
haskelzinc user guide 
The haskelzinc package provides a library for creating Haskell representations of           

MiniZinc constraint models. This document describes how each MiniZinc component can           
be represented. 

The use of the ​OverloadedStrings option is recommended for reasons explained in            
section ​Referring to a variable ​. 

Types and Type-insts 

Instantiations 

All variables must have an instantiation (Inst). This is either a parameter, declared in              
MiniZinc/haskelzinc with ​par​, or a decision variable, declared in MiniZinc/haskelzinc with           
var ​. 

Example: declaring a variable x as parameter (instantiation is par) 

haskelzinc: par​ Int "x" =. 6 

MiniZinc: par​ int: x = 6; 

 
 

Example: declaring a variable x as decision variable (instantiation is var) 

haskelzinc: var​ Int "x" =. 6 

MiniZinc: var​ int: x = 6; 
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Variables can be declared and then assigned later. 

Example: declaring and assigning it later 

haskelzinc: 
[ par Int "x" 

, x  =. 6 ] 

MiniZinc: par int: x; 
x = 6; 

 
 

Type-inst Expressions Overview 

This is an overview of the haskelzinc supported types. 

Syntax: 

data Type = Bool 
          | Int 
          | Float 
          | String 
          | Set Type 
          | Array [Type] Inst Type 
          | List Inst Type 
          | Ann 
          | CT Expr 
          | Range Expr Expr 
          | VarType String 

 

Built-in Scalar Types and Type-insts 

Built-in scalar types 

Bool​, ​Int​, ​Float and ​String correspond to the built-in scalar types of MiniZinc.             
Enumerated types are not supported yet. 
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Built-in compound types 

Sets 

Set Type is used to declare a set of values. The argument of the Set constructor refers to                  
the type of the elements of the set. 

 

Example: declaring a set 

haskelzinc: par (​Set​ Int) "x" =. 1 ... 9 

MiniZinc: par ​set​ of int: x = 1 .. 9; 

 
 

Arrays 

Array [Type] Inst Type is used to declare an array. Its first argument represents the               
indexes of the array. Multidimensional arrays are supported, where each element of the list              
corresponds to a dimension of the array. The second argument of the ​Array constructor              
corresponds to the type-inst of the array’s elements. For an “array[int] of ...” one can use the                 
List Inst Type constructor, as a list in MiniZinc is an abbreviation for an int-indexed               
array. 

Example: declaring an array 

haskelzinc: par (​Array​ [CT (0...2)] Par Int) "a1" =. array [1,2,3] 

MiniZinc: array​[0 .. 2] of par int: a1 = [1, 2, 3]; 
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Option Types 

With ​Opt VarType one can declare an optional type. The syntax is similar to that of the                 
Set​ constructor. 
 

Example: creating an optional int type 

haskelzinc: Opt​ Int 

MiniZinc: opt​ int 

 
 

The Annotation Type 

The ​Ann​ constructor defines the annotation type ​ann ​. 

Constrained Type-insts 

Range 

NOTE: The ​CT (x … y)​ syntax is preferred over the ​Range​ equivalent. 

The ​Range Expr Expr constructor defines an integer range from the expression of the              
first argument to that of the second argument. 

 

Example: creating range 1 to 3 

haskelzinc: par (Array[​Range 0 2​] Par Int) "a1" =. array [1,2,3] 

MiniZinc: array[​0 .. 2​] of par int: a1 = [1, 2, 3]; 
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CT 

With ​CT Expr​ we can express a constrained type from an expression. 
 

Example: using CT 

haskelzinc: 
par (Array [​CT (intSet [1,2,3])​] Par Int) "a1" =. array          

[4,5,6] 

MiniZinc: array[​{1,2,3}​] of par int: a1 = [4, 5, 6]; 

 
 

Expressions 
The haskelzinc type ​Expr​ is used for representing MiniZinc expressions. 

Referring to a variable 

With the ​OverloadedStrings language option, one can refer to representations of           
MiniZinc variables only by providing their name as a Haskell ​String​. 

