This is a simple test for happy.
First thing to declare is the name of your parser,
and the type of the tokens the parser reads.
> {
> import Data.Char
> }
> %name calcExp Exp
> %name calcTerm Term
> %tokentype { Token }
The parser will be of type [Token] -> ?, where ? is determined by the
production rules. Now we declare all the possible tokens:
> %token
> let { TokenLet }
> in { TokenIn }
> int { TokenInt $$ }
> var { TokenVar $$ }
> '=' { TokenEq }
> '+' { TokenPlus }
> '-' { TokenMinus }
> '*' { TokenTimes }
> '/' { TokenDiv }
> '(' { TokenOB }
> ')' { TokenCB }
The *new* system.
%token
let ( let )
in ( in )
int ( digit+ )
var ( {alpha}{alphanum}+ )
'=' ( = )
'+' ( + )
'-' ( - )
'*' ( * )
'/' ( / )
'(' ( \( )
')' ( \) )
%whitespace ( {space}|{tab} )
%newline ( {newline} )
The left hand side are the names of the terminals or tokens,
and the right hand side is how to pattern match them.
Like yacc, we include %% here, for no real reason.
> %%
Now we have the production rules.
> Exp :: { Exp }
> Exp : let var '=' Exp in Exp { Let $2 $4 $6 }
> | Exp1 { Exp1 $1 }
>
> Exp1 :: { Exp1 }
> Exp1 : Exp1 '+' Term { Plus $1 $3 }
> | Exp1 '-' Term { Minus $1 $3 }
> | Term { Term $1 }
>
> Term :: { Term }
> Term : Term '*' Factor { Times $1 $3 }
> | Term '/' Factor { Div $1 $3 }
> | Factor { Factor $1 }
>
> Factor :: { Factor }
> Factor : int { Int $1 }
> | var { Var $1 }
> | '(' Exp ')' { Brack $2 }
We are simply returning the parsed data structure !
Now we need some extra code, to support this parser,
and make in complete:
> {
All parsers must declair this function,
which is called when an error is detected.
Note that currently we do no error recovery.
> happyError tks = error "Parse error"
Now we declare the datastructure that we are parsing.
> data Exp = Let String Exp Exp | Exp1 Exp1
> data Exp1 = Plus Exp1 Term | Minus Exp1 Term | Term Term
> data Term = Times Term Factor | Div Term Factor | Factor Factor
> data Factor = Int Int | Var String | Brack Exp
The datastructure for the tokens...
> data Token
> = TokenLet
> | TokenIn
> | TokenInt Int
> | TokenVar String
> | TokenEq
> | TokenPlus
> | TokenMinus
> | TokenTimes
> | TokenDiv
> | TokenOB
> | TokenCB
.. and a simple lexer that returns this datastructure.
> lexer :: String -> [Token]
> lexer [] = []
> lexer (c:cs)
> | isSpace c = lexer cs
> | isAlpha c = lexVar (c:cs)
> | isDigit c = lexNum (c:cs)
> lexer ('=':cs) = TokenEq : lexer cs
> lexer ('+':cs) = TokenPlus : lexer cs
> lexer ('-':cs) = TokenMinus : lexer cs
> lexer ('*':cs) = TokenTimes : lexer cs
> lexer ('/':cs) = TokenDiv : lexer cs
> lexer ('(':cs) = TokenOB : lexer cs
> lexer (')':cs) = TokenCB : lexer cs
> lexNum cs = TokenInt (read num) : lexer rest
> where (num,rest) = span isDigit cs
> lexVar cs =
> case span isAlpha cs of
> ("let",rest) -> TokenLet : lexer rest
> ("in",rest) -> TokenIn : lexer rest
> (var,rest) -> TokenVar var : lexer rest
To run the program, call this in gofer, or use some code
to print it.
> runCalcExp :: String -> Exp
> runCalcExp = calcExp . lexer
> runCalcTerm :: String -> Term
> runCalcTerm = calcTerm . lexer
Here we test our parser.
> main = case runCalcExp "1 + 2 + 3" of {
> (Exp1 (Plus (Plus (Term (Factor (Int 1))) (Factor (Int 2))) (Factor (Int 3)))) ->
> case runCalcExp "1 * 2 + 3" of {
> (Exp1 (Plus (Term (Times (Factor (Int 1)) (Int 2))) (Factor (Int 3)))) ->
> case runCalcExp "1 + 2 * 3" of {
> (Exp1 (Plus (Term (Factor (Int 1))) (Times (Factor (Int 2)) (Int 3)))) ->
> case runCalcExp "let x = 2 in x * (x - 2)" of {
> (Let "x" (Exp1 (Term (Factor (Int 2)))) (Exp1 (Term (Times (Factor (Var "x")) (Brack (Exp1 (Minus (Term (Factor (Var "x"))) (Factor (Int 2))))))))) ->
>
> case runCalcTerm "2 * (3 + 1)" of {
> (Times (Factor (Int 2)) (Brack (Exp1 (Plus (Term (Factor (Int 3))) (Factor (Int 1)))))) -> print "Test works\n";
> _ -> quit } ; _ -> quit } ; _ -> quit } ; _ -> quit } ; _ -> quit }
> quit = print "Test failed\n"
> }