| Copyright | (C) 2012-16 Edward Kmett |
|---|---|
| License | BSD-style (see the file LICENSE) |
| Maintainer | Edward Kmett <ekmett@gmail.com> |
| Stability | provisional |
| Portability | Rank2Types |
| Safe Haskell | Trustworthy |
| Language | Haskell98 |
Control.Lens.Iso
Contents
Description
Synopsis
- type Iso s t a b = forall p f. (Profunctor p, Functor f) => p a (f b) -> p s (f t)
- type Iso' s a = Iso s s a a
- type AnIso s t a b = Exchange a b a (Identity b) -> Exchange a b s (Identity t)
- type AnIso' s a = AnIso s s a a
- iso :: (s -> a) -> (b -> t) -> Iso s t a b
- from :: AnIso s t a b -> Iso b a t s
- cloneIso :: AnIso s t a b -> Iso s t a b
- withIso :: AnIso s t a b -> ((s -> a) -> (b -> t) -> r) -> r
- au :: Functor f => AnIso s t a b -> ((b -> t) -> f s) -> f a
- auf :: Optic (Costar f) g s t a b -> (f a -> g b) -> f s -> g t
- under :: AnIso s t a b -> (t -> s) -> b -> a
- mapping :: (Functor f, Functor g) => AnIso s t a b -> Iso (f s) (g t) (f a) (g b)
- simple :: Equality' a a
- non :: Eq a => a -> Iso' (Maybe a) a
- non' :: APrism' a () -> Iso' (Maybe a) a
- anon :: a -> (a -> Bool) -> Iso' (Maybe a) a
- enum :: Enum a => Iso' Int a
- curried :: Iso ((a, b) -> c) ((d, e) -> f) (a -> b -> c) (d -> e -> f)
- uncurried :: Iso (a -> b -> c) (d -> e -> f) ((a, b) -> c) ((d, e) -> f)
- flipped :: Iso (a -> b -> c) (a' -> b' -> c') (b -> a -> c) (b' -> a' -> c')
- class Bifunctor p => Swapped p where
- pattern Swapped :: forall (p :: * -> * -> *) c d. Swapped p => p d c -> p c d
- class Strict lazy strict | lazy -> strict, strict -> lazy where
- pattern Strict :: forall s t. Strict s t => t -> s
- pattern Lazy :: forall t s. Strict t s => t -> s
- lazy :: Strict lazy strict => Iso' strict lazy
- class Reversing t where
- reversed :: Reversing a => Iso' a a
- pattern Reversed :: forall t. Reversing t => t -> t
- involuted :: (a -> a) -> Iso' a a
- pattern List :: forall l. IsList l => [Item l] -> l
- magma :: LensLike (Mafic a b) s t a b -> Iso s u (Magma Int t b a) (Magma j u c c)
- imagma :: Over (Indexed i) (Molten i a b) s t a b -> Iso s t' (Magma i t b a) (Magma j t' c c)
- data Magma i t b a
- contramapping :: Contravariant f => AnIso s t a b -> Iso (f a) (f b) (f s) (f t)
- class Profunctor (p :: * -> * -> *) where
- dimapping :: (Profunctor p, Profunctor q) => AnIso s t a b -> AnIso s' t' a' b' -> Iso (p a s') (q b t') (p s a') (q t b')
- lmapping :: (Profunctor p, Profunctor q) => AnIso s t a b -> Iso (p a x) (q b y) (p s x) (q t y)
- rmapping :: (Profunctor p, Profunctor q) => AnIso s t a b -> Iso (p x s) (q y t) (p x a) (q y b)
- bimapping :: (Bifunctor f, Bifunctor g) => AnIso s t a b -> AnIso s' t' a' b' -> Iso (f s s') (g t t') (f a a') (g b b')
- firsting :: (Bifunctor f, Bifunctor g) => AnIso s t a b -> Iso (f s x) (g t y) (f a x) (g b y)
- seconding :: (Bifunctor f, Bifunctor g) => AnIso s t a b -> Iso (f x s) (g y t) (f x a) (g y b)
- coerced :: forall s t a b. (Coercible s a, Coercible t b) => Iso s t a b
Isomorphism Lenses
type Iso s t a b = forall p f. (Profunctor p, Functor f) => p a (f b) -> p s (f t) Source #
type AnIso s t a b = Exchange a b a (Identity b) -> Exchange a b s (Identity t) Source #
When you see this as an argument to a function, it expects an Iso.
