<<< native [ EArray [ AlignCenter , AlignCenter ] [ [ [ EGrouped [ ENumber "2" , ESymbol Ord "\8290" , EGrouped [ ESymbol Op "\8721" , EGrouped [ EIdentifier "a" , ESymbol Ord "\8290" , EIdentifier "b" ] ] ] ] , [] ] , [ [ ESuper (EIdentifier "x") (EGrouped [ ESymbol Ord "\8242" , ENumber "3" ]) ] , [] ] , [ [ EGrouped [ EGrouped [ EGrouped [ ESuper (EIdentifier "f") (ESymbol Ord "\8242") , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EIdentifier "x" , ESymbol Close ")" ] ] , ESymbol Bin "+" , EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EMathOperator "cos" , ESymbol Ord "\8289" , EIdentifier "\952" ] ] , ESymbol Rel "=" , ENumber "1" ] ] , [] ] , [ [ EGrouped [ EGrouped [ EGrouped [ EIdentifier "f" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EIdentifier "z" , ESymbol Close ")" ] ] , ESymbol Rel "=" , EGrouped [ EUnderover False (ESymbol Op "\8721") (EGrouped [ EIdentifier "n" , ESymbol Rel "=" , ENumber "0" ]) (EIdentifier "\8734") , EGrouped [ ESub (EIdentifier "a") (EIdentifier "n") , ESymbol Ord "\8290" , ESuper (EIdentifier "z") (EIdentifier "n") ] ] ] , EText TextNormal ",\8194" , EGrouped [ EGrouped [ EDelimited "|" "|" [ Right (EIdentifier "z") ] , ESymbol Rel "<" , EIdentifier "R" ] , ESymbol Ord "\8203" , EGrouped [ ESymbol Open "(" , EGrouped [ EIdentifier "R" , ESymbol Rel "\8800" , ENumber "0" ] , ESymbol Close ")" ] ] ] ] , [] ] , [ [ EGrouped [ EDelimited "\8747" "" [ Right (ESub (EGrouped []) (EIdentifier "C")) , Right (EGrouped [ EDelimited "(" ")" [ Right (EGrouped [ EUnderover False (ESymbol Op "\8721") (EGrouped [ EIdentifier "n" , ESymbol Rel "=" , ENumber "0" ]) (EIdentifier "\8734") , EGrouped [ ESub (EIdentifier "a") (EIdentifier "n") , ESymbol Ord "\8290" , ESuper (EIdentifier "z") (EIdentifier "n") ] ]) ] , ESymbol Ord "\8290" , EGrouped [ ESymbol Ord "\8518" , EIdentifier "z" ] ]) ] , ESymbol Rel "=" , EGrouped [ EUnderover False (ESymbol Op "\8721") (EGrouped [ EIdentifier "n" , ESymbol Rel "=" , ENumber "0" ]) (EIdentifier "\8734") , EGrouped [ ESub (EIdentifier "a") (EIdentifier "n") , ESymbol Ord "\8290" , EDelimited "\8747" "" [ Right (ESub (EGrouped []) (EIdentifier "C")) , Right (EGrouped [ ESuper (EIdentifier "z") (EIdentifier "n") , ESymbol Ord "\8290" , EGrouped [ ESymbol Ord "\8518" , EIdentifier "z" ] ]) ] ] ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EUnder False (EMathOperator "lim") (EGrouped [ EIdentifier "n" , ESymbol Accent "\8594" , EIdentifier "\8734" ]) , EDelimited "|" "|" [ Right (EDelimited "\8747" "" [ Right (ESub (EGrouped []) (EIdentifier "C")) , Right (EGrouped [ EDelimited "[" "]" [ Right (EGrouped [ EGrouped [ EIdentifier "f" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EIdentifier "z" , ESymbol Close ")" ] ] , ESymbol Bin "\8722" , EGrouped [ EUnderover False (ESymbol Op "\8721") (EGrouped [ EIdentifier "k" , ESymbol Rel "=" , ENumber "0" ]) (EIdentifier "n") , EGrouped [ ESub (EIdentifier "a") (EIdentifier "k") , ESymbol Ord "\8290" , ESuper (EIdentifier "z") (EIdentifier "k") ] ] ]) ] , ESymbol Ord "\8290" , EGrouped [ ESymbol Ord "\8518" , EIdentifier "z" ] ]) ]) ] ] , ESymbol Rel "=" , ENumber "0" ] ] , [] ] , [ [ EDelimited "" "" [ Right (EGrouped [ EIdentifier "n" , ESymbol Rel "\8805" , EGrouped [ EIdentifier "N" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EIdentifier "\949" , ESymbol Close ")" ] ] ]) , Left "\8658" , Right (EGrouped [ EDelimited "|" "|" [ Right (EGrouped [ EGrouped [ EIdentifier "f" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EIdentifier "z" , ESymbol Close ")" ] ] , ESymbol Bin "\8722" , EGrouped [ EUnderover False (ESymbol Op "\8721") (EGrouped [ EIdentifier "k" , ESymbol Rel "=" , ENumber "0" ]) (EIdentifier "n") , EGrouped [ ESub (EIdentifier "a") (EIdentifier "k") , ESymbol Ord "\8290" , ESuper (EIdentifier "z") (EIdentifier "k") ] ] ]) ] , ESymbol Rel "<" , EIdentifier "\949" ]) ] ] , [] ] , [ [ EGrouped [ EGrouped [ ENumber "10" , EText TextNormal "\8201Bq" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201Ci" ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ ENumber "10" , EText TextNormal "\8201amol" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201Emol" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201fmol" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201Gmol" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201kmol" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201Mmol" ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ ENumber "10" , EText TextNormal "\8201\956mol" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201mmol" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201mol" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201nmol" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201Pmol" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201pmol" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201Tmol" ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ ENumber "10" , EText TextNormal "\8201acre" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201hectare" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , ESuper (EText TextNormal "\8201ft") (ENumber "2") ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , ESuper (EText TextNormal "\8201in") (ENumber "2") ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , ESuper (EText TextNormal "\8201m") (ENumber "2") ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ ENumber "10" , EText TextNormal "\8201A" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201kA" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201\956A" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201mA" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201nA" ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ ENumber "10" , EText TextNormal "\8201F" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201\956F" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201mF" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201nF" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201pF" ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ ENumber "10" , EText TextNormal "\8201C" ] , ESymbol Bin "+" , EGrouped [ ENumber "1.0" , EText TextNormal "\8201m/s/s" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "0.1" , EGrouped [ EText TextNormal "\8201m" , ESymbol Ord "/" , ESuper (EText TextNormal "s") (ENumber "2") ] ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ ENumber "10" , EText TextNormal "\8201kS" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201\956S" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201mS" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201S" ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ ENumber "10" , EText TextNormal "\8201kV" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201MV" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201\956V" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201mV" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201nV" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201pV" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201V" ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ ENumber "10" , EText TextNormal "\8201G\937" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201k\937" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201M\937" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201m\937" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201\937" ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ ENumber "10" , EText TextNormal "\8201Btu" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201cal" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201eV" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201erg" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201GeV" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201GJ" ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ ENumber "10" , EText TextNormal "\8201J" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201kcal" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201kJ" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201MeV" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201MJ" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201\956J" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201mJ" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201nJ" ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ ENumber "10" , EText TextNormal "\8201dyn" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201kN" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201MN" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201\956N" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201mN" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201N" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201ozf" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201lbf" ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ ENumber "10" , EText TextNormal "\8201EHz" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201GHz" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201Hz" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201kHz" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201MHz" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201PHz" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201THz" ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ ENumber "10" , EText TextNormal "\8201fc" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201lx" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201phot" ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ ENumber "10" , EText TextNormal "\8201\8491" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201am" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201cm" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201dm" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201fm" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201ft" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201in" ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ ENumber "10" , EText TextNormal "\8201km" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201m" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201\956m" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201mi" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201mm" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201nm" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201pm" ] ] ] , [] ] , [ [ EGrouped [ ENumber "10" , EText TextNormal "\8201sb" ] ] , [] ] , [ [ EGrouped [ ENumber "10" , EText TextNormal "\8201lm" ] ] , [] ] , [ [ EGrouped [ ENumber "10" , EText TextNormal "\8201cd" ] ] , [] ] , [ [ EGrouped [ EGrouped [ ENumber "10" , EText TextNormal "\8201Mx" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201\956Wb" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201mWb" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201nWb" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201Wb" ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ ENumber "10" , EText TextNormal "\8201G" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201\956T" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201mT" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201nT" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201pT" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201T" ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ ENumber "10" , EText TextNormal "\8201H" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201\956H" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201mH" ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ ENumber "10" , EText TextNormal "\8201u" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201cg" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201dg" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201g" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201kg" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201\956g" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201mg" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201lb" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201slug" ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ ENumber "10" , EText TextNormal "\8201\176" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201\956rad" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201mrad" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , ESuper (ESpace (0 % 1)) (EText TextNormal "\8242") ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201rad" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , ESuper (ESpace (0 % 1)) (EText TextNormal "\8242\8242") ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ ENumber "10" , EText TextNormal "\8201GW" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201hp" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201kW" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201MW" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201\956W" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201mW" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201nW" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201W" ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ ENumber "10" , EText TextNormal "\8201atm" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201bar" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201kbar" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201kPa" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201MPa" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201\956Pa" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201mbar" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201mmHg" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201Pa" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201torr" ] ] ] , [] ] , [ [ EGrouped [ ENumber "10" , EText TextNormal "\8201sr" ] ] , [] ] , [ [ EGrouped [ EGrouped [ ENumber "10" , EText TextNormal "\8201\176C" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201\176F" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201K" ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ ENumber "10" , EText TextNormal "\8201as" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201d" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201fs" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201h" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201\956s" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201ms" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201min" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201ns" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201ps" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201s" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201y" ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ ENumber "10" , ESuper (EText TextNormal "\8201ft") (ENumber "3") ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , ESuper (EText TextNormal "\8201in") (ENumber "3") ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , ESuper (EText TextNormal "\8201m") (ENumber "3") ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201gal" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201l" ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ ENumber "10" , EText TextNormal "\8201ml" ] , ESymbol Bin "+" , EGrouped [ ENumber "10" , EText TextNormal "\8201pint" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "10" , EText TextNormal "\8201qt" ] ] ] , [] ] , [ [ EGrouped [ EFraction NormalFrac (ENumber "1") (EGrouped [ EIdentifier "x" , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EIdentifier "y") ] ]) , ESymbol Rel "=" , EGrouped [ EDelimited "(" ")" [ Right (EGrouped [ EGrouped [ ESymbol Bin "\8722" , EGrouped [ ESymbol Op "\8747" , EGrouped [ ESuper (EIdentifier "e") (EGrouped [ EGrouped [ ESymbol Bin "\8722" , EFraction NormalFrac (ENumber "1") (ENumber "2") ] , ESymbol Ord "\8290" , ESuper (EIdentifier "y") (ENumber "2") ]) , ESymbol Ord "\8290" , EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EIdentifier "y" ] , ESymbol Ord "\8290" , EGrouped [ ESymbol Ord "\8518" , EIdentifier "y" ] ] ] ] , ESymbol Bin "+" , ESub (EIdentifier "C") (ENumber "1") ]) ] , ESymbol Ord "\8290" , ESuper (EIdentifier "e") (EGrouped [ EFraction NormalFrac (ENumber "1") (ENumber "2") , ESymbol Ord "\8290" , ESuper (EIdentifier "y") (ENumber "2") ]) ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EGrouped [ ESub (ESymbol Ord "\8517") (EIdentifier "x") , EIdentifier "y" ] , ESymbol Bin "\8722" , EIdentifier "y" ] , ESymbol Rel "=" , EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EIdentifier "x" ] ] ] , [] ] , [ [ EGrouped [ EDelimited "(" ")" [ Right (EFraction NormalFrac (ENumber "1") (ENumber "2")) ] , ESymbol Ord "\8290" , EDelimited "(" ")" [ Right (EFraction NormalFrac (ENumber "1") (ENumber "2")) ] , ESymbol Ord "\8290" , EDelimited "(" ")" [ Right (EFraction NormalFrac (ENumber "1") (ENumber "2")) ] ] ] , [] ] , [ [ EGrouped [ EDelimited "[" "]" [ Right (EFraction NormalFrac (ENumber "1") (ENumber "2")) ] , ESymbol Ord "\8290" , EDelimited "(" ")" [ Right (EFraction NormalFrac (ENumber "1") (ENumber "2")) ] , ESymbol Ord "\8290" , EDelimited "{" "}" [ Right (EFraction NormalFrac (ENumber "1") (ENumber "2")) ] ] ] , [] ] , [ [ EGrouped [ EDelimited "\9001" "\9002" [ Right (EFraction NormalFrac (ENumber "1") (ENumber "2")) ] , ESymbol Ord "\8290" , EDelimited "\8970" "\8971" [ Right (EFraction NormalFrac (ENumber "1") (ENumber "2")) ] , ESymbol Ord "\8290" , EDelimited "\8968" "\8969" [ Right (EFraction NormalFrac (ENumber "1") (ENumber "2")) ] ] ] , [] ] , [ [ EGrouped [ EDelimited "" "" [ Left "\8593" , Right (EFraction NormalFrac (ENumber "1") (ENumber "2")) , Left "\8593" ] , ESymbol Ord "\8290" , EDelimited "" "" [ Left "\8595" , Right (EFraction NormalFrac (ENumber "1") (ENumber "2")) , Left "\8595" ] , ESymbol Ord "\8290" , EDelimited "" "" [ Left "\8597" , Right (EFraction NormalFrac (ENumber "1") (ENumber "2")) , Left "\8597" ] ] ] , [] ] , [ [ EGrouped [ EFraction NormalFrac (ENumber "1") (ENumber "2") , ESymbol Ord "\8290" , EFraction NormalFrac (ENumber "1") (ENumber "2") , ESymbol Ord "\8290" , EFraction NormalFrac (ENumber "1") (ENumber "2") ] ] , [] ] , [ [ EGrouped [ EFraction NormalFrac (ENumber "1") (ENumber "2") , ESymbol Ord "\8290" , EFraction NormalFrac (ENumber "1") (ENumber "2") , ESymbol Ord "\8290" , EFraction NormalFrac (ENumber "1") (ENumber "2") ] ] , [] ] , [ [ EGrouped [ EFraction NormalFrac (ENumber "1") (ENumber "2") , ESymbol Ord "\8290" , EFraction NormalFrac (ENumber "1") (ENumber "2") , ESymbol Ord "\8290" , EFraction NormalFrac (ENumber "1") (ENumber "2") ] ] , [] ] , [ [ EGrouped [ EGrouped [ ESymbol Bin "\8722" , EGrouped [ ESymbol Open "(" , EGrouped [ EIdentifier "a" , ESymbol Bin "\8722" , EIdentifier "b" ] , ESymbol Close ")" ] ] , ESymbol Rel "=" , EGrouped [ EIdentifier "b" , ESymbol Bin "\8722" , EIdentifier "a" ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EFraction NormalFrac (ENumber "2") (ENumber "5") , ESymbol Bin "+" , EFraction NormalFrac (ENumber "3") (ENumber "7") ] , ESymbol Rel "=" , EFraction NormalFrac (EGrouped [ EGrouped [ ENumber "2" , ESymbol Bin "\8901" , ENumber "7" ] , ESymbol Bin "+" , EGrouped [ ENumber "3" , ESymbol Bin "\8901" , ENumber "5" ] ]) (ENumber "35") , ESymbol Rel "=" , EFraction NormalFrac (ENumber "29") (ENumber "35") ] ] , [] ] , [ [ EGrouped [ EDelimited "|" "|" [ Right (EIdentifier "a") ] , ESymbol Rel "=" , EDelimited "{" "" [ Right (EArray [ AlignCenter , AlignCenter , AlignCenter ] [ [ [ EIdentifier "a" ] , [ EText TextNormal "if" ] , [ EGrouped [ EIdentifier "a" , ESymbol Rel "\8805" , ENumber "0" ] ] ] , [ [ EGrouped [ ESymbol Bin "\8722" , EIdentifier "a" ] ] , [ EText TextNormal "if" ] , [ EGrouped [ EIdentifier "a" , ESymbol Rel "<" , ENumber "0" ] ] ] ]) ] ] ] , [] ] , [ [ EGrouped [ ESuper (EIdentifier "a") (EIdentifier "n") , ESymbol Rel "=" , EUnder False (EUnder False (EGrouped [ EIdentifier "a" , ESymbol Bin "\8901" , EIdentifier "a" , ESymbol Bin "\8901" , EIdentifier "\8943" , ESymbol Bin "\8901" , EIdentifier "a" ]) (ESymbol Accent "\65080")) (EGrouped [ EIdentifier "n" , EText TextNormal "\8194factors" ]) ] ] , [] ] , [ [ EGrouped [ ESuper (EDelimited "(" ")" [ Right (EFraction NormalFrac (EIdentifier "a") (EIdentifier "b")) ]) (EGrouped [ ESymbol Bin "\8722" , EIdentifier "n" ]) , ESymbol Rel "=" , ESuper (EDelimited "(" ")" [ Right (EFraction NormalFrac (EIdentifier "b") (EIdentifier "a")) ]) (EIdentifier "n") ] ] , [] ] , [ [ EGrouped [ EGrouped [ ERoot (EIdentifier "n") (EIdentifier "a") , ESymbol Rel "=" , EIdentifier "b" ] , EText TextNormal "\8194\8194means\8194" , EGrouped [ ESuper (EIdentifier "b") (EIdentifier "n") , ESymbol Rel "=" , EIdentifier "a" ] , EText TextNormal "." ] ] , [] ] , [ [ EGrouped [ ERoot (ENumber "4") (EFraction NormalFrac (ENumber "16") (ENumber "81")) , ESymbol Rel "=" , EFraction NormalFrac (ERoot (ENumber "4") (ENumber "16")) (ERoot (ENumber "4") (ENumber "81")) , ESymbol Rel "=" , EFraction NormalFrac (ENumber "2") (ENumber "3") ] ] , [] ] , [ [ EDelimited "{" "}" [ Right (EGrouped [ EIdentifier "x" , ESymbol Rel "\8739" , EGrouped [ EGrouped [ EIdentifier "x" , ESymbol Rel "\8800" , ENumber "0" ] , ESymbol Pun "," , EGrouped [ EIdentifier "x" , ESymbol Rel "\8800" , ENumber "1" ] ] ]) ] ] , [] ] , [ [ EGrouped [ EGrouped [ ESub (EIdentifier "a") (EIdentifier "n") , ESymbol Ord "\8290" , ESuper (EIdentifier "x") (EIdentifier "n") ] , ESymbol Bin "+" , EGrouped [ ESub (EIdentifier "a") (EGrouped [ EIdentifier "n" , ESymbol Bin "\8722" , ENumber "1" ]) , ESymbol Ord "\8290" , ESuper (EIdentifier "x") (EGrouped [ EIdentifier "n" , ESymbol Bin "\8722" , ENumber "1" ]) ] , ESymbol Bin "+" , EIdentifier "\8943" , ESymbol Bin "+" , EGrouped [ ESub (EIdentifier "a") (ENumber "1") , ESymbol Ord "\8290" , EIdentifier "x" ] , ESymbol Bin "+" , ESub (EIdentifier "a") (ENumber "0") ] ] , [] ] , [ [ EGrouped [ EGrouped [ ESuper (EIdentifier "a") (ENumber "3") , ESymbol Bin "\8722" , ESuper (EIdentifier "b") (ENumber "3") ] , ESymbol Rel "=" , EGrouped [ EDelimited "(" ")" [ Right (EGrouped [ EIdentifier "a" , ESymbol Bin "\8722" , EIdentifier "b" ]) ] , ESymbol Ord "\8290" , EDelimited "(" ")" [ Right (EGrouped [ ESuper (EIdentifier "a") (ENumber "2") , ESymbol Bin "+" , EGrouped [ EIdentifier "a" , ESymbol Ord "\8290" , EIdentifier "b" ] , ESymbol Bin "+" , ESuper (EIdentifier "b") (ENumber "2") ]) ] ] ] ] , [] ] , [ [ ESuper (EGrouped [ ESymbol Open "(" , EGrouped [ EIdentifier "x" , ESymbol Bin "+" , EIdentifier "y" ] , ESymbol Close ")" ]) (ENumber "2") ] , [] ] , [ [ EGrouped [ EIdentifier "H" , ESymbol Rel "=" , EDelimited "{" "}" [ Right (EGrouped [ EGrouped [ EDelimited "(" ")" [ Right (EArray [ AlignCenter , AlignCenter ] [ [ [ EIdentifier "a" ] , [ EIdentifier "b" ] ] , [ [ EIdentifier "c" ] , [ EIdentifier "d" ] ] ]) ] , ESymbol Rel "\8712" , EIdentifier "G" ] , ESymbol Rel "\8739" , EGrouped [ EGrouped [ EGrouped [ EIdentifier "a" , ESymbol Ord "\8290" , EIdentifier "d" ] , ESymbol Bin "\8722" , EGrouped [ EIdentifier "b" , ESymbol Ord "\8290" , EIdentifier "c" ] ] , ESymbol Rel "=" , ENumber "1" ] ]) ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EGrouped [ ESymbol Open "|" , EIdentifier "x" , ESymbol Close "|" ] , ESymbol Bin "+" , EGrouped [ ESymbol Open "||" , EIdentifier "y" , ESymbol Close "||" ] , ESymbol Bin "+" , EGrouped [ ESymbol Open "{" , EIdentifier "z" , ESymbol Close "}" ] , ESymbol Bin "\8722" , EGrouped [ ESymbol Open "[" , EGrouped [ EIdentifier "a" , ESymbol Ord "\8290" , EIdentifier "c" ] , ESymbol Close "]" ] , ESymbol Bin "+" , EGrouped [ ESymbol Open "(" , EIdentifier "b" , ESymbol Close ")" ] ] , ESymbol Rel "=" , EGrouped [ ESymbol Open "[" , EGrouped [ EIdentifier "a" , ESymbol Pun "," , EIdentifier "b" ] , ESymbol Close "]" ] ] ] , [] ] , [ [ EGrouped [ EIdentifier "x" , ESymbol Rel "=" , ENumber "1" ] ] , [] ] , [ [ EGrouped [ EIdentifier "x" , ESymbol Rel "=" , ENumber "1" ] ] , [] ] , [ [ EGrouped [ EIdentifier "x" , ESymbol Rel "=" , ENumber "1" ] ] , [] ] , [ [ EGrouped [ EIdentifier "x" , ESymbol Rel "=" , ENumber "1" ] ] , [] ] , [ [ EGrouped [ EDelimited "[" ")" [ Right (EGrouped [ EGrouped [ ESymbol Bin "\8722" , EFraction NormalFrac (ENumber "10") (ENumber "3") ] , ESymbol Pun "," , EGrouped [ ESymbol Bin "\8722" , EFraction NormalFrac (ENumber "7") (ENumber "3") ] ]) ] , ESymbol Bin "\8746" , EDelimited "(" "]" [ Right (EGrouped [ EGrouped [ ESymbol Bin "\8722" , EFraction NormalFrac (ENumber "7") (ENumber "3") ] , ESymbol Pun "," , EGrouped [ ESymbol Bin "\8722" , EFraction NormalFrac (ENumber "4") (ENumber "3") ] ]) ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EGrouped [ EIdentifier "A" , ESymbol Ord "\8290" , EFraction NormalFrac (EGrouped [ ESymbol Ord "\8706" , EIdentifier "u" ]) (EGrouped [ ESymbol Ord "\8706" , EIdentifier "x" ]) ] , ESymbol Bin "+" , EGrouped [ EIdentifier "B" , ESymbol Ord "\8290" , EFraction NormalFrac (EGrouped [ ESymbol Ord "\8706" , EIdentifier "u" ]) (EGrouped [ ESymbol Ord "\8706" , EIdentifier "y" ]) ] , ESymbol Bin "+" , EGrouped [ EIdentifier "C" , ESymbol Ord "\8290" , EIdentifier "u" ] ] , ESymbol Rel "=" , EIdentifier "E" ] ] , [] ] , [ [ EGrouped [ EUnderover False (ESymbol Op "\8721") (ESpace (0 % 1)) (ESpace (0 % 1)) , EIdentifier "x" ] ] , [] ] , [ [ EGrouped [ EUnderover False (ESymbol Op "\8721") (EArray [ AlignCenter ] [ [ [ EGrouped [ ENumber "1" , ESymbol Rel "<" , EIdentifier "i" , ESymbol Rel "<" , ENumber "10" ] ] ] , [ [ EGrouped [ ENumber "1" , ESymbol Rel "<" , EIdentifier "j" , ESymbol Rel "<" , ENumber "10" ] ] ] ]) (ESpace (0 % 1)) , ESuper (ENumber "2") (EGrouped [ EIdentifier "i" , ESymbol Bin "+" , EIdentifier "j" ]) ] ] , [] ] , [ [ ESubsup (EIdentifier "\915") (ESubsup (ENumber "1") (ESuper (ESpace (1 % 18)) (EArray [ AlignCenter ] [ [ [ ESubsup (ENumber "2") (ESuper (ESpace (1 % 18)) (EArray [ AlignCenter ] [ [ [ ENumber "3" ] ] , [ [ ENumber "4" ] ] ])) (ESpace (0 % 1)) ] ] , [ [ ESubsup (ENumber "5") (ESuper (ESpace (1 % 18)) (EArray [ AlignCenter ] [ [ [ ENumber "6" ] ] , [ [ ENumber "7" ] ] ])) (ESpace (0 % 1)) ] ] ])) (ESpace (0 % 1))) (ESuper (ENumber "1") (EArray [ AlignCenter ] [ [ [ ESuper (ENumber "5") (EArray [ AlignCenter ] [ [ [ ENumber "7" ] ] , [ [ ENumber "6" ] ] ]) ] ] , [ [ ESuper (ENumber "2") (EArray [ AlignCenter ] [ [ [ ENumber "4" ] ] , [ [ ENumber "3" ] ] ]) ] ] ])) ] , [] ] , [ [ EGrouped [ EGrouped [ EIdentifier "y" , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EIdentifier "x") ] ] , ESymbol Rel "=" , EFraction NormalFrac (EGrouped [ EGrouped [ EIdentifier "x" , ESymbol Ord "\8290" , ESuper (EIdentifier "e") (EIdentifier "x") ] , ESymbol Bin "\8722" , ESuper (EIdentifier "e") (EIdentifier "x") , ESymbol Bin "+" , ENumber "2" ]) (ESuper (EIdentifier "e") (EIdentifier "x")) , ESymbol Rel "=" , EGrouped [ EIdentifier "x" , ESymbol Bin "\8722" , ENumber "1" , ESymbol Bin "+" , EFraction NormalFrac (ENumber "2") (ESuper (EIdentifier "e") (EIdentifier "x")) ] ] ] , [] ] , [ [ EArray [ AlignRight ] [ [ [ EGrouped [ EGrouped [ EGrouped [ ESub (ESymbol Ord "\8517") (EGrouped [ EIdentifier "x" , ESymbol Ord "\8203" , EIdentifier "x" ]) , EIdentifier "y" ] , ESymbol Bin "\8722" , EIdentifier "y" ] , ESymbol Rel "=" , ENumber "0" ] ] ] , [ [ EGrouped [ EGrouped [ EIdentifier "y" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , ENumber "0" , ESymbol Close ")" ] ] , ESymbol Rel "=" , ENumber "1" ] ] ] , [ [ EGrouped [ EGrouped [ ESuper (EIdentifier "y") (ESymbol Ord "\8242") , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (ENumber "0") ] ] , ESymbol Rel "=" , ENumber "0" ] ] ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EIdentifier "y" , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EIdentifier "x") ] ] , ESymbol Rel "=" , EGrouped [ EGrouped [ EFraction NormalFrac (ENumber "1") (ENumber "3") , ESymbol Ord "\8290" , ESuper (EIdentifier "e") (EGrouped [ EGrouped [ ESymbol Bin "\8722" , ERoot (ENumber "3") (EGrouped [ ESymbol Open "(" , EGrouped [ ESymbol Bin "\8722" , ENumber "1" ] , ESymbol Close ")" ]) ] , ESymbol Ord "\8290" , EIdentifier "x" ]) ] , ESymbol Bin "+" , EGrouped [ EFraction NormalFrac (ENumber "2") (ENumber "3") , ESymbol Ord "\8290" , ESuper (EIdentifier "e") (EGrouped [ EFraction NormalFrac (ENumber "1") (ENumber "2") , ESymbol Ord "\8290" , ERoot (ENumber "3") (EGrouped [ ESymbol Open "(" , EGrouped [ ESymbol Bin "\8722" , ENumber "1" ] , ESymbol Close ")" ]) , ESymbol Ord "\8290" , EIdentifier "x" ]) , ESymbol Ord "\8290" , EGrouped [ EMathOperator "cos" , ESymbol Ord "\8289" , EGrouped [ EFraction NormalFrac (ENumber "1") (ENumber "2") , ESymbol Ord "\8290" , ESqrt (ENumber "3") , ESymbol Ord "\8290" , ERoot (ENumber "3") (EDelimited "(" ")" [ Right (EGrouped [ ESymbol Bin "\8722" , ENumber "1" ]) ]) , ESymbol Ord "\8290" , EIdentifier "x" ] ] ] ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EIdentifier "y" , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EIdentifier "t") ] ] , ESymbol Rel "=" , EGrouped [ ENumber "2" , ESymbol Ord "\8290" , EGrouped [ EMathOperator "tan" , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EGrouped [ EGrouped [ ENumber "2" , ESymbol Ord "\8290" , EIdentifier "t" ] , ESymbol Bin "\8722" , EGrouped [ EFraction NormalFrac (ENumber "1") (ENumber "4") , ESymbol Ord "\8290" , EIdentifier "\960" ] ]) ] ] ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EIdentifier "\8497" , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EGrouped [ EArray [ AlignCenter ] [ [ [ ESuper (EIdentifier "e") (EGrouped [ ENumber "2" , ESymbol Ord "\8290" , EIdentifier "\960" , ESymbol Ord "\8290" , EIdentifier "i" , ESymbol Ord "\8290" , EIdentifier "x" ]) ] ] , [ [ EGrouped [ ENumber "2" , ESymbol Ord "\8290" , EIdentifier "\960" , ESymbol Ord "\8290" , EGrouped [ EIdentifier "Dirac" , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EGrouped [ EIdentifier "x" , ESymbol Bin "\8722" , EGrouped [ ENumber "2" , ESymbol Ord "\8290" , EIdentifier "\960" ] ]) ] ] ] ] ] ] , ESymbol Pun "," , EIdentifier "x" , ESymbol Pun "," , EIdentifier "s" ]) ] ] , ESymbol Rel "=" , EDelimited "(" ")" [ Right (EArray [ AlignCenter ] [ [ [ EGrouped [ ENumber "2" , ESymbol Ord "\8290" , EIdentifier "\960" , ESymbol Ord "\8290" , EGrouped [ EIdentifier "Dirac" , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EGrouped [ EIdentifier "s" , ESymbol Bin "\8722" , EGrouped [ ENumber "2" , ESymbol Ord "\8290" , EIdentifier "\960" ] ]) ] ] ] ] ] , [ [ EGrouped [ ENumber "2" , ESymbol Ord "\8290" , EIdentifier "\960" , ESymbol Ord "\8290" , ESuper (EIdentifier "e") (EGrouped [ EGrouped [ ESymbol Bin "\8722" , ENumber "2" ] , ESymbol Ord "\8290" , EIdentifier "i" , ESymbol Ord "\8290" , EIdentifier "\960" , ESymbol Ord "\8290" , EIdentifier "s" ]) ] ] ] ]) ] ] ] , [] ] , [ [ EArray [ AlignCenter ] [ [ [ EGrouped [ EIdentifier "x" , ESymbol Rel "=" , ENumber "1" ] ] ] , [ [ EGrouped [ EGrouped [ EIdentifier "x" , ESymbol Bin "+" , ENumber "3" ] , ESymbol Rel "=" , ENumber "123" ] ] ] ] ] , [] ] , [ [ EArray [ AlignCenter , AlignCenter , AlignCenter , AlignCenter ] [ [ [ EIdentifier "t" ] , [ EIdentifier "x" ] , [ EIdentifier "y" ] , [ EIdentifier "z" ] ] , [ [ ENumber "0" ] , [ ENumber "1.0000" ] , [ ENumber "1.0000" ] , [ ENumber "1.0000" ] ] , [ [ ENumber ".1" ] , [ ENumber "1.1158" ] , [ ENumber "1.0938" ] , [ ENumber ".8842" ] ] , [ [ ENumber ".2" ] , [ ENumber "1.2668" ] , [ ENumber "1.1695" ] , [ ENumber ".7332" ] ] , [ [ ENumber ".3" ] , [ ENumber "1.4582" ] , [ ENumber "1.2173" ] , [ ENumber ".5418" ] ] , [ [ ENumber ".4" ] , [ ENumber "1.6953" ] , [ ENumber "1.2253" ] , [ ENumber ".3047" ] ] , [ [ ENumber ".5" ] , [ ENumber "1.9830" ] , [ ENumber "1.1791" ] , [ ENumber ".0170" ] ] , [ [ ENumber ".6" ] , [ ENumber "2.3256" ] , [ ENumber "1.0619" ] , [ EGrouped [ ESymbol Bin "\8722" , ENumber ".3256" ] ] ] , [ [ ENumber ".7" ] , [ ENumber "2.7265" ] , [ ENumber ".8542" ] , [ EGrouped [ ESymbol Bin "\8722" , ENumber ".7265" ] ] ] , [ [ ENumber ".8" ] , [ ENumber "3.1873" ] , [ ENumber ".5344" ] , [ EGrouped [ ESymbol Bin "\8722" , ENumber "1.1873" ] ] ] , [ [ ENumber ".9" ] , [ ENumber "3.7077" ] , [ ENumber ".0777" ] , [ EGrouped [ ESymbol Bin "\8722" , ENumber "1.7077" ] ] ] , [ [ ENumber "1.0" ] , [ ENumber "4.2842" ] , [ EGrouped [ ESymbol Bin "\8722" , ENumber ".5424" ] ] , [ EGrouped [ ESymbol Bin "\8722" , ENumber "2.2842" ] ] ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ ESub (EIdentifier "K") (EIdentifier "v") , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EIdentifier "z" , ESymbol Close ")" ] ] , ESymbol Rel "=" , EGrouped [ ESub (EIdentifier "BesselK") (EIdentifier "v") , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EIdentifier "z") ] ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EGrouped [ ESuper (EIdentifier "z") (ENumber "2") , ESymbol Ord "\8290" , EFraction NormalFrac (EGrouped [ ESuper (ESymbol Ord "\8518") (ENumber "2") , EIdentifier "w" ]) (EGrouped [ ESymbol Ord "\8518" , ESuper (EIdentifier "z") (ENumber "2") ]) ] , ESymbol Bin "+" , EGrouped [ EIdentifier "z" , ESymbol Ord "\8290" , EFraction NormalFrac (EGrouped [ ESymbol Ord "\8518" , EIdentifier "w" ]) (EGrouped [ ESymbol Ord "\8518" , EIdentifier "z" ]) ] , ESymbol Bin "\8722" , EGrouped [ EDelimited "(" ")" [ Right (EGrouped [ ESuper (EIdentifier "z") (ENumber "2") , ESymbol Bin "+" , ESuper (EIdentifier "v") (ENumber "2") ]) ] , ESymbol Ord "\8290" , EIdentifier "w" ] ] , ESymbol Rel "=" , ENumber "0" ] ] , [] ] , [ [ EGrouped [ EGrouped [ EFraction NormalFrac (EGrouped [ ESuper (ESymbol Ord "\8706") (ENumber "2") , EGrouped [ EIdentifier "u" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EGrouped [ EIdentifier "x" , ESymbol Pun "," , EIdentifier "y" ] , ESymbol Close ")" ] ] ]) (EGrouped [ ESymbol Ord "\8706" , ESuper (EIdentifier "x") (ENumber "2") ]) , ESymbol Bin "\8722" , EFraction NormalFrac (EGrouped [ ESuper (ESymbol Ord "\8706") (ENumber "2") , EGrouped [ EIdentifier "u" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EGrouped [ EIdentifier "x" , ESymbol Pun "," , EIdentifier "y" ] , ESymbol Close ")" ] ] ]) (EGrouped [ ESymbol Ord "\8706" , ESuper (EIdentifier "y") (ENumber "2") ]) ] , ESymbol Rel "=" , ENumber "0" ] ] , [] ] , [ [ EGrouped [ EGrouped [ EIdentifier "y" , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EGrouped [ EIdentifier "t" , ESymbol Pun "," , EIdentifier "x" ]) ] ] , ESymbol Rel "=" , EGrouped [ EGrouped [ ESub (EIdentifier "F") (ENumber "1") , ESymbol Ord "\8290" , EDelimited "(" ")" [ Right (EGrouped [ EGrouped [ ESymbol Bin "\8722" , EIdentifier "x" ] , ESymbol Bin "\8722" , EGrouped [ EIdentifier "a" , ESymbol Ord "\8290" , EIdentifier "t" ] ]) ] ] , ESymbol Bin "+" , EGrouped [ ESub (EIdentifier "F") (ENumber "2") , ESymbol Ord "\8290" , EDelimited "(" ")" [ Right (EGrouped [ EIdentifier "x" , ESymbol Bin "\8722" , EGrouped [ EIdentifier "a" , ESymbol Ord "\8290" , EIdentifier "t" ] ]) ] ] ] ] ] , [] ] , [ [ EArray [ AlignCenter , AlignCenter , AlignCenter ] [ [ [ ENumber "1" ] , [ ENumber "2" ] , [ ENumber "3" ] ] , [ [ ENumber "4" ] , [ ENumber "5" ] , [ ENumber "6" ] ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EGrouped [ ENumber "2" , ESymbol Ord "\8290" , EIdentifier "x" ] , ESymbol Bin "+" , ENumber "1" ] , ESymbol Rel "=" , ENumber "5" ] ] , [] ] , [ [ EArray [ AlignCenter ] [ [ [ EGrouped [ ENumber "1" , ESymbol Rel "=" , ENumber "3" ] ] ] , [ [ EGrouped [ ENumber "9" , ESymbol Rel "=" , ENumber "7" ] ] ] ] ] , [] ] , [ [ EArray [ AlignCenter ] [ [ [ EGrouped [ EIdentifier "a" , ESymbol Ord "\8290" , EIdentifier "b" ] ] ] , [ [ EGrouped [ EIdentifier "c" , ESymbol Ord "\8290" , EIdentifier "d" ] ] ] , [ [ EGrouped [ EIdentifier "e" , ESymbol Ord "\8290" , EIdentifier "f" ] ] ] ] ] , [] ] , [ [ EArray [ AlignCenter ] [ [ [ EGrouped [ EGrouped [ EIdentifier "x" , ESymbol Bin "+" , EGrouped [ ENumber "2" , ESymbol Ord "\8290" , EIdentifier "y" ] , ESymbol Bin "\8722" , ENumber "3" ] , ESymbol Rel "=" , ENumber "5" ] ] ] , [ [ EGrouped [ EGrouped [ EGrouped [ ENumber "4" , ESymbol Ord "\8290" , EIdentifier "x" ] , ESymbol Bin "\8722" , EIdentifier "y" , ESymbol Bin "\8722" , ENumber "5" ] , ESymbol Rel "=" , ENumber "98" ] ] ] ] ] , [] ] , [ [ EArray [ AlignCenter ] [ [ [ EGrouped [ EIdentifier "x" , ESymbol Rel "=" , EIdentifier "z" ] ] ] , [ [ EGrouped [ ENumber "1" , ESymbol Rel "=" , ENumber "3" ] ] ] ] ] , [] ] , [ [ EArray [ AlignCenter ] [ [ [ EGrouped [ EGrouped [ ESub (EIdentifier "A") (ENumber "1") , ESymbol Rel "=" , EGrouped [ EGrouped [ ESub (EIdentifier "N") (ENumber "0") , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EGrouped [ EIdentifier "\955" , ESymbol Pun ";" , ESuper (EIdentifier "\937") (ESymbol Ord "\8242") ] , ESymbol Close ")" ] ] , ESymbol Bin "\8722" , EGrouped [ EIdentifier "\966" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EGrouped [ EIdentifier "\955" , ESymbol Pun ";" , ESuper (EIdentifier "\937") (ESymbol Ord "\8242") ] , ESymbol Close ")" ] ] ] ] , EText TextNormal "," ] ] ] , [ [ EGrouped [ EGrouped [ ESub (EIdentifier "A") (ENumber "2") , ESymbol Rel "=" , EGrouped [ EGrouped [ EIdentifier "\966" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EGrouped [ EIdentifier "\955" , ESymbol Pun ";" , ESuper (EIdentifier "\937") (ESymbol Ord "\8242") ] , ESymbol Close ")" ] ] , ESymbol Bin "\8722" , EGrouped [ EIdentifier "\966" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EGrouped [ EIdentifier "\955" , ESymbol Pun ";" , EIdentifier "\937" ] , ESymbol Close ")" ] ] ] ] , EText TextNormal "," ] ] ] , [ [ EGrouped [ EGrouped [ ESub (EIdentifier "A") (ENumber "3") , ESymbol Rel "=" , EGrouped [ EStyled TextScript [ EIdentifier "N" ] , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EGrouped [ EIdentifier "\955" , ESymbol Pun ";" , EIdentifier "\969" ] , ESymbol Close ")" ] ] ] , EText TextNormal "." ] ] ] ] ] , [] ] , [ [ EArray [ AlignCenter ] [ [ [ EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EIdentifier "\952" ] ] ] , [ [ EGrouped [ EMathOperator "cos" , ESymbol Ord "\8289" , EIdentifier "\947" ] ] ] ] ] , [] ] , [ [ EGrouped [ EIdentifier "x" , ESymbol Rel "=" , EDelimited "{" "" [ Right (EArray [ AlignLeft , AlignLeft ] [ [ [ EIdentifier "x" ] , [ EGrouped [ EText TextNormal "if\8194" , EGrouped [ EIdentifier "x" , ESymbol Rel "<" , ENumber "0" ] ] ] ] , [ [ EGrouped [ ESymbol Bin "\8722" , EIdentifier "x" ] ] , [ EGrouped [ EText TextNormal "if\8194" , EGrouped [ EIdentifier "x" , ESymbol Rel "\8805" , ENumber "0" ] ] ] ] ]) ] ] ] , [] ] , [ [ EArray [ AlignCenter ] [ [ [ EGrouped [ EIdentifier "L" , ESymbol Ord "\8290" , EIdentifier "M" , ESymbol Ord "\8290" , EIdentifier "R" , ESymbol Ord "\8290" , EIdentifier "M" ] ] ] , [ [ EGrouped [ EIdentifier "L" , ESymbol Ord "\8290" , EIdentifier "M" , ESymbol Ord "\8290" , EIdentifier "R" , ESymbol Ord "\8290" , EIdentifier "M" ] ] ] ] ] , [] ] , [ [ EArray [ AlignCenter ] [ [ [ EGrouped [ EIdentifier "M" , ESymbol Ord "\8290" , EIdentifier "A" , ESymbol Ord "\8290" , EIdentifier "T" , ESymbol Ord "\8290" , EIdentifier "H" ] ] ] , [ [ EGrouped [ EIdentifier "M" , ESymbol Ord "\8290" , EIdentifier "A" , ESymbol Ord "\8290" , EIdentifier "T" , ESymbol Ord "\8290" , EIdentifier "H" ] ] ] ] ] , [] ] , [ [ EText TextNormal "\8942" ] , [] ] , [ [ EGrouped [ EGrouped [ EMathOperator "\8711\215" , EIdentifier "F" ] , ESymbol Rel "=" , ENumber "0" ] ] , [] ] , [ [ EGrouped [ EMathOperator "\8711\183" , EIdentifier "F" ] ] , [] ] , [ [ EGrouped [ EGrouped [ EMathOperator "\8711\183\8711" , EIdentifier "F" ] , ESymbol Rel "=" , EGrouped [ EGrouped [ ESuper (ESymbol Ord "\8711") (ENumber "2") , EIdentifier "F" ] , ESymbol Bin "+" , ENumber "7" ] , ESymbol Rel "=" , EIdentifier "A" ] ] , [] ] , [ [ EGrouped [ EGrouped [ EMathOperator "\8711\215" , EGrouped [ ESymbol Open "(" , EGrouped [ EGrouped [ EIdentifier "x" , ESymbol Ord "\8290" , EIdentifier "y" ] , ESymbol Pun "," , EGrouped [ EIdentifier "y" , ESymbol Ord "\8290" , EIdentifier "z" ] , ESymbol Pun "," , EGrouped [ EIdentifier "z" , ESymbol Ord "\8290" , EIdentifier "x" ] ] , ESymbol Close ")" ] ] , ESymbol Rel "=" , EDelimited "[" "]" [ Right (EArray [ AlignCenter ] [ [ [ EGrouped [ ESymbol Bin "\8722" , EIdentifier "y" ] ] ] , [ [ EGrouped [ ESymbol Bin "\8722" , EIdentifier "z" ] ] ] , [ [ EGrouped [ ESymbol Bin "\8722" , EIdentifier "x" ] ] ] ]) ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EMathOperator "\8711\215" , EGrouped [ ESymbol Open "(" , EGrouped [ EIdentifier "y" , ESymbol Pun "," , EIdentifier "z" , ESymbol Pun "," , EIdentifier "x" ] , ESymbol Close ")" ] ] , ESymbol Rel "=" , EDelimited "(" ")" [ Right (EGrouped [ EGrouped [ ESymbol Bin "\8722" , ENumber "1" ] , ESymbol Pun "," , EGrouped [ ESymbol Bin "\8722" , ENumber "1" ] , ESymbol Pun "," , EGrouped [ ESymbol Bin "\8722" , ENumber "1" ] ]) ] , ESymbol Rel "\8800" , ENumber "0" ] ] , [] ] , [ [ EGrouped [ EGrouped [ EIdentifier "x" , ESymbol Bin "+" , EIdentifier "y" , ESymbol Bin "+" , EIdentifier "\945" ] , ESymbol Rel "=" , ENumber "102" ] ] , [] ] , [ [ EGrouped [ EGrouped [ EStyled TextBold [ EIdentifier "a" ] , ESymbol Bin "+" , EStyled TextBold [ EIdentifier "b" ] ] , ESymbol Rel "=" , EStyled TextBold [ EIdentifier "c" ] ] ] , [] ] , [ [ EGrouped [ EIdentifier "x" , ESymbol Bin "+" , ENumber "1" ] ] , [] ] , [ [ EGrouped [ EGrouped [ EIdentifier "x" , ESymbol Bin "+" , EGrouped [ EIdentifier "f" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EStyled TextBold [ EIdentifier "x" ] , ESymbol Close ")" ] ] , ESymbol Bin "\8722" , ENumber "1" ] , ESymbol Rel "=" , ENumber "123" ] ] , [] ] , [ [ EGrouped [ EGrouped [ EStyled TextItalic [ EIdentifier "T" ] , ESymbol Ord "\8290" , EStyled TextItalic [ EIdentifier "h" ] , ESymbol Ord "\8290" , EStyled TextItalic [ EIdentifier "e" ] , ESymbol Ord "\8290" , EStyled TextItalic [ EIdentifier "q" ] , ESymbol Ord "\8290" , EStyled TextItalic [ EIdentifier "u" ] , ESymbol Ord "\8290" , EStyled TextItalic [ EIdentifier "i" ] , ESymbol Ord "\8290" , EStyled TextItalic [ EIdentifier "c" ] , ESymbol Ord "\8290" , EStyled TextItalic [ EIdentifier "k" ] , ESymbol Ord "\8290" , EIdentifier "b" , ESymbol Ord "\8290" , EIdentifier "r" , ESymbol Ord "\8290" , EIdentifier "o" , ESymbol Ord "\8290" , EIdentifier "w" , ESymbol Ord "\8290" , EIdentifier "n" , ESymbol Ord "\8290" , EIdentifier "f" , ESymbol Ord "\8290" , EIdentifier "o" , ESymbol Ord "\8290" , EIdentifier "x" , ESymbol Ord "\8290" , EIdentifier "j" , ESymbol Ord "\8290" , EIdentifier "u" , ESymbol Ord "\8290" , EIdentifier "m" , ESymbol Ord "\8290" , EIdentifier "p" , ESymbol Ord "\8290" , EIdentifier "s" , ESymbol Ord "\8290" , EStyled TextBold [ EIdentifier "o" ] , ESymbol Ord "\8290" , EStyled TextBold [ EIdentifier "v" ] , ESymbol Ord "\8290" , EStyled TextBold [ EIdentifier "e" ] , ESymbol Ord "\8290" , EStyled TextBold [ EIdentifier "r" ] , ESymbol Ord "\8290" , EIdentifier "t" , ESymbol Ord "\8290" , EIdentifier "h" , ESymbol Ord "\8290" , EIdentifier "e" , ESymbol Ord "\8290" , EStyled TextSansSerif [ EIdentifier "l" ] , ESymbol Ord "\8290" , EStyled TextSansSerif [ EIdentifier "a" ] , ESymbol Ord "\8290" , EStyled TextSansSerif [ EIdentifier "z" ] , ESymbol Ord "\8290" , EStyled TextSansSerif [ EIdentifier "y" ] , ESymbol Ord "\8290" , EStyled TextMonospace [ EIdentifier "d" ] , ESymbol Ord "\8290" , EStyled TextMonospace [ EIdentifier "o" ] , ESymbol Ord "\8290" , EStyled TextMonospace [ EIdentifier "g" ] ] , EText TextNormal "." , EGrouped [ EIdentifier "T" , ESymbol Ord "\8290" , EIdentifier "h" , ESymbol Ord "\8290" , EIdentifier "e" , ESymbol Ord "\8290" , EIdentifier "e" , ESymbol Ord "\8290" , EIdentifier "n" , ESymbol Ord "\8290" , EIdentifier "d" ] , EText TextNormal "." ] ] , [] ] , [ [ EDelimited "(" ")" [ Right (EGrouped [ EGrouped [ EFraction NormalFrac (EGrouped [ ESymbol Ord "\8706" , EIdentifier "f" ]) (EGrouped [ ESymbol Ord "\8706" , ESub (EIdentifier "x") (ENumber "1") ]) , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EGrouped [ ESub (EIdentifier "c") (ENumber "1") , ESymbol Pun "," , ESub (EIdentifier "c") (ENumber "2") , ESymbol Pun "," , EIdentifier "\8230" , ESymbol Pun "," , ESub (EIdentifier "c") (EIdentifier "n") ]) ] ] , ESymbol Pun "," , EGrouped [ EFraction NormalFrac (EGrouped [ ESymbol Ord "\8706" , EIdentifier "f" ]) (EGrouped [ ESymbol Ord "\8706" , ESub (EIdentifier "x") (ENumber "2") ]) , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EGrouped [ ESub (EIdentifier "c") (ENumber "1") , ESymbol Pun "," , ESub (EIdentifier "c") (ENumber "2") , ESymbol Pun "," , EIdentifier "\8230" , ESymbol Pun "," , ESub (EIdentifier "c") (EIdentifier "n") ]) ] ] , ESymbol Pun "," , EIdentifier "\8230" , ESymbol Pun "," , EGrouped [ EFraction NormalFrac (EGrouped [ ESymbol Ord "\8706" , EIdentifier "f" ]) (EGrouped [ ESymbol Ord "\8706" , ESub (EIdentifier "x") (EGrouped [ EIdentifier "n" , ESymbol Ord "\8203" , ENumber "1" ]) ]) , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EGrouped [ ESub (EIdentifier "c") (ENumber "1") , ESymbol Pun "," , ESub (EIdentifier "c") (ENumber "2") , ESymbol Pun "," , EIdentifier "\8230" , ESymbol Pun "," , ESub (EIdentifier "c") (EIdentifier "n") ]) ] ] ]) ] ] , [] ] , [ [ EGrouped [ EGrouped [ ESymbol Ord "\8711" , EDelimited "(" ")" [ Right (EGrouped [ EGrouped [ EIdentifier "c" , ESymbol Ord "\8290" , EIdentifier "u" , ESymbol Ord "\8290" , EIdentifier "v" ] , ESymbol Bin "+" , EGrouped [ ESuper (EIdentifier "v") (ENumber "2") , ESymbol Ord "\8290" , EIdentifier "w" ] ]) ] ] , ESymbol Rel "=" , EDelimited "(" ")" [ Right (EGrouped [ EGrouped [ EIdentifier "u" , ESymbol Ord "\8290" , EIdentifier "v" ] , ESymbol Pun "," , EGrouped [ EIdentifier "c" , ESymbol Ord "\8290" , EIdentifier "v" ] , ESymbol Pun "," , EGrouped [ EGrouped [ EIdentifier "c" , ESymbol Ord "\8290" , EIdentifier "u" ] , ESymbol Bin "+" , EGrouped [ ENumber "2" , ESymbol Ord "\8290" , EIdentifier "v" , ESymbol Ord "\8290" , EIdentifier "w" ] ] , ESymbol Pun "," , ESuper (EIdentifier "v") (ENumber "2") ]) ] ] ] , [] ] , [ [ EArray [ AlignCenter ] [ [ [ EGrouped [ EGrouped [ ESub (EIdentifier "D") (EIdentifier "u") , ESymbol Ord "\8290" , EGrouped [ EIdentifier "f" , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EGrouped [ EIdentifier "a" , ESymbol Pun "," , EIdentifier "b" , ESymbol Pun "," , EIdentifier "c" ]) ] ] ] , ESymbol Rel "=" , EGrouped [ EGrouped [ ESymbol Ord "\8711" , EGrouped [ EIdentifier "f" , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EGrouped [ EIdentifier "a" , ESymbol Pun "," , EIdentifier "b" , ESymbol Pun "," , EIdentifier "c" ]) ] ] ] , ESymbol Bin "\8901" , EStyled TextBold [ EIdentifier "u" ] ] ] ] ] , [ [ EGrouped [ ESymbol Rel "=" , EGrouped [ EGrouped [ EGrouped [ EFraction NormalFrac (EGrouped [ ESymbol Ord "\8706" , EIdentifier "f" ]) (EGrouped [ ESymbol Ord "\8706" , EIdentifier "x" ]) , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EGrouped [ EIdentifier "a" , ESymbol Pun "," , EIdentifier "b" , ESymbol Pun "," , EIdentifier "c" ]) ] ] , ESymbol Ord "\8290" , ESub (EIdentifier "u") (ENumber "1") ] , ESymbol Bin "+" , EGrouped [ EGrouped [ EFraction NormalFrac (EGrouped [ ESymbol Ord "\8706" , EIdentifier "f" ]) (EGrouped [ ESymbol Ord "\8706" , EIdentifier "y" ]) , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EGrouped [ EIdentifier "a" , ESymbol Pun "," , EIdentifier "b" , ESymbol Pun "," , EIdentifier "c" ]) ] ] , ESymbol Ord "\8290" , ESub (EIdentifier "u") (ENumber "2") ] , ESymbol Bin "+" , EGrouped [ EGrouped [ EFraction NormalFrac (EGrouped [ ESymbol Ord "\8706" , EIdentifier "f" ]) (EGrouped [ ESymbol Ord "\8706" , EIdentifier "z" ]) , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EGrouped [ EIdentifier "a" , ESymbol Pun "," , EIdentifier "b" , ESymbol Pun "," , EIdentifier "c" ]) ] ] , ESymbol Ord "\8290" , ESub (EIdentifier "u") (ENumber "3") ] ] ] ] ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EIdentifier "\952" , ESymbol Rel "\8712" , EDelimited "{" "}" [ Right (EGrouped [ EIdentifier "\960" , ESymbol Bin "+" , EGrouped [ ENumber "2" , ESymbol Ord "\8290" , ESub (EIdentifier "X") (ENumber "3") , ESymbol Ord "\8290" , EIdentifier "\960" ] , ESymbol Bin "\8722" , EDelimited "(" ")" [ Right (EGrouped [ EMathOperator "arccos" , ESymbol Ord "\8289" , EGrouped [ EFraction NormalFrac (ENumber "1") (ENumber "7") , ESymbol Ord "\8290" , ESqrt (ENumber "14") ] ]) ] ]) , Left "|" , Right (EGrouped [ ESub (EIdentifier "X") (ENumber "3") , ESymbol Rel "\8712" , EIdentifier "\8484" ]) ] ] , ESymbol Pun "," , EGrouped [ EIdentifier "\952" , ESymbol Rel "\8712" , EDelimited "{" "}" [ Right (EGrouped [ EGrouped [ ENumber "2" , ESymbol Ord "\8290" , ESub (EIdentifier "X") (ENumber "4") , ESymbol Ord "\8290" , EIdentifier "\960" ] , ESymbol Bin "\8722" , EIdentifier "\960" , ESymbol Bin "+" , EDelimited "(" ")" [ Right (EGrouped [ EMathOperator "arccos" , ESymbol Ord "\8289" , EGrouped [ EFraction NormalFrac (ENumber "1") (ENumber "7") , ESymbol Ord "\8290" , ESqrt (ENumber "14") ] ]) ] ]) , Left "|" , Right (EGrouped [ ESub (EIdentifier "X") (ENumber "4") , ESymbol Rel "\8712" , EIdentifier "\8484" ]) ] ] ] ] , [] ] , [ [ EGrouped [ EIdentifier "P" , ESymbol Rel "=" , EGrouped [ EIdentifier "A" , ESymbol Ord "\8290" , ESuper (EDelimited "(" ")" [ Right (EGrouped [ ESuper (EIdentifier "A") (EIdentifier "T") , ESymbol Ord "\8290" , EIdentifier "A" ]) ]) (EGrouped [ ESymbol Bin "\8722" , ENumber "1" ]) , ESymbol Ord "\8290" , ESuper (EIdentifier "A") (EIdentifier "T") ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EMathOperator "det" , EDelimited "(" ")" [ Right (EArray [ AlignCenter , AlignCenter , AlignCenter ] [ [ [ EIdentifier "x" ] , [ EIdentifier "y" ] , [ ENumber "1" ] ] , [ [ EIdentifier "a" ] , [ EIdentifier "b" ] , [ ENumber "1" ] ] , [ [ EIdentifier "a" ] , [ EIdentifier "d" ] , [ ENumber "1" ] ] ]) ] ] , ESymbol Rel "=" , EGrouped [ EGrouped [ EIdentifier "x" , ESymbol Ord "\8290" , EIdentifier "b" ] , ESymbol Bin "\8722" , EGrouped [ EIdentifier "x" , ESymbol Ord "\8290" , EIdentifier "d" ] , ESymbol Bin "+" , EGrouped [ EIdentifier "a" , ESymbol Ord "\8290" , EIdentifier "d" ] , ESymbol Bin "\8722" , EGrouped [ EIdentifier "a" , ESymbol Ord "\8290" , EIdentifier "b" ] ] , ESymbol Rel "=" , ENumber "0" ] ] , [] ] , [ [ EGrouped [ EGrouped [ EGrouped [ EIdentifier "A" , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EIdentifier "\952") ] ] , ESymbol Ord "\8290" , EGrouped [ EIdentifier "A" , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EGrouped [ ESymbol Bin "\8722" , EIdentifier "\952" ]) ] ] ] , ESymbol Rel "=" , EGrouped [ EDelimited "[" "]" [ Right (EArray [ AlignCenter , AlignCenter ] [ [ [ EGrouped [ EMathOperator "cos" , ESymbol Ord "\8289" , EIdentifier "\952" ] ] , [ EGrouped [ ESymbol Bin "\8722" , EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EIdentifier "\952" ] ] ] ] , [ [ EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EIdentifier "\952" ] ] , [ EGrouped [ EMathOperator "cos" , ESymbol Ord "\8289" , EIdentifier "\952" ] ] ] ]) ] , ESymbol Ord "\8290" , EDelimited "[" "]" [ Right (EArray [ AlignCenter , AlignCenter ] [ [ [ EGrouped [ EMathOperator "cos" , ESymbol Ord "\8289" , EIdentifier "\952" ] ] , [ EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EIdentifier "\952" ] ] ] , [ [ EGrouped [ ESymbol Bin "\8722" , EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EIdentifier "\952" ] ] ] , [ EGrouped [ EMathOperator "cos" , ESymbol Ord "\8289" , EIdentifier "\952" ] ] ] ]) ] ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EIdentifier "J" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EIdentifier "A" , ESymbol Close ")" ] ] , ESymbol Rel "=" , EDelimited "[" "]" [ Right (EArray [ AlignCenter , AlignCenter , AlignCenter , AlignCenter ] [ [ [ EGrouped [ ESub (EIdentifier "J") (ESub (EIdentifier "n") (ENumber "1")) , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (ESub (EIdentifier "\955") (ENumber "1")) ] ] ] , [ ENumber "0" ] , [ EIdentifier "\8943" ] , [ ENumber "0" ] ] , [ [ ENumber "0" ] , [ EGrouped [ ESub (EIdentifier "J") (ESub (EIdentifier "n") (ENumber "2")) , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (ESub (EIdentifier "\955") (ENumber "2")) ] ] ] , [ EIdentifier "\8943" ] , [ ENumber "0" ] ] , [ [ EText TextNormal "\8942" ] , [ EText TextNormal "\8942" ] , [ EText TextNormal "\8945" ] , [ EText TextNormal "\8942" ] ] , [ [ ENumber "0" ] , [ ENumber "0" ] , [ EIdentifier "\8943" ] , [ EGrouped [ ESub (EIdentifier "J") (ESub (EIdentifier "n") (EIdentifier "k")) , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (ESub (EIdentifier "\955") (EIdentifier "k")) ] ] ] ] ]) ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EMathOperator "det" , EDelimited "(" ")" [ Right (EArray [ AlignCenter , AlignCenter , AlignCenter ] [ [ [ EGrouped [ EGrouped [ ESymbol Bin "\8722" , ENumber "4" ] , ESymbol Bin "+" , EIdentifier "X" ] ] , [ EGrouped [ ESymbol Bin "\8722" , ENumber "1" ] ] , [ ENumber "0" ] ] , [ [ ENumber "0" ] , [ EGrouped [ EGrouped [ ESymbol Bin "\8722" , ENumber "4" ] , ESymbol Bin "+" , EIdentifier "X" ] ] , [ ENumber "0" ] ] , [ [ ENumber "0" ] , [ ENumber "0" ] , [ EGrouped [ EGrouped [ ESymbol Bin "\8722" , ENumber "4" ] , ESymbol Bin "+" , EIdentifier "X" ] ] ] ]) ] ] , ESymbol Rel "=" , ESuper (EDelimited "(" ")" [ Right (EGrouped [ EIdentifier "X" , ESymbol Bin "\8722" , ENumber "4" ]) ]) (ENumber "3") ] ] , [] ] , [ [ EDelimited "" "" [ Right (EDelimited "{" "}" [ Right (EDelimited "(" ")" [ Right (EArray [ AlignCenter ] [ [ [ EGrouped [ EGrouped [ ESymbol Bin "\8722" , EFraction NormalFrac (ENumber "1") (ENumber "2") ] , ESymbol Bin "\8722" , EGrouped [ EFraction NormalFrac (ENumber "1") (ENumber "6") , ESymbol Ord "\8290" , ESqrt (ENumber "33") ] ] ] ] , [ [ ENumber "1" ] ] ]) ]) ]) , Left "\8596" , Right (EGrouped [ EFraction NormalFrac (ENumber "5") (ENumber "2") , ESymbol Bin "\8722" , EGrouped [ EFraction NormalFrac (ENumber "1") (ENumber "2") , ESymbol Ord "\8290" , ESqrt (ENumber "33") ] ]) ] ] , [] ] , [ [ EGrouped [ EDelimited "" "" [ Left "\8741" , Right (EIdentifier "A") , Left "\8741" ] , ESymbol Rel "=" , EGrouped [ EUnder False (EMathOperator "max") (EGrouped [ EIdentifier "x" , ESymbol Rel "\8800" , ENumber "0" ]) , EFraction NormalFrac (EDelimited "" "" [ Left "\8741" , Right (EGrouped [ EIdentifier "A" , ESymbol Ord "\8290" , EIdentifier "x" ]) , Left "\8741" ]) (EDelimited "" "" [ Left "\8741" , Right (EIdentifier "x") , Left "\8741" ]) ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EDelimited "(" ")" [ Right (EArray [ AlignCenter , AlignCenter ] [ [ [ ESub (EIdentifier "a") (EGrouped [ ENumber "1" , ESymbol Ord "\8203" , ENumber "1" ]) ] , [ ESub (EIdentifier "a") (EGrouped [ ENumber "1" , ESymbol Ord "\8203" , ENumber "2" ]) ] ] , [ [ ESub (EIdentifier "a") (EGrouped [ ENumber "2" , ESymbol Ord "\8203" , ENumber "1" ]) ] , [ ESub (EIdentifier "a") (EGrouped [ ENumber "2" , ESymbol Ord "\8203" , ENumber "2" ]) ] ] ]) ] , ESymbol Bin "+" , EDelimited "(" ")" [ Right (EArray [ AlignCenter , AlignCenter ] [ [ [ ESub (EIdentifier "b") (EGrouped [ ENumber "1" , ESymbol Ord "\8203" , ENumber "1" ]) ] , [ ESub (EIdentifier "b") (EGrouped [ ENumber "1" , ESymbol Ord "\8203" , ENumber "2" ]) ] ] , [ [ ESub (EIdentifier "b") (EGrouped [ ENumber "2" , ESymbol Ord "\8203" , ENumber "1" ]) ] , [ ESub (EIdentifier "b") (EGrouped [ ENumber "2" , ESymbol Ord "\8203" , ENumber "2" ]) ] ] ]) ] ] , ESymbol Rel "=" , EDelimited "(" ")" [ Right (EArray [ AlignCenter , AlignCenter ] [ [ [ EGrouped [ ESub (EIdentifier "a") (EGrouped [ ENumber "1" , ESymbol Ord "\8203" , ENumber "1" ]) , ESymbol Bin "+" , ESub (EIdentifier "b") (EGrouped [ ENumber "1" , ESymbol Ord "\8203" , ENumber "1" ]) ] ] , [ EGrouped [ ESub (EIdentifier "a") (EGrouped [ ENumber "1" , ESymbol Ord "\8203" , ENumber "2" ]) , ESymbol Bin "+" , ESub (EIdentifier "b") (EGrouped [ ENumber "1" , ESymbol Ord "\8203" , ENumber "2" ]) ] ] ] , [ [ EGrouped [ ESub (EIdentifier "a") (EGrouped [ ENumber "2" , ESymbol Ord "\8203" , ENumber "1" ]) , ESymbol Bin "+" , ESub (EIdentifier "b") (EGrouped [ ENumber "2" , ESymbol Ord "\8203" , ENumber "1" ]) ] ] , [ EGrouped [ ESub (EIdentifier "a") (EGrouped [ ENumber "2" , ESymbol Ord "\8203" , ENumber "2" ]) , ESymbol Bin "+" , ESub (EIdentifier "b") (EGrouped [ ENumber "2" , ESymbol Ord "\8203" , ENumber "2" ]) ] ] ] ]) ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EIdentifier "f" , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EDelimited "[" "]" [ Right (EArray [ AlignCenter , AlignCenter ] [ [ [ ENumber "1" ] , [ ENumber "2" ] ] , [ [ ENumber "4" ] , [ ENumber "3" ] ] ]) ]) ] ] , ESymbol Rel "=" , EGrouped [ ESuper (EDelimited "[" "]" [ Right (EArray [ AlignCenter , AlignCenter ] [ [ [ ENumber "1" ] , [ ENumber "2" ] ] , [ [ ENumber "4" ] , [ ENumber "3" ] ] ]) ]) (ENumber "2") , ESymbol Bin "\8722" , EGrouped [ ENumber "5" , ESymbol Ord "\8290" , EDelimited "[" "]" [ Right (EArray [ AlignCenter , AlignCenter ] [ [ [ ENumber "1" ] , [ ENumber "2" ] ] , [ [ ENumber "4" ] , [ ENumber "3" ] ] ]) ] ] , ESymbol Bin "\8722" , ENumber "2" ] , ESymbol Rel "=" , EDelimited "[" "]" [ Right (EArray [ AlignCenter , AlignCenter ] [ [ [ ENumber "2" ] , [ EGrouped [ ESymbol Bin "\8722" , ENumber "2" ] ] ] , [ [ EGrouped [ ESymbol Bin "\8722" , ENumber "4" ] ] , [ ENumber "0" ] ] ]) ] ] ] , [] ] , [ [ EGrouped [ EIdentifier "x" , ESymbol Rel "=" , EGrouped [ EUnder False (EMathOperator "lim") (EGrouped [ EIdentifier "x" , ESymbol Rel "=" , ENumber "1" ]) , EGrouped [ EUnderover False (ESymbol Op "\8721") (ENumber "1") (ENumber "2") , EIdentifier "a" ] ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ ESubsup (ESymbol Op "\8747") (EIdentifier "a") (EIdentifier "b") , EGrouped [ EGrouped [ EIdentifier "f" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EIdentifier "x" , ESymbol Close ")" ] ] , ESymbol Ord "\8290" , EGrouped [ ESymbol Ord "\8518" , EIdentifier "x" ] ] ] , ESymbol Rel "=" , EGrouped [ EUnder False (EMathOperator "lim") (EGrouped [ EGrouped [ ESymbol Op "\8741" , EIdentifier "P" , ESymbol Op "\8741" ] , ESymbol Accent "\8594" , ENumber "0" ]) , EGrouped [ EUnderover False (ESymbol Op "\8721") (EGrouped [ EIdentifier "i" , ESymbol Rel "=" , ENumber "1" ]) (EIdentifier "n") , EGrouped [ EGrouped [ EIdentifier "f" , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (ESub (EOver False (EIdentifier "x") (ESymbol Accent "\175")) (EIdentifier "i")) ] ] , ESymbol Ord "\8290" , EGrouped [ ESymbol Alpha "\916" , ESub (EIdentifier "x") (EIdentifier "i") ] ] ] ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ ESubsup (ESymbol Op "\8747") (EIdentifier "a") (EIdentifier "b") , EGrouped [ EGrouped [ EIdentifier "f" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EIdentifier "x" , ESymbol Close ")" ] ] , ESymbol Ord "\8290" , EGrouped [ ESymbol Ord "\8518" , EIdentifier "x" ] ] ] , ESymbol Rel "=" , EGrouped [ EUnder False (EMathOperator "lim") (EGrouped [ EIdentifier "n" , ESymbol Accent "\8594" , EIdentifier "\8734" ]) , EGrouped [ EFraction NormalFrac (EGrouped [ EIdentifier "b" , ESymbol Bin "\8722" , EIdentifier "a" ]) (EIdentifier "n") , ESymbol Ord "\8290" , EGrouped [ EUnderover False (ESymbol Op "\8721") (EGrouped [ EIdentifier "i" , ESymbol Rel "=" , ENumber "1" ]) (EIdentifier "n") , EGrouped [ EIdentifier "f" , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EGrouped [ EIdentifier "a" , ESymbol Bin "+" , EGrouped [ EIdentifier "i" , ESymbol Ord "\8290" , EFraction NormalFrac (EGrouped [ EIdentifier "b" , ESymbol Bin "\8722" , EIdentifier "a" ]) (EIdentifier "n") ] ]) ] ] ] ] ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ ESubsup (ESymbol Op "\8747") (ENumber "0") (ENumber "2") , EGrouped [ ESuper (EIdentifier "x") (ENumber "5") , ESymbol Ord "\8290" , ESqrt (EGrouped [ ESuper (EIdentifier "x") (ENumber "3") , ESymbol Bin "+" , ENumber "1" ]) , ESymbol Ord "\8290" , EGrouped [ ESymbol Ord "\8518" , EIdentifier "x" ] ] ] , ESymbol Rel "=" , EGrouped [ ESubsup (ESymbol Op "\8747") (ENumber "1") (ENumber "3") , EGrouped [ EFraction NormalFrac (ENumber "2") (ENumber "3") , ESymbol Ord "\8290" , EIdentifier "u" , ESymbol Ord "\8290" , EFraction NormalFrac (ESqrt (EDelimited "(" ")" [ Right (ESuper (EIdentifier "u") (ENumber "2")) ])) (ESuper (EDelimited "(" ")" [ Right (EGrouped [ ESuper (EIdentifier "u") (ENumber "2") , ESymbol Bin "\8722" , ENumber "1" ]) ]) (EFraction NormalFrac (ENumber "2") (ENumber "3"))) , ESymbol Ord "\8290" , EDelimited "(" ")" [ Right (EGrouped [ EGrouped [ ESuper (EIdentifier "u") (ENumber "2") , ESymbol Ord "\8290" , ESuper (EDelimited "(" ")" [ Right (EGrouped [ ESuper (EIdentifier "u") (ENumber "2") , ESymbol Bin "\8722" , ENumber "1" ]) ]) (EFraction NormalFrac (ENumber "2") (ENumber "3")) ] , ESymbol Bin "\8722" , ESuper (EDelimited "(" ")" [ Right (EGrouped [ ESuper (EIdentifier "u") (ENumber "2") , ESymbol Bin "\8722" , ENumber "1" ]) ]) (EFraction NormalFrac (ENumber "2") (ENumber "3")) ]) ] , ESymbol Ord "\8290" , EGrouped [ ESymbol Ord "\8518" , EIdentifier "u" ] ] ] ] ] , [] ] , [ [ EGrouped [ EDelimited "\8747" "" [ Right (EGrouped [ EGrouped [ EIdentifier "f" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EGrouped [ EIdentifier "g" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EIdentifier "x" , ESymbol Close ")" ] ] , ESymbol Close ")" ] ] , ESymbol Ord "\8290" , EGrouped [ ESuper (EIdentifier "g") (ESymbol Ord "\8242") , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EIdentifier "x" , ESymbol Close ")" ] ] , ESymbol Ord "\8290" , EGrouped [ ESymbol Ord "\8518" , EIdentifier "x" ] ]) ] , ESymbol Rel "=" , EDelimited "\8747" "" [ Right (EGrouped [ EGrouped [ EIdentifier "f" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EIdentifier "u" , ESymbol Close ")" ] ] , ESymbol Ord "\8290" , EGrouped [ ESymbol Ord "\8518" , EIdentifier "u" ] ]) ] ] ] , [] ] , [ [ EGrouped [ EIdentifier "x" , ESymbol Rel "=" , EGrouped [ ENumber "2" , ESymbol Ord "\8290" , EGrouped [ EUnderover False (ESymbol Op "\8721") (EGrouped [ EIdentifier "n" , ESymbol Rel "=" , ENumber "1" ]) (ENumber "100") , EGrouped [ EIdentifier "n" , ESymbol Ord "\8290" , EGrouped [ ESymbol Open "(" , EGrouped [ EIdentifier "n" , ESymbol Bin "\8722" , ENumber "1" ] , ESymbol Close ")" ] ] ] ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EUnder False (EMathOperator "lim") (EGrouped [ EIdentifier "x" , ESymbol Accent "\8594" , ENumber "0" ]) , EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EFraction NormalFrac (ENumber "1") (EIdentifier "x")) ] ] ] , ESymbol Rel "=" , EGrouped [ EGrouped [ ESymbol Bin "\8722" , ENumber "1" ] , ESymbol Ord ".." , ENumber "1" ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EIdentifier "h" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EGrouped [ EIdentifier "i" , ESymbol Pun "," , EIdentifier "j" ] , ESymbol Close ")" ] ] , ESymbol Rel "=" , EGrouped [ EGrouped [ EGrouped [ ESymbol Open "(" , EGrouped [ ENumber "2" , ESymbol Bin "\8722" , EIdentifier "j" ] , ESymbol Close ")" ] , ESymbol Ord "\8290" , EGrouped [ EIdentifier "g" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EIdentifier "i" , ESymbol Close ")" ] ] ] , ESymbol Bin "+" , EGrouped [ EGrouped [ ESymbol Open "(" , EGrouped [ EIdentifier "j" , ESymbol Bin "\8722" , ENumber "1" ] , ESymbol Close ")" ] , ESymbol Ord "\8290" , EGrouped [ EIdentifier "f" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EGrouped [ EIdentifier "g" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EIdentifier "i" , ESymbol Close ")" ] ] , ESymbol Close ")" ] ] ] ] ] ] , [] ] , [ [ EGrouped [ EIdentifier "\9651" , ESymbol Pun ":" , EDelimited "" "" [ Right (EDelimited "[" "]" [ Right (EGrouped [ ENumber "0" , ESymbol Pun "," , ENumber "1" ]) ]) , Left "\8594" , Right (EDelimited "[" "]" [ Right (EGrouped [ ENumber "0" , ESymbol Pun "," , ENumber "1" ]) ]) ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ ENumber "0" , ESymbol Bin "\9661" , EIdentifier "x" ] , ESymbol Rel "=" , EIdentifier "x" ] ] , [] ] , [ [ EGrouped [ EGrouped [ EIdentifier "x" , ESymbol Bin "\9651" , EIdentifier "y" ] , ESymbol Rel "=" , EGrouped [ ESuper (EIdentifier "h") (EGrouped [ ESymbol Bin "\8722" , ENumber "1" ]) , ESymbol Ord "\8290" , EDelimited "(" ")" [ Right (EGrouped [ EGrouped [ EIdentifier "h" , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EIdentifier "x") ] ] , ESymbol Ord "\8290" , EGrouped [ EIdentifier "h" , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EIdentifier "y") ] ] ]) ] ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EIdentifier "x" , ESymbol Bin "\9651" , EIdentifier "y" ] , ESymbol Rel "=" , EGrouped [ ESuper (EIdentifier "f") (EGrouped [ ESymbol Bin "\8722" , ENumber "1" ]) , ESymbol Ord "\8290" , EDelimited "(" ")" [ Right (EGrouped [ EMathOperator "max" , EDelimited "{" "}" [ Right (EGrouped [ EGrouped [ EGrouped [ EIdentifier "f" , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EIdentifier "x") ] ] , ESymbol Bin "+" , EGrouped [ EIdentifier "f" , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EIdentifier "y") ] ] , ESymbol Bin "\8722" , ENumber "1" ] , ESymbol Pun "," , ENumber "0" ]) ] ]) ] ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EIdentifier "x" , ESymbol Bin "\9661" , EIdentifier "y" ] , ESymbol Rel "=" , EGrouped [ EIdentifier "\951" , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EGrouped [ EGrouped [ EIdentifier "\951" , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EIdentifier "x") ] ] , ESymbol Bin "\9651" , EGrouped [ EIdentifier "\951" , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EIdentifier "y") ] ] ]) ] ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EIdentifier "x" , ESymbol Ord "\8290" , EGrouped [ ESub (ESymbol Bin "\9651") (ENumber "0") , EIdentifier "y" ] ] , ESymbol Rel "=" , EDelimited "{" "" [ Right (EArray [ AlignCenter , AlignCenter , AlignCenter ] [ [ [ EGrouped [ EIdentifier "x" , ESymbol Bin "\8743" , EIdentifier "y" ] ] , [ EText TextNormal "if" ] , [ EGrouped [ EIdentifier "x" , ESymbol Bin "\8744" , EGrouped [ EIdentifier "y" , ESymbol Rel "=" , ENumber "1" ] ] ] ] , [ [ ENumber "0" ] , [ EText TextNormal "if" ] , [ EGrouped [ EIdentifier "x" , ESymbol Bin "\8744" , EGrouped [ EIdentifier "y" , ESymbol Rel "<" , ENumber "1" ] ] ] ] ]) ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EUnder False (EMathOperator "lim") (EGrouped [ EIdentifier "a" , ESymbol Accent "\8594" , ESuper (ENumber "1") (ESymbol Bin "+") ]) , EGrouped [ ESub (EMathOperator "log") (EIdentifier "a") , ESymbol Ord "\8289" , EDelimited "[" "]" [ Right (EGrouped [ ENumber "1" , ESymbol Bin "+" , EFraction NormalFrac (EGrouped [ EDelimited "(" ")" [ Right (EGrouped [ ESuper (EIdentifier "a") (EIdentifier "x") , ESymbol Bin "\8722" , ENumber "1" ]) ] , ESymbol Ord "\8290" , EDelimited "(" ")" [ Right (EGrouped [ ESuper (EIdentifier "a") (EIdentifier "y") , ESymbol Bin "\8722" , ENumber "1" ]) ] ]) (EGrouped [ EIdentifier "a" , ESymbol Bin "\8722" , ENumber "1" ]) ]) ] ] ] , ESymbol Rel "=" , EGrouped [ EUnder False (EMathOperator "lim") (EGrouped [ EIdentifier "a" , ESymbol Accent "\8594" , ESuper (ENumber "1") (ESymbol Bin "\8722") ]) , EGrouped [ ESub (EMathOperator "log") (EIdentifier "a") , ESymbol Ord "\8289" , EDelimited "[" "]" [ Right (EGrouped [ ENumber "1" , ESymbol Bin "+" , EFraction NormalFrac (EGrouped [ EDelimited "(" ")" [ Right (EGrouped [ ESuper (EIdentifier "a") (EIdentifier "x") , ESymbol Bin "\8722" , ENumber "1" ]) ] , ESymbol Ord "\8290" , EDelimited "(" ")" [ Right (EGrouped [ ESuper (EIdentifier "a") (EIdentifier "y") , ESymbol Bin "\8722" , ENumber "1" ]) ] ]) (EGrouped [ EIdentifier "a" , ESymbol Bin "\8722" , ENumber "1" ]) ]) ] ] ] , ESymbol Rel "=" , EGrouped [ EIdentifier "x" , ESymbol Ord "\8290" , EIdentifier "y" ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EIdentifier "g" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EIdentifier "x" , ESymbol Close ")" ] ] , ESymbol Rel "=" , EGrouped [ EMathOperator "exp" , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EGrouped [ ESymbol Bin "\8722" , EFraction NormalFrac (EGrouped [ ENumber "1" , ESymbol Bin "\8722" , ESuper (EDelimited "(" ")" [ Right (EGrouped [ ENumber "1" , ESymbol Bin "\8722" , EIdentifier "x" ]) ]) (EIdentifier "a") ]) (EGrouped [ EDelimited "(" ")" [ Right (EGrouped [ ESuper (ENumber "2") (EIdentifier "a") , ESymbol Bin "\8722" , ENumber "1" ]) ] , ESymbol Ord "\8290" , ESuper (EDelimited "(" ")" [ Right (EGrouped [ ENumber "1" , ESymbol Bin "\8722" , EIdentifier "x" ]) ]) (EIdentifier "a") ]) ]) ] ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EMathOperator "Aut" , EGrouped [ ESymbol Open "(" , EStyled TextBold [ EIdentifier "I" ] , ESymbol Close ")" ] ] , ESymbol Rel "=" , EDelimited "{" "}" [ Right (EGrouped [ EIdentifier "f" , ESymbol Pun ":" , EDelimited "" "" [ Right (EDelimited "[" "]" [ Right (EGrouped [ ENumber "0" , ESymbol Pun "," , ENumber "1" ]) ]) , Left "\8594" , Right (EDelimited "[" "]" [ Right (EGrouped [ ENumber "0" , ESymbol Pun "," , ENumber "1" ]) ]) ] ]) , Right (ESpace (5 % 18)) , Right (EDelimited "|" "" [ Right (EArray [ AlignLeft ] [ [ [ EGrouped [ EIdentifier "f" , EText TextNormal "\8194is one-to-one and onto, and" ] ] ] , [ [ EGrouped [ EGrouped [ EIdentifier "x" , ESymbol Rel "\8804" , EIdentifier "y" ] , EText TextNormal "\8194implies\8194" , EGrouped [ EGrouped [ EIdentifier "f" , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EIdentifier "x") ] ] , ESymbol Rel "\8804" , EGrouped [ EIdentifier "f" , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EIdentifier "y") ] ] ] ] ] ] ]) ]) ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EGrouped [ ESuper (EIdentifier "x") (ENumber "2") , ESymbol Bin "+" , ESuper (EIdentifier "y") (ENumber "2") ] , ESymbol Rel "=" , ESuper (EIdentifier "r") (ENumber "2") ] , ESymbol Pun "," , EText TextNormal "\8195\8195" , EGrouped [ EGrouped [ EMathOperator "tan" , ESymbol Ord "\8289" , EIdentifier "\952" ] , ESymbol Rel "=" , EFraction NormalFrac (EIdentifier "y") (EIdentifier "x") ] ] ] , [] ] , [ [ EGrouped [ ESqrt (ENumber "2") , ESymbol Ord "\8290" , ESqrt (EGrouped [ ENumber "1" , ESymbol Bin "\8722" , ESuper (EIdentifier "t") (ENumber "2") ]) ] ] , [] ] , [ [ EDelimited "[" "]" [ Right (EGrouped [ EGrouped [ EGrouped [ ESymbol Open "(" , EGrouped [ ENumber "2" , ESymbol Bin "+" , EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EIdentifier "t" ] ] , ESymbol Close ")" ] , ESymbol Ord "\8290" , ENumber "10" , ESymbol Ord "\8290" , EGrouped [ EMathOperator "cos" , ESymbol Ord "\8289" , EIdentifier "t" ] ] , ESymbol Pun "," , EGrouped [ EGrouped [ ESymbol Open "(" , EGrouped [ ENumber "2" , ESymbol Bin "+" , EGrouped [ EMathOperator "cos" , ESymbol Ord "\8289" , EIdentifier "t" ] ] , ESymbol Close ")" ] , ESymbol Ord "\8290" , ENumber "10" , ESymbol Ord "\8290" , EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EIdentifier "t" ] ] , ESymbol Pun "," , EGrouped [ ENumber "3" , ESymbol Ord "\8290" , EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EGrouped [ ENumber "3" , ESymbol Ord "\8290" , EIdentifier "t" ] ] ] ]) ] ] , [] ] , [ [ EGrouped [ EDelimited "{" "}" [ Right (EGrouped [ EGrouped [ EIdentifier "t" , ESymbol Rel "=" , ENumber "0" ] , ESymbol Pun "," , EGrouped [ EIdentifier "s" , ESymbol Rel "=" , ENumber "0" ] ]) ] , ESymbol Pun "," , EDelimited "{" "}" [ Right (EGrouped [ EGrouped [ EIdentifier "t" , ESymbol Rel "=" , EIdentifier "\960" ] , ESymbol Pun "," , EGrouped [ EIdentifier "s" , ESymbol Rel "=" , EIdentifier "\960" ] ]) ] ] ] , [] ] , [ [ EArray [ AlignCenter ] [ [ [ EArray [ AlignCenter , AlignCenter , AlignCenter , AlignCenter , AlignCenter , AlignCenter , AlignCenter , AlignCenter , AlignCenter , AlignCenter ] [ [ [ ENumber "1" ] , [ ENumber "2" ] , [ ENumber "3" ] , [ ENumber "4" ] , [ ENumber "5" ] , [ ENumber "6" ] , [ ENumber "7" ] , [ ENumber "8" ] , [ ENumber "9" ] , [ ENumber "10" ] ] , [ [ ENumber "2" ] , [ ENumber "4" ] , [ ENumber "6" ] , [ ENumber "8" ] , [ ENumber "10" ] , [ ENumber "1" ] , [ ENumber "3" ] , [ ENumber "5" ] , [ ENumber "7" ] , [ ENumber "9" ] ] , [ [ ENumber "3" ] , [ ENumber "6" ] , [ ENumber "9" ] , [ ENumber "1" ] , [ ENumber "4" ] , [ ENumber "7" ] , [ ENumber "10" ] , [ ENumber "2" ] , [ ENumber "5" ] , [ ENumber "8" ] ] , [ [ ENumber "4" ] , [ ENumber "8" ] , [ ENumber "1" ] , [ ENumber "5" ] , [ ENumber "9" ] , [ ENumber "2" ] , [ ENumber "6" ] , [ ENumber "10" ] , [ ENumber "3" ] , [ ENumber "7" ] ] , [ [ ENumber "5" ] , [ ENumber "10" ] , [ ENumber "4" ] , [ ENumber "9" ] , [ ENumber "3" ] , [ ENumber "8" ] , [ ENumber "2" ] , [ ENumber "7" ] , [ ENumber "1" ] , [ ENumber "6" ] ] , [ [ ENumber "6" ] , [ ENumber "1" ] , [ ENumber "7" ] , [ ENumber "2" ] , [ ENumber "8" ] , [ ENumber "3" ] , [ ENumber "9" ] , [ ENumber "4" ] , [ ENumber "10" ] , [ ENumber "5" ] ] , [ [ ENumber "7" ] , [ ENumber "3" ] , [ ENumber "10" ] , [ ENumber "6" ] , [ ENumber "2" ] , [ ENumber "9" ] , [ ENumber "5" ] , [ ENumber "1" ] , [ ENumber "8" ] , [ ENumber "4" ] ] , [ [ ENumber "8" ] , [ ENumber "5" ] , [ ENumber "2" ] , [ ENumber "10" ] , [ ENumber "7" ] , [ ENumber "4" ] , [ ENumber "1" ] , [ ENumber "9" ] , [ ENumber "6" ] , [ ENumber "3" ] ] , [ [ ENumber "9" ] , [ ENumber "7" ] , [ ENumber "5" ] , [ ENumber "3" ] , [ ENumber "1" ] , [ ENumber "10" ] , [ ENumber "8" ] , [ ENumber "6" ] , [ ENumber "4" ] , [ ENumber "2" ] ] , [ [ ENumber "10" ] , [ ENumber "9" ] , [ ENumber "8" ] , [ ENumber "7" ] , [ ENumber "6" ] , [ ENumber "5" ] , [ ENumber "4" ] , [ ENumber "3" ] , [ ENumber "2" ] , [ ENumber "1" ] ] ] ] ] ] ] , [] ] , [ [ EArray [ AlignCenter ] [ [ [ EGrouped [ EText TextNormal "testing\8194" , ESuper (EIdentifier "x") (ENumber "2") , EText TextNormal "\8194end." ] ] ] ] ] , [] ] , [ [ EArray [ AlignCenter ] [ [ [ EText TextNormal "x" ] ] ] ] , [] ] , [ [ EArray [ AlignCenter ] [ [ [ EIdentifier "x" ] ] ] ] , [] ] , [ [ EArray [ AlignCenter ] [ [ [ EText TextNormal "x" ] ] ] ] , [] ] , [ [ EArray [ AlignCenter ] [ [ [ EIdentifier "x" ] ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EFraction NormalFrac (EGrouped [ ESymbol Ord "\8518" , EIdentifier "f" ]) (EGrouped [ ESymbol Ord "\8518" , EIdentifier "x" ]) , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , ESub (EIdentifier "x") (ENumber "1") , ESymbol Close ")" ] ] , ESymbol Rel "=" , ENumber "5" ] ] , [] ] , [ [ EGrouped [ EGrouped [ ESymbol Op "\8747" , EGrouped [ EIdentifier "x" , ESymbol Ord "\8290" , EGrouped [ ESymbol Ord "\8518" , EIdentifier "x" ] ] ] , ESymbol Rel "=" , EGrouped [ ESymbol Op "\8748" , EGrouped [ EIdentifier "x" , ESymbol Ord "\8290" , EIdentifier "y" , ESymbol Ord "\8290" , EGrouped [ ESymbol Ord "\8518" , EIdentifier "x" ] , ESymbol Ord "\8290" , EGrouped [ ESymbol Ord "\8518" , EIdentifier "y" ] ] ] , ESymbol Rel "=" , EGrouped [ ESymbol Op "\8749" , EGrouped [ EIdentifier "x" , ESymbol Ord "\8290" , EIdentifier "y" , ESymbol Ord "\8290" , EIdentifier "z" , ESymbol Ord "\8290" , EGrouped [ ESymbol Ord "\8518" , EIdentifier "x" ] , ESymbol Ord "\8290" , EGrouped [ ESymbol Ord "\8518" , EIdentifier "y" ] , ESymbol Ord "\8290" , EGrouped [ ESymbol Ord "\8518" , EIdentifier "z" ] ] ] , ESymbol Rel "=" , EGrouped [ ESymbol Op "\10764" , EGrouped [ EIdentifier "x" , ESymbol Ord "\8290" , EIdentifier "y" , ESymbol Ord "\8290" , EIdentifier "z" , ESymbol Ord "\8290" , EIdentifier "t" , ESymbol Ord "\8290" , EGrouped [ ESymbol Ord "\8518" , EIdentifier "x" ] , ESymbol Ord "\8290" , EGrouped [ ESymbol Ord "\8518" , EIdentifier "y" ] , ESymbol Ord "\8290" , EGrouped [ ESymbol Ord "\8518" , EIdentifier "z" ] , ESymbol Ord "\8290" , EGrouped [ ESymbol Ord "\8518" , EIdentifier "t" ] ] ] ] ] , [] ] , [ [ EGrouped [ EMathOperator "mod" , EIdentifier "a" ] ] , [] ] , [ [ EGrouped [ EGrouped [ ENumber "5" , EMathOperator "mod" , ENumber "3" ] , ESymbol Rel "=" , ENumber "2" ] ] , [] ] , [ [ EGrouped [ EGrouped [ EGrouped [ EIdentifier "f" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , ENumber "0" , ESymbol Close ")" ] ] , EMathOperator "mod" , ENumber "3" ] , ESymbol Rel "=" , ENumber "1" ] ] , [] ] , [ [ EGrouped [ EGrouped [ EGrouped [ EGrouped [ ENumber "5" , ESymbol Ord "\8290" , EIdentifier "x" ] , ESymbol Bin "+" , ENumber "4" ] , ESymbol Rel "\8801" , ENumber "8" ] , ESymbol Ord "\8203" , EDelimited "(" ")" [ Right (EGrouped [ EMathOperator "mod" , ENumber "13" ]) ] ] ] , [] ] , [ [ EGrouped [ EIdentifier "a" , ESymbol Rel "=" , EGrouped [ EGrouped [ EGrouped [ ESymbol Open "(" , EGrouped [ ENumber "5" , ESymbol Bin "\8722" , ENumber "3" ] , ESymbol Close ")" ] , ESymbol Ord "/" , ENumber "5" ] , EMathOperator "mod" , ENumber "7" ] , ESymbol Rel "=" , ENumber "6" ] ] , [] ] , [ [ EGrouped [ EGrouped [ EGrouped [ EDelimited "(" ")" [ Right (EGrouped [ EGrouped [ ENumber "2" , ESymbol Ord "\8290" , ESuper (EIdentifier "x") (ENumber "2") ] , ESymbol Bin "+" , EIdentifier "x" , ESymbol Bin "+" , ENumber "2" ]) ] , ESymbol Bin "+" , EDelimited "(" ")" [ Right (EGrouped [ EGrouped [ ENumber "2" , ESymbol Ord "\8290" , EIdentifier "x" ] , ESymbol Bin "+" , ENumber "1" ]) ] ] , EMathOperator "mod" , ENumber "3" ] , ESymbol Rel "=" , EGrouped [ ENumber "2" , ESymbol Ord "\8290" , ESuper (EIdentifier "x") (ENumber "2") ] ] ] , [] ] , [ [ EArray [ AlignCenter , AlignCenter , AlignCenter ] [ [ [ ESymbol Bin "+" ] , [ ENumber "0" ] , [ ENumber "1" ] ] , [ [ ENumber "000" ] , [ ENumber "000" ] , [ ENumber "111" ] ] , [ [ ENumber "1" ] , [ ENumber "1" ] , [ ENumber "0" ] ] ] ] , [] ] , [ [ ENumber "4.\8201\&974\8201\&9" ] , [] ] , [ [ EGrouped [ EFraction NormalFrac (ESymbol Ord "\8518") (EGrouped [ ESymbol Ord "\8518" , EIdentifier "x" ]) , EGrouped [ EIdentifier "F" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EIdentifier "x" , ESymbol Close ")" ] ] ] ] , [] ] , [ [ EDelimited "[" "]" [ Right (EGrouped [ ENumber "86.333" , ESymbol Pun "," , ENumber "146.33" , ESymbol Pun "," , ENumber "129.33" ]) ] ] , [] ] , [ [ EGrouped [ EGrouped [ EIdentifier "BinomialDist" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EGrouped [ EIdentifier "x" , ESymbol Pun ";" , EGrouped [ EIdentifier "n" , ESymbol Pun "," , EIdentifier "p" ] ] , ESymbol Close ")" ] ] , ESymbol Rel "=" , EGrouped [ EUnderover False (ESymbol Op "\8721") (EGrouped [ EIdentifier "k" , ESymbol Rel "=" , ENumber "0" ]) (EIdentifier "x") , EGrouped [ EDelimited "(" ")" [ Right (EFraction NormalFrac (EIdentifier "n") (EIdentifier "k")) ] , ESymbol Ord "\8290" , ESuper (EIdentifier "p") (EIdentifier "k") , ESymbol Ord "\8290" , ESuper (EIdentifier "q") (EGrouped [ EIdentifier "n" , ESymbol Bin "\8722" , EIdentifier "k" ]) ] ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EMathOperator "Pr" , EGrouped [ ESymbol Open "(" , EGrouped [ EIdentifier "X" , ESymbol Rel "\8804" , ENumber "54" ] , ESymbol Close ")" ] ] , ESymbol Rel "=" , EGrouped [ EIdentifier "BinomialDist" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EGrouped [ ENumber "54" , ESymbol Pun ";" , EGrouped [ ENumber "100" , ESymbol Pun "," , ENumber ".55" ] ] , ESymbol Close ")" ] ] , ESymbol Rel "=" , ENumber ".45846" ] ] , [] ] , [ [ EGrouped [ EGrouped [ EIdentifier "k" , ESymbol Rel "=" , EGrouped [ EMathOperator "max" , EDelimited "{" "}" [ Right (EGrouped [ EDelimited "|" "|" [ Right (EGrouped [ EFraction NormalFrac (EGrouped [ ESymbol Ord "\8706" , EIdentifier "f" ]) (EGrouped [ ESymbol Ord "\8706" , EIdentifier "y" ]) , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EGrouped [ EIdentifier "x" , ESymbol Pun "," , EIdentifier "y" ] , ESymbol Close ")" ] ]) ] , ESymbol Pun ":" , EGrouped [ EGrouped [ ESymbol Open "(" , EGrouped [ EIdentifier "x" , ESymbol Pun "," , EIdentifier "y" ] , ESymbol Close ")" ] , ESymbol Rel "\8712" , EIdentifier "D" ] ]) ] ] ] , EText TextNormal "." ] ] , [] ] , [ [ EGrouped [ EIdentifier "m" , ESymbol Rel "=" , EGrouped [ EUnder False (EMathOperator "lim") (EGrouped [ EIdentifier "x" , EOver False (ESymbol Accent "\8594") (EGrouped []) , EIdentifier "a" ]) , EFraction NormalFrac (EGrouped [ EGrouped [ EIdentifier "f" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EIdentifier "x" , ESymbol Close ")" ] ] , ESymbol Bin "\8722" , EGrouped [ EIdentifier "f" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EIdentifier "a" , ESymbol Close ")" ] ] ]) (EGrouped [ EIdentifier "x" , ESymbol Bin "\8722" , EIdentifier "a" ]) ] ] ] , [] ] , [ [ EGrouped [ EDelimited "|" "|" [ Right (EIdentifier "A") ] , ESymbol Rel "=" , EDelimited "|" "|" [ Right (EArray [ AlignCenter , AlignCenter , AlignCenter , AlignCenter , AlignCenter , AlignCenter ] [ [ [ ESub (EIdentifier "a") (EGrouped [ ENumber "1" , ESymbol Ord "\8203" , ENumber "1" ]) ] , [ ESub (EIdentifier "a") (EGrouped [ ENumber "1" , ESymbol Ord "\8203" , ENumber "2" ]) ] , [ ESymbol Bin "\8901" ] , [ ESymbol Bin "\8901" ] , [ ESymbol Bin "\8901" ] , [ ESub (EIdentifier "a") (EGrouped [ ENumber "1" , ESymbol Ord "\8203" , EIdentifier "n" ]) ] ] , [ [ ESub (EIdentifier "a") (EGrouped [ ENumber "2" , ESymbol Ord "\8203" , ENumber "1" ]) ] , [ ESub (EIdentifier "a") (EGrouped [ ENumber "2" , ESymbol Ord "\8203" , ENumber "2" ]) ] , [ ESymbol Bin "\8901" ] , [ ESymbol Bin "\8901" ] , [ ESymbol Bin "\8901" ] , [ ESub (EIdentifier "a") (EGrouped [ ENumber "2" , ESymbol Ord "\8203" , EIdentifier "n" ]) ] ] , [ [ ESymbol Bin "\8901" ] , [ ESymbol Bin "\8901" ] , [ ESymbol Bin "\8901" ] , [ ESpace (1 % 18) ] , [ ESpace (1 % 18) ] , [ ESymbol Bin "\8901" ] ] , [ [ ESymbol Bin "\8901" ] , [ ESymbol Bin "\8901" ] , [ ESpace (1 % 18) ] , [ ESymbol Bin "\8901" ] , [ ESpace (1 % 18) ] , [ ESymbol Bin "\8901" ] ] , [ [ ESymbol Bin "\8901" ] , [ ESymbol Bin "\8901" ] , [ ESpace (1 % 18) ] , [ ESpace (1 % 18) ] , [ ESymbol Bin "\8901" ] , [ ESymbol Bin "\8901" ] ] , [ [ ESub (EIdentifier "a") (EGrouped [ EIdentifier "n" , ESymbol Ord "\8203" , ENumber "1" ]) ] , [ ESub (EIdentifier "a") (EGrouped [ EIdentifier "n" , ESymbol Ord "\8203" , ENumber "2" ]) ] , [ ESymbol Bin "\8901" ] , [ ESymbol Bin "\8901" ] , [ ESymbol Bin "\8901" ] , [ ESub (EIdentifier "a") (EGrouped [ EIdentifier "n" , ESymbol Ord "\8203" , EIdentifier "n" ]) ] ] ]) ] , ESymbol Rel "=" , EGrouped [ EGrouped [ ESub (EIdentifier "a") (EGrouped [ ENumber "1" , ESymbol Ord "\8203" , ENumber "1" ]) , ESymbol Ord "\8290" , ESub (EIdentifier "A") (EGrouped [ ENumber "1" , ESymbol Ord "\8203" , ENumber "1" ]) ] , ESymbol Bin "+" , EGrouped [ ESub (EIdentifier "a") (EGrouped [ ENumber "1" , ESymbol Ord "\8203" , ENumber "2" ]) , ESymbol Ord "\8290" , ESub (EIdentifier "A") (EGrouped [ ENumber "1" , ESymbol Ord "\8203" , ENumber "2" ]) ] , ESymbol Bin "+" , EIdentifier "\8943" , ESymbol Bin "+" , EGrouped [ ESub (EIdentifier "a") (EGrouped [ ENumber "1" , ESymbol Ord "\8203" , EIdentifier "n" ]) , ESymbol Ord "\8290" , ESub (EIdentifier "A") (EGrouped [ ENumber "1" , ESymbol Ord "\8203" , EIdentifier "n" ]) ] ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EIdentifier "x" , ESymbol Rel "=" , ENumber "1" ] , EGrouped [ ESymbol Open "(" , EText TextNormal "hl text\8194" , EIdentifier "x" , EText TextNormal "\8194end." , ESymbol Close ")" ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EIdentifier "x" , ESymbol Rel "=" , ENumber "1" ] , EGrouped [ ESymbol Open "(" , EText TextNormal "hl to URI\8194" , EIdentifier "x" , EText TextNormal "\8194end" , ESymbol Close ")" ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EIdentifier "x" , ESymbol Rel "=" , ENumber "1" ] , EGrouped [ ESymbol Open "(" , EText TextNormal "sex" , ESymbol Close ")" ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EIdentifier "x" , ESymbol Rel "=" , ENumber "1" ] , EGrouped [ ESymbol Open "(" , EText TextNormal "jbm" , ESymbol Close ")" ] ] ] , [] ] , [ [] , [] ] , [ [ EGrouped [ EGrouped [ EGrouped [ EIdentifier "f" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EIdentifier "x" , ESymbol Close ")" ] ] , ESymbol Ord "\8290" , EIdentifier "g" , ESymbol Ord "\8290" , EGrouped [ ESymbol Open "[" , EIdentifier "y" , ESymbol Close "]" ] , ESymbol Ord "\8290" , EIdentifier "h" , ESymbol Ord "\8290" , EGrouped [ ESymbol Open "{" , EIdentifier "z" , ESymbol Close "}" ] ] , ESymbol Bin "+" , EGrouped [ EGrouped [ ESymbol Open "\8970" , EIdentifier "a" , ESymbol Close "\8971" ] , ESymbol Ord "\8290" , EGrouped [ ESymbol Open "\8968" , EIdentifier "b" , ESymbol Close "\8969" ] , ESymbol Ord "\8290" , EGrouped [ ESymbol Open "\9001" , EIdentifier "c" , ESymbol Close "\9002" ] ] ] ] , [] ] , [ [ EGrouped [ EDelimited "" "|" [ Right (EFraction NormalFrac (ENumber "123") (EFraction NormalFrac (ENumber "456") (EIdentifier "A"))) ] , EDelimited "" "" [ Left "\8741" , Right (EFraction NormalFrac (EIdentifier "A") (EFraction NormalFrac (EIdentifier "B") (EIdentifier "A"))) ] , EGrouped [ EDelimited "" "" [ Left "/" , Right (EFraction NormalFrac (ENumber "1") (EFraction NormalFrac (ENumber "2") (EIdentifier "A"))) , Left "/" ] , ESymbol Ord "\8290" , EDelimited "(" ")" [ Right (EFraction NormalFrac (ENumber "3") (EFraction NormalFrac (ENumber "4") (EIdentifier "A"))) ] ] , EDelimited "" "" [ Left "\8597" , Right (EFraction NormalFrac (ENumber "5") (EFraction NormalFrac (ENumber "6") (EIdentifier "A"))) , Left "\8597" ] , EFraction NormalFrac (ENumber "7") (EFraction NormalFrac (ENumber "8") (EIdentifier "A")) , EDelimited "" "" [ Left "\8661" , Right (EFraction NormalFrac (EFraction NormalFrac (ENumber "9") (ENumber "20")) (EFraction NormalFrac (ENumber "10") (EIdentifier "A"))) , Left "\8661" ] , EGrouped [ EDelimited "" "" [ Left "\8593" , Right (EFraction NormalFrac (ENumber "11") (EFraction NormalFrac (ENumber "12") (EIdentifier "A"))) , Left "\8593" ] , ESymbol Ord "\8290" , EDelimited "" "" [ Left "\8657" , Right (EFraction NormalFrac (ENumber "13") (EFraction NormalFrac (ENumber "14") (EIdentifier "A"))) , Left "\8657" ] ] , EDelimited "" "" [ Left "\8595" , Right (EFraction NormalFrac (ENumber "15") (EFraction NormalFrac (ENumber "16") (EIdentifier "A"))) , Left "\8595" ] , EDelimited "" "" [ Left "\8659" , Right (EFraction NormalFrac (ENumber "17") (EFraction NormalFrac (ENumber "18") (EIdentifier "A"))) , Left "\8659" ] ] ] , [] ] , [ [ EGrouped [ EIdentifier "x" , ESymbol Ord "\8290" , EArray [ AlignCenter , AlignCenter ] [ [ [ EIdentifier "x" ] , [ EIdentifier "x" ] ] , [ [ EIdentifier "x" ] , [ EIdentifier "x" ] ] ] , ESymbol Ord "\8290" , EIdentifier "x" ] ] , [] ] , [ [ EGrouped [ EGrouped [ EDelimited "(" ")" [ Right (EGrouped [ ESub (EIdentifier "a") (ENumber "1") , ESymbol Pun "," , ESub (EIdentifier "a") (ENumber "2") , ESymbol Pun "," , EIdentifier "\8230" , ESymbol Pun "," , ESub (EIdentifier "a") (EIdentifier "n") ]) ] , ESymbol Bin "\8901" , EDelimited "(" ")" [ Right (EGrouped [ ESub (EIdentifier "b") (ENumber "1") , ESymbol Pun "," , ESub (EIdentifier "b") (ENumber "2") , ESymbol Pun "," , EIdentifier "\8230" , ESymbol Pun "," , ESub (EIdentifier "b") (EIdentifier "n") ]) ] ] , ESymbol Rel "=" , EGrouped [ EGrouped [ ESub (EIdentifier "a") (ENumber "1") , ESymbol Ord "\8290" , ESubsup (EIdentifier "b") (ENumber "1") (ESymbol Ord "*") ] , ESymbol Bin "+" , EGrouped [ ESub (EIdentifier "a") (ENumber "2") , ESymbol Ord "\8290" , ESubsup (EIdentifier "b") (ENumber "2") (ESymbol Ord "*") ] , ESymbol Bin "+" , EIdentifier "\8943" , ESymbol Bin "+" , EGrouped [ ESub (EIdentifier "a") (EIdentifier "n") , ESymbol Ord "\8290" , ESubsup (EIdentifier "b") (EIdentifier "n") (ESymbol Ord "*") ] ] ] ] , [] ] , [ [ EGrouped [ EDelimited "\8970" "\8971" [ Right (EFraction NormalFrac (EIdentifier "n") (ENumber "5")) ] , ESymbol Bin "+" , EDelimited "\8970" "\8971" [ Right (EFraction NormalFrac (EIdentifier "n") (ESuper (ENumber "5") (ENumber "2"))) ] , ESymbol Bin "+" , EDelimited "\8970" "\8971" [ Right (EFraction NormalFrac (EIdentifier "n") (ESuper (ENumber "5") (ENumber "3"))) ] , ESymbol Bin "+" , EDelimited "\8970" "\8971" [ Right (EFraction NormalFrac (EIdentifier "n") (ESuper (ENumber "5") (ENumber "4"))) ] , ESymbol Bin "+" , EIdentifier "\8943" ] ] , [] ] , [ [ EGrouped [ ESub (EIdentifier "x") (ENumber "1") , ESymbol Bin "+" , EIdentifier "\8943" , ESymbol Bin "+" , ESub (EIdentifier "x") (EIdentifier "n") ] ] , [] ] , [ [ EUnder False (EUnder False (EGrouped [ EIdentifier "x" , ESymbol Bin "+" , EIdentifier "\8943" , ESymbol Bin "+" , EIdentifier "x" ]) (ESymbol Accent "\65080")) (EGrouped [ EIdentifier "k" , EText TextNormal "\8194times" ]) ] , [] ] , [ [ ERoot (EIdentifier "n") (EGrouped [ ESub (EIdentifier "x") (ENumber "1") , ESymbol Ord "\8290" , ESub (EIdentifier "x") (ENumber "2") , ESymbol Ord "\8290" , EIdentifier "\8943" , ESymbol Ord "\8290" , ESub (EIdentifier "x") (EIdentifier "n") ]) ] , [] ] , [ [ EGrouped [ EGrouped [ EIdentifier "n" , ESymbol Pun "!" ] , ESymbol Rel "=" , EGrouped [ ENumber "1" , ESymbol Bin "\215" , ENumber "2" , ESymbol Bin "\215" , ENumber "3" , ESymbol Bin "\215" , ENumber "4" , ESymbol Bin "\215" , EIdentifier "\8943" , ESymbol Bin "\215" , EIdentifier "n" ] ] ] , [] ] , [ [ EGrouped [ EIdentifier "P" , ESymbol Pun ":" , EGrouped [ EIdentifier "a" , ESymbol Rel "=" , ESub (EIdentifier "x") (ENumber "0") , ESymbol Rel "<" , ESub (EIdentifier "x") (ENumber "1") , ESymbol Rel "<" , ESub (EIdentifier "x") (ENumber "2") , ESymbol Rel "<" , EIdentifier "\8943" , ESymbol Rel "<" , ESub (EIdentifier "x") (EIdentifier "n") , ESymbol Rel "=" , EIdentifier "b" ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EIdentifier "f" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EIdentifier "x" , ESymbol Close ")" ] ] , ESymbol Rel "=" , EGrouped [ EFraction NormalFrac (ENumber "30") (EGrouped [ ENumber "13" , ESymbol Ord "\8290" , EGrouped [ EMathOperator "cos" , ESymbol Ord "\8289" , EIdentifier "x" ] ]) , ESymbol Bin "+" , EGrouped [ EFraction NormalFrac (ENumber "10") (ENumber "3") , ESymbol Ord "\8290" , ESqrt (EDelimited "(" ")" [ Right (EGrouped [ ENumber "100" , ESymbol Bin "+" , EFraction NormalFrac (ENumber "9") (EGrouped [ ESuper (EMathOperator "cos") (ENumber "2") , ESymbol Ord "\8289" , EIdentifier "x" ]) , ESymbol Bin "\8722" , EGrouped [ EFraction NormalFrac (ENumber "60") (EGrouped [ EMathOperator "cos" , ESymbol Ord "\8289" , EIdentifier "x" ]) , ESymbol Ord "\8290" , EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EGrouped [ EIdentifier "x" , ESymbol Bin "+" , EGrouped [ EFraction NormalFrac (ENumber "29") (ENumber "90") , ESymbol Ord "\8290" , EIdentifier "\960" ] ]) ] ] ] ]) ]) ] ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EDelimited "\8747" "" [ Right (EGrouped [ EGrouped [ EMathOperator "cos" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EGrouped [ EIdentifier "A" , ESymbol Ord "\8290" , EIdentifier "x" ] , ESymbol Close ")" ] ] , ESymbol Ord "\8290" , EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EGrouped [ EIdentifier "B" , ESymbol Ord "\8290" , EIdentifier "x" ] , ESymbol Close ")" ] ] , ESymbol Ord "\8290" , EGrouped [ ESymbol Ord "\8518" , EIdentifier "x" ] ]) ] , ESymbol Rel "=" , EGrouped [ EFraction NormalFrac (EGrouped [ ESymbol Bin "\8722" , EGrouped [ EMathOperator "cos" , ESymbol Ord "\8289" , EGrouped [ EGrouped [ ESymbol Open "(" , EGrouped [ EIdentifier "B" , ESymbol Bin "\8722" , EIdentifier "A" ] , ESymbol Close ")" ] , ESymbol Ord "\8290" , EIdentifier "x" ] ] ]) (EGrouped [ ENumber "2" , ESymbol Ord "\8290" , EGrouped [ ESymbol Open "(" , EGrouped [ EIdentifier "B" , ESymbol Bin "\8722" , EIdentifier "A" ] , ESymbol Close ")" ] ]) , ESymbol Bin "+" , EFraction NormalFrac (EGrouped [ ESymbol Bin "\8722" , EGrouped [ EMathOperator "cos" , ESymbol Ord "\8289" , EGrouped [ EGrouped [ ESymbol Open "(" , EGrouped [ EIdentifier "B" , ESymbol Bin "+" , EIdentifier "A" ] , ESymbol Close ")" ] , ESymbol Ord "\8290" , EIdentifier "x" ] ] ]) (EGrouped [ ENumber "2" , ESymbol Ord "\8290" , EGrouped [ ESymbol Open "(" , EGrouped [ EIdentifier "B" , ESymbol Bin "+" , EIdentifier "A" ] , ESymbol Close ")" ] ]) , ESymbol Bin "+" , EIdentifier "C" ] ] , EText TextNormal "\8194." ] ] , [] ] , [ [ EGrouped [ EGrouped [ ENumber "235.3" , ESymbol Bin "+" , ENumber "813" ] , ESymbol Rel "=" , ENumber "1048.\8201\&3" ] ] , [] ] , [ [ EGrouped [ EGrouped [ EUnder False (EMathOperator "max") (EGrouped [ EGrouped [ ESymbol Bin "\8722" , ENumber "2" ] , ESymbol Rel "\8804" , EIdentifier "x" , ESymbol Rel "\8804" , ENumber "2" ]) , EDelimited "(" ")" [ Right (EGrouped [ ESuper (EIdentifier "x") (ENumber "3") , ESymbol Bin "\8722" , EGrouped [ ENumber "6" , ESymbol Ord "\8290" , EIdentifier "x" ] , ESymbol Bin "+" , ENumber "3" ]) ] ] , ESymbol Rel "=" , ENumber "8.0" ] ] , [] ] , [ [ EGrouped [ EGrouped [ EIdentifier "x" , ESymbol Ord "\8290" , EIdentifier "decade" ] , ESymbol Rel "=" , EGrouped [ ENumber "2" , ESymbol Ord "\8290" , EIdentifier "century" ] ] ] , [] ] , [ [ EGrouped [ EFraction NormalFrac (EGrouped [ ESuper (ESymbol Ord "\8518") (ENumber "5") , EDelimited "(" ")" [ Right (EGrouped [ ESuper (EIdentifier "x") (ENumber "7") , ESymbol Bin "\8722" , EGrouped [ ENumber "3" , ESymbol Ord "\8290" , ESuper (EIdentifier "x") (ENumber "6") ] ]) ] ]) (EGrouped [ ESymbol Ord "\8518" , ESuper (EIdentifier "x") (ENumber "5") ]) , EText TextNormal "\8195\8195" , EFraction NormalFrac (EGrouped [ ESuper (ESymbol Ord "\8518") (EIdentifier "n") , EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EIdentifier "x" ] ]) (EGrouped [ ESymbol Ord "\8518" , ESuper (EIdentifier "x") (EIdentifier "n") ]) , EText TextNormal "\8195\8195" , EGrouped [ EFraction NormalFrac (ESuper (ESymbol Ord "\8518") (ENumber "3")) (EGrouped [ ESymbol Ord "\8518" , ESuper (EIdentifier "x") (ENumber "3") ]) , EGrouped [ EIdentifier "f" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EIdentifier "x" , ESymbol Close ")" ] ] ] , EText TextNormal "\8195\8195" , EGrouped [ EFraction NormalFrac (ESuper (ESymbol Ord "\8518") (ENumber "2")) (EGrouped [ ESymbol Ord "\8518" , ESuper (EIdentifier "t") (ENumber "2") ]) , EDelimited "(" ")" [ Right (EGrouped [ EGrouped [ ENumber "4" , ESymbol Ord "\8290" , ESuper (EIdentifier "t") (ENumber "5") ] , ESymbol Bin "\8722" , EGrouped [ ENumber "3" , ESymbol Ord "\8290" , EIdentifier "t" ] ]) ] ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EIdentifier "f" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EIdentifier "x" , ESymbol Close ")" ] ] , ESymbol Rel "=" , EGrouped [ EFraction NormalFrac (ENumber "30") (EGrouped [ ENumber "13" , ESymbol Ord "\8290" , EGrouped [ EMathOperator "cos" , ESymbol Ord "\8289" , EIdentifier "x" ] ]) , ESymbol Bin "+" , EGrouped [ EFraction NormalFrac (ENumber "10") (ENumber "3") , ESymbol Ord "\8290" , ESqrt (EDelimited "(" ")" [ Right (EGrouped [ ENumber "100" , ESymbol Bin "+" , EFraction NormalFrac (ENumber "9") (EGrouped [ ESuper (EMathOperator "cos") (ENumber "2") , ESymbol Ord "\8289" , EIdentifier "x" ]) , ESymbol Bin "\8722" , EGrouped [ EFraction NormalFrac (ENumber "60") (EGrouped [ EMathOperator "cos" , ESymbol Ord "\8289" , EIdentifier "x" ]) , ESymbol Ord "\8290" , EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EGrouped [ EIdentifier "x" , ESymbol Bin "+" , EGrouped [ EFraction NormalFrac (ENumber "29") (ENumber "90") , ESymbol Ord "\8290" , EIdentifier "\960" ] ]) ] ] ] ]) ]) ] ] ] ] , [] ] , [ [ EGrouped [ EDelimited "\8747" "" [ Right (ESub (EGrouped []) (ESuper (EStyled TextBold [ EIdentifier "R" ]) (ENumber "3"))) , Right (EGrouped [ EDelimited "(" ")" [ Right (EGrouped [ EFraction NormalFrac (EGrouped [ ESuper (EDelimited "|" "|" [ Right (ESub (EIdentifier "u") (ENumber "1")) ]) (ENumber "2") , ESymbol Bin "+" , ESuper (EDelimited "|" "|" [ Right (EGrouped [ ESymbol Ord "\8711" , ESub (EIdentifier "u") (ENumber "0") ]) ]) (ENumber "2") ]) (ENumber "2") , ESymbol Bin "+" , EFraction NormalFrac (ESuper (EDelimited "|" "|" [ Right (ESub (EIdentifier "u") (ENumber "0")) ]) (ENumber "6")) (ENumber "6") ]) ] , ESymbol Ord "\8290" , EGrouped [ ESymbol Ord "\8518" , EIdentifier "x" ] ]) ] , ESymbol Rel "<" , EIdentifier "\8734" ] ] , [] ] , [ [ EGrouped [ EGrouped [ EDelimited "(" ")" [ Right (EGrouped [ EMathOperator "\8711\215" , EStyled TextBold [ EIdentifier "F" ] ]) ] , ESymbol Bin "\8901" , EStyled TextBold [ EIdentifier "k" ] ] , ESymbol Rel "=" , EGrouped [ EIdentifier "z" , ESymbol Bin "+" , ENumber "1" ] ] ] , [] ] , [ [ EGrouped [ EIdentifier "M" , ESymbol Ord "\8290" , EFraction NormalFrac (ESuper (EIdentifier "M") (EFraction NormalFrac (EIdentifier "M") (EIdentifier "M"))) (EIdentifier "M") ] ] , [] ] , [ [ EGrouped [ EGrouped [ ESub (ESymbol Ord "\8517") (EIdentifier "x") , ESuper (EIdentifier "x") (ENumber "2") ] , EText TextNormal "\8195\8195" , EGrouped [ ESub (ESymbol Ord "\8517") (EIdentifier "x") , EDelimited "(" ")" [ Right (ESuper (EIdentifier "x") (ENumber "2")) ] ] , EText TextNormal "\8195\8195" , EGrouped [ ESub (ESymbol Ord "\8517") (EGrouped [ EIdentifier "x" , ESymbol Ord "\8203" , EIdentifier "x" ]) , EDelimited "(" ")" [ Right (ESuper (EIdentifier "x") (ENumber "2")) ] ] , EText TextNormal "\8195\8195" , EGrouped [ ESub (ESymbol Ord "\8517") (ESuper (EIdentifier "x") (ENumber "2")) , EDelimited "(" ")" [ Right (ESuper (EIdentifier "x") (ENumber "2")) ] ] , EText TextNormal "\8195\8195" , EGrouped [ ESub (ESymbol Ord "\8517") (EGrouped [ EIdentifier "x" , ESymbol Ord "\8203" , EIdentifier "y" ]) , EDelimited "(" ")" [ Right (EGrouped [ ESuper (EIdentifier "x") (ENumber "2") , ESymbol Ord "\8290" , ESuper (EIdentifier "y") (ENumber "3") ]) ] ] , EText TextNormal "\8195\8195" , EGrouped [ ESub (ESymbol Ord "\8517") (EGrouped [ ESuper (EIdentifier "x") (EIdentifier "s") , ESymbol Ord "\8203" , ESuper (EIdentifier "y") (EIdentifier "t") ]) , EDelimited "(" ")" [ Right (EGrouped [ ESuper (EIdentifier "x") (ENumber "2") , ESymbol Ord "\8290" , ESuper (EIdentifier "y") (ENumber "3") ]) ] ] ] ] , [] ] , [ [ EGrouped [ ENumber "5" , ESpace (7 % 100) , EGrouped [ ENumber "24" , ESymbol Pun "!" ] , ESpace (7 % 100) , ESuper (EIdentifier "x") (ENumber "6") ] ] , [] ] , [ [ EArray [ AlignCenter ] [ [ [ EArray [ AlignCenter , AlignCenter ] [ [ [ EGrouped [ EIdentifier "x" , ESymbol Bin "+" , ERoot (ENumber "2") (EFraction NormalFrac (ESuper (EIdentifier "a") (EGrouped [ EIdentifier "y" , ESymbol Bin "\8722" , ENumber "1" ])) (ENumber "12.34")) ] ] , [ EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EIdentifier "\952" ] ] ] , [ [ ESpace (1 % 18) ] , [ ENumber "1" ] ] ] ] ] ] ] , [] ] , [ [ EArray [ AlignCenter , AlignCenter ] [ [ [ ENumber "0" ] , [ ENumber "1" ] ] , [ [ ENumber "1" ] , [ ENumber "0" ] ] ] ] , [] ] , [ [ EDelimited "(" ")" [ Right (EArray [ AlignCenter , AlignCenter ] [ [ [ ENumber "0" ] , [ EGrouped [ ESymbol Bin "\8722" , EIdentifier "i" ] ] ] , [ [ EIdentifier "i" ] , [ ENumber "0" ] ] ]) ] ] , [] ] , [ [ EDelimited "[" "]" [ Right (EArray [ AlignCenter , AlignCenter ] [ [ [ ENumber "1" ] , [ ENumber "0" ] ] , [ [ ENumber "0" ] , [ EGrouped [ ESymbol Bin "\8722" , ENumber "1" ] ] ] ]) ] ] , [] ] , [ [ EDelimited "|" "|" [ Right (EArray [ AlignCenter , AlignCenter ] [ [ [ EIdentifier "a" ] , [ EIdentifier "b" ] ] , [ [ EIdentifier "c" ] , [ EIdentifier "d" ] ] ]) ] ] , [] ] , [ [ EDelimited "" "" [ Left "\8741" , Right (EArray [ AlignCenter , AlignCenter , AlignCenter ] [ [ [ ENumber "1" ] , [ ENumber "0" ] , [ ENumber "1" ] ] , [ [ ENumber "0" ] , [ ENumber "11" ] , [ ESpace (1 % 18) ] ] ]) , Left "\8741" ] ] , [] ] , [ [ EArray [ AlignCenter , AlignCenter , AlignCenter ] [ [ [ ENumber "1" ] , [ ENumber "2" ] , [ ENumber "3" ] ] , [ [ ENumber "4" ] , [ ENumber "5" ] , [ ESpace (1 % 18) ] ] ] ] , [] ] , [ [ EGrouped [ EText TextNormal "testing\8194" , EArray [ AlignCenter ] [ [ [ EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EIdentifier "\952" ] ] ] ] ] ] , [] ] , [ [ EGrouped [ EOver False (EIdentifier "a") (ESymbol Accent "\770") , ESymbol Bin "+" , EOver False (EIdentifier "b") (ESymbol Accent "\711") , ESymbol Bin "+" , EOver False (EIdentifier "c") (ESymbol Accent "\732") , ESymbol Bin "+" , EOver False (EIdentifier "d") (ESymbol Accent "\180") , ESymbol Bin "+" , EOver False (EIdentifier "e") (ESymbol Accent "`") , ESymbol Bin "+" , EOver False (EIdentifier "f") (ESymbol Accent "\728") , ESymbol Bin "+" , EOver False (EIdentifier "g") (ESymbol Accent "\175") , ESymbol Bin "+" , EIdentifier "h" , ESymbol Bin "+" , EOver False (EIdentifier "i") (ESymbol Accent "\730") , ESymbol Bin "+" , EOver False (EIdentifier "j") (ESymbol Accent "\729") , ESymbol Bin "+" , EOver False (EIdentifier "k") (ESymbol Accent "\168") , ESymbol Bin "+" , EOver False (EIdentifier "l") (ESymbol Accent "\8411") , ESymbol Bin "+" , EOver False (EIdentifier "m") (ESymbol Accent "\8412") , ESymbol Bin "+" , EOver False (EIdentifier "n") (ESymbol Accent "\8594") ] ] , [] ] , [ [ EGrouped [ EGrouped [ EIdentifier "f" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EGrouped [ EIdentifier "g" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EIdentifier "x" , ESymbol Close ")" ] ] , ESymbol Close ")" ] ] , ESymbol Rel "=" , EGrouped [ EGrouped [ ESuper (EMathOperator "sin") (ENumber "3") , ESymbol Ord "\8289" , ESuper (EIdentifier "x") (ENumber "2") ] , ESymbol Bin "+" , EGrouped [ EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , ESuper (EIdentifier "x") (ENumber "2") ] , ESymbol Ord "\8290" , EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , ESuper (EIdentifier "x") (ENumber "2") ]) ] ] ] ] ] ] , [] ] , [ [ EGrouped [ EDelimited "(" ")" [ Right (EGrouped [ ESuper (EIdentifier "x") (ENumber "2") , ESymbol Bin "+" , ENumber "12" ]) ] , ESymbol Bin "+" , ENumber "1234" ] ] , [] ] , [ [ EArray [ AlignCenter , AlignCenter , AlignCenter ] [ [ [ EGrouped [ EIdentifier "x" , ESymbol Rel "=" , ENumber "1" ] ] , [ EText TextNormal "not" ] , [ EText TextNormal "here" ] ] , [ [ ESuper (EIdentifier "x") (ENumber "2") ] , [ EText TextNormal "merged" ] , [ ESub (EIdentifier "y") (ENumber "1") ] ] , [ [ EText TextNormal "jbm" ] , [ EText TextNormal "lowlife" ] , [ EText TextNormal "The end." ] ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ ESuper (EIdentifier "x") (ENumber "2") , ESymbol Bin "+" , ESuper (EIdentifier "y") (ENumber "2") ] , ESymbol Rel "=" , EGrouped [ ESuper (EIdentifier "z") (ENumber "2") , ESymbol Bin "\8722" , ENumber "1" ] ] ] , [] ] , [ [ EArray [ AlignCenter ] [ [ [ EGrouped [ EGrouped [ ESuper (EIdentifier "x") (ENumber "2") , ESymbol Bin "+" , ESuper (EIdentifier "y") (ENumber "2") ] , ESymbol Rel "=" , EGrouped [ ESuper (EIdentifier "z") (ENumber "2") , ESymbol Bin "\8722" , ENumber "1" ] ] ] ] , [ [ EGrouped [ EGrouped [ EIdentifier "x" , ESymbol Bin "+" , ESuper (EIdentifier "y") (ENumber "3") ] , ESymbol Rel "=" , ESuper (EIdentifier "z") (ENumber "3") ] ] ] ] ] , [] ] , [ [ EArray [ AlignCenter ] [ [ [ EGrouped [ EGrouped [ ESuper (EIdentifier "x") (ENumber "2") , ESymbol Bin "+" , ESuper (EIdentifier "y") (ENumber "2") ] , ESymbol Rel "=" , EGrouped [ ESuper (EIdentifier "z") (ENumber "2") , ESymbol Bin "\8722" , ENumber "1" ] ] ] ] , [ [ EGrouped [ EGrouped [ EIdentifier "x" , ESymbol Bin "+" , ESuper (EIdentifier "y") (ENumber "3") ] , ESymbol Rel "=" , ESuper (EIdentifier "z") (ENumber "3") ] ] ] ] ] , [] ] , [ [ EArray [ AlignCenter ] [ [ [ EGrouped [ EGrouped [ ESuper (EIdentifier "x") (ENumber "2") , ESymbol Bin "+" , ESuper (EIdentifier "y") (ENumber "2") ] , ESymbol Rel "=" , ENumber "1" ] ] ] , [ [ EGrouped [ EIdentifier "x" , ESymbol Rel "=" , ESqrt (EGrouped [ ENumber "1" , ESymbol Bin "\8722" , ESuper (EIdentifier "y") (ENumber "2") ]) ] ] ] ] ] , [] ] , [ [ EArray [ AlignCenter ] [ [ [ EGrouped [ ESuper (EGrouped [ ESymbol Open "(" , EGrouped [ EIdentifier "a" , ESymbol Bin "+" , EIdentifier "b" ] , ESymbol Close ")" ]) (ENumber "2") , ESymbol Rel "=" , EGrouped [ ESuper (EIdentifier "a") (ENumber "2") , ESymbol Bin "+" , EGrouped [ ENumber "2" , ESymbol Ord "\8290" , EIdentifier "a" , ESymbol Ord "\8290" , EIdentifier "b" ] , ESymbol Bin "+" , ESuper (EIdentifier "b") (ENumber "2") ] ] ] ] , [ [ EGrouped [ EGrouped [ EGrouped [ ESymbol Open "(" , EGrouped [ EIdentifier "a" , ESymbol Bin "+" , EIdentifier "b" ] , ESymbol Close ")" ] , ESymbol Bin "\8901" , EGrouped [ ESymbol Open "(" , EGrouped [ EIdentifier "a" , ESymbol Bin "\8722" , EIdentifier "b" ] , ESymbol Close ")" ] ] , ESymbol Rel "=" , EGrouped [ ESuper (EIdentifier "a") (ENumber "2") , ESymbol Bin "\8722" , ESuper (EIdentifier "b") (ENumber "2") ] ] ] ] ] ] , [] ] , [ [ EArray [ AlignCenter ] [ [ [ EText TextNormal "First line of equation" ] ] , [ [ EText TextNormal "Middle line of equation" ] ] , [ [ EText TextNormal "Other middle line of equation" ] ] , [ [ EText TextNormal "Last line of equation" ] ] ] ] , [] ] , [ [ EArray [ AlignCenter ] [ [ [ EGrouped [ EGrouped [ ESub (EIdentifier "L") (ENumber "1") , ESymbol Rel "=" , ESub (EIdentifier "R") (ENumber "1") ] , EText TextNormal "\8195\8195" , EGrouped [ ESub (EIdentifier "L") (ENumber "2") , ESymbol Rel "=" , ESub (EIdentifier "R") (ENumber "2") ] ] ] ] , [ [ EGrouped [ EGrouped [ ESub (EIdentifier "L") (ENumber "3") , ESymbol Rel "=" , ESub (EIdentifier "R") (ENumber "3") ] , EText TextNormal "\8195\8195" , EGrouped [ ESub (EIdentifier "L") (ENumber "4") , ESymbol Rel "=" , ESub (EIdentifier "R") (ENumber "4") ] ] ] ] ] ] , [] ] , [ [ EArray [ AlignCenter ] [ [ [ EGrouped [ ESuper (EGrouped [ ESymbol Open "(" , EGrouped [ EIdentifier "a" , ESymbol Bin "+" , EIdentifier "b" ] , ESymbol Close ")" ]) (ENumber "4") , ESymbol Rel "=" , EGrouped [ ESuper (EGrouped [ ESymbol Open "(" , EGrouped [ EIdentifier "a" , ESymbol Bin "+" , EIdentifier "b" ] , ESymbol Close ")" ]) (ENumber "2") , ESymbol Ord "\8290" , ESuper (EGrouped [ ESymbol Open "(" , EGrouped [ EIdentifier "a" , ESymbol Bin "+" , EIdentifier "b" ] , ESymbol Close ")" ]) (ENumber "2") ] ] ] ] , [ [ EGrouped [ ESymbol Rel "=" , EGrouped [ EGrouped [ ESymbol Open "(" , EGrouped [ ESuper (EIdentifier "a") (ENumber "2") , ESymbol Bin "+" , EGrouped [ ENumber "2" , ESymbol Ord "\8290" , EIdentifier "a" , ESymbol Ord "\8290" , EIdentifier "b" ] , ESymbol Bin "+" , ESuper (EIdentifier "b") (ENumber "2") ] , ESymbol Close ")" ] , ESymbol Ord "\8290" , EGrouped [ ESymbol Open "(" , EGrouped [ ESuper (EIdentifier "a") (ENumber "2") , ESymbol Bin "+" , EGrouped [ ENumber "2" , ESymbol Ord "\8290" , EIdentifier "a" , ESymbol Ord "\8290" , EIdentifier "b" ] , ESymbol Bin "+" , ESuper (EIdentifier "b") (ENumber "2") ] , ESymbol Close ")" ] ] ] ] ] , [ [ EGrouped [ ESymbol Rel "=" , EGrouped [ ESuper (EIdentifier "a") (ENumber "4") , ESymbol Bin "+" , EGrouped [ ENumber "4" , ESymbol Ord "\8290" , ESuper (EIdentifier "a") (ENumber "3") , ESymbol Ord "\8290" , EIdentifier "b" ] , ESymbol Bin "+" , EGrouped [ ENumber "6" , ESymbol Ord "\8290" , ESuper (EIdentifier "a") (ENumber "2") , ESymbol Ord "\8290" , ESuper (EIdentifier "b") (ENumber "2") ] , ESymbol Bin "+" , EGrouped [ ENumber "4" , ESymbol Ord "\8290" , EIdentifier "a" , ESymbol Ord "\8290" , ESuper (EIdentifier "b") (ENumber "3") ] , ESymbol Bin "+" , ESuper (EIdentifier "b") (ENumber "4") ] ] ] ] ] ] , [] ] , [ [ EGrouped [ EArray [ AlignCenter ] [ [ [ EGrouped [ EGrouped [ ESuper (EIdentifier "x") (ENumber "2") , ESymbol Bin "+" , ESuper (EIdentifier "y") (ENumber "2") ] , ESymbol Rel "=" , ENumber "1" ] ] ] , [ [ EGrouped [ EIdentifier "x" , ESymbol Rel "=" , ESqrt (EGrouped [ ENumber "1" , ESymbol Bin "\8722" , ESuper (EIdentifier "y") (ENumber "2") ]) ] ] ] ] , EText TextNormal "\8195\8195" , EArray [ AlignCenter ] [ [ [ EGrouped [ ESuper (EGrouped [ ESymbol Open "(" , EGrouped [ EIdentifier "a" , ESymbol Bin "+" , EIdentifier "b" ] , ESymbol Close ")" ]) (ENumber "2") , ESymbol Rel "=" , EGrouped [ ESuper (EIdentifier "a") (ENumber "2") , ESymbol Bin "+" , EGrouped [ ENumber "2" , ESymbol Ord "\8290" , EIdentifier "a" , ESymbol Ord "\8290" , EIdentifier "b" ] , ESymbol Bin "+" , ESuper (EIdentifier "b") (ENumber "2") ] ] ] ] , [ [ EGrouped [ EGrouped [ EGrouped [ ESymbol Open "(" , EGrouped [ EIdentifier "a" , ESymbol Bin "+" , EIdentifier "b" ] , ESymbol Close ")" ] , ESymbol Bin "\8901" , EGrouped [ ESymbol Open "(" , EGrouped [ EIdentifier "a" , ESymbol Bin "\8722" , EIdentifier "b" ] , ESymbol Close ")" ] ] , ESymbol Rel "=" , EGrouped [ ESuper (EIdentifier "a") (ENumber "2") , ESymbol Bin "\8722" , ESuper (EIdentifier "b") (ENumber "2") ] ] ] ] ] ] ] , [] ] , [ [ EArray [ AlignCenter , AlignCenter ] [ [ [ EText TextNormal "Vertex" ] , [ EGrouped [ EIdentifier "V" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EGrouped [ ENumber "0" , ESymbol Pun "," , ENumber "0" ] , ESymbol Close ")" ] ] ] ] , [ [ EText TextNormal "Focus" ] , [ EGrouped [ EIdentifier "F" , ESymbol Ord "\8289" , EGrouped [ ESymbol Open "(" , EGrouped [ ENumber "0" , ESymbol Pun "," , EIdentifier "p" ] , ESymbol Close ")" ] ] ] ] , [ [ EText TextNormal "Directrix" ] , [ EGrouped [ EIdentifier "y" , ESymbol Rel "=" , EGrouped [ ESymbol Bin "\8722" , EIdentifier "p" ] ] ] ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EFraction NormalFrac (ESymbol Ord "\8518") (EGrouped [ ESymbol Ord "\8518" , EIdentifier "x" ]) , EText TextNormal "\8201\8201" , EGrouped [ ESymbol Open "(" , EGrouped [ ESuper (EMathOperator "csc") (EGrouped [ ESymbol Bin "\8722" , ENumber "1" ]) , ESymbol Ord "\8289" , EIdentifier "x" ] , ESymbol Close ")" ] ] , ESymbol Rel "=" , EGrouped [ ESymbol Bin "\8722" , EFraction NormalFrac (ENumber "1") (EGrouped [ EDelimited "|" "|" [ Right (EIdentifier "x") ] , ESymbol Ord "\8290" , ESqrt (EGrouped [ ESuper (EIdentifier "x") (ENumber "2") , ESymbol Bin "\8722" , ENumber "1" ]) ]) ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EGrouped [ ESuper (EMathOperator "tanh") (EGrouped [ ESymbol Bin "\8722" , ENumber "1" ]) , ESymbol Ord "\8289" , EIdentifier "x" ] , ESymbol Rel "=" , EGrouped [ EFraction NormalFrac (ENumber "1") (ENumber "2") , ESymbol Ord "\8290" , EGrouped [ EMathOperator "ln" , ESymbol Ord "\8289" , EDelimited "(" ")" [ Right (EFraction NormalFrac (EGrouped [ ENumber "1" , ESymbol Bin "+" , EIdentifier "x" ]) (EGrouped [ ENumber "1" , ESymbol Bin "\8722" , EIdentifier "x" ])) ] ] ] ] , EText TextNormal "\8195\8195" , EGrouped [ EGrouped [ ESymbol Bin "\8722" , ENumber "1" ] , ESymbol Rel "<" , EIdentifier "x" , ESymbol Rel "<" , ENumber "1" ] ] ] , [] ] , [ [ EGrouped [ EGrouped [ EGrouped [ EIdentifier "\8736" , EIdentifier "\945" ] , ESymbol Bin "+" , EGrouped [ EIdentifier "\8736" , EIdentifier "A" , EIdentifier "B" , EIdentifier "C" ] , ESymbol Bin "+" , EGrouped [ EIdentifier "\8736" , ENumber "1" ] ] , ESymbol Rel "=" , EGrouped [ EIdentifier "\9653" , EIdentifier "a" , EIdentifier "b" , EIdentifier "c" ] ] ] , [] ] , [ [ EGrouped [ EIdentifier "y" , ESymbol Rel "=" , EGrouped [ ESuper (EIdentifier "e") (EGrouped [ ESymbol Bin "\8722" , EGrouped [ ESymbol Op "\8747" , EGrouped [ EIdentifier "P" , ESymbol Ord "\8290" , EGrouped [ ESymbol Ord "\8518" , EIdentifier "x" ] ] ] ]) , ESymbol Ord "\8290" , EDelimited "[" "]" [ Right (EGrouped [ EGrouped [ ESymbol Op "\8747" , EGrouped [ ESuper (EIdentifier "e") (EGrouped [ ESymbol Op "\8747" , EGrouped [ EIdentifier "P" , ESymbol Ord "\8290" , EGrouped [ ESymbol Ord "\8518" , EIdentifier "x" ] ] ]) , ESymbol Ord "\8290" , EIdentifier "Q" , ESymbol Ord "\8290" , EGrouped [ ESymbol Ord "\8518" , EIdentifier "x" ] ] ] , ESymbol Bin "+" , EIdentifier "c" ]) ] ] ] ] , [] ] , [ [ EGrouped [ EIdentifier "x" , ESymbol Rel "=" , EGrouped [ ENumber "1" , ESymbol Bin "+" , ESuper (EIdentifier "y") (ENumber "3") ] ] ] , [ EGrouped [ EIdentifier "x" , ESymbol Rel "=" , EGrouped [ ENumber "1" , ESymbol Bin "+" , EIdentifier "y" ] ] ] ] , [ [ EGrouped [ EGrouped [ ESymbol Ord "$" , ENumber "1.00" ] , ESymbol Bin "+" , EGrouped [ ENumber "25" , ESymbol Ord "\162" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "3" , ESymbol Ord "\163" ] , ESymbol Bin "+" , EGrouped [ ENumber "2.45" , ESymbol Ord "\164" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "0.7" , ESymbol Ord "\165" ] , ESymbol Bin "\8722" , EGrouped [ EIdentifier "a" , ESymbol Ord "\8352" ] , ESymbol Bin "+" , EGrouped [ ENumber "20" , ESymbol Ord "\8355" ] , ESymbol Bin "+" , EGrouped [ ENumber "30" , ESymbol Ord "\8356" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "4.56" , ESymbol Ord "\8359" ] ] ] , [] ] , [ [ EArray [ AlignCenter ] [ [ [ EGrouped [ EGrouped [ EGrouped [ ENumber "2" , ESymbol Ord "\8290" , EIdentifier "x" ] , ESymbol Bin "+" , EIdentifier "y" ] , ESymbol Rel "=" , ENumber "3" ] ] ] , [ [ EGrouped [ EGrouped [ EGrouped [ ENumber "3" , ESymbol Ord "\8290" , EIdentifier "x" ] , ESymbol Bin "\8722" , EGrouped [ ENumber "4" , ESymbol Ord "\8290" , EIdentifier "y" ] ] , ESymbol Rel "=" , ENumber "5" ] ] ] , [ [ EGrouped [ EGrouped [ EIdentifier "a" , ESymbol Bin "+" , EIdentifier "b" ] , ESymbol Rel "=" , EGrouped [ EIdentifier "c" , ESymbol Bin "+" , ENumber "12345" ] ] ] ] ] ] , [] ] , [ [ EArray [ AlignCenter , AlignCenter , AlignCenter , AlignCenter , AlignCenter , AlignCenter , AlignCenter ] [ [ [ EText TextNormal "Unrestricted" ] , [ EText TextNormal "\8195\8195\8195" ] , [ EText TextNormal "Symmetric" ] , [ ESpace (1 % 1) ] , [ EText TextNormal "Antisymmetric" ] , [ EText TextNormal "\8195\8195" ] , [ EText TextNormal "Triangular" ] ] ] ] , [] ] , [ [ EGrouped [ EIdentifier "a" , ESymbol Rel "\8800" , EIdentifier "b" , ESymbol Rel "\8800" , EIdentifier "x" ] ] , [] ] , [ [ EGrouped [ EIdentifier "c" , ESymbol Rel "\8814" , EIdentifier "d" , ESymbol Rel "\8814" , EIdentifier "y" ] ] , [] ] , [ [ EGrouped [ EIdentifier "e" , ESymbol Rel "\8815" , EIdentifier "f" , ESymbol Rel "\8815" , ENumber "11" ] ] , [] ] , [ [ EGrouped [ EIdentifier "g" , ESymbol Rel "\8713" , EIdentifier "h" , ESymbol Rel "\8713" , EIdentifier "Z" ] ] , [] ] , [ [ EGrouped [ EIdentifier "k" , ESymbol Rel "\8769" , EIdentifier "l" , ESymbol Rel "\8769" , ENumber "3" ] ] , [] ] , [ [ EGrouped [ EGrouped [ EIdentifier "A" , ESymbol Rel "\8836" , EIdentifier "B" ] , ESymbol Rel "\8834" , EIdentifier "C" ] ] , [] ] , [ [ EGrouped [ EIdentifier "A" , ESymbol Rel "\8840" , EIdentifier "B" , ESymbol Rel "\8840" , EIdentifier "C" ] ] , [] ] , [ [ EGrouped [ ENumber "10" , ESymbol Rel "\8802" , ENumber "11" , ESymbol Rel "\8801" , ENumber "12" ] ] , [] ] , [ [ EGrouped [ EIdentifier "x" , EMathOperator "\8816\8421" , EIdentifier "y" , EMathOperator "\8816\8421" , EIdentifier "z" ] ] , [] ] , [ [ EGrouped [ EOver False (EMathOperator "lim") (ESymbol Accent "\175") , EIdentifier "x" ] ] , [] ] , [ [ EGrouped [ EUnder False (EMathOperator "lim") (ESymbol Accent "\818") , EIdentifier "x" ] ] , [] ] , [ [ EGrouped [ EUnder False (EMathOperator "lim") (ESymbol Accent "\8594") , EIdentifier "x" ] ] , [] ] , [ [ EGrouped [ EUnder False (EMathOperator "lim") (ESymbol Accent "\8592") , EIdentifier "x" ] ] , [] ] , [ [ EArray [ AlignCenter ] [ [ [ EGrouped [ EIdentifier "x" , ESymbol Rel "=" , EGrouped [ EIdentifier "y" , ESymbol Bin "+" , EIdentifier "z" ] ] ] ] , [ [ EGrouped [ ESymbol Rel "=" , EGrouped [ EIdentifier "k" , ESymbol Bin "+" , EIdentifier "m" ] ] ] ] ] ] , [] ] , [ [ EGrouped [ EArray [ AlignLeft ] [ [ [ EGrouped [ EText TextNormal "College Algebra\8194" , EText TextNormal "Second Edition" ] ] ] , [ [ EGrouped [ EText TextNormal "James Stewart\8194" , EText TextNormal "McMaster Universitiy" ] ] ] , [ [ EGrouped [ EText TextNormal "Lothar Redlin" , EText TextNormal "\8194Pennsylvania State University" ] ] ] , [ [ EGrouped [ EText TextNormal "Saleem Watson" , EText TextNormal "\8194California State University, Long Beach" ] ] ] , [ [ EText TextNormal "Copyright 1996, ISBN 0 534-33983-2" ] ] , [ [ EText TextNormal "Brooks/Cole Publishing Company" ] ] , [ [ EText TextNormal "An International Thomson Publishing Company" ] ] ] , ESpace (5 % 18) ] ] , [] ] , [ [ EDelimited "{" "}" [ Right (EFraction NormalFrac (EFraction NormalFrac (ENumber "1") (ENumber "2")) (EFraction NormalFrac (ENumber "1") (ENumber "2"))) , Left "\8593" , Right (EUnderover False (ESymbol Op "\8721") (ENumber "1") (ENumber "2")) ] ] , [] ] , [ [ EDelimited "\9001" "\9002" [ Right (EFraction NormalFrac (EFraction NormalFrac (ENumber "1") (ENumber "2")) (EFraction NormalFrac (ENumber "1") (ENumber "2"))) , Left "|" , Right (EUnderover False (ESymbol Op "\8721") (ENumber "1") (ENumber "2")) ] ] , [] ] , [ [ EDelimited "\8968" "\8969" [ Right (EFraction NormalFrac (EFraction NormalFrac (ENumber "1") (ENumber "2")) (EFraction NormalFrac (ENumber "1") (ENumber "2"))) , Left "|" , Right (EUnderover False (ESymbol Op "\8721") (ENumber "1") (ENumber "2")) ] ] , [] ] , [ [ EDelimited "" "" [ Left "\8659" , Right (EDelimited "" "" [ Right (EFraction NormalFrac (EFraction NormalFrac (ENumber "1") (ENumber "2")) (EFraction NormalFrac (ENumber "1") (ENumber "2"))) , Left "\8597" , Right (EUnderover False (ESymbol Op "\8721") (ENumber "1") (ENumber "2")) ]) , Left "\8659" ] ] , [] ] , [ [ EDelimited "[" "]" [ Right (EFraction NormalFrac (EFraction NormalFrac (ENumber "1") (ENumber "2")) (EFraction NormalFrac (ENumber "1") (ENumber "2"))) ] ] , [] ] , [ [ EDelimited "(" ")" [ Right (EFraction NormalFrac (EFraction NormalFrac (ENumber "1") (ENumber "2")) (EFraction NormalFrac (ENumber "1") (ENumber "2"))) ] ] , [] ] , [ [ EDelimited "{" "}" [ Right (EFraction NormalFrac (EFraction NormalFrac (ENumber "1") (ENumber "2")) (EFraction NormalFrac (ENumber "1") (ENumber "2"))) ] ] , [] ] , [ [ EDelimited "\9001" "\9002" [ Right (EFraction NormalFrac (EFraction NormalFrac (ENumber "1") (ENumber "2")) (EFraction NormalFrac (ENumber "1") (ENumber "2"))) ] ] , [] ] , [ [ EDelimited "\8970" "\8971" [ Right (EFraction NormalFrac (EFraction NormalFrac (ENumber "1") (ENumber "2")) (EFraction NormalFrac (ENumber "1") (ENumber "2"))) ] ] , [] ] , [ [ EDelimited "\8968" "\8969" [ Right (EFraction NormalFrac (EFraction NormalFrac (ENumber "1") (ENumber "2")) (EFraction NormalFrac (ENumber "1") (ENumber "2"))) ] ] , [] ] , [ [ EDelimited "" "" [ Left "\8593" , Right (EFraction NormalFrac (EFraction NormalFrac (ENumber "1") (ENumber "2")) (EFraction NormalFrac (ENumber "1") (ENumber "2"))) , Left "\8593" ] ] , [] ] , [ [ EDelimited "" "" [ Left "\8595" , Right (EFraction NormalFrac (EFraction NormalFrac (ENumber "1") (ENumber "2")) (EFraction NormalFrac (ENumber "1") (ENumber "2"))) , Left "\8595" ] ] , [] ] , [ [ EDelimited "" "" [ Left "\8597" , Right (EFraction NormalFrac (EFraction NormalFrac (ENumber "1") (ENumber "2")) (EFraction NormalFrac (ENumber "1") (ENumber "2"))) , Left "\8597" ] ] , [] ] , [ [ EDelimited "" "" [ Left "\8657" , Right (EFraction NormalFrac (EFraction NormalFrac (ENumber "1") (ENumber "2")) (EFraction NormalFrac (ENumber "1") (ENumber "2"))) , Left "\8657" ] ] , [] ] , [ [ EDelimited "" "" [ Left "\8659" , Right (EFraction NormalFrac (EFraction NormalFrac (ENumber "1") (ENumber "2")) (EFraction NormalFrac (ENumber "1") (ENumber "2"))) , Left "\8659" ] ] , [] ] , [ [ EDelimited "" "" [ Left "\8661" , Right (EFraction NormalFrac (EFraction NormalFrac (ENumber "1") (ENumber "2")) (EFraction NormalFrac (ENumber "1") (ENumber "2"))) , Left "\8661" ] ] , [] ] , [ [ EFraction NormalFrac (EFraction NormalFrac (ENumber "1") (ENumber "2")) (EFraction NormalFrac (ENumber "1") (ENumber "2")) ] , [] ] , [ [ EDelimited "\\arrowvert" "\\arrowvert" [ Right (EFraction NormalFrac (EFraction NormalFrac (ENumber "1") (ENumber "2")) (EFraction NormalFrac (ENumber "1") (ENumber "2"))) ] ] , [] ] , [ [ EDelimited "\\Arrowvert" "\\Arrowvert" [ Right (EFraction NormalFrac (EFraction NormalFrac (ENumber "1") (ENumber "2")) (EFraction NormalFrac (ENumber "1") (ENumber "2"))) ] ] , [] ] , [ [ EDelimited "\\bracevert" "\\bracevert" [ Right (EFraction NormalFrac (EFraction NormalFrac (ENumber "1") (ENumber "2")) (EFraction NormalFrac (ENumber "1") (ENumber "2"))) ] ] , [] ] , [ [ EDelimited "|" "|" [ Right (EFraction NormalFrac (EFraction NormalFrac (ENumber "1") (ENumber "2")) (EFraction NormalFrac (ENumber "1") (ENumber "2"))) ] ] , [] ] , [ [ EDelimited "|" "|" [ Right (EFraction NormalFrac (EFraction NormalFrac (ENumber "1") (ENumber "2")) (EFraction NormalFrac (ENumber "1") (ENumber "2"))) ] ] , [] ] , [ [ EDelimited "|" "|" [ Right (EFraction NormalFrac (EFraction NormalFrac (ENumber "1") (ENumber "2")) (EFraction NormalFrac (ENumber "1") (ENumber "2"))) ] ] , [] ] , [ [ EDelimited "" "" [ Left "\8741" , Right (EFraction NormalFrac (EFraction NormalFrac (ENumber "1") (ENumber "2")) (EFraction NormalFrac (ENumber "1") (ENumber "2"))) , Left "\8741" ] ] , [] ] , [ [ EDelimited "" "" [ Left "\8741" , Right (EFraction NormalFrac (EFraction NormalFrac (ENumber "1") (ENumber "2")) (EFraction NormalFrac (ENumber "1") (ENumber "2"))) , Left "\8741" ] ] , [] ] , [ [ EDelimited "" "" [ Left "/" , Right (EFraction NormalFrac (EFraction NormalFrac (ENumber "1") (ENumber "2")) (EFraction NormalFrac (ENumber "1") (ENumber "2"))) , Left "/" ] ] , [] ] , [ [ EDelimited "" "" [ Left "\\" , Right (EFraction NormalFrac (EFraction NormalFrac (ENumber "1") (ENumber "2")) (EFraction NormalFrac (ENumber "1") (ENumber "2"))) , Left "\\" ] ] , [] ] , [ [ EDelimited "\9137" "\9136" [ Right (EFraction NormalFrac (EFraction NormalFrac (ENumber "1") (ENumber "2")) (EFraction NormalFrac (ENumber "1") (ENumber "2"))) ] ] , [] ] , [ [ EDelimited "\\lgroup" "\\rgroup" [ Right (EFraction NormalFrac (EFraction NormalFrac (ENumber "1") (ENumber "2")) (EFraction NormalFrac (ENumber "1") (ENumber "2"))) ] ] , [] ] , [ [ EDelimited "\8990" "\8991" [ Right (EFraction NormalFrac (EFraction NormalFrac (ENumber "1") (ENumber "2")) (EFraction NormalFrac (ENumber "1") (ENumber "2"))) ] ] , [] ] , [ [ EDelimited "\8988" "\8989" [ Right (EFraction NormalFrac (EFraction NormalFrac (ENumber "1") (ENumber "2")) (EFraction NormalFrac (ENumber "1") (ENumber "2"))) ] ] , [] ] , [ [ EGrouped [ EIdentifier "A" , EUnderover False (ESymbol Accent "\8592") (ESpace (1 % 18)) (EGrouped [ EIdentifier "n" , ESymbol Bin "+" , EIdentifier "\956" , ESymbol Bin "\8722" , ENumber "1" ]) , EIdentifier "B" , EUnderover False (ESymbol Accent "\8594") (EIdentifier "T") (EGrouped [ EIdentifier "n" , ESymbol Bin "\177" , EIdentifier "i" , ESymbol Bin "\8722" , ENumber "1" ]) , EIdentifier "C" ] ] , [] ] , [ [ EFraction NormalFrac (ENumber "1") (EGrouped [ ESqrt (ENumber "2") , ESymbol Bin "+" , EFraction NormalFrac (ENumber "1") (EGrouped [ ESqrt (ENumber "3") , ESymbol Bin "+" , EFraction NormalFrac (ENumber "1") (EGrouped [ ESqrt (ENumber "4") , ESymbol Bin "+" , EFraction NormalFrac (ENumber "1") (EGrouped [ ESqrt (ENumber "5") , ESymbol Bin "+" , EFraction NormalFrac (ENumber "1") (EGrouped [ ESqrt (ENumber "6") , ESymbol Bin "+" , EIdentifier "\8230" ]) ]) ]) ]) ]) ] , [] ] , [ [ EFraction NormalFrac (ENumber "1") (EGrouped [ ESqrt (ENumber "2") , ESymbol Bin "+" , EFraction NormalFrac (ENumber "1") (EGrouped [ ESqrt (ENumber "3") , ESymbol Bin "+" , EFraction NormalFrac (ENumber "1") (EGrouped [ ESqrt (ENumber "4") , ESymbol Bin "+" , EFraction NormalFrac (ENumber "1") (EGrouped [ ESqrt (ENumber "5") , ESymbol Bin "+" , EFraction NormalFrac (ENumber "1") (EGrouped [ ESqrt (ENumber "6") , ESymbol Bin "+" , EIdentifier "\8230" ]) ]) ]) ]) ]) ] , [] ] , [ [ EDelimited "(" "\8971" [ Right (EFraction NormalFrac (EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EIdentifier "\952" ]) (EIdentifier "M")) ] ] , [] ] , [ [ EDelimited "(" "\8971" [ Right (EFraction NormalFrac (EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EIdentifier "\952" ]) (EIdentifier "M")) ] ] , [] ] , [ [ EDelimited "(" "\8971" [ Right (EFraction NormalFrac (EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EIdentifier "\952" ]) (EIdentifier "M")) ] ] , [] ] , [ [ EDelimited "(" "\8971" [ Right (EFraction NormalFrac (EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EIdentifier "\952" ]) (EIdentifier "M")) ] ] , [] ] , [ [ EDelimited "(" "\8971" [ Right (EFraction NormalFrac (EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EIdentifier "\952" ]) (EIdentifier "M")) ] ] , [] ] , [ [ EDelimited "(" "\8971" [ Right (EFraction NormalFrac (EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EIdentifier "\952" ]) (EIdentifier "M")) ] ] , [] ] , [ [ EDelimited "(" "\8971" [ Right (EFraction NormalFrac (EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EIdentifier "\952" ]) (EIdentifier "M")) ] ] , [] ] , [ [ EDelimited "(" "\8971" [ Right (EFraction NormalFrac (EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EIdentifier "\952" ]) (EIdentifier "M")) ] ] , [] ] , [ [ EDelimited "(" "\8971" [ Right (EFraction NormalFrac (EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EIdentifier "\952" ]) (EIdentifier "M")) ] ] , [] ] , [ [ EFraction NormalFrac (EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EIdentifier "\952" ]) (EIdentifier "M") ] , [] ] , [ [ EFraction NormalFrac (EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EIdentifier "\952" ]) (EIdentifier "M") ] , [] ] , [ [ EFraction NormalFrac (EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EIdentifier "\952" ]) (EIdentifier "M") ] , [] ] , [ [ EFraction NormalFrac (EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EIdentifier "\952" ]) (EIdentifier "M") ] , [] ] , [ [ EFraction NormalFrac (EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EIdentifier "\952" ]) (EIdentifier "M") ] , [] ] , [ [ EFraction NormalFrac (EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EIdentifier "\952" ]) (EIdentifier "M") ] , [] ] , [ [ EFraction NormalFrac (EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EIdentifier "\952" ]) (EIdentifier "M") ] , [] ] , [ [ EFraction NormalFrac (EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EIdentifier "\952" ]) (EIdentifier "M") ] , [] ] , [ [ EFraction NormalFrac (EGrouped [ EMathOperator "sin" , ESymbol Ord "\8289" , EIdentifier "\952" ]) (EIdentifier "M") ] , [] ] ] ] >>> omml <?xml version='1.0' ?> <m:oMathPara> <m:oMathParaPr> <m:jc m:val="center" /> </m:oMathParaPr> <m:oMath> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∑</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:sSup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>′</m:t> </m:r> <m:r> <m:t>3</m:t> </m:r> </m:sup> </m:sSup> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:sSup> <m:e> <m:r> <m:t>f</m:t> </m:r> </m:e> <m:sup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>′</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>cos</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>θ</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>f</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>z</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:nary> <m:naryPr> <m:chr m:val="∑" /> <m:limLoc m:val="undOvr" /> <m:subHide m:val="0" /> <m:supHide m:val="0" /> </m:naryPr> <m:sub> <m:r> <m:t>n</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>0</m:t> </m:r> </m:sub> <m:sup> <m:r> <m:t>∞</m:t> </m:r> </m:sup> <m:e> <m:sSub> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>n</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>z</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>n</m:t> </m:r> </m:sup> </m:sSup> </m:e> </m:nary> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>, </m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="|" /> <m:endChr m:val="|" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>z</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t><</m:t> </m:r> <m:r> <m:t>R</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>R</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>≠</m:t> </m:r> <m:r> <m:t>0</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="∫" /> <m:endChr m:val="" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:sSub> <m:e> <m:r> <m:t>​</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>C</m:t> </m:r> </m:sub> </m:sSub> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:nary> <m:naryPr> <m:chr m:val="∑" /> <m:limLoc m:val="undOvr" /> <m:subHide m:val="0" /> <m:supHide m:val="0" /> </m:naryPr> <m:sub> <m:r> <m:t>n</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>0</m:t> </m:r> </m:sub> <m:sup> <m:r> <m:t>∞</m:t> </m:r> </m:sup> <m:e> <m:sSub> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>n</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>z</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>n</m:t> </m:r> </m:sup> </m:sSup> </m:e> </m:nary> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> <m:r> <m:t>z</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:nary> <m:naryPr> <m:chr m:val="∑" /> <m:limLoc m:val="undOvr" /> <m:subHide m:val="0" /> <m:supHide m:val="0" /> </m:naryPr> <m:sub> <m:r> <m:t>n</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>0</m:t> </m:r> </m:sub> <m:sup> <m:r> <m:t>∞</m:t> </m:r> </m:sup> <m:e> <m:sSub> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>n</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="∫" /> <m:endChr m:val="" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:sSub> <m:e> <m:r> <m:t>​</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>C</m:t> </m:r> </m:sub> </m:sSub> <m:sSup> <m:e> <m:r> <m:t>z</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>n</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> <m:r> <m:t>z</m:t> </m:r> </m:e> </m:d> </m:e> </m:nary> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:limLow> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>lim</m:t> </m:r> </m:e> <m:lim> <m:r> <m:t>n</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>→</m:t> </m:r> <m:r> <m:t>∞</m:t> </m:r> </m:lim> </m:limLow> <m:d> <m:dPr> <m:begChr m:val="|" /> <m:endChr m:val="|" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:d> <m:dPr> <m:begChr m:val="∫" /> <m:endChr m:val="" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:sSub> <m:e> <m:r> <m:t>​</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>C</m:t> </m:r> </m:sub> </m:sSub> <m:d> <m:dPr> <m:begChr m:val="[" /> <m:endChr m:val="]" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>f</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>z</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:nary> <m:naryPr> <m:chr m:val="∑" /> <m:limLoc m:val="undOvr" /> <m:subHide m:val="0" /> <m:supHide m:val="0" /> </m:naryPr> <m:sub> <m:r> <m:t>k</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>0</m:t> </m:r> </m:sub> <m:sup> <m:r> <m:t>n</m:t> </m:r> </m:sup> <m:e> <m:sSub> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>k</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>z</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>k</m:t> </m:r> </m:sup> </m:sSup> </m:e> </m:nary> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> <m:r> <m:t>z</m:t> </m:r> </m:e> </m:d> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>0</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="" /> <m:endChr m:val="" /> <m:sepChr m:val="⇒" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>n</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>≥</m:t> </m:r> <m:r> <m:t>N</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>ε</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> </m:e> <m:e> <m:d> <m:dPr> <m:begChr m:val="|" /> <m:endChr m:val="|" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>f</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>z</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:nary> <m:naryPr> <m:chr m:val="∑" /> <m:limLoc m:val="undOvr" /> <m:subHide m:val="0" /> <m:supHide