| Safe Haskell | Trustworthy |
|---|---|
| Language | Haskell2010 |
Prelude
Contents
Description
The Haskell 2020 Prelude: a standard module imported by default into all Haskell modules. For more documentation, see the Haskell 2020 Report http://www.haskell.org/onlinereport/.
Synopsis
- data Bool
- (&&) :: Bool -> Bool -> Bool
- (||) :: Bool -> Bool -> Bool
- not :: Bool -> Bool
- otherwise :: Bool
- data Maybe a
- maybe :: b -> (a -> b) -> Maybe a -> b
- data Either a b
- either :: (a -> c) -> (b -> c) -> Either a b -> c
- data Ordering
- data Char
- type String = [Char]
- fst :: (a, b) -> a
- snd :: (a, b) -> b
- curry :: ((a, b) -> c) -> a -> b -> c
- uncurry :: (a -> b -> c) -> (a, b) -> c
- class Eq a where
- class Eq a => Ord a where
- class Enum a where
- succ :: a -> a
- pred :: a -> a
- toEnum :: Int -> a
- fromEnum :: a -> Int
- enumFrom :: a -> [a]
- enumFromThen :: a -> a -> [a]
- enumFromTo :: a -> a -> [a]
- enumFromThenTo :: a -> a -> a -> [a]
- class Bounded a where
- data Int
- data Integer
- data Float
- data Double
- type Rational = Ratio Integer
- data Word
- class Num a where
- class (Num a, Ord a) => Real a where
- toRational :: a -> Rational
- class (Real a, Enum a) => Integral a where
- class Num a => Fractional a where
- (/) :: a -> a -> a
- recip :: a -> a
- fromRational :: Rational -> a
- class Fractional a => Floating a where
- class (Real a, Fractional a) => RealFrac a where
- class (RealFrac a, Floating a) => RealFloat a where
- floatRadix :: a -> Integer
- floatDigits :: a -> Int
- floatRange :: a -> (Int, Int)
- decodeFloat :: a -> (Integer, Int)
- encodeFloat :: Integer -> Int -> a
- exponent :: a -> Int
- significand :: a -> a
- scaleFloat :: Int -> a -> a
- isNaN :: a -> Bool
- isInfinite :: a -> Bool
- isDenormalized :: a -> Bool
- isNegativeZero :: a -> Bool
- isIEEE :: a -> Bool
- atan2 :: a -> a -> a
- subtract :: Num a => a -> a -> a
- even :: Integral a => a -> Bool
- odd :: Integral a => a -> Bool
- gcd :: Integral a => a -> a -> a
- lcm :: Integral a => a -> a -> a
- (^) :: (Num a, Integral b) => a -> b -> a
- (^^) :: (Fractional a, Integral b) => a -> b -> a
- fromIntegral :: (Integral a, Num b) => a -> b
- realToFrac :: (Real a, Fractional b) => a -> b
- class Functor (f :: Type -> Type) where
- fmap :: (a -> b) -> f a -> f b
- class Functor f => Applicative (f :: Type -> Type) where
- class Applicative m => Monad (m :: Type -> Type) where
- (>>=) :: m a -> (a -> m b) -> m b
- class Monad m => MonadFail (m :: Type -> Type) where
- (>>) :: Monad m => m a -> m b -> m b
- return :: Monad m => a -> m a
- mapM :: Monad m => (a -> m b) -> [a] -> m [b]
- mapM_ :: Monad m => (a -> m b) -> [a] -> m ()
- sequence :: Monad m => [m a] -> m [a]
- sequence_ :: Monad m => [m a] -> m ()
- (=<<) :: Monad m => (a -> m b) -> m a -> m b
- id :: a -> a
- const :: a -> b -> a
- (.) :: (b -> c) -> (a -> b) -> a -> c
- flip :: (a -> b -> c) -> b -> a -> c
- ($) :: (a -> b) -> a -> b
- until :: (a -> Bool) -> (a -> a) -> a -> a
- asTypeOf :: a -> a -> a
- error :: HasCallStack => [Char] -> a
- undefined :: HasCallStack => a
- seq :: a -> b -> b
- ($!) :: (a -> b) -> a -> b
- map :: (a -> b) -> [a] -> [b]
- (++) :: [a] -> [a] -> [a]
- filter :: (a -> Bool) -> [a] -> [a]
- head :: [a] -> a
- last :: [a] -> a
- tail :: [a] -> [a]
- init :: [a] -> [a]
- null :: [a] -> Bool
- length :: [a] -> Int
- (!!) :: [a] -> Int -> a
- reverse :: [a] -> [a]
- foldl :: (b -> a -> b) -> b -> [a] -> b
- foldl1 :: (a -> a -> a) -> [a] -> a
- foldr :: (a -> b -> b) -> b -> [a] -> b
- foldr1 :: (a -> a -> a) -> [a] -> a
- and :: [Bool] -> Bool
- or :: [Bool] -> Bool
- any :: (a -> Bool) -> [a] -> Bool
- all :: (a -> Bool) -> [a] -> Bool
- sum :: Num a => [a] -> a
- product :: Num a => [a] -> a
- concat :: [[a]] -> [a]
- concatMap :: (a -> [b]) -> [a] -> [b]
- maximum :: Ord a => [a] -> a
- minimum :: Ord a => [a] -> a
- scanl :: (b -> a -> b) -> b -> [a] -> [b]
- scanl1 :: (a -> a -> a) -> [a] -> [a]
- scanr :: (a -> b -> b) -> b -> [a] -> [b]
- scanr1 :: (a -> a -> a) -> [a] -> [a]
- iterate :: (a -> a) -> a -> [a]
- repeat :: a -> [a]
- replicate :: Int -> a -> [a]
- cycle :: [a] -> [a]
- take :: Int -> [a] -> [a]
- drop :: Int -> [a] -> [a]
- splitAt :: Int -> [a] -> ([a], [a])
- takeWhile :: (a -> Bool) -> [a] -> [a]
- dropWhile :: (a -> Bool) -> [a] -> [a]
- span :: (a -> Bool) -> [a] -> ([a], [a])
- break :: (a -> Bool) -> [a] -> ([a], [a])
- elem :: Eq a => a -> [a] -> Bool
- notElem :: Eq a => a -> [a] -> Bool
- lookup :: Eq a => a -> [(a, b)] -> Maybe b
- zip :: [a] -> [b] -> [(a, b)]
- zip3 :: [a] -> [b] -> [c] -> [(a, b, c)]
- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
- zipWith3 :: (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d]
- unzip :: [(a, b)] -> ([a], [b])
- unzip3 :: [(a, b, c)] -> ([a], [b], [c])
- lines :: String -> [String]
- words :: String -> [String]
- unlines :: [String] -> String
- unwords :: [String] -> String
- type ShowS = String -> String
- class Show a where
- shows :: Show a => a -> ShowS
- showChar :: Char -> ShowS
- showString :: String -> ShowS
- showParen :: Bool -> ShowS -> ShowS
- type ReadS a = String -> [(a, String)]
- class Read a where
- reads :: Read a => ReadS a
- readParen :: Bool -> ReadS a -> ReadS a
- read :: Read a => String -> a
- lex :: ReadS String
- data IO a
- putChar :: Char -> IO ()
- putStr :: String -> IO ()
- putStrLn :: String -> IO ()
- print :: Show a => a -> IO ()
- getChar :: IO Char
- getLine :: IO String
- getContents :: IO String
- interact :: (String -> String) -> IO ()
- type FilePath = String
- readFile :: FilePath -> IO String
- writeFile :: FilePath -> String -> IO ()
- appendFile :: FilePath -> String -> IO ()
- readIO :: Read a => String -> IO a
- readLn :: Read a => IO a
- type IOError = IOException
- ioError :: IOError -> IO a
- userError :: String -> IOError
- catch :: IO a -> (IOError -> IO a) -> IO a
Standard types, classes and related functions
Basic data types
Instances
| Bounded Bool | Since: base-2.1 |
| Enum Bool | Since: base-2.1 |
| Eq Bool | |
| Ord Bool | |
| Read Bool | Since: base-2.1 |
| Show Bool | Since: base-2.1 |
| Ix Bool | Since: base-2.1 |
| Generic Bool | |
| SingKind Bool | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| Storable Bool | Since: base-2.1 |
Defined in Foreign.Storable | |
| Bits Bool | Interpret Since: base-4.7.0.0 |
Defined in Data.Bits Methods (.&.) :: Bool -> Bool -> Bool # (.|.) :: Bool -> Bool -> Bool # complement :: Bool -> Bool # shift :: Bool -> Int -> Bool # rotate :: Bool -> Int -> Bool # setBit :: Bool -> Int -> Bool # clearBit :: Bool -> Int -> Bool # complementBit :: Bool -> Int -> Bool # testBit :: Bool -> Int -> Bool # bitSizeMaybe :: Bool -> Maybe Int # shiftL :: Bool -> Int -> Bool # unsafeShiftL :: Bool -> Int -> Bool # shiftR :: Bool -> Int -> Bool # unsafeShiftR :: Bool -> Int -> Bool # rotateL :: Bool -> Int -> Bool # | |
| FiniteBits Bool | Since: base-4.7.0.0 |
Defined in Data.Bits Methods finiteBitSize :: Bool -> Int # countLeadingZeros :: Bool -> Int # countTrailingZeros :: Bool -> Int # | |
| SingI False | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| SingI True | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| type Rep Bool | Since: base-4.6.0.0 |
| data Sing (a :: Bool) | |
| type DemoteRep Bool | |
Defined in GHC.Generics | |
The Maybe type encapsulates an optional value. A value of type
either contains a value of type Maybe aa (represented as ),
or it is empty (represented as Just aNothing). Using Maybe is a good way to
deal with errors or exceptional cases without resorting to drastic
measures such as error.
The Maybe type is also a monad. It is a simple kind of error
monad, where all errors are represented by Nothing. A richer
error monad can be built using the Either type.
Instances
| Monad Maybe | Since: base-2.1 |
| Functor Maybe | Since: base-2.1 |
| MonadFail Maybe | Since: base-4.9.0.0 |
Defined in Control.Monad.Fail | |
| Applicative Maybe | Since: base-2.1 |
| Foldable Maybe | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |
| Traversable Maybe | Since: base-2.1 |
| Alternative Maybe | Since: base-2.1 |
| MonadPlus Maybe | Since: base-2.1 |
| Eq a => Eq (Maybe a) | Since: base-2.1 |
| Ord a => Ord (Maybe a) | Since: base-2.1 |
| Read a => Read (Maybe a) | Since: base-2.1 |
| Show a => Show (Maybe a) | Since: base-2.1 |
| Generic (Maybe a) | |
| Semigroup a => Semigroup (Maybe a) | Since: base-4.9.0.0 |
| Semigroup a => Monoid (Maybe a) | Lift a semigroup into Since 4.11.0: constraint on inner Since: base-2.1 |
| SingKind a => SingKind (Maybe a) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| Generic1 Maybe | |
| SingI (Nothing :: Maybe a) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| SingI a2 => SingI (Just a2 :: Maybe a1) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| type Rep (Maybe a) | Since: base-4.6.0.0 |
| data Sing (b :: Maybe a) | |
| type DemoteRep (Maybe a) | |
Defined in GHC.Generics | |
| type Rep1 Maybe | Since: base-4.6.0.0 |
maybe :: b -> (a -> b) -> Maybe a -> b #
The maybe function takes a default value, a function, and a Maybe
value. If the Maybe value is Nothing, the function returns the
default value. Otherwise, it applies the function to the value inside
the Just and returns the result.
Examples
Basic usage:
>>>maybe False odd (Just 3)True
>>>maybe False odd NothingFalse
Read an integer from a string using readMaybe. If we succeed,
return twice the integer; that is, apply (*2) to it. If instead
we fail to parse an integer, return 0 by default:
>>>import Text.Read ( readMaybe )>>>maybe 0 (*2) (readMaybe "5")10>>>maybe 0 (*2) (readMaybe "")0
Apply show to a Maybe Int. If we have Just n, we want to show
the underlying Int n. But if we have Nothing, we return the
empty string instead of (for example) "Nothing":
>>>maybe "" show (Just 5)"5">>>maybe "" show Nothing""
The Either type represents values with two possibilities: a value of
type is either Either a b or Left a.Right b
The Either type is sometimes used to represent a value which is
either correct or an error; by convention, the Left constructor is
used to hold an error value and the Right constructor is used to
hold a correct value (mnemonic: "right" also means "correct").