Isomorphism Construction
Consuming Isomorphisms
cloneIso :: AnIso s t a b -> Iso s t a b Source #
Convert from AnIso back to any Iso.
This is useful when you need to store an isomorphism as a data type inside a container and later reconstitute it as an overloaded function.
See cloneLens or cloneTraversal for more information on why you might want to do this.
withIso :: AnIso s t a b -> ((s -> a) -> (b -> t) -> r) -> r Source #
Extract the two functions, one from s -> a and
one from b -> t that characterize an Iso.
Working with isomorphisms
auf :: Optic (Costar f) g s t a b -> (f a -> g b) -> f s -> g t Source #
Based on ala' from Conor McBride's work on Epigram.
This version is generalized to accept any Iso, not just a newtype.
For a version you pass the name of the newtype constructor to, see alaf.
>>>auf (_Unwrapping Sum) (foldMapOf both) Prelude.length ("hello","world")10
Mnemonically, the German auf plays a similar role to à la, and the combinator
is au with an extra function argument:
auf::Isos t a b -> ((r -> a) -> e -> b) -> (r -> s) -> e -> t
but the signature is general.
Common Isomorphisms
non :: Eq a => a -> Iso' (Maybe a) a Source #
If v is an element of a type a, and a' is a sans the element v, then is an isomorphism from
non v to Maybe a'a.
non≡non'.only
Keep in mind this is only a real isomorphism if you treat the domain as being .Maybe (a sans v)
This is practically quite useful when you want to have a Map where all the entries should have non-zero values.
>>>Map.fromList [("hello",1)] & at "hello" . non 0 +~ 2fromList [("hello",3)]
>>>Map.fromList [("hello",1)] & at "hello" . non 0 -~ 1fromList []
>>>Map.fromList [("hello",1)] ^. at "hello" . non 01
>>>Map.fromList [] ^. at "hello" . non 00
This combinator is also particularly useful when working with nested maps.
e.g. When you want to create the nested Map when it is missing:
>>>Map.empty & at "hello" . non Map.empty . at "world" ?~ "!!!"fromList [("hello",fromList [("world","!!!")])]
and when have deleting the last entry from the nested Map mean that we
should delete its entry from the surrounding one:
>>>fromList [("hello",fromList [("world","!!!")])] & at "hello" . non Map.empty . at "world" .~ NothingfromList []
It can also be used in reverse to exclude a given value:
>>>non 0 # rem 10 4Just 2
>>>non 0 # rem 10 5Nothing
non' :: APrism' a () -> Iso' (Maybe a) a Source #
generalizes non' p to take any unit non (p # ())Prism
This function generates an isomorphism between and Maybe (a | isn't p a)a.
>>>Map.singleton "hello" Map.empty & at "hello" . non' _Empty . at "world" ?~ "!!!"fromList [("hello",fromList [("world","!!!")])]
>>>fromList [("hello",fromList [("world","!!!")])] & at "hello" . non' _Empty . at "world" .~ NothingfromList []
anon :: a -> (a -> Bool) -> Iso' (Maybe a) a Source #
generalizes anon a p to take any value and a predicate.non a
This function assumes that p a holds and generates an isomorphism between True and Maybe (a | not (p a))a.
>>>Map.empty & at "hello" . anon Map.empty Map.null . at "world" ?~ "!!!"fromList [("hello",fromList [("world","!!!")])]
>>>fromList [("hello",fromList [("world","!!!")])] & at "hello" . anon Map.empty Map.null . at "world" .~ NothingfromList []
enum :: Enum a => Iso' Int a Source #
This isomorphism can be used to convert to or from an instance of Enum.
>>>LT^.from enum0
>>>97^.enum :: Char'a'
Note: this is only an isomorphism from the numeric range actually used
and it is a bit of a pleasant fiction, since there are questionable
Enum instances for Double, and Float that exist solely for
[1.0 .. 4.0] sugar and the instances for those and Integer don't
cover all values in their range.
flipped :: Iso (a -> b -> c) (a' -> b' -> c') (b -> a -> c) (b' -> a' -> c') Source #
The isomorphism for flipping a function.
