{-# LANGUAGE LambdaCase #-}
module GHC.Builtin.Types.Literals
( typeNatTyCons
, typeNatCoAxiomRules
, BuiltInSynFamily(..)
-- If you define a new built-in type family, make sure to export its TyCon
-- from here as well.
-- See Note [Adding built-in type families]
, typeNatAddTyCon
, typeNatMulTyCon
, typeNatExpTyCon
, typeNatSubTyCon
, typeNatDivTyCon
, typeNatModTyCon
, typeNatLogTyCon
, typeNatCmpTyCon
, typeSymbolCmpTyCon
, typeSymbolAppendTyCon
, typeCharCmpTyCon
, typeConsSymbolTyCon
, typeUnconsSymbolTyCon
, typeCharToNatTyCon
, typeNatToCharTyCon
) where
import GHC.Prelude
import GHC.Core.Type
import GHC.Data.Pair
import GHC.Core.TyCon ( TyCon, FamTyConFlav(..), mkFamilyTyCon
, Injectivity(..) )
import GHC.Core.Coercion ( Role(..) )
import GHC.Tc.Types.Constraint ( Xi )
import GHC.Core.Coercion.Axiom ( CoAxiomRule(..), BuiltInSynFamily(..), TypeEqn )
import GHC.Core.TyCo.Compare ( tcEqType )
import GHC.Types.Name ( Name, BuiltInSyntax(..) )
import GHC.Types.Unique.FM
import GHC.Builtin.Types
import GHC.Builtin.Types.Prim ( mkTemplateAnonTyConBinders )
import GHC.Builtin.Names
( gHC_TYPELITS
, gHC_TYPELITS_INTERNAL
, gHC_TYPENATS
, gHC_TYPENATS_INTERNAL
, typeNatAddTyFamNameKey
, typeNatMulTyFamNameKey
, typeNatExpTyFamNameKey
, typeNatSubTyFamNameKey
, typeNatDivTyFamNameKey
, typeNatModTyFamNameKey
, typeNatLogTyFamNameKey
, typeNatCmpTyFamNameKey
, typeSymbolCmpTyFamNameKey
, typeSymbolAppendFamNameKey
, typeCharCmpTyFamNameKey
, typeConsSymbolTyFamNameKey
, typeUnconsSymbolTyFamNameKey
, typeCharToNatTyFamNameKey
, typeNatToCharTyFamNameKey
)
import GHC.Data.FastString
import Control.Monad ( guard )
import Data.List ( isPrefixOf, isSuffixOf )
import qualified Data.Char as Char
{-
Note [Type-level literals]
~~~~~~~~~~~~~~~~~~~~~~~~~~
There are currently three forms of type-level literals: natural numbers, symbols, and
characters.
Type-level literals are supported by CoAxiomRules (conditional axioms), which
power the built-in type families (see Note [Adding built-in type families]).
Currently, all built-in type families are for the express purpose of supporting
type-level literals.
See also the Wiki page:
https://gitlab.haskell.org/ghc/ghc/wikis/type-nats
Note [Adding built-in type families]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are a few steps to adding a built-in type family:
* Adding a unique for the type family TyCon
These go in GHC.Builtin.Names. It will likely be of the form
@myTyFamNameKey = mkPreludeTyConUnique xyz@, where @xyz@ is a number that
has not been chosen before in GHC.Builtin.Names. There are several examples already
in GHC.Builtin.Names—see, for instance, typeNatAddTyFamNameKey.
* Adding the type family TyCon itself
This goes in GHC.Builtin.Types.Literals. There are plenty of examples of how to define
these—see, for instance, typeNatAddTyCon.
Once your TyCon has been defined, be sure to:
- Export it from GHC.Builtin.Types.Literals. (Not doing so caused #14632.)
- Include it in the typeNatTyCons list, defined in GHC.Builtin.Types.Literals.
* Exposing associated type family axioms
When defining the type family TyCon, you will need to define an axiom for
the type family in general (see, for instance, axAddDef), and perhaps other
auxiliary axioms for special cases of the type family (see, for instance,
axAdd0L and axAdd0R).
After you have defined all of these axioms, be sure to include them in the
typeNatCoAxiomRules list, defined in GHC.Builtin.Types.Literals.
(Not doing so caused #14934.)
* Define the type family somewhere
Finally, you will need to define the type family somewhere, likely in @base@.
Currently, all of the built-in type families are defined in GHC.TypeLits or
GHC.TypeNats, so those are likely candidates.
