| Safe Haskell | Safe-Inferred |
|---|---|
| Language | GHC2021 |
AtCoder.Extra.DynLazySegTree.Raw
Description
Base module of a dynamic, lazily propagated segment tree.
Since: 1.2.1.0
Synopsis
- data DynLazySegTree s f a = DynLazySegTree {}
- class Monoid f => SegAct f a where
- segAct :: f -> a -> a
- segActWithLength :: Int -> f -> a -> a
- newtype Index = Index {}
- newST :: (HasCallStack, Unbox f, Unbox a) => Bool -> Int -> Int -> Int -> (Int -> Int -> a) -> ST s (DynLazySegTree s f a)
- newRootST :: (HasCallStack, Monoid f, Unbox f, Monoid a, Unbox a) => DynLazySegTree s f a -> ST s Index
- newNodeST :: (HasCallStack, Monoid f, Unbox f, Monoid a, Unbox a) => DynLazySegTree s f a -> a -> ST s Index
- newSeqST :: (HasCallStack, Monoid f, Unbox f, Monoid a, Unbox a) => DynLazySegTree s f a -> Vector a -> ST s Index
- modifyMST :: forall m f a. (HasCallStack, PrimMonad m, SegAct f a, Eq f, Monoid f, Unbox f, Monoid a, Unbox a) => DynLazySegTree (PrimState m) f a -> Index -> (a -> m a) -> Int -> m Index
- prodST :: forall f a s. (HasCallStack, SegAct f a, Monoid f, Unbox f, Monoid a, Unbox a) => DynLazySegTree s f a -> Index -> Int -> Int -> ST s a
- applyInST :: forall f a s. (HasCallStack, SegAct f a, Eq f, Monoid f, Unbox f, Monoid a, Unbox a) => DynLazySegTree s f a -> Index -> Int -> Int -> f -> ST s Index
- copyIntervalWithST :: forall f a s. (HasCallStack, SegAct f a, Eq f, Monoid f, Unbox f, Monoid a, Unbox a) => DynLazySegTree s f a -> Index -> Index -> Int -> Int -> f -> ST s Index
- resetIntervalST :: forall f a s. (HasCallStack, SegAct f a, Eq f, Monoid f, Unbox f, Monoid a, Unbox a) => DynLazySegTree s f a -> Index -> Int -> Int -> ST s Index
- maxRightM :: (HasCallStack, PrimMonad m, SegAct f a, Eq f, Monoid f, Unbox f, Monoid a, Unbox a) => DynLazySegTree (PrimState m) f a -> Index -> (a -> m Bool) -> m Int
Dynamic, lazily propagated segment tree
data DynLazySegTree s f a Source #
A dynamic, lazily propagated segment tree that covers a half-open interval \([l_0, r_0)\). The nodes are instantinated as needed.
Since: 1.2.1.0
Constructors
| DynLazySegTree | |
Fields
| |
Re-exports
class Monoid f => SegAct f a where Source #
Typeclass reprentation of the LazySegTree properties. User can implement either segAct or
segActWithLength.
Instances should satisfy the follwing properties:
- Left monoid action
segAct(f2<>f1) x =segActf2 (segActf1 x)- Identity map
segActmemptyx = x- Endomorphism
segActf (x1<>x2) = (segActf x1)<>(segActf x2)
If you implement SegAct via segActWithLength, satisfy one more propety:
- Linear left monoid action
.segActWithLengthlen f a =stimeslen (segActf a) a
Invariant
In SegAct instances, new semigroup values are always given from the left: new . The
order is important for non-commutative monoid implementations.<> old
Example instance
Take Affine1 as an example of type \(F\).
{-# LANGUAGE TypeFamilies #-}
import AtCoder.LazySegTree qualified as LST
import AtCoder.LazySegTree (SegAct (..))
import Data.Monoid
import Data.Vector.Generic qualified as VG
import Data.Vector.Generic.Mutable qualified as VGM
import Data.Vector.Unboxed qualified as VU
import Data.Vector.Unboxed.Mutable qualified as VUM
-- | f x = a * x + b. It's implemented as a newtype of `(a, a)` for easy Unbox deriving.
newtype Affine1 a = Affine1 (Affine1 a)
deriving newtype (Eq, Ord, Show)
-- | This type alias makes the Unbox deriving easier, described velow.
