Jacinda - Functional Stream Processing Language

Vanessa McHale

Contents
Tutorial 2
Language 2
Patterns + Implicits, Streams 2
Fold 3
Custom Field Separators 3
Map e 3
Functions o 3
ZiPS o o e e 4
SCaANS . . . e e 4
Prior 4
Deduplicate 5
Filter o)
Formatting Output 5
Reporting L 5
Libraries e 5
System Interaction oL oL 6
Define Values on the Command-Line 7
Learning Examples 7
WC o v e e e e e e e e e e e e e e e e 8
head L 8
basenameo e 8
L0 8
150 8
nl .o e 9
Practical Examples 9
File Sizes e 9
Vim Tags 10
Error Span 10
Extract Source from Cabal 11
Make Recipe: Format 11
Fixity Declarations for HLint 12
Data Processing oo 12

CSV Processing 12

Machinery 13
Typeclasses L 13
Functor 13

IsPrintf 13

Row Types 13

Tutorial

Jacinda is well-suited to processing the output of Unix tools: regular expressions
scan for relevant output and one can split on separators.

There is additionally support for filters, maps and folds that are familiar to
functional programmers.

Language
Patterns + Implicits, Streams

In Jacinda, one writes a pattern and an expression defined on matching lines,
viz.

{% <pattern>}{<expr>}

This defines a stream of expressions.

One can search a file for all occurrences of a string:
ja '{% /Bloom/}{ 0}' -i ulysses.txt

‘0 here functions like $0 in AWK: it means the whole line. So this would print
all lines that match the pattern Bloom.

We could imitate fd with, say:

1s -1 -R | ja '{% A .hs$/}{ 0}

This would print all Haskell source files in the current directory.
There is another form,

{<expr>}{<expr>}

where the initial expression is of boolean type, possibly involving the line context.
An example:

{#°0>110}{ 0}

This defines a stream of lines that are more than 110 bytes (# is ‘tally’, it returns
the length of a string).

There is also a syntax that defines a stream on all lines,

{lI<expr>}

So {| ‘0 } would define a stream of text corresponding to the lines in the file.

Fold
To count lines with the word “Bloom”:
ja '(+)10 {% /Bloom/}{1}' -i ulysses.txt

Note the fold, |. It is a ternary operator taking (+), 0, and {%/Bloom/}{1} as
arguments. The general syntax is:

<expr>|<expr> <expr>
It takes a binary operator, a seed, and a stream and returns an expression.

There is also D>, which folds without a seed.

Custom Field Separators
Like AWK, Jacinda allows us to define custom field separators:
printenv | ja -F= '{% /"PATH/}{ 2}"

This splits on = and matches lines beginning with PATH, returning the second
field—in this case, the value of PATH.

Map
Suppose we wish to count the lines in a file.
(+)1o {l1}

This uses aforementioned {|<expr>} syntax. It this defines a stream of 1s for
each line, and takes its sum.

We could also do the following;:
(#)10 [:1"$0

$0 is the stream of all lines. [: is the constant operator, a - b — a, so [:1
sends anything to 1.

" maps over a stream. So the above maps 1 over every line and takes the sum.

Functions
We could abstract away sum in the above example like so:

let val
sum := [(+)]0 x]
in sum {% /Bloom/}{1} end

In Jacinda, one can define functions with a dfn syntax in, like in APL. We do not
need to bind x; the variables x and y are implicit. Since [(+) [0 x] only mentions
x, it is treated as a unary function.

[y] is treated as binary. Thus, [y]>$0 prints the last line.
Note also that := is used for definition. The general syntax is

let (val <name> := <expr>)* in <expr> end

Lambdas There is syntactical support for lambdas;
\x. (#)10 x

would be equivalent to [(+) 10 x].

Zips

The syntax is:

, <expr> <expr> <expr>

One could (for instance) calculate population density:
. (%) $5: $e:

The postfix : parses the column based on inferred type; here it parses as a float.

Scans
The syntax is:
<expr> N <expr> <expr>

Scans are like folds, except that the intermediate value is tracked at each step.
One could define a stream containing line numbers for a file with:

(+)"0 [:1"$0

(this is the same as {lix})

Prior

Jacinda has a binary operator, \., like q’s each prior or J’s dyadic infix. One
could write:

succDiff := [(-) \. x]

to track successive differences.

