//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file contains some templates that are useful if you are working with /// the STL at all. /// /// No library is required when using these functions. /// //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_STLEXTRAS_H #define LLVM_ADT_STLEXTRAS_H #include "llvm/ADT/Hashing.h" #include "llvm/ADT/STLForwardCompat.h" #include "llvm/ADT/STLFunctionalExtras.h" #include "llvm/ADT/identity.h" #include "llvm/ADT/iterator.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Config/abi-breaking.h" #include "llvm/Support/ErrorHandling.h" #include <algorithm> #include <cassert> #include <cstddef> #include <cstdint> #include <cstdlib> #include <functional> #include <initializer_list> #include <iterator> #include <limits> #include <memory> #include <optional> #include <tuple> #include <type_traits> #include <utility> #ifdef EXPENSIVE_CHECKS #include <random> // for std::mt19937 #endif namespace llvm { // Only used by compiler if both template types are the same. Useful when // using SFINAE to test for the existence of member functions. template <typename T, T> struct SameType; namespace detail { template <typename RangeT> using IterOfRange = decltype(std::begin(std::declval<RangeT &>())); template <typename RangeT> using ValueOfRange = std::remove_reference_t<decltype(*std::begin(std::declval<RangeT &>()))>; } // end namespace detail //===----------------------------------------------------------------------===// // Extra additions to <type_traits> //===----------------------------------------------------------------------===// template <typename T> struct make_const_ptr { using type = std::add_pointer_t<std::add_const_t<T>>; }; template <typename T> struct make_const_ref { using type = std::add_lvalue_reference_t<std::add_const_t<T>>; }; namespace detail { template <class, template <class...> class Op, class... Args> struct detector { using value_t = std::false_type; }; template <template <class...> class Op, class... Args> struct detector<std::void_t<Op<Args...>>, Op, Args...> { using value_t = std::true_type; }; } // end namespace detail /// Detects if a given trait holds for some set of arguments 'Args'. /// For example, the given trait could be used to detect if a given type /// has a copy assignment operator: /// template<class T> /// using has_copy_assign_t = decltype(std::declval<T&>() /// = std::declval<const T&>()); /// bool fooHasCopyAssign = is_detected<has_copy_assign_t, FooClass>::value; template <template <class...> class Op, class... Args> using is_detected = typename detail::detector<void, Op, Args...>::value_t; /// This class provides various trait information about a callable object. /// * To access the number of arguments: Traits::num_args /// * To access the type of an argument: Traits::arg_t<Index> /// * To access the type of the result: Traits::result_t template <typename T, bool isClass = std::is_class<T>::value> struct function_traits : public function_traits<decltype(&T::operator())> {}; /// Overload for class function types. template <typename ClassType, typename ReturnType, typename... Args> struct function_traits<ReturnType (ClassType::*)(Args...) const, false> { /// The number of arguments to this function. enum { num_args = sizeof...(Args) }; /// The result type of this function. using result_t = ReturnType; /// The type of an argument to this function. template <size_t Index> using arg_t = std::tuple_element_t<Index, std::tuple<Args...>>; }; /// Overload for class function types. template <typename ClassType, typename ReturnType, typename... Args> struct function_traits<ReturnType (ClassType::*)(Args...), false> : public function_traits<ReturnType (ClassType::*)(Args...) const> {}; /// Overload for non-class function types. template <typename ReturnType, typename... Args> struct function_traits<ReturnType (*)(Args...), false> { /// The number of arguments to this function. enum { num_args = sizeof...(Args) }; /// The result type of this function. using result_t = ReturnType; /// The type of an argument to this function. template <size_t i> using arg_t = std::tuple_element_t<i, std::tuple<Args...>>; }; template <typename ReturnType, typename... Args> struct function_traits<ReturnType (*const)(Args...), false> : public function_traits<ReturnType (*)(Args...)> {}; /// Overload for non-class function type references. template <typename ReturnType, typename... Args> struct function_traits<ReturnType (&)(Args...), false> : public function_traits<ReturnType (*)(Args...)> {}; /// traits class for checking whether type T is one of any of the given /// types in the variadic list. template <typename T, typename... Ts> using is_one_of = std::disjunction<std::is_same<T, Ts>...>; /// traits class for checking whether type T is a base class for all /// the given types in the variadic list. template <typename T, typename... Ts> using are_base_of = std::conjunction<std::is_base_of<T, Ts>...>; namespace detail { template <typename T, typename... Us> struct TypesAreDistinct; template <typename T, typename... Us> struct TypesAreDistinct : std::integral_constant<bool, !is_one_of<T, Us...>::value && TypesAreDistinct<Us...>::value> {}; template <typename T> struct TypesAreDistinct<T> : std::true_type {}; } // namespace detail /// Determine if all types in Ts are distinct. /// /// Useful to statically assert when Ts is intended to describe a non-multi set /// of types. /// /// Expensive (currently quadratic in sizeof(Ts...)), and so should only be /// asserted once per instantiation of a type which requires it. template <typename... Ts> struct TypesAreDistinct; template <> struct TypesAreDistinct<> : std::true_type {}; template <typename... Ts> struct TypesAreDistinct : std::integral_constant<bool, detail::TypesAreDistinct<Ts...>::value> {}; /// Find the first index where a type appears in a list of types. /// /// FirstIndexOfType<T, Us...>::value is the first index of T in Us. /// /// Typically only meaningful when it is otherwise statically known that the /// type pack has no duplicate types. This should be guaranteed explicitly with /// static_assert(TypesAreDistinct<Us...>::value). /// /// It is a compile-time error to instantiate when T is not present in Us, i.e. /// if is_one_of<T, Us...>::value is false. template <typename T, typename... Us> struct FirstIndexOfType; template <typename T, typename U, typename... Us> struct FirstIndexOfType<T, U, Us...> : std::integral_constant<size_t, 1 + FirstIndexOfType<T, Us...>::value> {}; template <typename T, typename... Us> struct FirstIndexOfType<T, T, Us...> : std::integral_constant<size_t, 0> {}; /// Find the type at a given index in a list of types. /// /// TypeAtIndex<I, Ts...> is the type at index I in Ts. template <size_t I, typename... Ts> using TypeAtIndex = std::tuple_element_t<I, std::tuple<Ts...>>; /// Helper which adds two underlying types of enumeration type. /// Implicit conversion to a common type is accepted. template <typename EnumTy1, typename EnumTy2, typename UT1 = std::enable_if_t<std::is_enum<EnumTy1>::value, std::underlying_type_t<EnumTy1>>, typename UT2 = std::enable_if_t<std::is_enum<EnumTy2>::value, std::underlying_type_t<EnumTy2>>> constexpr auto addEnumValues(EnumTy1 LHS, EnumTy2 RHS) { return static_cast<UT1>(LHS) + static_cast<UT2>(RHS); } //===----------------------------------------------------------------------===// // Extra additions to <iterator> //===----------------------------------------------------------------------===// namespace callable_detail { /// Templated storage wrapper for a callable. /// /// This class is consistently default constructible, copy / move /// constructible / assignable. /// /// Supported callable types: /// - Function pointer /// - Function reference /// - Lambda /// - Function object template <typename T, bool = std::is_function_v<std::remove_pointer_t<remove_cvref_t<T>>>> class Callable { using value_type = std::remove_reference_t<T>; using reference = value_type &; using const_reference = value_type const &; std::optional<value_type> Obj; static_assert(!std::is_pointer_v<value_type>, "Pointers to non-functions are not callable."); public: Callable() = default; Callable(T const &O) : Obj(std::in_place, O) {} Callable(Callable const &Other) = default; Callable(Callable &&Other) = default; Callable &operator=(Callable const &Other) { Obj = std::nullopt; if (Other.Obj) Obj.emplace(*Other.Obj); return *this; } Callable &operator=(Callable &&Other) { Obj = std::nullopt; if (Other.Obj) Obj.emplace(std::move(*Other.Obj)); return *this; } template <typename... Pn, std::enable_if_t<std::is_invocable_v<T, Pn...>, int> = 0> decltype(auto) operator()(Pn &&...Params) { return (*Obj)(std::forward<Pn>(Params)...); } template <typename... Pn, std::enable_if_t<std::is_invocable_v<T const, Pn...>, int> = 0> decltype(auto) operator()(Pn &&...Params) const { return (*Obj)(std::forward<Pn>(Params)...); } bool valid() const { return Obj != std::nullopt; } bool reset() { return Obj = std::nullopt; } operator reference() { return *Obj; } operator const_reference() const { return *Obj; } }; // Function specialization. No need to waste extra space wrapping with a // std::optional. template <typename T> class Callable<T, true> { static constexpr bool IsPtr = std::is_pointer_v<remove_cvref_t<T>>; using StorageT = std::conditional_t<IsPtr, T, std::remove_reference_t<T> *>; using CastT = std::conditional_t<IsPtr, T, T &>; private: StorageT Func = nullptr; private: template <typename In> static constexpr auto convertIn(In &&I) { if constexpr (IsPtr) { // Pointer... just echo it back. return I; } else { // Must be a function reference. Return its address. return &I; } } public: Callable() = default; // Construct from a function pointer or reference. // // Disable this constructor for references to 'Callable' so we don't violate // the rule of 0. template < // clang-format off typename FnPtrOrRef, std::enable_if_t< !std::is_same_v<remove_cvref_t<FnPtrOrRef>, Callable>, int > = 0 > // clang-format on Callable(FnPtrOrRef &&F) : Func(convertIn(F)) {} template <typename... Pn, std::enable_if_t<std::is_invocable_v<T, Pn...