| Safe Haskell | Safe |
|---|---|
| Language | Haskell2010 |
Data.Functor.Trans.Identity
Documentation
newtype IdentityT (f :: k -> Type) (a :: k) :: forall k. (k -> Type) -> k -> Type #
The trivial monad transformer, which maps a monad to an equivalent monad.
Constructors
| IdentityT | |
Fields
| |
Instances
| Functor s ((->) :: Type -> Type -> Type) f => Functor (s :: k -> k -> Type) ((->) :: Type -> Type -> Type) (IdentityT f :: k -> Type) Source # | |
| (Functor s (Kleisli ((->) :: Type -> Type -> Type) m) f, Endofunctor ((->) :: Type -> Type -> Type) m) => Functor (s :: k -> k -> Type) (Kleisli ((->) :: Type -> Type -> Type) m :: Type -> Type -> Type) (IdentityT f :: k -> Type) Source # | |
| (Functor s (Cokleisli ((->) :: Type -> Type -> Type) ɯ) f, Endofunctor ((->) :: Type -> Type -> Type) ɯ) => Functor (s :: k -> k -> Type) (Cokleisli ((->) :: Type -> Type -> Type) ɯ :: Type -> Type -> Type) (IdentityT f :: k -> Type) Source # | |
| MonadTrans (IdentityT :: (Type -> Type) -> Type -> Type) | |
Defined in Control.Monad.Trans.Identity | |
| Comonad ((->) :: Type -> Type -> Type) f => Comonad ((->) :: Type -> Type -> Type) (IdentityT f :: Type -> Type) Source # | |
| Monad ((->) :: Type -> Type -> Type) f => Monad ((->) :: Type -> Type -> Type) (IdentityT f :: Type -> Type) Source # | |
| Monad m => Monad (IdentityT m) | |
| Functor m => Functor (IdentityT m) | |
| MonadFix m => MonadFix (IdentityT m) | |
Defined in Control.Monad.Trans.Identity | |
| MonadFail m => MonadFail (IdentityT m) | |
Defined in Control.Monad.Trans.Identity | |
| Applicative m => Applicative (IdentityT m) | |
Defined in Control.Monad.Trans.Identity | |
| Foldable f => Foldable (IdentityT f) | |
Defined in Control.Monad.Trans.Identity Methods fold :: Monoid m => IdentityT f m -> m # foldMap :: Monoid m => (a -> m) -> IdentityT f a -> m # foldr :: (a -> b -> b) -> b -> IdentityT f a -> b # foldr' :: (a -> b -> b) -> b -> IdentityT f a -> b # foldl :: (b -> a -> b) -> b -> IdentityT f a -> b # foldl' :: (b -> a -> b) -> b -> IdentityT f a -> b # foldr1 :: (a -> a -> a) -> IdentityT f a -> a # foldl1 :: (a -> a -> a) -> IdentityT f a -> a # toList :: IdentityT f a -> [a] # null :: IdentityT f a -> Bool # length :: IdentityT f a -> Int # elem :: Eq a => a -> IdentityT f a -> Bool # maximum :: Ord a => IdentityT f a -> a # minimum :: Ord a => IdentityT f a -> a # | |
| Traversable f => Traversable (IdentityT f) | |
Defined in Control.Monad.Trans.Identity | |
| Contravariant f => Contravariant (IdentityT f) | |
| Eq1 f => Eq1 (IdentityT f) | |
| Ord1 f => Ord1 (IdentityT f) | |
Defined in Control.Monad.Trans.Identity | |
| Read1 f => Read1 (IdentityT f) | |
Defined in Control.Monad.Trans.Identity Methods liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (IdentityT f a) # liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [IdentityT f a] # liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (IdentityT f a) # liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [IdentityT f a] # | |
