{-# OPTIONS_GHC -w #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE TypeSynonymInstances #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE PatternGuards #-}
{-# LANGUAGE NoStrictData #-}
{-# LANGUAGE UnboxedTuples #-}
{-# LANGUAGE PartialTypeSignatures #-}
{-# OPTIONS_GHC -w #-}
module Happy.Frontend.Parser (ourParser) where
import Happy.Frontend.ParseMonad.Class
import Happy.Frontend.ParseMonad
import Happy.Frontend.AbsSyn
import Happy.Frontend.Lexer
import qualified Control.Monad as Happy_Prelude
import qualified Data.Bool as Happy_Prelude
import qualified Data.Function as Happy_Prelude
import qualified Data.Int as Happy_Prelude
import qualified Data.List as Happy_Prelude
import qualified Data.Maybe as Happy_Prelude
import qualified Data.String as Happy_Prelude
import qualified Data.Tuple as Happy_Prelude
import qualified GHC.Err as Happy_Prelude
import qualified GHC.Num as Happy_Prelude
import qualified Text.Show as Happy_Prelude
import qualified Data.Array as Happy_Data_Array
import qualified Data.Bits as Bits
import qualified GHC.Exts as Happy_GHC_Exts
import Control.Applicative(Applicative(..))
import Control.Monad (ap)

-- parser produced by Happy Version 2.1.6

newtype HappyAbsSyn  = HappyAbsSyn HappyAny
#if __GLASGOW_HASKELL__ >= 607
type HappyAny = Happy_GHC_Exts.Any
#else
type HappyAny = forall a . a
#endif
newtype HappyWrap5 = HappyWrap5 (BookendedAbsSyn)
happyIn5 :: (BookendedAbsSyn) -> (HappyAbsSyn )
happyIn5 :: BookendedAbsSyn -> HappyAbsSyn
happyIn5 BookendedAbsSyn
x = HappyWrap5 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (BookendedAbsSyn -> HappyWrap5
HappyWrap5 BookendedAbsSyn
x)
{-# INLINE happyIn5 #-}
happyOut5 :: (HappyAbsSyn ) -> HappyWrap5
happyOut5 :: HappyAbsSyn -> HappyWrap5
happyOut5 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap5
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut5 #-}
newtype HappyWrap6 = HappyWrap6 (AbsSyn String)
happyIn6 :: (AbsSyn String) -> (HappyAbsSyn )
happyIn6 :: AbsSyn String -> HappyAbsSyn
happyIn6 AbsSyn String
x = HappyWrap6 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (AbsSyn String -> HappyWrap6
HappyWrap6 AbsSyn String
x)
{-# INLINE happyIn6 #-}
happyOut6 :: (HappyAbsSyn ) -> HappyWrap6
happyOut6 :: HappyAbsSyn -> HappyWrap6
happyOut6 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap6
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut6 #-}
newtype HappyWrap7 = HappyWrap7 ([Rule String])
happyIn7 :: ([Rule String]) -> (HappyAbsSyn )
happyIn7 :: [Rule String] -> HappyAbsSyn
happyIn7 [Rule String]
x = HappyWrap7 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([Rule String] -> HappyWrap7
HappyWrap7 [Rule String]
x)
{-# INLINE happyIn7 #-}
happyOut7 :: (HappyAbsSyn ) -> HappyWrap7
happyOut7 :: HappyAbsSyn -> HappyWrap7
happyOut7 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap7
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut7 #-}
newtype HappyWrap8 = HappyWrap8 (Rule String)
happyIn8 :: (Rule String) -> (HappyAbsSyn )
happyIn8 :: Rule String -> HappyAbsSyn
happyIn8 Rule String
x = HappyWrap8 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Rule String -> HappyWrap8
HappyWrap8 Rule String
x)
{-# INLINE happyIn8 #-}
happyOut8 :: (HappyAbsSyn ) -> HappyWrap8
happyOut8 :: HappyAbsSyn -> HappyWrap8
happyOut8 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap8
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut8 #-}
newtype HappyWrap9 = HappyWrap9 ([String])
happyIn9 :: ([String]) -> (HappyAbsSyn )
happyIn9 :: [String] -> HappyAbsSyn
happyIn9 [String]
x = HappyWrap9 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([String] -> HappyWrap9
HappyWrap9 [String]
x)
{-# INLINE happyIn9 #-}
happyOut9 :: (HappyAbsSyn ) -> HappyWrap9
happyOut9 :: HappyAbsSyn -> HappyWrap9
happyOut9 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap9
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut9 #-}
newtype HappyWrap10 = HappyWrap10 ([String])
happyIn10 :: ([String]) -> (HappyAbsSyn )
happyIn10 :: [String] -> HappyAbsSyn
happyIn10 [String]
x = HappyWrap10 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([String] -> HappyWrap10
HappyWrap10 [String]
x)
{-# INLINE happyIn10 #-}
happyOut10 :: (HappyAbsSyn ) -> HappyWrap10
happyOut10 :: HappyAbsSyn -> HappyWrap10
happyOut10 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap10
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut10 #-}
newtype HappyWrap11 = HappyWrap11 ([Prod String])
happyIn11 :: ([Prod String]) -> (HappyAbsSyn )
happyIn11 :: [Prod String] -> HappyAbsSyn
happyIn11 [Prod String]
x = HappyWrap11 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([Prod String] -> HappyWrap11
HappyWrap11 [Prod String]
x)
{-# INLINE happyIn11 #-}
happyOut11 :: (HappyAbsSyn ) -> HappyWrap11
happyOut11 :: HappyAbsSyn -> HappyWrap11
happyOut11 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap11
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut11 #-}
newtype HappyWrap12 = HappyWrap12 (Prod String)
happyIn12 :: (Prod String) -> (HappyAbsSyn )
happyIn12 :: Prod String -> HappyAbsSyn
happyIn12 Prod String
x = HappyWrap12 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Prod String -> HappyWrap12
HappyWrap12 Prod String
x)
{-# INLINE happyIn12 #-}
happyOut12 :: (HappyAbsSyn ) -> HappyWrap12
happyOut12 :: HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap12
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut12 #-}
newtype HappyWrap13 = HappyWrap13 (Term)
happyIn13 :: (Term) -> (HappyAbsSyn )
happyIn13 :: Term -> HappyAbsSyn
happyIn13 Term
x = HappyWrap13 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Term -> HappyWrap13
HappyWrap13 Term
x)
{-# INLINE happyIn13 #-}
happyOut13 :: (HappyAbsSyn ) -> HappyWrap13
happyOut13 :: HappyAbsSyn -> HappyWrap13
happyOut13 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap13
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut13 #-}
newtype HappyWrap14 = HappyWrap14 ([Term])
happyIn14 :: ([Term]) -> (HappyAbsSyn )
happyIn14 :: [Term] -> HappyAbsSyn
happyIn14 [Term]
x = HappyWrap14 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([Term] -> HappyWrap14
HappyWrap14 [Term]
x)
{-# INLINE happyIn14 #-}
happyOut14 :: (HappyAbsSyn ) -> HappyWrap14
happyOut14 :: HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap14
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut14 #-}
newtype HappyWrap15 = HappyWrap15 ([Term])
happyIn15 :: ([Term]) -> (HappyAbsSyn )
happyIn15 :: [Term] -> HappyAbsSyn
happyIn15 [Term]
x = HappyWrap15 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([Term] -> HappyWrap15
HappyWrap15 [Term]
x)
{-# INLINE happyIn15 #-}
happyOut15 :: (HappyAbsSyn ) -> HappyWrap15
happyOut15 :: HappyAbsSyn -> HappyWrap15
happyOut15 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap15
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut15 #-}
newtype HappyWrap16 = HappyWrap16 ([Term])
happyIn16 :: ([Term]) -> (HappyAbsSyn )
happyIn16 :: [Term] -> HappyAbsSyn
happyIn16 [Term]
x = HappyWrap16 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([Term] -> HappyWrap16
HappyWrap16 [Term]
x)
{-# INLINE happyIn16 #-}
happyOut16 :: (HappyAbsSyn ) -> HappyWrap16
happyOut16 :: HappyAbsSyn -> HappyWrap16
happyOut16 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap16
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut16 #-}
newtype HappyWrap17 = HappyWrap17 (Prec)
happyIn17 :: (Prec) -> (HappyAbsSyn )
happyIn17 :: Prec -> HappyAbsSyn
happyIn17 Prec
x = HappyWrap17 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Prec -> HappyWrap17
HappyWrap17 Prec
x)
{-# INLINE happyIn17 #-}
happyOut17 :: (HappyAbsSyn ) -> HappyWrap17
happyOut17 :: HappyAbsSyn -> HappyWrap17
happyOut17 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap17
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut17 #-}
newtype HappyWrap18 = HappyWrap18 ([Directive String])
happyIn18 :: ([Directive String]) -> (HappyAbsSyn )
happyIn18 :: [Directive String] -> HappyAbsSyn
happyIn18 [Directive String]
x = HappyWrap18 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([Directive String] -> HappyWrap18
HappyWrap18 [Directive String]
x)
{-# INLINE happyIn18 #-}
happyOut18 :: (HappyAbsSyn ) -> HappyWrap18
happyOut18 :: HappyAbsSyn -> HappyWrap18
happyOut18 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap18
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut18 #-}
newtype HappyWrap19 = HappyWrap19 (Directive String)
happyIn19 :: (Directive String) -> (HappyAbsSyn )
happyIn19 :: Directive String -> HappyAbsSyn
happyIn19 Directive String
x = HappyWrap19 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Directive String -> HappyWrap19
HappyWrap19 Directive String
x)
{-# INLINE happyIn19 #-}
happyOut19 :: (HappyAbsSyn ) -> HappyWrap19
happyOut19 :: HappyAbsSyn -> HappyWrap19
happyOut19 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap19
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut19 #-}
newtype HappyWrap20 = HappyWrap20 (Maybe String)
happyIn20 :: (Maybe String) -> (HappyAbsSyn )
happyIn20 :: Maybe String -> HappyAbsSyn
happyIn20 Maybe String
x = HappyWrap20 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Maybe String -> HappyWrap20
HappyWrap20 Maybe String
x)
{-# INLINE happyIn20 #-}
happyOut20 :: (HappyAbsSyn ) -> HappyWrap20
happyOut20 :: HappyAbsSyn -> HappyWrap20
happyOut20 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap20
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut20 #-}
newtype HappyWrap21 = HappyWrap21 ([(String, TokenSpec)])
happyIn21 :: ([(String, TokenSpec)]) -> (HappyAbsSyn )
happyIn21 :: [(String, TokenSpec)] -> HappyAbsSyn
happyIn21 [(String, TokenSpec)]
x = HappyWrap21 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([(String, TokenSpec)] -> HappyWrap21
HappyWrap21 [(String, TokenSpec)]
x)
{-# INLINE happyIn21 #-}
happyOut21 :: (HappyAbsSyn ) -> HappyWrap21
happyOut21 :: HappyAbsSyn -> HappyWrap21
happyOut21 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap21
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut21 #-}
newtype HappyWrap22 = HappyWrap22 ((String, TokenSpec))
happyIn22 :: ((String, TokenSpec)) -> (HappyAbsSyn )
happyIn22 :: (String, TokenSpec) -> HappyAbsSyn
happyIn22 (String, TokenSpec)
x = HappyWrap22 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ((String, TokenSpec) -> HappyWrap22
HappyWrap22 (String, TokenSpec)
x)
{-# INLINE happyIn22 #-}
happyOut22 :: (HappyAbsSyn ) -> HappyWrap22
happyOut22 :: HappyAbsSyn -> HappyWrap22
happyOut22 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap22
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut22 #-}
newtype HappyWrap23 = HappyWrap23 ([String])
happyIn23 :: ([String]) -> (HappyAbsSyn )
happyIn23 :: [String] -> HappyAbsSyn
happyIn23 [String]
x = HappyWrap23 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([String] -> HappyWrap23
HappyWrap23 [String]
x)
{-# INLINE happyIn23 #-}
happyOut23 :: (HappyAbsSyn ) -> HappyWrap23
happyOut23 :: HappyAbsSyn -> HappyWrap23
happyOut23 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap23
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut23 #-}
newtype HappyWrap24 = HappyWrap24 (Maybe String)
happyIn24 :: (Maybe String) -> (HappyAbsSyn )
happyIn24 :: Maybe String -> HappyAbsSyn
happyIn24 Maybe String
x = HappyWrap24 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Maybe String -> HappyWrap24
HappyWrap24 Maybe String
x)
{-# INLINE happyIn24 #-}
happyOut24 :: (HappyAbsSyn ) -> HappyWrap24
happyOut24 :: HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap24
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut24 #-}
happyInTok :: (Token) -> (HappyAbsSyn )
happyInTok :: Token -> HappyAbsSyn
happyInTok Token
x = Token -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# Token
x
{-# INLINE happyInTok #-}
happyOutTok :: (HappyAbsSyn ) -> (Token)
happyOutTok :: HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
x = HappyAbsSyn -> Token
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOutTok #-}