Example: 

haskelzinc: constraint $ "x" >. 2 

MiniZinc: constraint x > 2; 

 
 
The anonymous identifier / wildcard of MiniZinc is represented with ​__ (two            

underscores). 

Literals of built-in scalar types 

The two boolean values are similarly represented in haskelzinc. Write ​true for            
MiniZinc’s boolean literal “true” and ​false for the “false” literal. Haskell integer and             
floating point literals are sufficient for their MiniZinc representation. For the representation            
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of MiniZinc string literals, use haskelzinc function 
string :: String -> Expr​. 

Example: 

haskelzinc:  string “alphanumeric” 

MiniZinc:  “alphanumeric” 

 
 

Set literals and comprehensions 
Depending on the type of the set’s elements, one can use one of the haskelzinc functions                

below to represent a MiniZinc set. They all take a list of values (of the appropriate type),                 
which essentially represent the set’s elements. 

intSet :: [Int] -> Expr 

floatSet :: [Float] -> Expr 

stringSet :: [String] -> Expr 

Example: Set literal 

haskelzinc:  intSet [1, 3, 5] 

MiniZinc:  {1, 3, 5} 

 
 
haskelzinc also provides a more generic function for creating and representing MiniZinc            

set literals: ​mapSet :: (a -> Expr) -> [a] -> Expr 

Function ​set :: [Expr] -> Expr can be passed an arbitrary list of expressions to               
represent a MiniZinc set. haskelzinc does not check for MiniZinc type errors. The list of               
expressions given to the ​set​ function should represent MiniZinc values of the same type. 

The operator ​(#/.) :: Expr -> [CompTail] -> Expr can be used for set              
comprehensions. Operator ​(@@) :: [Ident] -> Expr -> CompTail creates a generator            
expression where the identifiers in the list of left argument range within the (set) expression               
of the right argument. 
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Example: 

haskelzinc:  2 *. "i" #/. [["i"] @@  0 ... 5] 

MiniZinc:  {2 * i | i in 0 .. 5} 

 
 
A comprehension tail may have multiple generator expressions, thus in haskelzinc a            

comprehension tail is represented with a list of generator expressions. To restrain a             
generator expression with MiniZinc’s “where” clause, use function ​where_ :: CompTail           

-> Expr -> CompTail provided by haskelzinc. This function can be used with single              
quotes for infix notation, as shown in the example below. 

Example: 

haskelzinc: 
 "i" *. "j" #/. [["i", "j"] @@ 0 ... 5 

                 `where_` ("i" !=. "j")] 

MiniZinc:  {i * j | i, j in 0 .. 5 where i != j} 

 
 

Array literals and comprehensions 

Similarly to set literals, haskelzinc provides a number of functions to represent simple             
array literals, depending on the type of the array’s elements. 

For 1-dimensional arrays, use 
boolArray :: [Bool] -> Expr 

intArray :: [Int] -> Expr 

floatArray :: [Float] -> Expr 

stringArray :: [String] -> Expr 

Function ​mapArray :: (a -> Expr) -> [a] -> Expr is a more generic function               
for creating simple array literals. The function ​array :: [Expr] -> Expr can be passed               
an arbitrary list of expressions to represent a MiniZinc 1-dimensional array. haskelzinc does             
not check for MiniZinc type errors. The list of expressions given to the ​array function               
should represent MiniZinc values of the appropriate type. 
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The 1-dimensional array functions above have their 2-dimensional counterparts: 
boolArray2 :: [[Bool]] -> Expr 

intArray2 :: [[Int]] -> Expr 

floatArray2 :: [[Float]] -> Expr 

stringArray2 :: [[String]] -> Expr 

mapArray2 :: (a -> Expr) -> [[a]] -> Expr 

array2 :: [[Expr]] -> Expr 

For array comprehensions, use operator ​(#/.) :: Expr -> [CompTail] -> Expr​.            
An array’s comprehension tail can be represented in haskelzinc with the same operators and              
functions ( ​(@@)​ and ​where_​) as in the case of ​set comprehensions​. 

