fuzzySets-1.0.0: Library for constructing and manipulating fuzzy sets and fuzzy relations.
Safe HaskellSafe-Inferred
LanguageHaskell2010

Lattices.UnitIntervalStructures.Lukasiewicz

Synopsis

Documentation

newtype UILukasiewicz Source #

Instances

Instances details
Num UILukasiewicz Source # 
Instance details

Defined in Lattices.UnitIntervalStructures.Lukasiewicz

Fractional UILukasiewicz Source # 
Instance details

Defined in Lattices.UnitIntervalStructures.Lukasiewicz

Real UILukasiewicz Source # 
Instance details

Defined in Lattices.UnitIntervalStructures.Lukasiewicz

Methods

toRational :: UILukasiewicz -> Rational

RealFrac UILukasiewicz Source # 
Instance details

Defined in Lattices.UnitIntervalStructures.Lukasiewicz

Methods

properFraction :: Integral b => UILukasiewicz -> (b, UILukasiewicz)

truncate :: Integral b => UILukasiewicz -> b

round :: Integral b => UILukasiewicz -> b

ceiling :: Integral b => UILukasiewicz -> b

floor :: Integral b => UILukasiewicz -> b

Show UILukasiewicz Source # 
Instance details

Defined in Lattices.UnitIntervalStructures.Lukasiewicz

Methods

showsPrec :: Int -> UILukasiewicz -> ShowS

show :: UILukasiewicz -> String

showList :: [UILukasiewicz] -> ShowS

BoundedLattice UILukasiewicz Source # 
Instance details

Defined in Lattices.UnitIntervalStructures.Lukasiewicz

ResiduatedLattice UILukasiewicz Source #

Łukasiewicz structure of truth values

Instance details

Defined in Lattices.UnitIntervalStructures.Lukasiewicz

Eq UILukasiewicz Source # 
Instance details

Defined in Lattices.UnitIntervalStructures.Lukasiewicz

Ord UILukasiewicz Source # 
Instance details

Defined in Lattices.UnitIntervalStructures.Lukasiewicz

class RealFrac l => BoundedLattice l where Source #

Lattice is an algebraic structure with join and meet operations. BoundedLattice has Top and Bottom elements Lattice satisfies following laws:

Associativity

x \/ (y \/ z) ≡ (x \/ y) \/ z
x /\ (y /\ z) ≡ (x /\ y) /\ z

Commutativity

x \/ y ≡ y \/ x
x /\ y ≡ y /\ x

Idempotency

x \/ x ≡ x
x /\ x ≡ x

Absorption

a \/ (a /\ b) ≡ a
a /\ (a \/ b) ≡ a

Methods

(/\) :: l -> l -> l Source #

meet

(\/) :: l -> l -> l Source #

join

top :: l Source #

also called upper bound

bot :: l Source #

also called lower bound

mkLattice :: Double -> l Source #

constructor for lattice