| Copyright | (c) 2011 Daniel Fischer 2018 Andrew Lelechenko |
|---|---|
| License | MIT |
| Maintainer | Andrew Lelechenko <andrew.lelechenko@gmail.com> |
| Safe Haskell | None |
| Language | Haskell2010 |
Math.NumberTheory.Moduli.Chinese
Contents
Description
Chinese remainder theorem
Safe interface
chinese :: (Eq a, Ring a, Euclidean a) => (a, a) -> (a, a) -> Maybe (a, a) Source #
chinese (n1, m1) (n2, m2) returns (n, lcm m1 m2) such that
n `mod` m1 == n1 and n `mod` m2 == n2, if exists.
Moduli m1 and m2 are allowed to have common factors.
>>>chinese (1, 2) (2, 3)Just (-1, 6)>>>chinese (3, 4) (5, 6)Just (-1, 12)>>>chinese (3, 4) (2, 6)Nothing
chineseSomeMod :: SomeMod -> SomeMod -> Maybe SomeMod Source #
Same as chinese, but operates on residues.
>>>:set -XDataKinds>>>import Data.Mod>>>(1 `modulo` 2) `chineseSomeMod` (2 `modulo` 3)Just (5 `modulo` 6)>>>(3 `modulo` 4) `chineseSomeMod` (5 `modulo` 6)Just (11 `modulo` 12)>>>(3 `modulo` 4) `chineseSomeMod` (2 `modulo` 6)Nothing