| Show1 f => Show1 (IdentityT f) | |
| MonadZip m => MonadZip (IdentityT m) | |
| MonadIO m => MonadIO (IdentityT m) | |
Defined in Control.Monad.Trans.Identity | |
| Alternative m => Alternative (IdentityT m) | |
| MonadPlus m => MonadPlus (IdentityT m) | |
| Functor (NT ((->) :: Type -> Type -> Type) :: (k -> Type) -> (k -> Type) -> Type) (NT ((->) :: Type -> Type -> Type) :: (k -> Type) -> (k -> Type) -> Type) (IdentityT :: (k -> Type) -> k -> Type) Source # | |
| Monad (Dual ((->) :: Type -> Type -> Type)) m => Functor (NT (Kleisli (Dual ((->) :: Type -> Type -> Type)) m) :: (k -> Type) -> (k -> Type) -> Type) (NT (Kleisli (Dual ((->) :: Type -> Type -> Type)) m) :: (k -> Type) -> (k -> Type) -> Type) (IdentityT :: (k -> Type) -> k -> Type) Source # | |
| Monad ((->) :: Type -> Type -> Type) m => Functor (NT (Kleisli ((->) :: Type -> Type -> Type) m) :: (k -> Type) -> (k -> Type) -> Type) (NT (Kleisli ((->) :: Type -> Type -> Type) m) :: (k -> Type) -> (k -> Type) -> Type) (IdentityT :: (k -> Type) -> k -> Type) Source # | |
| Comonad ((->) :: Type -> Type -> Type) ɯ => Functor (NT (Cokleisli ((->) :: Type -> Type -> Type) ɯ) :: (k -> Type) -> (k -> Type) -> Type) (NT (Cokleisli ((->) :: Type -> Type -> Type) ɯ) :: (k -> Type) -> (k -> Type) -> Type) (IdentityT :: (k -> Type) -> k -> Type) Source # | |
| Monad ((->) :: Type -> Type -> Type) m => Comonad (NT (Kleisli ((->) :: Type -> Type -> Type) m) :: (k -> Type) -> (k -> Type) -> Type) (IdentityT :: (k -> Type) -> k -> Type) Source # | |
| Comonad (NT ((->) :: Type -> Type -> Type) :: (k -> Type) -> (k -> Type) -> Type) (IdentityT :: (k -> Type) -> k -> Type) Source # | |
| Comonad ((->) :: Type -> Type -> Type) ɯ => Comonad (NT (Cokleisli ((->) :: Type -> Type -> Type) ɯ) :: (k -> Type) -> (k -> Type) -> Type) (IdentityT :: (k -> Type) -> k -> Type) Source # | |
| Monad (NT ((->) :: Type -> Type -> Type) :: (k -> Type) -> (k -> Type) -> Type) (IdentityT :: (k -> Type) -> k -> Type) Source # | |
| Monad ((->) :: Type -> Type -> Type) m => Monad (NT (Kleisli ((->) :: Type -> Type -> Type) m) :: (k -> Type) -> (k -> Type) -> Type) (IdentityT :: (k -> Type) -> k -> Type) Source # | |
| Comonad ((->) :: Type -> Type -> Type) ɯ => Monad (NT (Cokleisli ((->) :: Type -> Type -> Type) ɯ) :: (k -> Type) -> (k -> Type) -> Type) (IdentityT :: (k -> Type) -> k -> Type) Source # | |
| (Eq1 f, Eq a) => Eq (IdentityT f a) | |
| (Ord1 f, Ord a) => Ord (IdentityT f a) | |
Defined in Control.Monad.Trans.Identity Methods compare :: IdentityT f a -> IdentityT f a -> Ordering # (<) :: IdentityT f a -> IdentityT f a -> Bool # (<=) :: IdentityT f a -> IdentityT f a -> Bool # (>) :: IdentityT f a -> IdentityT f a -> Bool # (>=) :: IdentityT f a -> IdentityT f a -> Bool # | |
| (Read1 f, Read a) => Read (IdentityT f a) | |
| (Show1 f, Show a) => Show (IdentityT f a) | |