m:val="0" /> </m:naryPr> <m:sub> <m:r> <m:t>k</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>0</m:t> </m:r> </m:sub> <m:sup> <m:r> <m:t>n</m:t> </m:r> </m:sup> <m:e> <m:sSub> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>k</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>z</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>k</m:t> </m:r> </m:sup> </m:sSup> </m:e> </m:nary> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t><</m:t> </m:r> <m:r> <m:t>ε</m:t> </m:r> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> Bq</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> Ci</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> amol</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> Emol</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> fmol</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> Gmol</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> kmol</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> Mmol</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> μmol</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> mmol</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> mol</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> nmol</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> Pmol</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> pmol</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> Tmol</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> acre</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> hectare</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> ft</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> in</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> m</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> A</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> kA</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> μA</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> mA</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> nA</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> F</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> μF</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> mF</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> nF</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> pF</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> C</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>1.0</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> m/s/s</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>0.1</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> m</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>/</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>s</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> kS</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> μS</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> mS</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> S</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> kV</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> MV</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> μV</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> mV</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> nV</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> pV</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> V</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> GΩ</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> kΩ</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> MΩ</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> mΩ</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> Ω</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> Btu</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> cal</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> eV</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> erg</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> GeV</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> GJ</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> J</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> kcal</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> kJ</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> MeV</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> MJ</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> μJ</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> mJ</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> nJ</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> dyn</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> kN</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> MN</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> μN</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> mN</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> N</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> ozf</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> lbf</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> EHz</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> GHz</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> Hz</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> kHz</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> MHz</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> PHz</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> THz</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> fc</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> lx</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> phot</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> Å</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> am</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> cm</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> dm</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> fm</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> ft</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> in</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> km</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> m</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> μm</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> mi</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> mm</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> nm</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> pm</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> sb</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> lm</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> cd</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> Mx</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> μWb</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> mWb</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> nWb</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> Wb</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> G</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> μT</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> mT</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> nT</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> pT</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> T</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> H</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> μH</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> mH</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> u</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> cg</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> dg</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> g</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> kg</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> μg</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> mg</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> lb</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> slug</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> °</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> μrad</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> mrad</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>​</m:t> </m:r> </m:e> <m:sup> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>′</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> rad</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>​</m:t> </m:r> </m:e> <m:sup> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>′′</m:t> </m:r> </m:sup> </m:sSup> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> GW</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> hp</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> kW</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> MW</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> μW</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> mW</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> nW</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> W</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> atm</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> bar</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> kbar</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> kPa</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> MPa</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> μPa</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> mbar</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> mmHg</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> Pa</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> torr</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> sr</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> °C</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> °F</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> K</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> as</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> d</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> fs</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> h</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> μs</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> ms</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> min</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> ns</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> ps</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> s</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> y</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>10</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> ft</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>3</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> in</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>3</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> m</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>3</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> gal</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> l</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> ml</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> pint</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> qt</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>y</m:t> </m:r> </m:e> </m:d> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∫</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>e</m:t> </m:r> </m:e> <m:sup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>y</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>C</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>e</m:t> </m:r> </m:e> <m:sup> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>y</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> </m:sup> </m:sSup> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:sSub> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅅ</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>x</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="[" /> <m:endChr m:val="]" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="{" /> <m:endChr m:val="}" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="〈" /> <m:endChr m:val="〉" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="⌊" /> <m:endChr m:val="⌋" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="⌈" /> <m:endChr m:val="⌉" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="" /> <m:endChr m:val="" /> <m:sepChr m:val="↑" /> <m:grow /> </m:dPr> <m:e /> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:e> <m:e /> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="" /> <m:endChr m:val="" /> <m:sepChr m:val="↓" /> <m:grow /> </m:dPr> <m:e /> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:e> <m:e /> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="" /> <m:endChr m:val="" /> <m:sepChr m:val="↕" /> <m:grow /> </m:dPr> <m:e /> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:e> <m:e /> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>2</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>5</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>3</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>7</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⋅</m:t> </m:r> <m:r> <m:t>7</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>3</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⋅</m:t> </m:r> <m:r> <m:t>5</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>35</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>29</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>35</m:t> </m:r> </m:den> </m:f> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="|" /> <m:endChr m:val="|" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="{" /> <m:endChr m:val="" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>if</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>≥</m:t> </m:r> <m:r> <m:t>0</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>if</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t><</m:t> </m:r> <m:r> <m:t>0</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:sSup> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>n</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:limLow> <m:e> <m:limLow> <m:e> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⋅</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⋅</m:t> </m:r> <m:r> <m:t>⋯</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⋅</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:lim> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>︸</m:t> </m:r> </m:lim> </m:limLow> </m:e> <m:lim> <m:r> <m:t>n</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> factors</m:t> </m:r> </m:lim> </m:limLow> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:sSup> <m:e> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>a</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>b</m:t> </m:r> </m:den> </m:f> </m:e> </m:d> </m:e> <m:sup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>n</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:sSup> <m:e> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>b</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>a</m:t> </m:r> </m:den> </m:f> </m:e> </m:d> </m:e> <m:sup> <m:r> <m:t>n</m:t> </m:r> </m:sup> </m:sSup> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:rad> <m:deg> <m:r> <m:t>n</m:t> </m:r> </m:deg> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> </m:rad> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> means </m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>b</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>n</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>.</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:rad> <m:deg> <m:r> <m:t>4</m:t> </m:r> </m:deg> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>16</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>81</m:t> </m:r> </m:den> </m:f> </m:e> </m:rad> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:rad> <m:deg> <m:r> <m:t>4</m:t> </m:r> </m:deg> <m:e> <m:r> <m:t>16</m:t> </m:r> </m:e> </m:rad> </m:num> <m:den> <m:rad> <m:deg> <m:r> <m:t>4</m:t> </m:r> </m:deg> <m:e> <m:r> <m:t>81</m:t> </m:r> </m:e> </m:rad> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>2</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>3</m:t> </m:r> </m:den> </m:f> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="{" /> <m:endChr m:val="}" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∣</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>≠</m:t> </m:r> <m:r> <m:t>0</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>≠</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:sSub> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>n</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>n</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>n</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>n</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>⋯</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>0</m:t> </m:r> </m:sub> </m:sSub> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:sSup> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>3</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>b</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>3</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:sSup> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>b</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:sSup> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>H</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="{" /> <m:endChr m:val="}" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>b</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>c</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>d</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∈</m:t> </m:r> <m:r> <m:t>G</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∣</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>d</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>c</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>|</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>|</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>||</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>||</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>{</m:t> </m:r> <m:r> <m:t>z</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>}</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>[</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>c</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>]</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>[</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>]</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="[" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>10</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>3</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>7</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>3</m:t> </m:r> </m:den> </m:f> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∪</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val="]" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>7</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>3</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>4</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>3</m:t> </m:r> </m:den> </m:f> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>A</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∂</m:t> </m:r> <m:r> <m:t>u</m:t> </m:r> </m:num> <m:den> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∂</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>B</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∂</m:t> </m:r> <m:r> <m:t>u</m:t> </m:r> </m:num> <m:den> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∂</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>C</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>u</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>E</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:nary> <m:naryPr> <m:chr m:val="∑" /> <m:limLoc m:val="undOvr" /> <m:subHide m:val="0" /> <m:supHide m:val="0" /> </m:naryPr> <m:sub> <m:r> <m:t>​</m:t> </m:r> </m:sub> <m:sup> <m:r> <m:t>​</m:t> </m:r> </m:sup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> </m:nary> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:nary> <m:naryPr> <m:chr m:val="∑" /> <m:limLoc m:val="undOvr" /> <m:subHide m:val="0" /> <m:supHide m:val="0" /> </m:naryPr> <m:sub> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t><</m:t> </m:r> <m:r> <m:t>i</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t><</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t><</m:t> </m:r> <m:r> <m:t>j</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t><</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> </m:e> </m:mr> </m:m> </m:sub> <m:sup> <m:r> <m:t>​</m:t> </m:r> </m:sup> <m:e> <m:sSup> <m:e> <m:r> <m:t>2</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>i</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>j</m:t> </m:r> </m:sup> </m:sSup> </m:e> </m:nary> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:sSubSup> <m:e> <m:r> <m:t>Γ</m:t> </m:r> </m:e> <m:sub> <m:sSubSup> <m:e> <m:r> <m:t>1</m:t> </m:r> </m:e> <m:sub> <m:sSup> <m:e> <m:r> <m:t> </m:t> </m:r> </m:e> <m:sup> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:sSubSup> <m:e> <m:r> <m:t>2</m:t> </m:r> </m:e> <m:sub> <m:sSup> <m:e> <m:r> <m:t> </m:t> </m:r> </m:e> <m:sup> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>3</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>4</m:t> </m:r> </m:e> </m:mr> </m:m> </m:sup> </m:sSup> </m:sub> <m:sup> <m:r> <m:t>​</m:t> </m:r> </m:sup> </m:sSubSup> </m:e> </m:mr> <m:mr> <m:e> <m:sSubSup> <m:e> <m:r> <m:t>5</m:t> </m:r> </m:e> <m:sub> <m:sSup> <m:e> <m:r> <m:t> </m:t> </m:r> </m:e> <m:sup> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>6</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>7</m:t> </m:r> </m:e> </m:mr> </m:m> </m:sup> </m:sSup> </m:sub> <m:sup> <m:r> <m:t>​</m:t> </m:r> </m:sup> </m:sSubSup> </m:e> </m:mr> </m:m> </m:sup> </m:sSup> </m:sub> <m:sup> <m:r> <m:t>​</m:t> </m:r> </m:sup> </m:sSubSup> </m:sub> <m:sup> <m:sSup> <m:e> <m:r> <m:t>1</m:t> </m:r> </m:e> <m:sup> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:sSup> <m:e> <m:r> <m:t>5</m:t> </m:r> </m:e> <m:sup> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>7</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>6</m:t> </m:r> </m:e> </m:mr> </m:m> </m:sup> </m:sSup> </m:e> </m:mr> <m:mr> <m:e> <m:sSup> <m:e> <m:r> <m:t>2</m:t> </m:r> </m:e> <m:sup> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>4</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>3</m:t> </m:r> </m:e> </m:mr> </m:m> </m:sup> </m:sSup> </m:e> </m:mr> </m:m> </m:sup> </m:sSup> </m:sup> </m:sSubSup> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>e</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>x</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>e</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>x</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> </m:num> <m:den> <m:sSup> <m:e> <m:r> <m:t>e</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>x</m:t> </m:r> </m:sup> </m:sSup> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>2</m:t> </m:r> </m:num> <m:den> <m:sSup> <m:e> <m:r> <m:t>e</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>x</m:t> </m:r> </m:sup> </m:sSup> </m:den> </m:f> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="right" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:sSub> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅅ</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>0</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>0</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:sSup> <m:e> <m:r> <m:t>y</m:t> </m:r> </m:e> <m:sup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>′</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>0</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>0</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>3</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>e</m:t> </m:r> </m:e> <m:sup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:rad> <m:deg> <m:r> <m:t>3</m:t> </m:r> </m:deg> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> </m:e> </m:rad> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>2</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>3</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>e</m:t> </m:r> </m:e> <m:sup> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:rad> <m:deg> <m:r> <m:t>3</m:t> </m:r> </m:deg> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> </m:e> </m:rad> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>cos</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:rad> <m:radPr> <m:degHide m:val="1" /> </m:radPr> <m:deg /> <m:e> <m:r> <m:t>3</m:t> </m:r> </m:e> </m:rad> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:rad> <m:deg> <m:r> <m:t>3</m:t> </m:r> </m:deg> <m:e> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:d> </m:e> </m:rad> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>t</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>tan</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>t</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>4</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>π</m:t> </m:r> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>ℱ</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:sSup> <m:e> <m:r> <m:t>e</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>π</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>i</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:sup> </m:sSup> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>π</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>Dirac</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>π</m:t> </m:r> </m:e> </m:d> </m:e> </m:mr> </m:m> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>s</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>π</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>Dirac</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>s</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>π</m:t> </m:r> </m:e> </m:d> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>π</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>e</m:t> </m:r> </m:e> <m:sup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>i</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>π</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>s</m:t> </m:r> </m:sup> </m:sSup> </m:e> </m:mr> </m:m> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>3</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>123</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>t</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>y</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>z</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>0</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>1.0000</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>1.0000</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>1.0000</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>.1</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>1.1158</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>1.0938</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>.8842</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>.2</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>1.2668</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>1.1695</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>.7332</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>.3</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>1.4582</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>1.2173</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>.5418</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>.4</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>1.6953</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>1.2253</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>.3047</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>.5</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>1.9830</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>1.1791</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>.0170</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>.6</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>2.3256</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>1.0619</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>.3256</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>.7</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>2.7265</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>.8542</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>.7265</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>.8</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>3.1873</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>.5344</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1.1873</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>.9</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>3.7077</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>.0777</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1.7077</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>1.0</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>4.2842</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>.5424</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>2.2842</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:sSub> <m:e> <m:r> <m:t>K</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>v</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>z</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>BesselK</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>v</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>z</m:t> </m:r> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:sSup> <m:e> <m:r> <m:t>z</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:sSup> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:t>w</m:t> </m:r> </m:num> <m:den> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>z</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>z</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> <m:r> <m:t>w</m:t> </m:r> </m:num> <m:den> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> <m:r> <m:t>z</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:sSup> <m:e> <m:r> <m:t>z</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>v</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>w</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>0</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:sSup> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∂</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:t>u</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> </m:num> <m:den> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∂</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:sSup> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∂</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:t>u</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> </m:num> <m:den> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∂</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>y</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>0</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>t</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>F</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>t</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>F</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>2</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>t</m:t> </m:r> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>1</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>2</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>3</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>4</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>5</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>6</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>5</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>3</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>9</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>7</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>c</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>d</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>e</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>f</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>3</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>5</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>4</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>5</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>98</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>z</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>3</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:sSub> <m:e> <m:r> <m:t>A</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>N</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>0</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>λ</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>;</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>Ω</m:t> </m:r> </m:e> <m:sup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>′</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>φ</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>λ</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>;</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>Ω</m:t> </m:r> </m:e> <m:sup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>′</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:sSub> <m:e> <m:r> <m:t>A</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>2</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>φ</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>λ</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>;</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>Ω</m:t> </m:r> </m:e> <m:sup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>′</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>φ</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>λ</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>;</m:t> </m:r> <m:r> <m:t>Ω</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:sSub> <m:e> <m:r> <m:t>A</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>3</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> <m:scr m:val="script" /> </m:rPr> <m:t>N</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>λ</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>;</m:t> </m:r> <m:r> <m:t>ω</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>.