -> b) -> [a] %1 -> [b]
forall a b. (a %1 -> b) -> [a] %1 -> [b]
forall (f :: * -> *) a b. Functor f => (a %1 -> b) -> f a %1 -> f b
fmap
filter :: (Dupable a) => (a %1 -> Bool) -> [a] %1 -> [a]
filter :: forall a. Dupable a => (a %1 -> Bool) -> [a] %1 -> [a]
filter a %1 -> Bool
_ [] = []
filter a %1 -> Bool
p (a
x : [a]
xs) =
case a %1 -> (a, a)
forall a. Dupable a => a %1 -> (a, a)
dup a
x of
(a
x', a
x'') ->
if a %1 -> Bool
p a
x'
then a
x'' a -> [a] -> [a]
forall a. a -> [a] -> [a]
: (a %1 -> Bool) -> [a] %1 -> [a]
forall a. Dupable a => (a %1 -> Bool) -> [a] %1 -> [a]
filter a %1 -> Bool
p [a]
xs
else a
x'' a %1 -> [a] %1 -> [a]
forall a b. Consumable a => a %1 -> b %1 -> b
`lseq` (a %1 -> Bool) -> [a] %1 -> [a]
forall a. Dupable a => (a %1 -> Bool) -> [a] %1 -> [a]
filter a %1 -> Bool
p [a]
xs
uncons :: [a] %1 -> Maybe (a, [a])
uncons :: forall a. [a] %1 -> Maybe (a, [a])
uncons [] = Maybe (a, [a])
forall a. Maybe a
Nothing
uncons (a
x : [a]
xs) = (a, [a]) -> Maybe (a, [a])
forall a. a -> Maybe a
Just (a
x, [a]
xs)
reverse :: [a] %1 -> [a]
reverse :: forall a. [a] %1 -> [a]
reverse = ([a] -> [a]) %1 -> [a] %1 -> [a]
forall a b (p :: Multiplicity) (x :: Multiplicity).
(a %p -> b) %1 -> a %x -> b
Unsafe.toLinear [a] -> [a]
forall a. [a] -> [a]
NonLinear.reverse
length :: [a] %1 -> (Ur Int, [a])
length :: forall a. [a] %1 -> (Ur Int, [a])
length = ([a] -> (Ur Int, [a])) %1 -> [a] %1 -> (Ur Int, [a])
forall a b (p :: Multiplicity) (x :: Multiplicity).
(a %p -> b) %1 -> a %x -> b
Unsafe.toLinear (([a] -> (Ur Int, [a])) %1 -> [a] %1 -> (Ur Int, [a]))
-> ([a] -> (Ur Int, [a])) %1 -> [a] %1 -> (Ur Int, [a])
forall a b (p :: Multiplicity) (q :: Multiplicity).
(a %p -> b) %q -> a %p -> b
$ \[a]
xs ->
(Int -> Ur Int
forall a. a -> Ur a
Ur ([a] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
NonLinear.length [a]
xs), [a]
xs)
splitAt :: Int -> [a] %1 -> ([a], [a])
splitAt :: forall a. Int -> [a] %1 -> ([a], [a])
splitAt Int
i = ([a] -> ([a], [a])) %1 -> [a] %1 -> ([a], [a])
forall a b (p :: Multiplicity) (x :: Multiplicity).
(a %p -> b) %1 -> a %x -> b
Unsafe.toLinear (Int -> [a] -> ([a], [a])
forall a. Int -> [a] -> ([a], [a])
Prelude.splitAt Int
i)
span :: (Dupable a) => (a %1 -> Bool) -> [a] %1 -> ([a], [a])
span :: forall a. Dupable a => (a %1 -> Bool) -> [a] %1 -> ([a], [a])
span a %1 -> Bool
_ [] = ([], [])
span a %1 -> Bool
f (a
x : [a]
xs) =
case a %1 -> (a, a)
forall a. Dupable a => a %1 -> (a, a)
dup a
x of
(a
x', a
x'') ->
if a %1 -> Bool
f a
x'
then case (a %1 -> Bool) -> [a] %1 -> ([a], [a])
forall a. Dupable a => (a %1 -> Bool) -> [a] %1 -> ([a], [a])
span a %1 -> Bool
f [a]
xs of ([a]
ts, [a]
fs) -> (a
x'' a -> [a] -> [a]
forall a. a -> [a] -> [a]
: [a]
ts, [a]
fs)
else ([a
x''], [a]
xs)
partition :: (Dupable a) => (a %1 -> Bool) -> [a] %1 -> ([a], [a])
partition :: forall a. Dupable a => (a %1 -> Bool) -> [a] %1 -> ([a], [a])
partition a %1 -> Bool
p ([a]
xs :: [a]) = (a %1 -> ([a], [a]) %1 -> ([a], [a]))
-> ([a], [a]) %1 -> [a] %1 -> ([a], [a])
forall a b. (a %1 -> b %1 -> b) -> b %1 -> [a] %1 -> b
foldr a %1 -> ([a], [a]) %1 -> ([a], [a])
select ([], []) [a]
xs
where
select :: a %1 -> ([a], [a]) %1 -> ([a], [a])
select :: a %1 -> ([a], [a]) %1 -> ([a], [a])
select a
x ([a]
ts, [a]
fs) =
a %1 -> (a, a)
forall a. Dupable a => a %1 -> (a, a)
dup2 a
x (a, a) %1 -> ((a, a) %1 -> ([a], [a])) %1 -> ([a], [a])
forall a b (p :: Multiplicity) (q :: Multiplicity).