>>>((,)^.flipped) 1 2(2,1)
class Bifunctor p => Swapped p where Source #
This class provides for symmetric bifunctors.
Minimal complete definition
Methods
class Strict lazy strict | lazy -> strict, strict -> lazy where Source #
Ad hoc conversion between "strict" and "lazy" versions of a structure,
such as Text or ByteString.
Minimal complete definition
lazy :: Strict lazy strict => Iso' strict lazy Source #
An Iso between the strict variant of a structure and its lazy
counterpart.
lazy=fromstrict
See http://hackage.haskell.org/package/strict-base-types for an example use.
class Reversing t where Source #
This class provides a generalized notion of list reversal extended to other containers.
Minimal complete definition
Instances
| Reversing ByteString Source # | |
Methods reversing :: ByteString -> ByteString Source # | |
| Reversing ByteString Source # | |
Methods reversing :: ByteString -> ByteString Source # | |
| Reversing Text Source # | |
| Reversing Text Source # | |
| Reversing [a] Source # | |
| Reversing (NonEmpty a) Source # | |
| Reversing (Seq a) Source # | |
| Unbox a => Reversing (Vector a) Source # | |
| Storable a => Reversing (Vector a) Source # | |
| Prim a => Reversing (Vector a) Source # | |
| Reversing (Vector a) Source # | |
| Reversing (Deque a) Source # | |
reversed :: Reversing a => Iso' a a Source #
An Iso between a list, ByteString, Text fragment, etc. and its reversal.
>>>"live" ^. reversed"evil"
>>>"live" & reversed %~ ('d':)"lived"
Uncommon Isomorphisms
imagma :: Over (Indexed i) (Molten i a b) s t a b -> Iso s t' (Magma i t b a) (Magma j t' c c) Source #
This isomorphism can be used to inspect an IndexedTraversal to see how it associates
the structure and it can also be used to bake the IndexedTraversal into a Magma so
that you can traverse over it multiple times with access to the original indices.
This provides a way to peek at the internal structure of a
Traversal or IndexedTraversal
Instances
| TraversableWithIndex i (Magma i t b) Source # | |
Methods itraverse :: Applicative f => (i -> a -> f b0) -> Magma i t b a -> f (Magma i t b b0) Source # itraversed :: (Indexable i p, Applicative f) => p a (f b0) -> Magma i t b a -> f (Magma i t b b0) Source # | |
| FoldableWithIndex i (Magma i t b) Source # | |
Methods ifoldMap :: Monoid m => (i -> a -> m) -> Magma i t b a -> m Source # ifolded :: (Indexable i p, Contravariant f, Applicative f) => p a (f a) -> Magma i t b a -> f (Magma i t b a) Source # ifoldr :: (i -> a -> b0 -> b0) -> b0 -> Magma i t b a -> b0 Source # ifoldl :: (i -> b0 -> a -> b0) -> b0 -> Magma i t b a -> b0 Source # ifoldr' :: (i -> a -> b0 -> b0) -> b0 -> Magma i t b a -> b0 Source # ifoldl' :: (i -> b0 -> a -> b0) -> b0 -> Magma i t b a -> b0 Source # | |
| FunctorWithIndex i (Magma i t b) Source # | |
| Functor (Magma i t b) Source # | |
| Foldable (Magma i t b) Source # | |
Methods fold :: Monoid m => Magma i t b m -> m # foldMap :: Monoid m => (a -> m) -> Magma i t b a -> m # foldr :: (a -> b0 -> b0) -> b0 -> Magma i t b a -> b0 # foldr' :: (a -> b0 -> b0) -> b0 -> Magma i t b a -> b0 # foldl :: (b0 -> a -> b0) -> b0 -> Magma i t b a -> b0 # foldl' :: (b0 -> a -> b0) -> b0 -> Magma i t b a -> b0 # foldr1 :: (a -> a -> a) -> Magma i t b a -> a # foldl1 :: (a -> a -> a) -> Magma i t b a -> a # toList :: Magma i t b a -> [a] # null :: Magma i t b a -> Bool # length :: Magma i t b a -> Int # elem :: Eq a => a -> Magma i t b a -> Bool # maximum :: Ord a => Magma i t b a -> a # minimum :: Ord a => Magma i t b a -> a # | |
| Traversable (Magma i t b) Source # | |
| (Show i, Show a) => Show (Magma i t b a) Source # | |
Contravariant functors
contramapping :: Contravariant f => AnIso s t a b -> Iso (f a) (f b) (f s) (f t) Source #
Lift an Iso into a Contravariant functor.