>, int> = 0> decltype(auto) operator()(Pn &&...Params) const { return Func(std::forward<Pn>(Params)...); } bool valid() const { return Func != nullptr; } void reset() { Func = nullptr; } operator T const &() const { if constexpr (IsPtr) { // T is a pointer... just echo it back. return Func; } else { static_assert(std::is_reference_v<T>, "Expected a reference to a function."); // T is a function reference... dereference the stored pointer. return *Func; } } }; } // namespace callable_detail namespace adl_detail { using std::begin; template <typename ContainerTy> decltype(auto) adl_begin(ContainerTy &&container) { return begin(std::forward<ContainerTy>(container)); } using std::end; template <typename ContainerTy> decltype(auto) adl_end(ContainerTy &&container) { return end(std::forward<ContainerTy>(container)); } using std::swap; template <typename T> void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(), std::declval<T>()))) { swap(std::forward<T>(lhs), std::forward<T>(rhs)); } } // end namespace adl_detail template <typename ContainerTy> decltype(auto) adl_begin(ContainerTy &&container) { return adl_detail::adl_begin(std::forward<ContainerTy>(container)); } template <typename ContainerTy> decltype(auto) adl_end(ContainerTy &&container) { return adl_detail::adl_end(std::forward<ContainerTy>(container)); } template <typename T> void adl_swap(T &&lhs, T &&rhs) noexcept( noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) { adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs)); } /// Returns true if the given container only contains a single element. template <typename ContainerTy> bool hasSingleElement(ContainerTy &&C) { auto B = std::begin(C), E = std::end(C); return B != E && std::next(B) == E; } /// Return a range covering \p RangeOrContainer with the first N elements /// excluded. template <typename T> auto drop_begin(T &&RangeOrContainer, size_t N = 1) { return make_range(std::next(adl_begin(RangeOrContainer), N), adl_end(RangeOrContainer)); } /// Return a range covering \p RangeOrContainer with the last N elements /// excluded. template <typename T> auto drop_end(T &&RangeOrContainer, size_t N = 1) { return make_range(adl_begin(RangeOrContainer), std::prev(adl_end(RangeOrContainer), N)); } // mapped_iterator - This is a simple iterator adapter that causes a function to // be applied whenever operator* is invoked on the iterator. template <typename ItTy, typename FuncTy, typename ReferenceTy = decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))> class mapped_iterator : public iterator_adaptor_base< mapped_iterator<ItTy, FuncTy>, ItTy, typename std::iterator_traits<ItTy>::iterator_category, std::remove_reference_t<ReferenceTy>, typename std::iterator_traits<ItTy>::difference_type, std::remove_reference_t<ReferenceTy> *, ReferenceTy> { public: mapped_iterator() = default; mapped_iterator(ItTy U, FuncTy F) : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {} ItTy getCurrent() { return this->I; } const FuncTy &getFunction() const { return F; } ReferenceTy operator*() const { return F(*this->I); } private: callable_detail::Callable<FuncTy> F{}; }; // map_iterator - Provide a convenient way to create mapped_iterators, just like // make_pair is useful for creating pairs... template <class ItTy, class FuncTy> inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) { return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F)); } template <class ContainerTy, class FuncTy> auto map_range(ContainerTy &&C, FuncTy F) { return make_range(map_iterator(C.begin(), F), map_iterator(C.end(), F)); } /// A base type of mapped iterator, that is useful for building derived /// iterators that do not need/want to store the map function (as in /// mapped_iterator). These iterators must simply provide a `mapElement` method /// that defines how to map a value of the iterator to the provided reference /// type. template <typename DerivedT, typename ItTy, typename ReferenceTy> class mapped_iterator_base : public iterator_adaptor_base< DerivedT, ItTy, typename std::iterator_traits<ItTy>::iterator_category, std::remove_reference_t<ReferenceTy>, typename std::iterator_traits<ItTy>::difference_type, std::remove_reference_t<ReferenceTy> *, ReferenceTy> { public: using BaseT = mapped_iterator_base; mapped_iterator_base(ItTy U) : mapped_iterator_base::iterator_adaptor_base(std::move(U)) {} ItTy getCurrent() { return this->I; } ReferenceTy operator*() const { return static_cast<const DerivedT &>(*this).mapElement(*this->I); } }; /// Helper to determine if type T has a member called rbegin(). template <typename Ty> class has_rbegin_impl { using yes = char[1]; using no = char[2]; template <typename Inner> static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr); template <typename> static no& test(...); public: static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes); }; /// Metafunction to determine if T& or T has a member called rbegin(). template <typename Ty> struct has_rbegin : has_rbegin_impl<std::remove_reference_t<Ty>> {}; // Returns an iterator_range over the given container which iterates in reverse. template <typename ContainerTy> auto reverse(ContainerTy &&C) { if constexpr (has_rbegin<ContainerTy>::value) return make_range(C.rbegin(), C.rend()); else return make_range(std::make_reverse_iterator(std::end(C)), std::make_reverse_iterator(std::begin(C))); } /// An iterator adaptor that filters the elements of given inner iterators. /// /// The predicate parameter should be a callable object that accepts the wrapped /// iterator's reference type and returns a bool. When incrementing or /// decrementing the iterator, it will call the predicate on each element and /// skip any where it returns false. /// /// \code /// int A[] = { 1, 2, 3, 4 }; /// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; }); /// // R contains { 1, 3 }. /// \endcode /// /// Note: filter_iterator_base implements support for forward iteration. /// filter_iterator_impl exists to provide support for bidirectional iteration, /// conditional on whether the wrapped iterator supports it. template <typename WrappedIteratorT, typename PredicateT, typename IterTag> class filter_iterator_base : public iterator_adaptor_base< filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>, WrappedIteratorT, std::common_type_t<IterTag, typename std::iterator_traits< WrappedIteratorT>::iterator_category>> { using BaseT = typename filter_iterator_base::iterator_adaptor_base; protected: WrappedIteratorT End; PredicateT Pred; void findNextValid() { while (this->I != End && !Pred(*this->I)) BaseT::operator++(); } filter_iterator_base() = default; // Construct the iterator. The begin iterator needs to know where the end // is, so that it can properly stop when it gets there. The end iterator only // needs the predicate to support bidirectional iteration. filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End, PredicateT Pred) : BaseT(Begin), End(End), Pred(Pred) { findNextValid(); } public: using BaseT::operator++; filter_iterator_base &operator++() { BaseT::operator++(); findNextValid(); return *this; } decltype(auto) operator*() const { assert(BaseT::wrapped() != End && "Cannot dereference end iterator!"); return BaseT::operator*(); } decltype(auto) operator->() const { assert(BaseT::wrapped() != End && "Cannot dereference end iterator!"); return BaseT::operator->(); } }; /// Specialization of filter_iterator_base for forward iteration only. template <typename WrappedIteratorT, typename PredicateT, typename IterTag = std::forward_iterator_tag> class filter_iterator_impl : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> { public: filter_iterator_impl() = default; filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End, PredicateT Pred) : filter_iterator_impl::filter_iterator_base(Begin, End, Pred) {} }; /// Specialization of filter_iterator_base for bidirectional iteration. template <typename WrappedIteratorT, typename PredicateT> class filter_iterator_impl<WrappedIteratorT, PredicateT, std::bidirectional_iterator_tag> : public filter_iterator_base<WrappedIteratorT, PredicateT, std::bidirectional_iterator_tag> { using BaseT = typename filter_iterator_impl::filter_iterator_base; void findPrevValid() { while (!this->Pred(*this->I)) BaseT::operator--(); } public: using BaseT::operator--; filter_iterator_impl() = default; filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End, PredicateT Pred) : BaseT(Begin, End, Pred) {} filter_iterator_impl &operator--() { BaseT::operator--(); findPrevValid(); return *this; } }; namespace detail { template <bool is_bidirectional> struct fwd_or_bidi_tag_impl { using type = std::forward_iterator_tag; }; template <> struct fwd_or_bidi_tag_impl<true> { using type = std::bidirectional_iterator_tag; }; /// Helper which sets its type member to forward_iterator_tag if the category /// of \p IterT does not derive from bidirectional_iterator_tag, and to /// bidirectional_iterator_tag otherwise. template <typename IterT> struct fwd_or_bidi_tag { using type = typename fwd_or_bidi_tag_impl<std::is_base_of< std::bidirectional_iterator_tag, typename std::iterator_traits<IterT>::iterator_category>::value>::type; }; } // namespace detail /// Defines filter_iterator to a suitable specialization of /// filter_iterator_impl, based on the underlying iterator's category. template <typename WrappedIteratorT, typename PredicateT> using filter_iterator = filter_iterator_impl< WrappedIteratorT, PredicateT, typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>; /// Convenience function that takes a range of elements and a predicate, /// and return a new filter_iterator range. /// /// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the /// lifetime of that temporary is not kept by the returned range object, and the /// temporary is going to be dropped on the floor after the make_iterator_range /// full expression that contains this function call. template <typename RangeT, typename PredicateT> iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>> make_filter_range(RangeT &&Range, PredicateT Pred) { using FilterIteratorT = filter_iterator<detail::IterOfRange<RangeT>, PredicateT>; return make_range( FilterIteratorT(std::begin(std::forward<RangeT>(Range)), std::end(std::forward<RangeT>(Range)), Pred), FilterIteratorT(std::end(std::forward<RangeT>(Range)), std::end(std::forward<RangeT>(Range)), Pred)); } /// A pseudo-iterator adaptor that is designed to implement "early increment" /// style loops. /// /// This is *not a normal iterator* and should almost never be used directly. It /// is intended primarily to be used with range based for loops and some range /// algorithms. /// /// The iterator isn't quite an `OutputIterator` or an `InputIterator` but /// somewhere between them. The constraints of these iterators are: /// /// - On construction or after being incremented, it is comparable and /// dereferencable. It is *not* incrementable. /// - After being dereferenced, it is neither comparable nor dereferencable, it /// is only incrementable. /// /// This means you can only dereference the iterator once, and you can only /// increment it once between dereferences. template <typename WrappedIteratorT> class early_inc_iterator_impl : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>, WrappedIteratorT, std::input_iterator_tag> { using BaseT = typename early_inc_iterator_impl::iterator_adaptor_base; using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer; protected: #if LLVM_ENABLE_ABI_BREAKING_CHECKS bool IsEarlyIncremented = false; #endif public: early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {} using BaseT::operator*; decltype(*std::declval<WrappedIteratorT>()) operator*() { #if LLVM_ENABLE_ABI_BREAKING_CHECKS assert(!IsEarlyIncremented && "Cannot dereference twice!"); IsEarlyIncremented = true; #endif return *(this->I)++; } using BaseT::operator++; early_inc_iterator_impl &operator++() { #if LLVM_ENABLE_ABI_BREAKING_CHECKS assert(IsEarlyIncremented && "Cannot increment before dereferencing!"); IsEarlyIncremented = false; #endif return *this; } friend bool operator==(const early_inc_iterator_impl &LHS, const early_inc_iterator_impl &RHS) { #if LLVM_ENABLE_ABI_BREAKING_CHECKS assert(!LHS.IsEarlyIncremented && "Cannot compare after dereferencing!"); #endif return (const BaseT &)LHS == (const BaseT &)RHS; } }; /// Make a range that does early increment to allow mutation of the underlying /// range without disrupting iteration. /// /// The underlying iterator will be incremented immediately after it is /// dereferenced, allowing deletion of the current node or insertion of nodes to /// not disrupt iteration provided they do not invalidate the *next* iterator -- /// the current iterator can be invalidated. /// /// This requires a very exact pattern of use that is only really suitable to /// range based for loops and other range algorithms that explicitly guarantee /// to dereference exactly once each element, and to increment exactly once each /// element. template <typename RangeT> iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>> make_early_inc_range(RangeT &&Range) { using EarlyIncIteratorT = early_inc_iterator_impl<detail::IterOfRange<RangeT>>; return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))), EarlyIncIteratorT(std::end(std::forward<RangeT>(Range)))); } // Forward declarations required by zip_shortest/zip_equal/zip_first/zip_longest template <typename R, typename UnaryPredicate> bool all_of(R &&range, UnaryPredicate P); template <typename R, typename UnaryPredicate> bool any_of(R &&range, UnaryPredicate P); template <typename T> bool all_equal(std::initializer_list<T> Values); namespace detail { using std::declval; // We have to alias this since inlining the actual type at the usage site // in the parameter list of iterator_facade_base<> below ICEs MSVC 2017. template<typename... Iters> struct ZipTupleType { using type = std::tuple<decltype(*declval<Iters>())...>; }; template <typename ZipType, typename... Iters> using zip_traits = iterator_facade_base< ZipType, std::common_type_t< std::bidirectional_iterator_tag, typename std::iterator_traits<Iters>::iterator_category...>, // ^ TODO: Implement random access methods. typename ZipTupleType<Iters...>::type, typename std::iterator_traits< std::tuple_element_t<0, std::tuple<Iters...>>>::difference_type, // ^ FIXME: This follows boost::make_zip_iterator's assumption that all // inner iterators have the same difference_type. It would fail if, for // instance, the second field's difference_type were non-numeric while the // first is. typename ZipTupleType<Iters...>::type *, typename ZipTupleType<Iters...>::type>; template <typename ZipType, typename... Iters> struct zip_common : public zip_traits<ZipType, Iters...> { using Base = zip_traits<ZipType, Iters...>; using value_type = typename Base::value_type; std::tuple<Iters...> iterators; protected: template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const { return value_type(*std::get<Ns>(iterators)...); } template <size_t... Ns> decltype(iterators) tup_inc(std::index_sequence<Ns...>) const { return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...); } template <size_t... Ns> decltype(iterators) tup_dec(std::index_sequence<Ns...>) const { return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...); } template <size_t... Ns> bool test_all_equals(const zip_common &other, std::index_sequence<Ns...>) const { return ((std::get<Ns>(this->iterators) == std::get<Ns>(other.iterators)) && ...); } public: zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {} value_type operator*() const { return deref(std::index_sequence_for<Iters...>{}); } ZipType &operator++() { iterators = tup_inc(std::index_sequence_for<Iters...>{}); return *reinterpret_cast<ZipType *>(this); } ZipType &operator--() { static_assert(Base::IsBidirectional, "All inner iterators must be at least bidirectional."); iterators = tup_dec(std::index_sequence_for<Iters...>{}); return *reinterpret_cast<ZipType *>(this); } /// Return true if all the iterator are matching `other`'s iterators. bool all_equals(zip_common &other) { return test_all_equals(other, std::index_sequence_for<Iters...>{}); } }; template <typename... Iters> struct zip_first : public zip_common<zip_first<Iters...>, Iters...> { using Base = zip_common<zip_first<Iters...>, Iters...>; bool operator==(const zip_first<Iters...> &other) const { return std::get<0>(this->iterators) == std::get<0>(other.iterators); } zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {} }; template <typename... Iters> class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> { template <size_t... Ns> bool test(const zip_shortest<Iters...> &other, std::index_sequence<Ns...>) const { return ((std::get<Ns>(this->iterators) != std::get<Ns>(other.iterators)) && ...); } public: using Base = zip_common<zip_shortest<Iters...>, Iters...>; zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {} bool operator==(const zip_shortest<Iters...> &other) const { return !test(other, std::index_sequence_for<Iters...>{}); } }; template <template <typename...> class ItType, typename... Args> class zippy { public: using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>; using iterator_category = typename iterator::iterator_category; using value_type = typename iterator::value_type; using difference_type = typename iterator::difference_type; using pointer = typename iterator::pointer; using reference = typename iterator::reference; private: std::tuple<Args...> ts; template <size_t... Ns> iterator begin_impl(std::index_sequence<Ns...>) const { return iterator(std::begin(std::get<Ns>(ts))...); } template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const { return iterator(std::end(std::get<Ns>(ts))...); } public: zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {} iterator begin() const { return begin_impl(std::index_sequence_for<Args...>{}); } iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); } }; } // end namespace detail /// zip iterator for two or more iteratable types. Iteration continues until the /// end of the *shortest* iteratee is reached. template <typename T, typename U, typename... Args> detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u, Args &&...args) { return detail::zippy<detail::zip_shortest, T, U, Args...>( std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); } /// zip iterator that assumes that all iteratees have the same length. /// In builds with assertions on, this assumption is checked before the /// iteration starts. template <typename T, typename U, typename... Args> detail::zippy<detail::zip_first, T, U, Args...> zip_equal(T &&t, U &&u, Args &&...args) { assert(all_equal({std::distance(adl_begin(t), adl_end(t)), std::distance(adl_begin(u), adl_end(u)), std::distance(adl_begin(args), adl_end(args))...}) && "Iteratees do not have equal length"); return detail::zippy<detail::zip_first, T, U, Args...>( std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); } /// zip iterator that, for the sake of efficiency, assumes the first iteratee to /// be the shortest. Iteration continues until the end of the first iteratee is /// reached. In builds with assertions on, we check that the assumption about /// the first iteratee being the shortest holds. template <typename T, typename U, typename... Args> detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u, Args &&...args) { assert(std::distance(adl_begin(t), adl_end(t)) <= std::min({std::distance(adl_begin(u), adl_end(u)), std::distance(adl_begin(args), adl_end(args))...