Currying Jacinda allows partially applied (curried) functions; one could write

succDiff := ((-)\.)

https://help.dyalog.com/latest/#Language/Defined%20Functions%20and%20Operators/DynamicFunctions/Dynamic%20Functions%20and%20Operators.htm
https://code.kx.com/q/ref/maps/#each-prior
https://code.jsoftware.com/wiki/Vocabulary/bslash#dyadic

Deduplicate

Jacinda has stream deduplication built in with the ~. operator.

~.$0

This is far better than sort | uniq as it preserves order; it is equivalent to
la[$0]+ in AWK.

Filter

We can filter an extant stream with #., viz.

(>110) #. $1:i

#. takes as its left argument a unary function returning a boolean.

[#x>110] #. $0

would filter to those lines >110 bytes wide.

Formatting Output

One can format output with sprintf, which works like printf in AWK or C.
As an example,

{Isprintf '%i: %s' (ix. 0)}

would display a file annotated with line numbers. Note the atypical syntax for
tuples, we use . as a separator rather than ,.

Reporting

One can print a stream and a summary value (usually the result of a fold):
$1 $> (+)]0 $1:

Try:

seq 10000 | ja '$1 $> (+)|0 $1:°

Libraries
There is a syntax for functions:
fn sum(x) :=

(#)10 x;

fn drop(n, str) :=
let val 1 := #str
in substr str n 1 end;

Note the := and also the semicolon at the end of the expression that is the
function body.

Since Jacinda has support for higher-order functions, one could write:
fn any(p, xs) :=
CIP) 1#f p"xs;

fn all(p, xs) :=

(&) [#t p"xs;
File Includes One can @include files.
As an example, one could write:
@include'lib/string.jac'
fn path(x) :=

intercalate '\n' (splitc x ':');
path"$0

intercalate is defined in 1ib/string.jac.

In-Place File Modification We could trim whitespace from lines with:
(subl /\s+$/ 8)"$0

subl is like AWK’s sub and only substitutes the first occurrence. 8 is zilde, and
can be used to represent an empty string or vector.

Jacinda does not modify files in-place so one would need to use sponge, viz.

ja '(subl /\s+$/ 8)7$0' -i FILE | sponge FILE

Prelude

or = [(|])#f x]
and := [(&) [#t x]

count := [(+)]|0 [:1"x]

#t and #f are boolean literals.

System Interaction
Jacinda ignores any line beginning with #!, thus one could write a script like so:

#!/usr/bin/env -S ja run

https://joeyh.name/code/moreutils/

fn path(x) :=
([x+'\n'+y]) > (splitc x ':');

path"$0

Define Values on the Command-Line
We can jerry-rig a RIS to .bib converter:

:set fsi=/ -\sx/;

fn bib(ty) :=
?ty="JOUR'; 'article'’
;?ty="B0O0K"'; 'book'
;2ty="CONF'; 'inproceedings'
;'misc';

fn field(r) :=
?r="AU"';Some 'author'
;?r="PY';Some 'year'
;?2r="TI';Some 'title'
;?r="VL';Some 'volume'
;?2r="J0"';Some 'journal'
;?2r='D0"';Some 'doi'
;None;

2] ?271="TY';Some ('@'+bib “2+'{'+name+',"')
;?°1="ER';Some '}’
;2 1="UR"';Some (" url={\\url{'+2+'}},")
S[Cax+'={'+ 2+'}, ' 17 (field "1}

Running this on its own will fail:
ja: 22:36 'name' is not in scope.
We can specify name per-invocation like so:

> ja run ris2bib.jac -i shannon.ris -Dname='shannon1948'
@article{shannon1948,
author={Shannon, Claude E.},
year={1948},
title={A Mathematical Theory of Communication},
volume={27},

Learning Examples

To get a flavor of Jacinda, see how it can be used in place of familiar tools:

https://en.wikipedia.org/wiki/RIS_(file_format)
https://en.wikipedia.org/wiki/BibTeX#Database_files

wC

To count lines:

(+)lo [:1"$0

or

[ylle {lix}

To count bytes in a file:
(#)10 [#x+1]"$0

or

(#)lo {l# o+1}

head
To emulate head -n60, for instance:

{ix < 60}{ 0}

basename

fn fileName(x) :=
x ~% 2 [([MN\/1x\/)*x(.%)/;

will remove the directory part of a filename. It has type Str — Option Str.

tr

We can present the PATH with

echo $PATH | tr ':' "\n'

