| LeftModule Integer Int Source # | |
|
| LeftModule Integer Int8 Source # | |
|
| LeftModule Integer Int16 Source # | |
|
| LeftModule Integer Int32 Source # | |
|
| LeftModule Integer Int64 Source # | |
|
| LeftModule Integer Integer Source # | |
|
| LeftModule Integer Word Source # | |
|
| LeftModule Integer Word8 Source # | |
|
| LeftModule Integer Word16 Source # | |
|
| LeftModule Integer Word32 Source # | |
|
| LeftModule Integer Word64 Source # | |
|
| LeftModule Integer Euclidean Source # | |
|
| LeftModule Natural Bool Source # | |
|
| LeftModule Natural Int Source # | |
|
| LeftModule Natural Int8 Source # | |
|
| LeftModule Natural Int16 Source # | |
|
| LeftModule Natural Int32 Source # | |
|
| LeftModule Natural Int64 Source # | |
|
| LeftModule Natural Integer Source # | |
|
| LeftModule Natural Natural Source # | |
|
| LeftModule Natural Word Source # | |
|
| LeftModule Natural Word8 Source # | |
|
| LeftModule Natural Word16 Source # | |
|
| LeftModule Natural Word32 Source # | |
|
| LeftModule Natural Word64 Source # | |
|
| LeftModule Natural Euclidean Source # | |
|
| Additive m => LeftModule () m Source # | |
|
| Semiring r => LeftModule r () Source # | |
|
| Group r => LeftModule Integer (ZeroRng r) Source # | |
|
| (Abelian r, Group r) => LeftModule Integer (RngRing r) Source # | |
|
| Division r => LeftModule Integer (Log r) Source # | |
|
| GCDDomain d => LeftModule Integer (Fraction d) Source # | |
|
| Monoidal r => LeftModule Natural (ZeroRng r) Source # | |
|
| (Abelian r, Monoidal r) => LeftModule Natural (RngRing r) Source # | |
|
| Unital r => LeftModule Natural (Log r) Source # | |
|
| LeftModule Natural (BasisCoblade m) Source # | |
|
| GCDDomain d => LeftModule Natural (Fraction d) Source # | |
|
| RightModule r s => LeftModule r (Opposite s) Source # | |
|
| LeftModule r m => LeftModule r (End m) Source # | |
|
| LeftModule r s => LeftModule r (Trig s) Source # | |
|
| LeftModule r s => LeftModule r (Quaternion' s) Source # | |
|
| LeftModule r s => LeftModule r (Hyper s) Source # | |
|
| LeftModule r s => LeftModule r (Dual' s) Source # | |
|
| LeftModule r s => LeftModule r (Quaternion s) Source # | |
|
| LeftModule r s => LeftModule r (Hyper' s) Source # | |
|
| LeftModule r s => LeftModule r (Dual s) Source # | |
|
| LeftModule r s => LeftModule r (Complex s) Source # | |
|
| (LeftModule r a, LeftModule r b) => LeftModule r (a, b) Source # | |
|
| LeftModule r m => LeftModule r (e -> m) Source # | |
|
| LeftModule r s => LeftModule r (Covector s m) Source # | |
|
| (LeftModule r a, LeftModule r b, LeftModule r c) => LeftModule r (a, b, c) Source # | |
|
| LeftModule r s => LeftModule r (Map s b m) Source # | |
|
| (LeftModule r a, LeftModule r b, LeftModule r c, LeftModule r d) => LeftModule r (a, b, c, d) Source # | |
Methods (.*) :: r -> (a, b, c, d) -> (a, b, c, d) Source # |
| (LeftModule r a, LeftModule r b, LeftModule r c, LeftModule r d, LeftModule r e) => LeftModule r (a, b, c, d, e) Source # | |
Methods (.*) :: r -> (a, b, c, d, e) -> (a, b, c, d, e) Source # |
| Rng s => LeftModule (RngRing s) (RngRing s) Source # | |
|
| Semiring r => LeftModule (Opposite r) (Opposite r) Source # | |
|
| (Monoidal m, Abelian m) => LeftModule (End m) (End m) Source # | |
|
| (Commutative r, Rng r) => LeftModule (Trig r) (Trig r) Source # | |
|
| (TriviallyInvolutive r, Rng r) => LeftModule (Quaternion' r) (Quaternion' r) Source # | |
|
| (Commutative r, Semiring r) => LeftModule (Hyper r) (Hyper r) Source # | |
|
| (Commutative r, Rng r) => LeftModule (Dual' r) (Dual' r) Source # | |
|
| (TriviallyInvolutive r, Rng r) => LeftModule (Quaternion r) (Quaternion r) Source # | |
|
| (Commutative r, Semiring r) => LeftModule (Hyper' r) (Hyper' r) Source # | |
|
| (Commutative r, Rng r) => LeftModule (Dual r) (Dual r) Source # | |
|
| (Commutative r, Rng r) => LeftModule (Complex r) (Complex r) Source # | |
|
| Coalgebra r m => LeftModule (Covector r m) (Covector r m) Source # | |
|
| Coalgebra r m => LeftModule (Map r b m) (Map r b m) Source # | |
|