}) && "First iteratee is not the shortest"); return detail::zippy<detail::zip_first, T, U, Args...>( std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); } namespace detail { template <typename Iter> Iter next_or_end(const Iter &I, const Iter &End) { if (I == End) return End; return std::next(I); } template <typename Iter> auto deref_or_none(const Iter &I, const Iter &End) -> std::optional< std::remove_const_t<std::remove_reference_t<decltype(*I)>>> { if (I == End) return std::nullopt; return *I; } template <typename Iter> struct ZipLongestItemType { using type = std::optional<std::remove_const_t< std::remove_reference_t<decltype(*std::declval<Iter>())>>>; }; template <typename... Iters> struct ZipLongestTupleType { using type = std::tuple<typename ZipLongestItemType<Iters>::type...>; }; template <typename... Iters> class zip_longest_iterator : public iterator_facade_base< zip_longest_iterator<Iters...>, std::common_type_t< std::forward_iterator_tag, typename std::iterator_traits<Iters>::iterator_category...>, typename ZipLongestTupleType<Iters...>::type, typename std::iterator_traits< std::tuple_element_t<0, std::tuple<Iters...>>>::difference_type, typename ZipLongestTupleType<Iters...>::type *, typename ZipLongestTupleType<Iters...>::type> { public: using value_type = typename ZipLongestTupleType<Iters...>::type; private: std::tuple<Iters...> iterators; std::tuple<Iters...> end_iterators; template <size_t... Ns> bool test(const zip_longest_iterator<Iters...> &other, std::index_sequence<Ns...>) const { return ((std::get<Ns>(this->iterators) != std::get<Ns>(other.iterators)) || ...); } template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const { return value_type( deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...); } template <size_t... Ns> decltype(iterators) tup_inc(std::index_sequence<Ns...>) const { return std::tuple<Iters...>( next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...); } public: zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts) : iterators(std::forward<Iters>(ts.first)...), end_iterators(std::forward<Iters>(ts.second)...) {} value_type operator*() const { return deref(std::index_sequence_for<Iters...>{}); } zip_longest_iterator<Iters...> &operator++() { iterators = tup_inc(std::index_sequence_for<Iters...>{}); return *this; } bool operator==(const zip_longest_iterator<Iters...> &other) const { return !test(other, std::index_sequence_for<Iters...>{}); } }; template <typename... Args> class zip_longest_range { public: using iterator = zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>; using iterator_category = typename iterator::iterator_category; using value_type = typename iterator::value_type; using difference_type = typename iterator::difference_type; using pointer = typename iterator::pointer; using reference = typename iterator::reference; private: std::tuple<Args...> ts; template <size_t... Ns> iterator begin_impl(std::index_sequence<Ns...>) const { return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)), adl_end(std::get<Ns>(ts)))...); } template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const { return iterator(std::make_pair(adl_end(std::get<Ns>(ts)), adl_end(std::get<Ns>(ts)))...); } public: zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {} iterator begin() const { return begin_impl(std::index_sequence_for<Args...>{}); } iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); } }; } // namespace detail /// Iterate over two or more iterators at the same time. Iteration continues /// until all iterators reach the end. The std::optional only contains a value /// if the iterator has not reached the end. template <typename T, typename U, typename... Args> detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u, Args &&... args) { return detail::zip_longest_range<T, U, Args...>( std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); } /// Iterator wrapper that concatenates sequences together. /// /// This can concatenate different iterators, even with different types, into /// a single iterator provided the value types of all the concatenated /// iterators expose `reference` and `pointer` types that can be converted to /// `ValueT &` and `ValueT *` respectively. It doesn't support more /// interesting/customized pointer or reference types. /// /// Currently this only supports forward or higher iterator categories as /// inputs and always exposes a forward iterator interface. template <typename ValueT, typename... IterTs> class concat_iterator : public iterator_facade_base<concat_iterator<ValueT, IterTs...>, std::forward_iterator_tag, ValueT> { using BaseT = typename concat_iterator::iterator_facade_base; /// We store both the current and end iterators for each concatenated /// sequence in a tuple of pairs. /// /// Note that something like iterator_range seems nice at first here, but the /// range properties are of little benefit and end up getting in the way /// because we need to do mutation on the current iterators. std::tuple<IterTs...> Begins; std::tuple<IterTs...> Ends; /// Attempts to increment a specific iterator. /// /// Returns true if it was able to increment the iterator. Returns false if /// the iterator is already at the end iterator. template <size_t Index> bool incrementHelper() { auto &Begin = std::get<Index>(Begins); auto &End = std::get<Index>(Ends); if (Begin == End) return false; ++Begin; return true; } /// Increments the first non-end iterator. /// /// It is an error to call this with all iterators at the end. template <size_t... Ns> void increment(std::index_sequence<Ns...>) { // Build a sequence of functions to increment each iterator if possible. bool (concat_iterator::*IncrementHelperFns[])() = { &concat_iterator::incrementHelper<Ns>...}; // Loop over them, and stop as soon as we succeed at incrementing one. for (auto &IncrementHelperFn : IncrementHelperFns) if ((this->*IncrementHelperFn)()) return; llvm_unreachable("Attempted to increment an end concat iterator!"); } /// Returns null if the specified iterator is at the end. Otherwise, /// dereferences the iterator and returns the address of the resulting /// reference. template <size_t Index> ValueT *getHelper() const { auto &Begin = std::get<Index>(Begins); auto &End = std::get<Index>(Ends); if (Begin == End) return nullptr; return &*Begin; } /// Finds the first non-end iterator, dereferences, and returns the resulting /// reference. /// /// It is an error to call this with all iterators at the end. template <size_t... Ns> ValueT &get(std::index_sequence<Ns...>) const { // Build a sequence of functions to get from iterator if possible. ValueT *(concat_iterator::*GetHelperFns[])() const = { &concat_iterator::getHelper<Ns>...}; // Loop over them, and return the first result we find. for (auto &GetHelperFn : GetHelperFns) if (ValueT *P = (this->*GetHelperFn)()) return *P; llvm_unreachable("Attempted to get a pointer from an end concat iterator!"); } public: /// Constructs an iterator from a sequence of ranges. /// /// We need the full range to know how to switch between each of the /// iterators. template <typename... RangeTs> explicit concat_iterator(RangeTs &&... Ranges) : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {} using BaseT::operator++; concat_iterator &operator++() { increment(std::index_sequence_for<IterTs...>()); return *this; } ValueT &operator*() const { return get(std::index_sequence_for<IterTs...>()); } bool operator==(const concat_iterator &RHS) const { return Begins == RHS.Begins && Ends == RHS.Ends; } }; namespace detail { /// Helper to store a sequence of ranges being concatenated and access them. /// /// This is designed to facilitate providing actual storage when temporaries /// are passed into the constructor such that we can use it as part of range /// based for loops. template <typename ValueT, typename... RangeTs> class concat_range { public: using iterator = concat_iterator<ValueT, decltype(std::begin(std::declval<RangeTs &>()))...>; private: std::tuple<RangeTs...> Ranges; template <size_t... Ns> iterator begin_impl(std::index_sequence<Ns...>) { return iterator(std::get<Ns>(Ranges)...); } template <size_t... Ns> iterator begin_impl(std::index_sequence<Ns...>) const { return iterator(std::get<Ns>(Ranges)...); } template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) { return iterator(make_range(std::end(std::get<Ns>(Ranges)), std::end(std::get<Ns>(Ranges)))...); } template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const { return iterator(make_range(std::end(std::get<Ns>(Ranges)), std::end(std::get<Ns>(Ranges)))...); } public: concat_range(RangeTs &&... Ranges) : Ranges(std::forward<RangeTs>(Ranges)...) {} iterator begin() { return begin_impl(std::index_sequence_for<RangeTs...>{}); } iterator begin() const { return begin_impl(std::index_sequence_for<RangeTs...>{}); } iterator end() { return end_impl(std::index_sequence_for<RangeTs...>{}); } iterator end() const { return end_impl(std::index_sequence_for<RangeTs...>{}); } }; } // end namespace detail /// Concatenated range across two or more ranges. /// /// The desired value type must be explicitly specified. template <typename ValueT, typename... RangeTs> detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) { static_assert(sizeof...(RangeTs) > 1, "Need more than one range to concatenate!"); return detail::concat_range<ValueT, RangeTs...