{-# NOINLINE happyTokenStrings #-}
happyTokenStrings :: [String]
happyTokenStrings = [String
"id",String
"spec_tokentype",String
"spec_token",String
"spec_name",String
"spec_partial",String
"spec_lexer",String
"spec_imported_identity",String
"spec_monad",String
"spec_nonassoc",String
"spec_left",String
"spec_right",String
"spec_prec",String
"spec_shift",String
"spec_expect",String
"spec_error",String
"spec_errorexpected",String
"spec_errorhandlertype",String
"spec_attribute",String
"spec_attributetype",String
"code",String
"int",String
"\":\"",String
"\";\"",String
"\"::\"",String
"\"%%\"",String
"\"|\"",String
"\"(\"",String
"\")\"",String
"\",\"",String
"%eof"]

happyActOffsets :: HappyAddr
happyActOffsets :: HappyAddr
happyActOffsets = Addr# -> HappyAddr
HappyA# Addr#
"\x2f\x00\x00\x00\x2f\x00\x00\x00\x1e\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\x3b\x00\x00\x00\xfe\xff\xff\xff\x00\x00\x00\x00\x3d\x00\x00\x00\x4f\x00\x00\x00\x51\x00\x00\x00\x52\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x41\x00\x00\x00\x55\x00\x00\x00\x55\x00\x00\x00\x55\x00\x00\x00\x16\x00\x00\x00\x43\x00\x00\x00\x00\x00\x00\x00\x57\x00\x00\x00\x58\x00\x00\x00\x47\x00\x00\x00\x00\x00\x00\x00\x48\x00\x00\x00\x00\x00\x00\x00\x49\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x59\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x4a\x00\x00\x00\x4b\x00\x00\x00\x5f\x00\x00\x00\x5f\x00\x00\x00\x00\x00\x00\x00\x60\x00\x00\x00\x4e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x62\x00\x00\x00\x00\x00\x00\x00\x62\x00\x00\x00\x00\x00\x00\x00\x4c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x50\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x54\x00\x00\x00\x2c\x00\x00\x00\x64\x00\x00\x00\x00\x00\x00\x00\x17\x00\x00\x00\x00\x00\x00\x00\x65\x00\x00\x00\x56\x00\x00\x00\x00\x00\x00\x00\x09\x00\x00\x00\x00\x00\x00\x00\x53\x00\x00\x00\x00\x00\x00\x00\x39\x00\x00\x00\x68\x00\x00\x00\x5a\x00\x00\x00\x00\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x5b\x00\x00\x00\x6d\x00\x00\x00\x00\x00\x00\x00\x6f\x00\x00\x00\x5c\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x5d\x00\x00\x00\x00\x00\x00\x00\x2d\x00\x00\x00\x00\x00\x00\x00\x72\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#

happyGotoOffsets :: HappyAddr
happyGotoOffsets :: HappyAddr
happyGotoOffsets = Addr# -> HappyAddr
HappyA# Addr#
"\x0c\x00\x00\x00\x66\x00\x00\x00\x2a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x67\x00\x00\x00\x69\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x3c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6e\x00\x00\x00\x71\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x73\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x75\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x76\x00\x00\x00\x79\x00\x00\x00\x00\x00\x00\x00\x3e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x46\x00\x00\x00\x00\x00\x00\x00\x78\x00\x00\x00\x00\x00\x00\x00\x74\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x77\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x7d\x00\x00\x00\x7a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x2b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x13\x00\x00\x00\x00\x00\x00\x00\x33\x00\x00\x00\x00\x00\x00\x00\x38\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x7c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#

happyDefActions :: HappyAddr
happyDefActions :: HappyAddr
happyDefActions = Addr# -> HappyAddr
HappyA# Addr#
"\xc7\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\xc8\xff\xff\xff\x00\x00\x00\x00\xc7\xff\xff\xff\x00\x00\x00\x00\xe3\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xde\xff\xff\xff\x00\x00\x00\x00\xc9\xff\xff\xff\xc9\xff\xff\xff\xc9\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\xd3\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd1\xff\xff\xff\x00\x00\x00\x00\xd2\xff\xff\xff\xc7\xff\xff\xff\xd5\xff\xff\xff\xd7\xff\xff\xff\xc9\xff\xff\xff\xd6\xff\xff\xff\xd8\xff\xff\xff\xdc\xff\xff\xff\x00\x00\x00\x00\xce\xff\xff\xff\xce\xff\xff\xff\xe1\xff\xff\xff\xcc\xff\xff\xff\x00\x00\x00\x00\xe2\xff\xff\xff\xe4\xff\xff\xff\x00\x00\x00\x00\xfe\xff\xff\xff\xfd\xff\xff\xff\xfb\xff\xff\xff\xf6\xff\xff\xff\xcb\xff\xff\xff\xcd\xff\xff\xff\xe0\xff\xff\xff\xcf\xff\xff\xff\xdf\xff\xff\xff\xdd\xff\xff\xff\xdb\xff\xff\xff\xca\xff\xff\xff\xd4\xff\xff\xff\xd0\xff\xff\xff\xda\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\xfc\xff\xff\xff\x00\x00\x00\x00\xf5\xff\xff\xff\xec\xff\xff\xff\x00\x00\x00\x00\xd9\xff\xff\xff\x00\x00\x00\x00\xf8\xff\xff\xff\xf2\xff\xff\xff\xeb\xff\xff\xff\xe5\xff\xff\xff\xed\xff\xff\xff\xef\xff\xff\xff\xf7\xff\xff\xff\x00\x00\x00\x00\xf4\xff\xff\xff\x00\x00\x00\x00\xea\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\xe6\xff\xff\xff\xec\xff\xff\xff\x00\x00\x00\x00\xec\xff\xff\xff\xfa\xff\xff\xff\xec\xff\xff\xff\xf3\xff\xff\xff\xe7\xff\xff\xff\xf0\xff\xff\xff\xe9\xff\xff\xff\x00\x00\x00\x00\xee\xff\xff\xff\x00\x00\x00\x00\xf1\xff\xff\xff\xf9\xff\xff\xff\xe8\xff\xff\xff"#

happyCheck :: HappyAddr
happyCheck :: HappyAddr
happyCheck = Addr# -> HappyAddr
HappyA# Addr#
"\xff\xff\xff\xff\x03\x00\x00\x00\x04\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\x08\x00\x00\x00\x09\x00\x00\x00\x0a\x00\x00\x00\x0b\x00\x00\x00\x0c\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x0f\x00\x00\x00\x10\x00\x00\x00\x11\x00\x00\x00\x12\x00\x00\x00\x13\x00\x00\x00\x14\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\x08\x00\x00\x00\x09\x00\x00\x00\x0a\x00\x00\x00\x1a\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\x08\x00\x00\x00\x09\x00\x00\x00\x0a\x00\x00\x00\x1f\x00\x00\x00\x13\x00\x00\x00\x17\x00\x00\x00\x03\x00\x00\x00\x04\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\x08\x00\x00\x00\x09\x00\x00\x00\x0a\x00\x00\x00\x0b\x00\x00\x00\x0c\x00\x00\x00\x01\x00\x00\x00\x16\x00\x00\x00\x0f\x00\x00\x00\x10\x00\x00\x00\x11\x00\x00\x00\x12\x00\x00\x00\x13\x00\x00\x00\x14\x00\x00\x00\x08\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\x0b\x00\x00\x00\x0d\x00\x00\x00\x0e\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\x08\x00\x00\x00\x09\x00\x00\x00\x0a\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\x08\x00\x00\x00\x09\x00\x00\x00\x0a\x00\x00\x00\x17\x00\x00\x00\x15\x00\x00\x00\x19\x00\x00\x00\x0d\x00\x00\x00\x0e\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\x10\x00\x00\x00\x11\x00\x00\x00\x10\x00\x00\x00\x11\x00\x00\x00\x15\x00\x00\x00\x02\x00\x00\x00\x15\x00\x00\x00\x02\x00\x00\x00\x02\x00\x00\x00\x15\x00\x00\x00\x15\x00\x00\x00\x02\x00\x00\x00\x15\x00\x00\x00\x02\x00\x00\x00\x02\x00\x00\x00\x02\x00\x00\x00\x15\x00\x00\x00\x15\x00\x00\x00\x15\x00\x00\x00\x15\x00\x00\x00\x15\x00\x00\x00\x02\x00\x00\x00\x02\x00\x00\x00\x15\x00\x00\x00\x02\x00\x00\x00\x15\x00\x00\x00\x02\x00\x00\x00\x02\x00\x00\x00\x1c\x00\x00\x00\x15\x00\x00\x00\x02\x00\x00\x00\x15\x00\x00\x00\x02\x00\x00\x00\x02\x00\x00\x00\x1b\x00\x00\x00\x02\x00\x00\x00\x15\x00\x00\x00\x02\x00\x00\x00\x02\x00\x00\x00\x17\x00\x00\x00\x02\x00\x00\x00\x18\x00\x00\x00\x1c\x00\x00\x00\x0e\x00\x00\x00\x04\x00\x00\x00\x13\x00\x00\x00\x13\x00\x00\x00\x03\x00\x00\x00\x05\x00\x00\x00\xff\xff\xff\xff\x12\x00\x00\x00\xff\xff\xff\xff\x12\x00\x00\x00\xff\xff\xff\xff\x08\x00\x00\x00\x12\x00\x00\x00\x08\x00\x00\x00\x0f\x00\x00\x00\x13\x00\x00\x00\x12\x00\x00\x00\x0f\x00\x00\x00\x0c\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"#

happyTable :: HappyAddr
happyTable :: HappyAddr
happyTable = Addr# -> HappyAddr
HappyA# Addr#
"\x00\x00\x00\x00\x09\x00\x00\x00\x0a\x00\x00\x00\x0b\x00\x00\x00\x0c\x00\x00\x00\x0d\x00\x00\x00\x0e\x00\x00\x00\x0f\x00\x00\x00\x10\x00\x00\x00\x11\x00\x00\x00\x12\x00\x00\x00\x53\x00\x00\x00\x04\x00\x00\x00\x13\x00\x00\x00\x14\x00\x00\x00\x15\x00\x00\x00\x16\x00\x00\x00\x17\x00\x00\x00\x18\x00\x00\x00\x43\x00\x00\x00\x44\x00\x00\x00\x45\x00\x00\x00\x46\x00\x00\x00\x47\x00\x00\x00\x2b\x00\x00\x00\x56\x00\x00\x00\x44\x00\x00\x00\x45\x00\x00\x00\x46\x00\x00\x00\x47\x00\x00\x00\xff\xff\xff\xff\x02\x00\x00\x00\x54\x00\x00\x00\x09\x00\x00\x00\x0a\x00\x00\x00\x0b\x00\x00\x00\x0c\x00\x00\x00\x0d\x00\x00\x00\x0e\x00\x00\x00\x0f\x00\x00\x00\x10\x00\x00\x00\x11\x00\x00\x00\x12\x00\x00\x00\x05\x00\x00\x00\x1d\x00\x00\x00\x13\x00\x00\x00\x14\x00\x00\x00\x15\x00\x00\x00\x16\x00\x00\x00\x17\x00\x00\x00\x18\x00\x00\x00\x59\x00\x00\x00\x4a\x00\x00\x00\x4b\x00\x00\x00\x5a\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\x54\x00\x00\x00\x44\x00\x00\x00\x45\x00\x00\x00\x46\x00\x00\x00\x47\x00\x00\x00\x5e\x00\x00\x00\x44\x00\x00\x00\x45\x00\x00\x00\x46\x00\x00\x00\x47\x00\x00\x00\x40\x00\x00\x00\x04\x00\x00\x00\x41\x00\x00\x00\x50\x00\x00\x00\x51\x00\x00\x00\x2c\x00\x00\x00\x2d\x00\x00\x00\x5c\x00\x00\x00\x5d\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x30\x00\x00\x00\x26\x00\x00\x00\x04\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x25\x00\x00\x00\x24\x00\x00\x00\x23\x00\x00\x00\x22\x00\x00\x00\x1f\x00\x00\x00\x1c\x00\x00\x00\x1b\x00\x00\x00\x1a\x00\x00\x00\x1f\x00\x00\x00\x19\x00\x00\x00\x39\x00\x00\x00\x04\x00\x00\x00\x36\x00\x00\x00\x35\x00\x00\x00\x33\x00\x00\x00\x28\x00\x00\x00\x30\x00\x00\x00\x2f\x00\x00\x00\x3a\x00\x00\x00\x3f\x00\x00\x00\x49\x00\x00\x00\x3c\x00\x00\x00\x42\x00\x00\x00\x49\x00\x00\x00\x43\x00\x00\x00\x4c\x00\x00\x00\x49\x00\x00\x00\x52\x00\x00\x00\x58\x00\x00\x00\x59\x00\x00\x00\x49\x00\x00\x00\x49\x00\x00\x00\x56\x00\x00\x00\x49\x00\x00\x00\x5e\x00\x00\x00\x4d\x00\x00\x00\x29\x00\x00\x00\x3a\x00\x00\x00\x02\x00\x00\x00\x2b\x00\x00\x00\x3c\x00\x00\x00\x3d\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x1f\x00\x00\x00\x00\x00\x00\x00\x4d\x00\x00\x00\x1d\x00\x00\x00\x5f\x00\x00\x00\x33\x00\x00\x00\x37\x00\x00\x00\x36\x00\x00\x00\x31\x00\x00\x00\x4e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#

happyReduceArr :: Array
  Int
  (Int#
   -> Token
   -> Int#
   -> Happy_IntList
   -> HappyStk HappyAbsSyn
   -> P HappyAbsSyn)
happyReduceArr = (Int, Int)
-> [(Int,
     Int#
     -> Token
     -> Int#
     -> Happy_IntList
     -> HappyStk HappyAbsSyn
     -> P HappyAbsSyn)]
-> Array
     Int
     (Int#
      -> Token
      -> Int#
      -> Happy_IntList
      -> HappyStk HappyAbsSyn
      -> P HappyAbsSyn)
forall i e. Ix i => (i, i) -> [(i, e)] -> Array i e
Happy_Data_Array.array (Int
1, Int
56) [
        (Int
1 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_1),
        (Int
2 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_2),
        (Int
3 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_3),
        (Int
4 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_4),
        (Int
5 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_5),
        (Int
6 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_6),
        (Int
7 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_7),
        (Int
8 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_8),
        (Int
9 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_9),
        (Int
10 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_10),
        (Int
11 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_11),
        (Int
12 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_12),
        (Int
13 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_13),
        (Int
14 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_14),
        (Int
15 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_15),
        (Int
16 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_16),
        (Int
17 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_17),
        (Int
18 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_18),
        (Int
19 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_19),
        (Int
20 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_20),
        (Int
21 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_21),
        (Int
22 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_22),
        (Int
23 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_23),
        (Int
24 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_24),
        (Int
25 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_25),
        (Int
26 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_26),
        (Int
27 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_27),
        (Int
28 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_28),
        (Int
29 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_29),
        (Int
30 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_30),
        (Int
31 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_31),
        (Int
32 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_32),
        (Int
33 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_33),
        (Int
34 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_34),
        (Int
35 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_35),
        (Int
36 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_36),
        (Int
37 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_37),
        (Int
38 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_38),
        (Int
39 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_39),
        (Int
40 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_40),
        (Int
41 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_41),
        (Int
42 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_42),
        (Int
43 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_43),
        (Int
44 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_44),
        (Int
45 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_45),
        (Int
46 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_46),
        (Int
47 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_47),
        (Int
48 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_48),
        (Int
49 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_49),
        (Int
50 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_50),
        (Int
51 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_51),
        (Int
52 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_52),
        (Int
53 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_53),
        (Int
54 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_54),
        (Int
55 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_55),
        (Int
56 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_56)
        ]

