{-# LANGUAGE TemplateHaskell #-}
module Main (main) where

import Control.Monad
import Data.List
import Data.Ratio
import qualified Data.IntMap as IM
import qualified Data.IntSet as IS
import Data.VectorSpace
import Test.HUnit hiding (Test)
import Test.Framework (Test, defaultMain, testGroup)
import Test.Framework.TH
import Test.Framework.Providers.HUnit
import Text.Printf

import qualified ToySolver.Data.LA as LA
import qualified ToySolver.Simplex2 as Simplex2
import ToySolver.Simplex2
import qualified ToySolver.MIPSolver2 as MIPSolver2

------------------------------------------------------------------------

example1 :: (OptDir, LA.Expr Rational, [Atom Rational], IS.IntSet)
example1 = (optdir, obj, cs, ivs)
  where
    optdir = OptMax
    x1 = LA.var 1
    x2 = LA.var 2
    x3 = LA.var 3
    x4 = LA.var 4
    obj = x1 ^+^ 2 *^ x2 ^+^ 3 *^ x3 ^+^ x4
    cs =
      [ (-1) *^ x1 ^+^ x2 ^+^ x3 ^+^ 10*^x4 .<=. LA.constant 20
      , x1 ^-^ 3 *^ x2 ^+^ x3 .<=. LA.constant 30
      , x2 ^-^ 3.5 *^ x4 .==. LA.constant 0
      , LA.constant 0 .<=. x1
      , x1 .<=. LA.constant 40
      , LA.constant 0 .<=. x2
      , LA.constant 0 .<=. x3
      , LA.constant 2 .<=. x4
      , x4 .<=. LA.constant 3
      ]
    ivs = IS.singleton 4

case_test1 = do
  let (optdir, obj, cs, ivs) = example1
  lp <- Simplex2.newSolver
  replicateM 5 (Simplex2.newVar lp)
  setOptDir lp optdir
  setObj lp obj
  mapM_ (Simplex2.assertAtom lp) cs
  mip <- MIPSolver2.newSolver lp ivs
  ret <- MIPSolver2.optimize mip
  
  ret @?= Simplex2.Optimum

  Just m <- MIPSolver2.getBestModel mip
  forM_ [(1,40),(2,21/2),(3,39/2),(4,3)] $ \(var, val) ->
    m IM.! var @?= val

  Just v <- MIPSolver2.getBestValue mip
  v @?= 245/2

case_test1' = do
  let (optdir, obj, cs, ivs) = example1
  lp <- Simplex2.newSolver
  replicateM 5 (Simplex2.newVar lp)
  setOptDir lp (f optdir)
  setObj lp (negateV obj)
  mapM_ (Simplex2.assertAtom lp) cs
  mip <- MIPSolver2.newSolver lp ivs
  ret <- MIPSolver2.optimize mip
  
  ret @?= Simplex2.Optimum

  Just m <- MIPSolver2.getBestModel mip
  forM_ [(1,40),(2,21/2),(3,39/2),(4,3)] $ \(var, val) ->
    m IM.! var @?= val

  Just v <- MIPSolver2.getBestValue mip
  v @?= -245/2

  where
    f OptMin = OptMax
    f OptMax = OptMin

-- 『数理計画法の基礎』(坂和 正敏) p.109 例 3.8
example2 = (optdir, obj, cs, ivs)
  where
    optdir = OptMin
    [x1,x2,x3] = map LA.var [1..3]
    obj = (-1) *^ x1 ^-^ 3 *^ x2 ^-^ 5 *^ x3
    cs =
      [ 3 *^ x1 ^+^ 4 *^ x2 .<=. LA.constant 10
      , 2 *^ x1 ^+^ x2 ^+^ x3 .<=. LA.constant 7
      , 3 *^ x1 ^+^ x2 ^+^ 4 *^ x3 .==. LA.constant 12
      , LA.constant 0 .<=. x1
      , LA.constant 0 .<=. x2
      , LA.constant 0 .<=. x3
      ]
    ivs = IS.fromList [1,2]

case_test2 = do
  let (optdir, obj, cs, ivs) = example2
  lp <- Simplex2.newSolver
  replicateM 4 (Simplex2.newVar lp)
  setOptDir lp optdir
  setObj lp obj
  mapM_ (Simplex2.assertAtom lp) cs
  mip <- MIPSolver2.newSolver lp ivs
  ret <- MIPSolver2.optimize mip
  
  ret @?= Simplex2.Optimum

  Just m <- MIPSolver2.getBestModel mip
  forM_ [(1,0),(2,2),(3,5/2)] $ \(var, val) ->
    m IM.! var @?= val

  Just v <- MIPSolver2.getBestValue mip
  v @?= -37/2

------------------------------------------------------------------------
-- Test harness

main :: IO ()
main = $(defaultMainGenerator)