rounded: Correctly-rounded arbitrary-precision floating-point arithmetic
This package provides numeric instances for MPFR that use
"Implicit Configurations" from
http://www.cs.rutgers.edu/~ccshan/prepose/prepose.pdf
to choose a Rounding
and Precision
. For those that do not want to
use reflection, explicit instances are provided for common precisions
and for the built-in rounding modes.
This package should work correctly with GHC 7.10.1 or later.
>>>
import Numeric.Rounded
>>>
:set -XDataKinds
>>>
exp pi :: Rounded TowardZero 512
23.140692632779269005729086367948547380266106242600211993445046409524342350690452783516971997067549219675952704801087773144428044414693835844717445879609842
[Skip to Readme]
Modules
[Index] [Quick Jump]
Downloads
- rounded-0.1.tar.gz [browse] (Cabal source package)
- Package description (as included in the package)
Maintainer's Corner
For package maintainers and hackage trustees
Candidates
Versions [RSS] | 0.1, 0.1.0.1, 0.2, 0.3, 1.0, 1.1, 1.1.1 |
---|---|
Change log | CHANGELOG.markdown |
Dependencies | base (>=4.8 && <4.13), ghc-prim (>=0.4 && <0.6), hgmp (>=0.1.1 && <0.2), long-double (>=0.1 && <0.2), reflection (>=2.1.2 && <2.2), singletons (>=2.1 && <2.6) [details] |
Tested with | ghc ==7.10.3, ghc ==8.0.2, ghc ==8.2.2, ghc ==8.4.4, ghc ==8.6.1 |
License | LicenseRef-LGPL |
Copyright | Copyright (C) 2012-2014 Edward A. Kmett, Daniel G. Peebles; Copyright (C) 2013-2018 Claude Heiland-Allen |
Author | Edward A. Kmett, Daniel G. Peebles, Claude Heiland-Allen |
Maintainer | Claude Heiland-Allen <claude@mathr.co.uk> |
Category | Numeric, Math |
Home page | https://github.com/ekmett/rounded |
Bug tracker | https://github.com/ekmett/rounded/issues |
Source repo | head: git clone git://github.com/ekmett/rounded.git this: git clone git://github.com/ekmett/rounded.git(tag rounded-0.1) |
Uploaded | by ClaudeHeilandAllen at 2018-10-30T16:47:47Z |
Distributions | |
Reverse Dependencies | 2 direct, 5 indirect [details] |
Downloads | 2611 total (3 in the last 30 days) |
Rating | (no votes yet) [estimated by Bayesian average] |
Your Rating | |
Status | Docs available [build log] Last success reported on 2018-11-02 [all 1 reports] |