module Language.Egison.Syntax.Pattern.Fixity.Associativity
( Associativity(..)
)
where
import GHC.Generics ( Generic )
import Data.Data ( Data
, Typeable
)
data Associativity = AssocLeft | AssocRight | AssocNone
deriving (Int -> Associativity -> ShowS
[Associativity] -> ShowS
Associativity -> String
(Int -> Associativity -> ShowS)
-> (Associativity -> String)
-> ([Associativity] -> ShowS)
-> Show Associativity
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
$cshowsPrec :: Int -> Associativity -> ShowS
showsPrec :: Int -> Associativity -> ShowS
$cshow :: Associativity -> String
show :: Associativity -> String
$cshowList :: [Associativity] -> ShowS
showList :: [Associativity] -> ShowS
Show, Associativity -> Associativity -> Bool
(Associativity -> Associativity -> Bool)
-> (Associativity -> Associativity -> Bool) -> Eq Associativity
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
$c== :: Associativity -> Associativity -> Bool
== :: Associativity -> Associativity -> Bool
$c/= :: Associativity -> Associativity -> Bool
/= :: Associativity -> Associativity -> Bool
Eq, (forall x. Associativity -> Rep Associativity x)
-> (forall x. Rep Associativity x -> Associativity)
-> Generic Associativity
forall x. Rep Associativity x -> Associativity
forall x. Associativity -> Rep Associativity x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
$cfrom :: forall x. Associativity -> Rep Associativity x
from :: forall x. Associativity -> Rep Associativity x
$cto :: forall x. Rep Associativity x -> Associativity
to :: forall x. Rep Associativity x -> Associativity
Generic, Typeable Associativity
Typeable Associativity =>
(forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Associativity -> c Associativity)
-> (forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Associativity)
-> (Associativity -> Constr)
-> (Associativity -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c Associativity))
-> (forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c Associativity))
-> ((forall b. Data b => b -> b) -> Associativity -> Associativity)
-> (forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Associativity -> r)
-> (forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Associativity -> r)
-> (forall u. (forall d. Data d => d -> u) -> Associativity -> [u])
-> (forall u.
Int -> (forall d. Data d => d -> u) -> Associativity -> u)
-> (forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Associativity -> m Associativity)
-> (forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Associativity -> m Associativity)
-> (forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Associativity -> m Associativity)
-> Data Associativity
Associativity -> Constr
Associativity -> DataType
(forall b. Data b => b -> b) -> Associativity -> Associativity
forall a.
Typeable a =>
(forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
(r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
(r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> Associativity -> u
forall u. (forall d. Data d => d -> u) -> Associativity -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Associativity -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Associativity -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Associativity -> m Associativity
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Associativity -> m Associativity
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Associativity
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Associativity -> c Associativity
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c Associativity)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c Associativity)
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Associativity -> c Associativity
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Associativity -> c Associativity
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Associativity
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Associativity
$ctoConstr :: Associativity -> Constr
toConstr :: Associativity -> Constr
$cdataTypeOf :: Associativity -> DataType
dataTypeOf :: Associativity -> DataType
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c Associativity)
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c Associativity)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c Associativity)
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c Associativity)
$cgmapT :: (forall b. Data b => b -> b) -> Associativity -> Associativity
gmapT :: (forall b. Data b => b -> b) -> Associativity -> Associativity
$cgmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Associativity -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Associativity -> r
$cgmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Associativity -> r
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Associativity -> r
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> Associativity -> [u]
gmapQ :: forall u. (forall d. Data d => d -> u) -> Associativity -> [u]
$cgmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> Associativity -> u
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> Associativity -> u
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Associativity -> m Associativity
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Associativity -> m Associativity
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Associativity -> m Associativity
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Associativity -> m Associativity
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Associativity -> m Associativity
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Associativity -> m Associativity
Data, Typeable)