To do so in Jacinda, we use : as field separator, viz.
echo $PATH | ja -F: "{I[x+'\n'+y]|>\"$}"

‘$ is all fields in a line, as a list.

uniq

fn step(acc, this) :=
if this = acc->1
then (this . None)
else (this . Some this);

(->2) :?step” ("' .None) $0

This tracks the previous line and only adds the current line to the stream if it is
different.

nl
We can emulate nl -b a with:
{lsprintf ' %1 %s' (ix. 0)}
To count only non-blank lines:
fn empty(str) :=

#str = 0;

fn step(acc, line) :=
if empty line
then (acc->1 . '')
else (acc->1 + 1 . line);

fn process(x) :=
if lempty (x->2)

then sprintf ' %i\t%s' x
else '';
process"step?r(@ . '') $0

We could write process as

fn process(x) :=
?lempty (x->2); sprintf ' %i\t%s' x; '';

using the laconic syntax for conditionals, ?<bool>;<expr>;<expr>

Practical Examples

File Sizes
To find the total size of files in a directory:

1s -1 | ja '(+)]0 {ix>1}{"5:}'
79769

We can define prettyMem as a library function, viz.

fn prettyMem(x) :=
?x=1073741824.0
;sprintf'%f.2 GB' (x%1073741824.0)
;?2x =1048576.0
;sprintf'%f.2 MB' (x%1048576.0)
;?2x=1024.0
;sprintf'%f.2 kB' (x%1024.0)
;sprintf'%f.0 b' x;

The %f.2 format specifier limits output to two digits after the decimal point.

Then:

1s -1 | ja "@include'lib/prefixSizes.jac' prettyMem((+)[0.0 {ix>1}{\'5:}H)"
77.89 KB

Vim Tags

Suppose we wish to generate vim tag files for our Jacinda programs. According
to :help tags-file-format the desired format is

{tagname} {TAB} {tagfile} {TAB} {tagaddress}

where {tagaddress} is an ex command. In fact, addresses defined by regular
expressions are preferable as they become outdated less quickly.

As an example, suppose we have the function declaration

fn sum(x) :=
(#)10 x;

Then we need to extract sum and give a regex that points to where it is defined.
To do so:
fn mkEx(s) :=

R L i

fn processStr(s) :=
let
val line := split s /[\(]+/
val outLine := sprintf '%s\t%s\t%s' (line.2 . fp . mKEx s)
in outlLine end;

processStr"{%/fn +[[:lower:]1]1[[:latin:]]*.*:=/}{ 0}
Note the builtin split; according to the manpages it has type
split : Str -> Regex -> List Str

.2 is the syntax for accessing a list; line.2 extracts the second element.

Error Span

Suppose we wish to extract span information from compiler output for editor inte-
gration. Vim ships with a similar script, mve.awk, to present column information
in a suitable format.

src/Jacinda/Backend/TreeWalk.hs:319:58: error:
* The constructor ‘TyArr’ should have 3 arguments, but has been given 4
« In the pattern:
TyArr _ _ (TyArr _ (TyApp _ (TyB _ TyStream) _)) _
In the pattern:

10

TyArr _ _ (TyArr _ _ (TyArr _ (TyApp _ (TyB _ TyStream) _)) _)
In the pattern:
TBuiltin (TyArr

(TyArr _ _ (TyArr _ (TyApp _ (TyB _ TyStream) _)) _))
Fold

[
319 | eWith re i (EApp _ (EApp _ (EApp _ (TBuiltin (TyArr _ _ (TyArr _ _ (TyArr _ (TyApp _ (TyB _ TySt

| ANANANANANANANANANANNANANANNNNNANNNNNNNNAN

To get what we want, we use match, which returns indices that match a regex -
in our case, /*+/, which spans the error location.

From the manpages, we see it has type
match : Str -> Regex -> Option (Int . Int)
:set fs:=/\|/;
fn printSpan(str) :=
(sprintf '%i-%i')"(match str /\"+/);
printSpan:?{% /\|/}{ 2}
Our program uses | as a field separator, thus ‘2 will present us with:
ANANANNANNNNANNNNANNNNNANNNNNNNNNANNNANANNNANANNNNANNNANNANAN
which is exactly the relevant bit.

First, note that " is used to map (sprintf '%i-%i') over (match ...). This
works because match returns an Option, which is a functor. The builtin :? is
mapMaybe. Thus, we define a stream

printSpan:?{% /\I/}{ 2}

which only collects when printSpan returns a Some.