happyRuleArr :: HappyAddr
happyRuleArr :: HappyAddr
happyRuleArr = Addr# -> HappyAddr
HappyA# Addr#
"\x00\x00\x00\x00\x03\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00\x02\x00\x00\x00\x02\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00\x06\x00\x00\x00\x03\x00\x00\x00\x07\x00\x00\x00\x03\x00\x00\x00\x04\x00\x00\x00\x04\x00\x00\x00\x03\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x05\x00\x00\x00\x01\x00\x00\x00\x05\x00\x00\x00\x03\x00\x00\x00\x06\x00\x00\x00\x03\x00\x00\x00\x06\x00\x00\x00\x01\x00\x00\x00\x07\x00\x00\x00\x04\x00\x00\x00\x07\x00\x00\x00\x03\x00\x00\x00\x08\x00\x00\x00\x01\x00\x00\x00\x08\x00\x00\x00\x04\x00\x00\x00\x09\x00\x00\x00\x01\x00\x00\x00\x09\x00\x00\x00\x00\x00\x00\x00\x0a\x00\x00\x00\x01\x00\x00\x00\x0a\x00\x00\x00\x02\x00\x00\x00\x0b\x00\x00\x00\x01\x00\x00\x00\x0b\x00\x00\x00\x03\x00\x00\x00\x0c\x00\x00\x00\x02\x00\x00\x00\x0c\x00\x00\x00\x01\x00\x00\x00\x0c\x00\x00\x00\x00\x00\x00\x00\x0d\x00\x00\x00\x02\x00\x00\x00\x0d\x00\x00\x00\x01\x00\x00\x00\x0e\x00\x00\x00\x02\x00\x00\x00\x0e\x00\x00\x00\x02\x00\x00\x00\x0e\x00\x00\x00\x03\x00\x00\x00\x0e\x00\x00\x00\x03\x00\x00\x00\x0e\x00\x00\x00\x01\x00\x00\x00\x0e\x00\x00\x00\x03\x00\x00\x00\x0e\x00\x00\x00\x02\x00\x00\x00\x0e\x00\x00\x00\x03\x00\x00\x00\x0e\x00\x00\x00\x04\x00\x00\x00\x0e\x00\x00\x00\x05\x00\x00\x00\x0e\x00\x00\x00\x02\x00\x00\x00\x0e\x00\x00\x00\x02\x00\x00\x00\x0e\x00\x00\x00\x02\x00\x00\x00\x0e\x00\x00\x00\x02\x00\x00\x00\x0e\x00\x00\x00\x03\x00\x00\x00\x0e\x00\x00\x00\x01\x00\x00\x00\x0e\x00\x00\x00\x02\x00\x00\x00\x0e\x00\x00\x00\x02\x00\x00\x00\x0e\x00\x00\x00\x03\x00\x00\x00\x0f\x00\x00\x00\x01\x00\x00\x00\x0f\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x02\x00\x00\x00\x10\x00\x00\x00\x01\x00\x00\x00\x11\x00\x00\x00\x02\x00\x00\x00\x12\x00\x00\x00\x02\x00\x00\x00\x12\x00\x00\x00\x00\x00\x00\x00\x13\x00\x00\x00\x01\x00\x00\x00\x13\x00\x00\x00\x00\x00\x00\x00"#

happyCatchStates :: [Happy_Prelude.Int]
happyCatchStates :: [Int]
happyCatchStates = []

happy_n_terms :: Int
happy_n_terms = Int
32 :: Happy_Prelude.Int
happy_n_nonterms :: Int
happy_n_nonterms = Int
20 :: Happy_Prelude.Int

happy_n_starts :: Int
happy_n_starts = Int
1 :: Happy_Prelude.Int

happyReduce_1 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_1 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_1 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  Int#
0# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_1
happyReduction_1 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_1 HappyAbsSyn
happy_x_3
        HappyAbsSyn
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_1 of { (HappyWrap24 Maybe String
happy_var_1) ->
        case HappyAbsSyn -> HappyWrap6
happyOut6 HappyAbsSyn
happy_x_2 of { (HappyWrap6 AbsSyn String
happy_var_2) ->
        case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_3 of { (HappyWrap24 Maybe String
happy_var_3) ->
        BookendedAbsSyn -> HappyAbsSyn
happyIn5
                 (Maybe String -> AbsSyn String -> Maybe String -> BookendedAbsSyn
BookendedAbsSyn Maybe String
happy_var_1 AbsSyn String
happy_var_2 Maybe String
happy_var_3
        )}}}

happyReduce_2 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_2 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_2 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  Int#
1# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_2
happyReduction_2 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_2 HappyAbsSyn
happy_x_3
        p
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap18
happyOut18 HappyAbsSyn
happy_x_1 of { (HappyWrap18 [Directive String]
happy_var_1) ->
        case HappyAbsSyn -> HappyWrap7
happyOut7 HappyAbsSyn
happy_x_3 of { (HappyWrap7 [Rule String]
happy_var_3) ->
        AbsSyn String -> HappyAbsSyn
happyIn6
                 ([Directive String] -> [Rule String] -> AbsSyn String
forall e. [Directive String] -> [Rule e] -> AbsSyn e
AbsSyn ([Directive String] -> [Directive String]
forall a. [a] -> [a]
reverse [Directive String]
happy_var_1) ([Rule String] -> [Rule String]
forall a. [a] -> [a]
reverse [Rule String]
happy_var_3)
        )}}

happyReduce_3 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_3 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_3 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  Int#
2# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_3
happyReduction_3 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_3 HappyAbsSyn
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap7
happyOut7 HappyAbsSyn
happy_x_1 of { (HappyWrap7 [Rule String]
happy_var_1) ->
        case HappyAbsSyn -> HappyWrap8
happyOut8 HappyAbsSyn
happy_x_2 of { (HappyWrap8 Rule String
happy_var_2) ->
        [Rule String] -> HappyAbsSyn
happyIn7
                 (Rule String
happy_var_2 Rule String -> [Rule String] -> [Rule String]
forall a. a -> [a] -> [a]
: [Rule String]
happy_var_1
        )}}

happyReduce_4 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_4 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_4 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  Int#
2# HappyAbsSyn -> HappyAbsSyn
happyReduction_4
happyReduction_4 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_4 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap8
happyOut8 HappyAbsSyn
happy_x_1 of { (HappyWrap8 Rule String
happy_var_1) ->
        [Rule String] -> HappyAbsSyn
happyIn7
                 ([Rule String
happy_var_1]
        )}

happyReduce_5 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_5 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_5 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
forall {p}.
Int#
-> Int#
-> (p -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> p
-> P HappyAbsSyn
happyReduce Int#
6# Int#
3# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_5
happyReduction_5 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_5 (HappyAbsSyn
happy_x_6 `HappyStk`
        HappyAbsSyn
happy_x_5 `HappyStk`
        HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_1 of { (TokenInfo String
happy_var_1 TokenId
TokId) ->
        case HappyAbsSyn -> HappyWrap9
happyOut9 HappyAbsSyn
happy_x_2 of { (HappyWrap9 [String]
happy_var_2) ->
        case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_4 of { (TokenInfo String
happy_var_4 TokenId
TokCodeQuote) ->
        case HappyAbsSyn -> HappyWrap11
happyOut11 HappyAbsSyn
happy_x_6 of { (HappyWrap11 [Prod String]
happy_var_6) ->
        Rule String -> HappyAbsSyn
happyIn8
                 (String -> [String] -> [Prod String] -> Maybe String -> Rule String
forall e. String -> [String] -> [Prod e] -> Maybe String -> Rule e
Rule String
happy_var_1 [String]
happy_var_2 [Prod String]
happy_var_6 (String -> Maybe String
forall a. a -> Maybe a
Just String
happy_var_4)
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}}

happyReduce_6 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_6 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_6 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
forall {p}.
Int#
-> Int#
-> (p -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> p
-> P HappyAbsSyn
happyReduce Int#
7# Int#
3# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_6
happyReduction_6 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_6 (HappyAbsSyn
happy_x_7 `HappyStk`
        HappyAbsSyn
happy_x_6 `HappyStk`
        HappyAbsSyn
happy_x_5 `HappyStk`
        HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_1 of { (TokenInfo String
happy_var_1 TokenId
TokId) ->
        case HappyAbsSyn -> HappyWrap9
happyOut9 HappyAbsSyn
happy_x_2 of { (HappyWrap9 [String]
happy_var_2) ->
        case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_4 of { (TokenInfo String
happy_var_4 TokenId
TokCodeQuote) ->
        case HappyAbsSyn -> HappyWrap11
happyOut11 HappyAbsSyn
happy_x_7 of { (HappyWrap11 [Prod String]
happy_var_7) ->
        Rule String -> HappyAbsSyn
happyIn8
                 (String -> [String] -> [Prod String] -> Maybe String -> Rule String
forall e. String -> [String] -> [Prod e] -> Maybe String -> Rule e
Rule String
happy_var_1 [String]
happy_var_2 [Prod String]
happy_var_7 (String -> Maybe String
forall a. a -> Maybe a
Just String
happy_var_4)
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}}

happyReduce_7 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_7 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_7 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
forall {p}.
Int#
-> Int#
-> (p -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> p
-> P HappyAbsSyn
happyReduce Int#
4# Int#
3# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_7
happyReduction_7 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_7 (HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_1 of { (TokenInfo String
happy_var_1 TokenId
TokId) ->
        case HappyAbsSyn -> HappyWrap9
happyOut9 HappyAbsSyn
happy_x_2 of { (HappyWrap9 [String]
happy_var_2) ->
        case HappyAbsSyn -> HappyWrap11
happyOut11 HappyAbsSyn
happy_x_4 of { (HappyWrap11 [Prod String]
happy_var_4) ->
        Rule String -> HappyAbsSyn
happyIn8
                 (String -> [String] -> [Prod String] -> Maybe String -> Rule String
forall e. String -> [String] -> [Prod e] -> Maybe String -> Rule e
Rule String
happy_var_1 [String]
happy_var_2 [Prod String]
happy_var_4 Maybe String
forall a. Maybe a
Nothing
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}

happyReduce_8 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_8 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_8 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  Int#
4# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p} {p}. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_8
happyReduction_8 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_8 p
happy_x_3
        HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> HappyWrap10
happyOut10 HappyAbsSyn
happy_x_2 of { (HappyWrap10 [String]
happy_var_2) ->
        [String] -> HappyAbsSyn
happyIn9
                 ([String] -> [String]
forall a. [a] -> [a]
reverse [String]
happy_var_2
        )}

happyReduce_9 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_9 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_9 = Int#
-> HappyAbsSyn
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  Int#
4# HappyAbsSyn
happyReduction_9
happyReduction_9 :: HappyAbsSyn
happyReduction_9  =  [String] -> HappyAbsSyn
happyIn9
                 ([]
        )

happyReduce_10 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_10 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_10 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  Int#
5# HappyAbsSyn -> HappyAbsSyn
happyReduction_10
happyReduction_10 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_10 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_1 of { (TokenInfo String
happy_var_1 TokenId
TokId) ->
        [String] -> HappyAbsSyn
happyIn10
                 ([String
happy_var_1]
        )}

happyReduce_11 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_11 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_11 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  Int#
5# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_11
happyReduction_11 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_11 HappyAbsSyn
happy_x_3
        p
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap10
happyOut10 HappyAbsSyn
happy_x_1 of { (HappyWrap10 [String]
happy_var_1) ->
        case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_3 of { (TokenInfo String
happy_var_3 TokenId
TokId) ->
        [String] -> HappyAbsSyn
happyIn10
                 (String
happy_var_3 String -> [String] -> [String]
forall a. a -> [a] -> [a]
: [String]
happy_var_1
        )}}

happyReduce_12 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_12 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_12 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  Int#
6# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_12
happyReduction_12 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_12 HappyAbsSyn
happy_x_3
        p
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_1 of { (HappyWrap12 Prod String
happy_var_1) ->
        case HappyAbsSyn -> HappyWrap11
happyOut11 HappyAbsSyn
happy_x_3 of { (HappyWrap11 [Prod String]
happy_var_3) ->
        [Prod String] -> HappyAbsSyn
happyIn11
                 (Prod String
happy_var_1 Prod String -> [Prod String] -> [Prod String]
forall a. a -> [a] -> [a]
: [Prod String]
happy_var_3
        )}}

happyReduce_13 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_13 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_13 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  Int#
6# HappyAbsSyn -> HappyAbsSyn
happyReduction_13
happyReduction_13 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_13 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_1 of { (HappyWrap12 Prod String
happy_var_1) ->
        [Prod String] -> HappyAbsSyn
happyIn11
                 ([Prod String
happy_var_1]
        )}

happyReduce_14 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_14 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_14 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> Token -> P HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
7# HappyStk HappyAbsSyn -> Token -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_14
happyReduction_14 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_14 (HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest) p
tk
         = P (Prod String) -> (Prod String -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_1 of { (HappyWrap14 [Term]
happy_var_1) ->
        case HappyAbsSyn -> HappyWrap17
happyOut17 HappyAbsSyn
happy_x_2 of { (HappyWrap17 Prec
happy_var_2) ->
        case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_3 of { (TokenInfo String
happy_var_3 TokenId
TokCodeQuote) ->
        ( ReaderT (String, Int) ParseResult Int
forall (p :: * -> *). ParseMonad p => p Int
lineP ReaderT (String, Int) ParseResult Int
-> (Int -> P (Prod String)) -> P (Prod String)
forall a b. P a -> (a -> P b) -> P b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \Int
l -> Prod String -> P (Prod String)
forall a. a -> ReaderT (String, Int) ParseResult a
forall (m :: * -> *) a. Monad m => a -> m a
return ([Term] -> String -> Int -> Prec -> Prod String
forall e. [Term] -> e -> Int -> Prec -> Prod e
Prod [Term]
happy_var_1 String
happy_var_3 Int
l Prec
happy_var_2))}}})
        ) (\Prod String
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> ReaderT (String, Int) ParseResult a
happyReturn (Prod String -> HappyAbsSyn
happyIn12 Prod String
r))

happyReduce_15 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_15 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_15 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> Token -> P HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
7# HappyStk HappyAbsSyn -> Token -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_15
happyReduction_15 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_15 (HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest) p
tk
         = P (Prod String) -> (Prod String -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_1 of { (HappyWrap14 [Term]
happy_var_1) ->
        case HappyAbsSyn -> HappyWrap17
happyOut17 HappyAbsSyn
happy_x_2 of { (HappyWrap17 Prec
happy_var_2) ->
        case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_3 of { (TokenInfo String
happy_var_3 TokenId
TokCodeQuote) ->
        ( ReaderT (String, Int) ParseResult Int
forall (p :: * -> *). ParseMonad p => p Int
lineP ReaderT (String, Int) ParseResult Int
-> (Int -> P (Prod String)) -> P (Prod String)
forall a b. P a -> (a -> P b) -> P b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \Int
l -> Prod String -> P (Prod String)
forall a. a -> ReaderT (String, Int) ParseResult a
forall (m :: * -> *) a. Monad m => a -> m a
return ([Term] -> String -> Int -> Prec -> Prod String
forall e. [Term] -> e -> Int -> Prec -> Prod e
Prod [Term]
happy_var_1 String
happy_var_3 Int
l Prec
happy_var_2))}}})
        ) (\Prod String
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> ReaderT (String, Int) ParseResult a
happyReturn (Prod String -> HappyAbsSyn
happyIn12 Prod String
r))