</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>θ</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>cos</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>γ</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="{" /> <m:endChr m:val="" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="left" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="left" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>if </m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t><</m:t> </m:r> <m:r> <m:t>0</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>if </m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>≥</m:t> </m:r> <m:r> <m:t>0</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>L</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>M</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>R</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>M</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>L</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>M</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>R</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>M</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>M</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>A</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>T</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>H</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>M</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>A</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>T</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>H</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>⋮</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∇×</m:t> </m:r> <m:r> <m:t>F</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>0</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∇·</m:t> </m:r> <m:r> <m:t>F</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∇·∇</m:t> </m:r> <m:r> <m:t>F</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∇</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:t>F</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>7</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>A</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∇×</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>z</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>z</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="[" /> <m:endChr m:val="]" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>z</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∇×</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>z</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>≠</m:t> </m:r> <m:r> <m:t>0</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>α</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>102</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="b" /> </m:rPr> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="b" /> </m:rPr> <m:t>b</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="b" /> </m:rPr> <m:t>c</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>f</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="b" /> </m:rPr> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>123</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="i" /> </m:rPr> <m:t>T</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="i" /> </m:rPr> <m:t>h</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="i" /> </m:rPr> <m:t>e</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="i" /> </m:rPr> <m:t>q</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="i" /> </m:rPr> <m:t>u</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="i" /> </m:rPr> <m:t>i</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="i" /> </m:rPr> <m:t>c</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="i" /> </m:rPr> <m:t>k</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>r</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>o</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>w</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>n</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>f</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>o</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>j</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>u</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>m</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>p</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>s</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="b" /> </m:rPr> <m:t>o</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="b" /> </m:rPr> <m:t>v</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="b" /> </m:rPr> <m:t>e</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="b" /> </m:rPr> <m:t>r</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>t</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>h</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>e</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> <m:scr m:val="sans-serif" /> </m:rPr> <m:t>l</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> <m:scr m:val="sans-serif" /> </m:rPr> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> <m:scr m:val="sans-serif" /> </m:rPr> <m:t>z</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> <m:scr m:val="sans-serif" /> </m:rPr> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> <m:scr m:val="monospace" /> </m:rPr> <m:t>d</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> <m:scr m:val="monospace" /> </m:rPr> <m:t>o</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> <m:scr m:val="monospace" /> </m:rPr> <m:t>g</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>.</m:t> </m:r> <m:r> <m:t>T</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>h</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>e</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>e</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>n</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>d</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>.</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∂</m:t> </m:r> <m:r> <m:t>f</m:t> </m:r> </m:num> <m:den> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∂</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:sSub> <m:e> <m:r> <m:t>c</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>c</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>2</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>…</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>c</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>n</m:t> </m:r> </m:sub> </m:sSub> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∂</m:t> </m:r> <m:r> <m:t>f</m:t> </m:r> </m:num> <m:den> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∂</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>2</m:t> </m:r> </m:sub> </m:sSub> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:sSub> <m:e> <m:r> <m:t>c</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>c</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>2</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>…</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>c</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>n</m:t> </m:r> </m:sub> </m:sSub> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>…</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∂</m:t> </m:r> <m:r> <m:t>f</m:t> </m:r> </m:num> <m:den> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∂</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>n</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:sSub> <m:e> <m:r> <m:t>c</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>c</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>2</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>…</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>c</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>n</m:t> </m:r> </m:sub> </m:sSub> </m:e> </m:d> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∇</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>c</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>u</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>v</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>v</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>w</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>u</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>v</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>c</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>v</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>c</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>u</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>v</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>w</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>v</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:sSub> <m:e> <m:r> <m:t>D</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>u</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>f</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>c</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∇</m:t> </m:r> <m:r> <m:t>f</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>c</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⋅</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="b" /> </m:rPr> <m:t>u</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∂</m:t> </m:r> <m:r> <m:t>f</m:t> </m:r> </m:num> <m:den> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∂</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>c</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>u</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∂</m:t> </m:r> <m:r> <m:t>f</m:t> </m:r> </m:num> <m:den> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∂</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>c</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>u</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>2</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∂</m:t> </m:r> <m:r> <m:t>f</m:t> </m:r> </m:num> <m:den> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∂</m:t> </m:r> <m:r> <m:t>z</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>c</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>u</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>3</m:t> </m:r> </m:sub> </m:sSub> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>θ</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∈</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="{" /> <m:endChr m:val="}" /> <m:sepChr m:val="|" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>π</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>X</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>3</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>π</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>arccos</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>7</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:rad> <m:radPr> <m:degHide m:val="1" /> </m:radPr> <m:deg /> <m:e> <m:r> <m:t>14</m:t> </m:r> </m:e> </m:rad> </m:e> </m:d> </m:e> <m:e> <m:sSub> <m:e> <m:r> <m:t>X</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>3</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∈</m:t> </m:r> <m:r> <m:t>ℤ</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>θ</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∈</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="{" /> <m:endChr m:val="}" /> <m:sepChr m:val="|" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>X</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>4</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>π</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>π</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>arccos</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>7</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:rad> <m:radPr> <m:degHide m:val="1" /> </m:radPr> <m:deg /> <m:e> <m:r> <m:t>14</m:t> </m:r> </m:e> </m:rad> </m:e> </m:d> </m:e> <m:e> <m:sSub> <m:e> <m:r> <m:t>X</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>4</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∈</m:t> </m:r> <m:r> <m:t>ℤ</m:t> </m:r> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>P</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>A</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSup> <m:e> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:sSup> <m:e> <m:r> <m:t>A</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>T</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>A</m:t> </m:r> </m:e> </m:d> </m:e> <m:sup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>A</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>T</m:t> </m:r> </m:sup> </m:sSup> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>det</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>y</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>b</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>d</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>d</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>d</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>0</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>A</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>θ</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>A</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>θ</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="[" /> <m:endChr m:val="]" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>cos</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>θ</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>θ</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>θ</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>cos</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>θ</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="[" /> <m:endChr m:val="]" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>cos</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>θ</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>θ</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>θ</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>cos</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>θ</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>J</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>A</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="[" /> <m:endChr m:val="]" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:sSub> <m:e> <m:r> <m:t>J</m:t> </m:r> </m:e> <m:sub> <m:sSub> <m:e> <m:r> <m:t>n</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:sSub> <m:e> <m:r> <m:t>λ</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> </m:e> </m:d> </m:e> <m:e> <m:r> <m:t>0</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>⋯</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>0</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>0</m:t> </m:r> </m:e> <m:e> <m:sSub> <m:e> <m:r> <m:t>J</m:t> </m:r> </m:e> <m:sub> <m:sSub> <m:e> <m:r> <m:t>n</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>2</m:t> </m:r> </m:sub> </m:sSub> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:sSub> <m:e> <m:r> <m:t>λ</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>2</m:t> </m:r> </m:sub> </m:sSub> </m:e> </m:d> </m:e> <m:e> <m:r> <m:t>⋯</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>0</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>⋮</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>⋮</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>⋱</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>⋮</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>0</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>0</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>⋯</m:t> </m:r> </m:e> <m:e> <m:sSub> <m:e> <m:r> <m:t>J</m:t> </m:r> </m:e> <m:sub> <m:sSub> <m:e> <m:r> <m:t>n</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>k</m:t> </m:r> </m:sub> </m:sSub> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:sSub> <m:e> <m:r> <m:t>λ</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>k</m:t> </m:r> </m:sub> </m:sSub> </m:e> </m:d> </m:e> </m:mr> </m:m> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>det</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>4</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>X</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>0</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>0</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>4</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>X</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>0</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>0</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>0</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>4</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>X</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:sSup> <m:e> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>X</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>4</m:t> </m:r> </m:e> </m:d> </m:e> <m:sup> <m:r> <m:t>3</m:t> </m:r> </m:sup> </m:sSup> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="" /> <m:endChr m:val="" /> <m:sepChr m:val="↔" /> <m:grow /> </m:dPr> <m:e> <m:d> <m:dPr> <m:begChr m:val="{" /> <m:endChr m:val="}" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>6</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:rad> <m:radPr> <m:degHide m:val="1" /> </m:radPr> <m:deg /> <m:e> <m:r> <m:t>33</m:t> </m:r> </m:e> </m:rad> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> </m:d> </m:e> </m:d> </m:e> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>5</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:rad> <m:radPr> <m:degHide m:val="1" /> </m:radPr> <m:deg /> <m:e> <m:r> <m:t>33</m:t> </m:r> </m:e> </m:rad> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="" /> <m:endChr m:val="" /> <m:sepChr m:val="∥" /> <m:grow /> </m:dPr> <m:e /> <m:e> <m:r> <m:t>A</m:t> </m:r> </m:e> <m:e /> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:limLow> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>max</m:t> </m:r> </m:e> <m:lim> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>≠</m:t> </m:r> <m:r> <m:t>0</m:t> </m:r> </m:lim> </m:limLow> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:d> <m:dPr> <m:begChr m:val="" /> <m:endChr m:val="" /> <m:sepChr m:val="∥" /> <m:grow /> </m:dPr> <m:e /> <m:e> <m:r> <m:t>A</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:e /> </m:d> </m:num> <m:den> <m:d> <m:dPr> <m:begChr m:val="" /> <m:endChr m:val="" /> <m:sepChr m:val="∥" /> <m:grow /> </m:dPr> <m:e /> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:e /> </m:d> </m:den> </m:f> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:sSub> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> </m:e> <m:e> <m:sSub> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> </m:sub> </m:sSub> </m:e> </m:mr> <m:mr> <m:e> <m:sSub> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> </m:e> <m:e> <m:sSub> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> </m:sub> </m:sSub> </m:e> </m:mr> </m:m> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:sSub> <m:e> <m:r> <m:t>b</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> </m:e> <m:e> <m:sSub> <m:e> <m:r> <m:t>b</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> </m:sub> </m:sSub> </m:e> </m:mr> <m:mr> <m:e> <m:sSub> <m:e> <m:r> <m:t>b</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> </m:e> <m:e> <m:sSub> <m:e> <m:r> <m:t>b</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> </m:sub> </m:sSub> </m:e> </m:mr> </m:m> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:sSub> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>b</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> </m:e> <m:e> <m:sSub> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>b</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> </m:sub> </m:sSub> </m:e> </m:mr> <m:mr> <m:e> <m:sSub> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>b</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> </m:e> <m:e> <m:sSub> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>b</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> </m:sub> </m:sSub> </m:e> </m:mr> </m:m> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>f</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:d> <m:dPr> <m:begChr m:val="[" /> <m:endChr m:val="]" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>1</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>2</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>4</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>3</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> </m:d> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:sSup> <m:e> <m:d> <m:dPr> <m:begChr m:val="[" /> <m:endChr m:val="]" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>1</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>2</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>4</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>3</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> </m:d> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>5</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="[" /> <m:endChr m:val="]" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>1</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>2</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>4</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>3</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="[" /> <m:endChr m:val="]" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>2</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>4</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>0</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:limLow> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>lim</m:t> </m:r> </m:e> <m:lim> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:lim> </m:limLow> <m:nary> <m:naryPr> <m:chr m:val="∑" /> <m:limLoc m:val="undOvr" /> <m:subHide m:val="0" /> <m:supHide m:val="0" /> </m:naryPr> <m:sub> <m:r> <m:t>1</m:t> </m:r> </m:sub> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> </m:nary> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:nary> <m:naryPr> <m:chr m:val="∫" /> <m:limLoc m:val="subSup" /> <m:subHide m:val="0" /> <m:supHide m:val="0" /> </m:naryPr> <m:sub> <m:r> <m:t>a</m:t> </m:r> </m:sub> <m:sup> <m:r> <m:t>b</m:t> </m:r> </m:sup> <m:e> <m:r> <m:t>f</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:e> </m:nary> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:limLow> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>lim</m:t> </m:r> </m:e> <m:lim> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∥</m:t> </m:r> <m:r> <m:t>P</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∥</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>→</m:t> </m:r> <m:r> <m:t>0</m:t> </m:r> </m:lim> </m:limLow> <m:nary> <m:naryPr> <m:chr m:val="∑" /> <m:limLoc m:val="undOvr" /> <m:subHide m:val="0" /> <m:supHide m:val="0" /> </m:naryPr> <m:sub> <m:r> <m:t>i</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:sub> <m:sup> <m:r> <m:t>n</m:t> </m:r> </m:sup> <m:e> <m:r> <m:t>f</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:sSub> <m:e> <m:acc> <m:accPr> <m:chr m:val="¯" /> </m:accPr> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> </m:acc> </m:e> <m:sub> <m:r> <m:t>i</m:t> </m:r> </m:sub> </m:sSub> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>Δ</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>i</m:t> </m:r> </m:sub> </m:sSub> </m:e> </m:nary> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:nary> <m:naryPr> <m:chr m:val="∫" /> <m:limLoc m:val="subSup" /> <m:subHide m:val="0" /> <m:supHide m:val="0" /> </m:naryPr> <m:sub> <m:r> <m:t>a</m:t> </m:r> </m:sub> <m:sup> <m:r> <m:t>b</m:t> </m:r> </m:sup> <m:e> <m:r> <m:t>f</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:e> </m:nary> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:limLow> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>lim</m:t> </m:r> </m:e> <m:lim> <m:r> <m:t>n</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>→</m:t> </m:r> <m:r> <m:t>∞</m:t> </m:r> </m:lim> </m:limLow> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>b</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>n</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:nary> <m:naryPr> <m:chr m:val="∑" /> <m:limLoc m:val="undOvr" /> <m:subHide m:val="0" /> <m:supHide m:val="0" /> </m:naryPr> <m:sub> <m:r> <m:t>i</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:sub> <m:sup> <m:r> <m:t>n</m:t> </m:r> </m:sup> <m:e> <m:r> <m:t>f</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>i</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>b</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>n</m:t> </m:r> </m:den> </m:f> </m:e> </m:d> </m:e> </m:nary> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:nary> <m:naryPr> <m:chr m:val="∫" /> <m:limLoc m:val="subSup" /> <m:subHide m:val="0" /> <m:supHide m:val="0" /> </m:naryPr> <m:sub> <m:r> <m:t>0</m:t> </m:r> </m:sub> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> <m:e> <m:sSup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>5</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:rad> <m:radPr> <m:degHide m:val="1" /> </m:radPr> <m:deg /> <m:e> <m:sSup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>3</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:rad> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:e> </m:nary> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:nary> <m:naryPr> <m:chr m:val="∫" /> <m:limLoc m:val="subSup" /> <m:subHide m:val="0" /> <m:supHide m:val="0" /> </m:naryPr> <m:sub> <m:r> <m:t>1</m:t> </m:r> </m:sub> <m:sup> <m:r> <m:t>3</m:t> </m:r> </m:sup> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>2</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>3</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>u</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:rad> <m:radPr> <m:degHide m:val="1" /> </m:radPr> <m:deg /> <m:e> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:sSup> <m:e> <m:r> <m:t>u</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> </m:e> </m:d> </m:e> </m:rad> </m:num> <m:den> <m:sSup> <m:e> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:sSup> <m:e> <m:r> <m:t>u</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:d> </m:e> <m:sup> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>2</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>3</m:t> </m:r> </m:den> </m:f> </m:sup> </m:sSup> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:sSup> <m:e> <m:r> <m:t>u</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSup> <m:e> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:sSup> <m:e> <m:r> <m:t>u</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:d> </m:e> <m:sup> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>2</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>3</m:t> </m:r> </m:den> </m:f> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:sSup> <m:e> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:sSup> <m:e> <m:r> <m:t>u</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:d> </m:e> <m:sup> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>2</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>3</m:t> </m:r> </m:den> </m:f> </m:sup> </m:sSup> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> <m:r> <m:t>u</m:t> </m:r> </m:e> </m:nary> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="∫" /> <m:endChr m:val="" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>f</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>g</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>g</m:t> </m:r> </m:e> <m:sup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>′</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="∫" /> <m:endChr m:val="" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>f</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>u</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> <m:r> <m:t>u</m:t> </m:r> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:nary> <m:naryPr> <m:chr m:val="∑" /> <m:limLoc m:val="undOvr" /> <m:subHide m:val="0" /> <m:supHide m:val="0" /> </m:naryPr> <m:sub> <m:r> <m:t>n</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:sub> <m:sup> <m:r> <m:t>100</m:t> </m:r> </m:sup> <m:e> <m:r> <m:t>n</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>n</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> </m:e> </m:nary> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:limLow> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>lim</m:t> </m:r> </m:e> <m:lim> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>→</m:t> </m:r> <m:r> <m:t>0</m:t> </m:r> </m:lim> </m:limLow> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>x</m:t> </m:r> </m:den> </m:f> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>..</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>h</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>i</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>j</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>j</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>g</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>i</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>j</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>f</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>g</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>i</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>△</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>:</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="" /> <m:endChr m:val="" /> <m:sepChr m:val="→" /> <m:grow /> </m:dPr> <m:e> <m:d> <m:dPr> <m:begChr m:val="[" /> <m:endChr m:val="]" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>0</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:d> </m:e> <m:e> <m:d> <m:dPr> <m:begChr m:val="[" /> <m:endChr m:val="]" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>0</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:d> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>0</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>▽</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>△</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>h</m:t> </m:r> </m:e> <m:sup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>h</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>h</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>y</m:t> </m:r> </m:e> </m:d> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>△</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>f</m:t> </m:r> </m:e> <m:sup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>max</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="{" /> <m:endChr m:val="}" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>f</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>f</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>y</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>0</m:t> </m:r> </m:e> </m:d> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>▽</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>η</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>η</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>△</m:t> </m:r> <m:r> <m:t>η</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>y</m:t> </m:r> </m:e> </m:d> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>△</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>0</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="{" /> <m:endChr m:val="" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∧</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>if</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∨</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>0</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>if</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∨</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t><</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:limLow> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>lim</m:t> </m:r> </m:e> <m:lim> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>→</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>1</m:t> </m:r> </m:e> <m:sup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> </m:sup> </m:sSup> </m:lim> </m:limLow> <m:sSub> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>log</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>a</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="[" /> <m:endChr m:val="]" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:sSup> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>x</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:sSup> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>y</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:d> </m:num> <m:den> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:den> </m:f> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:limLow> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>lim</m:t> </m:r> </m:e> <m:lim> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>→</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>1</m:t> </m:r> </m:e> <m:sup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> </m:sup> </m:sSup> </m:lim> </m:limLow> <m:sSub> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>log</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>a</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="[" /> <m:endChr m:val="]" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:sSup> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>x</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:sSup> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>y</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:d> </m:num> <m:den> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:den> </m:f> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>g</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>exp</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:sSup> <m:e> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:e> </m:d> </m:e> <m:sup> <m:r> <m:t>a</m:t> </m:r> </m:sup> </m:sSup> </m:num> <m:den> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:sSup> <m:e> <m:r> <m:t>2</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>a</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSup> <m:e> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:e> </m:d> </m:e> <m:sup> <m:r> <m:t>a</m:t> </m:r> </m:sup> </m:sSup> </m:den> </m:f> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>Aut</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="b" /> </m:rPr> <m:t>I</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="{" /> <m:endChr m:val="}" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>f</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>:</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="" /> <m:endChr m:val="" /> <m:sepChr m:val="→" /> <m:grow /> </m:dPr> <m:e> <m:d> <m:dPr> <m:begChr m:val="[" /> <m:endChr m:val="]" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>0</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:d> </m:e> <m:e> <m:d> <m:dPr> <m:begChr m:val="[" /> <m:endChr m:val="]" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>0</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:d> </m:e> </m:d> <m:r> <m:t> </m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="|" /> <m:endChr m:val="" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="left" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>f</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> is one-to-one and onto, and</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>≤</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> implies </m:t> </m:r> <m:r> <m:t>f</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>≤</m:t> </m:r> <m:r> <m:t>f</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>y</m:t> </m:r> </m:e> </m:d> </m:e> </m:mr> </m:m> </m:e> </m:d> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:sSup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>y</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>r</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> </m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>tan</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>θ</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>y</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>x</m:t> </m:r> </m:den> </m:f> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:rad> <m:radPr> <m:degHide m:val="1" /> </m:radPr> <m:deg /> <m:e> <m:r> <m:t>2</m:t> </m:r> </m:e> </m:rad> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:rad> <m:radPr> <m:degHide m:val="1" /> </m:radPr> <m:deg /> <m:e> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>t</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> </m:e> </m:rad> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="[" /> <m:endChr m:val="]" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>t</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>cos</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>t</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>cos</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>t</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>t</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>3</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>3</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>t</m:t> </m:r> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="{" /> <m:endChr m:val="}" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>t</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>0</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>s</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>0</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="{" /> <m:endChr m:val="}" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>t</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>π</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>s</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>π</m:t> </m:r> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>1</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>2</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>3</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>4</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>5</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>6</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>7</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>8</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>9</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>10</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>2</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>4</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>6</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>8</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>10</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>1</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>3</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>5</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>7</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>9</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>3</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>6</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>9</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>1</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>4</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>7</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>10</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>2</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>5</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>8</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>4</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>8</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>1</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>5</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>9</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>2</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>6</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>10</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>3</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>7</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>5</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>10</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>4</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>9</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>3</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>8</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>2</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>7</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>1</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>6</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>6</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>1</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>7</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>2</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>8</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>3</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>9</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>4</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>10</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>5</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>7</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>3</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>10</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>6</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>2</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>9</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>5</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>1</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>8</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>4</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>8</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>5</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>2</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>10</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>7</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>4</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>1</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>9</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>6</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>3</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>9</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>7</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>5</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>3</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>1</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>10</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>8</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>6</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>4</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>2</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>10</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>9</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>8</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>7</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>6</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>5</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>4</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>3</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>2</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>testing </m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> end.</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>x</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>x</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> <m:r> <m:t>f</m:t> </m:r> </m:num> <m:den> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>5</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∫</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∬</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∭</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>z</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> <m:r> <m:t>z</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⨌</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>z</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>t</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> <m:r> <m:t>z</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> <m:r> <m:t>t</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>mod</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>5</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>mod</m:t> </m:r> <m:r> <m:t>3</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>f</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>0</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>mod</m:t> </m:r> <m:r> <m:t>3</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>5</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>4</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>≡</m:t> </m:r> <m:r> <m:t>8</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>mod</m:t> </m:r> <m:r> <m:t>13</m:t> </m:r> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>5</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>3</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>/</m:t> </m:r> <m:r> <m:t>5</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>mod</m:t> </m:r> <m:r> <m:t>7</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>6</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>mod</m:t> </m:r> <m:r> <m:t>3</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>0</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>000</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>000</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>111</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>1</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>1</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>0</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>4. 974 9</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> </m:num> <m:den> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:den> </m:f> <m:r> <m:t>F</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="[" /> <m:endChr m:val="]" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>86.333</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>146.33</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>129.33</m:t> </m:r> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>BinomialDist</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>;</m:t> </m:r> <m:r> <m:t>n</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>p</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:nary> <m:naryPr> <m:chr m:val="∑" /> <m:limLoc m:val="undOvr" /> <m:subHide m:val="0" /> <m:supHide m:val="0" /> </m:naryPr> <m:sub> <m:r> <m:t>k</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>0</m:t> </m:r> </m:sub> <m:sup> <m:r> <m:t>x</m:t> </m:r> </m:sup> <m:e> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>n</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>k</m:t> </m:r> </m:den> </m:f> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>p</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>k</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>q</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>n</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>k</m:t> </m:r> </m:sup> </m:sSup> </m:e> </m:nary> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>Pr</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>X</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>≤</m:t> </m:r> <m:r> <m:t>54</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>BinomialDist</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>54</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>;</m:t> </m:r> <m:r> <m:t>100</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>.55</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>.45846</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>k</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>max</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="{" /> <m:endChr m:val="}" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:d> <m:dPr> <m:begChr m:val="|" /> <m:endChr m:val="|" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∂</m:t> </m:r> <m:r> <m:t>f</m:t> </m:r> </m:num> <m:den> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∂</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>:</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∈</m:t> </m:r> <m:r> <m:t>D</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>.</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>m</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:limLow> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>lim</m:t> </m:r> </m:e> <m:lim> <m:r> <m:t>x</m:t> </m:r> <m:limUpp> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>→</m:t> </m:r> </m:e> <m:lim> <m:r> <m:t>​</m:t> </m:r> </m:lim> </m:limUpp> <m:r> <m:t>a</m:t> </m:r> </m:lim> </m:limLow> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>f</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>f</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> </m:den> </m:f> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="|" /> <m:endChr m:val="|" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>A</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="|" /> <m:endChr m:val="|" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:sSub> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> </m:e> <m:e> <m:sSub> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> </m:sub> </m:sSub> </m:e> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⋅</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⋅</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⋅</m:t> </m:r> </m:e> <m:e> <m:sSub> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:r> <m:t>n</m:t> </m:r> </m:sub> </m:sSub> </m:e> </m:mr> <m:mr> <m:e> <m:sSub> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> </m:e> <m:e> <m:sSub> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> </m:sub> </m:sSub> </m:e> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⋅</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⋅</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⋅</m:t> </m:r> </m:e> <m:e> <m:sSub> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:r> <m:t>n</m:t> </m:r> </m:sub> </m:sSub> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⋅</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⋅</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⋅</m:t> </m:r> </m:e> <m:e> <m:r> <m:t> </m:t> </m:r> </m:e> <m:e> <m:r> <m:t> </m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⋅</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⋅</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⋅</m:t> </m:r> </m:e> <m:e> <m:r> <m:t> </m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⋅</m:t> </m:r> </m:e> <m:e> <m:r> <m:t> </m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⋅</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⋅</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⋅</m:t> </m:r> </m:e> <m:e> <m:r> <m:t> </m:t> </m:r> </m:e> <m:e> <m:r> <m:t> </m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⋅</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⋅</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:sSub> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>n</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> </m:e> <m:e> <m:sSub> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>n</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> </m:sub> </m:sSub> </m:e> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⋅</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⋅</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⋅</m:t> </m:r> </m:e> <m:e> <m:sSub> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>n</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:r> <m:t>n</m:t> </m:r> </m:sub> </m:sSub> </m:e> </m:mr> </m:m> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>A</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>A</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>⋯</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:r> <m:t>n</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>A</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:r> <m:t>n</m:t> </m:r> </m:sub> </m:sSub> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>hl text </m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> end.</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>hl to URI </m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> end</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>sex</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>jbm</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e /> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>f</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>g</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>[</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>]</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>h</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>{</m:t> </m:r> <m:r> <m:t>z</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>}</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⌊</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⌋</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⌈</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⌉</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>〈</m:t> </m:r> <m:r> <m:t>c</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>〉</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="" /> <m:endChr m:val="|" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>123</m:t> </m:r> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>456</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>A</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> </m:d> <m:d> <m:dPr> <m:begChr m:val="" /> <m:endChr m:val="" /> <m:sepChr m:val="∥" /> <m:grow /> </m:dPr> <m:e /> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>A</m:t> </m:r> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>B</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>A</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> </m:d> <m:d> <m:dPr> <m:begChr m:val="" /> <m:endChr m:val="" /> <m:sepChr m:val="/" /> <m:grow /> </m:dPr> <m:e /> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>2</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>A</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> <m:e /> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>3</m:t> </m:r> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>4</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>A</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> </m:d> <m:d> <m:dPr> <m:begChr m:val="" /> <m:endChr m:val="" /> <m:sepChr m:val="↕" /> <m:grow /> </m:dPr> <m:e /> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>5</m:t> </m:r> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>6</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>A</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> <m:e /> </m:d> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>7</m:t> </m:r> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>8</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>A</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> <m:d> <m:dPr> <m:begChr m:val="" /> <m:endChr m:val="" /> <m:sepChr m:val="⇕" /> <m:grow /> </m:dPr> <m:e /> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>9</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>20</m:t> </m:r> </m:den> </m:f> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>10</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>A</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> <m:e /> </m:d> <m:d> <m:dPr> <m:begChr m:val="" /> <m:endChr m:val="" /> <m:sepChr m:val="↑" /> <m:grow /> </m:dPr> <m:e /> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>11</m:t> </m:r> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>12</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>A</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> <m:e /> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="" /> <m:endChr m:val="" /> <m:sepChr m:val="⇑" /> <m:grow /> </m:dPr> <m:e /> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>13</m:t> </m:r> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>14</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>A</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> <m:e /> </m:d> <m:d> <m:dPr> <m:begChr m:val="" /> <m:endChr m:val="" /> <m:sepChr m:val="↓" /> <m:grow /> </m:dPr> <m:e /> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>15</m:t> </m:r> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>16</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>A</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> <m:e /> </m:d> <m:d> <m:dPr> <m:begChr m:val="" /> <m:endChr m:val="" /> <m:sepChr m:val="⇓" /> <m:grow /> </m:dPr> <m:e /> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>17</m:t> </m:r> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>18</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>A</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> <m:e /> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> </m:mr> </m:m> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:sSub> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>2</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>…</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>n</m:t> </m:r> </m:sub> </m:sSub> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⋅</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:sSub> <m:e> <m:r> <m:t>b</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>b</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>2</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>…</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>b</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>n</m:t> </m:r> </m:sub> </m:sSub> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSubSup> <m:e> <m:r> <m:t>b</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> </m:sub> <m:sup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>*</m:t> </m:r> </m:sup> </m:sSubSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>2</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSubSup> <m:e> <m:r> <m:t>b</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>2</m:t> </m:r> </m:sub> <m:sup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>*</m:t> </m:r> </m:sup> </m:sSubSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>⋯</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>n</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSubSup> <m:e> <m:r> <m:t>b</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>n</m:t> </m:r> </m:sub> <m:sup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>*</m:t> </m:r> </m:sup> </m:sSubSup> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="⌊" /> <m:endChr m:val="⌋" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>n</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>5</m:t> </m:r> </m:den> </m:f> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="⌊" /> <m:endChr m:val="⌋" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>n</m:t> </m:r> </m:num> <m:den> <m:sSup> <m:e> <m:r> <m:t>5</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> </m:den> </m:f> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="⌊" /> <m:endChr m:val="⌋" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>n</m:t> </m:r> </m:num> <m:den> <m:sSup> <m:e> <m:r> <m:t>5</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>3</m:t> </m:r> </m:sup> </m:sSup> </m:den> </m:f> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="⌊" /> <m:endChr m:val="⌋" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>n</m:t> </m:r> </m:num> <m:den> <m:sSup> <m:e> <m:r> <m:t>5</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>4</m:t> </m:r> </m:sup> </m:sSup> </m:den> </m:f> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>⋯</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:sSub> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>⋯</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>n</m:t> </m:r> </m:sub> </m:sSub> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:limLow> <m:e> <m:limLow> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>⋯</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:lim> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>︸</m:t> </m:r> </m:lim> </m:limLow> </m:e> <m:lim> <m:r> <m:t>k</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> times</m:t> </m:r> </m:lim> </m:limLow> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:rad> <m:deg> <m:r> <m:t>n</m:t> </m:r> </m:deg> <m:e> <m:sSub> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>2</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>⋯</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>n</m:t> </m:r> </m:sub> </m:sSub> </m:e> </m:rad> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>n</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>!</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>×</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>×</m:t> </m:r> <m:r> <m:t>3</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>×</m:t> </m:r> <m:r> <m:t>4</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>×</m:t> </m:r> <m:r> <m:t>⋯</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>×</m:t> </m:r> <m:r> <m:t>n</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>P</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>:</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>0</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t><</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t><</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>2</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t><</m:t> </m:r> <m:r> <m:t>⋯</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t><</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>n</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>f</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>30</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>13</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>cos</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>10</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>3</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:rad> <m:radPr> <m:degHide m:val="1" /> </m:radPr> <m:deg /> <m:e> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>100</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>9</m:t> </m:r> </m:num> <m:den> <m:sSup> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>cos</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>60</m:t> </m:r> </m:num> <m:den> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>cos</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>29</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>90</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>π</m:t> </m:r> </m:e> </m:d> </m:e> </m:d> </m:e> </m:rad> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="∫" /> <m:endChr m:val="" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>cos</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>A</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>B</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>cos</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>B</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>A</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>B</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>A</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>cos</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>B</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>A</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>B</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>A</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>C</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> .</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>235.3</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>813</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>1048. 3</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:limLow> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>max</m:t> </m:r> </m:e> <m:lim> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>≤</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>≤</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> </m:lim> </m:limLow> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:sSup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>3</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>6</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>3</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>8.0</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>decade</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>century</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:sSup> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>5</m:t> </m:r> </m:sup> </m:sSup> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:sSup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>7</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>3</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>6</m:t> </m:r> </m:sup> </m:sSup> </m:e> </m:d> </m:num> <m:den> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>5</m:t> </m:r> </m:sup> </m:sSup> </m:den> </m:f> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> </m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:sSup> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>n</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:num> <m:den> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>n</m:t> </m:r> </m:sup> </m:sSup> </m:den> </m:f> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> </m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:sSup> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>3</m:t> </m:r> </m:sup> </m:sSup> </m:num> <m:den> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>3</m:t> </m:r> </m:sup> </m:sSup> </m:den> </m:f> <m:r> <m:t>f</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> </m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:sSup> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> </m:num> <m:den> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>t</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> </m:den> </m:f> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>4</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>t</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>5</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>3</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>t</m:t> </m:r> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>f</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>30</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>13</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>cos</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>10</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>3</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:rad> <m:radPr> <m:degHide m:val="1" /> </m:radPr> <m:deg /> <m:e> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>100</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>9</m:t> </m:r> </m:num> <m:den> <m:sSup> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>cos</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>60</m:t> </m:r> </m:num> <m:den> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>cos</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>29</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>90</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>π</m:t> </m:r> </m:e> </m:d> </m:e> </m:d> </m:e> </m:rad> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="∫" /> <m:endChr m:val="" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:sSub> <m:e> <m:r> <m:t>​</m:t> </m:r> </m:e> <m:sub> <m:sSup> <m:e> <m:r> <m:rPr> <m:sty m:val="b" /> </m:rPr> <m:t>R</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>3</m:t> </m:r> </m:sup> </m:sSup> </m:sub> </m:sSub> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:sSup> <m:e> <m:d> <m:dPr> <m:begChr m:val="|" /> <m:endChr m:val="|" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:sSub> <m:e> <m:r> <m:t>u</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> </m:e> </m:d> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:sSup> <m:e> <m:d> <m:dPr> <m:begChr m:val="|" /> <m:endChr m:val="|" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∇</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>u</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>0</m:t> </m:r> </m:sub> </m:sSub> </m:e> </m:d> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:sSup> <m:e> <m:d> <m:dPr> <m:begChr m:val="|" /> <m:endChr m:val="|" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:sSub> <m:e> <m:r> <m:t>u</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>0</m:t> </m:r> </m:sub> </m:sSub> </m:e> </m:d> </m:e> <m:sup> <m:r> <m:t>6</m:t> </m:r> </m:sup> </m:sSup> </m:num> <m:den> <m:r> <m:t>6</m:t> </m:r> </m:den> </m:f> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t><</m:t> </m:r> <m:r> <m:t>∞</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∇×</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="b" /> </m:rPr> <m:t>F</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⋅</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="b" /> </m:rPr> <m:t>k</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>z</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>M</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:sSup> <m:e> <m:r> <m:t>M</m:t> </m:r> </m:e> <m:sup> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>M</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>M</m:t> </m:r> </m:den> </m:f> </m:sup> </m:sSup> </m:num> <m:den> <m:r> <m:t>M</m:t> </m:r> </m:den> </m:f> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:sSub> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅅ</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>x</m:t> </m:r> </m:sub> </m:sSub> <m:sSup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> </m:t> </m:r> <m:sSub> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅅ</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>x</m:t> </m:r> </m:sub> </m:sSub> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:sSup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> </m:e> </m:d> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> </m:t> </m:r> <m:sSub> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅅ</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:sub> </m:sSub> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:sSup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> </m:e> </m:d> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> </m:t> </m:r> <m:sSub> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅅ</m:t> </m:r> </m:e> <m:sub> <m:sSup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> </m:sub> </m:sSub> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:sSup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> </m:e> </m:d> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> </m:t> </m:r> <m:sSub> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅅ</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> </m:sub> </m:sSub> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:sSup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>y</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>3</m:t> </m:r> </m:sup> </m:sSup> </m:e> </m:d> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> </m:t> </m:r> <m:sSub> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅅ</m:t> </m:r> </m:e> <m:sub> <m:sSup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>s</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>​</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>y</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>t</m:t> </m:r> </m:sup> </m:sSup> </m:sub> </m:sSub> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:sSup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>y</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>3</m:t> </m:r> </m:sup> </m:sSup> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>5</m:t> </m:r> <m:r> <m:t> </m:t> </m:r> <m:r> <m:t>24</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>!