>( std::forward<RangeTs>(Ranges)...); } /// A utility class used to implement an iterator that contains some base object /// and an index. The iterator moves the index but keeps the base constant. template <typename DerivedT, typename BaseT, typename T, typename PointerT = T *, typename ReferenceT = T &> class indexed_accessor_iterator : public llvm::iterator_facade_base<DerivedT, std::random_access_iterator_tag, T, std::ptrdiff_t, PointerT, ReferenceT> { public: ptrdiff_t operator-(const indexed_accessor_iterator &rhs) const { assert(base == rhs.base && "incompatible iterators"); return index - rhs.index; } bool operator==(const indexed_accessor_iterator &rhs) const { return base == rhs.base && index == rhs.index; } bool operator<(const indexed_accessor_iterator &rhs) const { assert(base == rhs.base && "incompatible iterators"); return index < rhs.index; } DerivedT &operator+=(ptrdiff_t offset) { this->index += offset; return static_cast<DerivedT &>(*this); } DerivedT &operator-=(ptrdiff_t offset) { this->index -= offset; return static_cast<DerivedT &>(*this); } /// Returns the current index of the iterator. ptrdiff_t getIndex() const { return index; } /// Returns the current base of the iterator. const BaseT &getBase() const { return base; } protected: indexed_accessor_iterator(BaseT base, ptrdiff_t index) : base(base), index(index) {} BaseT base; ptrdiff_t index; }; namespace detail { /// The class represents the base of a range of indexed_accessor_iterators. It /// provides support for many different range functionalities, e.g. /// drop_front/slice/etc.. Derived range classes must implement the following /// static methods: /// * ReferenceT dereference_iterator(const BaseT &base, ptrdiff_t index) /// - Dereference an iterator pointing to the base object at the given /// index. /// * BaseT offset_base(const BaseT &base, ptrdiff_t index) /// - Return a new base that is offset from the provide base by 'index' /// elements. template <typename DerivedT, typename BaseT, typename T, typename PointerT = T *, typename ReferenceT = T &> class indexed_accessor_range_base { public: using RangeBaseT = indexed_accessor_range_base; /// An iterator element of this range. class iterator : public indexed_accessor_iterator<iterator, BaseT, T, PointerT, ReferenceT> { public: // Index into this iterator, invoking a static method on the derived type. ReferenceT operator*() const { return DerivedT::dereference_iterator(this->getBase(), this->getIndex()); } private: iterator(BaseT owner, ptrdiff_t curIndex) : iterator::indexed_accessor_iterator(owner, curIndex) {} /// Allow access to the constructor. friend indexed_accessor_range_base<DerivedT, BaseT, T, PointerT, ReferenceT>; }; indexed_accessor_range_base(iterator begin, iterator end) : base(offset_base(begin.getBase(), begin.getIndex())), count(end.getIndex() - begin.getIndex()) {} indexed_accessor_range_base(const iterator_range<iterator> &range) : indexed_accessor_range_base(range.begin(), range.end()) {} indexed_accessor_range_base(BaseT base, ptrdiff_t count) : base(base), count(count) {} iterator begin() const { return iterator(base, 0); } iterator end() const { return iterator(base, count); } ReferenceT operator[](size_t Index) const { assert(Index < size() && "invalid index for value range"); return DerivedT::dereference_iterator(base, static_cast<ptrdiff_t>(Index)); } ReferenceT front() const { assert(!empty() && "expected non-empty range"); return (*this)[0]; } ReferenceT back() const { assert(!empty() && "expected non-empty range"); return (*this)[size() - 1]; } /// Compare this range with another. template <typename OtherT> friend bool operator==(const indexed_accessor_range_base &lhs, const OtherT &rhs) { return std::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end()); } template <typename OtherT> friend bool operator!=(const indexed_accessor_range_base &lhs, const OtherT &rhs) { return !(lhs == rhs); } /// Return the size of this range. size_t size() const { return count; } /// Return if the range is empty. bool empty() const { return size() == 0; } /// Drop the first N elements, and keep M elements. DerivedT slice(size_t n, size_t m) const { assert(n + m <= size() && "invalid size specifiers"); return DerivedT(offset_base(base, n), m); } /// Drop the first n elements. DerivedT drop_front(size_t n = 1) const { assert(size() >= n && "Dropping more elements than exist"); return slice(n, size() - n); } /// Drop the last n elements. DerivedT drop_back(size_t n = 1) const { assert(size() >= n && "Dropping more elements than exist"); return DerivedT(base, size() - n); } /// Take the first n elements. DerivedT take_front(size_t n = 1) const { return n < size() ? drop_back(size() - n) : static_cast<const DerivedT &>(*this); } /// Take the last n elements. DerivedT take_back(size_t n = 1) const { return n < size() ? drop_front(size() - n) : static_cast<const DerivedT &>(*this); } /// Allow conversion to any type accepting an iterator_range. template <typename RangeT, typename = std::enable_if_t<std::is_constructible< RangeT, iterator_range<iterator>>::value>> operator RangeT() const { return RangeT(iterator_range<iterator>(*this)); } /// Returns the base of this range. const BaseT &getBase() const { return base; } private: /// Offset the given base by the given amount. static BaseT offset_base(const BaseT &base, size_t n) { return n == 0 ? base : DerivedT::offset_base(base, n); } protected: indexed_accessor_range_base(const indexed_accessor_range_base &) = default; indexed_accessor_range_base(indexed_accessor_range_base &&) = default; indexed_accessor_range_base & operator=(const indexed_accessor_range_base &) = default; /// The base that owns the provided range of values. BaseT base; /// The size from the owning range. ptrdiff_t count; }; } // end namespace detail /// This class provides an implementation of a range of /// indexed_accessor_iterators where the base is not indexable. Ranges with /// bases that are offsetable should derive from indexed_accessor_range_base /// instead. Derived range classes are expected to implement the following /// static method: /// * ReferenceT dereference(const BaseT &base, ptrdiff_t index) /// - Dereference an iterator pointing to a parent base at the given index. template <typename DerivedT, typename BaseT, typename T, typename PointerT = T *, typename ReferenceT = T &> class indexed_accessor_range : public detail::indexed_accessor_range_base< DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT> { public: indexed_accessor_range(BaseT base, ptrdiff_t startIndex, ptrdiff_t count) : detail::indexed_accessor_range_base< DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT>( std::make_pair(base, startIndex), count) {} using detail::indexed_accessor_range_base< DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT>::indexed_accessor_range_base; /// Returns the current base of the range. const BaseT &getBase() const { return this->base.first; } /// Returns the current start index of the range. ptrdiff_t getStartIndex() const { return this->base.second; } /// See `detail::indexed_accessor_range_base` for details. static std::pair<BaseT, ptrdiff_t> offset_base(const std::pair<BaseT, ptrdiff_t> &base, ptrdiff_t index) { // We encode the internal base as a pair of the derived base and a start // index into the derived base. return std::make_pair(base.first, base.second + index); } /// See `detail::indexed_accessor_range_base` for details. static ReferenceT dereference_iterator(const std::pair<BaseT, ptrdiff_t> &base, ptrdiff_t index) { return DerivedT::dereference(base.first, base.second + index); } }; namespace detail { /// Return a reference to the first or second member of a reference. Otherwise, /// return a copy of the member of a temporary. /// /// When passing a range whose iterators return values instead of references, /// the reference must be dropped from `decltype((elt.first))`, which will /// always be a reference, to avoid returning a reference to a temporary. template <typename EltTy, typename FirstTy> class first_or_second_type { public: using type = std::conditional_t<std::is_reference<EltTy>::value, FirstTy, std::remove_reference_t<FirstTy>>; }; } // end namespace detail /// Given a container of pairs, return a range over the first elements. template <typename ContainerTy> auto make_first_range(ContainerTy &&c) { using EltTy = decltype((*std::begin(c))); return llvm::map_range(std::forward<ContainerTy>(c), [](EltTy elt) -> typename detail::first_or_second_type< EltTy, decltype((elt.first))>::type { return elt.first; }); } /// Given a container of pairs, return a range over the second elements. template <typename ContainerTy> auto make_second_range(ContainerTy &&c) { using EltTy = decltype((*std::begin(c))); return llvm::map_range( std::forward<ContainerTy>(c), [](EltTy elt) -> typename detail::first_or_second_type<EltTy, decltype((elt.second))>::type { return elt.second; }); } //===----------------------------------------------------------------------===// // Extra additions to <utility> //===----------------------------------------------------------------------===// /// Function object to check whether the first component of a std::pair /// compares less than the first component of another std::pair. struct less_first { template <typename T> bool operator()(const T &lhs, const T &rhs) const { return std::less<>()(lhs.first, rhs.first); } }; /// Function object to check whether the second component of a std::pair /// compares less than the second component of another std::pair. struct less_second { template <typename T> bool operator()(const T &lhs, const T &rhs) const { return std::less<>()(lhs.second, rhs.second); } }; /// \brief Function object to apply a binary function to the first component of /// a std::pair. template<typename FuncTy> struct on_first { FuncTy func; template <typename T> decltype(auto) operator()(const T &lhs, const T &rhs) const { return func(lhs.first, rhs.first); } }; /// Utility type to build an inheritance chain that makes it easy to rank /// overload candidates. template <int N> struct rank : rank<N - 1> {}; template <> struct rank<0> {}; /// traits class for checking whether type T is one of any of the given /// types in the variadic list. template <typename T, typename... Ts> using is_one_of = std::disjunction<std::is_same<T, Ts>...>; /// traits class for checking whether type T is a base class for all /// the given types in the variadic list. template <typename T, typename... Ts> using are_base_of = std::conjunction<std::is_base_of<T, Ts>...