happyReduce_16 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_16 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_16 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  Int#
8# HappyAbsSyn -> HappyAbsSyn
happyReduction_16
happyReduction_16 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_16 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_1 of { (TokenInfo String
happy_var_1 TokenId
TokId) ->
        Term -> HappyAbsSyn
happyIn13
                 (String -> [Term] -> Term
App String
happy_var_1 []
        )}

happyReduce_17 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_17 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_17 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
forall {p}.
Int#
-> Int#
-> (p -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> p
-> P HappyAbsSyn
happyReduce Int#
4# Int#
8# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_17
happyReduction_17 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_17 (HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_1 of { (TokenInfo String
happy_var_1 TokenId
TokId) ->
        case HappyAbsSyn -> HappyWrap16
happyOut16 HappyAbsSyn
happy_x_3 of { (HappyWrap16 [Term]
happy_var_3) ->
        Term -> HappyAbsSyn
happyIn13
                 (String -> [Term] -> Term
App String
happy_var_1 ([Term] -> [Term]
forall a. [a] -> [a]
reverse [Term]
happy_var_3)
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_18 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_18 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_18 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  Int#
9# HappyAbsSyn -> HappyAbsSyn
happyReduction_18
happyReduction_18 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_18 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap15
happyOut15 HappyAbsSyn
happy_x_1 of { (HappyWrap15 [Term]
happy_var_1) ->
        [Term] -> HappyAbsSyn
happyIn14
                 ([Term] -> [Term]
forall a. [a] -> [a]
reverse [Term]
happy_var_1
        )}

happyReduce_19 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_19 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_19 = Int#
-> HappyAbsSyn
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  Int#
9# HappyAbsSyn
happyReduction_19
happyReduction_19 :: HappyAbsSyn
happyReduction_19  =  [Term] -> HappyAbsSyn
happyIn14
                 ([]
        )

happyReduce_20 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_20 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_20 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  Int#
10# HappyAbsSyn -> HappyAbsSyn
happyReduction_20
happyReduction_20 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_20 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap13
happyOut13 HappyAbsSyn
happy_x_1 of { (HappyWrap13 Term
happy_var_1) ->
        [Term] -> HappyAbsSyn
happyIn15
                 ([Term
happy_var_1]
        )}

happyReduce_21 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_21 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_21 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  Int#
10# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_21
happyReduction_21 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_21 HappyAbsSyn
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap15
happyOut15 HappyAbsSyn
happy_x_1 of { (HappyWrap15 [Term]
happy_var_1) ->
        case HappyAbsSyn -> HappyWrap13
happyOut13 HappyAbsSyn
happy_x_2 of { (HappyWrap13 Term
happy_var_2) ->
        [Term] -> HappyAbsSyn
happyIn15
                 (Term
happy_var_2 Term -> [Term] -> [Term]
forall a. a -> [a] -> [a]
: [Term]
happy_var_1
        )}}

happyReduce_22 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_22 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_22 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  Int#
11# HappyAbsSyn -> HappyAbsSyn
happyReduction_22
happyReduction_22 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_22 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap13
happyOut13 HappyAbsSyn
happy_x_1 of { (HappyWrap13 Term
happy_var_1) ->
        [Term] -> HappyAbsSyn
happyIn16
                 ([Term
happy_var_1]
        )}

happyReduce_23 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_23 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_23 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  Int#
11# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_23
happyReduction_23 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_23 HappyAbsSyn
happy_x_3
        p
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap16
happyOut16 HappyAbsSyn
happy_x_1 of { (HappyWrap16 [Term]
happy_var_1) ->
        case HappyAbsSyn -> HappyWrap13
happyOut13 HappyAbsSyn
happy_x_3 of { (HappyWrap13 Term
happy_var_3) ->
        [Term] -> HappyAbsSyn
happyIn16
                 (Term
happy_var_3 Term -> [Term] -> [Term]
forall a. a -> [a] -> [a]
: [Term]
happy_var_1
        )}}

happyReduce_24 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_24 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_24 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  Int#
12# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_24
happyReduction_24 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_24 HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_2 of { (TokenInfo String
happy_var_2 TokenId
TokId) ->
        Prec -> HappyAbsSyn
happyIn17
                 (String -> Prec
PrecId String
happy_var_2
        )}

happyReduce_25 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_25 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_25 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  Int#
12# HappyAbsSyn -> HappyAbsSyn
forall {p}. p -> HappyAbsSyn
happyReduction_25
happyReduction_25 :: p -> HappyAbsSyn
happyReduction_25 p
happy_x_1
         =  Prec -> HappyAbsSyn
happyIn17
                 (Prec
PrecShift
        )

happyReduce_26 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_26 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_26 = Int#
-> HappyAbsSyn
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  Int#
12# HappyAbsSyn
happyReduction_26
happyReduction_26 :: HappyAbsSyn
happyReduction_26  =  Prec -> HappyAbsSyn
happyIn17
                 (Prec
PrecNone
        )

happyReduce_27 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_27 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_27 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  Int#
13# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_27
happyReduction_27 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_27 HappyAbsSyn
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap18
happyOut18 HappyAbsSyn
happy_x_1 of { (HappyWrap18 [Directive String]
happy_var_1) ->
        case HappyAbsSyn -> HappyWrap19
happyOut19 HappyAbsSyn
happy_x_2 of { (HappyWrap19 Directive String
happy_var_2) ->
        [Directive String] -> HappyAbsSyn
happyIn18
                 (Directive String
happy_var_2 Directive String -> [Directive String] -> [Directive String]
forall a. a -> [a] -> [a]
: [Directive String]
happy_var_1
        )}}

happyReduce_28 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_28 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_28 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  Int#
13# HappyAbsSyn -> HappyAbsSyn
happyReduction_28
happyReduction_28 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_28 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap19
happyOut19 HappyAbsSyn
happy_x_1 of { (HappyWrap19 Directive String
happy_var_1) ->
        [Directive String] -> HappyAbsSyn
happyIn18
                 ([Directive String
happy_var_1]
        )}

happyReduce_29 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_29 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_29 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  Int#
14# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_29
happyReduction_29 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_29 HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_2 of { (TokenInfo String
happy_var_2 TokenId
TokCodeQuote) ->
        Directive String -> HappyAbsSyn
happyIn19
                 (String -> Directive String
forall a. String -> Directive a
TokenType String
happy_var_2
        )}

happyReduce_30 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_30 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_30 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  Int#
14# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_30
happyReduction_30 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_30 HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> HappyWrap21
happyOut21 HappyAbsSyn
happy_x_2 of { (HappyWrap21 [(String, TokenSpec)]
happy_var_2) ->
        Directive String -> HappyAbsSyn
happyIn19
                 ([(String, TokenSpec)] -> Directive String
forall a. [(a, TokenSpec)] -> Directive a
TokenSpec [(String, TokenSpec)]
happy_var_2
        )}

happyReduce_31 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_31 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_31 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  Int#
14# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_31
happyReduction_31 :: HappyAbsSyn -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_31 HappyAbsSyn
happy_x_3
        HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_2 of { (TokenInfo String
happy_var_2 TokenId
TokId) ->
        case HappyAbsSyn -> HappyWrap20
happyOut20 HappyAbsSyn
happy_x_3 of { (HappyWrap20 Maybe String
happy_var_3) ->
        Directive String -> HappyAbsSyn
happyIn19
                 (String -> Maybe String -> Bool -> Directive String
forall a. String -> Maybe String -> Bool -> Directive a
TokenName String
happy_var_2 Maybe String
happy_var_3 Bool
False
        )}}

happyReduce_32 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_32 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_32 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  Int#
14# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_32
happyReduction_32 :: HappyAbsSyn -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_32 HappyAbsSyn
happy_x_3
        HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_2 of { (TokenInfo String
happy_var_2 TokenId
TokId) ->
        case HappyAbsSyn -> HappyWrap20
happyOut20 HappyAbsSyn
happy_x_3 of { (HappyWrap20 Maybe String
happy_var_3) ->
        Directive String -> HappyAbsSyn
happyIn19
                 (String -> Maybe String -> Bool -> Directive String
forall a. String -> Maybe String -> Bool -> Directive a
TokenName String
happy_var_2 Maybe String
happy_var_3 Bool
True
        )}}

happyReduce_33 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_33 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_33 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  Int#
14# HappyAbsSyn -> HappyAbsSyn
forall {p}. p -> HappyAbsSyn
happyReduction_33
happyReduction_33 :: p -> HappyAbsSyn
happyReduction_33 p
happy_x_1
         =  Directive String -> HappyAbsSyn
happyIn19
                 (Directive String
forall a. Directive a
TokenImportedIdentity
        )

happyReduce_34 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_34 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_34 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  Int#
14# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_34
happyReduction_34 :: HappyAbsSyn -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_34 HappyAbsSyn
happy_x_3
        HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_2 of { (TokenInfo String
happy_var_2 TokenId
TokCodeQuote) ->
        case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_3 of { (TokenInfo String
happy_var_3 TokenId
TokCodeQuote) ->
        Directive String -> HappyAbsSyn
happyIn19
                 (String -> String -> Directive String
forall a. String -> String -> Directive a
TokenLexer String
happy_var_2 String
happy_var_3
        )}}

happyReduce_35 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_35 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_35 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  Int#
14# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_35
happyReduction_35 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_35 HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_2 of { (TokenInfo String
happy_var_2 TokenId
TokCodeQuote) ->
        Directive String -> HappyAbsSyn
happyIn19
                 (String -> String -> String -> String -> Directive String
forall a. String -> String -> String -> String -> Directive a
TokenMonad String
"()" String
happy_var_2 String
"Happy_Prelude.>>=" String
"Happy_Prelude.return"
        )}

happyReduce_36 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_36 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_36 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  Int#
14# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_36
happyReduction_36 :: HappyAbsSyn -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_36 HappyAbsSyn
happy_x_3
        HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_2 of { (TokenInfo String
happy_var_2 TokenId
TokCodeQuote) ->
        case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_3 of { (TokenInfo String
happy_var_3 TokenId
TokCodeQuote) ->
        Directive String -> HappyAbsSyn
happyIn19
                 (String -> String -> String -> String -> Directive String
forall a. String -> String -> String -> String -> Directive a
TokenMonad String
happy_var_2 String
happy_var_3 String
"Happy_Prelude.>>=" String
"Happy_Prelude.return"
        )}}

happyReduce_37 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_37 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_37 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
forall {p}.
Int#
-> Int#
-> (p -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> p
-> P HappyAbsSyn
happyReduce Int#
4# Int#
14# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_37
happyReduction_37 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_37 (HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_2 of { (TokenInfo String
happy_var_2 TokenId
TokCodeQuote) ->
        case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_3 of { (TokenInfo String
happy_var_3 TokenId
TokCodeQuote) ->
        case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_4 of { (TokenInfo String
happy_var_4 TokenId
TokCodeQuote) ->
        Directive String -> HappyAbsSyn
happyIn19
                 (String -> String -> String -> String -> Directive String
forall a. String -> String -> String -> String -> Directive a
TokenMonad String
"()" String
happy_var_2 String
happy_var_3 String
happy_var_4
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}

happyReduce_38 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_38 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_38 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
forall {p}.
Int#
-> Int#
-> (p -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> p
-> P HappyAbsSyn
happyReduce Int#
5# Int#
14# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_38
happyReduction_38 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_38 (HappyAbsSyn
happy_x_5 `HappyStk`
        HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_2 of { (TokenInfo String
happy_var_2 TokenId
TokCodeQuote) ->
        case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_3 of { (TokenInfo String
happy_var_3 TokenId
TokCodeQuote) ->
        case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_4 of { (TokenInfo String
happy_var_4 TokenId
TokCodeQuote) ->
        case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_5 of { (TokenInfo String
happy_var_5 TokenId
TokCodeQuote) ->
        Directive String -> HappyAbsSyn
happyIn19
                 (String -> String -> String -> String -> Directive String
forall a. String -> String -> String -> String -> Directive a
TokenMonad String
happy_var_2 String
happy_var_3 String
happy_var_4 String
happy_var_5
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}}

happyReduce_39 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_39 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_39 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  Int#
14# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_39
happyReduction_39 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_39 HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> HappyWrap23
happyOut23 HappyAbsSyn
happy_x_2 of { (HappyWrap23 [String]
happy_var_2) ->
        Directive String -> HappyAbsSyn
happyIn19
                 ([String] -> Directive String
forall a. [String] -> Directive a
TokenNonassoc [String]
happy_var_2
        )}

happyReduce_40 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_40 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_40 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  Int#
14# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_40
happyReduction_40 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_40 HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> HappyWrap23
happyOut23 HappyAbsSyn
happy_x_2 of { (HappyWrap23 [String]
happy_var_2) ->
        Directive String -> HappyAbsSyn
happyIn19
                 ([String] -> Directive String
forall a. [String] -> Directive a
TokenRight [String]
happy_var_2
        )}

happyReduce_41 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_41 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_41 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  Int#
14# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_41
happyReduction_41 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_41 HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> HappyWrap23
happyOut23 HappyAbsSyn
happy_x_2 of { (HappyWrap23 [String]
happy_var_2) ->
        Directive String -> HappyAbsSyn
happyIn19
                 ([String] -> Directive String
forall a. [String] -> Directive a
TokenLeft [String]
happy_var_2
        )}

happyReduce_42 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_42 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_42 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  Int#
14# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_42
happyReduction_42 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_42 HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_2 of { (TokenNum Int
happy_var_2  TokenId
TokNum) ->
        Directive String -> HappyAbsSyn
happyIn19
                 (Int -> Directive String
forall a. Int -> Directive a
TokenExpect Int
happy_var_2
        )}

happyReduce_43 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_43 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_43 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  Int#
14# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_43
happyReduction_43 :: HappyAbsSyn -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_43 HappyAbsSyn
happy_x_3
        HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_2 of { (TokenInfo String
happy_var_2 TokenId
TokCodeQuote) ->
        case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_3 of { (HappyWrap24 Maybe String
happy_var_3) ->
        Directive String -> HappyAbsSyn
happyIn19
                 (String -> Maybe String -> Directive String
forall a. String -> Maybe String -> Directive a
TokenError String
happy_var_2 Maybe String
happy_var_3
        )}}

happyReduce_44 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_44 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_44 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  Int#
14# HappyAbsSyn -> HappyAbsSyn
forall {p}. p -> HappyAbsSyn
happyReduction_44
happyReduction_44 :: p -> HappyAbsSyn
happyReduction_44 p
happy_x_1
         =  Directive String -> HappyAbsSyn
happyIn19
                 (Directive String
forall a. Directive a
TokenErrorExpected
        )