a %p -> (a %p -> b) %q -> b
& \(a
x', a
x'') ->
if a %1 -> Bool
p a
x'
then (a
x'' a -> [a] -> [a]
forall a. a -> [a] -> [a]
: [a]
ts, [a]
fs)
else ([a]
ts, a
x'' a -> [a] -> [a]
forall a. a -> [a] -> [a]
: [a]
fs)
takeWhile :: (Dupable a) => (a %1 -> Bool) -> [a] %1 -> [a]
takeWhile :: forall a. Dupable a => (a %1 -> Bool) -> [a] %1 -> [a]
takeWhile a %1 -> Bool
_ [] = []
takeWhile a %1 -> Bool
p (a
x : [a]
xs) =
a %1 -> (a, a)
forall a. Dupable a => a %1 -> (a, a)
dup2 a
x (a, a) %1 -> ((a, a) %1 -> [a]) %1 -> [a]
forall a b (p :: Multiplicity) (q :: Multiplicity).
a %p -> (a %p -> b) %q -> b
& \(a
x', a
x'') ->
if a %1 -> Bool
p a
x'
then a
x'' a -> [a] -> [a]
forall a. a -> [a] -> [a]
: (a %1 -> Bool) -> [a] %1 -> [a]
forall a. Dupable a => (a %1 -> Bool) -> [a] %1 -> [a]
takeWhile a %1 -> Bool
p [a]
xs
else (a
x'', [a]
xs) (a, [a]) %1 -> [a] %1 -> [a]
forall a b. Consumable a => a %1 -> b %1 -> b
`lseq` []
dropWhile :: (Dupable a) => (a %1 -> Bool) -> [a] %1 -> [a]
dropWhile :: forall a. Dupable a => (a %1 -> Bool) -> [a] %1 -> [a]
dropWhile a %1 -> Bool
_ [] = []
dropWhile a %1 -> Bool
p (a
x : [a]
xs) =
a %1 -> (a, a)
forall a. Dupable a => a %1 -> (a, a)
dup2 a
x (a, a) %1 -> ((a, a) %1 -> [a]) %1 -> [a]
forall a b (p :: Multiplicity) (q :: Multiplicity).
a %p -> (a %p -> b) %q -> b
& \(a
x', a
x'') ->
if a %1 -> Bool
p a
x'
then a
x'' a %1 -> [a] %1 -> [a]
forall a b. Consumable a => a %1 -> b %1 -> b
`lseq` (a %1 -> Bool) -> [a] %1 -> [a]
forall a. Dupable a => (a %1 -> Bool) -> [a] %1 -> [a]
dropWhile a %1 -> Bool
p [a]
xs
else a
x'' a -> [a] -> [a]
forall a. a -> [a] -> [a]
: [a]
xs
take :: (Consumable a) => Int -> [a] %1 -> [a]
take :: forall a. Consumable a => Int -> [a] %1 -> [a]
take Int
_ [] = []
take Int
i (a
x : [a]
xs)
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
Prelude.<= Int
0 = (a
x, [a]
xs) (a, [a]) %1 -> [a] %1 -> [a]
forall a b. Consumable a => a %1 -> b %1 -> b
`lseq` []
| Bool
otherwise = a
x a -> [a] -> [a]
forall a. a -> [a] -> [a]
: Int -> [a] %1 -> [a]
forall a. Consumable a => Int -> [a] %1 -> [a]
take (Int
i Int %1 -> Int %1 -> Int
forall a. AdditiveGroup a => a %1 -> a %1 -> a
- Int
1) [a]
xs
drop :: (Consumable a) => Int -> [a] %1 -> [a]
drop :: forall a. Consumable a => Int -> [a] %1 -> [a]
drop Int
_ [] = []
drop Int
i (a
x : [a]
xs)
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
Prelude.<= Int
0 = a
x a -> [a] -> [a]
forall a. a -> [a] -> [a]
: [a]
xs
| Bool
otherwise = a
x a %1 -> [a] %1 -> [a]
forall a b. Consumable a => a %1 -> b %1 -> b
`lseq` Int -> [a] %1 -> [a]
forall a. Consumable a => Int -> [a] %1 -> [a]
drop (Int
i Int %1 -> Int %1 -> Int
forall a. AdditiveGroup a => a %1 -> a %1 -> a
- Int
1) [a]
xs
intersperse :: a -> [a] %1 -> [a]
intersperse :: forall a. a -> [a] %1 -> [a]
intersperse a
sep = ([a] -> [a]) %1 -> [a] %1 -> [a]
forall a b (p :: Multiplicity) (x :: Multiplicity).
