module Data.Edison.Sym where
import qualified Prelude as P
import qualified Data.Edison.Seq as S
import qualified Data.Edison.Coll as C
import qualified Data.Edison.Coll as A
import qualified Data.Edison.Seq.ListSeq
(<|) :: S.Sequence seq => a -> seq a -> seq a
<| :: forall (seq :: * -> *) a. Sequence seq => a -> seq a -> seq a
(<|) = a -> seq a -> seq a
forall a. a -> seq a -> seq a
forall (s :: * -> *) a. Sequence s => a -> s a -> s a
S.lcons
(|>) :: S.Sequence seq => seq a -> a -> seq a
|> :: forall (seq :: * -> *) a. Sequence seq => seq a -> a -> seq a
(|>) = (a -> seq a -> seq a) -> seq a -> a -> seq a
forall a b c. (a -> b -> c) -> b -> a -> c
P.flip a -> seq a -> seq a
forall a. a -> seq a -> seq a
forall (s :: * -> *) a. Sequence s => a -> s a -> s a
S.rcons
(++) :: S.Sequence seq => seq a -> seq a -> seq a
++ :: forall (seq :: * -> *) a. Sequence seq => seq a -> seq a -> seq a
(++) = seq a -> seq a -> seq a
forall (seq :: * -> *) a. Sequence seq => seq a -> seq a -> seq a
S.append
(!) :: S.Sequence seq => seq a -> P.Int -> a
! :: forall (seq :: * -> *) a. Sequence seq => seq a -> Int -> a
(!) = (Int -> seq a -> a) -> seq a -> Int -> a
forall a b c. (a -> b -> c) -> b -> a -> c
P.flip Int -> seq a -> a
forall a. Int -> seq a -> a
forall (s :: * -> *) a. Sequence s => Int -> s a -> a
S.lookup
(|=) :: C.SetX set a => set -> set -> P.Bool
|= :: forall set a. SetX set a => set -> set -> Bool
(|=) = set -> set -> Bool
forall set a. SetX set a => set -> set -> Bool
C.subset
(\\) :: C.SetX set a => set -> set -> set
\\ :: forall set a. SetX set a => set -> set -> set
(\\) = set -> set -> set
forall set a. SetX set a => set -> set -> set
C.difference
(/\) :: C.SetX set a => set -> set -> set
/\ :: forall set a. SetX set a => set -> set -> set
(/\) = set -> set -> set
forall set a. SetX set a => set -> set -> set
C.intersection
(\/) :: C.SetX set a => set -> set -> set
\/ :: forall set a. SetX set a => set -> set -> set
(\/) = set -> set -> set
forall c a. CollX c a => c -> c -> c
C.union