happyReduce_45 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_45 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_45 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  Int#
14# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_45
happyReduction_45 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_45 HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_2 of { (TokenInfo String
happy_var_2 TokenId
TokId) ->
        Directive String -> HappyAbsSyn
happyIn19
                 (String -> Directive String
forall a. String -> Directive a
TokenErrorHandlerType String
happy_var_2
        )}

happyReduce_46 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_46 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_46 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  Int#
14# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_46
happyReduction_46 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_46 HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_2 of { (TokenInfo String
happy_var_2 TokenId
TokCodeQuote) ->
        Directive String -> HappyAbsSyn
happyIn19
                 (String -> Directive String
forall a. String -> Directive a
TokenAttributetype String
happy_var_2
        )}

happyReduce_47 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_47 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_47 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  Int#
14# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_47
happyReduction_47 :: HappyAbsSyn -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_47 HappyAbsSyn
happy_x_3
        HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_2 of { (TokenInfo String
happy_var_2 TokenId
TokId) ->
        case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_3 of { (TokenInfo String
happy_var_3 TokenId
TokCodeQuote) ->
        Directive String -> HappyAbsSyn
happyIn19
                 (String -> String -> Directive String
forall a. String -> String -> Directive a
TokenAttribute String
happy_var_2 String
happy_var_3
        )}}

happyReduce_48 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_48 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_48 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  Int#
15# HappyAbsSyn -> HappyAbsSyn
happyReduction_48
happyReduction_48 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_48 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_1 of { (TokenInfo String
happy_var_1 TokenId
TokId) ->
        Maybe String -> HappyAbsSyn
happyIn20
                 (String -> Maybe String
forall a. a -> Maybe a
Just String
happy_var_1
        )}

happyReduce_49 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_49 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_49 = Int#
-> HappyAbsSyn
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  Int#
15# HappyAbsSyn
happyReduction_49
happyReduction_49 :: HappyAbsSyn
happyReduction_49  =  Maybe String -> HappyAbsSyn
happyIn20
                 (Maybe String
forall a. Maybe a
Nothing
        )

happyReduce_50 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_50 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_50 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  Int#
16# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_50
happyReduction_50 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_50 HappyAbsSyn
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap22
happyOut22 HappyAbsSyn
happy_x_1 of { (HappyWrap22 (String, TokenSpec)
happy_var_1) ->
        case HappyAbsSyn -> HappyWrap21
happyOut21 HappyAbsSyn
happy_x_2 of { (HappyWrap21 [(String, TokenSpec)]
happy_var_2) ->
        [(String, TokenSpec)] -> HappyAbsSyn
happyIn21
                 ((String, TokenSpec)
happy_var_1(String, TokenSpec)
-> [(String, TokenSpec)] -> [(String, TokenSpec)]
forall a. a -> [a] -> [a]
:[(String, TokenSpec)]
happy_var_2
        )}}

happyReduce_51 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_51 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_51 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  Int#
16# HappyAbsSyn -> HappyAbsSyn
happyReduction_51
happyReduction_51 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_51 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap22
happyOut22 HappyAbsSyn
happy_x_1 of { (HappyWrap22 (String, TokenSpec)
happy_var_1) ->
        [(String, TokenSpec)] -> HappyAbsSyn
happyIn21
                 ([(String, TokenSpec)
happy_var_1]
        )}

happyReduce_52 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_52 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_52 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  Int#
17# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_52
happyReduction_52 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_52 HappyAbsSyn
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_1 of { (TokenInfo String
happy_var_1 TokenId
TokId) ->
        case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_2 of { (TokenInfo String
happy_var_2 TokenId
TokCodeQuote) ->
        (String, TokenSpec) -> HappyAbsSyn
happyIn22
                 ((String
happy_var_1, String -> TokenSpec
parseTokenSpec String
happy_var_2)
        )}}

happyReduce_53 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_53 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_53 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  Int#
18# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_53
happyReduction_53 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_53 HappyAbsSyn
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_1 of { (TokenInfo String
happy_var_1 TokenId
TokId) ->
        case HappyAbsSyn -> HappyWrap23
happyOut23 HappyAbsSyn
happy_x_2 of { (HappyWrap23 [String]
happy_var_2) ->
        [String] -> HappyAbsSyn
happyIn23
                 (String
happy_var_1 String -> [String] -> [String]
forall a. a -> [a] -> [a]
: [String]
happy_var_2
        )}}

happyReduce_54 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_54 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_54 = Int#
-> HappyAbsSyn
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  Int#
18# HappyAbsSyn
happyReduction_54
happyReduction_54 :: HappyAbsSyn
happyReduction_54  =  [String] -> HappyAbsSyn
happyIn23
                 ([]
        )

happyReduce_55 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_55 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_55 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  Int#
19# HappyAbsSyn -> HappyAbsSyn
happyReduction_55
happyReduction_55 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_55 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_1 of { (TokenInfo String
happy_var_1 TokenId
TokCodeQuote) ->
        Maybe String -> HappyAbsSyn
happyIn24
                 (String -> Maybe String
forall a. a -> Maybe a
Just String
happy_var_1
        )}

happyReduce_56 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_56 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_56 = Int#
-> HappyAbsSyn
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  Int#
19# HappyAbsSyn
happyReduction_56
happyReduction_56 :: HappyAbsSyn
happyReduction_56  =  Maybe String -> HappyAbsSyn
happyIn24
                 (Maybe String
forall a. Maybe a
Nothing
        )

happyTerminalToTok :: Token -> Int#
happyTerminalToTok Token
term = case Token
term of {
        Token
TokenEOF -> Int#
31#;
        TokenInfo String
happy_dollar_dollar TokenId
TokId -> Int#
2#;
        TokenKW      TokenId
TokSpecId_TokenType -> Int#
3#;
        TokenKW      TokenId
TokSpecId_Token -> Int#
4#;
        TokenKW      TokenId
TokSpecId_Name -> Int#
5#;
        TokenKW      TokenId
TokSpecId_Partial -> Int#
6#;
        TokenKW      TokenId
TokSpecId_Lexer -> Int#
7#;
        TokenKW      TokenId
TokSpecId_ImportedIdentity -> Int#
8#;
        TokenKW      TokenId
TokSpecId_Monad -> Int#
9#;
        TokenKW      TokenId
TokSpecId_Nonassoc -> Int#
10#;
        TokenKW      TokenId
TokSpecId_Left -> Int#
11#;
        TokenKW      TokenId
TokSpecId_Right -> Int#
12#;
        TokenKW      TokenId
TokSpecId_Prec -> Int#
13#;
        TokenKW      TokenId
TokSpecId_Shift -> Int#
14#;
        TokenKW      TokenId
TokSpecId_Expect -> Int#
15#;
        TokenKW      TokenId
TokSpecId_Error -> Int#
16#;
        TokenKW      TokenId
TokSpecId_ErrorExpected -> Int#
17#;
        TokenKW      TokenId
TokSpecId_ErrorHandlerType -> Int#
18#;
        TokenKW      TokenId
TokSpecId_Attribute -> Int#
19#;
        TokenKW      TokenId
TokSpecId_Attributetype -> Int#
20#;
        TokenInfo String
happy_dollar_dollar TokenId
TokCodeQuote -> Int#
21#;
        TokenNum Int
happy_dollar_dollar  TokenId
TokNum -> Int#
22#;
        TokenKW      TokenId
TokColon -> Int#
23#;
        TokenKW      TokenId
TokSemiColon -> Int#
24#;
        TokenKW      TokenId
TokDoubleColon -> Int#
25#;
        TokenKW      TokenId
TokDoublePercent -> Int#
26#;
        TokenKW      TokenId
TokBar -> Int#
27#;
        TokenKW      TokenId
TokParenL -> Int#
28#;
        TokenKW      TokenId
TokParenR -> Int#
29#;
        TokenKW      TokenId
TokComma -> Int#
30#;
        Token
_ -> Int#
-1#;
        }
{-# NOINLINE happyTerminalToTok #-}

happyLex :: (Token -> P r) -> (Int# -> Token -> P r) -> P r
happyLex Token -> P r
kend Int# -> Token -> P r
kmore = (Token -> P r) -> P r
forall token r. HasLexer token => (token -> P r) -> P r
lexTokenP (\Token
tk -> case Token
tk of {
        Token
TokenEOF -> Token -> P r
kend Token
tk;
        Token
_ -> Int# -> Token -> P r
kmore (Token -> Int#
happyTerminalToTok Token
tk) Token
tk })
{-# INLINE happyLex #-}

happyNewToken :: Int# -> Happy_IntList -> HappyStk HappyAbsSyn -> P HappyAbsSyn
happyNewToken Int#
action Happy_IntList
sts HappyStk HappyAbsSyn
stk = (Token -> P HappyAbsSyn)
-> (Int# -> Token -> P HappyAbsSyn) -> P HappyAbsSyn
forall {r}. (Token -> P r) -> (Int# -> Token -> P r) -> P r
happyLex (\Token
tk -> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyDoAction Int#
31# Token
tk Int#
action Happy_IntList
sts HappyStk HappyAbsSyn
stk) (\Int#
i Token
tk -> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyDoAction Int#
i Token
tk Int#
action Happy_IntList
sts HappyStk HappyAbsSyn
stk)

happyReport :: Int# -> Token -> [String] -> P a -> P a
happyReport Int#
31# = Token -> [String] -> P a -> P a
forall a. Token -> [String] -> P a -> P a
happyReport'
happyReport Int#
_ = Token -> [String] -> P a -> P a
forall a. Token -> [String] -> P a -> P a
happyReport'


happyThen :: () => (P a) -> (a -> (P b)) -> (P b)
happyThen :: forall a b. P a -> (a -> P b) -> P b
happyThen = ReaderT (String, Int) ParseResult a
-> (a -> ReaderT (String, Int) ParseResult b)
-> ReaderT (String, Int) ParseResult b
forall a b. P a -> (a -> P b) -> P b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
(Happy_Prelude.>>=)
happyReturn :: () => a -> (P a)
happyReturn :: forall a. a -> ReaderT (String, Int) ParseResult a
happyReturn = (a -> ReaderT (String, Int) ParseResult a
forall a. a -> ReaderT (String, Int) ParseResult a
forall (m :: * -> *) a. Monad m => a -> m a
Happy_Prelude.return)
happyParse :: () => Happy_GHC_Exts.Int# -> P (HappyAbsSyn )

happyNewToken :: () => Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> (P (HappyAbsSyn ))

happyDoAction :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> (P (HappyAbsSyn ))

happyReduceArr :: () => Happy_Data_Array.Array Happy_Prelude.Int (Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> (P (HappyAbsSyn )))

happyThen1 :: () => P a -> (a -> P b) -> P b
happyThen1 :: forall a b. P a -> (a -> P b) -> P b
happyThen1 = P a -> (a -> P b) -> P b
forall a b. P a -> (a -> P b) -> P b
happyThen
happyFmap1 :: (t -> b) -> P t -> P b
happyFmap1 t -> b
f P t
m = P t -> (t -> P b) -> P b
forall a b. P a -> (a -> P b) -> P b
happyThen P t
m (\t
a -> b -> P b
forall a. a -> ReaderT (String, Int) ParseResult a
happyReturn (t -> b
f t
a))
happyReturn1 :: () => a -> (P a)
happyReturn1 :: forall a. a -> ReaderT (String, Int) ParseResult a
happyReturn1 = a -> P a
forall a. a -> ReaderT (String, Int) ParseResult a
happyReturn
happyReport' :: () => (Token) -> [Happy_Prelude.String] -> (P a) -> (P a)
happyReport' :: forall a. Token -> [String] -> P a -> P a
happyReport' = (\Token
tokens [String]
expected P a
resume -> P a
forall a. P a
happyError)

happyAbort :: () => (P a)
happyAbort :: forall a. P a
happyAbort = String -> P a
forall a. HasCallStack => String -> a
Happy_Prelude.error String
"Called abort handler in non-resumptive parser"

ourParser :: P BookendedAbsSyn
ourParser = P BookendedAbsSyn
happySomeParser where
 happySomeParser :: P BookendedAbsSyn
happySomeParser = P HappyAbsSyn
-> (HappyAbsSyn -> P BookendedAbsSyn) -> P BookendedAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen (Int# -> P HappyAbsSyn
happyParse Int#
0#) (\HappyAbsSyn
x -> BookendedAbsSyn -> P BookendedAbsSyn
forall a. a -> ReaderT (String, Int) ParseResult a
happyReturn (let {(HappyWrap5 BookendedAbsSyn
x') = HappyAbsSyn -> HappyWrap5
happyOut5 HappyAbsSyn
x} in BookendedAbsSyn
x'))

happySeq :: a -> b -> b
happySeq = a -> b -> b
forall a b. a -> b -> b
happyDontSeq


happyError :: P a
happyError :: forall a. P a
happyError = (Int -> String) -> ReaderT (String, Int) ParseResult a
forall a. (Int -> String) -> ReaderT (String, Int) ParseResult a
forall (p :: * -> *) a. ParseMonad p => (Int -> String) -> p a
failP (\Int
l -> Int -> String
forall a. Show a => a -> String
show Int
l String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
": Parse error\n")
#define HAPPY_COERCE 1
-- $Id: GenericTemplate.hs,v 1.26 2005/01/14 14:47:22 simonmar Exp $

#if !defined(__GLASGOW_HASKELL__)
#  error This code isn't being built with GHC.
#endif

-- Get WORDS_BIGENDIAN (if defined)
#include "MachDeps.h"

-- Do not remove this comment. Required to fix CPP parsing when using GCC and a clang-compiled alex.
#define LT(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.<# m)) :: Happy_Prelude.Bool)
#define GTE(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.>=# m)) :: Happy_Prelude.Bool)
#define EQ(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.==# m)) :: Happy_Prelude.Bool)
#define PLUS(n,m) (n Happy_GHC_Exts.+# m)
#define MINUS(n,m) (n Happy_GHC_Exts.-# m)
#define TIMES(n,m) (n Happy_GHC_Exts.*# m)
#define NEGATE(n) (Happy_GHC_Exts.negateInt# (n))

type Happy_Int = Happy_GHC_Exts.Int#
data Happy_IntList = HappyCons Happy_Int Happy_IntList

#define INVALID_TOK -1#
#define ERROR_TOK 0#
#define CATCH_TOK 1#

#if defined(HAPPY_COERCE)
#  define GET_ERROR_TOKEN(x)  (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# i) -> i })
#  define MK_ERROR_TOKEN(i)   (Happy_GHC_Exts.unsafeCoerce# (Happy_GHC_Exts.I# i))
#  define MK_TOKEN(x)         (happyInTok (x))
#else
#  define GET_ERROR_TOKEN(x)  (case x of { HappyErrorToken (Happy_GHC_Exts.I# i) -> i })
#  define MK_ERROR_TOKEN(i)   (HappyErrorToken (Happy_GHC_Exts.I# i))
#  define MK_TOKEN(x)         (HappyTerminal (x))
#endif