type Affine1Repr a = (a, a)
instance (Num a) => Semigroup (Affine1 a) where
{-# INLINE (<>) #-}
(Affine1 (!a1, !b1)) <> (Affine1 (!a2, !b2)) = Affine1 (a1 * a2, a1 * b2 + b1)
instance (Num a) => Monoid (Affine1 a) where
{-# INLINE mempty #-}
mempty = Affine1 (1, 0)
instance (Num a) => SegAct (Affine1 a) (Sum a) where
{-# INLINE segActWithLength #-}
segActWithLength len (Affine1 (!a, !b)) !x = a * x + b * fromIntegral len
Deriving Unbox is very easy for such a newtype (though the efficiency is
not the maximum):
newtype instance VU.MVector s (Affine1a) = MV_Affine1 (VU.MVector s (Affine1a)) newtype instance VU.Vector (Affine1a) = V_Affine1 (VU.Vector (Affine1a)) deriving instance (VU.Unbox a) => VGM.MVector VUM.MVector (Affine1a) deriving instance (VU.Unbox a) => VG.Vector VU.Vector (Affine1a) instance (VU.Unbox a) => VU.Unbox (Affine1a)
Example contest template
Define your monoid action F and your acted monoid X:
{-# LANGUAGE TypeFamilies #-}
import AtCoder.LazySegTree qualified as LST
import AtCoder.LazySegTree (SegAct (..))
import Data.Vector.Generic qualified as VG
import Data.Vector.Generic.Mutable qualified as VGM
import Data.Vector.Unboxed qualified as VU
import Data.Vector.Unboxed.Mutable qualified as VUM
{- ORMOLU_DISABLE -}
-- | F is a custom monoid action, defined as a newtype of FRepr.
newtype F = F FRepr deriving newtype (Eq, Ord, Show) ; unF :: F -> FRepr ; unF (F x) = x ; newtype instance VU.MVector s F = MV_F (VU.MVector s FRepr) ; newtype instance VU.Vector F = V_F (VU.Vector FRepr) ; deriving instance VGM.MVector VUM.MVector F ; deriving instance VG.Vector VU.Vector F ; instance VU.Unbox F ;
{- ORMOLU_ENABLE -}
-- | Affine: f x = a * x + b
type FRepr = (Int, Int)
instance Semigroup F where
-- new <> old
{-# INLINE (<>) #-}
(F (!a1, !b1)) <> (F (!a2, !b2)) = F (a1 * a2, a1 * b2 + b1)
instance Monoid F where
{-# INLINE mempty #-}
mempty = F (1, 0)
{- ORMOLU_DISABLE -}
-- | X is a custom acted monoid, defined as a newtype of XRepr.
newtype X = X XRepr deriving newtype (Eq, Ord, Show) ; unX :: X -> XRepr ; unX (X x) = x; newtype instance VU.MVector s X = MV_X (VU.MVector s XRepr) ; newtype instance VU.Vector X = V_X (VU.Vector XRepr) ; deriving instance VGM.MVector VUM.MVector X ; deriving instance VG.Vector VU.Vector X ; instance VU.Unbox X ;
{- ORMOLU_ENABLE -}
-- | Acted Int (same as `Sum Int`).
type XRepr = Int
deriving instance Num X; -- in our case X is a Num.
instance Semigroup X where
{-# INLINE (<>) #-}
(X x1) <> (X x2) = X $! x1 + x2
instance Monoid X where
{-# INLINE mempty #-}
mempty = X 0
instance SegAct F X where
-- {-# INLINE segAct #-}
-- segAct len (F (!a, !b)) (X x) = X $! a * x + b
{-# INLINE segActWithLength #-}
segActWithLength len (F (!a, !b)) (X x) = X $! a * x + len * b
It's tested as below:
expect :: (Eq a, Show a) => String -> a -> a -> ()
expect msg a b
| a == b = ()
| otherwise = error $ msg ++ ": expected " ++ show a ++ ", found " ++ show b
main :: IO ()
main = do
seg <- LST.build _ F @X $ VU.map X $ VU.fromList [1, 2, 3, 4]
LST.applyIn seg 1 3 $ F (2, 1) -- [1, 5, 7, 4]
LST.write seg 3 $ X 10 -- [1, 5, 7, 10]
LST.modify seg (+ (X 1)) 0 -- [2, 5, 7, 10]
!_ <- (expect "test 1" (X 5)) <$> LST.read seg 1
!_ <- (expect "test 2" (X 14)) <$> LST.prod seg 0 3 -- reads an interval [0, 3)
!_ <- (expect "test 3" (X 24)) <$> LST.allProd seg
!_ <- (expect "test 4" 2) <$> LST.maxRight seg 0 (<= (X 10)) -- sum [0, 2) = 7 <= 10
!_ <- (expect "test 5" 3) <$> LST.minLeft seg 4 (<= (X 10)) -- sum [3, 4) = 10 <= 10
putStrLn "=> test passed!"
