| Copyright | (c) 2014-2015 diagrams-lib team (see LICENSE) | 
|---|---|
| License | BSD-style (see LICENSE) | 
| Maintainer | diagrams-discuss@googlegroups.com | 
| Safe Haskell | Safe | 
| Language | Haskell2010 | 
Diagrams.TwoD.Segment.Bernstein
Description
Bernstein polynomials, used internally by code to find intersections of paths. This module is probably not of any relevance to most users of diagrams.
- data BernsteinPoly n = BernsteinPoly {
- bernsteinDegree :: Int
 - bernsteinCoeffs :: [n]
 
 - listToBernstein :: Fractional n => [n] -> BernsteinPoly n
 - evaluateBernstein :: Fractional n => BernsteinPoly n -> n -> n
 - degreeElevate :: Fractional n => BernsteinPoly n -> Int -> BernsteinPoly n
 - bernsteinDeriv :: Fractional n => BernsteinPoly n -> BernsteinPoly n
 - evaluateBernsteinDerivs :: Fractional n => BernsteinPoly n -> n -> [n]
 
Documentation
data BernsteinPoly n Source
Constructors
| BernsteinPoly | |
Fields 
  | |
Instances
| Functor BernsteinPoly Source | |
| Fractional n => Num (BernsteinPoly n) Source | |
| Show n => Show (BernsteinPoly n) Source | |
| Fractional n => Sectionable (BernsteinPoly n) Source | |
| Fractional n => EndValues (BernsteinPoly n) Source | |
| Num n => DomainBounds (BernsteinPoly n) Source | |
| Fractional n => Parametric (BernsteinPoly n) Source | |
| type V (BernsteinPoly n) = V1 Source | |
| type N (BernsteinPoly n) = n Source | |
| type Codomain (BernsteinPoly n) = V1 Source | 
listToBernstein :: Fractional n => [n] -> BernsteinPoly n Source
Create a bernstein polynomial from a list of coëfficients.
evaluateBernstein :: Fractional n => BernsteinPoly n -> n -> n Source
Evaluate the bernstein polynomial.
degreeElevate :: Fractional n => BernsteinPoly n -> Int -> BernsteinPoly n Source
Degree elevate a bernstein polynomial a number of times.
bernsteinDeriv :: Fractional n => BernsteinPoly n -> BernsteinPoly n Source
Find the derivative of a bernstein polynomial.
evaluateBernsteinDerivs :: Fractional n => BernsteinPoly n -> n -> [n] Source
Evaluate the bernstein polynomial and its derivatives.