-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Numbers represented using scientific notation -- -- Data.Scientific provides the number type Scientific. -- Scientific numbers are arbitrary precision and space efficient. They -- are represented using scientific notation. The implementation -- uses a coefficient c :: Integer and a base-10 exponent -- e :: Int. A scientific number corresponds to the -- Fractional number: fromInteger c * 10 ^^ -- e. -- -- Note that since we're using an Int to represent the exponent -- these numbers aren't truly arbitrary precision. I intend to change the -- type of the exponent to Integer in a future release. -- -- The main application of Scientific is to be used as the target -- of parsing arbitrary precision numbers coming from an untrusted -- source. The advantages over using Rational for this are that: -- -- -- --
--   >>> read "1e1000000000" :: Scientific
--   1.0e1000000000
--   
-- -- @package scientific @version 0.3.8.0 -- | This module provides the number type Scientific. Scientific -- numbers are arbitrary precision and space efficient. They are -- represented using scientific notation. The implementation uses -- an Integer coefficient c and an Int -- base10Exponent e. A scientific number corresponds to -- the Fractional number: fromInteger c * 10 ^^ -- e. -- -- Note that since we're using an Int to represent the exponent -- these numbers aren't truly arbitrary precision. I intend to change the -- type of the exponent to Integer in a future release. -- -- WARNING: Although Scientific has instances for all -- numeric classes the methods should be used with caution when applied -- to scientific numbers coming from untrusted sources. See the warnings -- of the instances belonging to Scientific. -- -- The main application of Scientific is to be used as the target -- of parsing arbitrary precision numbers coming from an untrusted -- source. The advantages over using Rational for this are that: -- -- -- --
--   > read "1e1000000000" :: Scientific
--   1.0e1000000000
--   
-- -- -- -- This module is designed to be imported qualified: -- --
--   import qualified Data.Scientific as Scientific
--   
module Data.Scientific -- | An arbitrary-precision number represented using scientific -- notation. -- -- This type describes the set of all Reals which have a -- finite decimal expansion. -- -- A scientific number with coefficient c and -- base10Exponent e corresponds to the Fractional -- number: fromInteger c * 10 ^^ e data Scientific -- | scientific c e constructs a scientific number which -- corresponds to the Fractional number: fromInteger c -- * 10 ^^ e. scientific :: Integer -> Int -> Scientific -- | The coefficient of a scientific number. -- -- Note that this number is not necessarily normalized, i.e. it could -- contain trailing zeros. -- -- Scientific numbers are automatically normalized when pretty printed or -- in toDecimalDigits. -- -- Use normalize to do manual normalization. -- -- WARNING: coefficient and base10exponent violate -- substantivity of Eq. -- --
--   >>> let x = scientific 1 2
--   
--   >>> let y = scientific 100 0
--   
--   >>> x == y
--   True
--   
-- -- but -- --
--   >>> (coefficient x == coefficient y, base10Exponent x == base10Exponent y)
--   (False,False)
--   
coefficient :: Scientific -> Integer -- | The base-10 exponent of a scientific number. base10Exponent :: Scientific -> Int -- | Return True if the scientific is a floating point, False -- otherwise. -- -- Also see: floatingOrInteger. isFloating :: Scientific -> Bool -- | Return True if the scientific is an integer, False -- otherwise. -- -- Also see: floatingOrInteger. isInteger :: Scientific -> Bool -- | Although fromRational is unsafe because it will throw errors on -- repeating decimals, unsafeFromRational is even more -- unsafe because it will diverge instead (i.e loop and consume all -- space). Though it will be more efficient because it doesn't need to -- consume space linear in the number of digits in the resulting -- scientific to detect the repetition. -- -- Consider using fromRationalRepetend for these rationals which -- will detect the repetition and indicate where it starts. unsafeFromRational :: Rational -> Scientific -- | Like fromRational and unsafeFromRational, this function -- converts a Rational to a Scientific but instead of -- failing or diverging (i.e loop and consume all space) on repeating -- decimals it detects the repeating part, the repetend, and -- returns where it starts. -- -- To detect the repetition this function consumes space linear in the -- number of digits in the resulting scientific. In order to bound the -- space usage an optional limit can be specified. If the number of -- digits reaches this limit Left (s, r) will be returned. Here -- s is the Scientific constructed so far and r -- is the remaining Rational. toRational s + r yields the -- original Rational -- -- If the limit is not reached or no limit was specified Right (s, -- mbRepetendIx) will be returned. Here s is the -- Scientific without any repetition and mbRepetendIx -- specifies if and where in the fractional part the repetend begins. -- -- For example: -- --
--   fromRationalRepetend Nothing (1 % 28) == Right (3.571428e-2, Just 2)
--   
-- -- This represents the repeating decimal: -- 0.03571428571428571428... which is sometimes also -- unambiguously denoted as 0.03(571428). Here the repetend is -- enclosed in parentheses and starts at the 3rd digit (index 2) in the -- fractional part. Specifying a limit results in the following: -- --
--   fromRationalRepetend (Just 4) (1 % 28) == Left (3.5e-2, 1 % 1400)
--   
-- -- You can expect the following property to hold. -- --
--   forall (mbLimit :: Maybe Int) (r :: Rational).