Examples
The type is the type of values which can be either
a Either String IntString or an Int. The Left constructor can be used only on
Strings, and the Right constructor can be used only on Ints:
>>>let s = Left "foo" :: Either String Int>>>sLeft "foo">>>let n = Right 3 :: Either String Int>>>nRight 3>>>:type ss :: Either String Int>>>:type nn :: Either String Int
The fmap from our Functor instance will ignore Left values, but
will apply the supplied function to values contained in a Right:
>>>let s = Left "foo" :: Either String Int>>>let n = Right 3 :: Either String Int>>>fmap (*2) sLeft "foo">>>fmap (*2) nRight 6
The Monad instance for Either allows us to chain together multiple
actions which may fail, and fail overall if any of the individual
steps failed. First we'll write a function that can either parse an
Int from a Char, or fail.
>>>import Data.Char ( digitToInt, isDigit )>>>:{let parseEither :: Char -> Either String Int parseEither c | isDigit c = Right (digitToInt c) | otherwise = Left "parse error">>>:}
The following should work, since both '1' and '2' can be
parsed as Ints.
>>>:{let parseMultiple :: Either String Int parseMultiple = do x <- parseEither '1' y <- parseEither '2' return (x + y)>>>:}
>>>parseMultipleRight 3
But the following should fail overall, since the first operation where
we attempt to parse 'm' as an Int will fail:
>>>:{let parseMultiple :: Either String Int parseMultiple = do x <- parseEither 'm' y <- parseEither '2' return (x + y)>>>:}
>>>parseMultipleLeft "parse error"
Instances
| Monad (Either e) | Since: base-4.4.0.0 |
| Functor (Either a) | Since: base-3.0 |
| Applicative (Either e) | Since: base-3.0 |
| Foldable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Either a m -> m # foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # toList :: Either a a0 -> [a0] # length :: Either a a0 -> Int # elem :: Eq a0 => a0 -> Either a a0 -> Bool # maximum :: Ord a0 => Either a a0 -> a0 # minimum :: Ord a0 => Either a a0 -> a0 # | |
| Traversable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Traversable | |
| Generic1 (Either a :: Type -> Type) | |
| (Eq a, Eq b) => Eq (Either a b) | Since: base-2.1 |
| (Ord a, Ord b) => Ord (Either a b) | Since: base-2.1 |
| (Read a, Read b) => Read (Either a b) | Since: base-3.0 |
| (Show a, Show b) => Show (Either a b) | Since: base-3.0 |
| Generic (Either a b) | |
| Semigroup (Either a b) | Since: base-4.9.0.0 |
| type Rep1 (Either a :: Type -> Type) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep1 (Either a :: Type -> Type) = D1 (MetaData "Either" "Data.Either" "base" False) (C1 (MetaCons "Left" PrefixI False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 a)) :+: C1 (MetaCons "Right" PrefixI False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) Par1)) | |
| type Rep (Either a b) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep (Either a b) = D1 (MetaData "Either" "Data.Either" "base" False) (C1 (MetaCons "Left" PrefixI False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 a)) :+: C1 (MetaCons "Right" PrefixI False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 b))) | |
either :: (a -> c) -> (b -> c) -> Either a b -> c #
Case analysis for the Either type.
If the value is , apply the first function to Left aa;
if it is , apply the second function to Right bb.
Examples
We create two values of type , one using the
Either String IntLeft constructor and another using the Right constructor. Then
we apply "either" the length function (if we have a String)
or the "times-two" function (if we have an Int):
>>>let s = Left "foo" :: Either String Int>>>let n = Right 3 :: Either String Int>>>either length (*2) s3>>>either length (*2) n6
Instances
| Bounded Ordering | Since: base-2.1 |
| Enum Ordering | Since: base-2.1 |
| Eq Ordering | |
| Ord Ordering | |
Defined in GHC.Classes | |
| Read Ordering | Since: base-2.1 |
| Show Ordering | Since: base-2.1 |
| Ix Ordering | Since: base-2.1 |
Defined in GHC.Arr | |
| Generic Ordering | |
| Semigroup Ordering | Since: base-4.9.0.0 |
| Monoid Ordering | Since: base-2.1 |
| type Rep Ordering | Since: base-4.6.0.0 |
The character type Char is an enumeration whose values represent
Unicode (or equivalently ISO/IEC 10646) code points (i.e. characters, see
http://www.unicode.org/ for details). This set extends the ISO 8859-1
(Latin-1) character set (the first 256 characters), which is itself an extension
of the ASCII character set (the first 128 characters). A character literal in
Haskell has type Char.
To convert a Char to or from the corresponding Int value defined
by Unicode, use toEnum and fromEnum from the
Enum class respectively (or equivalently ord and chr).
Instances
| Bounded Char | Since: base-2.1 |
| Enum Char | Since: base-2.1 |
| Eq Char | |
| Ord Char | |
| Read Char | Since: base-2.1 |
| Show Char | Since: base-2.1 |
| Ix Char | Since: base-2.1 |
| Storable Char | Since: base-2.1 |
Defined in Foreign.Storable | |
| Generic1 (URec Char :: k -> Type) | |
| Functor (URec Char :: Type -> Type) | Since: base-4.9.0.0 |
| Foldable (URec Char :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Char m -> m # foldMap :: Monoid m => (a -> m) -> URec Char a -> m # foldr :: (a -> b -> b) -> b -> URec Char a -> b # foldr' :: (a -> b -> b) -> b -> URec Char a -> b # foldl :: (b -> a -> b) -> b -> URec Char a -> b # foldl' :: (b -> a -> b) -> b -> URec Char a -> b # foldr1 :: (a -> a -> a) -> URec Char a -> a # foldl1 :: (a -> a -> a) -> URec Char a -> a # toList :: URec Char a -> [a] # length :: URec Char a -> Int # elem :: Eq a => a -> URec Char a -> Bool # maximum :: Ord a => URec Char a -> a # minimum :: Ord a => URec Char a -> a # | |
| Traversable (URec Char :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
| Eq (URec Char p) | Since: base-4.9.0.0 |
| Ord (URec Char p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| Show (URec Char p) | Since: base-4.9.0.0 |
| Generic (URec Char p) | |
| data URec Char (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
| type Rep1 (URec Char :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| type Rep (URec Char p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Tuples
uncurry :: (a -> b -> c) -> (a, b) -> c #
uncurry converts a curried function to a function on pairs.
Examples
>>>uncurry (+) (1,2)3
>>>uncurry ($) (show, 1)"1"
>>>map (uncurry max) [(1,2), (3,4), (6,8)][2,4,8]
Basic type classes
The Eq class defines equality (==) and inequality (/=).
All the basic datatypes exported by the Prelude are instances of Eq,
and Eq may be derived for any datatype whose constituents are also
instances of Eq.
The Haskell Report defines no laws for Eq. However, == is customarily
expected to implement an equivalence relationship where two values comparing
equal are indistinguishable by "public" functions, with a "public" function
being one not allowing to see implementation details. For example, for a
type representing non-normalised natural numbers modulo 100, a "public"
function doesn't make the difference between 1 and 201. It is expected to
have the following properties:
Instances
| Eq Bool | |
| Eq Char | |
| Eq Double | Note that due to the presence of
Also note that
|
| Eq Float | Note that due to the presence of
Also note that
|
| Eq Int | |
| Eq Int8 | Since: base-2.1 |
| Eq Int16 | Since: base-2.1 |
| Eq Int32 | Since: base-2.1 |
| Eq Int64 | Since: base-2.1 |
| Eq Integer | |
| Eq Natural | Since: base-4.8.0.0 |
| Eq Ordering | |
| Eq Word | |
| Eq Word8 | Since: base-2.1 |
| Eq Word16 | Since: base-2.1 |
| Eq Word32 | Since: base-2.1 |
| Eq Word64 | Since: base-2.1 |
| Eq () | |
| Eq TyCon | |
| Eq Module | |
| Eq TrName | |
| Eq Handle | Since: base-4.1.0.0 |
| Eq BigNat | |
| Eq SpecConstrAnnotation | Since: base-4.3.0.0 |
Defined in GHC.Exts Methods (==) :: SpecConstrAnnotation -> SpecConstrAnnotation -> Bool # (/=) :: SpecConstrAnnotation -> SpecConstrAnnotation -> Bool # | |
| Eq HandlePosn | Since: base-4.1.0.0 |
Defined in GHC.IO.Handle | |
| Eq Errno | Since: base-2.1 |
| Eq AsyncException | Since: base-4.2.0.0 |
Defined in GHC.IO.Exception Methods (==) :: AsyncException -> AsyncException -> Bool # (/=) :: AsyncException -> AsyncException -> Bool # | |
| Eq ArrayException | Since: base-4.2.0.0 |
Defined in GHC.IO.Exception Methods (==) :: ArrayException -> ArrayException -> Bool # (/=) :: ArrayException -> ArrayException -> Bool # | |
| Eq ExitCode | |
| Eq IOErrorType | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception | |
| Eq BufferMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types | |
| Eq Newline | Since: base-4.2.0.0 |
| Eq NewlineMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types | |
| Eq IODeviceType | Since: base-4.2.0.0 |
Defined in GHC.IO.Device | |
| Eq SeekMode | Since: base-4.2.0.0 |
| Eq CodingProgress | Since: base-4.4.0.0 |
Defined in GHC.IO.Encoding.Types Methods (==) :: CodingProgress -> CodingProgress -> Bool # (/=) :: CodingProgress -> CodingProgress -> Bool # | |
| Eq MaskingState | Since: base-4.3.0.0 |
Defined in GHC.IO | |
| Eq IOException | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception | |
| Eq ArithException | Since: base-3.0 |
Defined in GHC.Exception.Type Methods (==) :: ArithException -> ArithException -> Bool # (/=) :: ArithException -> ArithException -> Bool # | |
| Eq Fixity | Since: base-4.6.0.0 |
| Eq Associativity | Since: base-4.6.0.0 |
Defined in GHC.Generics Methods (==) :: Associativity -> Associativity -> Bool # (/=) :: Associativity -> Associativity -> Bool # | |
| Eq SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods (==) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (/=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # | |
| Eq SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods (==) :: SourceStrictness -> SourceStrictness -> Bool # (/=) :: SourceStrictness -> SourceStrictness -> Bool # | |
| Eq DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods (==) :: DecidedStrictness -> DecidedStrictness -> Bool # (/=) :: DecidedStrictness -> DecidedStrictness -> Bool # | |
| Eq CChar | |
| Eq CSChar | |
| Eq CUChar | |
| Eq CShort | |
| Eq CUShort | |
| Eq CInt | |
| Eq CUInt | |
| Eq CLong | |
| Eq CULong | |
| Eq CLLong | |
| Eq CULLong | |
| Eq CBool | |
| Eq CFloat | |
| Eq CDouble | |
| Eq CPtrdiff | |
| Eq CSize | |
| Eq CWchar | |
| Eq CSigAtomic | |
Defined in Foreign.C.Types | |
| Eq CClock | |
| Eq CTime | |
| Eq CUSeconds | |
| Eq CSUSeconds | |
Defined in Foreign.C.Types | |
| Eq CIntPtr | |
| Eq CUIntPtr | |
| Eq CIntMax | |
| Eq CUIntMax | |
| Eq WordPtr | |
| Eq IntPtr | |
| Eq IOMode | Since: base-4.2.0.0 |
| Eq Fingerprint | Since: base-4.4.0.0 |
Defined in GHC.Fingerprint.Type | |
| Eq Lexeme | Since: base-2.1 |
| Eq Number | Since: base-4.6.0.0 |
| Eq GeneralCategory | Since: base-2.1 |
Defined in GHC.Unicode Methods (==) :: GeneralCategory -> GeneralCategory -> Bool # (/=) :: GeneralCategory -> GeneralCategory -> Bool # | |
| Eq SrcLoc | Since: base-4.9.0.0 |
| Eq a => Eq [a] | |
| Eq a => Eq (Maybe a) | Since: base-2.1 |
| Eq a => Eq (Ratio a) | Since: base-2.1 |
| Eq (StablePtr a) | Since: base-2.1 |
| Eq (Ptr a) | Since: base-2.1 |
| Eq (FunPtr a) | |
| Eq p => Eq (Par1 p) | Since: base-4.7.0.0 |
| Eq (ForeignPtr a) | Since: base-2.1 |
Defined in GHC.ForeignPtr | |
| Eq a => Eq (Complex a) | Since: base-2.1 |
| Eq a => Eq (ZipList a) | Since: base-4.7.0.0 |
| Eq a => Eq (NonEmpty a) | Since: base-4.9.0.0 |
| (Eq a, Eq b) => Eq (Either a b) | Since: base-2.1 |
| Eq (V1 p) | Since: base-4.9.0.0 |
| Eq (U1 p) | Since: base-4.9.0.0 |
| (Eq a, Eq b) => Eq (a, b) | |
| (Ix i, Eq e) => Eq (Array i e) | Since: base-2.1 |
| Eq (f p) => Eq (Rec1 f p) | Since: base-4.7.0.0 |
| Eq (URec (Ptr ()) p) | Since: base-4.9.0.0 |
| Eq (URec Char p) | Since: base-4.9.0.0 |
| Eq (URec Double p) | Since: base-4.9.0.0 |
| Eq (URec Float p) | |
| Eq (URec Int p) | Since: base-4.9.0.0 |
| Eq (URec Word p) | Since: base-4.9.0.0 |
| (Eq a, Eq b, Eq c) => Eq (a, b, c) | |
| Eq (STArray s i e) | Since: base-2.1 |
| Eq a => Eq (Const a b) | Since: base-4.9.0.0 |
| Eq c => Eq (K1 i c p) | Since: base-4.7.0.0 |
| (Eq (f p), Eq (g p)) => Eq ((f :+: g) p) | Since: base-4.7.0.0 |
| (Eq (f p), Eq (g p)) => Eq ((f :*: g) p) | Since: base-4.7.0.0 |
| (Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d) | |
| Eq (f p) => Eq (M1 i c f p) | Since: base-4.7.0.0 |
| Eq (f (g p)) => Eq ((f :.: g) p) | Since: base-4.7.0.0 |
| (Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f) => Eq (a, b, c, d, e, f) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g) => Eq (a, b, c, d, e, f, g) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h) => Eq (a, b, c, d, e, f, g, h) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i) => Eq (a, b, c, d, e, f, g, h, i) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j) => Eq (a, b, c, d, e, f, g, h, i, j) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k) => Eq (a, b, c, d, e, f, g, h, i, j, k) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l) => Eq (a, b, c, d, e, f, g, h, i, j, k, l) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n, Eq o) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | |
The Ord class is used for totally ordered datatypes.