>; namespace detail { template <typename... Ts> struct Visitor; template <typename HeadT, typename... TailTs> struct Visitor<HeadT, TailTs...> : remove_cvref_t<HeadT>, Visitor<TailTs...> { explicit constexpr Visitor(HeadT &&Head, TailTs &&...Tail) : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)), Visitor<TailTs...>(std::forward<TailTs>(Tail)...) {} using remove_cvref_t<HeadT>::operator(); using Visitor<TailTs...>::operator(); }; template <typename HeadT> struct Visitor<HeadT> : remove_cvref_t<HeadT> { explicit constexpr Visitor(HeadT &&Head) : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)) {} using remove_cvref_t<HeadT>::operator(); }; } // namespace detail /// Returns an opaquely-typed Callable object whose operator() overload set is /// the sum of the operator() overload sets of each CallableT in CallableTs. /// /// The type of the returned object derives from each CallableT in CallableTs. /// The returned object is constructed by invoking the appropriate copy or move /// constructor of each CallableT, as selected by overload resolution on the /// corresponding argument to makeVisitor. /// /// Example: /// /// \code /// auto visitor = makeVisitor([](auto) { return "unhandled type"; }, /// [](int i) { return "int"; }, /// [](std::string s) { return "str"; }); /// auto a = visitor(42); // `a` is now "int". /// auto b = visitor("foo"); // `b` is now "str". /// auto c = visitor(3.14f); // `c` is now "unhandled type". /// \endcode /// /// Example of making a visitor with a lambda which captures a move-only type: /// /// \code /// std::unique_ptr<FooHandler> FH = /* ... */; /// auto visitor = makeVisitor( /// [FH{std::move(FH)}](Foo F) { return FH->handle(F); }, /// [](int i) { return i; }, /// [](std::string s) { return atoi(s); }); /// \endcode template <typename... CallableTs> constexpr decltype(auto) makeVisitor(CallableTs &&...Callables) { return detail::Visitor<CallableTs...>(std::forward<CallableTs>(Callables)...); } //===----------------------------------------------------------------------===// // Extra additions to <algorithm> //===----------------------------------------------------------------------===// // We have a copy here so that LLVM behaves the same when using different // standard libraries. template <class Iterator, class RNG> void shuffle(Iterator first, Iterator last, RNG &&g) { // It would be better to use a std::uniform_int_distribution, // but that would be stdlib dependent. typedef typename std::iterator_traits<Iterator>::difference_type difference_type; for (auto size = last - first; size > 1; ++first, (void)--size) { difference_type offset = g() % size; // Avoid self-assignment due to incorrect assertions in libstdc++ // containers (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85828). if (offset != difference_type(0)) std::iter_swap(first, first + offset); } } /// Adapt std::less<T> for array_pod_sort. template<typename T> inline int array_pod_sort_comparator(const void *P1, const void *P2) { if (std::less<T>()(*reinterpret_cast<const T*>(P1), *reinterpret_cast<const T*>(P2))) return -1; if (std::less<T>()(*reinterpret_cast<const T*>(P2), *reinterpret_cast<const T*>(P1))) return 1; return 0; } /// get_array_pod_sort_comparator - This is an internal helper function used to /// get type deduction of T right. template<typename T> inline int (*get_array_pod_sort_comparator(const T &)) (const void*, const void*) { return array_pod_sort_comparator<T>; } #ifdef EXPENSIVE_CHECKS namespace detail { inline unsigned presortShuffleEntropy() { static unsigned Result(std::random_device{}()); return Result; } template <class IteratorTy> inline void presortShuffle(IteratorTy Start, IteratorTy End) { std::mt19937 Generator(presortShuffleEntropy()); llvm::shuffle(Start, End, Generator); } } // end namespace detail #endif /// array_pod_sort - This sorts an array with the specified start and end /// extent. This is just like std::sort, except that it calls qsort instead of /// using an inlined template. qsort is slightly slower than std::sort, but /// most sorts are not performance critical in LLVM and std::sort has to be /// template instantiated for each type, leading to significant measured code /// bloat. This function should generally be used instead of std::sort where /// possible. /// /// This function assumes that you have simple POD-like types that can be /// compared with std::less and can be moved with memcpy. If this isn't true, /// you should use std::sort. /// /// NOTE: If qsort_r were portable, we could allow a custom comparator and /// default to std::less. template<class IteratorTy> inline void array_pod_sort(IteratorTy Start, IteratorTy End) { // Don't inefficiently call qsort with one element or trigger undefined // behavior with an empty sequence. auto NElts = End - Start; if (NElts <= 1) return; #ifdef EXPENSIVE_CHECKS detail::presortShuffle<IteratorTy>(Start, End); #endif qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start)); } template <class IteratorTy> inline void array_pod_sort( IteratorTy Start, IteratorTy End, int (*Compare)( const typename std::iterator_traits<IteratorTy>::value_type *, const typename std::iterator_traits<IteratorTy>::value_type *)) { // Don't inefficiently call qsort with one element or trigger undefined // behavior with an empty sequence. auto NElts = End - Start; if (NElts <= 1) return; #ifdef EXPENSIVE_CHECKS detail::presortShuffle<IteratorTy>(Start, End); #endif qsort(&*Start, NElts, sizeof(*Start), reinterpret_cast<int (*)(const void *, const void *)>(Compare)); } namespace detail { template <typename T> // We can use qsort if the iterator type is a pointer and the underlying value // is trivially copyable. using sort_trivially_copyable = std::conjunction< std::is_pointer<T>, std::is_trivially_copyable<typename std::iterator_traits<T>::value_type>>; } // namespace detail // Provide wrappers to std::sort which shuffle the elements before sorting // to help uncover non-deterministic behavior (PR35135). template <typename IteratorTy> inline void sort(IteratorTy Start, IteratorTy End) { if constexpr (detail::sort_trivially_copyable<IteratorTy>::value) { // Forward trivially copyable types to array_pod_sort. This avoids a large // amount of code bloat for a minor performance hit. array_pod_sort(Start, End); } else { #ifdef EXPENSIVE_CHECKS detail::presortShuffle<IteratorTy>(Start, End); #endif std::sort(Start, End); } } template <typename Container> inline void sort(Container &&C) { llvm::sort(adl_begin(C), adl_end(C)); } template <typename IteratorTy, typename Compare> inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) { #ifdef EXPENSIVE_CHECKS detail::presortShuffle<IteratorTy>(Start, End); #endif std::sort(Start, End, Comp); } template <typename Container, typename Compare> inline void sort(Container &&C, Compare Comp) { llvm::sort(adl_begin(C), adl_end(C), Comp); } /// Get the size of a range. This is a wrapper function around std::distance /// which is only enabled when the operation is O(1). template <typename R> auto size(R &&Range, std::enable_if_t< std::is_base_of<std::random_access_iterator_tag, typename std::iterator_traits<decltype( Range.begin())>::iterator_category>::value, void> * = nullptr) { return std::distance(Range.begin(), Range.end()); } /// Provide wrappers to std::for_each which take ranges instead of having to /// pass begin/end explicitly. template <typename R, typename UnaryFunction> UnaryFunction for_each(R &&Range, UnaryFunction F) { return std::for_each(adl_begin(Range), adl_end(Range), F); } /// Provide wrappers to std::all_of which take ranges instead of having to pass /// begin/end explicitly. template <typename R, typename UnaryPredicate> bool all_of(R &&Range, UnaryPredicate P) { return std::all_of(adl_begin(Range), adl_end(Range), P); } /// Provide wrappers to std::any_of which take ranges instead of having to pass /// begin/end explicitly. template <typename R, typename UnaryPredicate> bool any_of(R &&Range, UnaryPredicate P) { return std::any_of(adl_begin(Range), adl_end(Range), P); } /// Provide wrappers to std::none_of which take ranges instead of having to pass /// begin/end explicitly. template <typename R, typename UnaryPredicate> bool none_of(R &&Range, UnaryPredicate P) { return std::none_of(adl_begin(Range), adl_end(Range), P); } /// Provide wrappers to std::find which take ranges instead of having to pass /// begin/end explicitly. template <typename R, typename T> auto find(R &&Range, const T &Val) { return std::find(adl_begin(Range), adl_end(Range), Val); } /// Provide wrappers to std::find_if which take ranges instead of having to pass /// begin/end explicitly. template <typename R, typename UnaryPredicate> auto find_if(R &&Range, UnaryPredicate P) { return std::find_if(adl_begin(Range), adl_end(Range), P); } template <typename R, typename UnaryPredicate> auto find_if_not(R &&Range, UnaryPredicate P) { return std::find_if_not(adl_begin(Range), adl_end(Range), P); } /// Provide wrappers to std::remove_if which take ranges instead of having to /// pass begin/end explicitly. template <typename R, typename UnaryPredicate> auto remove_if(R &&Range, UnaryPredicate P) { return std::remove_if(adl_begin(Range), adl_end(Range), P); } /// Provide wrappers to std::copy_if which take ranges instead of having to /// pass begin/end explicitly. template <typename R, typename OutputIt, typename UnaryPredicate> OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) { return std::copy_if(adl_begin(Range), adl_end(Range), Out, P); } /// Return the single value in \p Range that satisfies /// \p P(<member of \p Range> *, AllowRepeats)->T * returning nullptr /// when no values or multiple values were found. /// When \p AllowRepeats is true, multiple values that compare equal /// are allowed. template <typename T, typename R, typename Predicate> T *find_singleton(R &&Range, Predicate P, bool AllowRepeats = false) { T *RC = nullptr; for (auto *A : Range) { if (T *PRC = P(A, AllowRepeats)) { if (RC) { if (!AllowRepeats || PRC != RC) return nullptr; } else RC = PRC; } } return RC; } /// Return a pair consisting of the single value in \p Range that satisfies /// \p P(<member of \p Range> *, AllowRepeats)->std::pair<T*, bool> returning /// nullptr when no values or multiple values were found, and a bool indicating /// whether multiple values were found to cause the nullptr. /// When \p AllowRepeats is true, multiple values that compare equal are /// allowed. The predicate \p P returns a pair<T *, bool> where T is the /// singleton while the bool indicates whether multiples have already been /// found. It is expected that first will be nullptr when second is true. /// This allows using find_singleton_nested within the predicate \P. template <typename T, typename R, typename Predicate> std::pair<T *, bool> find_singleton_nested(R &&Range, Predicate P, bool AllowRepeats = false) { T *RC = nullptr; for (auto *A : Range) { std::pair<T *, bool> PRC = P(A, AllowRepeats); if (PRC.second) { assert(PRC.first == nullptr && "Inconsistent return values in find_singleton_nested."); return PRC; } if (PRC.first) { if (RC) { if (!AllowRepeats || PRC.first != RC) return {nullptr, true}; } else RC = PRC.first; } } return {RC, false}; } template <typename R, typename OutputIt> OutputIt copy(R &&Range, OutputIt Out) { return std::copy(adl_begin(Range), adl_end(Range), Out); } /// Provide wrappers to std::replace_copy_if which take ranges instead of having /// to pass begin/end explicitly. template <typename R, typename OutputIt, typename UnaryPredicate, typename T> OutputIt replace_copy_if(R &&Range, OutputIt Out, UnaryPredicate P, const T &NewValue) { return std::replace_copy_if(adl_begin(Range), adl_end(Range), Out, P, NewValue); } /// Provide wrappers to std::replace_copy which take ranges instead of having to /// pass begin/end explicitly. template <typename R, typename OutputIt, typename T> OutputIt replace_copy(R &&Range, OutputIt Out, const T &OldValue, const T &NewValue) { return std::replace_copy(adl_begin(Range), adl_end(Range), Out, OldValue, NewValue); } /// Provide wrappers to std::move which take ranges instead of having to /// pass begin/end explicitly. template <typename R, typename OutputIt> OutputIt move(R &&Range, OutputIt Out) { return std::move(adl_begin(Range), adl_end(Range), Out); } /// Wrapper function around std::find to detect if an element exists /// in a container. template <typename R, typename E> bool is_contained(R &&Range, const E &Element) { return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range); } template <typename T> constexpr bool is_contained(std::initializer_list<T> Set, T Value) { // TODO: Use std::find when we switch to C++20. for (T V : Set) if (V == Value) return true; return false; } /// Wrapper function around std::is_sorted to check if elements in a range \p R /// are sorted with respect to a comparator \p C. template <typename R, typename Compare> bool is_sorted(R &&Range, Compare C) { return std::is_sorted(adl_begin(Range), adl_end(Range), C); } /// Wrapper function around std::is_sorted to check if elements in a range \p R /// are sorted in non-descending order. template <typename R> bool is_sorted(R &&Range) { return std::is_sorted(adl_begin(Range), adl_end(Range)); } /// Wrapper function around std::count to count the number of times an element /// \p Element occurs in the given range \p Range. template <typename R, typename E> auto count(R &&Range, const E &Element) { return std::count(adl_begin(Range), adl_end(Range), Element); } /// Wrapper function around std::count_if to count the number of times an /// element satisfying a given predicate occurs in a range. template <typename R, typename UnaryPredicate> auto count_if(R &&Range, UnaryPredicate P) { return std::count_if(adl_begin(Range), adl_end(Range), P); } /// Wrapper function around std::transform to apply a function to a range and /// store the result elsewhere. template <typename R, typename OutputIt, typename UnaryFunction> OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F) { return std::transform(adl_begin(Range), adl_end(Range), d_first, F); } /// Provide wrappers to std::partition which take ranges instead of having to /// pass begin/end explicitly. template <typename R, typename UnaryPredicate> auto partition(R &&Range, UnaryPredicate P) { return std::partition(adl_begin(Range), adl_end(Range), P); } /// Provide wrappers to std::lower_bound which take ranges instead of having to /// pass begin/end explicitly. template <typename R, typename T> auto lower_bound(R &&Range, T &&Value) { return std::lower_bound(adl_begin(Range), adl_end(Range), std::forward<T>(Value)); } template <typename R, typename T, typename Compare> auto lower_bound(R &&Range, T &&Value, Compare C) { return std::lower_bound(adl_begin(Range), adl_end(Range), std::forward<T>(Value), C); } /// Provide wrappers to std::upper_bound which take ranges instead of having to /// pass begin/end explicitly. template <typename R, typename T> auto upper_bound(R &&Range, T &&Value) { return std::upper_bound(adl_begin(Range), adl_end(Range), std::forward<T>(Value)); } template <typename R, typename T, typename Compare> auto upper_bound(R &&Range, T &&Value, Compare C) { return std::upper_bound(adl_begin(Range), adl_end(Range), std::forward<T>(Value), C); } template <typename R> void stable_sort(R &&Range) { std::stable_sort(adl_begin(Range), adl_end(Range)); } template <typename R, typename Compare> void stable_sort(R &&Range, Compare C) { std::stable_sort(adl_begin(Range), adl_end(Range), C); } /// Binary search for the first iterator in a range where a predicate is false. /// Requires that C is always true below some limit, and always false above it. template <typename R, typename Predicate, typename Val = decltype(*adl_begin(std::declval<R>()))> auto partition_point(R &&Range, Predicate P) { return std::partition_point(adl_begin(Range), adl_end(Range), P); } template<typename Range, typename Predicate> auto unique(Range &&R, Predicate P) { return std::unique(adl_begin(R), adl_end(R), P); } /// Wrapper function around std::equal to detect if pair-wise elements between /// two ranges are the same. template <typename L, typename R> bool equal(L &&LRange, R &&RRange) { return std::equal(adl_begin(LRange), adl_end(LRange), adl_begin(RRange), adl_end(RRange)); } /// Returns true if all elements in Range are equal or when the Range is empty. template <typename R> bool all_equal(R &&Range) { auto Begin = adl_begin(Range); auto End = adl_end(Range); return Begin == End || std::equal(Begin + 1, End, Begin); } /// Returns true if all Values in the initializer lists are equal or the list // is empty. template <typename T> bool all_equal(std::initializer_list<T> Values) { return all_equal<std::initializer_list<T>>(std::move(Values)); } /// Provide a container algorithm similar to C++ Library Fundamentals v2's /// `erase_if` which is equivalent to: /// /// C.erase(remove_if(C, pred), C.end()); /// /// This version works for any container with an erase method call accepting /// two iterators. template <typename Container, typename UnaryPredicate> void erase_if(Container &C, UnaryPredicate P) { C.erase(remove_if(C, P), C.end()); } /// Wrapper function to remove a value from a container: /// /// C.erase(remove(C.begin(), C.end(), V), C.end()); template <typename Container, typename ValueType> void erase_value(Container &C, ValueType V) { C.erase(std::remove(C.begin(), C.end(), V), C.end()); } /// Wrapper function to append a range to a container. /// /// C.insert(C.end(), R.begin(), R.end()); template <typename Container, typename Range> inline void append_range(Container &C, Range &&R) { C.insert(C.end(), R.begin(), R.end()); } /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with /// the range [ValIt, ValEnd) (which is not from the same container). template<typename Container, typename RandomAccessIterator> void replace(Container &Cont, typename Container::iterator ContIt, typename Container::iterator ContEnd, RandomAccessIterator ValIt, RandomAccessIterator ValEnd) { while (true) { if (ValIt == ValEnd) { Cont.erase(ContIt, ContEnd); return; } else if (ContIt == ContEnd) { Cont.insert(ContIt, ValIt, ValEnd); return; } *ContIt++ = *ValIt++; } } /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with /// the range R. template<typename Container, typename Range = std::initializer_list< typename Container::value_type>> void replace(Container &Cont, typename Container::iterator ContIt, typename Container::iterator ContEnd, Range R) { replace(Cont, ContIt, ContEnd, R.begin(), R.end()); } /// An STL-style algorithm similar to std::for_each that applies a second /// functor between every pair of elements. /// /// This provides the control flow logic to, for example, print a /// comma-separated list: /// \code /// interleave(names.begin(), names.end(), /// [&](StringRef name) { os << name; }, /// [&] { os << ", "; }); /// \endcode template <typename ForwardIterator, typename UnaryFunctor, typename NullaryFunctor, typename = std::enable_if_t< !std::is_constructible<StringRef, UnaryFunctor>::value && !std::is_constructible<StringRef, NullaryFunctor>::value>> inline void interleave(ForwardIterator begin, ForwardIterator end, UnaryFunctor each_fn, NullaryFunctor between_fn) { if (begin == end) return; each_fn(*begin); ++begin; for (; begin != end; ++begin) { between_fn(); each_fn(*begin); } } template <typename Container, typename UnaryFunctor, typename NullaryFunctor, typename = std::enable_if_t< !std::is_constructible<StringRef, UnaryFunctor>::value && !std::is_constructible<StringRef, NullaryFunctor>::value>> inline void interleave(const Container &c, UnaryFunctor each_fn, NullaryFunctor