Since the behavior of your built-in type family is specified in GHC.Builtin.Types.Literals,
you should give an open type family definition with no instances, like so:
type family MyTypeFam (m :: Nat) (n :: Nat) :: Nat
Changing the argument and result kinds as appropriate.
* Update the relevant test cases
The GHC test suite will likely need to be updated after you add your built-in
type family. For instance:
- The T9181 test prints the :browse contents of GHC.TypeLits, so if you added
a test there, the expected output of T9181 will need to change.
- The TcTypeNatSimple and TcTypeSymbolSimple tests have compile-time unit
tests, as well as TcTypeNatSimpleRun and TcTypeSymbolSimpleRun, which have
runtime unit tests. Consider adding further unit tests to those if your
built-in type family deals with Nats or Symbols, respectively.
-}
{-------------------------------------------------------------------------------
Built-in type constructors for functions on type-level nats
-}
-- The list of built-in type family TyCons that GHC uses.
-- If you define a built-in type family, make sure to add it to this list.
-- See Note [Adding built-in type families]
typeNatTyCons :: [TyCon]
typeNatTyCons =
[ typeNatAddTyCon
, typeNatMulTyCon
, typeNatExpTyCon
, typeNatSubTyCon
, typeNatDivTyCon
, typeNatModTyCon
, typeNatLogTyCon
, typeNatCmpTyCon
, typeSymbolCmpTyCon
, typeSymbolAppendTyCon
, typeCharCmpTyCon
, typeConsSymbolTyCon
, typeUnconsSymbolTyCon
, typeCharToNatTyCon
, typeNatToCharTyCon
]
typeNatAddTyCon :: TyCon
typeNatAddTyCon = mkTypeNatFunTyCon2 name
BuiltInSynFamily
{ sfMatchFam = matchFamAdd
, sfInteractTop = interactTopAdd
, sfInteractInert = interactInertAdd
}
where
name = mkWiredInTyConName UserSyntax gHC_TYPENATS (fsLit "+")
typeNatAddTyFamNameKey typeNatAddTyCon
typeNatSubTyCon :: TyCon
typeNatSubTyCon = mkTypeNatFunTyCon2 name
BuiltInSynFamily
{ sfMatchFam = matchFamSub
, sfInteractTop = interactTopSub
, sfInteractInert = interactInertSub
}
where
name = mkWiredInTyConName UserSyntax gHC_TYPENATS (fsLit "-")
typeNatSubTyFamNameKey typeNatSubTyCon
typeNatMulTyCon :: TyCon
typeNatMulTyCon = mkTypeNatFunTyCon2 name
BuiltInSynFamily
{ sfMatchFam = matchFamMul
, sfInteractTop = interactTopMul
, sfInteractInert = interactInertMul
}
where
name = mkWiredInTyConName UserSyntax gHC_TYPENATS (fsLit "*")
typeNatMulTyFamNameKey typeNatMulTyCon
typeNatDivTyCon :: TyCon
typeNatDivTyCon = mkTypeNatFunTyCon2 name
BuiltInSynFamily
{ sfMatchFam = matchFamDiv
, sfInteractTop = interactTopDiv
, sfInteractInert = interactInertDiv
}
where
name = mkWiredInTyConName UserSyntax gHC_TYPENATS (fsLit "Div")
typeNatDivTyFamNameKey typeNatDivTyCon
typeNatModTyCon :: TyCon
typeNatModTyCon = mkTypeNatFunTyCon2 name
BuiltInSynFamily
{ sfMatchFam = matchFamMod
, sfInteractTop = interactTopMod
, sfInteractInert = interactInertMod
}
where
name = mkWiredInTyConName UserSyntax gHC_TYPENATS (fsLit "Mod")
typeNatModTyFamNameKey typeNatModTyCon
typeNatExpTyCon :: TyCon
typeNatExpTyCon = mkTypeNatFunTyCon2 name
BuiltInSynFamily
{ sfMatchFam = matchFamExp
, sfInteractTop = interactTopExp
, sfInteractInert = interactInertExp
}