Array access 

To represent an array’s element, use operator ​(!.) :: String -> [Expr] -> Expr​.              
The length of the list in the right argument should match the represented list’s dimensions. 

Example: 

haskelzinc:  "matrix"!.["i", "j"] 

MiniZinc:  matrix[i,j] 

 
 

Generator calls 

In MiniZinc, generator calls are a convenient way to call MiniZinc functions that expect              
an array as an argument. To represent a generator call in haskelzinc, use function ​forall               

:: [CompTail] -> String -> Expr -> Expr​. 

Example: 

haskelzinc: 
 forall [["i"] @@ "S1", ["j"] @@ "S2"] "sum" 

      ("x"!.["i", "j"]) 

MiniZinc:  sum(i in S1, j in S2) (x[i, j]) 
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Conditional 

For MiniZinc’s if-then(-elseif)-else expression, the following haskelzinc functions are         
provided: 

if_ :: Expr -> (Expr -> [(Expr, Expr)]) 

then_ :: (Expr -> [(Expr, Expr)]) -> Expr -> [(Expr, Expr)] 

elseif_ :: [(Expr, Expr)] -> Expr -> (Expr -> [(Expr, Expr)]) 

else_ :: [(Expr, Expr)] -> Expr -> Expr 

Use the last three functions in single quotes, for a conventional syntax of the conditional. 

Example: 

haskelzinc:  if_ true `then_` 1 `else_` 0 

MiniZinc:  if true then 1 else 0 endif; 

 

Note that haskelzinc does not use “endif”. 

Let expressions 

For MiniZinc let-expressions, use haskelzinc function ​let_ :: [GItem i] -> Expr            

-> Expr​. The items provided in the list should be variable declarations and/or constraint              
items. haskelzinc does not check for syntactical correctness of the let-expression. 

Example: 

haskelzinc: 

predicate "posProd"[var Int "x", var Int "y"] =.  

let_ [ var Int "z" 

     , constraint $ "z" =.= "x" *. "y"] 

     ("z" >. 0) 

MiniZinc: 

predicate posProd(var int: x, var int: y) 
  = let {var int: z; 
         constraint z = x * y;} 
    in z > 0; 
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Call expressions 

Module ​Interfaces.MZBuitIns contains representations of MiniZinc’s built-in       
operators, functions, predicates, tests and annotations. For calling a user-defined operation,           
use the functions below: 

To represent a prefix call to a function, test or predicate: 
prefCall :: String -> [Expr] -> Expr 

To represent an infix (quoted) call to a function, test or predicate: 
infCall :: String -> Expr -> Expr -> Expr 

To represent a prefix (quoted) call of an operator: 
prefOp :: String -> Op 

To represent an infix call to an operator. 
infOp :: String -> Op 

In all cases, the first argument is the MiniZinc name/identifier or symbol of the called               
operation. In ​prefCall​, the second argument represents the arguments with which the            
operation is called. The same hold for the two ​Expr​ arguments of ​infCall​. 

A previous example shows how to represent the declaration of the user-defined predicate             
“posProd”. Assuming a model that contains this definition, one can call the predicate as              
shown in the example below. 

Example: Including a file 

haskelzinc: 

posProd :: [Expr] -> Expr 

posProd = prefCall “posProd” 

⋮ 

x =. posProd[1, 2] 

MiniZinc:  x = posProd(1, 2); 
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Items 
A MiniZinc model in haskelzinc is a list of assigned GItems, or ​[GItem 'OK]​.  

Include Items 

Use ​include :: String -> GItem 'OK​ to include a file. 

Example: Including a file 

haskelzinc:  include "foo.zinc" 

MiniZinc:  include “foo.zinc”; 

 
 

Variable Declaration Items 

The functions ​var :: Varr i -> Type -> String -> GItem i and ​par :: Varr                 

i -> Type -> String -> GItem i​ create a variable declaration. 