contramapping ::Contravariantf =>Isos t a b ->Iso(f a) (f b) (f s) (f t) contramapping ::Contravariantf =>Iso's a ->Iso'(f a) (f s)
Profunctors
class Profunctor (p :: * -> * -> *) where #
Formally, the class Profunctor represents a profunctor
from Hask -> Hask.
Intuitively it is a bifunctor where the first argument is contravariant and the second argument is covariant.
You can define a Profunctor by either defining dimap or by defining both
lmap and rmap.
If you supply dimap, you should ensure that:
dimapidid≡id
If you supply lmap and rmap, ensure:
lmapid≡idrmapid≡id
If you supply both, you should also ensure:
dimapf g ≡lmapf.rmapg
These ensure by parametricity:
dimap(f.g) (h.i) ≡dimapg h.dimapf ilmap(f.g) ≡lmapg.lmapfrmap(f.g) ≡rmapf.rmapg
Instances
| Profunctor ReifiedFold # | |
Methods dimap :: (a -> b) -> (c -> d) -> ReifiedFold b c -> ReifiedFold a d # lmap :: (a -> b) -> ReifiedFold b c -> ReifiedFold a c # rmap :: (b -> c) -> ReifiedFold a b -> ReifiedFold a c # (#.) :: Coercible * c b => (b -> c) -> ReifiedFold a b -> ReifiedFold a c # (.#) :: Coercible * b a => ReifiedFold b c -> (a -> b) -> ReifiedFold a c # | |
| Profunctor ReifiedGetter # | |
Methods dimap :: (a -> b) -> (c -> d) -> ReifiedGetter b c -> ReifiedGetter a d # lmap :: (a -> b) -> ReifiedGetter b c -> ReifiedGetter a c # rmap :: (b -> c) -> ReifiedGetter a b -> ReifiedGetter a c # (#.) :: Coercible * c b => (b -> c) -> ReifiedGetter a b -> ReifiedGetter a c # (.#) :: Coercible * b a => ReifiedGetter b c -> (a -> b) -> ReifiedGetter a c # | |
| Monad m => Profunctor (Kleisli m) | |
Methods dimap :: (a -> b) -> (c -> d) -> Kleisli m b c -> Kleisli m a d # lmap :: (a -> b) -> Kleisli m b c -> Kleisli m a c # rmap :: (b -> c) -> Kleisli m a b -> Kleisli m a c # (#.) :: Coercible * c b => (b -> c) -> Kleisli m a b -> Kleisli m a c # (.#) :: Coercible * b a => Kleisli m b c -> (a -> b) -> Kleisli m a c # | |
| Functor w => Profunctor (Cokleisli w) | |
Methods dimap :: (a -> b) -> (c -> d) -> Cokleisli w b c -> Cokleisli w a d # lmap :: (a -> b) -> Cokleisli w b c -> Cokleisli w a c # rmap :: (b -> c) -> Cokleisli w a b -> Cokleisli w a c # (#.) :: Coercible * c b => (b -> c) -> Cokleisli w a b -> Cokleisli w a c # (.#) :: Coercible * b a => Cokleisli w b c -> (a -> b) -> Cokleisli w a c # | |
| Profunctor p => Profunctor (TambaraSum p) | |
Methods dimap :: (a -> b) -> (c -> d) -> TambaraSum p b c -> TambaraSum p a d # lmap :: (a -> b) -> TambaraSum p b c -> TambaraSum p a c # rmap :: (b -> c) -> TambaraSum p a b -> TambaraSum p a c # (#.) :: Coercible * c b => (b -> c) -> TambaraSum p a b -> TambaraSum p a c # (.#) :: Coercible * b a => TambaraSum p b c -> (a -> b) -> TambaraSum p a c # | |
| Profunctor (PastroSum p) | |