(a %p -> b) %1 -> a %x -> b
Unsafe.toLinear (a -> [a] -> [a]
forall a. a -> [a] -> [a]
NonLinear.intersperse a
sep)
intercalate :: [a] -> [[a]] %1 -> [a]
intercalate :: forall a. [a] -> [[a]] %1 -> [a]
intercalate [a]
sep = ([[a]] -> [a]) %1 -> [[a]] %1 -> [a]
forall a b (p :: Multiplicity) (x :: Multiplicity).
(a %p -> b) %1 -> a %x -> b
Unsafe.toLinear ([a] -> [[a]] -> [a]
forall a. [a] -> [[a]] -> [a]
NonLinear.intercalate [a]
sep)
transpose :: [[a]] %1 -> [[a]]
transpose :: forall a. [[a]] %1 -> [[a]]
transpose = ([[a]] -> [[a]]) %1 -> [[a]] %1 -> [[a]]
forall a b (p :: Multiplicity) (x :: Multiplicity).
(a %p -> b) %1 -> a %x -> b
Unsafe.toLinear [[a]] -> [[a]]
forall a. [[a]] -> [[a]]
NonLinear.transpose
traverse' :: (Data.Applicative f) => (a %1 -> f b) -> [a] %1 -> f [b]
traverse' :: forall (f :: * -> *) a b.
Applicative f =>
(a %1 -> f b) -> [a] %1 -> f [b]
traverse' a %1 -> f b
_ [] = [b] -> f [b]
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
Data.pure []
traverse' a %1 -> f b
f (a
a : [a]
as) = (:) (b %1 -> [b] %1 -> [b]) -> f b %1 -> f ([b] %1 -> [b])
forall (f :: * -> *) a b. Functor f => (a %1 -> b) -> f a %1 -> f b
<$> a %1 -> f b
f a
a f ([b] %1 -> [b]) %1 -> f [b] %1 -> f [b]
forall a b. f (a %1 -> b) %1 -> f a %1 -> f b
forall (f :: * -> *) a b.
Applicative f =>
f (a %1 -> b) %1 -> f a %1 -> f b
<*> (a %1 -> f b) -> [a] %1 -> f [b]
forall (f :: * -> *) a b.
Applicative f =>
(a %1 -> f b) -> [a] %1 -> f [b]
traverse' a %1 -> f b
f [a]
as
foldr :: (a %1 -> b %1 -> b) -> b %1 -> [a] %1 -> b
foldr :: forall a b. (a %1 -> b %1 -> b) -> b %1 -> [a] %1 -> b
foldr a %1 -> b %1 -> b
f = (b -> [a] -> b) %1 -> b %1 -> [a] %1 -> b
forall a b c (p :: Multiplicity) (q :: Multiplicity)
(x :: Multiplicity) (y :: Multiplicity).
(a %p -> b %q -> c) %1 -> a %x -> b %y -> c
Unsafe.toLinear2 ((a -> b -> b) -> b -> [a] -> b
forall a b. (a -> b -> b) -> b -> [a] -> b
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
NonLinear.foldr (\a
a b
b -> a %1 -> b %1 -> b
f a
a b
b))
foldr1 :: (HasCallStack) => (a %1 -> a %1 -> a) -> [a] %1 -> a
foldr1 :: forall a. HasCallStack => (a %1 -> a %1 -> a) -> [a] %1 -> a
foldr1 a %1 -> a %1 -> a
f = ([a] -> a) %1 -> [a] %1 -> a
forall a b (p :: Multiplicity) (x :: Multiplicity).
(a %p -> b) %1 -> a %x -> b
Unsafe.toLinear ((a -> a -> a) -> [a] -> a
forall a. (a -> a -> a) -> [a] -> a
forall (t :: * -> *) a. Foldable t => (a -> a -> a) -> t a -> a
NonLinear.foldr1 (\a
a a
b -> a %1 -> a %1 -> a
f a
a a
b))
foldl :: (b %1 -> a %1 -> b) -> b %1 -> [a] %1 -> b
foldl :: forall b a. (b %1 -> a %1 -> b) -> b %1 -> [a] %1 -> b
foldl b %1 -> a %1 -> b
f = (b -> [a] -> b) %1 -> b %1 -> [a] %1 -> b
forall a b c (p :: Multiplicity) (q :: Multiplicity)
(x :: Multiplicity) (y :: Multiplicity).
(a %p -> b %q -> c) %1 -> a %x -> b %y -> c
Unsafe.toLinear2 ((b -> a -> b) -> b -> [a] -> b
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
NonLinear.foldl (\b
b a
a -> b %1 -> a %1 -> b
f b
b a
a))
foldl' :: (b %1 -> a %1 -> b) -> b %1 -> [a] %1 -> b
foldl' :: forall b a. (b %1 -> a %1 -> b) -> b %1 -> [a] %1 -> b
foldl' b %1 -> a %1 -> b
f = (b -> [a] -> b) %1 -> b %1 -> [a] %1 -> b
forall a b c (p :: Multiplicity) (q :: Multiplicity)
(x :: Multiplicity) (y :: Multiplicity).