where
name = mkWiredInTyConName UserSyntax gHC_TYPENATS (fsLit "^")
typeNatExpTyFamNameKey typeNatExpTyCon
typeNatLogTyCon :: TyCon
typeNatLogTyCon = mkTypeNatFunTyCon1 name
BuiltInSynFamily
{ sfMatchFam = matchFamLog
, sfInteractTop = interactTopLog
, sfInteractInert = interactInertLog
}
where
name = mkWiredInTyConName UserSyntax gHC_TYPENATS (fsLit "Log2")
typeNatLogTyFamNameKey typeNatLogTyCon
typeNatCmpTyCon :: TyCon
typeNatCmpTyCon =
mkFamilyTyCon name
(mkTemplateAnonTyConBinders [ naturalTy, naturalTy ])
orderingKind
Nothing
(BuiltInSynFamTyCon ops)
Nothing
NotInjective
where
name = mkWiredInTyConName UserSyntax gHC_TYPENATS_INTERNAL (fsLit "CmpNat")
typeNatCmpTyFamNameKey typeNatCmpTyCon
ops = BuiltInSynFamily
{ sfMatchFam = matchFamCmpNat
, sfInteractTop = interactTopCmpNat
, sfInteractInert = \_ _ _ _ -> []
}
typeSymbolCmpTyCon :: TyCon
typeSymbolCmpTyCon =
mkFamilyTyCon name
(mkTemplateAnonTyConBinders [ typeSymbolKind, typeSymbolKind ])
orderingKind
Nothing
(BuiltInSynFamTyCon ops)
Nothing
NotInjective
where
name = mkWiredInTyConName UserSyntax gHC_TYPELITS_INTERNAL (fsLit "CmpSymbol")
typeSymbolCmpTyFamNameKey typeSymbolCmpTyCon
ops = BuiltInSynFamily
{ sfMatchFam = matchFamCmpSymbol
, sfInteractTop = interactTopCmpSymbol
, sfInteractInert = \_ _ _ _ -> []
}
typeSymbolAppendTyCon :: TyCon
typeSymbolAppendTyCon = mkTypeSymbolFunTyCon2 name
BuiltInSynFamily
{ sfMatchFam = matchFamAppendSymbol
, sfInteractTop = interactTopAppendSymbol
, sfInteractInert = interactInertAppendSymbol
}
where
name = mkWiredInTyConName UserSyntax gHC_TYPELITS (fsLit "AppendSymbol")
typeSymbolAppendFamNameKey typeSymbolAppendTyCon
typeConsSymbolTyCon :: TyCon
typeConsSymbolTyCon =
mkFamilyTyCon name
(mkTemplateAnonTyConBinders [ charTy, typeSymbolKind ])
typeSymbolKind
Nothing
(BuiltInSynFamTyCon ops)
Nothing
(Injective [True, True])
where
name = mkWiredInTyConName UserSyntax gHC_TYPELITS (fsLit "ConsSymbol")
typeConsSymbolTyFamNameKey typeConsSymbolTyCon
ops = BuiltInSynFamily
{ sfMatchFam = matchFamConsSymbol
, sfInteractTop = interactTopConsSymbol
, sfInteractInert = interactInertConsSymbol
}
typeUnconsSymbolTyCon :: TyCon
typeUnconsSymbolTyCon =
mkFamilyTyCon name
(mkTemplateAnonTyConBinders [ typeSymbolKind ])
(mkMaybeTy charSymbolPairKind)
Nothing
(BuiltInSynFamTyCon ops)
Nothing
(Injective [True])
where
name = mkWiredInTyConName UserSyntax gHC_TYPELITS (fsLit "UnconsSymbol")
typeUnconsSymbolTyFamNameKey typeUnconsSymbolTyCon
ops = BuiltInSynFamily
{ sfMatchFam = matchFamUnconsSymbol
, sfInteractTop = interactTopUnconsSymbol
, sfInteractInert = interactInertUnconsSymbol
}
typeCharToNatTyCon :: TyCon
typeCharToNatTyCon =
mkFamilyTyCon name
(mkTemplateAnonTyConBinders [ charTy ])
naturalTy
Nothing
(BuiltInSynFamTyCon ops)
Nothing
(Injective [True])
where
name = mkWiredInTyConName UserSyntax gHC_TYPELITS (fsLit "CharToNat")
typeCharToNatTyFamNameKey typeCharToNatTyCon
ops = BuiltInSynFamily
{ sfMatchFam = matchFamCharToNat
, sfInteractTop = interactTopCharToNat
, sfInteractInert = \_ _ _ _ -> []
}
typeNatToCharTyCon :: TyCon
typeNatToCharTyCon =
mkFamilyTyCon name
(mkTemplateAnonTyConBinders [ naturalTy ])