Methods dimap :: (a -> b) -> (c -> d) -> PastroSum p b c -> PastroSum p a d # lmap :: (a -> b) -> PastroSum p b c -> PastroSum p a c # rmap :: (b -> c) -> PastroSum p a b -> PastroSum p a c # (#.) :: Coercible * c b => (b -> c) -> PastroSum p a b -> PastroSum p a c # (.#) :: Coercible * b a => PastroSum p b c -> (a -> b) -> PastroSum p a c # | |
| Profunctor (CotambaraSum p) | |
Methods dimap :: (a -> b) -> (c -> d) -> CotambaraSum p b c -> CotambaraSum p a d # lmap :: (a -> b) -> CotambaraSum p b c -> CotambaraSum p a c # rmap :: (b -> c) -> CotambaraSum p a b -> CotambaraSum p a c # (#.) :: Coercible * c b => (b -> c) -> CotambaraSum p a b -> CotambaraSum p a c # (.#) :: Coercible * b a => CotambaraSum p b c -> (a -> b) -> CotambaraSum p a c # | |
| Profunctor (CopastroSum p) | |
Methods dimap :: (a -> b) -> (c -> d) -> CopastroSum p b c -> CopastroSum p a d # lmap :: (a -> b) -> CopastroSum p b c -> CopastroSum p a c # rmap :: (b -> c) -> CopastroSum p a b -> CopastroSum p a c # (#.) :: Coercible * c b => (b -> c) -> CopastroSum p a b -> CopastroSum p a c # (.#) :: Coercible * b a => CopastroSum p b c -> (a -> b) -> CopastroSum p a c # | |
| Profunctor p => Profunctor (Closure p) | |
Methods dimap :: (a -> b) -> (c -> d) -> Closure p b c -> Closure p a d # lmap :: (a -> b) -> Closure p b c -> Closure p a c # rmap :: (b -> c) -> Closure p a b -> Closure p a c # (#.) :: Coercible * c b => (b -> c) -> Closure p a b -> Closure p a c # (.#) :: Coercible * b a => Closure p b c -> (a -> b) -> Closure p a c # | |
| Profunctor (Environment p) | |
Methods dimap :: (a -> b) -> (c -> d) -> Environment p b c -> Environment p a d # lmap :: (a -> b) -> Environment p b c -> Environment p a c # rmap :: (b -> c) -> Environment p a b -> Environment p a c # (#.) :: Coercible * c b => (b -> c) -> Environment p a b -> Environment p a c # (.#) :: Coercible * b a => Environment p b c -> (a -> b) -> Environment p a c # | |
| Profunctor p => Profunctor (Tambara p) | |
Methods dimap :: (a -> b) -> (c -> d) -> Tambara p b c -> Tambara p a d # lmap :: (a -> b) -> Tambara p b c -> Tambara p a c # rmap :: (b -> c) -> Tambara p a b -> Tambara p a c # (#.) :: Coercible * c b => (b -> c) -> Tambara p a b -> Tambara p a c # (.#) :: Coercible * b a => Tambara p b c -> (a -> b) -> Tambara p a c # | |
| Profunctor (Pastro p) | |
Methods dimap :: (a -> b) -> (c -> d) -> Pastro p b c -> Pastro p a d # lmap :: (a -> b) -> Pastro p b c -> Pastro p a c # rmap :: (b -> c) -> Pastro p a b -> Pastro p a c # (#.) :: Coercible * c b => (b -> c) -> Pastro p a b -> Pastro p a c # (.#) :: Coercible * b a => Pastro p b c -> (a -> b) -> Pastro p a c # | |
| Profunctor (Cotambara p) | |
Methods dimap :: (a -> b) -> (c -> d) -> Cotambara p b c -> Cotambara p a d # lmap :: (a -> b) -> Cotambara p b c -> Cotambara p a c # rmap :: (b -> c) -> Cotambara p a b -> Cotambara p a c # (#.) :: Coercible * c b => (b -> c) -> Cotambara p a b -> Cotambara p a c # (.#) :: Coercible * b a => Cotambara p b c -> (a -> b) -> Cotambara p a c # | |
| Profunctor (Copastro p) | |