(a %p -> b %q -> c) %1 -> a %x -> b %y -> c
Unsafe.toLinear2 ((b -> a -> b) -> b -> [a] -> b
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
NonLinear.foldl' (\b
b a
a -> b %1 -> a %1 -> b
f b
b a
a))
foldl1 :: (HasCallStack) => (a %1 -> a %1 -> a) -> [a] %1 -> a
foldl1 :: forall a. HasCallStack => (a %1 -> a %1 -> a) -> [a] %1 -> a
foldl1 a %1 -> a %1 -> a
f = ([a] -> a) %1 -> [a] %1 -> a
forall a b (p :: Multiplicity) (x :: Multiplicity).
(a %p -> b) %1 -> a %x -> b
Unsafe.toLinear ((a -> a -> a) -> [a] -> a
forall a. (a -> a -> a) -> [a] -> a
forall (t :: * -> *) a. Foldable t => (a -> a -> a) -> t a -> a
NonLinear.foldl1 (\a
a a
b -> a %1 -> a %1 -> a
f a
a a
b))
foldl1' :: (HasCallStack) => (a %1 -> a %1 -> a) -> [a] %1 -> a
foldl1' :: forall a. HasCallStack => (a %1 -> a %1 -> a) -> [a] %1 -> a
foldl1' a %1 -> a %1 -> a
f = ([a] -> a) %1 -> [a] %1 -> a
forall a b (p :: Multiplicity) (x :: Multiplicity).
(a %p -> b) %1 -> a %x -> b
Unsafe.toLinear ((a -> a -> a) -> [a] -> a
forall a. HasCallStack => (a -> a -> a) -> [a] -> a
NonLinear.foldl1' (\a
a a
b -> a %1 -> a %1 -> a
f a
a a
b))
foldMap :: (Monoid m) => (a %1 -> m) -> [a] %1 -> m
foldMap :: forall m a. Monoid m => (a %1 -> m) -> [a] %1 -> m
foldMap a %1 -> m
f = (a %1 -> m %1 -> m) -> m %1 -> [a] %1 -> m
forall a b. (a %1 -> b %1 -> b) -> b %1 -> [a] %1 -> b
foldr (m %1 -> m %1 -> m
forall a. Semigroup a => a %1 -> a %1 -> a
(<>) (m %1 -> m %1 -> m) -> (a %1 -> m) -> a %1 -> m %1 -> m
forall b c a (q :: Multiplicity) (m :: Multiplicity)
(n :: Multiplicity).
(b %1 -> c) %q -> (a %1 -> b) %m -> a %n -> c
. a %1 -> m
f) m
forall a. Monoid a => a
mempty
foldMap' :: (Monoid m) => (a %1 -> m) -> [a] %1 -> m
foldMap' :: forall m a. Monoid m => (a %1 -> m) -> [a] %1 -> m
foldMap' a %1 -> m
f = (m %1 -> a %1 -> m) -> m %1 -> [a] %1 -> m
forall b a. (b %1 -> a %1 -> b) -> b %1 -> [a] %1 -> b
foldl' (\m
acc a
a -> m
acc m %1 -> m %1 -> m
forall a. Semigroup a => a %1 -> a %1 -> a
<> a %1 -> m
f a
a) m
forall a. Monoid a => a
mempty
concat :: [[a]] %1 -> [a]
concat :: forall a. [[a]] %1 -> [a]
concat = ([[a]] -> [a]) %1 -> [[a]] %1 -> [a]
forall a b (p :: Multiplicity) (x :: Multiplicity).
(a %p -> b) %1 -> a %x -> b
Unsafe.toLinear [[a]] -> [a]
forall (t :: * -> *) a. Foldable t => t [a] -> [a]
NonLinear.concat
concatMap :: (a %1 -> [b]) -> [a] %1 -> [b]
concatMap :: forall a b. (a %1 -> [b]) -> [a] %1 -> [b]
concatMap a %1 -> [b]
f = ([a] -> [b]) %1 -> [a] %1 -> [b]
forall a b (p :: Multiplicity) (x :: Multiplicity).