Instances of Ord can be derived for any user-defined datatype whose
constituent types are in Ord. The declared order of the constructors in
the data declaration determines the ordering in derived Ord instances. The
Ordering datatype allows a single comparison to determine the precise
ordering of two objects.
The Haskell Report defines no laws for Ord. However, <= is customarily
expected to implement a non-strict partial order and have the following
properties:
- Transitivity
- if
x <= y && y <= z=True, thenx <= z=True - Reflexivity
x <= x=True- Antisymmetry
- if
x <= y && y <= x=True, thenx == y=True
Note that the following operator interactions are expected to hold:
x >= y=y <= xx < y=x <= y && x /= yx > y=y < xx < y=compare x y == LTx > y=compare x y == GTx == y=compare x y == EQmin x y == if x <= y then x else y=Truemax x y == if x >= y then x else y=True
Minimal complete definition: either compare or <=.
Using compare can be more efficient for complex types.
Methods
compare :: a -> a -> Ordering #
(<) :: a -> a -> Bool infix 4 #
(<=) :: a -> a -> Bool infix 4 #
(>) :: a -> a -> Bool infix 4 #
Instances
| Ord Bool | |
| Ord Char | |
| Ord Double | Note that due to the presence of
Also note that, due to the same,
|
| Ord Float | Note that due to the presence of
Also note that, due to the same,
|
| Ord Int | |
| Ord Int8 | Since: base-2.1 |
| Ord Int16 | Since: base-2.1 |
| Ord Int32 | Since: base-2.1 |
| Ord Int64 | Since: base-2.1 |
| Ord Integer | |
| Ord Natural | Since: base-4.8.0.0 |
| Ord Ordering | |
Defined in GHC.Classes | |
| Ord Word | |
| Ord Word8 | Since: base-2.1 |
| Ord Word16 | Since: base-2.1 |
| Ord Word32 | Since: base-2.1 |
| Ord Word64 | Since: base-2.1 |
| Ord () | |
| Ord TyCon | |
| Ord BigNat | |
| Ord AsyncException | Since: base-4.2.0.0 |
Defined in GHC.IO.Exception Methods compare :: AsyncException -> AsyncException -> Ordering # (<) :: AsyncException -> AsyncException -> Bool # (<=) :: AsyncException -> AsyncException -> Bool # (>) :: AsyncException -> AsyncException -> Bool # (>=) :: AsyncException -> AsyncException -> Bool # max :: AsyncException -> AsyncException -> AsyncException # min :: AsyncException -> AsyncException -> AsyncException # | |
| Ord ArrayException | Since: base-4.2.0.0 |
Defined in GHC.IO.Exception Methods compare :: ArrayException -> ArrayException -> Ordering # (<) :: ArrayException -> ArrayException -> Bool # (<=) :: ArrayException -> ArrayException -> Bool # (>) :: ArrayException -> ArrayException -> Bool # (>=) :: ArrayException -> ArrayException -> Bool # max :: ArrayException -> ArrayException -> ArrayException # min :: ArrayException -> ArrayException -> ArrayException # | |
| Ord ExitCode | |
Defined in GHC.IO.Exception | |
| Ord BufferMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types Methods compare :: BufferMode -> BufferMode -> Ordering # (<) :: BufferMode -> BufferMode -> Bool # (<=) :: BufferMode -> BufferMode -> Bool # (>) :: BufferMode -> BufferMode -> Bool # (>=) :: BufferMode -> BufferMode -> Bool # max :: BufferMode -> BufferMode -> BufferMode # min :: BufferMode -> BufferMode -> BufferMode # | |
| Ord Newline | Since: base-4.3.0.0 |
| Ord NewlineMode | Since: base-4.3.0.0 |
Defined in GHC.IO.Handle.Types Methods compare :: NewlineMode -> NewlineMode -> Ordering # (<) :: NewlineMode -> NewlineMode -> Bool # (<=) :: NewlineMode -> NewlineMode -> Bool # (>) :: NewlineMode -> NewlineMode -> Bool # (>=) :: NewlineMode -> NewlineMode -> Bool # max :: NewlineMode -> NewlineMode -> NewlineMode # min :: NewlineMode -> NewlineMode -> NewlineMode # | |
| Ord SeekMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Device | |
| Ord ArithException | Since: base-3.0 |
Defined in GHC.Exception.Type Methods compare :: ArithException -> ArithException -> Ordering # (<) :: ArithException -> ArithException -> Bool # (<=) :: ArithException -> ArithException -> Bool # (>) :: ArithException -> ArithException -> Bool # (>=) :: ArithException -> ArithException -> Bool # max :: ArithException -> ArithException -> ArithException # min :: ArithException -> ArithException -> ArithException # | |
| Ord Fixity | Since: base-4.6.0.0 |
| Ord Associativity | Since: base-4.6.0.0 |
Defined in GHC.Generics Methods compare :: Associativity -> Associativity -> Ordering # (<) :: Associativity -> Associativity -> Bool # (<=) :: Associativity -> Associativity -> Bool # (>) :: Associativity -> Associativity -> Bool # (>=) :: Associativity -> Associativity -> Bool # max :: Associativity -> Associativity -> Associativity # min :: Associativity -> Associativity -> Associativity # | |
| Ord SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: SourceUnpackedness -> SourceUnpackedness -> Ordering # (<) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (<=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (>) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (>=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # max :: SourceUnpackedness -> SourceUnpackedness -> SourceUnpackedness # min :: SourceUnpackedness -> SourceUnpackedness -> SourceUnpackedness # | |
| Ord SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: SourceStrictness -> SourceStrictness -> Ordering # (<) :: SourceStrictness -> SourceStrictness -> Bool # (<=) :: SourceStrictness -> SourceStrictness -> Bool # (>) :: SourceStrictness -> SourceStrictness -> Bool # (>=) :: SourceStrictness -> SourceStrictness -> Bool # max :: SourceStrictness -> SourceStrictness -> SourceStrictness # min :: SourceStrictness -> SourceStrictness -> SourceStrictness # | |
| Ord DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: DecidedStrictness -> DecidedStrictness -> Ordering # (<) :: DecidedStrictness -> DecidedStrictness -> Bool # (<=) :: DecidedStrictness -> DecidedStrictness -> Bool # (>) :: DecidedStrictness -> DecidedStrictness -> Bool # (>=) :: DecidedStrictness -> DecidedStrictness -> Bool # max :: DecidedStrictness -> DecidedStrictness -> DecidedStrictness # min :: DecidedStrictness -> DecidedStrictness -> DecidedStrictness # | |
| Ord CChar | |
| Ord CSChar | |
| Ord CUChar | |
| Ord CShort | |
| Ord CUShort | |
| Ord CInt | |
| Ord CUInt | |
| Ord CLong | |
| Ord CULong | |
| Ord CLLong | |
| Ord CULLong | |
| Ord CBool | |
| Ord CFloat | |
| Ord CDouble | |
| Ord CPtrdiff | |
Defined in Foreign.C.Types | |
| Ord CSize | |
| Ord CWchar | |
| Ord CSigAtomic | |
Defined in Foreign.C.Types Methods compare :: CSigAtomic -> CSigAtomic -> Ordering # (<) :: CSigAtomic -> CSigAtomic -> Bool # (<=) :: CSigAtomic -> CSigAtomic -> Bool # (>) :: CSigAtomic -> CSigAtomic -> Bool # (>=) :: CSigAtomic -> CSigAtomic -> Bool # max :: CSigAtomic -> CSigAtomic -> CSigAtomic # min :: CSigAtomic -> CSigAtomic -> CSigAtomic # | |
| Ord CClock | |
| Ord CTime | |
| Ord CUSeconds | |
| Ord CSUSeconds | |
Defined in Foreign.C.Types Methods compare :: CSUSeconds -> CSUSeconds -> Ordering # (<) :: CSUSeconds -> CSUSeconds -> Bool # (<=) :: CSUSeconds -> CSUSeconds -> Bool # (>) :: CSUSeconds -> CSUSeconds -> Bool # (>=) :: CSUSeconds -> CSUSeconds -> Bool # max :: CSUSeconds -> CSUSeconds -> CSUSeconds # min :: CSUSeconds -> CSUSeconds -> CSUSeconds # | |
| Ord CIntPtr | |
| Ord CUIntPtr | |
Defined in Foreign.C.Types | |
| Ord CIntMax | |
| Ord CUIntMax | |
Defined in Foreign.C.Types | |
| Ord WordPtr | |
| Ord IntPtr | |
| Ord IOMode | Since: base-4.2.0.0 |
| Ord Fingerprint | Since: base-4.4.0.0 |
Defined in GHC.Fingerprint.Type Methods compare :: Fingerprint -> Fingerprint -> Ordering # (<) :: Fingerprint -> Fingerprint -> Bool # (<=) :: Fingerprint -> Fingerprint -> Bool # (>) :: Fingerprint -> Fingerprint -> Bool # (>=) :: Fingerprint -> Fingerprint -> Bool # max :: Fingerprint -> Fingerprint -> Fingerprint # min :: Fingerprint -> Fingerprint -> Fingerprint # | |
| Ord GeneralCategory | Since: base-2.1 |
Defined in GHC.Unicode Methods compare :: GeneralCategory -> GeneralCategory -> Ordering # (<) :: GeneralCategory -> GeneralCategory -> Bool # (<=) :: GeneralCategory -> GeneralCategory -> Bool # (>) :: GeneralCategory -> GeneralCategory -> Bool # (>=) :: GeneralCategory -> GeneralCategory -> Bool # max :: GeneralCategory -> GeneralCategory -> GeneralCategory # min :: GeneralCategory -> GeneralCategory -> GeneralCategory # | |
| Ord a => Ord [a] | |
| Ord a => Ord (Maybe a) | Since: base-2.1 |
| Integral a => Ord (Ratio a) | Since: base-2.0.1 |
| Ord (Ptr a) | Since: base-2.1 |
| Ord (FunPtr a) | |
Defined in GHC.Ptr | |
| Ord p => Ord (Par1 p) | Since: base-4.7.0.0 |
| Ord (ForeignPtr a) | Since: base-2.1 |
Defined in GHC.ForeignPtr Methods compare :: ForeignPtr a -> ForeignPtr a -> Ordering # (<) :: ForeignPtr a -> ForeignPtr a -> Bool # (<=) :: ForeignPtr a -> ForeignPtr a -> Bool # (>) :: ForeignPtr a -> ForeignPtr a -> Bool # (>=) :: ForeignPtr a -> ForeignPtr a -> Bool # max :: ForeignPtr a -> ForeignPtr a -> ForeignPtr a # min :: ForeignPtr a -> ForeignPtr a -> ForeignPtr a # | |
| Ord a => Ord (ZipList a) | Since: base-4.7.0.0 |
| Ord a => Ord (NonEmpty a) | Since: base-4.9.0.0 |
| (Ord a, Ord b) => Ord (Either a b) | Since: base-2.1 |
| Ord (V1 p) | Since: base-4.9.0.0 |
| Ord (U1 p) | Since: base-4.7.0.0 |
| (Ord a, Ord b) => Ord (a, b) | |
| (Ix i, Ord e) => Ord (Array i e) | Since: base-2.1 |
| Ord (f p) => Ord (Rec1 f p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
| Ord (URec (Ptr ()) p) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: URec (Ptr ()) p -> URec (Ptr ()) p -> Ordering # (<) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (<=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (>) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (>=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # max :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p # min :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p # | |
| Ord (URec Char p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| Ord (URec Double p) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: URec Double p -> URec Double p -> Ordering # (<) :: URec Double p -> URec Double p -> Bool # (<=) :: URec Double p -> URec Double p -> Bool # (>) :: URec Double p -> URec Double p -> Bool # (>=) :: URec Double p -> URec Double p -> Bool # | |
| Ord (URec Float p) | |
Defined in GHC.Generics | |
| Ord (URec Int p) | Since: base-4.9.0.0 |
| Ord (URec Word p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| (Ord a, Ord b, Ord c) => Ord (a, b, c) | |
| Ord a => Ord (Const a b) | Since: base-4.9.0.0 |
| Ord c => Ord (K1 i c p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
| (Ord (f p), Ord (g p)) => Ord ((f :+: g) p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
| (Ord (f p), Ord (g p)) => Ord ((f :*: g) p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
| (Ord a, Ord b, Ord c, Ord d) => Ord (a, b, c, d) | |
Defined in GHC.Classes | |
| Ord (f p) => Ord (M1 i c f p) | Since: base-4.7.0.0 |
| Ord (f (g p)) => Ord ((f :.: g) p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