Methods dimap :: (a -> b) -> (c -> d) -> Copastro p b c -> Copastro p a d # lmap :: (a -> b) -> Copastro p b c -> Copastro p a c # rmap :: (b -> c) -> Copastro p a b -> Copastro p a c # (#.) :: Coercible * c b => (b -> c) -> Copastro p a b -> Copastro p a c # (.#) :: Coercible * b a => Copastro p b c -> (a -> b) -> Copastro p a c # | |
| Functor f => Profunctor (Star f) | |
| Functor f => Profunctor (Costar f) | |
Methods dimap :: (a -> b) -> (c -> d) -> Costar f b c -> Costar f a d # lmap :: (a -> b) -> Costar f b c -> Costar f a c # rmap :: (b -> c) -> Costar f a b -> Costar f a c # (#.) :: Coercible * c b => (b -> c) -> Costar f a b -> Costar f a c # (.#) :: Coercible * b a => Costar f b c -> (a -> b) -> Costar f a c # | |
| Arrow p => Profunctor (WrappedArrow p) | |
Methods dimap :: (a -> b) -> (c -> d) -> WrappedArrow p b c -> WrappedArrow p a d # lmap :: (a -> b) -> WrappedArrow p b c -> WrappedArrow p a c # rmap :: (b -> c) -> WrappedArrow p a b -> WrappedArrow p a c # (#.) :: Coercible * c b => (b -> c) -> WrappedArrow p a b -> WrappedArrow p a c # (.#) :: Coercible * b a => WrappedArrow p b c -> (a -> b) -> WrappedArrow p a c # | |
| Profunctor (Forget r) | |
Methods dimap :: (a -> b) -> (c -> d) -> Forget r b c -> Forget r a d # lmap :: (a -> b) -> Forget r b c -> Forget r a c # rmap :: (b -> c) -> Forget r a b -> Forget r a c # (#.) :: Coercible * c b => (b -> c) -> Forget r a b -> Forget r a c # (.#) :: Coercible * b a => Forget r b c -> (a -> b) -> Forget r a c # | |
| Profunctor (Tagged *) | |
Methods dimap :: (a -> b) -> (c -> d) -> Tagged * b c -> Tagged * a d # lmap :: (a -> b) -> Tagged * b c -> Tagged * a c # rmap :: (b -> c) -> Tagged * a b -> Tagged * a c # (#.) :: Coercible * c b => (b -> c) -> Tagged * a b -> Tagged * a c # (.#) :: Coercible * b a => Tagged * b c -> (a -> b) -> Tagged * a c # | |
| Profunctor (Indexed i) # | |
Methods dimap :: (a -> b) -> (c -> d) -> Indexed i b c -> Indexed i a d # lmap :: (a -> b) -> Indexed i b c -> Indexed i a c # rmap :: (b -> c) -> Indexed i a b -> Indexed i a c # (#.) :: Coercible * c b => (b -> c) -> Indexed i a b -> Indexed i a c # (.#) :: Coercible * b a => Indexed i b c -> (a -> b) -> Indexed i a c # | |
| Profunctor (ReifiedIndexedFold i) # | |
Methods dimap :: (a -> b) -> (c -> d) -> ReifiedIndexedFold i b c -> ReifiedIndexedFold i a d # lmap :: (a -> b) -> ReifiedIndexedFold i b c -> ReifiedIndexedFold i a c # rmap :: (b -> c) -> ReifiedIndexedFold i a b -> ReifiedIndexedFold i a c # (#.) :: Coercible * c b => (b -> c) -> ReifiedIndexedFold i a b -> ReifiedIndexedFold i a c # (.#) :: Coercible * b a => ReifiedIndexedFold i b c -> (a -> b) -> ReifiedIndexedFold i a c # | |
| Profunctor (ReifiedIndexedGetter i) # | |