Since: 1.0.0.0
Minimal complete definition
Nothing
Methods
segAct :: f -> a -> a Source #
Lazy segment tree action \(f(x)\).
Since: 1.0.0.0
segActWithLength :: Int -> f -> a -> a Source #
Lazy segment tree action \(f(x)\) with the target monoid's length.
If you implement SegAct with this function, you don't have to store the monoid's length,
since it's given externally.
Since: 1.0.0.0
Instances
| SegAct () a Source # | Since: 1.2.0.0 |
Defined in AtCoder.LazySegTree | |
| Monoid a => SegAct (RangeSet a) a Source # | Since: 1.0.0.0 |
Defined in AtCoder.Extra.Monoid.RangeSet | |
| Num a => SegAct (Affine1 (Sum a)) (Sum a) Source # | Since: 1.0.0.0 |
| Num a => SegAct (Affine1 a) (Sum a) Source # | Since: 1.0.0.0 |
| Num a => SegAct (Mat2x2 a) (V2 a) Source # | Since: 1.1.0.0 |
| (Num a, Monoid (Max a)) => SegAct (RangeAdd (Max a)) (Max a) Source # | Since: 1.1.0.0 |
| (Num a, Monoid (Min a)) => SegAct (RangeAdd (Min a)) (Min a) Source # | Since: 1.1.0.0 |
| Num a => SegAct (RangeAdd (Sum a)) (Sum a) Source # | Since: 1.2.0.0 |
| Num a => SegAct (Dual (Affine1 (Sum a))) (Sum a) Source # | Since: 1.0.0.0 |
| Num a => SegAct (Dual (Affine1 a)) (Sum a) Source # | Since: 1.0.0.0 |
| Num a => SegAct (Dual (Mat2x2 a)) (V2 a) Source # | Since: 1.1.0.0 |
Strongly typed index of pool items. User has to explicitly corece on raw index use.
Instances
Constructors
newST :: (HasCallStack, Unbox f, Unbox a) => Bool -> Int -> Int -> Int -> (Int -> Int -> a) -> ST s (DynLazySegTree s f a) Source #
\(O(n)\)
Since: 1.2.1.0
newRootST :: (HasCallStack, Monoid f, Unbox f, Monoid a, Unbox a) => DynLazySegTree s f a -> ST s Index Source #
\(O(1)\)
Since: 1.2.1.0
newNodeST :: (HasCallStack, Monoid f, Unbox f, Monoid a, Unbox a) => DynLazySegTree s f a -> a -> ST s Index Source #
\(O(1)\)
Since: 1.2.1.0
newSeqST :: (HasCallStack, Monoid f, Unbox f, Monoid a, Unbox a) => DynLazySegTree s f a -> Vector a -> ST s Index Source #
\(O(L)\)
Since: 1.2.1.0
Accessing elements
modifyMST :: forall m f a. (HasCallStack, PrimMonad m, SegAct f a, Eq f, Monoid f, Unbox f, Monoid a, Unbox a) => DynLazySegTree (PrimState m) f a -> Index -> (a -> m a) -> Int -> m Index Source #
\(O(\log L)\)
Since: 1.2.1.0
Products
prodST :: forall f a s. (HasCallStack, SegAct f a, Monoid f, Unbox f, Monoid a, Unbox a) => DynLazySegTree s f a -> Index -> Int -> Int -> ST s a Source #
\(O(\log L)\)
Since: 1.2.1.0
Applications
applyInST :: forall f a s. (HasCallStack, SegAct f a, Eq f, Monoid f, Unbox f, Monoid a, Unbox a) => DynLazySegTree s f a -> Index -> Int -> Int -> f -> ST s Index Source #
\(O(\log L)\)
Since: 1.2.1.0
Tree operations
Arguments
| :: forall f a s. (HasCallStack, SegAct f a, Eq f, Monoid f, Unbox f, Monoid a, Unbox a) | |
| => DynLazySegTree s f a | Dynamic segment tree |
| -> Index | Root to be modified |
| -> Index | Another segment tree |
| -> Int | \(l\) |
| -> Int | \(r\) |
| -> f | Action \(f\) |
| -> ST s Index | New root |
\(O(\log L)\)
Since: 1.2.1.0
resetIntervalST :: forall f a s. (HasCallStack, SegAct f a, Eq f, Monoid f, Unbox f, Monoid a, Unbox a) => DynLazySegTree s f a -> Index -> Int -> Int -> ST s Index Source #
\(O(\log L)\) Resets an interval \([l, r)\) to initial monoid values.
Since: 1.2.1.0