(a %p -> b) %1 -> a %x -> b
Unsafe.toLinear ((a -> [b]) -> [a] -> [b]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
NonLinear.concatMap ((a %1 -> [b]) %1 -> a -> [b]
forall a b. (a %1 -> b) %1 -> a -> b
forget a %1 -> [b]
f))
sum :: (AddIdentity a) => [a] %1 -> a
sum :: forall a. AddIdentity a => [a] %1 -> a
sum = (a %1 -> a %1 -> a) -> a %1 -> [a] %1 -> a
forall b a. (b %1 -> a %1 -> b) -> b %1 -> [a] %1 -> b
foldl' a %1 -> a %1 -> a
forall a. Additive a => a %1 -> a %1 -> a
(+) a
forall a. AddIdentity a => a
zero
product :: (MultIdentity a) => [a] %1 -> a
product :: forall a. MultIdentity a => [a] %1 -> a
product = (a %1 -> a %1 -> a) -> a %1 -> [a] %1 -> a
forall b a. (b %1 -> a %1 -> b) -> b %1 -> [a] %1 -> b
foldl' a %1 -> a %1 -> a
forall a. Multiplicative a => a %1 -> a %1 -> a
(*) a
forall a. MultIdentity a => a
one
any :: (a %1 -> Bool) -> [a] %1 -> Bool
any :: forall a. (a %1 -> Bool) -> [a] %1 -> Bool
any a %1 -> Bool
p = (Bool %1 -> a %1 -> Bool) -> Bool %1 -> [a] %1 -> Bool
forall b a. (b %1 -> a %1 -> b) -> b %1 -> [a] %1 -> b
foldl' (\Bool
b a
a -> Bool
b Bool %1 -> Bool %1 -> Bool
|| a %1 -> Bool
p a
a) Bool
False
all :: (a %1 -> Bool) -> [a] %1 -> Bool
all :: forall a. (a %1 -> Bool) -> [a] %1 -> Bool
all a %1 -> Bool
p = (Bool %1 -> a %1 -> Bool) -> Bool %1 -> [a] %1 -> Bool
forall b a. (b %1 -> a %1 -> b) -> b %1 -> [a] %1 -> b
foldl' (\Bool
b a
a -> Bool
b Bool %1 -> Bool %1 -> Bool
&& a %1 -> Bool
p a
a) Bool
True
and :: [Bool] %1 -> Bool
and :: [Bool] %1 -> Bool
and = (Bool %1 -> Bool %1 -> Bool) -> Bool %1 -> [Bool] %1 -> Bool
forall b a. (b %1 -> a %1 -> b) -> b %1 -> [a] %1 -> b
foldl' Bool %1 -> Bool %1 -> Bool
(&&) Bool
True
or :: [Bool] %1 -> Bool
or :: [Bool] %1 -> Bool
or = (Bool %1 -> Bool %1 -> Bool) -> Bool %1 -> [Bool] %1 -> Bool
forall b a. (b %1 -> a %1 -> b) -> b %1 -> [a] %1 -> b
foldl' Bool %1 -> Bool %1 -> Bool
(||) Bool
False
{-# DEPRECATED iterate "The result cannot be consumed linearly, so this function is not useful." #-}
iterate :: (Dupable a) => (a %1 -> a) -> a %1 -> [a]
iterate :: forall a. Dupable a => (a %1 -> a) -> a %1 -> [a]
iterate a %1 -> a
f a
a =
a %1 -> (a, a)
forall a. Dupable a => a %1 -> (a, a)
dup2 a
a (a, a) %1 -> ((a, a) %1 -> [a]) -> [a]
forall a b (p :: Multiplicity) (q :: Multiplicity).
a %p -> (a %p -> b) %q -> b
& \(a
a', a
a'') ->
a
a' a -> [a] -> [a]
forall a. a -> [a] -> [a]
: (a %1 -> a) -> a %1 -> [a]
forall a. Dupable a => (a %1 -> a) -> a %1 -> [a]
iterate a %1 -> a
f (a %1 -> a
f a
a'')
{-# DEPRECATED repeat "The result cannot be consumed linearly, so this function is not useful." #-}
repeat :: (Dupable a) => a %1 -> [a]
repeat :: forall a. Dupable a => a %1 -> [a]
repeat = (a %1 -> a) -> a %1 -> [a]
forall a. Dupable a => (a %1 -> a) -> a %1 -> [a]
iterate a %1 -> a
forall a (q :: Multiplicity). a %q -> a
id
{-# DEPRECATED cycle "The result cannot be consumed linearly, so this function is not useful." #-}
cycle :: (HasCallStack, Dupable a) => [a] %1 -> [a]
cycle :: forall a. (HasCallStack, Dupable a) => [a] %1 -> [a]
cycle [] = [Char] -> [a]
forall a. HasCallStack => [Char] -> a
Prelude.error [Char]
"cycle: empty list"
cycle [a]
xs = [a] %1 -> ([a], [a])
forall a. Dupable a => a %1 -> (a, a)
dup2 [a]
xs ([a], [a]) %1 -> (([a], [a]) %1 -> [a]) -> [a]
forall a b (p :: Multiplicity) (q :: Multiplicity).
a %p -> (a %p -> b) %q -> b
& \([a]
xs', [a]
xs'') -> [a]
xs' [a] %1 -> [a] %1 -> [a]
forall a. [a] %1 -> [a] %1 -> [a]
++ [a] %1 -> [a]
forall a. (HasCallStack, Dupable a) => [a] %1 -> [a]
cycle [a]
xs''
scanl :: (Dupable b) => (b %1 -> a %1 -> b) -> b %1 -> [a] %1 -> [b]
scanl :: forall b a.
Dupable b =>
(b %1 -> a %1 -> b) -> b %1 -> [a] %1 -> [b]
scanl b %1 -> a %1 -> b
_ b
b [] = [b
b]
scanl b %1 -> a %1 -> b
f b
b (a
x : [a]
xs) = b %1 -> (b, b)
forall a. Dupable a => a %1 -> (a, a)
dup2 b
b (b, b) %1 -> ((b, b) %1 -> [b]) %1 -> [b]
forall a b (p :: Multiplicity) (q :: Multiplicity).
a %p -> (a %p -> b) %q -> b
& \(b
b', b
b'') -> b
b' b -> [b] -> [b]
forall a. a -> [a] -> [a]
: (b %1 -> a %1 -> b) -> b %1 -> [a] %1 -> [b]
forall b a.