Methods dimap :: (a -> b) -> (c -> d) -> ReifiedIndexedGetter i b c -> ReifiedIndexedGetter i a d # lmap :: (a -> b) -> ReifiedIndexedGetter i b c -> ReifiedIndexedGetter i a c # rmap :: (b -> c) -> ReifiedIndexedGetter i a b -> ReifiedIndexedGetter i a c # (#.) :: Coercible * c b => (b -> c) -> ReifiedIndexedGetter i a b -> ReifiedIndexedGetter i a c # (.#) :: Coercible * b a => ReifiedIndexedGetter i b c -> (a -> b) -> ReifiedIndexedGetter i a c # | |
| Profunctor ((->) LiftedRep LiftedRep) | |
Methods dimap :: (a -> b) -> (c -> d) -> (LiftedRep -> LiftedRep) b c -> (LiftedRep -> LiftedRep) a d # lmap :: (a -> b) -> (LiftedRep -> LiftedRep) b c -> (LiftedRep -> LiftedRep) a c # rmap :: (b -> c) -> (LiftedRep -> LiftedRep) a b -> (LiftedRep -> LiftedRep) a c # (#.) :: Coercible * c b => (b -> c) -> (LiftedRep -> LiftedRep) a b -> (LiftedRep -> LiftedRep) a c # (.#) :: Coercible * b a => (LiftedRep -> LiftedRep) b c -> (a -> b) -> (LiftedRep -> LiftedRep) a c # | |
| (Functor f, Profunctor p) => Profunctor (Cayley f p) | |
Methods dimap :: (a -> b) -> (c -> d) -> Cayley f p b c -> Cayley f p a d # lmap :: (a -> b) -> Cayley f p b c -> Cayley f p a c # rmap :: (b -> c) -> Cayley f p a b -> Cayley f p a c # (#.) :: Coercible * c b => (b -> c) -> Cayley f p a b -> Cayley f p a c # (.#) :: Coercible * b a => Cayley f p b c -> (a -> b) -> Cayley f p a c # | |
| Profunctor (Exchange a b) # | |
Methods dimap :: (a0 -> b0) -> (c -> d) -> Exchange a b b0 c -> Exchange a b a0 d # lmap :: (a0 -> b0) -> Exchange a b b0 c -> Exchange a b a0 c # rmap :: (b0 -> c) -> Exchange a b a0 b0 -> Exchange a b a0 c # (#.) :: Coercible * c b0 => (b0 -> c) -> Exchange a b a0 b0 -> Exchange a b a0 c # (.#) :: Coercible * b0 a0 => Exchange a b b0 c -> (a0 -> b0) -> Exchange a b a0 c # | |
| Profunctor (Market a b) # | |
Methods dimap :: (a0 -> b0) -> (c -> d) -> Market a b b0 c -> Market a b a0 d # lmap :: (a0 -> b0) -> Market a b b0 c -> Market a b a0 c # rmap :: (b0 -> c) -> Market a b a0 b0 -> Market a b a0 c # (#.) :: Coercible * c b0 => (b0 -> c) -> Market a b a0 b0 -> Market a b a0 c # (.#) :: Coercible * b0 a0 => Market a b b0 c -> (a0 -> b0) -> Market a b a0 c # | |
| Functor f => Profunctor (Joker * * f) | |
Methods dimap :: (a -> b) -> (c -> d) -> Joker * * f b c -> Joker * * f a d # lmap :: (a -> b) -> Joker * * f b c -> Joker * * f a c # rmap :: (b -> c) -> Joker * * f a b -> Joker * * f a c # (#.) :: Coercible * c b => (b -> c) -> Joker * * f a b -> Joker * * f a c # (.#) :: Coercible * b a => Joker * * f b c -> (a -> b) -> Joker * * f a c # | |
| Contravariant f => Profunctor (Clown * * f) | |
Methods dimap :: (a -> b) -> (c -> d) -> Clown * * f b c -> Clown * * f a d # lmap :: (a -> b) -> Clown * * f b c -> Clown * * f a c # rmap :: (b -> c) -> Clown * * f a b -> Clown * * f a c # (#.) :: Coercible * c b => (b -> c) -> Clown * * f a b -> Clown * * f a c # (.#) :: Coercible * b a => Clown * * f b c -> (a -> b) -> Clown * * f a c # | |
| (Profunctor p, Profunctor q) => Profunctor (Product * * p q) | |