#if defined(HAPPY_DEBUG)
#  define DEBUG_TRACE(s)    (happyTrace (s)) Happy_Prelude.$
happyTrace string expr = Happy_System_IO_Unsafe.unsafePerformIO Happy_Prelude.$ do
    Happy_System_IO.hPutStr Happy_System_IO.stderr string
    Happy_Prelude.return expr
#else
#  define DEBUG_TRACE(s)    {- nothing -}
#endif

infixr 9 `HappyStk`
data HappyStk a = HappyStk a (HappyStk a)

-----------------------------------------------------------------------------
-- starting the parse

happyParse :: Int# -> P HappyAbsSyn
happyParse Int#
start_state = Int# -> Happy_IntList -> HappyStk HappyAbsSyn -> P HappyAbsSyn
happyNewToken Int#
start_state Happy_IntList
forall a. a
notHappyAtAll HappyStk HappyAbsSyn
forall a. a
notHappyAtAll

-----------------------------------------------------------------------------
-- Accepting the parse

-- If the current token is ERROR_TOK, it means we've just accepted a partial
-- parse (a %partial parser).  We must ignore the saved token on the top of
-- the stack in this case.
happyAccept :: Int# -> p -> Int# -> p -> HappyStk a -> P a
happyAccept ERROR_TOK tk st sts (_ `HappyStk` ans `HappyStk` _) =
        happyReturn1 ans
happyAccept Int#
j p
tk Int#
st p
sts (HappyStk a
ans HappyStk a
_) =
        (Int# -> (P a -> P a) -> P a -> P a
forall a. Int# -> a -> a
happyTcHack Int#
j (Int# -> P a -> P a
forall a. Int# -> a -> a
happyTcHack Int#
st)) (a -> P a
forall a. a -> ReaderT (String, Int) ParseResult a
happyReturn1 a
ans)

-----------------------------------------------------------------------------
-- Arrays only: do the next action

happyDoAction :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyDoAction Int#
i Token
tk Int#
st =
  DEBUG_TRACE("state: " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# st) Happy_Prelude.++
              ",\ttoken: " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# i) Happy_Prelude.++
              ",\taction: ")
  case Int# -> HappyAction
happyDecodeAction (Int# -> Int# -> Int#
happyNextAction Int#
i Int#
st) of
    HappyAction
HappyFail             -> DEBUG_TRACE("failing.\n")
                             Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyFail Int#
i Token
tk Int#
st
    HappyAction
HappyAccept           -> DEBUG_TRACE("accept.\n")
                             Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
forall {p} {p} {a}. Int# -> p -> Int# -> p -> HappyStk a -> P a
happyAccept Int#
i Token
tk Int#
st
    HappyReduce Int#
rule      -> DEBUG_TRACE("reduce (rule " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# rule) Happy_Prelude.++ ")")
                             (Array
  Int
  (Int#
   -> Token
   -> Int#
   -> Happy_IntList
   -> HappyStk HappyAbsSyn
   -> P HappyAbsSyn)
happyReduceArr Array
  Int
  (Int#
   -> Token
   -> Int#
   -> Happy_IntList
   -> HappyStk HappyAbsSyn
   -> P HappyAbsSyn)
-> Int
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
forall i e. Ix i => Array i e -> i -> e
Happy_Data_Array.! (Int# -> Int
Happy_GHC_Exts.I# Int#
rule)) Int#
i Token
tk Int#
st
    HappyShift  Int#
new_state -> DEBUG_TRACE("shift, enter state " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# new_state) Happy_Prelude.++ "\n")
                             Int#
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyShift Int#
new_state Int#
i Token
tk Int#
st

{-# INLINE happyNextAction #-}
happyNextAction :: Int# -> Int# -> Int#
happyNextAction Int#
i Int#
st = case Int# -> Int# -> Maybe Int
happyIndexActionTable Int#
i Int#
st of
  Happy_Prelude.Just (Happy_GHC_Exts.I# Int#
act) -> Int#
act
  Maybe Int
Happy_Prelude.Nothing                      -> HappyAddr -> Int# -> Int#
happyIndexOffAddr HappyAddr
happyDefActions Int#
st

{-# INLINE happyIndexActionTable #-}
happyIndexActionTable :: Int# -> Int# -> Maybe Int
happyIndexActionTable Int#
i Int#
st
  | GTE(i, 0#), GTE(off, 0#), EQ(happyIndexOffAddr happyCheck off, i)
  -- i >= 0:   Guard against INVALID_TOK (do the default action, which ultimately errors)
  -- off >= 0: Otherwise it's a default action
  -- equality check: Ensure that the entry in the compressed array is owned by st
  = Int -> Maybe Int
forall a. a -> Maybe a
Happy_Prelude.Just (Int# -> Int
Happy_GHC_Exts.I# (HappyAddr -> Int# -> Int#
happyIndexOffAddr HappyAddr
happyTable Int#
off))
  | Bool
Happy_Prelude.otherwise
  = Maybe Int
forall a. Maybe a
Happy_Prelude.Nothing
  where
    off :: Int#
off = PLUS(happyIndexOffAddr happyActOffsets st, i)

data HappyAction
  = HappyFail
  | HappyAccept
  | HappyReduce Happy_Int -- rule number
  | HappyShift Happy_Int  -- new state
  deriving Int -> HappyAction -> String -> String
[HappyAction] -> String -> String
HappyAction -> String
(Int -> HappyAction -> String -> String)
-> (HappyAction -> String)
-> ([HappyAction] -> String -> String)
-> Show HappyAction
forall a.
(Int -> a -> String -> String)
-> (a -> String) -> ([a] -> String -> String) -> Show a
$cshowsPrec :: Int -> HappyAction -> String -> String
showsPrec :: Int -> HappyAction -> String -> String
$cshow :: HappyAction -> String
show :: HappyAction -> String
$cshowList :: [HappyAction] -> String -> String
showList :: [HappyAction] -> String -> String
Happy_Prelude.Show

{-# INLINE happyDecodeAction #-}
happyDecodeAction :: Happy_Int -> HappyAction
happyDecodeAction :: Int# -> HappyAction
happyDecodeAction  Int#
0#                        = HappyAction
HappyFail
happyDecodeAction Int#
-1#                        = HappyAction
HappyAccept
happyDecodeAction Int#
action | LT(action, 0#)    = HappyReduce NEGATE(PLUS(action, 1#))
                         | Bool
Happy_Prelude.otherwise = Int# -> HappyAction
HappyShift MINUS(action, 1#)

{-# INLINE happyIndexGotoTable #-}
happyIndexGotoTable :: Int# -> Int# -> Int#
happyIndexGotoTable Int#
nt Int#
st = HappyAddr -> Int# -> Int#
happyIndexOffAddr HappyAddr
happyTable Int#
off
  where
    off :: Int#
off = PLUS(happyIndexOffAddr happyGotoOffsets st, nt)

{-# INLINE happyIndexOffAddr #-}
happyIndexOffAddr :: HappyAddr -> Happy_Int -> Happy_Int
happyIndexOffAddr :: HappyAddr -> Int# -> Int#
happyIndexOffAddr (HappyA# Addr#
arr) Int#
off =
#if __GLASGOW_HASKELL__ >= 901
  Int32# -> Int#
Happy_GHC_Exts.int32ToInt# -- qualified import because it doesn't exist on older GHC's
#endif
#ifdef WORDS_BIGENDIAN
  -- The CI of `alex` tests this code path
  (Happy_GHC_Exts.word32ToInt32# (Happy_GHC_Exts.wordToWord32# (Happy_GHC_Exts.byteSwap32# (Happy_GHC_Exts.word32ToWord# (Happy_GHC_Exts.int32ToWord32#
#endif
  (Addr# -> Int# -> Int32#
Happy_GHC_Exts.indexInt32OffAddr# Addr#
arr Int#
off)
#ifdef WORDS_BIGENDIAN
  )))))
#endif

happyIndexRuleArr :: Happy_Int -> (# Happy_Int, Happy_Int #)
happyIndexRuleArr :: Int# -> (# Int#, Int# #)
happyIndexRuleArr Int#
r = (# Int#
nt, Int#
len #)
  where
    !(Happy_GHC_Exts.I# Int#
n_starts) = Int
happy_n_starts
    offs :: Int#
offs = TIMES(MINUS(r,n_starts),2#)
    nt :: Int#
nt = HappyAddr -> Int# -> Int#
happyIndexOffAddr HappyAddr
happyRuleArr Int#
offs
    len :: Int#
len = HappyAddr -> Int# -> Int#
happyIndexOffAddr HappyAddr
happyRuleArr PLUS(offs,1#)

data HappyAddr = HappyA# Happy_GHC_Exts.Addr#

-----------------------------------------------------------------------------
-- Shifting a token

happyShift :: Int#
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyShift Int#
new_state ERROR_TOK tk st sts stk@(x `HappyStk` _) =
     -- See "Error Fixup" below
     let i = GET_ERROR_TOKEN(x) in
     DEBUG_TRACE("shifting the error token")
     happyDoAction i tk new_state (HappyCons st sts) stk

happyShift Int#
new_state Int#
i Token
tk Int#
st Happy_IntList
sts HappyStk HappyAbsSyn
stk =
     Int# -> Happy_IntList -> HappyStk HappyAbsSyn -> P HappyAbsSyn
happyNewToken Int#
new_state (Int# -> Happy_IntList -> Happy_IntList
HappyCons Int#
st Happy_IntList
sts) (MK_TOKEN(tk) `HappyStk` stk)

-- happyReduce is specialised for the common cases.

happySpecReduce_0 :: Int#
-> HappyAbsSyn
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 Int#
nt HappyAbsSyn
fn Int#
j Token
tk Int#
st Happy_IntList
sts HappyStk HappyAbsSyn
stk
     = HappyAbsSyn -> P HappyAbsSyn -> P HappyAbsSyn
forall a b. a -> b -> b
happySeq HappyAbsSyn
fn (Int#
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyGoto Int#
nt Int#
j Token
tk Int#
st (Int# -> Happy_IntList -> Happy_IntList
HappyCons Int#
st Happy_IntList
sts) (HappyAbsSyn
fn HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
stk))

happySpecReduce_1 :: Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
nt HappyAbsSyn -> HappyAbsSyn
fn Int#
j Token
tk Int#
old_st sts :: Happy_IntList
sts@(HappyCons Int#
st Happy_IntList
_) (HappyAbsSyn
v1 `HappyStk` HappyStk HappyAbsSyn
stk')
     = let r :: HappyAbsSyn
r = HappyAbsSyn -> HappyAbsSyn
fn HappyAbsSyn
v1 in
       Int# -> P HappyAbsSyn -> P HappyAbsSyn
forall a. Int# -> a -> a
happyTcHack Int#
old_st (HappyAbsSyn -> P HappyAbsSyn -> P HappyAbsSyn
forall a b. a -> b -> b
happySeq HappyAbsSyn
r (Int#
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyGoto Int#
nt Int#
j Token
tk Int#
st Happy_IntList
sts (HappyAbsSyn
r HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
stk')))

happySpecReduce_2 :: Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
nt HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
fn Int#
j Token
tk Int#
old_st
  (HappyCons Int#
_ sts :: Happy_IntList
sts@(HappyCons Int#
st Happy_IntList
_))
  (HappyAbsSyn
v1 `HappyStk` HappyAbsSyn
v2 `HappyStk` HappyStk HappyAbsSyn
stk')
     = let r :: HappyAbsSyn
r = HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
fn HappyAbsSyn
v1 HappyAbsSyn
v2 in
       Int# -> P HappyAbsSyn -> P HappyAbsSyn
forall a. Int# -> a -> a
happyTcHack Int#
old_st (HappyAbsSyn -> P HappyAbsSyn -> P HappyAbsSyn
forall a b. a -> b -> b
happySeq HappyAbsSyn
r (Int#
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyGoto Int#
nt Int#
j Token
tk Int#
st Happy_IntList
sts (HappyAbsSyn
r HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
stk')))

happySpecReduce_3 :: Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
nt HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
fn Int#
j Token
tk Int#
old_st
  (HappyCons Int#
_ (HappyCons Int#
_ sts :: Happy_IntList
sts@(HappyCons Int#
st Happy_IntList
_)))
  (HappyAbsSyn
v1 `HappyStk` HappyAbsSyn
v2 `HappyStk` HappyAbsSyn
v3 `HappyStk` HappyStk HappyAbsSyn
stk')
     = let r :: HappyAbsSyn
r = HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
fn HappyAbsSyn
v1 HappyAbsSyn
v2 HappyAbsSyn
v3 in
       Int# -> P HappyAbsSyn -> P HappyAbsSyn
forall a. Int# -> a -> a
happyTcHack Int#
old_st (HappyAbsSyn -> P HappyAbsSyn -> P HappyAbsSyn
forall a b. a -> b -> b
happySeq HappyAbsSyn
r (Int#
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyGoto Int#
nt Int#
j Token
tk Int#
st Happy_IntList
sts (HappyAbsSyn
r HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
stk')))

happyReduce :: Int#
-> Int#
-> (p -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> p
-> P HappyAbsSyn
happyReduce Int#
k Int#
nt p -> HappyStk HappyAbsSyn
fn Int#
j Token
tk Int#
st Happy_IntList
sts p
stk
     = case Int# -> Happy_IntList -> Happy_IntList
happyDrop MINUS(k,(1# :: Happy_Int)) sts of
         sts1 :: Happy_IntList
sts1@(HappyCons Int#
st1 Happy_IntList
_) ->
                let r :: HappyStk HappyAbsSyn
r = p -> HappyStk HappyAbsSyn
fn p
stk in -- it doesn't hurt to always seq here...
                Int#
st Int# -> P HappyAbsSyn -> P HappyAbsSyn
forall a. Int# -> a -> a
`happyTcHack` HappyStk HappyAbsSyn -> P HappyAbsSyn -> P HappyAbsSyn
forall a b. a -> b -> b
happyDoSeq HappyStk HappyAbsSyn
r (Int#
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyGoto Int#
nt Int#
j Token
tk Int#
st1 Happy_IntList
sts1 HappyStk HappyAbsSyn
r)

