| Copyright | (C) 2008-2013 Edward Kmett |
|---|---|
| License | BSD-style (see the file LICENSE) |
| Maintainer | Edward Kmett <ekmett@gmail.com> |
| Stability | provisional |
| Portability | MPTCs, fundeps |
| Safe Haskell | Safe-Inferred |
| Language | Haskell2010 |
Control.Monad.Trans.Free
Contents
Description
The free monad transformer
- data FreeF f a b
- newtype FreeT f m a = FreeT {}
- type Free f = FreeT f Identity
- free :: FreeF f a (Free f a) -> Free f a
- runFree :: Free f a -> FreeF f a (Free f a)
- liftF :: (Functor f, MonadFree f m) => f a -> m a
- iterT :: (Functor f, Monad m) => (f (m a) -> m a) -> FreeT f m a -> m a
- iterTM :: (Functor f, Monad m, MonadTrans t, Monad (t m)) => (f (t m a) -> t m a) -> FreeT f m a -> t m a
- hoistFreeT :: (Monad m, Functor f) => (forall a. m a -> n a) -> FreeT f m b -> FreeT f n b
- transFreeT :: (Monad m, Functor g) => (forall a. f a -> g a) -> FreeT f m b -> FreeT g m b
- cutoff :: (Functor f, Monad m) => Integer -> FreeT f m a -> FreeT f m (Maybe a)
- retract :: Monad f => Free f a -> f a
- iter :: Functor f => (f a -> a) -> Free f a -> a
- iterM :: (Functor f, Monad m) => (f (m a) -> m a) -> Free f a -> m a
- class Monad m => MonadFree f m | m -> f where
- wrap :: f (m a) -> m a
The base functor
The base functor for a free monad.
Instances
| Traversable f => Bitraversable (FreeF f) | |
| Functor f => Bifunctor (FreeF f) | |
| Foldable f => Bifoldable (FreeF f) | |
| Eq1 f => Eq2 (FreeF f) | |
| Ord1 f => Ord2 (FreeF f) | |
| Show1 f => Show2 (FreeF f) | |
| Read1 f => Read2 (FreeF f) | |
| Functor f => Functor (FreeF f a) | |
| Foldable f => Foldable (FreeF f a) | |
| Traversable f => Traversable (FreeF f a) | |
| (Eq1 f, Eq a) => Eq1 (FreeF f a) | |
| (Ord1 f, Ord a) => Ord1 (FreeF f a) | |
| (Show1 f, Show a) => Show1 (FreeF f a) | |
| (Read1 f, Read a) => Read1 (FreeF f a) | |
| Typeable ((* -> *) -> * -> * -> *) FreeF | |
| (Eq a, Eq (f b)) => Eq (FreeF f a b) | |
| (Ord a, Ord (f b)) => Ord (FreeF f a b) | |
| (Read a, Read (f b)) => Read (FreeF f a b) | |
| (Show a, Show (f b)) => Show (FreeF f a b) |
The free monad transformer
The "free monad transformer" for a functor f
Instances
The free monad
runFree :: Free f a -> FreeF f a (Free f a) Source
Evaluates the first layer out of a free monad value.
Operations
liftF :: (Functor f, MonadFree f m) => f a -> m a Source
A version of lift that can be used with just a Functor for f.
iterT :: (Functor f, Monad m) => (f (m a) -> m a) -> FreeT f m a -> m a Source
Tear down a free monad transformer using iteration.
iterTM :: (Functor f, Monad m, MonadTrans t, Monad (t m)) => (f (t m a) -> t m a) -> FreeT f m a -> t m a Source
Tear down a free monad transformer using iteration over a transformer.
cutoff :: (Functor f, Monad m) => Integer -> FreeT f m a -> FreeT f m (Maybe a) Source
Cuts off a tree of computations at a given depth.
If the depth is 0 or less, no computation nor
monadic effects will take place.
Some examples (n ≥ 0):
cutoff0 _ ≡returnNothingcutoff(n+1).return≡return.Justcutoff(n+1).lift≡lift.liftMJustcutoff(n+1).wrap≡wrap.fmap(cutoffn)
Calling is always terminating, provided each of the
steps in the iteration is terminating.retract . cutoff n
Operations of free monad
iterM :: (Functor f, Monad m) => (f (m a) -> m a) -> Free f a -> m a Source
Like iter for monadic values.
Free Monads With Class
class Monad m => MonadFree f m | m -> f where Source
Monads provide substitution (fmap) and renormalization (join):
m>>=f =join(fmapf m)
A free Monad is one that does no work during the normalization step beyond simply grafting the two monadic values together.
[] is not a free Monad (in this sense) because smashes the lists flat.join [[a]]
On the other hand, consider:
data Tree a = Bin (Tree a) (Tree a) | Tip a
instanceMonadTree wherereturn= Tip Tip a>>=f = f a Bin l r>>=f = Bin (l>>=f) (r>>=f)
This Monad is the free Monad of Pair:
data Pair a = Pair a a
And we could make an instance of MonadFree for it directly:
instanceMonadFreePair Tree wherewrap(Pair l r) = Bin l r
Or we could choose to program with instead of Free PairTree
and thereby avoid having to define our own Monad instance.
Moreover, Control.Monad.Free.Church provides a MonadFree
instance that can improve the asymptotic complexity of code that
constructs free monads by effectively reassociating the use of
(>>=). You may also want to take a look at the kan-extensions
package (http://hackage.haskell.org/package/kan-extensions).
See Free for a more formal definition of the free Monad
for a Functor.
Minimal complete definition
Nothing
Instances
| (Functor f, MonadFree f m) => MonadFree f (ListT m) | |
| (Functor f, MonadFree f m) => MonadFree f (IdentityT m) | |
| (Functor f, MonadFree f m) => MonadFree f (MaybeT m) | |
| Functor f => MonadFree f (Free f) | |
| Functor f => MonadFree f (F f) | |
| Monad m => MonadFree Identity (IterT m) | |
| (Functor f, MonadFree f m, Error e) => MonadFree f (ErrorT e m) | |
| (Functor f, MonadFree f m, Monoid w) => MonadFree f (WriterT w m) | |
| (Functor f, MonadFree f m, Monoid w) => MonadFree f (WriterT w m) | |
| (Functor f, MonadFree f m) => MonadFree f (ContT r m) | |
| (Functor f, MonadFree f m) => MonadFree f (StateT s m) | |
| (Functor f, MonadFree f m) => MonadFree f (StateT s m) | |
| (Functor f, MonadFree f m) => MonadFree f (ReaderT e m) | |
| (Functor f, Monad m) => MonadFree f (FreeT f m) | |
| Functor f => MonadFree f (FT f m) | |
| (Functor f, MonadFree f m, Monoid w) => MonadFree f (RWST r w s m) | |
| (Functor f, MonadFree f m, Monoid w) => MonadFree f (RWST r w s m) |