See ​Instantiations ​ in ​Types and Type-insts​ for example usage ​. 

Enum Items 

Enumerated types are not supported. 

Assignment Items 

The function ​(=.) :: Assignable a => a -> Expr -> GItem 'OK represents an               
assignment. 

See ​Instantiations ​ in ​Types and Type-insts​ for example usage ​. 
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Constraint Items 

The function ​constraint :: Expr -> GItem 'OK​ creates a constraint. 

Example: Creating a constraint 

haskelzinc:  constraint ("a" *. "x" <. "b") 

MiniZinc:  constraint a * x < b; 

 
 

Solve Items 

The function ​solve :: Solve -> GItem 'OK​ creates a solve item. 

It can be combined with ​satisfy :: Solve​, 

Example: Create satisfaction problem solve item 

haskelzinc:  solve satisfy 

MiniZinc:  solve satisfy; 

 
 

with ​maximize :: Expr -> Solve​, 

Example: Create satisfaction problem solve item 

haskelzinc:  solve (​maximize​ ("a" *. "x")) 

MiniZinc:  solve ​maximize​ a * x; 

 

 

or with ​minimize :: Expr -> Solve​, 

12 



Example: Create satisfaction problem solve item 

haskelzinc:  solve (​minimize​ ("a" *. "x")) 

MiniZinc:  solve ​minimize​ a * x; 

 

 
 

Output Items 

The function ​output :: [Expr] -> GItem 'OK​ creates an output item. 

Example: Creating an output item 

haskelzinc: 
output [string "The value of x is ", mz_show ["x"],           

string "!\n"] 

MiniZinc:  output ["The value of x is ", show(x), "!\n"]; 

 
 

Annotation Items 

Use function ​annotation :: String -> [GItem 'DS] -> GItem 'OK to declare a              
solver specific annotation. 

User-defined Operations 

The function ​predicate :: String -> [GItem 'DS] -> GItem 'DS creates a             
predicate. Since it creates an unassigned ​GItem 'DS we use the ​(=.) operator to declare the                
body of the predicate. 
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Example: Creating a predicate 

haskelzinc:  predicate "even" [var Int "x"] =. "x" `_mod_` 2 =.= 0 

MiniZinc:  predicate even(var int: x) = x mod 2 = 0; 

 

Similarly to a predicate, the following haskelzinc functions can be used for the             
declaration of MiniZinc functions and tests. 

function :: Inst -> Type -> String -> [GItem 'DS] -> GItem 'DS 

test :: String -> [GItem 'DS] -> GItem 'DS 

Annotations 

The operator ​(|:) :: Annotatable a => a -> Annotation -> a adds an              
annotation to an expression, a solve item, a user-defined operation or a variable declaration. 

The arguments of the annotation call should be prepended with ​E if they are an               
expression or ​A​ if they are an annotation. 

Example: Creating an annotation on a solve item 

haskelzinc: 

solve (satisfy ​|:​ mz_int_search 
  [ E "x" 

  , A (mz_first_fail []) 

  , A (mz_indomain_min []) 

  , A (mz_complete []) 

  ]) 

MiniZinc: solve ​::​ int_search(x, first_fail, indomain_min, 
complete) satisfy; 
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Time Space Constraints 

Time Space Constraints 

Time space constraints are used to model situations where a series of actions have to be                
performed at several different locations, under certain restrictions. For instance, ​<1, 1, 3, $, 1,               
$, $, 2, 1, 2, nop, nop> is a possible sequence. The numbers ​1​, ​2 and ​3 correspond to three                    
different types of actions. The ​$ operator marks a switch of location and the ​nop operator is                 
used to complete the suffix of the series to a fixed size. At the first station, actions ​1​, ​1 and ​3                     
are performed, in that order. Action ​1 is performed at the second station. Station three               
performs no actions and the fourth station executes actions ​2 ​, ​1​ and ​2 ​, in that order.  

actionSequence Int String ASExpr is used to construct a time space constraint.            
The first argument corresponds to the number of different actions. The second argument is              
the name of the sequence variable. The final argument is the actual constraint, represented              
by the haskelzinc type ​ASExpr​. 
 