Dupable b =>
(b %1 -> a %1 -> b) -> b %1 -> [a] %1 -> [b]
scanl b %1 -> a %1 -> b
f (b %1 -> a %1 -> b
f b
b'' a
x) [a]
xs
scanl1 :: (Dupable a) => (a %1 -> a %1 -> a) -> [a] %1 -> [a]
scanl1 :: forall a. Dupable a => (a %1 -> a %1 -> a) -> [a] %1 -> [a]
scanl1 a %1 -> a %1 -> a
_ [] = []
scanl1 a %1 -> a %1 -> a
f (a
x : [a]
xs) = (a %1 -> a %1 -> a) -> a %1 -> [a] %1 -> [a]
forall b a.
Dupable b =>
(b %1 -> a %1 -> b) -> b %1 -> [a] %1 -> [b]
scanl a %1 -> a %1 -> a
f a
x [a]
xs
scanr :: (Dupable b) => (a %1 -> b %1 -> b) -> b %1 -> [a] %1 -> [b]
scanr :: forall b a.
Dupable b =>
(a %1 -> b %1 -> b) -> b %1 -> [a] %1 -> [b]
scanr a %1 -> b %1 -> b
_ b
b [] = [b
b]
scanr a %1 -> b %1 -> b
f b
b (a
a : [a]
as) =
case (a %1 -> b %1 -> b) -> b %1 -> [a] %1 -> [b]
forall b a.
Dupable b =>
(a %1 -> b %1 -> b) -> b %1 -> [a] %1 -> [b]
scanr a %1 -> b %1 -> b
f b
b [a]
as of
(b
b' : [b]
bs') ->
b %1 -> (b, b)
forall a. Dupable a => a %1 -> (a, a)
dup2 b
b' (b, b) %1 -> ((b, b) %1 -> [b]) %1 -> [b]
forall a b (p :: Multiplicity) (q :: Multiplicity).
a %p -> (a %p -> b) %q -> b
& \(b
b'', b
b''') ->
a %1 -> b %1 -> b
f a
a b
b'' b -> [b] -> [b]
forall a. a -> [a] -> [a]
: b
b''' b -> [b] -> [b]
forall a. a -> [a] -> [a]
: [b]
bs'
[] ->
[Char] -> a %1 -> [b]
forall a. HasCallStack => [Char] -> a
Prelude.error [Char]
"impossible" a
a
scanr1 :: (Dupable a) => (a %1 -> a %1 -> a) -> [a] %1 -> [a]
scanr1 :: forall a. Dupable a => (a %1 -> a %1 -> a) -> [a] %1 -> [a]
scanr1 a %1 -> a %1 -> a
_ [] = []
scanr1 a %1 -> a %1 -> a
_ [a
a] = [a
a]
scanr1 a %1 -> a %1 -> a
f (a
a : [a]
as) =
case (a %1 -> a %1 -> a) -> [a] %1 -> [a]
forall a. Dupable a => (a %1 -> a %1 -> a) -> [a] %1 -> [a]
scanr1 a %1 -> a %1 -> a
f [a]
as of
(a
a' : [a]
as') ->
a %1 -> (a, a)
forall a. Dupable a => a %1 -> (a, a)
dup2 a
a' (a, a) %1 -> ((a, a) %1 -> [a]) %1 -> [a]
forall a b (p :: Multiplicity) (q :: Multiplicity).
a %p -> (a %p -> b) %q -> b
& \(a
a'', a
a''') ->
a %1 -> a %1 -> a
f a
a a
a'' a -> [a] -> [a]
forall a. a -> [a] -> [a]
: a
a''' a -> [a] -> [a]
forall a. a -> [a] -> [a]
: [a]
as'
[] ->
[Char] -> a %1 -> [a]
forall a. HasCallStack => [Char] -> a
Prelude.error [Char]
"impossible" a
a
replicate :: (Dupable a) => Int -> a %1 -> [a]
replicate :: forall a. Dupable a => Int -> a %1 -> [a]
replicate Int
i a
a
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
Prelude.< Int
1 = a
a a %1 -> [a] %1 -> [a]
forall a b. Consumable a => a %1 -> b %1 -> b
`lseq` []
| Int
i Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
Prelude.== Int
1 = [a
a]
| Bool
otherwise = a %1 -> (a, a)
forall a. Dupable a => a %1 -> (a, a)
dup2 a
a (a, a) %1 -> ((a, a) %1 -> [a]) -> [a]
forall a b (p :: Multiplicity) (q :: Multiplicity).
a %p -> (a %p -> b) %q -> b
& \(a
a', a
a'') -> a
a' a -> [a] -> [a]
forall a. a -> [a] -> [a]
: Int -> a %1 -> [a]
forall a. Dupable a => Int -> a %1 -> [a]
replicate (Int
i Int %1 -> Int %1 -> Int
forall a. AdditiveGroup a => a %1 -> a %1 -> a
- Int
1) a
a''
unfoldr :: (b %1 -> Maybe (a, b)) -> b %1 -> [a]
unfoldr :: forall b a. (b %1 -> Maybe (a, b)) -> b %1 -> [a]
unfoldr b %1 -> Maybe (a, b)
f = (b -> [a]) %1 -> b %1 -> [a]
forall a b (p :: Multiplicity) (x :: Multiplicity).