| (Ord a, Ord b, Ord c, Ord d, Ord e) => Ord (a, b, c, d, e) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e) -> (a, b, c, d, e) -> Ordering # (<) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # (<=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # (>) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # (>=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # max :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) # min :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f) => Ord (a, b, c, d, e, f) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Ordering # (<) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # (<=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # (>) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # (>=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # max :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) # min :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g) => Ord (a, b, c, d, e, f, g) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Ordering # (<) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # (<=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # (>) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # (>=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # max :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) # min :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h) => Ord (a, b, c, d, e, f, g, h) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Ordering # (<) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # (<=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # (>) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # (>=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # max :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) # min :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i) => Ord (a, b, c, d, e, f, g, h, i) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # max :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) # min :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j) => Ord (a, b, c, d, e, f, g, h, i, j) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) # min :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k) => Ord (a, b, c, d, e, f, g, h, i, j, k) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) # min :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l) => Ord (a, b, c, d, e, f, g, h, i, j, k, l) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) # min :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) # min :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) # min :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n, Ord o) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) # min :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) # | |
Class Enum defines operations on sequentially ordered types.
The enumFrom... methods are used in Haskell's translation of
arithmetic sequences.
Instances of Enum may be derived for any enumeration type (types
whose constructors have no fields). The nullary constructors are
assumed to be numbered left-to-right by fromEnum from 0 through n-1.
See Chapter 10 of the Haskell Report for more details.
For any type that is an instance of class Bounded as well as Enum,
the following should hold:
- The calls
andsuccmaxBoundshould result in a runtime error.predminBound fromEnumandtoEnumshould give a runtime error if the result value is not representable in the result type. For example,is an error.toEnum7 ::BoolenumFromandenumFromThenshould be defined with an implicit bound, thus:
enumFrom x = enumFromTo x maxBound
enumFromThen x y = enumFromThenTo x y bound
where
bound | fromEnum y >= fromEnum x = maxBound
| otherwise = minBoundMethods
the successor of a value. For numeric types, succ adds 1.
the predecessor of a value. For numeric types, pred subtracts 1.
Convert from an Int.
Convert to an Int.
It is implementation-dependent what fromEnum returns when
applied to a value that is too large to fit in an Int.
Used in Haskell's translation of [n..] with [n..] = enumFrom n,
a possible implementation being enumFrom n = n : enumFrom (succ n).
For example:
enumFrom 4 :: [Integer] = [4,5,6,7,...]
enumFrom 6 :: [Int] = [6,7,8,9,...,maxBound :: Int]
enumFromThen :: a -> a -> [a] #
Used in Haskell's translation of [n,n'..]
with [n,n'..] = enumFromThen n n', a possible implementation being
enumFromThen n n' = n : n' : worker (f x) (f x n'),
worker s v = v : worker s (s v), x = fromEnum n' - fromEnum n and
f n y
| n > 0 = f (n - 1) (succ y)
| n < 0 = f (n + 1) (pred y)
| otherwise = y
For example:
enumFromThen 4 6 :: [Integer] = [4,6,8,10...]
enumFromThen 6 2 :: [Int] = [6,2,-2,-6,...,minBound :: Int]
enumFromTo :: a -> a -> [a] #
Used in Haskell's translation of [n..m] with
[n..m] = enumFromTo n m, a possible implementation being
enumFromTo n m
| n <= m = n : enumFromTo (succ n) m
| otherwise = [].
For example:
enumFromTo 6 10 :: [Int] = [6,7,8,9,10]
enumFromTo 42 1 :: [Integer] = []
enumFromThenTo :: a -> a -> a -> [a] #
Used in Haskell's translation of [n,n'..m] with
[n,n'..m] = enumFromThenTo n n' m, a possible implementation
being enumFromThenTo n n' m = worker (f x) (c x) n m,
x = fromEnum n' - fromEnum n, c x = bool (>=) ((x 0)
f n y
| n > 0 = f (n - 1) (succ y)
| n < 0 = f (n + 1) (pred y)
| otherwise = y and
worker s c v m
| c v m = v : worker s c (s v) m
| otherwise = []
For example:
enumFromThenTo 4 2 -6 :: [Integer] = [4,2,0,-2,-4,-6]
enumFromThenTo 6 8 2 :: [Int] = []
Instances
The Bounded class is used to name the upper and lower limits of a
type. Ord is not a superclass of Bounded since types that are not
totally ordered may also have upper and lower bounds.
The Bounded class may be derived for any enumeration type;
minBound is the first constructor listed in the data declaration
and maxBound is the last.
Bounded may also be derived for single-constructor datatypes whose
constituent types are in Bounded.
Instances
| Bounded Bool | Since: base-2.1 |
| Bounded Char | Since: base-2.1 |
| Bounded Int | Since: base-2.1 |
| Bounded Int8 | Since: base-2.1 |
| Bounded Int16 | Since: base-2.1 |
| Bounded Int32 | Since: base-2.1 |
| Bounded Int64 | Since: base-2.1 |
| Bounded Ordering | Since: base-2.1 |
| Bounded Word | Since: base-2.1 |
| Bounded Word8 | Since: base-2.1 |
| Bounded Word16 | Since: base-2.1 |
| Bounded Word32 | Since: base-2.1 |
| Bounded Word64 | Since: base-2.1 |
| Bounded VecCount | Since: base-4.10.0.0 |
| Bounded VecElem | Since: base-4.10.0.0 |
| Bounded () | Since: base-2.1 |
| Bounded Associativity | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| Bounded SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| Bounded SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| Bounded DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| Bounded CChar | |
| Bounded CSChar | |
| Bounded CUChar | |
| Bounded CShort | |
| Bounded CUShort | |
| Bounded CInt | |
| Bounded CUInt | |
| Bounded CLong | |
| Bounded CULong | |
| Bounded CLLong | |
| Bounded CULLong | |
| Bounded CBool | |
| Bounded CPtrdiff | |
| Bounded CSize | |
| Bounded CWchar | |
| Bounded CSigAtomic | |
Defined in Foreign.C.Types | |
| Bounded CIntPtr | |
| Bounded CUIntPtr | |
| Bounded CIntMax | |
| Bounded CUIntMax | |
| Bounded WordPtr | |
| Bounded IntPtr | |
| Bounded GeneralCategory | Since: base-2.1 |
Defined in GHC.Unicode | |
| (Bounded a, Bounded b) => Bounded (a, b) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c) => Bounded (a, b, c) | Since: base-2.1 |
| Bounded a => Bounded (Const a b) | Since: base-4.9.0.0 |
| (Bounded a, Bounded b, Bounded c, Bounded d) => Bounded (a, b, c, d) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e) => Bounded (a, b, c, d, e) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f) => Bounded (a, b, c, d, e, f) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g) => Bounded (a, b, c, d, e, f, g) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h) => Bounded (a, b, c, d, e, f, g, h) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i) => Bounded (a, b, c, d, e, f, g, h, i) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j) => Bounded (a, b, c, d, e, f, g, h, i, j) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k) => Bounded (a, b, c, d, e, f, g, h, i, j, k) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n, Bounded o) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | Since: base-2.1 |
Numbers
Numeric types
A fixed-precision integer type with at least the range [-2^29 .. 2^29-1].
The exact range for a given implementation can be determined by using
minBound and maxBound from the Bounded class.
Instances
| Bounded Int | Since: base-2.1 |
| Enum Int | Since: base-2.1 |
| Eq Int | |
| Integral Int | Since: base-2.0.1 |
| Num Int | Since: base-2.1 |
| Ord Int | |
| Read Int | Since: base-2.1 |
| Real Int | Since: base-2.0.1 |
Defined in GHC.Real Methods toRational :: Int -> Rational # | |
| Show Int | Since: base-2.1 |
| Ix Int | Since: base-2.1 |
| Storable Int | Since: base-2.1 |
Defined in Foreign.Storable | |
| Bits Int | Since: base-2.1 |
Defined in Data.Bits | |
| FiniteBits Int | Since: base-4.6.0.0 |
Defined in Data.Bits Methods finiteBitSize :: Int -> Int # countLeadingZeros :: Int -> Int # countTrailingZeros :: Int -> Int # | |
| Generic1 (URec Int :: k -> Type) | |
| Functor (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
| Foldable (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Int m -> m # foldMap :: Monoid m => (a -> m) -> URec Int a -> m # foldr :: (a -> b -> b) -> b -> URec Int a -> b # foldr' :: (a -> b -> b) -> b -> URec Int a -> b # foldl :: (b -> a -> b) -> b -> URec Int a -> b # foldl' :: (b -> a -> b) -> b -> URec Int a -> b # foldr1 :: (a -> a -> a) -> URec Int a -> a # foldl1 :: (a -> a -> a) -> URec Int a -> a # elem :: Eq a => a -> URec Int a -> Bool # maximum :: Ord a => URec Int a -> a # minimum :: Ord a => URec Int a -> a # | |
| Traversable (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
| Eq (URec Int p) | Since: base-4.9.0.0 |
| Ord (URec Int p) | Since: base-4.9.0.0 |
| Show (URec Int p) | Since: base-4.9.0.0 |
| Generic (URec Int p) | |
| data URec Int (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
| type Rep1 (URec Int :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| type Rep (URec Int p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Invariant: Jn# and Jp# are used iff value doesn't fit in S#
Useful properties resulting from the invariants:
Instances
| Enum Integer | Since: base-2.1 |
| Eq Integer | |
| Integral Integer | Since: base-2.0.1 |
Defined in GHC.Real | |
| Num Integer | Since: base-2.1 |
| Ord Integer | |
| Read Integer | Since: base-2.1 |
| Real Integer | Since: base-2.0.1 |
Defined in GHC.Real Methods toRational :: Integer -> Rational # | |
| Show Integer | Since: base-2.1 |
| Ix Integer | Since: base-2.1 |
Defined in GHC.Arr | |
| Bits Integer | Since: base-2.1 |
Defined in Data.Bits Methods (.&.) :: Integer -> Integer -> Integer # (.|.) :: Integer -> Integer -> Integer # xor :: Integer -> Integer -> Integer # complement :: Integer -> Integer # shift :: Integer -> Int -> Integer # rotate :: Integer -> Int -> Integer # setBit :: Integer -> Int -> Integer # clearBit :: Integer -> Int -> Integer # complementBit :: Integer -> Int -> Integer # testBit :: Integer -> Int -> Bool # bitSizeMaybe :: Integer -> Maybe Int # shiftL :: Integer -> Int -> Integer # unsafeShiftL :: Integer -> Int -> Integer # shiftR :: Integer -> Int -> Integer # unsafeShiftR :: Integer -> Int -> Integer # rotateL :: Integer -> Int -> Integer # | |
Single-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE single-precision type.
