bluefin-0.0.15.0: The Bluefin effect system
Safe HaskellSafe-Inferred
LanguageHaskell2010

Bluefin.Pipes.Prelude

Description

Reimplementation of the pipes prelude (Pipes.Prelude) in Bluefin. It primarily serves as an example of what you can do with Bluefin and you probably won't want to use it directly. Instead you are recommended to use

See also Bluefin.Pipes.

>>> runEff_ $ \io -> runEffect $ do
      stdinLn io >-> takeWhile' (/= "quit") >-> stdoutLn io
Test
Test
ABC
ABC
quit
"quit"
Synopsis

Producers

stdinLn #

Arguments

:: forall (e1 :: Effects) (es :: Effects) (e2 :: Effects) r. (e1 :> es, e2 :> es) 
=> IOE e1 
-> Producer String e2 
-> Eff es r

͘

repeatM #

Arguments

:: forall (e :: Effects) (es :: Effects) a x' x r. e :> es 
=> Eff es a 
-> Proxy x' x () a e 
-> Eff es r

͘

replicateM #

Arguments

:: forall (e :: Effects) (es :: Effects) a x' x. e :> es 
=> Int 
-> Eff es a 
-> Proxy x' x () a e 
-> Eff es ()

͘

unfoldr #

Arguments

:: forall (e :: Effects) (es :: Effects) s r a x1 x. e :> es 
=> (s -> Eff es (Either r (a, s))) 
-> s 
-> Proxy x1 x () a e 
-> Eff es r

͘

Consumers

stdoutLn #

Arguments

:: forall (e1 :: Effects) (es :: Effects) (e2 :: Effects) r. (e1 :> es, e2 :> es) 
=> IOE e1 
-> Consumer String e2 
-> Eff es r

͘

mapM_ #

Arguments

:: forall (e :: Effects) (es :: Effects) a b b' r. e :> es 
=> (a -> Eff es ()) 
-> Proxy () a b b' e 
-> Eff es r

͘

print #

Arguments

:: forall (e2 :: Effects) (es :: Effects) (e1 :: Effects) a r. (e2 :> es, e1 :> es, Show a) 
=> IOE e1 
-> Consumer a e2 
-> Eff es r

͘

drain #

Arguments

:: forall (e :: Effects) (es :: Effects) b c' c r. e :> es 
=> Proxy () b c' c e 
-> Eff es r

͘

Pipes

map #

Arguments

:: forall (e :: Effects) (es :: Effects) a b r. e :> es 
=> (a -> b) 
-> Pipe a b e 
-> Eff es r

͘

mapM #

Arguments

:: forall (e :: Effects) (es :: Effects) a b r. e :> es 
=> (a -> Eff es b) 
-> Pipe a b e 
-> Eff es r

͘

takeWhile' #

Arguments

:: forall (e :: Effects) (es :: Effects) r. e :> es 
=> (r -> Bool) 
-> Pipe r r e 
-> Eff es r

͘