Syntax: 

data ASExpr = AtleastCells Int 
            | AtmostCells Int 
            | Atleast Int Int 
            | Atmost Int Int 
            | Incompatible Int Int 
            | Implication Int Int 
            | ValuePrecedence Int Int 
            | StretchMin Int Int 
            | StretchMax Int Int 
            | Or Int Int 

 

atleast_cells Int ​and ​atmost_cells Int constrain the number of locations in           
the sequence, where the first argument represents the minimum or maximum number of             
locations.  
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Example: Creating a time space constraint - minimum amount of locations 

haskelzinc:  actionSequence 2 “x” (atleast_cells 2) 

 
 

atleast Int Int and ​atmost Int Int constraints the amount of times a given              
action is performed in each location. The first argument represents the action. The second              
argument is the minimum or maximum number of times this action can be performed in               
each location. 

Example: Creating a time space constraint - maximum amount of executions 

haskelzinc:  actionSequence 2 “x” (atmost 1 2) 

 
 

incompatible Int Int imposes the restriction that the two given actions can not be              
performed in the same location, where the two arguments correspond to the given actions.  

Example: Creating a time space constraint -  incompatible actions 

haskelzinc:  actionSequence 2 “x” (incompatible 1 2) 

 
 

implication Int Int represents an implication constraint. The two arguments          
represent the two given actions, where the first implies the second. This means that if this                
first action is performed in a location, the second has to be performed as well.  

Example: Creating a time space constraint - implied actions 

haskelzinc:  actionSequence 2 “x” (implication 1 2) 

 
 

value_precedence Int Int ​imposes an order on the two given actions, represented            
by the two arguments. In order for the second action to be performed in a location, the first                  
action has to be performed first.  
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Example: Creating a time space constraint - ordered actions 

haskelzinc:  actionSequence 2 “x” (value_precedence 1 2) 

 
 

stretch_min Int Int and ​stretch_max Int Int restrict the amount of times a             
given action is performed. The first argument represents the given action. The second             
argument represents the amount of times the action can at least / at most be performed in a                  
row, when the action is performed at least once.  

Example: Creating a time space constraint - minimal series 

haskelzinc:  actionSequence 2 “x” (stretch_min 1 3) 

 
 

or_as Int Int constraints the occurrence of the two given actions, represented by the              
two arguments. In each location, at least one of these two given actions has to be performed.  

Example: Creating a time space constraint - or constraint 

haskelzinc:  actionSequence 2 “x” (or_as 1 2) 

 
 

Defining a Model 
The following example illustrates how to construct a simple time space sequence model.             

Firstly, the sequence variable ​x is declared. The sequence variable has a fixed length (in this                
case 20), which acts as a maximum length for the resulting action sequence, since it can be                 
padded with nop operators. This example contains two different actions, to be divided over              
four locations. This means that each field in the sequence can contain either a ​1 or ​2                 
(corresponding to the two actions), a ​3 ​(corresponding to the ​$ operator, signaling a location               
switch) or a ​4 (corresponding to the ​nop operator). Two constraints are applied to the               
sequence. The first demanding that at most 4 locations are used. The second restricting each               
location to at least execute one of the two actions. 
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Example: Defining a time space sequence model 

haskelzinc: 

 mod = [ include “regular.mzn” 

       , var (Array [CT $ 1...20] Dec (CT $ 1...4)) “x” 

       , actionSequence 2 “x” (atmost_cells 4) 

       , actionSequence 2 “x” (or_as 1 2) 

       , solve satisfy 

       ] 

 
 

Cost Constraints 

actionSequenceCost String String ASCostExpr is used to construct cost         
constraints to optimize a time space constraint model. The first argument represents the             
name of the sequence variable. The second argument represents the name of the resulting              
cost variable. The final argument is the actual cost constraint, represented by the haskelzinc              
type ​ASCostExpr​. 