happyMonadReduce :: Int#
-> Int#
-> (HappyStk HappyAbsSyn -> Token -> P HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
k Int#
nt HappyStk HappyAbsSyn -> Token -> P HappyAbsSyn
fn Int#
j Token
tk Int#
st Happy_IntList
sts HappyStk HappyAbsSyn
stk =
      case Int# -> Happy_IntList -> Happy_IntList
happyDrop Int#
k (Int# -> Happy_IntList -> Happy_IntList
HappyCons Int#
st Happy_IntList
sts) of
        sts1 :: Happy_IntList
sts1@(HappyCons Int#
st1 Happy_IntList
_) ->
          let drop_stk :: HappyStk HappyAbsSyn
drop_stk = Int# -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall {a}. Int# -> HappyStk a -> HappyStk a
happyDropStk Int#
k HappyStk HappyAbsSyn
stk in
          Int#
j Int# -> P HappyAbsSyn -> P HappyAbsSyn
forall a. Int# -> a -> a
`happyTcHack` P HappyAbsSyn -> (HappyAbsSyn -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen1 (HappyStk HappyAbsSyn -> Token -> P HappyAbsSyn
fn HappyStk HappyAbsSyn
stk Token
tk)
                                     (\HappyAbsSyn
r -> Int#
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyGoto Int#
nt Int#
j Token
tk Int#
st1 Happy_IntList
sts1 (HappyAbsSyn
r HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
drop_stk))

happyMonad2Reduce :: Int#
-> Int#
-> (HappyStk HappyAbsSyn -> t -> P HappyAbsSyn)
-> Int#
-> t
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonad2Reduce Int#
k Int#
nt HappyStk HappyAbsSyn -> t -> P HappyAbsSyn
fn Int#
j t
tk Int#
st Happy_IntList
sts HappyStk HappyAbsSyn
stk =
      case Int# -> Happy_IntList -> Happy_IntList
happyDrop Int#
k (Int# -> Happy_IntList -> Happy_IntList
HappyCons Int#
st Happy_IntList
sts) of
        sts1 :: Happy_IntList
sts1@(HappyCons Int#
st1 Happy_IntList
_) ->
          let drop_stk :: HappyStk HappyAbsSyn
drop_stk = Int# -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall {a}. Int# -> HappyStk a -> HappyStk a
happyDropStk Int#
k HappyStk HappyAbsSyn
stk
              off :: Int#
off = HappyAddr -> Int# -> Int#
happyIndexOffAddr HappyAddr
happyGotoOffsets Int#
st1
              off_i :: Int#
off_i = PLUS(off, nt)
              new_state :: Int#
new_state = HappyAddr -> Int# -> Int#
happyIndexOffAddr HappyAddr
happyTable Int#
off_i
          in
            Int#
j Int# -> P HappyAbsSyn -> P HappyAbsSyn
forall a. Int# -> a -> a
`happyTcHack` P HappyAbsSyn -> (HappyAbsSyn -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen1 (HappyStk HappyAbsSyn -> t -> P HappyAbsSyn
fn HappyStk HappyAbsSyn
stk t
tk)
                                       (\HappyAbsSyn
r -> Int# -> Happy_IntList -> HappyStk HappyAbsSyn -> P HappyAbsSyn
happyNewToken Int#
new_state Happy_IntList
sts1 (HappyAbsSyn
r HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
drop_stk))

happyDrop :: Int# -> Happy_IntList -> Happy_IntList
happyDrop Int#
0# Happy_IntList
l               = Happy_IntList
l
happyDrop Int#
n  (HappyCons Int#
_ Happy_IntList
t) = Int# -> Happy_IntList -> Happy_IntList
happyDrop MINUS(n,(1# :: Happy_Int)) t

happyDropStk :: Int# -> HappyStk a -> HappyStk a
happyDropStk Int#
0# HappyStk a
l                 = HappyStk a
l
happyDropStk Int#
n  (a
x `HappyStk` HappyStk a
xs) = Int# -> HappyStk a -> HappyStk a
happyDropStk MINUS(n,(1#::Happy_Int)) xs

-----------------------------------------------------------------------------
-- Moving to a new state after a reduction

happyGoto :: Int#
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyGoto Int#
nt Int#
j Token
tk Int#
st =
   DEBUG_TRACE(", goto state " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# new_state) Happy_Prelude.++ "\n")
   Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyDoAction Int#
j Token
tk Int#
new_state
  where new_state :: Int#
new_state = Int# -> Int# -> Int#
happyIndexGotoTable Int#
nt Int#
st

{- Note [Error recovery]
~~~~~~~~~~~~~~~~~~~~~~~~
When there is no applicable action for the current lookahead token `tk`,
happy enters error recovery mode. Depending on whether the grammar file
declares the two action form `%error { abort } { report }` for
    Resumptive Error Handling,
it works in one (not resumptive) or two phases (resumptive):

 1. Fixup mode:
    Try to see if there is an action for the error token ERROR_TOK. If there
    is, do *not* emit an error and pretend instead that an `error` token was
    inserted.
    When there is no ERROR_TOK action, report an error.

    In non-resumptive error handling, calling the single error handler
    (e.g. `happyError`) will throw an exception and abort the parser.
    However, in resumptive error handling we enter *error resumption mode*.

 2. Error resumption mode:
    After reporting the error (with `report`), happy will attempt to find
    a good state stack to resume parsing in.
    For each candidate stack, it discards input until one of the candidates
    resumes (i.e. shifts the current input).
    If no candidate resumes before the end of input, resumption failed and
    calls the `abort` function, to much the same effect as in non-resumptive
    error handling.

    Candidate stacks are declared by the grammar author using the special
    `catch` terminal and called "catch frames".
    This mechanism is described in detail in Note [happyResume].

The `catch` resumption mechanism (2) is what usually is associated with
`error` in `bison` or `menhir`. Since `error` is used for the Fixup mechanism
(1) above, we call the corresponding token `catch`.
Furthermore, in constrast to `bison`, our implementation of `catch`
non-deterministically considers multiple catch frames on the stack for
resumption (See Note [Multiple catch frames]).

Note [happyResume]
~~~~~~~~~~~~~~~~~~
`happyResume` implements the resumption mechanism from Note [Error recovery].
It is best understood by example. Consider

Exp :: { String }
Exp : '1'                { "1" }
    | catch              { "catch" }
    | Exp '+' Exp %shift { $1 Happy_Prelude.++ " + " Happy_Prelude.++ $3 } -- %shift: associate 1 + 1 + 1 to the right
    | '(' Exp ')'        { "(" Happy_Prelude.++ $2 Happy_Prelude.++ ")" }

The idea of the use of `catch` here is that upon encountering a parse error
during expression parsing, we can gracefully degrade using the `catch` rule,
still producing a partial syntax tree and keep on parsing to find further
syntax errors.

Let's trace the parser state for input 11+1, which will error out after shifting 1.
After shifting, we have the following item stack (growing downwards and omitting
transitive closure items):

  State 0: %start_parseExp -> . Exp
  State 5: Exp -> '1' .

(Stack as a list of state numbers: [5,0].)
As Note [Error recovery] describes, we will first try Fixup mode.
That fails because no production can shift the `error` token.
Next we try Error resumption mode. This works as follows:

  1. Pop off the item stack until we find an item that can shift the `catch`
     token. (Implemented in `pop_items`.)
       * State 5 cannot shift catch. Pop.
       * State 0 can shift catch, which would transition into
          State 4: Exp -> catch .
     So record the *stack* `[4,0]` after doing the shift transition.
     We call this a *catch frame*, where the top is a *catch state*,
     corresponding to an item in which we just shifted a `catch` token.
     There can be multiple such catch stacks, see Note [Multiple catch frames].

  2. Discard tokens from the input until the lookahead can be shifted in one
     of the catch stacks. (Implemented in `discard_input_until_exp` and
     `some_catch_state_shifts`.)
       * We cannot shift the current lookahead '1' in state 4, so we discard
       * We *can* shift the next lookahead '+' in state 4, but only after
         reducing, which pops State 4 and goes to State 3:
           State 3: %start_parseExp -> Exp .
                    Exp -> Exp . '+' Exp
         Here we can shift '+'.
     As you can see, to implement this machinery we need to simulate
     the operation of the LALR automaton, especially reduction
     (`happySimulateReduce`).

Note [Multiple catch frames]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For fewer spurious error messages, it can be beneficial to trace multiple catch
items. Consider

Exp : '1'
    | catch
    | Exp '+' Exp %shift
    | '(' Exp ')'

Let's trace the parser state for input (;+1, which will error out after shifting (.
After shifting, we have the following item stack (growing downwards):

  State 0: %start_parseExp -> . Exp
  State 6: Exp -> '(' . Exp ')'

Upon error, we want to find items in the stack which can shift a catch token.
Note that both State 0 and State 6 can shift a catch token, transitioning into
  State 4: Exp -> catch .
Hence we record the catch frames `[4,6,0]` and `[4,0]` for possible resumption.

Which catch frame do we pick for resumption?
Note that resuming catch frame `[4,0]` will parse as "catch+1", whereas
resuming the innermost frame `[4,6,0]` corresponds to parsing "(catch+1".
The latter would keep discarding input until the closing ')' is found.
So we will discard + and 1, leading to a spurious syntax error at the end of
input, aborting the parse and never producing a partial syntax tree. Bad!

It is far preferable to resume with catch frame `[4,0]`, where we can resume
successfully on input +, so that is what we do.

In general, we pick the catch frame for resumption that discards the least
amount of input for a successful shift, preferring the topmost such catch frame.
-}

-- happyFail :: Happy_Int -> Token -> Happy_Int -> _
-- This function triggers Note [Error recovery].
-- If the current token is ERROR_TOK, phase (1) has failed and we might try
-- phase (2).
happyFail :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyFail ERROR_TOK = happyFixupFailed
happyFail Int#
i         = Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyTryFixup Int#
i

-- Enter Error Fixup (see Note [Error recovery]):
-- generate an error token, save the old token and carry on.
-- When a `happyShift` accepts the error token, we will pop off the error token
-- to resume parsing with the current lookahead `i`.
happyTryFixup :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyTryFixup Int#
i Token
tk Int#
action Happy_IntList
sts HappyStk HappyAbsSyn
stk =
  DEBUG_TRACE("entering `error` fixup.\n")
  Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyDoAction ERROR_TOK tk action sts (MK_ERROR_TOKEN(i) `HappyStk` stk)
  -- NB: `happyShift` will simply pop the error token and carry on with
  --     `tk`. Hence we don't change `tk` in the call here

-- See Note [Error recovery], phase (2).
-- Enter resumption mode after reporting the error by calling `happyResume`.
happyFixupFailed :: Token
-> Int# -> Happy_IntList -> HappyStk HappyAbsSyn -> P HappyAbsSyn
happyFixupFailed Token
tk Int#
st Happy_IntList
sts (HappyAbsSyn
x `HappyStk` HappyStk HappyAbsSyn
stk) =
  let i :: Int#
i = GET_ERROR_TOKEN(x) in
  DEBUG_TRACE("`error` fixup failed.\n")
  let resume :: P HappyAbsSyn
resume   = Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyResume Int#
i Token
tk Int#
st Happy_IntList
sts HappyStk HappyAbsSyn
stk
      expected :: [String]
expected = Int# -> Happy_IntList -> [String]
happyExpectedTokens Int#
st Happy_IntList
sts in
  Int# -> Token -> [String] -> P HappyAbsSyn -> P HappyAbsSyn
forall {a}. Int# -> Token -> [String] -> P a -> P a
happyReport Int#
i Token
tk [String]
expected P HappyAbsSyn
resume

-- happyResume :: Happy_Int -> Token -> Happy_Int -> _
-- See Note [happyResume]
happyResume :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyResume Int#
i Token
tk Int#
st Happy_IntList
sts HappyStk HappyAbsSyn
stk = [(Happy_IntList, HappyStk HappyAbsSyn)]
-> Int# -> Happy_IntList -> HappyStk HappyAbsSyn -> P HappyAbsSyn
pop_items [] Int#
st Happy_IntList
sts HappyStk HappyAbsSyn
stk
  where
    !(Happy_GHC_Exts.I# Int#
n_starts) = Int
happy_n_starts   -- this is to test whether we have a start token
    !(Happy_GHC_Exts.I# Int#
eof_i) = Int
happy_n_terms Int -> Int -> Int
forall a. Num a => a -> a -> a
Happy_Prelude.- Int
1   -- this is the token number of the EOF token
    happy_list_to_list :: Happy_IntList -> [Happy_Prelude.Int]
    happy_list_to_list :: Happy_IntList -> [Int]
happy_list_to_list (HappyCons Int#
st Happy_IntList
sts)
      | LT(st, n_starts)
      = [(Int# -> Int
Happy_GHC_Exts.I# Int#
st)]
      | Bool
Happy_Prelude.otherwise
      = (Int# -> Int
Happy_GHC_Exts.I# Int#
st) Int -> [Int] -> [Int]
forall a. a -> [a] -> [a]
: Happy_IntList -> [Int]
happy_list_to_list Happy_IntList
sts

    -- See (1) of Note [happyResume]
    pop_items :: [(Happy_IntList, HappyStk HappyAbsSyn)]
-> Int# -> Happy_IntList -> HappyStk HappyAbsSyn -> P HappyAbsSyn
pop_items [(Happy_IntList, HappyStk HappyAbsSyn)]
catch_frames Int#
st Happy_IntList
sts HappyStk HappyAbsSyn
stk
      | LT(st, n_starts)
      = DEBUG_TRACE("reached start state " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# st) Happy_Prelude.++ ", ")
        if [(Happy_IntList, HappyStk HappyAbsSyn)] -> Bool
forall a. [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
Happy_Prelude.null [(Happy_IntList, HappyStk HappyAbsSyn)]
catch_frames_new
          then DEBUG_TRACE("no resumption.\n")
               P HappyAbsSyn
forall a. P a
happyAbort
          else DEBUG_TRACE("now discard input, trying to anchor in states " Happy_Prelude.++ Happy_Prelude.show (Happy_Prelude.map (happy_list_to_list . Happy_Prelude.fst) (Happy_Prelude.reverse catch_frames_new)) Happy_Prelude.++ ".\n")
               Int#
-> Token
-> [(Happy_IntList, HappyStk HappyAbsSyn)]
-> P HappyAbsSyn
discard_input_until_exp Int#
i Token
tk ([(Happy_IntList, HappyStk HappyAbsSyn)]
-> [(Happy_IntList, HappyStk HappyAbsSyn)]
forall a. [a] -> [a]
Happy_Prelude.reverse [(Happy_IntList, HappyStk HappyAbsSyn)]
catch_frames_new)
      | (HappyCons Int#
st1 Happy_IntList
sts1) <- Happy_IntList
sts, HappyAbsSyn
_ `HappyStk` HappyStk HappyAbsSyn
stk1 <- HappyStk HappyAbsSyn
stk
      = [(Happy_IntList, HappyStk HappyAbsSyn)]
-> Int# -> Happy_IntList -> HappyStk HappyAbsSyn -> P HappyAbsSyn
pop_items [(Happy_IntList, HappyStk HappyAbsSyn)]
catch_frames_new Int#
st1 Happy_IntList
sts1 HappyStk HappyAbsSyn
stk1
      where
        !catch_frames_new :: [(Happy_IntList, HappyStk HappyAbsSyn)]
catch_frames_new
          | HappyShift Int#
new_state <- Int# -> HappyAction
happyDecodeAction (Int# -> Int# -> Int#
happyNextAction CATCH_TOK st)
          , DEBUG_TRACE("can shift catch token in state " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# st) Happy_Prelude.++ ", into state " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# new_state) Happy_Prelude.++ "\n")
            [(Happy_IntList, HappyStk HappyAbsSyn)] -> Bool
forall a. [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
Happy_Prelude.null (((Happy_IntList, HappyStk HappyAbsSyn) -> Bool)
-> [(Happy_IntList, HappyStk HappyAbsSyn)]
-> [(Happy_IntList, HappyStk HappyAbsSyn)]
forall a. (a -> Bool) -> [a] -> [a]
Happy_Prelude.filter (\(HappyCons Int#
_ (HappyCons Int#
h Happy_IntList
_),HappyStk HappyAbsSyn
_) -> EQ(st,h)) catch_frames)
          = (Int# -> Happy_IntList -> Happy_IntList
HappyCons Int#
new_state (Int# -> Happy_IntList -> Happy_IntList
HappyCons Int#
st Happy_IntList
sts), MK_ERROR_TOKEN(i) `HappyStk` stk):catch_frames -- MK_ERROR_TOKEN(i) is just some dummy that should not be accessed by user code
          | Bool
Happy_Prelude.otherwise
          = DEBUG_TRACE("already shifted or can't shift catch in " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# st) Happy_Prelude.++ "\n")
            [(Happy_IntList, HappyStk HappyAbsSyn)]
catch_frames