--   r == (case fromRationalRepetend mbLimit r of
--          Left (s, r') -> toRational s + r'
--          Right (s, mbRepetendIx) ->
--            case mbRepetendIx of
--              Nothing         -> toRational s
--              Just repetendIx -> toRationalRepetend s repetendIx)
--   
fromRationalRepetend :: Maybe Int -> Rational -> Either (Scientific, Rational) (Scientific, Maybe Int) -- | Like fromRationalRepetend but always accepts a limit. fromRationalRepetendLimited :: Int -> Rational -> Either (Scientific, Rational) (Scientific, Maybe Int) -- | Like fromRationalRepetend but doesn't accept a limit. fromRationalRepetendUnlimited :: Rational -> (Scientific, Maybe Int) -- | Converts a Scientific with a repetend (a repeating part -- in the fraction), which starts at the given index, into its -- corresponding Rational. -- -- For example to convert the repeating decimal 0.03(571428) you -- would use: toRationalRepetend 0.03571428 2 == 1 % 28 -- -- Preconditions for toRationalRepetend s r: -- -- -- -- WARNING: toRationalRepetend needs to compute the -- Integer magnitude: 10^^n. Where n is based on -- the base10Exponent of the scientific. If applied to a huge -- exponent this could fill up all space and crash your program! So don't -- apply this function to untrusted input. -- -- The formula to convert the Scientific s with a -- repetend starting at index r is described in the paper: -- turning_repeating_decimals_into_fractions.pdf and is defined as -- follows: -- --
--     (fromInteger nonRepetend + repetend % nines) /
--     fromInteger (10^^r)
--   where
--     c  = coefficient s
--     e  = base10Exponent s
--   
--     -- Size of the fractional part.
--     f = (-e)
--   
--     -- Size of the repetend.
--     n = f - r
--   
--     m = 10^^n
--   
--     (nonRepetend, repetend) = c `quotRem` m
--   
--     nines = m - 1
--   
-- -- Also see: fromRationalRepetend. toRationalRepetend :: Scientific -> Int -> Rational -- | floatingOrInteger determines if the scientific is floating -- point or integer. -- -- In case it's floating-point the scientific is converted to the desired -- RealFloat using toRealFloat and wrapped in Left. -- -- In case it's integer to scientific is converted to the desired -- Integral and wrapped in Right. -- -- WARNING: To convert the scientific to an integral the magnitude -- 10^e needs to be computed. If applied to a huge exponent this -- could take a long time. Even worse, when the destination type is -- unbounded (i.e. Integer) it could fill up all space and crash -- your program! So don't apply this function to untrusted input but use -- toBoundedInteger instead. -- -- Also see: isFloating or isInteger. floatingOrInteger :: (RealFloat r, Integral i) => Scientific -> Either r i -- | Safely convert a Scientific number into a RealFloat -- (like a Double or a Float). -- -- Note that this function uses realToFrac -- (fromRational . toRational) internally but it -- guards against computing huge Integer magnitudes (10^e) that -- could fill up all space and crash your program. If the -- base10Exponent of the given Scientific is too big or too -- small to be represented in the target type, Infinity or 0 will be -- returned respectively. Use toBoundedRealFloat which explicitly -- handles this case by returning Left. -- -- Always prefer toRealFloat over realToFrac when -- converting from scientific numbers coming from an untrusted source. toRealFloat :: RealFloat a => Scientific -> a -- | Preciser version of toRealFloat. If the base10Exponent -- of the given Scientific is too big or too small to be -- represented in the target type, Infinity or 0 will be returned as -- Left. toBoundedRealFloat :: RealFloat a => Scientific -> Either a a -- | Convert a Scientific to a bounded integer. -- -- If the given Scientific doesn't fit in the target -- representation, it will return Nothing. -- -- This function also guards against computing huge Integer magnitudes -- (10^e) that could fill up all space and crash your program. toBoundedInteger :: (Integral i, Bounded i) => Scientific -> Maybe i -- | Convert a RealFloat (like a Double or Float) into -- a Scientific number. -- -- Note that this function uses floatToDigits to compute the -- digits and exponent of the RealFloat number. Be aware that the -- algorithm used in floatToDigits doesn't work as expected for -- some numbers, e.g. as the Double 1e23 is converted to -- 9.9999999999999991611392e22, and that value is shown as -- 9.999999999999999e22 rather than the shorter 1e23; -- the algorithm doesn't take the rounding direction for values exactly -- half-way between two adjacent representable values into account, so if -- you have a value with a short decimal representation exactly half-way -- between two adjacent representable values, like 5^23*2^e for -- e close to 23, the algorithm doesn't know in which direction -- the short decimal representation would be rounded and computes more -- digits fromFloatDigits :: RealFloat a => a -> Scientific -- | A parser for parsing a floating-point number into a Scientific -- value. Example: -- --