Methods dimap :: (a -> b) -> (c -> d) -> Product * * p q b c -> Product * * p q a d # lmap :: (a -> b) -> Product * * p q b c -> Product * * p q a c # rmap :: (b -> c) -> Product * * p q a b -> Product * * p q a c # (#.) :: Coercible * c b => (b -> c) -> Product * * p q a b -> Product * * p q a c # (.#) :: Coercible * b a => Product * * p q b c -> (a -> b) -> Product * * p q a c # | |
| (Functor f, Profunctor p) => Profunctor (Tannen * * * f p) | |
Methods dimap :: (a -> b) -> (c -> d) -> Tannen * * * f p b c -> Tannen * * * f p a d # lmap :: (a -> b) -> Tannen * * * f p b c -> Tannen * * * f p a c # rmap :: (b -> c) -> Tannen * * * f p a b -> Tannen * * * f p a c # (#.) :: Coercible * c b => (b -> c) -> Tannen * * * f p a b -> Tannen * * * f p a c # (.#) :: Coercible * b a => Tannen * * * f p b c -> (a -> b) -> Tannen * * * f p a c # | |
| (Profunctor p, Functor f, Functor g) => Profunctor (Biff * * * * p f g) | |
Methods dimap :: (a -> b) -> (c -> d) -> Biff * * * * p f g b c -> Biff * * * * p f g a d # lmap :: (a -> b) -> Biff * * * * p f g b c -> Biff * * * * p f g a c # rmap :: (b -> c) -> Biff * * * * p f g a b -> Biff * * * * p f g a c # (#.) :: Coercible * c b => (b -> c) -> Biff * * * * p f g a b -> Biff * * * * p f g a c # (.#) :: Coercible * b a => Biff * * * * p f g b c -> (a -> b) -> Biff * * * * p f g a c # | |
dimapping :: (Profunctor p, Profunctor q) => AnIso s t a b -> AnIso s' t' a' b' -> Iso (p a s') (q b t') (p s a') (q t b') Source #
Lift two Isos into both arguments of a Profunctor simultaneously.
dimapping ::Profunctorp =>Isos t a b ->Isos' t' a' b' ->Iso(p a s') (p b t') (p s a') (p t b') dimapping ::Profunctorp =>Iso's a ->Iso's' a' ->Iso'(p a s') (p s a')
lmapping :: (Profunctor p, Profunctor q) => AnIso s t a b -> Iso (p a x) (q b y) (p s x) (q t y) Source #
Lift an Iso contravariantly into the left argument of a Profunctor.
lmapping ::Profunctorp =>Isos t a b ->Iso(p a x) (p b y) (p s x) (p t y) lmapping ::Profunctorp =>Iso's a ->Iso'(p a x) (p s x)
rmapping :: (Profunctor p, Profunctor q) => AnIso s t a b -> Iso (p x s) (q y t) (p x a) (q y b) Source #
Lift an Iso covariantly into the right argument of a Profunctor.
rmapping ::Profunctorp =>Isos t a b ->Iso(p x s) (p y t) (p x a) (p y b) rmapping ::Profunctorp =>Iso's a ->Iso'(p x s) (p x a)
Bifunctors
bimapping :: (Bifunctor f, Bifunctor g) => AnIso s t a b -> AnIso s' t' a' b' -> Iso (f s s') (g t t') (f a a') (g b b') Source #
firsting :: (Bifunctor f, Bifunctor g) => AnIso s t a b -> Iso (f s x) (g t y) (f a x) (g b y) Source #
seconding :: (Bifunctor f, Bifunctor g) => AnIso s t a b -> Iso (f x s) (g y t) (f x a) (g y b) Source #
Lift an Iso into the second argument of a Bifunctor. This is
essentially the same as mapping, but it takes a 'Bifunctor p'
constraint instead of a 'Functor (p a)' one.
seconding ::Bifunctorp =>Isos t a b ->Iso(p x s) (p y t) (p x a) (p y b) seconding ::Bifunctorp =>Iso's a ->Iso'(p x s) (p x a)