Instances
| Eq Float | Note that due to the presence of
Also note that
|
| Floating Float | Since: base-2.1 |
| Ord Float | Note that due to the presence of
Also note that, due to the same,
|
| Read Float | Since: base-2.1 |
| RealFloat Float | Since: base-2.1 |
Defined in GHC.Float Methods floatRadix :: Float -> Integer # floatDigits :: Float -> Int # floatRange :: Float -> (Int, Int) # decodeFloat :: Float -> (Integer, Int) # encodeFloat :: Integer -> Int -> Float # significand :: Float -> Float # scaleFloat :: Int -> Float -> Float # isInfinite :: Float -> Bool # isDenormalized :: Float -> Bool # isNegativeZero :: Float -> Bool # | |
| Storable Float | Since: base-2.1 |
| Generic1 (URec Float :: k -> Type) | |
| Functor (URec Float :: Type -> Type) | Since: base-4.9.0.0 |
| Foldable (URec Float :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Float m -> m # foldMap :: Monoid m => (a -> m) -> URec Float a -> m # foldr :: (a -> b -> b) -> b -> URec Float a -> b # foldr' :: (a -> b -> b) -> b -> URec Float a -> b # foldl :: (b -> a -> b) -> b -> URec Float a -> b # foldl' :: (b -> a -> b) -> b -> URec Float a -> b # foldr1 :: (a -> a -> a) -> URec Float a -> a # foldl1 :: (a -> a -> a) -> URec Float a -> a # toList :: URec Float a -> [a] # null :: URec Float a -> Bool # length :: URec Float a -> Int # elem :: Eq a => a -> URec Float a -> Bool # maximum :: Ord a => URec Float a -> a # minimum :: Ord a => URec Float a -> a # | |
| Traversable (URec Float :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
| Eq (URec Float p) | |
| Ord (URec Float p) | |
Defined in GHC.Generics | |
| Show (URec Float p) | |
| Generic (URec Float p) | |
| data URec Float (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
| type Rep1 (URec Float :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| type Rep (URec Float p) | |
Defined in GHC.Generics | |
Double-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE double-precision type.
Instances
| Eq Double | Note that due to the presence of
Also note that
|
| Floating Double | Since: base-2.1 |
| Ord Double | Note that due to the presence of
Also note that, due to the same,
|
| Read Double | Since: base-2.1 |
| RealFloat Double | Since: base-2.1 |
Defined in GHC.Float Methods floatRadix :: Double -> Integer # floatDigits :: Double -> Int # floatRange :: Double -> (Int, Int) # decodeFloat :: Double -> (Integer, Int) # encodeFloat :: Integer -> Int -> Double # significand :: Double -> Double # scaleFloat :: Int -> Double -> Double # isInfinite :: Double -> Bool # isDenormalized :: Double -> Bool # isNegativeZero :: Double -> Bool # | |
| Storable Double | Since: base-2.1 |
| Generic1 (URec Double :: k -> Type) | |
| Functor (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
| Foldable (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Double m -> m # foldMap :: Monoid m => (a -> m) -> URec Double a -> m # foldr :: (a -> b -> b) -> b -> URec Double a -> b # foldr' :: (a -> b -> b) -> b -> URec Double a -> b # foldl :: (b -> a -> b) -> b -> URec Double a -> b # foldl' :: (b -> a -> b) -> b -> URec Double a -> b # foldr1 :: (a -> a -> a) -> URec Double a -> a # foldl1 :: (a -> a -> a) -> URec Double a -> a # toList :: URec Double a -> [a] # null :: URec Double a -> Bool # length :: URec Double a -> Int # elem :: Eq a => a -> URec Double a -> Bool # maximum :: Ord a => URec Double a -> a # minimum :: Ord a => URec Double a -> a # | |
| Traversable (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
| Eq (URec Double p) | Since: base-4.9.0.0 |
| Ord (URec Double p) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: URec Double p -> URec Double p -> Ordering # (<) :: URec Double p -> URec Double p -> Bool # (<=) :: URec Double p -> URec Double p -> Bool # (>) :: URec Double p -> URec Double p -> Bool # (>=) :: URec Double p -> URec Double p -> Bool # | |
| Show (URec Double p) | Since: base-4.9.0.0 |
| Generic (URec Double p) | |
| data URec Double (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
| type Rep1 (URec Double :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| type Rep (URec Double p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Instances
| Bounded Word | Since: base-2.1 |
| Enum Word | Since: base-2.1 |
| Eq Word | |
| Integral Word | Since: base-2.1 |
| Num Word | Since: base-2.1 |
| Ord Word | |
| Read Word | Since: base-4.5.0.0 |
| Real Word | Since: base-2.1 |
Defined in GHC.Real Methods toRational :: Word -> Rational # | |
| Show Word | Since: base-2.1 |
| Ix Word | Since: base-4.6.0.0 |
| Storable Word | Since: base-2.1 |
Defined in Foreign.Storable | |
| Bits Word | Since: base-2.1 |
Defined in Data.Bits Methods (.&.) :: Word -> Word -> Word # (.|.) :: Word -> Word -> Word # complement :: Word -> Word # shift :: Word -> Int -> Word # rotate :: Word -> Int -> Word # setBit :: Word -> Int -> Word # clearBit :: Word -> Int -> Word # complementBit :: Word -> Int -> Word # testBit :: Word -> Int -> Bool # bitSizeMaybe :: Word -> Maybe Int # shiftL :: Word -> Int -> Word # unsafeShiftL :: Word -> Int -> Word # shiftR :: Word -> Int -> Word # unsafeShiftR :: Word -> Int -> Word # rotateL :: Word -> Int -> Word # | |
| FiniteBits Word | Since: base-4.6.0.0 |
Defined in Data.Bits Methods finiteBitSize :: Word -> Int # countLeadingZeros :: Word -> Int # countTrailingZeros :: Word -> Int # | |
| Generic1 (URec Word :: k -> Type) | |
| Functor (URec Word :: Type -> Type) | Since: base-4.9.0.0 |
| Foldable (URec Word :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => URec Word m -> m # foldMap :: Monoid m => (a -> m) -> URec Word a -> m # foldr :: (a -> b -> b) -> b -> URec Word a -> b # foldr' :: (a -> b -> b) -> b -> URec Word a -> b # foldl :: (b -> a -> b) -> b -> URec Word a -> b # foldl' :: (b -> a -> b) -> b -> URec Word a -> b # foldr1 :: (a -> a -> a) -> URec Word a -> a # foldl1 :: (a -> a -> a) -> URec Word a -> a # toList :: URec Word a -> [a] # length :: URec Word a -> Int # elem :: Eq a => a -> URec Word a -> Bool # maximum :: Ord a => URec Word a -> a # minimum :: Ord a => URec Word a -> a # | |
| Traversable (URec Word :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
| Eq (URec Word p) | Since: base-4.9.0.0 |
| Ord (URec Word p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| Show (URec Word p) | Since: base-4.9.0.0 |
| Generic (URec Word p) | |
| data URec Word (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
| type Rep1 (URec Word :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| type Rep (URec Word p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Numeric type classes
Basic numeric class.
The Haskell Report defines no laws for Num. However, '(+)' and '(*)' are
customarily expected to define a ring and have the following properties:
- Associativity of (+)
(x + y) + z=x + (y + z)- Commutativity of (+)
x + y=y + xfromInteger 0is the additive identityx + fromInteger 0=xnegategives the additive inversex + negate x=fromInteger 0- Associativity of (*)
(x * y) * z=x * (y * z)fromInteger 1is the multiplicative identityx * fromInteger 1=xandfromInteger 1 * x=x- Distributivity of (*) with respect to (+)
a * (b + c)=(a * b) + (a * c)and(b + c) * a=(b * a) + (c * a)
Note that it isn't customarily expected that a type instance of both Num
and Ord implement an ordered ring. Indeed, in base only Integer and
Rational do.
Methods
Unary negation.
Absolute value.
Sign of a number.
The functions abs and signum should satisfy the law:
abs x * signum x == x
For real numbers, the signum is either -1 (negative), 0 (zero)
or 1 (positive).
fromInteger :: Integer -> a #
Conversion from an Integer.
An integer literal represents the application of the function
fromInteger to the appropriate value of type Integer,
so such literals have type (.Num a) => a
Instances
class (Num a, Ord a) => Real a where #
Methods
toRational :: a -> Rational #
the rational equivalent of its real argument with full precision
Instances
class (Real a, Enum a) => Integral a where #
Integral numbers, supporting integer division.
The Haskell Report defines no laws for Integral. However, Integral
instances are customarily expected to define a Euclidean domain and have the
following properties for the 'div'/'mod' and 'quot'/'rem' pairs, given
suitable Euclidean functions f and g:
x=y * quot x y + rem x ywithrem x y=fromInteger 0org (rem x y)<g yx=y * div x y + mod x ywithmod x y=fromInteger 0orf (mod x y)<f y
An example of a suitable Euclidean function, for Integer's instance, is
abs.
Methods
quot :: a -> a -> a infixl 7 #
integer division truncated toward zero
integer remainder, satisfying
(x `quot` y)*y + (x `rem` y) == x
integer division truncated toward negative infinity
integer modulus, satisfying
(x `div` y)*y + (x `mod` y) == x
conversion to Integer
Instances
class Num a => Fractional a where #
Fractional numbers, supporting real division.
The Haskell Report defines no laws for Fractional. However, '(+)' and
'(*)' are customarily expected to define a division ring and have the
following properties:
recipgives the multiplicative inversex * recip x=recip x * x=fromInteger 1
Note that it isn't customarily expected that a type instance of
Fractional implement a field. However, all instances in base do.
Minimal complete definition
fromRational, (recip | (/))
Methods
fractional division
reciprocal fraction
fromRational :: Rational -> a #
Conversion from a Rational (that is ).
A floating literal stands for an application of Ratio IntegerfromRational
to a value of type Rational, so such literals have type
(.Fractional a) => a
Instances
| Fractional CFloat | |
| Fractional CDouble | |
| Integral a => Fractional (Ratio a) | Since: base-2.0.1 |
| RealFloat a => Fractional (Complex a) | Since: base-2.1 |
| Fractional a => Fractional (Const a b) | Since: base-4.9.0.0 |
class Fractional a => Floating a where #
Trigonometric and hyperbolic functions and related functions.
The Haskell Report defines no laws for Floating. However, '(+)', '(*)'
and exp are customarily expected to define an exponential field and have
the following properties:
exp (a + b)= @exp a * exp bexp (fromInteger 0)=fromInteger 1
Minimal complete definition
pi, exp, log, sin, cos, asin, acos, atan, sinh, cosh, asinh, acosh, atanh
Instances
class (Real a, Fractional a) => RealFrac a where #
Extracting components of fractions.
Minimal complete definition
Methods
properFraction :: Integral b => a -> (b, a) #
The function properFraction takes a real fractional number x
and returns a pair (n,f) such that x = n+f, and:
nis an integral number with the same sign asx; andfis a fraction with the same type and sign asx, and with absolute value less than1.
The default definitions of the ceiling, floor, truncate
and round functions are in terms of properFraction.
truncate :: Integral b => a -> b #
returns the integer nearest truncate xx between zero and x
round :: Integral b => a -> b #
returns the nearest integer to round xx;
the even integer if x is equidistant between two integers
ceiling :: Integral b => a -> b #
returns the least integer not less than ceiling xx
floor :: Integral b => a -> b #
returns the greatest integer not greater than floor xx
class (RealFrac a, Floating a) => RealFloat a where #
Efficient, machine-independent access to the components of a floating-point number.