between_fn) { interleave(c.begin(), c.end(), each_fn, between_fn); } /// Overload of interleave for the common case of string separator. template <typename Container, typename UnaryFunctor, typename StreamT, typename T = detail::ValueOfRange<Container>> inline void interleave(const Container &c, StreamT &os, UnaryFunctor each_fn, const StringRef &separator) { interleave(c.begin(), c.end(), each_fn, [&] { os << separator; }); } template <typename Container, typename StreamT, typename T = detail::ValueOfRange<Container>> inline void interleave(const Container &c, StreamT &os, const StringRef &separator) { interleave( c, os, [&](const T &a) { os << a; }, separator); } template <typename Container, typename UnaryFunctor, typename StreamT, typename T = detail::ValueOfRange<Container>> inline void interleaveComma(const Container &c, StreamT &os, UnaryFunctor each_fn) { interleave(c, os, each_fn, ", "); } template <typename Container, typename StreamT, typename T = detail::ValueOfRange<Container>> inline void interleaveComma(const Container &c, StreamT &os) { interleaveComma(c, os, [&](const T &a) { os << a; }); } //===----------------------------------------------------------------------===// // Extra additions to <memory> //===----------------------------------------------------------------------===// struct FreeDeleter { void operator()(void* v) { ::free(v); } }; template<typename First, typename Second> struct pair_hash { size_t operator()(const std::pair<First, Second> &P) const { return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second); } }; /// Binary functor that adapts to any other binary functor after dereferencing /// operands. template <typename T> struct deref { T func; // Could be further improved to cope with non-derivable functors and // non-binary functors (should be a variadic template member function // operator()). template <typename A, typename B> auto operator()(A &lhs, B &rhs) const { assert(lhs); assert(rhs); return func(*lhs, *rhs); } }; namespace detail { template <typename R> class enumerator_iter; template <typename R> struct result_pair { using value_reference = typename std::iterator_traits<IterOfRange<R>>::reference; friend class enumerator_iter<R>; result_pair() = default; result_pair(std::size_t Index, IterOfRange<R> Iter) : Index(Index), Iter(Iter) {} result_pair(const result_pair<R> &Other) : Index(Other.Index), Iter(Other.Iter) {} result_pair &operator=(const result_pair &Other) { Index = Other.Index; Iter = Other.Iter; return *this; } std::size_t index() const { return Index; } value_reference value() const { return *Iter; } private: std::size_t Index = std::numeric_limits<std::size_t>::max(); IterOfRange<R> Iter; }; template <std::size_t i, typename R> decltype(auto) get(const result_pair<R> &Pair) { static_assert(i < 2); if constexpr (i == 0) { return Pair.index(); } else { return Pair.value(); } } template <typename R> class enumerator_iter : public iterator_facade_base<enumerator_iter<R>, std::forward_iterator_tag, const result_pair<R>> { using result_type = result_pair<R>; public: explicit enumerator_iter(IterOfRange<R> EndIter) : Result(std::numeric_limits<size_t>::max(), EndIter) {} enumerator_iter(std::size_t Index, IterOfRange<R> Iter) : Result(Index, Iter) {} const result_type &operator*() const { return Result; } enumerator_iter &operator++() { assert(Result.Index != std::numeric_limits<size_t>::max()); ++Result.Iter; ++Result.Index; return *this; } bool operator==(const enumerator_iter &RHS) const { // Don't compare indices here, only iterators. It's possible for an end // iterator to have different indices depending on whether it was created // by calling std::end() versus incrementing a valid iterator. return Result.Iter == RHS.Result.Iter; } enumerator_iter(const enumerator_iter &Other) : Result(Other.Result) {} enumerator_iter &operator=(const enumerator_iter &Other) { Result = Other.Result; return *this; } private: result_type Result; }; template <typename R> class enumerator { public: explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {} enumerator_iter<R> begin() { return enumerator_iter<R>(0, std::begin(TheRange)); } enumerator_iter<R> begin() const { return enumerator_iter<R>(0, std::begin(TheRange)); } enumerator_iter<R> end() { return enumerator_iter<R>(std::end(TheRange)); } enumerator_iter<R> end() const { return enumerator_iter<R>(std::end(TheRange)); } private: R TheRange; }; } // end namespace detail /// Given an input range, returns a new range whose values are are pair (A,B) /// such that A is the 0-based index of the item in the sequence, and B is /// the value from the original sequence. Example: /// /// std::vector<char> Items = {'A', 'B', 'C', 'D'}; /// for (auto X : enumerate(Items)) { /// printf("Item %d - %c\n", X.index(), X.value()); /// } /// /// or using structured bindings: /// /// for (auto [Index, Value] : enumerate(Items)) { /// printf("Item %d - %c\n", Index, Value); /// } /// /// Output: /// Item 0 - A /// Item 1 - B /// Item 2 - C /// Item 3 - D /// template <typename R> detail::enumerator<R> enumerate(R &&TheRange) { return detail::enumerator<R>(std::forward<R>(TheRange)); } namespace detail { template <typename Predicate, typename... Args> bool all_of_zip_predicate_first(Predicate &&P, Args &&...args) { auto z = zip(args...); auto it = z.begin(); auto end = z.end(); while (it != end) { if (!std::apply([&](auto &&...args) { return P(args...); }, *it)) return false; ++it; } return it.all_equals(end); } // Just an adaptor to switch the order of argument and have the predicate before // the zipped inputs. template <typename... ArgsThenPredicate, size_t... InputIndexes> bool all_of_zip_predicate_last( std::tuple<ArgsThenPredicate...> argsThenPredicate, std::index_sequence<InputIndexes...>) { auto constexpr OutputIndex = std::tuple_size<decltype(argsThenPredicate)>::value - 1; return all_of_zip_predicate_first(std::get<OutputIndex>(argsThenPredicate), std::get<InputIndexes>(argsThenPredicate)...); } } // end namespace detail /// Compare two zipped ranges using the provided predicate (as last argument). /// Return true if all elements satisfy the predicate and false otherwise. // Return false if the zipped iterator aren't all at end (size mismatch). template <typename... ArgsAndPredicate> bool all_of_zip(ArgsAndPredicate &&...argsAndPredicate) { return detail::all_of_zip_predicate_last( std::forward_as_tuple(argsAndPredicate...), std::make_index_sequence<sizeof...(argsAndPredicate) - 1>{}); } /// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N) /// time. Not meant for use with random-access iterators. /// Can optionally take a predicate to filter lazily some items. template <typename IterTy, typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)> bool hasNItems( IterTy &&Begin, IterTy &&End, unsigned N, Pred &&ShouldBeCounted = [](const decltype(*std::declval<IterTy>()) &) { return true; }, std::enable_if_t< !std::is_base_of<std::random_access_iterator_tag, typename std::iterator_traits<std::remove_reference_t< decltype(Begin)>>::iterator_category>::value, void> * = nullptr) { for (; N; ++Begin) { if (Begin == End) return false; // Too few. N -= ShouldBeCounted(*Begin); } for (; Begin != End; ++Begin) if (ShouldBeCounted(*Begin)) return false; // Too many. return true; } /// Return true if the sequence [Begin, End) has N or more items. Runs in O(N) /// time. Not meant for use with random-access iterators. /// Can optionally take a predicate to lazily filter some items. template <typename IterTy, typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)> bool hasNItemsOrMore( IterTy &&Begin, IterTy &&End, unsigned N, Pred &&ShouldBeCounted = [](const decltype(*std::declval<IterTy>()) &) { return true; }, std::enable_if_t< !std::is_base_of<std::random_access_iterator_tag, typename std::iterator_traits<std::remove_reference_t< decltype(Begin)>>::iterator_category>::value, void> * = nullptr) { for (; N; ++Begin) { if (Begin == End) return false; // Too few. N -= ShouldBeCounted(*Begin); } return true; } /// Returns true if the sequence [Begin, End) has N or less items. Can /// optionally take a predicate to lazily filter some items. template <typename IterTy, typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)> bool hasNItemsOrLess( IterTy &&Begin, IterTy &&End, unsigned N, Pred &&ShouldBeCounted = [](const decltype(*std::declval<IterTy>()) &) { return true; }) { assert(N != std::numeric_limits<unsigned>::max()); return !hasNItemsOrMore(Begin, End, N + 1, ShouldBeCounted); } /// Returns true if the given container has exactly N items template <typename ContainerTy> bool hasNItems(ContainerTy &&C, unsigned N) { return hasNItems(std::begin(C), std::end(C), N); } /// Returns true if the given container has N or more items template <typename ContainerTy> bool hasNItemsOrMore(ContainerTy &&C, unsigned N) { return hasNItemsOrMore(std::begin(C), std::end(C), N); } /// Returns true if the given container has N or less items template <typename ContainerTy> bool hasNItemsOrLess(ContainerTy &&C, unsigned N) { return hasNItemsOrLess(std::begin(C), std::end(C), N); } /// Returns a raw pointer that represents the same address as the argument. /// /// This implementation can be removed once we move to C++20 where it's defined /// as std::to_address(). /// /// The std::pointer_traits<>::to_address(p) variations of these overloads has /// not been implemented. template <class Ptr> auto to_address(const Ptr &P) { return P.operator->(); } template <class T> constexpr T *to_address(T *P) { return P; } } // end namespace llvm namespace std { template <typename R> struct tuple_size<llvm::detail::result_pair<R>> : std::integral_constant<std::size_t, 2> {}; template <std::size_t i, typename R> struct tuple_element<i, llvm::detail::result_pair<R>> : std::conditional<i == 0, std::size_t, typename llvm::detail::result_pair<R>::value_reference> { }; } // namespace std #endif // LLVM_ADT_STLEXTRAS_H