    -- See (2) of Note [happyResume]
    discard_input_until_exp :: Int#
-> Token
-> [(Happy_IntList, HappyStk HappyAbsSyn)]
-> P HappyAbsSyn
discard_input_until_exp Int#
i Token
tk [(Happy_IntList, HappyStk HappyAbsSyn)]
catch_frames
      | Happy_Prelude.Just (HappyCons Int#
st (HappyCons Int#
catch_st Happy_IntList
sts), HappyStk HappyAbsSyn
catch_frame) <- Int#
-> [(Happy_IntList, HappyStk HappyAbsSyn)]
-> Maybe (Happy_IntList, HappyStk HappyAbsSyn)
forall {b}.
Int# -> [(Happy_IntList, b)] -> Maybe (Happy_IntList, b)
some_catch_state_shifts Int#
i [(Happy_IntList, HappyStk HappyAbsSyn)]
catch_frames
      = DEBUG_TRACE("found expected token in state " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# st) Happy_Prelude.++ " after shifting from " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# catch_st) Happy_Prelude.++ ": " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# i) Happy_Prelude.++ "\n")
        Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyDoAction Int#
i Token
tk Int#
st (Int# -> Happy_IntList -> Happy_IntList
HappyCons Int#
catch_st Happy_IntList
sts) HappyStk HappyAbsSyn
catch_frame
      | EQ(i,eof_i) -- is i EOF?
      = DEBUG_TRACE("reached EOF, cannot resume. abort parse :(\n")
        P HappyAbsSyn
forall a. P a
happyAbort
      | Bool
Happy_Prelude.otherwise
      = DEBUG_TRACE("discard token " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# i) Happy_Prelude.++ "\n")
        (Token -> P HappyAbsSyn)
-> (Int# -> Token -> P HappyAbsSyn) -> P HappyAbsSyn
forall {r}. (Token -> P r) -> (Int# -> Token -> P r) -> P r
happyLex (\Token
eof_tk -> Int#
-> Token
-> [(Happy_IntList, HappyStk HappyAbsSyn)]
-> P HappyAbsSyn
discard_input_until_exp Int#
eof_i Token
eof_tk [(Happy_IntList, HappyStk HappyAbsSyn)]
catch_frames) -- eof
                 (\Int#
i Token
tk   -> Int#
-> Token
-> [(Happy_IntList, HappyStk HappyAbsSyn)]
-> P HappyAbsSyn
discard_input_until_exp Int#
i Token
tk [(Happy_IntList, HappyStk HappyAbsSyn)]
catch_frames)         -- not eof

    some_catch_state_shifts :: Int# -> [(Happy_IntList, b)] -> Maybe (Happy_IntList, b)
some_catch_state_shifts Int#
_ [] = DEBUG_TRACE("no catch state could shift.\n") Happy_Prelude.Nothing
    some_catch_state_shifts Int#
i catch_frames :: [(Happy_IntList, b)]
catch_frames@(((HappyCons Int#
st Happy_IntList
sts),b
_):[(Happy_IntList, b)]
_) = Int#
-> Int#
-> Happy_IntList
-> [(Happy_IntList, b)]
-> Maybe (Happy_IntList, b)
try_head Int#
i Int#
st Happy_IntList
sts [(Happy_IntList, b)]
catch_frames
      where
        try_head :: Int#
-> Int#
-> Happy_IntList
-> [(Happy_IntList, b)]
-> Maybe (Happy_IntList, b)
try_head Int#
i Int#
st Happy_IntList
sts [(Happy_IntList, b)]
catch_frames = -- PRECONDITION: head catch_frames = (HappyCons st sts)
          DEBUG_TRACE("trying token " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# i) Happy_Prelude.++ " in state " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# st) Happy_Prelude.++ ": ")
          case Int# -> HappyAction
happyDecodeAction (Int# -> Int# -> Int#
happyNextAction Int#
i Int#
st) of
            HappyAction
HappyFail     -> DEBUG_TRACE("fail.\n")   some_catch_state_shifts i (Happy_Prelude.tail catch_frames)
            HappyAction
HappyAccept   -> DEBUG_TRACE("accept.\n") Happy_Prelude.Just (Happy_Prelude.head catch_frames)
            HappyShift Int#
_  -> DEBUG_TRACE("shift.\n")  Happy_Prelude.Just (Happy_Prelude.head catch_frames)
            HappyReduce Int#
r -> case Int# -> Int# -> Happy_IntList -> Happy_IntList
happySimulateReduce Int#
r Int#
st Happy_IntList
sts of
              (HappyCons Int#
st1 Happy_IntList
sts1) -> Int#
-> Int#
-> Happy_IntList
-> [(Happy_IntList, b)]
-> Maybe (Happy_IntList, b)
try_head Int#
i Int#
st1 Happy_IntList
sts1 [(Happy_IntList, b)]
catch_frames

happySimulateReduce :: Int# -> Int# -> Happy_IntList -> Happy_IntList
happySimulateReduce Int#
r Int#
st Happy_IntList
sts =
  DEBUG_TRACE("simulate reduction of rule " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# r) Happy_Prelude.++ ", ")
  let (# Int#
nt, Int#
len #) = Int# -> (# Int#, Int# #)
happyIndexRuleArr Int#
r in
  DEBUG_TRACE("nt " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# nt) Happy_Prelude.++ ", len: " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# len) Happy_Prelude.++ ", new_st ")
  let !(sts1 :: Happy_IntList
sts1@(HappyCons Int#
st1 Happy_IntList
_)) = Int# -> Happy_IntList -> Happy_IntList
happyDrop Int#
len (Int# -> Happy_IntList -> Happy_IntList
HappyCons Int#
st Happy_IntList
sts)
      new_st :: Int#
new_st = Int# -> Int# -> Int#
happyIndexGotoTable Int#
nt Int#
st1 in
  DEBUG_TRACE(Happy_Prelude.show (Happy_GHC_Exts.I# new_st) Happy_Prelude.++ ".\n")
  (Int# -> Happy_IntList -> Happy_IntList
HappyCons Int#
new_st Happy_IntList
sts1)

happyTokenToString :: Happy_Prelude.Int -> Happy_Prelude.String
happyTokenToString :: Int -> String
happyTokenToString Int
i = [String]
happyTokenStrings [String] -> Int -> String
forall a. HasCallStack => [a] -> Int -> a
Happy_Prelude.!! (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
Happy_Prelude.- Int
2) -- 2: errorTok, catchTok

happyExpectedTokens :: Happy_Int -> Happy_IntList -> [Happy_Prelude.String]
-- Upon a parse error, we want to suggest tokens that are expected in that
-- situation. This function computes such tokens.
-- It works by examining the top of the state stack.
-- For every token number that does a shift transition, record that token number.
-- For every token number that does a reduce transition, simulate that reduction
-- on the state state stack and repeat.
-- The recorded token numbers are then formatted with 'happyTokenToString' and
-- returned.
happyExpectedTokens :: Int# -> Happy_IntList -> [String]
happyExpectedTokens Int#
st Happy_IntList
sts =
  DEBUG_TRACE("constructing expected tokens.\n")
  (Int -> String) -> [Int] -> [String]
forall a b. (a -> b) -> [a] -> [b]
Happy_Prelude.map Int -> String
happyTokenToString (Int# -> Happy_IntList -> [Int] -> [Int]
search_shifts Int#
st Happy_IntList
sts [])
  where
    search_shifts :: Int# -> Happy_IntList -> [Int] -> [Int]
search_shifts Int#
st Happy_IntList
sts [Int]
shifts = ((Int, Int) -> [Int] -> [Int]) -> [Int] -> [(Int, Int)] -> [Int]
forall a b. (a -> b -> b) -> b -> [a] -> b
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
Happy_Prelude.foldr (Int# -> Happy_IntList -> (Int, Int) -> [Int] -> [Int]
add_action Int#
st Happy_IntList
sts) [Int]
shifts (Int# -> [(Int, Int)]
distinct_actions Int#
st)
    add_action :: Int# -> Happy_IntList -> (Int, Int) -> [Int] -> [Int]
add_action Int#
st Happy_IntList
sts (Happy_GHC_Exts.I# Int#
i, Happy_GHC_Exts.I# Int#
act) [Int]
shifts =
      DEBUG_TRACE("found action in state " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# st) Happy_Prelude.++ ", input " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# i) Happy_Prelude.++ ", " Happy_Prelude.++ Happy_Prelude.show (happyDecodeAction act) Happy_Prelude.++ "\n")
      case Int# -> HappyAction
happyDecodeAction Int#
act of
        HappyAction
HappyFail     -> [Int]
shifts
        HappyAction
HappyAccept   -> [Int]
shifts -- This would always be %eof or error... Not helpful
        HappyShift Int#
_  -> Int -> [Int] -> [Int]
forall a. Ord a => a -> [a] -> [a]
Happy_Prelude.insert (Int# -> Int
Happy_GHC_Exts.I# Int#
i) [Int]
shifts
        HappyReduce Int#
r -> case Int# -> Int# -> Happy_IntList -> Happy_IntList
happySimulateReduce Int#
r Int#
st Happy_IntList
sts of
          (HappyCons Int#
st1 Happy_IntList
sts1) -> Int# -> Happy_IntList -> [Int] -> [Int]
search_shifts Int#
st1 Happy_IntList
sts1 [Int]
shifts
    distinct_actions :: Int# -> [(Int, Int)]
distinct_actions Int#
st
      -- The (token number, action) pairs of all actions in the given state
      = ((-Int
1), (Int# -> Int
Happy_GHC_Exts.I# (HappyAddr -> Int# -> Int#
happyIndexOffAddr HappyAddr
happyDefActions Int#
st)))
      (Int, Int) -> [(Int, Int)] -> [(Int, Int)]
forall a. a -> [a] -> [a]
: [ (Int
i, Int
act) | Int
i <- [Int
begin_i..Int
happy_n_terms], Int
act <- Int# -> Int -> [Int]
get_act Int#
row_off Int
i ]
      where
        row_off :: Int#
row_off = HappyAddr -> Int# -> Int#
happyIndexOffAddr HappyAddr
happyActOffsets Int#
st
        begin_i :: Int
begin_i = Int
2 -- +2: errorTok,catchTok
    get_act :: Int# -> Int -> [Int]
get_act Int#
off (Happy_GHC_Exts.I# Int#
i) -- happyIndexActionTable with cached row offset
      | let off_i :: Int#
off_i = PLUS(off,i)
      , GTE(off_i,0#)
      , EQ(happyIndexOffAddr happyCheck off_i,i)
      = [(Int# -> Int
Happy_GHC_Exts.I# (HappyAddr -> Int# -> Int#
happyIndexOffAddr HappyAddr
happyTable Int#
off_i))]
      | Bool
Happy_Prelude.otherwise
      = []

-- Internal happy errors:

notHappyAtAll :: a
notHappyAtAll :: forall a. a
notHappyAtAll = String -> a
forall a. HasCallStack => String -> a
Happy_Prelude.error String
"Internal Happy parser panic. This is not supposed to happen! Please open a bug report at https://github.com/haskell/happy/issues.\n"

-----------------------------------------------------------------------------
-- Hack to get the typechecker to accept our action functions

happyTcHack :: Happy_Int -> a -> a
happyTcHack :: forall a. Int# -> a -> a
happyTcHack Int#
x a
y = a
y
{-# INLINE happyTcHack #-}

-----------------------------------------------------------------------------
-- Seq-ing.  If the --strict flag is given, then Happy emits
--      happySeq = happyDoSeq
-- otherwise it emits
--      happySeq = happyDontSeq

happyDoSeq, happyDontSeq :: a -> b -> b
happyDoSeq :: forall a b. a -> b -> b
happyDoSeq   a
a b
b = a
a a -> b -> b
forall a b. a -> b -> b
`Happy_GHC_Exts.seq` b
b
happyDontSeq :: forall a b. a -> b -> b
happyDontSeq a
a b
b = b
b

-----------------------------------------------------------------------------
-- Don't inline any functions from the template.  GHC has a nasty habit
-- of deciding to inline happyGoto everywhere, which increases the size of
-- the generated parser quite a bit.

{-# NOINLINE happyDoAction #-}
{-# NOINLINE happyTable #-}
{-# NOINLINE happyCheck #-}
{-# NOINLINE happyActOffsets #-}
{-# NOINLINE happyGotoOffsets #-}
{-# NOINLINE happyDefActions #-}

{-# NOINLINE happyShift #-}
{-# NOINLINE happySpecReduce_0 #-}
{-# NOINLINE happySpecReduce_1 #-}
{-# NOINLINE happySpecReduce_2 #-}
{-# NOINLINE happySpecReduce_3 #-}
{-# NOINLINE happyReduce #-}
{-# NOINLINE happyMonadReduce #-}
{-# NOINLINE happyGoto #-}
{-# NOINLINE happyFail #-}

-- end of Happy Template.