Minimal complete definition
floatRadix, floatDigits, floatRange, decodeFloat, encodeFloat, isNaN, isInfinite, isDenormalized, isNegativeZero, isIEEE
Methods
floatRadix :: a -> Integer #
a constant function, returning the radix of the representation
(often 2)
floatDigits :: a -> Int #
a constant function, returning the number of digits of
floatRadix in the significand
floatRange :: a -> (Int, Int) #
a constant function, returning the lowest and highest values the exponent may assume
decodeFloat :: a -> (Integer, Int) #
The function decodeFloat applied to a real floating-point
number returns the significand expressed as an Integer and an
appropriately scaled exponent (an Int). If
yields decodeFloat x(m,n), then x is equal in value to m*b^^n, where b
is the floating-point radix, and furthermore, either m and n
are both zero or else b^(d-1) <= , where abs m < b^dd is
the value of .
In particular, floatDigits x. If the type
contains a negative zero, also decodeFloat 0 = (0,0).
The result of decodeFloat (-0.0) = (0,0) is unspecified if either of
decodeFloat x or isNaN x is isInfinite xTrue.
encodeFloat :: Integer -> Int -> a #
encodeFloat performs the inverse of decodeFloat in the
sense that for finite x with the exception of -0.0,
.
uncurry encodeFloat (decodeFloat x) = x is one of the two closest representable
floating-point numbers to encodeFloat m nm*b^^n (or ±Infinity if overflow
occurs); usually the closer, but if m contains too many bits,
the result may be rounded in the wrong direction.
exponent corresponds to the second component of decodeFloat.
and for finite nonzero exponent 0 = 0x,
.
If exponent x = snd (decodeFloat x) + floatDigits xx is a finite floating-point number, it is equal in value to
, where significand x * b ^^ exponent xb is the
floating-point radix.
The behaviour is unspecified on infinite or NaN values.
significand :: a -> a #
The first component of decodeFloat, scaled to lie in the open
interval (-1,1), either 0.0 or of absolute value >= 1/b,
where b is the floating-point radix.
The behaviour is unspecified on infinite or NaN values.
scaleFloat :: Int -> a -> a #
multiplies a floating-point number by an integer power of the radix
True if the argument is an IEEE "not-a-number" (NaN) value
isInfinite :: a -> Bool #
True if the argument is an IEEE infinity or negative infinity
isDenormalized :: a -> Bool #
True if the argument is too small to be represented in
normalized format
isNegativeZero :: a -> Bool #
True if the argument is an IEEE negative zero
True if the argument is an IEEE floating point number
a version of arctangent taking two real floating-point arguments.
For real floating x and y, computes the angle
(from the positive x-axis) of the vector from the origin to the
point atan2 y x(x,y). returns a value in the range [atan2 y x-pi,
pi]. It follows the Common Lisp semantics for the origin when
signed zeroes are supported. , with atan2 y 1y in a type
that is RealFloat, should return the same value as .
A default definition of atan yatan2 is provided, but implementors
can provide a more accurate implementation.
Instances
Numeric functions
lcm :: Integral a => a -> a -> a #
is the smallest positive integer that both lcm x yx and y divide.
(^^) :: (Fractional a, Integral b) => a -> b -> a infixr 8 #
raise a number to an integral power
fromIntegral :: (Integral a, Num b) => a -> b #
general coercion from integral types
realToFrac :: (Real a, Fractional b) => a -> b #
general coercion to fractional types
Monads, applicatives and functors
class Functor (f :: Type -> Type) where #
The Functor class is used for types that can be mapped over.
Instances of Functor should satisfy the following laws:
fmap id == id fmap (f . g) == fmap f . fmap g
The instances of Functor for lists, Maybe and IO
satisfy these laws.
Instances
| Functor [] | Since: base-2.1 |
| Functor Maybe | Since: base-2.1 |
| Functor IO | Since: base-2.1 |
| Functor Par1 | Since: base-4.9.0.0 |
| Functor Complex | Since: base-4.9.0.0 |
| Functor ZipList | Since: base-2.1 |
| Functor Handler | Since: base-4.6.0.0 |
| Functor ReadPrec | Since: base-2.1 |
| Functor ReadP | Since: base-2.1 |
| Functor NonEmpty | Since: base-4.9.0.0 |
| Functor P | Since: base-4.8.0.0 |
Defined in Text.ParserCombinators.ReadP | |
| Functor (Either a) | Since: base-3.0 |
| Functor (V1 :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (U1 :: Type -> Type) | Since: base-4.9.0.0 |
| Functor ((,) a) | Since: base-2.1 |
| Functor (Array i) | Since: base-2.1 |
| Monad m => Functor (WrappedMonad m) | Since: base-2.1 |
Defined in Control.Applicative Methods fmap :: (a -> b) -> WrappedMonad m a -> WrappedMonad m b # (<$) :: a -> WrappedMonad m b -> WrappedMonad m a # | |
| Functor f => Functor (Rec1 f) | Since: base-4.9.0.0 |
| Functor (URec Char :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (URec Float :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (URec Word :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (URec (Ptr ()) :: Type -> Type) | Since: base-4.9.0.0 |
| Arrow a => Functor (WrappedArrow a b) | Since: base-2.1 |
Defined in Control.Applicative Methods fmap :: (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 # (<$) :: a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 # | |
| Functor (Const m :: Type -> Type) | Since: base-2.1 |
| Functor ((->) r :: Type -> Type) | Since: base-2.1 |
| Functor (K1 i c :: Type -> Type) | Since: base-4.9.0.0 |
| (Functor f, Functor g) => Functor (f :+: g) | Since: base-4.9.0.0 |
| (Functor f, Functor g) => Functor (f :*: g) | Since: base-4.9.0.0 |
| Functor f => Functor (M1 i c f) | Since: base-4.9.0.0 |
| (Functor f, Functor g) => Functor (f :.: g) | Since: base-4.9.0.0 |
class Functor f => Applicative (f :: Type -> Type) where #
A functor with application, providing operations to
A minimal complete definition must include implementations of pure
and of either <*> or liftA2. If it defines both, then they must behave
the same as their default definitions:
(<*>) =liftA2id
liftA2f x y = f<$>x<*>y
Further, any definition must satisfy the following:
- identity
pureid<*>v = v- composition
pure(.)<*>u<*>v<*>w = u<*>(v<*>w)- homomorphism
puref<*>purex =pure(f x)- interchange
u
<*>purey =pure($y)<*>u
The other methods have the following default definitions, which may be overridden with equivalent specialized implementations:
As a consequence of these laws, the Functor instance for f will satisfy
It may be useful to note that supposing
forall x y. p (q x y) = f x . g y
it follows from the above that
liftA2p (liftA2q u v) =liftA2f u .liftA2g v
If f is also a Monad, it should satisfy
(which implies that pure and <*> satisfy the applicative functor laws).
Methods
Lift a value.
(<*>) :: f (a -> b) -> f a -> f b infixl 4 #
Sequential application.
A few functors support an implementation of <*> that is more
efficient than the default one.
liftA2 :: (a -> b -> c) -> f a -> f b -> f c #
Lift a binary function to actions.
Some functors support an implementation of liftA2 that is more
efficient than the default one. In particular, if fmap is an
expensive operation, it is likely better to use liftA2 than to
fmap over the structure and then use <*>.
(*>) :: f a -> f b -> f b infixl 4 #
Sequence actions, discarding the value of the first argument.
(<*) :: f a -> f b -> f a infixl 4 #
Sequence actions, discarding the value of the second argument.
Instances
| Applicative [] | Since: base-2.1 |
| Applicative Maybe | Since: base-2.1 |
| Applicative IO | Since: base-2.1 |
| Applicative Par1 | Since: base-4.9.0.0 |
| Applicative Complex | Since: base-4.9.0.0 |
| Applicative ZipList | f '<$>' 'ZipList' xs1 '<*>' ... '<*>' 'ZipList' xsN
= 'ZipList' (zipWithN f xs1 ... xsN)where (\a b c -> stimes c [a, b]) <$> ZipList "abcd" <*> ZipList "567" <*> ZipList [1..]
= ZipList (zipWith3 (\a b c -> stimes c [a, b]) "abcd" "567" [1..])
= ZipList {getZipList = ["a5","b6b6","c7c7c7"]}Since: base-2.1 |
| Applicative ReadPrec | Since: base-4.6.0.0 |
| Applicative ReadP | Since: base-4.6.0.0 |
| Applicative NonEmpty | Since: base-4.9.0.0 |
| Applicative P | Since: base-4.5.0.0 |
| Applicative (Either e) | Since: base-3.0 |
| Applicative (U1 :: Type -> Type) | Since: base-4.9.0.0 |
| Monoid a => Applicative ((,) a) | For tuples, the ("hello ", (+15)) <*> ("world!", 2002)
("hello world!",2017)Since: base-2.1 |
| Monad m => Applicative (WrappedMonad m) | Since: base-2.1 |
Defined in Control.Applicative Methods pure :: a -> WrappedMonad m a # (<*>) :: WrappedMonad m (a -> b) -> WrappedMonad m a -> WrappedMonad m b # liftA2 :: (a -> b -> c) -> WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m c # (*>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b # (<*) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m a # | |
| Applicative f => Applicative (Rec1 f) | Since: base-4.9.0.0 |
| Arrow a => Applicative (WrappedArrow a b) | Since: base-2.1 |
Defined in Control.Applicative Methods pure :: a0 -> WrappedArrow a b a0 # (<*>) :: WrappedArrow a b (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 # liftA2 :: (a0 -> b0 -> c) -> WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b c # (*>) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b b0 # (<*) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 # | |
| Monoid m => Applicative (Const m :: Type -> Type) | Since: base-2.0.1 |
| Applicative ((->) a :: Type -> Type) | Since: base-2.1 |
| Monoid c => Applicative (K1 i c :: Type -> Type) | Since: base-4.12.0.0 |
| (Applicative f, Applicative g) => Applicative (f :*: g) | Since: base-4.9.0.0 |
| Applicative f => Applicative (M1 i c f) | Since: base-4.9.0.0 |
| (Applicative f, Applicative g) => Applicative (f :.: g) | Since: base-4.9.0.0 |
class Applicative m => Monad (m :: Type -> Type) where #
The Monad class defines the basic operations over a monad,
a concept from a branch of mathematics known as category theory.
From the perspective of a Haskell programmer, however, it is best to
think of a monad as an abstract datatype of actions.
Haskell's do expressions provide a convenient syntax for writing
monadic expressions.
Instances of Monad should satisfy the following laws:
Furthermore, the Monad and Applicative operations should relate as follows:
The above laws imply:
and that pure and (<*>) satisfy the applicative functor laws.
The instances of Monad for lists, Maybe and IO
defined in the Prelude satisfy these laws.
Methods
(>>=) :: m a -> (a -> m b) -> m b infixl 1 #
Sequentially compose two actions, passing any value produced by the first as an argument to the second.
Instances
| Monad [] | Since: base-2.1 |
| Monad Maybe | Since: base-2.1 |
| Monad IO | Since: base-2.1 |
| Monad Par1 | Since: base-4.9.0.0 |
| Monad Complex | Since: base-4.9.0.0 |
| Monad ReadPrec | Since: base-2.1 |
| Monad ReadP | Since: base-2.1 |
| Monad NonEmpty | Since: base-4.9.0.0 |
| Monad P | Since: base-2.1 |
| Monad (Either e) | Since: base-4.4.0.0 |
| Monad (U1 :: Type -> Type) | Since: base-4.9.0.0 |
| Monoid a => Monad ((,) a) | Since: base-4.9.0.0 |
| Monad m => Monad (WrappedMonad m) | Since: base-4.7.0.0 |
Defined in Control.Applicative Methods (>>=) :: WrappedMonad m a -> (a -> WrappedMonad m b) -> WrappedMonad m b # (>>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b # return :: a -> WrappedMonad m a # fail :: String -> WrappedMonad m a # | |
| Monad f => Monad (Rec1 f) | Since: base-4.9.0.0 |
| Monad ((->) r :: Type -> Type) | Since: base-2.1 |
| (Monad f, Monad g) => Monad (f :*: g) | Since: base-4.9.0.0 |
| Monad f => Monad (M1 i c f) | Since: base-4.9.0.0 |
class Monad m => MonadFail (m :: Type -> Type) where #
When a value is bound in do-notation, the pattern on the left
hand side of <- might not match. In this case, this class
provides a function to recover.