Extract Source from Cabal

We can use

ja -F'\sx:\s*' '{%/hs-source-dirs/}{ 2}' -i jacinda.cabal

to extract all source directories from a .cabal file: executables, test suites, &c.

This can be combined with fd to search for all Haskell source files defined by a
.cabal file, viz.

fd '\.(cpphslhs)$' $(ja -F'\s*:\sx' '{%/hs-source-dirs/}{ 2}' -i jacinda.cabal)

Make Recipe: Format

We can define a make recipe fmt to format all Haskell files:

11

https://hackage.haskell.org/package/witherable-0.4.2/docs/Witherable.html#v:mapMaybe

fmt:
fd '\.(cpphslhs)$$' $$(ja -F'\s*:\sx' '{%/hs-source-dirs/}{ 2}' -i apple.cabal) -x stylish-has

Fixity Declarations for HLint

To extract fixity declarations and present them in a format suitable for HLint:
ja "{%/infix(r|1)? \d+/}{sprintf '- fixity: %s' \'0}" -i src/FILE.hs

We can define a recipe fix to extract all fixity definitions:

fix:
fd '\.(cpphslhs|x|ylhsc)$$' $$(ja -F'\sx:\s*x' '{%/hs-source-dirs/}{ 2}' -i apple.cabal) -x ja

Note that this works on Happy, Alex, etc. source files.

Data Processing
CSYV Processing

Vaccine Effectiveness As an example, NYC publishes weighted data on
vaccine breakthroughs.

We can download it:

curl -L https://raw.githubusercontent.com/nychealth/coronavirus-data/master/latest/now-
weekly-breakthrough.csv -o /tmp/now-weekly-breakthrough.csv

And then process its columns using CSV mode:

ja --csv ', [1.0-x%y] {ix>1}{ 5:} {ix>1}{ 11:}' -i /tmp/now-weekly-
breakthrough.csv

As of writing:

.8793436293436293
.8524501884760366
.8784741144414169
.8638045891931903
.8644207066557108
.8572567783094098
.8475274725274725
.879263670817542

.8816131830008673
.8846732911773563
.8974564390146205
.96921814077576029

O 0000000000000 oo

This extracts the 5th and 11th columns (discarding headers), and then computes
effectiveness.

12

https://github.com/nychealth/coronavirus-data/blob/master/latest/now-weekly-breakthrough.csv

Inflation We start with New Zealand’s food price index:

curl https://www.stats.govt.nz/assets/Uploads/Food-price-index/Food-
price-index-September-2023/Download-data/food-price-index-september-2023-
weighted-average-prices.csv -0 nz-food-prices.csv

Then:

ja --csv '(%)\. {%/Apple/}{ 3:}' -i nz-food-prices.csv

.0634920634920635
.0696517412935325
.0511627906976744
.1637168141592922
.0608365019011408
.17921146953405
.182370820668693
.7326478149100257

@R R PR PR R R R

Machinery

Typeclasses

Under the hood, Jacinda has typeclasses, inspired by Haskell. They are used to
disambiguate operators and witness with an implementation.

User-defined typeclasses are not allowed.

Functor

The map operator " works on all functors, not just streams. Stream, List, and
Option are instances.

IsPrintf

The IsPrintf typeclass is used to type sprintf; strings, integers, floats, booleans,
and tuples of such are members.

sprintf '%i' 3
and
sprintf '%s-%i' ('str' . 2)

are both valid.

Row Types

The —n accessors work on all applicable tuples, so

13

(a.b.c)->2
and

(a.bh)->2

are both valid.
Moreover,

(a.b)->3

will be caught during typechecking.

14

	Tutorial
	Language
	Patterns + Implicits, Streams
	Fold
	Custom Field Separators
	Map
	Functions
	Zips
	Scans
	Prior
	Deduplicate
	Filter
	Formatting Output
	Reporting
	Libraries

	System Interaction
	Define Values on the Command-Line

	Learning Examples
	wc
	head
	basename
	tr
	uniq
	nl

	Practical Examples
	File Sizes
	Vim Tags
	Error Span
	Extract Source from Cabal
	Make Recipe: Format
	Fixity Declarations for HLint

	Data Processing
	CSV Processing

	Machinery
	Typeclasses
	Functor
	IsPrintf

	Row Types