(a %p -> b) %1 -> a %x -> b
Unsafe.toLinear ((b -> Maybe (a, b)) -> b -> [a]
forall b a. (b -> Maybe (a, b)) -> b -> [a]
NonLinear.unfoldr ((b %1 -> Maybe (a, b)) %1 -> b -> Maybe (a, b)
forall a b. (a %1 -> b) %1 -> a -> b
forget b %1 -> Maybe (a, b)
f))
zip :: (Consumable a, Consumable b) => [a] %1 -> [b] %1 -> [(a, b)]
zip :: forall a b.
(Consumable a, Consumable b) =>
[a] %1 -> [b] %1 -> [(a, b)]
zip = (a %1 -> b %1 -> (a, b)) -> [a] %1 -> [b] %1 -> [(a, b)]
forall a b c.
(Consumable a, Consumable b) =>
(a %1 -> b %1 -> c) -> [a] %1 -> [b] %1 -> [c]
zipWith (,)
zip' :: [a] %1 -> [b] %1 -> ([(a, b)], Maybe (Either (NonEmpty a) (NonEmpty b)))
zip' :: forall a b.
[a]
%1 -> [b]
%1 -> ([(a, b)], Maybe (Either (NonEmpty a) (NonEmpty b)))
zip' = (a %1 -> b %1 -> (a, b))
-> [a]
%1 -> [b]
%1 -> ([(a, b)], Maybe (Either (NonEmpty a) (NonEmpty b)))
forall a b c.
(a %1 -> b %1 -> c)
-> [a]
%1 -> [b]
%1 -> ([c], Maybe (Either (NonEmpty a) (NonEmpty b)))
zipWith' (,)
zip3 :: (Consumable a, Consumable b, Consumable c) => [a] %1 -> [b] %1 -> [c] %1 -> [(a, b, c)]
zip3 :: forall a b c.
(Consumable a, Consumable b, Consumable c) =>
[a] %1 -> [b] %1 -> [c] %1 -> [(a, b, c)]
zip3 = (a %1 -> b %1 -> c %1 -> (a, b, c))
-> [a] %1 -> [b] %1 -> [c] %1 -> [(a, b, c)]
forall a b c d.
(Consumable a, Consumable b, Consumable c) =>
(a %1 -> b %1 -> c %1 -> d) -> [a] %1 -> [b] %1 -> [c] %1 -> [d]
zipWith3 (,,)
zipWith :: (Consumable a, Consumable b) => (a %1 -> b %1 -> c) -> [a] %1 -> [b] %1 -> [c]
zipWith :: forall a b c.
(Consumable a, Consumable b) =>
(a %1 -> b %1 -> c) -> [a] %1 -> [b] %1 -> [c]
zipWith a %1 -> b %1 -> c
f [a]
xs [b]
ys =
(a %1 -> b %1 -> c)
-> [a]
%1 -> [b]
%1 -> ([c], Maybe (Either (NonEmpty a) (NonEmpty b)))
forall a b c.
(a %1 -> b %1 -> c)
-> [a]
%1 -> [b]
%1 -> ([c], Maybe (Either (NonEmpty a) (NonEmpty b)))
zipWith' a %1 -> b %1 -> c
f [a]
xs [b]
ys ([c], Maybe (Either (NonEmpty a) (NonEmpty b)))
%1 -> (([c], Maybe (Either (NonEmpty a) (NonEmpty b))) %1 -> [c])
-> [c]
forall a b (p :: Multiplicity) (q :: Multiplicity).
a %p -> (a %p -> b) %q -> b
& \([c]
ret, Maybe (Either (NonEmpty a) (NonEmpty b))
leftovers) ->
Maybe (Either (NonEmpty a) (NonEmpty b))
leftovers Maybe (Either (NonEmpty a) (NonEmpty b)) %1 -> [c] %1 -> [c]
forall a b. Consumable a => a %1 -> b %1 -> b
`lseq` [c]
ret
zipWith' :: (a %1 -> b %1 -> c) -> [a] %1 -> [b] %1 -> ([c], Maybe (Either (NonEmpty a) (NonEmpty b)))
zipWith' :: forall a b c.
(a %1 -> b %1 -> c)
-> [a]
%1 -> [b]
%1 -> ([c], Maybe (Either (NonEmpty a) (NonEmpty b)))
zipWith' a %1 -> b %1 -> c
_ [] [] = ([], Maybe (Either (NonEmpty a) (NonEmpty b))
forall a. Maybe a
Nothing)
zipWith' a %1 -> b %1 -> c
_ (a
a : [a]
as) [] = ([], Either (NonEmpty a) (NonEmpty b)
-> Maybe (Either (NonEmpty a) (NonEmpty b))
forall a. a -> Maybe a
Just (NonEmpty a -> Either (NonEmpty a) (NonEmpty b)
forall a b. a -> Either a b
Left (a
a a -> [a] -> NonEmpty a
forall a. a -> [a] -> NonEmpty a
:| [a]
as)))
zipWith' a %1 -> b %1 -> c
_ [] (b
b : [b]
bs) = ([], Either (NonEmpty a) (NonEmpty b)
-> Maybe (Either (NonEmpty a) (NonEmpty b))
forall a. a -> Maybe a
Just (NonEmpty b -> Either (NonEmpty a) (NonEmpty b)
forall a b. b -> Either a b
Right (b
b b -> [b] -> NonEmpty b
forall a. a -> [a] -> NonEmpty a
:| [b]
bs)))
zipWith' a %1 -> b %1 -> c
f (a
a : [a]
as) (b
b : [b]
bs) =
case (a %1 -> b %1 -> c)
-> [a]
%1 -> [b]
%1 -> ([c], Maybe (Either (NonEmpty a) (NonEmpty b)))
forall a b c.