A Monad without a MonadFail instance may only be used in conjunction
with pattern that always match, such as newtypes, tuples, data types with
only a single data constructor, and irrefutable patterns (~pat).
Instances of MonadFail should satisfy the following law: fail s should
be a left zero for >>=,
fail s >>= f = fail s
If your Monad is also MonadPlus, a popular definition is
fail _ = mzero
Since: base-4.9.0.0
Instances
| MonadFail [] | Since: base-4.9.0.0 |
Defined in Control.Monad.Fail | |
| MonadFail Maybe | Since: base-4.9.0.0 |
Defined in Control.Monad.Fail | |
| MonadFail IO | Since: base-4.9.0.0 |
Defined in Control.Monad.Fail | |
| MonadFail ReadPrec | Since: base-4.9.0.0 |
Defined in Text.ParserCombinators.ReadPrec | |
| MonadFail ReadP | Since: base-4.9.0.0 |
Defined in Text.ParserCombinators.ReadP | |
| MonadFail P | Since: base-4.9.0.0 |
Defined in Text.ParserCombinators.ReadP | |
mapM :: Monad m => (a -> m b) -> [a] -> m [b] Source #
Map each element of a structure to a monadic action, evaluate
these actions from left to right, and collect the results. For
a version that ignores the results see mapM_.
mapM_ :: Monad m => (a -> m b) -> [a] -> m () Source #
Map each element of a structure to a monadic action, evaluate
these actions from left to right, and ignore the results. For a
version that doesn't ignore the results see mapM.
sequence :: Monad m => [m a] -> m [a] Source #
Evaluate each monadic action in the structure from left to
right, and collect the results. For a version that ignores the
results see sequence_.
sequence_ :: Monad m => [m a] -> m () Source #
Evaluate each monadic action in the structure from left to right,
and ignore the results. For a version that doesn't ignore the
results see sequence.
(=<<) :: Monad m => (a -> m b) -> m a -> m b infixr 1 #
Same as >>=, but with the arguments interchanged.
Miscellaneous functions
const x is a unary function which evaluates to x for all inputs.
>>>const 42 "hello"42
>>>map (const 42) [0..3][42,42,42,42]
flip :: (a -> b -> c) -> b -> a -> c #
takes its (first) two arguments in the reverse order of flip ff.
>>>flip (++) "hello" "world""worldhello"
($) :: (a -> b) -> a -> b infixr 0 #
Application operator. This operator is redundant, since ordinary
application (f x) means the same as (f . However, $ x)$ has
low, right-associative binding precedence, so it sometimes allows
parentheses to be omitted; for example:
f $ g $ h x = f (g (h x))
It is also useful in higher-order situations, such as ,
or map ($ 0) xs.zipWith ($) fs xs
Note that ($) is levity-polymorphic in its result type, so that
foo $ True where foo :: Bool -> Int#
is well-typed
until :: (a -> Bool) -> (a -> a) -> a -> a #
yields the result of applying until p ff until p holds.
error :: HasCallStack => [Char] -> a #
error stops execution and displays an error message.
undefined :: HasCallStack => a #
The value of seq a b is bottom if a is bottom, and
otherwise equal to b. In other words, it evaluates the first
argument a to weak head normal form (WHNF). seq is usually
introduced to improve performance by avoiding unneeded laziness.
A note on evaluation order: the expression seq a b does
not guarantee that a will be evaluated before b.
The only guarantee given by seq is that the both a
and b will be evaluated before seq returns a value.
In particular, this means that b may be evaluated before
a. If you need to guarantee a specific order of evaluation,
you must use the function pseq from the "parallel" package.
($!) :: (a -> b) -> a -> b infixr 0 #
Strict (call-by-value) application operator. It takes a function and an argument, evaluates the argument to weak head normal form (WHNF), then calls the function with that value.
List operations
map :: (a -> b) -> [a] -> [b] #
map f xs is the list obtained by applying f to each element
of xs, i.e.,
map f [x1, x2, ..., xn] == [f x1, f x2, ..., f xn] map f [x1, x2, ...] == [f x1, f x2, ...]
(++) :: [a] -> [a] -> [a] infixr 5 #
Append two lists, i.e.,
[x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn] [x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]
If the first list is not finite, the result is the first list.
filter :: (a -> Bool) -> [a] -> [a] #
filter, applied to a predicate and a list, returns the list of
those elements that satisfy the predicate; i.e.,
filter p xs = [ x | x <- xs, p x]
Return all the elements of a list except the last one. The list must be non-empty.
O(n). length returns the length of a finite list as an Int.
It is an instance of the more general genericLength,
the result type of which may be any kind of number.
(!!) :: [a] -> Int -> a infixl 9 #
List index (subscript) operator, starting from 0.
It is an instance of the more general genericIndex,
which takes an index of any integral type.
Reducing lists (folds)
foldl :: (b -> a -> b) -> b -> [a] -> b #
foldl, applied to a binary operator, a starting value (typically
the left-identity of the operator), and a list, reduces the list
using the binary operator, from left to right:
foldl f z [x1, x2, ..., xn] == (...((z `f` x1) `f` x2) `f`...) `f` xn
The list must be finite.
foldr :: (a -> b -> b) -> b -> [a] -> b #
foldr, applied to a binary operator, a starting value (typically
the right-identity of the operator), and a list, reduces the list
using the binary operator, from right to left:
foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...)
Special folds
product :: Num a => [a] -> a #
The product function computes the product of a finite list of numbers.
Building lists
Scans
Infinite lists
replicate :: Int -> a -> [a] #
replicate n x is a list of length n with x the value of
every element.
It is an instance of the more general genericReplicate,
in which n may be of any integral type.
cycle ties a finite list into a circular one, or equivalently,
the infinite repetition of the original list. It is the identity
on infinite lists.
Sublists
take n, applied to a list xs, returns the prefix of xs
of length n, or xs itself if n > :length xs
take 5 "Hello World!" == "Hello" take 3 [1,2,3,4,5] == [1,2,3] take 3 [1,2] == [1,2] take 3 [] == [] take (-1) [1,2] == [] take 0 [1,2] == []
It is an instance of the more general genericTake,
in which n may be of any integral type.
drop n xs returns the suffix of xs
after the first n elements, or [] if n > :length xs
drop 6 "Hello World!" == "World!" drop 3 [1,2,3,4,5] == [4,5] drop 3 [1,2] == [] drop 3 [] == [] drop (-1) [1,2] == [1,2] drop 0 [1,2] == [1,2]
It is an instance of the more general genericDrop,
in which n may be of any integral type.
splitAt :: Int -> [a] -> ([a], [a]) Source #
splitAt n xs returns a tuple where first element is xs prefix of
length n and second element is the remainder of the list:
splitAt 6 "Hello World!" == ("Hello ","World!")
splitAt 3 [1,2,3,4,5] == ([1,2,3],[4,5])
splitAt 1 [1,2,3] == ([1],[2,3])
splitAt 3 [1,2,3] == ([1,2,3],[])
splitAt 4 [1,2,3] == ([1,2,3],[])
splitAt 0 [1,2,3] == ([],[1,2,3])
splitAt (-1) [1,2,3] == ([],[1,2,3])It is equivalent to (.
take n xs, drop n xs)splitAt is an instance of the more general genericSplitAt,
in which n may be of any integral type.
takeWhile :: (a -> Bool) -> [a] -> [a] #
takeWhile, applied to a predicate p and a list xs, returns the
longest prefix (possibly empty) of xs of elements that satisfy p:
takeWhile (< 3) [1,2,3,4,1,2,3,4] == [1,2] takeWhile (< 9) [1,2,3] == [1,2,3] takeWhile (< 0) [1,2,3] == []
span :: (a -> Bool) -> [a] -> ([a], [a]) #
span, applied to a predicate p and a list xs, returns a tuple where
first element is longest prefix (possibly empty) of xs of elements that
satisfy p and second element is the remainder of the list:
span (< 3) [1,2,3,4,1,2,3,4] == ([1,2],[3,4,1,2,3,4]) span (< 9) [1,2,3] == ([1,2,3],[]) span (< 0) [1,2,3] == ([],[1,2,3])
break :: (a -> Bool) -> [a] -> ([a], [a]) #
break, applied to a predicate p and a list xs, returns a tuple where
first element is longest prefix (possibly empty) of xs of elements that
do not satisfy p and second element is the remainder of the list:
break (> 3) [1,2,3,4,1,2,3,4] == ([1,2,3],[4,1,2,3,4]) break (< 9) [1,2,3] == ([],[1,2,3]) break (> 9) [1,2,3] == ([1,2,3],[])
Searching lists
lookup :: Eq a => a -> [(a, b)] -> Maybe b #
lookup key assocs looks up a key in an association list.
Zipping and unzipping lists
unzip :: [(a, b)] -> ([a], [b]) #
unzip transforms a list of pairs into a list of first components
and a list of second components.
Functions on strings
lines breaks a string up into a list of strings at newline
characters. The resulting strings do not contain newlines.
Note that after splitting the string at newline characters, the last part of the string is considered a line even if it doesn't end with a newline. For example,
>>>lines ""[]
>>>lines "\n"[""]
>>>lines "one"["one"]
>>>lines "one\n"["one"]
>>>lines "one\n\n"["one",""]
>>>lines "one\ntwo"["one","two"]
>>>lines "one\ntwo\n"["one","two"]
Thus contains at least as many elements as newlines in lines ss.
words breaks a string up into a list of words, which were delimited
by white space.
>>>words "Lorem ipsum\ndolor"["Lorem","ipsum","dolor"]
Converting to and from String
Converting to String
Conversion of values to readable Strings.
Derived instances of Show have the following properties, which
are compatible with derived instances of Read:
- The result of
showis a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used. - If the constructor is defined to be an infix operator, then
showsPrecwill produce infix applications of the constructor. - the representation will be enclosed in parentheses if the
precedence of the top-level constructor in
xis less thand(associativity is ignored). Thus, ifdis0then the result is never surrounded in parentheses; ifdis11it is always surrounded in parentheses, unless it is an atomic expression. - If the constructor is defined using record syntax, then
showwill produce the record-syntax form, with the fields given in the same order as the original declaration.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Show is equivalent to
instance (Show a) => Show (Tree a) where
showsPrec d (Leaf m) = showParen (d > app_prec) $
showString "Leaf " . showsPrec (app_prec+1) m
where app_prec = 10
showsPrec d (u :^: v) = showParen (d > up_prec) $
showsPrec (up_prec+1) u .
showString " :^: " .
showsPrec (up_prec+1) v
where up_prec = 5Note that right-associativity of :^: is ignored. For example,
produces the stringshow(Leaf 1 :^: Leaf 2 :^: Leaf 3)"Leaf 1 :^: (Leaf 2 :^: Leaf 3)".
Methods
Arguments
| :: Int | the operator precedence of the enclosing
context (a number from |
| -> a | the value to be converted to a |
| -> ShowS |
Convert a value to a readable String.
showsPrec should satisfy the law
showsPrec d x r ++ s == showsPrec d x (r ++ s)
Derived instances of Read and Show satisfy the following:
That is, readsPrec parses the string produced by
showsPrec, and delivers the value that showsPrec started with.
Instances
utility function converting a Char to a show function that
simply prepends the character unchanged.
showString :: String -> ShowS #
utility function converting a String to a show function that
simply prepends the string unchanged.
Converting from String
Parsing of Strings, producing values.
Derived instances of Read make the following assumptions, which
derived instances of Show obey:
- If the constructor is defined to be an infix operator, then the
derived
Readinstance will parse only infix applications of the constructor (not the prefix form). - Associativity is not used to reduce the occurrence of parentheses, although precedence may be.
- If the constructor is defined using record syntax, the derived
Readwill parse only the record-syntax form, and furthermore, the fields must be given in the same order as the original declaration. - The derived
Readinstance allows arbitrary Haskell whitespace between tokens of the input string. Extra parentheses are also allowed.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Read in Haskell 2010 is equivalent to
instance (Read a) => Read (Tree a) where
readsPrec d r = readParen (d > app_prec)
(\r -> [(Leaf m,t) |
("Leaf",s) <- lex r,
(m,t) <- readsPrec (app_prec+1) s]) r
++ readParen (d > up_prec)
(\r -> [(u:^:v,w) |
(u,s) <- readsPrec (up_prec+1) r,
(":^:",t) <- lex s,
(v,w) <- readsPrec (up_prec+1) t]) r
where app_prec = 10
up_prec = 5Note that right-associativity of :^: is unused.