Syntax: 

data ASCostExpr = UniformCost Int Int 
                | DiscountCost Int Int Int Int Bool 
                | DependentCost Int Int Int Int Int Bool 

 

uniformCost Int Int constraints the cost of the given action to be uniform             
throughout the sequence. The first argument represents the given action, the cost of which is               
always equal to the second argument.  

Example: Creating a time space cost constraint - uniform cost 

haskelzinc:  actionSequenceCost “x” “cost1” (uniformCost 1 5) 

 
 

discountCost Int Int Int Int Bool constraints the cost of the given action to              
initially be a given cost, which reduces after the initial execution to a discounted cost. The                
first argument represents the action for which the cost is being constraint. The second              
argument corresponds to the ​$ operator, which switches locations in the action sequence             
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(the number of actions + 1). The third and fourth arguments represent the original and               
discounted cost (which applies after the first execution) respectively. The final argument            
denotes whether the action starts with the initial cost in each location or only once in the                 
entire sequence.  

Example: Creating a time space cost constraint - discount cost 

haskelzinc: 
 actionSequenceCost “x” “cost2”  

                    (discountCost 2 3 5 4 True) 

 
 

dependentCost Int Int Int Int Int Bool constraints the cost of the given action              
to be either the full or the discounted cost, depending on whether the influencing action is                
executed. The first argument represents the action for which the cost is being constraint. The               
second argument is the influencing action, which determines the cost of the first. The third               
argument corresponds to the ​$ operator, which switches locations in the action sequence             
(the number of actions + 1). The third and fourth arguments represent the full and               
discounted cost respectively. The final argument denotes whether the influencing effect is            
local or global. If the flag is true, the cost of the given action is constraint to be the                   
discounted cost if the influencing action is executed in the same location (at any time) and                
the full cost otherwise. If the flag is false, the discounted cost is used if the influencing action                  
occurs anywhere in the entire sequence.  

Example: Creating a time space cost constraint - dependent cost 

haskelzinc: 
 actionSequenceCost “x” “cost2”  

                    (dependentCost 2 1 3 6 4 False) 

 
 

Cost Constraints Import 
The functionality for using cost constraints is not by default available in haskelzinc and              

has to be manually imported. Imports are performed by using the ​useCostPreds            

[ASCostPredExpr] function. It takes a list of dependencies as an argument, represented by             
the haskelzinc type ​ASCostPredExpr​, which correspond directly to the three constraints           
defined above. 
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Syntax: 

data ASCostPredExpr = UniformCostPred 
                    | DiscountCostPred 
                    | DependentCostPred 

 

Defining a Model 
The following example illustrates how to extend the previous example with a cost             

calculation. Firstly, the required cost constraints need to be imported. Secondly, two            
variables ​c1 and ​c2 are defined, corresponding to the costs for the first and second action                
respectively. The first action is assigned a uniform cost: every usage of action ​1 results in a                 
cost of 5. The second action is assigned a dependent cost: a usage of action ​2 costs 5 if action                    
1 is executed in the same location and 10 otherwise. Finally, an additional variable ​cost is                
defined to represent the total cost of the entire sequence.  

Example: Defining a time space sequence model with cost  

haskelzinc: 

 mod = (useCostPreds  

           [uniformCostPred, dependentCostPred]) 

    ++ [ include “regular.mzn” 

       , var (Array [CT $ 1...20] Dec (CT $ 1...4)) “x” 

       , actionSequence 2 “x” (atmost_cells 4) 

       , actionSequence 2 “x” (or_as 1 2) 

       , var Int “c1”, var Int “c2” 

       , actionSequenceCost “x” “c1” (uniformCost 1 5) 

       , actionSequenceCost “x” “c2”  

           (dependentCostPred 2 1 3 10 5 True) 

       , var Int “cost” =. “c1” +. “c2” 

       , solve satisfy 

       ] 
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