</m:t> </m:r> <m:r> <m:t> </m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>6</m:t> </m:r> </m:sup> </m:sSup> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:rad> <m:deg> <m:r> <m:t>2</m:t> </m:r> </m:deg> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:sSup> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:sup> </m:sSup> </m:num> <m:den> <m:r> <m:t>12.34</m:t> </m:r> </m:den> </m:f> </m:e> </m:rad> </m:e> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>θ</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t> </m:t> </m:r> </m:e> <m:e> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>0</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>1</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>0</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>0</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>i</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>i</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>0</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="[" /> <m:endChr m:val="]" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>1</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>0</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>0</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="|" /> <m:endChr m:val="|" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>b</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>c</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>d</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="" /> <m:endChr m:val="" /> <m:sepChr m:val="∥" /> <m:grow /> </m:dPr> <m:e /> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>1</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>0</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>0</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>11</m:t> </m:r> </m:e> <m:e> <m:r> <m:t> </m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>1</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>2</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>3</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>4</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>5</m:t> </m:r> </m:e> <m:e> <m:r> <m:t> </m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>testing </m:t> </m:r> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>θ</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:acc> <m:accPr> <m:chr m:val="̂" /> </m:accPr> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> </m:acc> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:acc> <m:accPr> <m:chr m:val="ˇ" /> </m:accPr> <m:e> <m:r> <m:t>b</m:t> </m:r> </m:e> </m:acc> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:acc> <m:accPr> <m:chr m:val="˜" /> </m:accPr> <m:e> <m:r> <m:t>c</m:t> </m:r> </m:e> </m:acc> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:acc> <m:accPr> <m:chr m:val="´" /> </m:accPr> <m:e> <m:r> <m:t>d</m:t> </m:r> </m:e> </m:acc> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:acc> <m:accPr> <m:chr m:val="`" /> </m:accPr> <m:e> <m:r> <m:t>e</m:t> </m:r> </m:e> </m:acc> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:acc> <m:accPr> <m:chr m:val="˘" /> </m:accPr> <m:e> <m:r> <m:t>f</m:t> </m:r> </m:e> </m:acc> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:acc> <m:accPr> <m:chr m:val="¯" /> </m:accPr> <m:e> <m:r> <m:t>g</m:t> </m:r> </m:e> </m:acc> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>h</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:acc> <m:accPr> <m:chr m:val="˚" /> </m:accPr> <m:e> <m:r> <m:t>i</m:t> </m:r> </m:e> </m:acc> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:acc> <m:accPr> <m:chr m:val="˙" /> </m:accPr> <m:e> <m:r> <m:t>j</m:t> </m:r> </m:e> </m:acc> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:acc> <m:accPr> <m:chr m:val="¨" /> </m:accPr> <m:e> <m:r> <m:t>k</m:t> </m:r> </m:e> </m:acc> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:acc> <m:accPr> <m:chr m:val="⃛" /> </m:accPr> <m:e> <m:r> <m:t>l</m:t> </m:r> </m:e> </m:acc> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:acc> <m:accPr> <m:chr m:val="⃜" /> </m:accPr> <m:e> <m:r> <m:t>m</m:t> </m:r> </m:e> </m:acc> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:acc> <m:accPr> <m:chr m:val="→" /> </m:accPr> <m:e> <m:r> <m:t>n</m:t> </m:r> </m:e> </m:acc> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>f</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>g</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>3</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:sSup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>12</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>1234</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>not</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>here</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:sSup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> </m:e> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>merged</m:t> </m:r> </m:e> <m:e> <m:sSub> <m:e> <m:r> <m:t>y</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>jbm</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>lowlife</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>The end.</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:sSup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>y</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>z</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:sSup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>y</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>z</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>y</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>3</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>z</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>3</m:t> </m:r> </m:sup> </m:sSup> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:sSup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>y</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>z</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>y</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>3</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>z</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>3</m:t> </m:r> </m:sup> </m:sSup> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:sSup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>y</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:rad> <m:radPr> <m:degHide m:val="1" /> </m:radPr> <m:deg /> <m:e> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>y</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> </m:e> </m:rad> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:sSup> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>b</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⋅</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>b</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>First line of equation</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>Middle line of equation</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>Other middle line of equation</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>Last line of equation</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:sSub> <m:e> <m:r> <m:t>L</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>R</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>1</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> </m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>L</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>2</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>R</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>2</m:t> </m:r> </m:sub> </m:sSub> </m:e> </m:mr> <m:mr> <m:e> <m:sSub> <m:e> <m:r> <m:t>L</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>3</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>R</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>3</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> </m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>L</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>4</m:t> </m:r> </m:sub> </m:sSub> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:sSub> <m:e> <m:r> <m:t>R</m:t> </m:r> </m:e> <m:sub> <m:r> <m:t>4</m:t> </m:r> </m:sub> </m:sSub> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:sSup> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>4</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>b</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>b</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>4</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>4</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>3</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>6</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>b</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>4</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>b</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>3</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>b</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>4</m:t> </m:r> </m:sup> </m:sSup> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:sSup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>y</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:rad> <m:radPr> <m:degHide m:val="1" /> </m:radPr> <m:deg /> <m:e> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>y</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> </m:e> </m:rad> </m:e> </m:mr> </m:m> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> </m:t> </m:r> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:sSup> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>b</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⋅</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>a</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>b</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>Vertex</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>V</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>0</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>0</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>Focus</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>F</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:r> <m:t>0</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>,</m:t> </m:r> <m:r> <m:t>p</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>Directrix</m:t> </m:r> </m:e> <m:e> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>p</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> </m:num> <m:den> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> </m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>(</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>csc</m:t> </m:r> </m:e> <m:sup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>)</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:d> <m:dPr> <m:begChr m:val="|" /> <m:endChr m:val="|" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> </m:d> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:rad> <m:radPr> <m:degHide m:val="1" /> </m:radPr> <m:deg /> <m:e> <m:sSup> <m:e> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> </m:rad> </m:den> </m:f> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:sSup> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>tanh</m:t> </m:r> </m:e> <m:sup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ln</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:den> </m:f> </m:e> </m:d> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> </m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t><</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t><</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>∠</m:t> </m:r> <m:r> <m:t>α</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>∠</m:t> </m:r> <m:r> <m:t>A</m:t> </m:r> <m:r> <m:t>B</m:t> </m:r> <m:r> <m:t>C</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>∠</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>▵</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> <m:r> <m:t>c</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>e</m:t> </m:r> </m:e> <m:sup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∫</m:t> </m:r> <m:r> <m:t>P</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:d> <m:dPr> <m:begChr m:val="[" /> <m:endChr m:val="]" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∫</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>e</m:t> </m:r> </m:e> <m:sup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∫</m:t> </m:r> <m:r> <m:t>P</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:sup> </m:sSup> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>Q</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>ⅆ</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>c</m:t> </m:r> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:sSup> <m:e> <m:r> <m:t>y</m:t> </m:r> </m:e> <m:sup> <m:r> <m:t>3</m:t> </m:r> </m:sup> </m:sSup> </m:e> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>$</m:t> </m:r> <m:r> <m:t>1.00</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>25</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>¢</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>3</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>£</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>2.45</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>¤</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>0.7</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>¥</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>₠</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>20</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>₣</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>30</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>₤</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>4.56</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>₧</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>2</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>3</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>3</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>4</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁢</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>5</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>c</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>12345</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>Unrestricted</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> </m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>Symmetric</m:t> </m:r> </m:e> <m:e> <m:r> <m:t> </m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>Antisymmetric</m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> </m:t> </m:r> </m:e> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>Triangular</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>a</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>≠</m:t> </m:r> <m:r> <m:t>b</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>≠</m:t> </m:r> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>c</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>≮</m:t> </m:r> <m:r> <m:t>d</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>≮</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>e</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>≯</m:t> </m:r> <m:r> <m:t>f</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>≯</m:t> </m:r> <m:r> <m:t>11</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>g</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∉</m:t> </m:r> <m:r> <m:t>h</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>∉</m:t> </m:r> <m:r> <m:t>Z</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>k</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>≁</m:t> </m:r> <m:r> <m:t>l</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>≁</m:t> </m:r> <m:r> <m:t>3</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>A</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⊄</m:t> </m:r> <m:r> <m:t>B</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⊂</m:t> </m:r> <m:r> <m:t>C</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>A</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⊈</m:t> </m:r> <m:r> <m:t>B</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⊈</m:t> </m:r> <m:r> <m:t>C</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>10</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>≢</m:t> </m:r> <m:r> <m:t>11</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>≡</m:t> </m:r> <m:r> <m:t>12</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>≰⃥</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>≰⃥</m:t> </m:r> <m:r> <m:t>z</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:acc> <m:accPr> <m:chr m:val="¯" /> </m:accPr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>lim</m:t> </m:r> </m:e> </m:acc> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:limLow> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>lim</m:t> </m:r> </m:e> <m:lim> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>̲</m:t> </m:r> </m:lim> </m:limLow> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:limLow> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>lim</m:t> </m:r> </m:e> <m:lim> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>→</m:t> </m:r> </m:lim> </m:limLow> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:limLow> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>lim</m:t> </m:r> </m:e> <m:lim> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>←</m:t> </m:r> </m:lim> </m:limLow> <m:r> <m:t>x</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="center" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:t>x</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>y</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>z</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>=</m:t> </m:r> <m:r> <m:t>k</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>m</m:t> </m:r> </m:e> </m:mr> </m:m> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:m> <m:mPr> <m:baseJc m:val="center" /> <m:plcHide m:val="1" /> <m:mcs> <m:mc> <m:mcPr> <m:mcJc m:val="left" /> <m:count m:val="1" /> </m:mcPr> </m:mc> </m:mcs> </m:mPr> <m:mr> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>College Algebra </m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>Second Edition</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>James Stewart </m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>McMaster Universitiy</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>Lothar Redlin</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> Pennsylvania State University</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>Saleem Watson</m:t> </m:r> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t> California State University, Long Beach</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>Copyright 1996, ISBN 0 534-33983-2</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>Brooks/Cole Publishing Company</m:t> </m:r> </m:e> </m:mr> <m:mr> <m:e> <m:r> <m:rPr> <m:nor /> <m:sty m:val="p" /> </m:rPr> <m:t>An International Thomson Publishing Company</m:t> </m:r> </m:e> </m:mr> </m:m> <m:r> <m:t> </m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="{" /> <m:endChr m:val="}" /> <m:sepChr m:val="↑" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> <m:e> <m:nary> <m:naryPr> <m:chr m:val="∑" /> <m:limLoc m:val="undOvr" /> <m:subHide m:val="0" /> <m:supHide m:val="0" /> </m:naryPr> <m:sub> <m:r> <m:t>1</m:t> </m:r> </m:sub> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> <m:e> <m:r> <m:t>​</m:t> </m:r> </m:e> </m:nary> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="〈" /> <m:endChr m:val="〉" /> <m:sepChr m:val="|" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> <m:e> <m:nary> <m:naryPr> <m:chr m:val="∑" /> <m:limLoc m:val="undOvr" /> <m:subHide m:val="0" /> <m:supHide m:val="0" /> </m:naryPr> <m:sub> <m:r> <m:t>1</m:t> </m:r> </m:sub> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> <m:e> <m:r> <m:t>​</m:t> </m:r> </m:e> </m:nary> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="⌈" /> <m:endChr m:val="⌉" /> <m:sepChr m:val="|" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> <m:e> <m:nary> <m:naryPr> <m:chr m:val="∑" /> <m:limLoc m:val="undOvr" /> <m:subHide m:val="0" /> <m:supHide m:val="0" /> </m:naryPr> <m:sub> <m:r> <m:t>1</m:t> </m:r> </m:sub> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> <m:e> <m:r> <m:t>​</m:t> </m:r> </m:e> </m:nary> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="" /> <m:endChr m:val="" /> <m:sepChr m:val="⇓" /> <m:grow /> </m:dPr> <m:e /> <m:e> <m:d> <m:dPr> <m:begChr m:val="" /> <m:endChr m:val="" /> <m:sepChr m:val="↕" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> <m:e> <m:nary> <m:naryPr> <m:chr m:val="∑" /> <m:limLoc m:val="undOvr" /> <m:subHide m:val="0" /> <m:supHide m:val="0" /> </m:naryPr> <m:sub> <m:r> <m:t>1</m:t> </m:r> </m:sub> <m:sup> <m:r> <m:t>2</m:t> </m:r> </m:sup> <m:e> <m:r> <m:t>​</m:t> </m:r> </m:e> </m:nary> </m:e> </m:d> </m:e> <m:e /> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="[" /> <m:endChr m:val="]" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val=")" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="{" /> <m:endChr m:val="}" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="〈" /> <m:endChr m:val="〉" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="⌊" /> <m:endChr m:val="⌋" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="⌈" /> <m:endChr m:val="⌉" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="" /> <m:endChr m:val="" /> <m:sepChr m:val="↑" /> <m:grow /> </m:dPr> <m:e /> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> <m:e /> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="" /> <m:endChr m:val="" /> <m:sepChr m:val="↓" /> <m:grow /> </m:dPr> <m:e /> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> <m:e /> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="" /> <m:endChr m:val="" /> <m:sepChr m:val="↕" /> <m:grow /> </m:dPr> <m:e /> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> <m:e /> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="" /> <m:endChr m:val="" /> <m:sepChr m:val="⇑" /> <m:grow /> </m:dPr> <m:e /> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> <m:e /> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="" /> <m:endChr m:val="" /> <m:sepChr m:val="⇓" /> <m:grow /> </m:dPr> <m:e /> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> <m:e /> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="" /> <m:endChr m:val="" /> <m:sepChr m:val="⇕" /> <m:grow /> </m:dPr> <m:e /> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> <m:e /> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="\arrowvert" /> <m:endChr m:val="\arrowvert" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="\Arrowvert" /> <m:endChr m:val="\Arrowvert" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="\bracevert" /> <m:endChr m:val="\bracevert" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="|" /> <m:endChr m:val="|" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="|" /> <m:endChr m:val="|" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="|" /> <m:endChr m:val="|" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="" /> <m:endChr m:val="" /> <m:sepChr m:val="∥" /> <m:grow /> </m:dPr> <m:e /> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> <m:e /> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="" /> <m:endChr m:val="" /> <m:sepChr m:val="∥" /> <m:grow /> </m:dPr> <m:e /> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> <m:e /> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="" /> <m:endChr m:val="" /> <m:sepChr m:val="/" /> <m:grow /> </m:dPr> <m:e /> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> <m:e /> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="" /> <m:endChr m:val="" /> <m:sepChr m:val="\" /> <m:grow /> </m:dPr> <m:e /> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> <m:e /> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="⎱" /> <m:endChr m:val="⎰" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="\lgroup" /> <m:endChr m:val="\rgroup" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="⌞" /> <m:endChr m:val="⌟" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="⌜" /> <m:endChr m:val="⌝" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:num> <m:den> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>2</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:r> <m:t>A</m:t> </m:r> <m:limLow> <m:e> <m:limUpp> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>←</m:t> </m:r> </m:e> <m:lim> <m:r> <m:t>n</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>μ</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:lim> </m:limUpp> </m:e> <m:lim> <m:r> <m:t> </m:t> </m:r> </m:lim> </m:limLow> <m:r> <m:t>B</m:t> </m:r> <m:limLow> <m:e> <m:limUpp> <m:e> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>→</m:t> </m:r> </m:e> <m:lim> <m:r> <m:t>n</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>±</m:t> </m:r> <m:r> <m:t>i</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>−</m:t> </m:r> <m:r> <m:t>1</m:t> </m:r> </m:lim> </m:limUpp> </m:e> <m:lim> <m:r> <m:t>T</m:t> </m:r> </m:lim> </m:limLow> <m:r> <m:t>C</m:t> </m:r> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:rad> <m:radPr> <m:degHide m:val="1" /> </m:radPr> <m:deg /> <m:e> <m:r> <m:t>2</m:t> </m:r> </m:e> </m:rad> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:rad> <m:radPr> <m:degHide m:val="1" /> </m:radPr> <m:deg /> <m:e> <m:r> <m:t>3</m:t> </m:r> </m:e> </m:rad> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:rad> <m:radPr> <m:degHide m:val="1" /> </m:radPr> <m:deg /> <m:e> <m:r> <m:t>4</m:t> </m:r> </m:e> </m:rad> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:rad> <m:radPr> <m:degHide m:val="1" /> </m:radPr> <m:deg /> <m:e> <m:r> <m:t>5</m:t> </m:r> </m:e> </m:rad> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:rad> <m:radPr> <m:degHide m:val="1" /> </m:radPr> <m:deg /> <m:e> <m:r> <m:t>6</m:t> </m:r> </m:e> </m:rad> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>…</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:den> </m:f> </m:den> </m:f> </m:den> </m:f> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:rad> <m:radPr> <m:degHide m:val="1" /> </m:radPr> <m:deg /> <m:e> <m:r> <m:t>2</m:t> </m:r> </m:e> </m:rad> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:rad> <m:radPr> <m:degHide m:val="1" /> </m:radPr> <m:deg /> <m:e> <m:r> <m:t>3</m:t> </m:r> </m:e> </m:rad> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:rad> <m:radPr> <m:degHide m:val="1" /> </m:radPr> <m:deg /> <m:e> <m:r> <m:t>4</m:t> </m:r> </m:e> </m:rad> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:rad> <m:radPr> <m:degHide m:val="1" /> </m:radPr> <m:deg /> <m:e> <m:r> <m:t>5</m:t> </m:r> </m:e> </m:rad> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:t>1</m:t> </m:r> </m:num> <m:den> <m:rad> <m:radPr> <m:degHide m:val="1" /> </m:radPr> <m:deg /> <m:e> <m:r> <m:t>6</m:t> </m:r> </m:e> </m:rad> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>+</m:t> </m:r> <m:r> <m:t>…</m:t> </m:r> </m:den> </m:f> </m:den> </m:f> </m:den> </m:f> </m:den> </m:f> </m:den> </m:f> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val="⌋" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>θ</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>M</m:t> </m:r> </m:den> </m:f> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val="⌋" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>θ</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>M</m:t> </m:r> </m:den> </m:f> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val="⌋" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>θ</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>M</m:t> </m:r> </m:den> </m:f> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val="⌋" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>θ</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>M</m:t> </m:r> </m:den> </m:f> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val="⌋" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>θ</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>M</m:t> </m:r> </m:den> </m:f> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val="⌋" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>θ</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>M</m:t> </m:r> </m:den> </m:f> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val="⌋" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>θ</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>M</m:t> </m:r> </m:den> </m:f> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val="⌋" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>θ</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>M</m:t> </m:r> </m:den> </m:f> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:d> <m:dPr> <m:begChr m:val="(" /> <m:endChr m:val="⌋" /> <m:sepChr m:val="" /> <m:grow /> </m:dPr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>θ</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>M</m:t> </m:r> </m:den> </m:f> </m:e> </m:d> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>θ</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>M</m:t> </m:r> </m:den> </m:f> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>θ</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>M</m:t> </m:r> </m:den> </m:f> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>θ</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>M</m:t> </m:r> </m:den> </m:f> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>θ</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>M</m:t> </m:r> </m:den> </m:f> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>θ</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>M</m:t> </m:r> </m:den> </m:f> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>θ</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>M</m:t> </m:r> </m:den> </m:f> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>θ</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>M</m:t> </m:r> </m:den> </m:f> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>θ</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>M</m:t> </m:r> </m:den> </m:f> </m:e> <m:e /> </m:mr> <m:mr> <m:e> <m:f> <m:fPr> <m:type m:val="bar" /> </m:fPr> <m:num> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>sin</m:t> </m:r> <m:r> <m:rPr> <m:sty m:val="p" /> </m:rPr> <m:t>⁡</m:t> </m:r> <m:r> <m:t>θ</m:t> </m:r> </m:num> <m:den> <m:r> <m:t>M</m:t> </m:r> </m:den> </m:f> </m:e> <m:e /> </m:mr> </m:m> </m:oMath> </m:oMathPara>