--   > import Text.ParserCombinators.ReadP (readP_to_S)
--   > readP_to_S scientificP "3"
--   [(3.0,"")]
--   > readP_to_S scientificP "3.0e2"
--   [(3.0,"e2"),(300.0,"")]
--   > readP_to_S scientificP "+3.0e+2"
--   [(3.0,"e+2"),(300.0,"")]
--   > readP_to_S scientificP "-3.0e-2"
--   [(-3.0,"e-2"),(-3.0e-2,"")]
--   
-- -- Note: This parser only parses the number itself; it does not parse any -- surrounding parentheses or whitespaces. scientificP :: ReadP Scientific -- | Like show but provides rendering options. formatScientific :: FPFormat -> Maybe Int -> Scientific -> String -- | Control the rendering of floating point numbers. data FPFormat -- | Scientific notation (e.g. 2.3e123). Exponent :: FPFormat -- | Standard decimal notation. Fixed :: FPFormat -- | Use decimal notation for values between 0.1 and -- 9,999,999, and scientific notation otherwise. Generic :: FPFormat -- | Similar to floatToDigits, toDecimalDigits takes a -- positive Scientific number, and returns a list of digits and a -- base-10 exponent. In particular, if x>=0, and -- --
--   toDecimalDigits x = ([d1,d2,...,dn], e)
--   
-- -- then -- --
    --
  1. n >= 1
  2. --
  3. x = 0.d1d2...dn * (10^^e)
  4. --
  5. 0 <= di <= 9
  6. --
  7. null $ takeWhile (==0) $ reverse [d1,d2,...,dn]
  8. --
-- -- The last property means that the coefficient will be normalized, i.e. -- doesn't contain trailing zeros. toDecimalDigits :: Scientific -> ([Int], Int) -- | Normalize a scientific number by dividing out powers of 10 from the -- coefficient and incrementing the base10Exponent each -- time. -- -- You should rarely have a need for this function since scientific -- numbers are automatically normalized when pretty-printed and in -- toDecimalDigits. normalize :: Scientific -> Scientific instance Data.Binary.Class.Binary Data.Scientific.Scientific instance GHC.Internal.Data.Data.Data Data.Scientific.Scientific instance GHC.Classes.Eq Data.Scientific.Scientific instance GHC.Internal.Real.Fractional Data.Scientific.Scientific instance Data.Hashable.Class.Hashable Data.Scientific.Scientific instance Language.Haskell.TH.Syntax.Lift Data.Scientific.Scientific instance Control.DeepSeq.NFData Data.Scientific.Scientific instance GHC.Internal.Num.Num Data.Scientific.Scientific instance GHC.Classes.Ord Data.Scientific.Scientific instance GHC.Internal.Read.Read Data.Scientific.Scientific instance GHC.Internal.Real.RealFrac Data.Scientific.Scientific instance GHC.Internal.Real.Real Data.Scientific.Scientific instance GHC.Internal.Show.Show Data.Scientific.Scientific module Data.Text.Lazy.Builder.Scientific -- | A Text Builder which renders a scientific number to -- full precision, using standard decimal notation for arguments whose -- absolute value lies between 0.1 and 9,999,999, and -- scientific notation otherwise. scientificBuilder :: Scientific -> Builder -- | Like scientificBuilder but provides rendering options. formatScientificBuilder :: FPFormat -> Maybe Int -> Scientific -> Builder -- | Control the rendering of floating point numbers. data FPFormat -- | Scientific notation (e.g. 2.3e123). Exponent :: FPFormat -- | Standard decimal notation. Fixed :: FPFormat -- | Use decimal notation for values between 0.1 and -- 9,999,999, and scientific notation otherwise. Generic :: FPFormat module Data.ByteString.Builder.Scientific -- | A ByteString Builder which renders a scientific -- number to full precision, using standard decimal notation for -- arguments whose absolute value lies between 0.1 and -- 9,999,999, and scientific notation otherwise. scientificBuilder :: Scientific -> Builder -- | Like scientificBuilder but provides rendering options. formatScientificBuilder :: FPFormat -> Maybe Int -> Scientific -> Builder -- | Control the rendering of floating point numbers. data FPFormat -- | Scientific notation (e.g. 2.3e123). Exponent :: FPFormat -- | Standard decimal notation. Fixed :: FPFormat -- | Use decimal notation for values between 0.1 and -- 9,999,999, and scientific notation otherwise. Generic :: FPFormat