(a %1 -> b %1 -> c)
-> [a]
%1 -> [b]
%1 -> ([c], Maybe (Either (NonEmpty a) (NonEmpty b)))
zipWith' a %1 -> b %1 -> c
f [a]
as [b]
bs of
([c]
cs, Maybe (Either (NonEmpty a) (NonEmpty b))
rest) -> (a %1 -> b %1 -> c
f a
a b
b c -> [c] -> [c]
forall a. a -> [a] -> [a]
: [c]
cs, Maybe (Either (NonEmpty a) (NonEmpty b))
rest)
zipWith3 :: forall a b c d. (Consumable a, Consumable b, Consumable c) => (a %1 -> b %1 -> c %1 -> d) -> [a] %1 -> [b] %1 -> [c] %1 -> [d]
zipWith3 :: forall a b c d.
(Consumable a, Consumable b, Consumable c) =>
(a %1 -> b %1 -> c %1 -> d) -> [a] %1 -> [b] %1 -> [c] %1 -> [d]
zipWith3 a %1 -> b %1 -> c %1 -> d
_ [] [b]
ys [c]
zs = ([b]
ys, [c]
zs) ([b], [c]) %1 -> [d] %1 -> [d]
forall a b. Consumable a => a %1 -> b %1 -> b
`lseq` []
zipWith3 a %1 -> b %1 -> c %1 -> d
_ [a]
xs [] [c]
zs = ([a]
xs, [c]
zs) ([a], [c]) %1 -> [d] %1 -> [d]
forall a b. Consumable a => a %1 -> b %1 -> b
`lseq` []
zipWith3 a %1 -> b %1 -> c %1 -> d
_ [a]
xs [b]
ys [] = ([a]
xs, [b]
ys) ([a], [b]) %1 -> [d] %1 -> [d]
forall a b. Consumable a => a %1 -> b %1 -> b
`lseq` []
zipWith3 a %1 -> b %1 -> c %1 -> d
f (a
x : [a]
xs) (b
y : [b]
ys) (c
z : [c]
zs) = a %1 -> b %1 -> c %1 -> d
f a
x b
y c
z d -> [d] -> [d]
forall a. a -> [a] -> [a]
: (a %1 -> b %1 -> c %1 -> d) -> [a] %1 -> [b] %1 -> [c] %1 -> [d]
forall a b c d.
(Consumable a, Consumable b, Consumable c) =>
(a %1 -> b %1 -> c %1 -> d) -> [a] %1 -> [b] %1 -> [c] %1 -> [d]
zipWith3 a %1 -> b %1 -> c %1 -> d
f [a]
xs [b]
ys [c]
zs
unzip :: [(a, b)] %1 -> ([a], [b])
unzip :: forall a b. [(a, b)] %1 -> ([a], [b])
unzip = ([(a, b)] -> ([a], [b])) %1 -> [(a, b)] %1 -> ([a], [b])
forall a b (p :: Multiplicity) (x :: Multiplicity).
(a %p -> b) %1 -> a %x -> b
Unsafe.toLinear [(a, b)] -> ([a], [b])
forall a b. [(a, b)] -> ([a], [b])
NonLinear.unzip
unzip3 :: [(a, b, c)] %1 -> ([a], [b], [c])
unzip3 :: forall a b c. [(a, b, c)] %1 -> ([a], [b], [c])
unzip3 = ([(a, b, c)] -> ([a], [b], [c]))
%1 -> [(a, b, c)] %1 -> ([a], [b], [c])
forall a b (p :: Multiplicity) (x :: Multiplicity).
(a %p -> b) %1 -> a %x -> b
Unsafe.toLinear [(a, b, c)] -> ([a], [b], [c])
forall a b c. [(a, b, c)] -> ([a], [b], [c])
NonLinear.unzip3
instance Semigroup (NonEmpty a) where
(a
x :| [a]
xs) <> :: NonEmpty a %1 -> NonEmpty a %1 -> NonEmpty a
<> (a
y :| [a]
ys) = a
x a -> [a] -> NonEmpty a
forall a. a -> [a] -> NonEmpty a
:| ([a]
xs [a] %1 -> [a] %1 -> [a]
forall a. [a] %1 -> [a] %1 -> [a]
++ (a
y a -> [a] -> [a]
forall a. a -> [a] -> [a]
: [a]
ys))
instance Semigroup [a] where
<> :: [a] %1 -> [a] %1 -> [a]
(<>) = [a] %1 -> [a] %1 -> [a]
forall a. [a] %1 -> [a] %1 -> [a]
(++)
{-# INLINE (<>) #-}
instance Monoid [a] where
mempty :: [a]
mempty = []