The derived instance in GHC is equivalent to
instance (Read a) => Read (Tree a) where
readPrec = parens $ (prec app_prec $ do
Ident "Leaf" <- lexP
m <- step readPrec
return (Leaf m))
+++ (prec up_prec $ do
u <- step readPrec
Symbol ":^:" <- lexP
v <- step readPrec
return (u :^: v))
where app_prec = 10
up_prec = 5
readListPrec = readListPrecDefaultWhy do both readsPrec and readPrec exist, and why does GHC opt to
implement readPrec in derived Read instances instead of readsPrec?
The reason is that readsPrec is based on the ReadS type, and although
ReadS is mentioned in the Haskell 2010 Report, it is not a very efficient
parser data structure.
readPrec, on the other hand, is based on a much more efficient ReadPrec
datatype (a.k.a "new-style parsers"), but its definition relies on the use
of the RankNTypes language extension. Therefore, readPrec (and its
cousin, readListPrec) are marked as GHC-only. Nevertheless, it is
recommended to use readPrec instead of readsPrec whenever possible
for the efficiency improvements it brings.
As mentioned above, derived Read instances in GHC will implement
readPrec instead of readsPrec. The default implementations of
readsPrec (and its cousin, readList) will simply use readPrec under
the hood. If you are writing a Read instance by hand, it is recommended
to write it like so:
instanceReadT wherereadPrec= ...readListPrec=readListPrecDefault
Methods
Arguments
| :: Int | the operator precedence of the enclosing
context (a number from |
| -> ReadS a |
attempts to parse a value from the front of the string, returning a list of (parsed value, remaining string) pairs. If there is no successful parse, the returned list is empty.
Derived instances of Read and Show satisfy the following:
That is, readsPrec parses the string produced by
showsPrec, and delivers the value that
showsPrec started with.
Instances
| Read Bool | Since: base-2.1 |
| Read Char | Since: base-2.1 |
| Read Double | Since: base-2.1 |
| Read Float | Since: base-2.1 |
| Read Int | Since: base-2.1 |
| Read Int8 | Since: base-2.1 |
| Read Int16 | Since: base-2.1 |
| Read Int32 | Since: base-2.1 |
| Read Int64 | Since: base-2.1 |
| Read Integer | Since: base-2.1 |
| Read Natural | Since: base-4.8.0.0 |
| Read Ordering | Since: base-2.1 |
| Read Word | Since: base-4.5.0.0 |
| Read Word8 | Since: base-2.1 |
| Read Word16 | Since: base-2.1 |
| Read Word32 | Since: base-2.1 |
| Read Word64 | Since: base-2.1 |
| Read () | Since: base-2.1 |
| Read ExitCode | |
| Read BufferMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types Methods readsPrec :: Int -> ReadS BufferMode # readList :: ReadS [BufferMode] # readPrec :: ReadPrec BufferMode # readListPrec :: ReadPrec [BufferMode] # | |
| Read Newline | Since: base-4.3.0.0 |
| Read NewlineMode | Since: base-4.3.0.0 |
Defined in GHC.IO.Handle.Types Methods readsPrec :: Int -> ReadS NewlineMode # readList :: ReadS [NewlineMode] # readPrec :: ReadPrec NewlineMode # readListPrec :: ReadPrec [NewlineMode] # | |
| Read SeekMode | Since: base-4.2.0.0 |
| Read Fixity | Since: base-4.6.0.0 |
| Read Associativity | Since: base-4.6.0.0 |
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS Associativity # readList :: ReadS [Associativity] # | |
| Read SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS SourceUnpackedness # readList :: ReadS [SourceUnpackedness] # | |
| Read SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS SourceStrictness # readList :: ReadS [SourceStrictness] # | |
| Read DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS DecidedStrictness # readList :: ReadS [DecidedStrictness] # | |
| Read CChar | |
| Read CSChar | |
| Read CUChar | |
| Read CShort | |
| Read CUShort | |
| Read CInt | |
| Read CUInt | |
| Read CLong | |
| Read CULong | |
| Read CLLong | |
| Read CULLong | |
| Read CBool | |
| Read CFloat | |
| Read CDouble | |
| Read CPtrdiff | |
| Read CSize | |
| Read CWchar | |
| Read CSigAtomic | |
Defined in Foreign.C.Types Methods readsPrec :: Int -> ReadS CSigAtomic # readList :: ReadS [CSigAtomic] # readPrec :: ReadPrec CSigAtomic # readListPrec :: ReadPrec [CSigAtomic] # | |
| Read CClock | |
| Read CTime | |
| Read CUSeconds | |
| Read CSUSeconds | |
Defined in Foreign.C.Types Methods readsPrec :: Int -> ReadS CSUSeconds # readList :: ReadS [CSUSeconds] # readPrec :: ReadPrec CSUSeconds # readListPrec :: ReadPrec [CSUSeconds] # | |
| Read CIntPtr | |
| Read CUIntPtr | |
| Read CIntMax | |
| Read CUIntMax | |
| Read WordPtr | |
| Read IntPtr | |
| Read IOMode | Since: base-4.2.0.0 |
| Read Lexeme | Since: base-2.1 |
| Read GeneralCategory | Since: base-2.1 |
Defined in GHC.Read Methods readsPrec :: Int -> ReadS GeneralCategory # readList :: ReadS [GeneralCategory] # | |
| Read a => Read [a] | Since: base-2.1 |
| Read a => Read (Maybe a) | Since: base-2.1 |
| (Integral a, Read a) => Read (Ratio a) | Since: base-2.1 |
| Read p => Read (Par1 p) | Since: base-4.7.0.0 |
| Read a => Read (Complex a) | Since: base-2.1 |
| Read a => Read (ZipList a) | Since: base-4.7.0.0 |
| Read a => Read (NonEmpty a) | Since: base-4.11.0.0 |
| (Read a, Read b) => Read (Either a b) | Since: base-3.0 |
| Read (V1 p) | Since: base-4.9.0.0 |
| Read (U1 p) | Since: base-4.9.0.0 |
| (Read a, Read b) => Read (a, b) | Since: base-2.1 |
| (Ix a, Read a, Read b) => Read (Array a b) | Since: base-2.1 |
| Read (f p) => Read (Rec1 f p) | Since: base-4.7.0.0 |
| (Read a, Read b, Read c) => Read (a, b, c) | Since: base-2.1 |
| Read a => Read (Const a b) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
| Read c => Read (K1 i c p) | Since: base-4.7.0.0 |
| (Read (f p), Read (g p)) => Read ((f :+: g) p) | Since: base-4.7.0.0 |
| (Read (f p), Read (g p)) => Read ((f :*: g) p) | Since: base-4.7.0.0 |
| (Read a, Read b, Read c, Read d) => Read (a, b, c, d) | Since: base-2.1 |
| Read (f p) => Read (M1 i c f p) | Since: base-4.7.0.0 |
| Read (f (g p)) => Read ((f :.: g) p) | Since: base-4.7.0.0 |
| (Read a, Read b, Read c, Read d, Read e) => Read (a, b, c, d, e) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f) => Read (a, b, c, d, e, f) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g) => Read (a, b, c, d, e, f, g) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h) => Read (a, b, c, d, e, f, g, h) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i) => Read (a, b, c, d, e, f, g, h, i) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j) => Read (a, b, c, d, e, f, g, h, i, j) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k) => Read (a, b, c, d, e, f, g, h, i, j, k) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l) => Read (a, b, c, d, e, f, g, h, i, j, k, l) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n, Read o) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | Since: base-2.1 |
Defined in GHC.Read | |
read :: Read a => String -> a #
The read function reads input from a string, which must be
completely consumed by the input process. read fails with an error if the
parse is unsuccessful, and it is therefore discouraged from being used in
real applications. Use readMaybe or readEither for safe alternatives.
>>>read "123" :: Int123
>>>read "hello" :: Int*** Exception: Prelude.read: no parse
The lex function reads a single lexeme from the input, discarding
initial white space, and returning the characters that constitute the
lexeme. If the input string contains only white space, lex returns a
single successful `lexeme' consisting of the empty string. (Thus
.) If there is no legal lexeme at the
beginning of the input string, lex "" = [("","")]lex fails (i.e. returns []).
This lexer is not completely faithful to the Haskell lexical syntax in the following respects:
- Qualified names are not handled properly
- Octal and hexadecimal numerics are not recognized as a single token
- Comments are not treated properly
Basic Input and output
A value of type is a computation which, when performed,
does some I/O before returning a value of type IO aa.
There is really only one way to "perform" an I/O action: bind it to
Main.main in your program. When your program is run, the I/O will
be performed. It isn't possible to perform I/O from an arbitrary
function, unless that function is itself in the IO monad and called
at some point, directly or indirectly, from Main.main.
IO is a monad, so IO actions can be combined using either the do-notation
or the >> and >>= operations from the Monad class.
Instances
| Monad IO | Since: base-2.1 |
| Functor IO | Since: base-2.1 |
| MonadFail IO | Since: base-4.9.0.0 |
Defined in Control.Monad.Fail | |
| Applicative IO | Since: base-2.1 |
| Alternative IO | Since: base-4.9.0.0 |
| MonadPlus IO | Since: base-4.9.0.0 |
| Semigroup a => Semigroup (IO a) | Since: base-4.10.0.0 |
| Monoid a => Monoid (IO a) | Since: base-4.9.0.0 |
Simple I/O operations
Output functions
print :: Show a => a -> IO () #
The print function outputs a value of any printable type to the
standard output device.
Printable types are those that are instances of class Show; print
converts values to strings for output using the show operation and
adds a newline.
For example, a program to print the first 20 integers and their powers of 2 could be written as:
main = print ([(n, 2^n) | n <- [0..19]])
Input functions
getContents :: IO String #
The getContents operation returns all user input as a single string,
which is read lazily as it is needed
(same as hGetContents stdin).
interact :: (String -> String) -> IO () #
The interact function takes a function of type String->String
as its argument. The entire input from the standard input device is
passed to this function as its argument, and the resulting string is
output on the standard output device.
Files
File and directory names are values of type String, whose precise
meaning is operating system dependent. Files can be opened, yielding a
handle which can then be used to operate on the contents of that file.
readFile :: FilePath -> IO String #
The readFile function reads a file and
returns the contents of the file as a string.
The file is read lazily, on demand, as with getContents.
writeFile :: FilePath -> String -> IO () #
The computation writeFile file str function writes the string str,
to the file file.
appendFile :: FilePath -> String -> IO () #
The computation appendFile file str function appends the string str,
to the file file.
Note that writeFile and appendFile write a literal string
to a file. To write a value of any printable type, as with print,
use the show function to convert the value to a string first.
main = appendFile "squares" (show [(x,x*x) | x <- [0,0.1..2]])
Exception handling in the I/O monad
type IOError = IOException #
The Haskell 2010 type for exceptions in the IO monad.
Any I/O operation may raise an IOException instead of returning a result.
For a more general type of exception, including also those that arise
in pure code, see Exception.
In Haskell 2010, this is an opaque type.
userError :: String -> IOError #
Construct an IOException value with a string describing the error.
The fail method of the IO instance of the Monad class raises a
userError, thus:
instance Monad IO where ... fail s = ioError (userError s)
catch :: IO a -> (IOError -> IO a) -> IO a Source #
The catch function establishes a handler that receives any
IOError raised in the action protected by catch.
An IOError is caught by
the most recent handler established by one of the exception handling
functions. These handlers are
not selective: all IOErrors are caught. Exception propagation
must be explicitly provided in a handler by re-raising any unwanted
exceptions. For example, in
f = catch g (\e -> if IO.isEOFError e then return [] else ioError e)
the function f returns [] when an end-of-file exception
(cf. isEOFError) occurs in g; otherwise, the
exception is propagated to the next outer handler.
When an exception propagates outside the main program, the Haskell
system prints the associated IOError value and exits the program.
Non-I/O exceptions are not caught by this variant; to catch all
exceptions, use catch from Control.Exception.