charTy
Nothing
(BuiltInSynFamTyCon ops)
Nothing
(Injective [True])
where
name = mkWiredInTyConName UserSyntax gHC_TYPELITS (fsLit "NatToChar")
typeNatToCharTyFamNameKey typeNatToCharTyCon
ops = BuiltInSynFamily
{ sfMatchFam = matchFamNatToChar
, sfInteractTop = interactTopNatToChar
, sfInteractInert = \_ _ _ _ -> []
}
-- Make a unary built-in constructor of kind: Nat -> Nat
mkTypeNatFunTyCon1 :: Name -> BuiltInSynFamily -> TyCon
mkTypeNatFunTyCon1 op tcb =
mkFamilyTyCon op
(mkTemplateAnonTyConBinders [ naturalTy ])
naturalTy
Nothing
(BuiltInSynFamTyCon tcb)
Nothing
NotInjective
-- Make a binary built-in constructor of kind: Nat -> Nat -> Nat
mkTypeNatFunTyCon2 :: Name -> BuiltInSynFamily -> TyCon
mkTypeNatFunTyCon2 op tcb =
mkFamilyTyCon op
(mkTemplateAnonTyConBinders [ naturalTy, naturalTy ])
naturalTy
Nothing
(BuiltInSynFamTyCon tcb)
Nothing
NotInjective
-- Make a binary built-in constructor of kind: Symbol -> Symbol -> Symbol
mkTypeSymbolFunTyCon2 :: Name -> BuiltInSynFamily -> TyCon
mkTypeSymbolFunTyCon2 op tcb =
mkFamilyTyCon op
(mkTemplateAnonTyConBinders [ typeSymbolKind, typeSymbolKind ])
typeSymbolKind
Nothing
(BuiltInSynFamTyCon tcb)
Nothing
NotInjective
{-------------------------------------------------------------------------------
Built-in rules axioms
-------------------------------------------------------------------------------}
-- If you add additional rules, please remember to add them to
-- `typeNatCoAxiomRules` also.
-- See Note [Adding built-in type families]
axAddDef
, axMulDef
, axExpDef
, axCmpNatDef
, axCmpSymbolDef
, axAppendSymbolDef
, axConsSymbolDef
, axUnconsSymbolDef
, axCharToNatDef
, axNatToCharDef
, axAdd0L
, axAdd0R
, axMul0L
, axMul0R
, axMul1L
, axMul1R
, axExp1L
, axExp0R
, axExp1R
, axCmpNatRefl
, axCmpSymbolRefl
, axSubDef
, axSub0R
, axAppendSymbol0R
, axAppendSymbol0L
, axDivDef
, axDiv1
, axModDef
, axMod1
, axLogDef
:: CoAxiomRule
axAddDef = mkBinAxiom "AddDef" typeNatAddTyCon isNumLitTy isNumLitTy $
\x y -> Just $ num (x + y)
axMulDef = mkBinAxiom "MulDef" typeNatMulTyCon isNumLitTy isNumLitTy $
\x y -> Just $ num (x * y)
axExpDef = mkBinAxiom "ExpDef" typeNatExpTyCon isNumLitTy isNumLitTy $
\x y -> Just $ num (x ^ y)
axCmpNatDef = mkBinAxiom "CmpNatDef" typeNatCmpTyCon isNumLitTy isNumLitTy
$ \x y -> Just $ ordering (compare x y)
axCmpSymbolDef =
CoAxiomRule
{ coaxrName = fsLit "CmpSymbolDef"
, coaxrAsmpRoles = [Nominal, Nominal]
, coaxrRole = Nominal
, coaxrProves = \cs ->
do [Pair s1 s2, Pair t1 t2] <- return cs
s2' <- isStrLitTy s2
t2' <- isStrLitTy t2
return (mkTyConApp typeSymbolCmpTyCon [s1,t1] ===
ordering (lexicalCompareFS s2' t2')) }
axAppendSymbolDef = CoAxiomRule
{ coaxrName = fsLit "AppendSymbolDef"
, coaxrAsmpRoles = [Nominal, Nominal]
, coaxrRole = Nominal
, coaxrProves = \cs ->
do [Pair s1 s2, Pair t1 t2] <- return cs
s2' <- isStrLitTy s2
t2' <- isStrLitTy t2
let z = mkStrLitTy (appendFS s2' t2')
return (mkTyConApp typeSymbolAppendTyCon [s1, t1] === z)
}
axConsSymbolDef =
mkBinAxiom "ConsSymbolDef" typeConsSymbolTyCon isCharLitTy isStrLitTy $
\c str -> Just $ mkStrLitTy (consFS c str)
axUnconsSymbolDef =
mkUnAxiom "UnconsSymbolDef" typeUnconsSymbolTyCon isStrLitTy $
\str -> Just $ computeUncons str
axCharToNatDef =
mkUnAxiom "CharToNatDef" typeCharToNatTyCon isCharLitTy $
\c -> Just $ num (charToInteger c)
axNatToCharDef =
mkUnAxiom "NatToCharDef" typeNatToCharTyCon isNumLitTy $
\n -> fmap mkCharLitTy (integerToChar n)
axSubDef = mkBinAxiom "SubDef" typeNatSubTyCon isNumLitTy isNumLitTy $
\x y -> fmap num (minus x y)
axDivDef = mkBinAxiom "DivDef" typeNatDivTyCon isNumLitTy isNumLitTy $
\x y -> do guard (y /= 0)
return (num (div x y))
axModDef = mkBinAxiom "ModDef" typeNatModTyCon isNumLitTy isNumLitTy $
\x y -> do guard (y /= 0)
return (num (mod x y))
axLogDef = mkUnAxiom "LogDef" typeNatLogTyCon isNumLitTy $
\x -> do (a,_) <- genLog x 2
return (num a)
axAdd0L = mkAxiom1 "Add0L" $ \(Pair s t) -> (num 0 .+. s) === t
axAdd0R = mkAxiom1 "Add0R" $ \(Pair s t) -> (s .+. num 0) === t
axSub0R = mkAxiom1 "Sub0R" $ \(Pair s t) -> (s .-. num 0) === t
axMul0L = mkAxiom1 "Mul0L" $ \(Pair s _) -> (num 0 .*. s) === num 0
axMul0R = mkAxiom1 "Mul0R" $ \(Pair s _) -> (s .*. num 0) === num 0
axMul1L = mkAxiom1 "Mul1L" $ \(Pair s t) -> (num 1 .*. s) === t
axMul1R = mkAxiom1 "Mul1R" $ \(Pair s t) -> (s .*. num 1) === t
axDiv1 = mkAxiom1 "Div1" $ \(Pair s t) -> (tDiv s (num 1) === t)
axMod1 = mkAxiom1 "Mod1" $ \(Pair s _) -> (tMod s (num 1) === num 0)
-- XXX: Shouldn't we check that _ is 0?
axExp1L = mkAxiom1 "Exp1L" $ \(Pair s _) -> (num 1 .^. s) === num 1
axExp0R = mkAxiom1 "Exp0R" $ \(Pair s _) -> (s .^. num 0) === num 1
axExp1R = mkAxiom1 "Exp1R" $ \(Pair s t) -> (s .^. num 1) === t
axCmpNatRefl = mkAxiom1 "CmpNatRefl"
$ \(Pair s _) -> (cmpNat s s) === ordering EQ
axCmpSymbolRefl = mkAxiom1 "CmpSymbolRefl"
$ \(Pair s _) -> (cmpSymbol s s) === ordering EQ
axAppendSymbol0R = mkAxiom1 "Concat0R"
$ \(Pair s t) -> (mkStrLitTy nilFS `appendSymbol` s) === t
axAppendSymbol0L = mkAxiom1 "Concat0L"
$ \(Pair s t) -> (s `appendSymbol` mkStrLitTy nilFS) === t
-- The list of built-in type family axioms that GHC uses.
-- If you define new axioms, make sure to include them in this list.
-- See Note [Adding built-in type families]
typeNatCoAxiomRules :: UniqFM FastString CoAxiomRule
typeNatCoAxiomRules = listToUFM $ map (\x -> (coaxrName x, x))
[ axAddDef
, axMulDef
, axExpDef
, axCmpNatDef
, axCmpSymbolDef
, axCmpCharDef
, axAppendSymbolDef
, axConsSymbolDef
, axUnconsSymbolDef
, axCharToNatDef
, axNatToCharDef
, axAdd0L
, axAdd0R
, axMul0L
, axMul0R
, axMul1L
, axMul1R
, axExp1L
, axExp0R
, axExp1R
, axCmpNatRefl
, axCmpSymbolRefl
, axCmpCharRefl
, axSubDef
, axSub0R
, axAppendSymbol0R
, axAppendSymbol0L
, axDivDef
, axDiv1
, axModDef
, axMod1
, axLogDef
]
{-------------------------------------------------------------------------------
Various utilities for making axioms and types
-------------------------------------------------------------------------------}
(.+.) :: Type -> Type -> Type
s .+. t = mkTyConApp typeNatAddTyCon [s,t]
(.-.) :: Type -> Type -> Type
s .-. t = mkTyConApp typeNatSubTyCon [s,t]
(.*.) :: Type -> Type -> Type
s .*. t = mkTyConApp typeNatMulTyCon [s,t]
tDiv :: Type -> Type -> Type
tDiv s t = mkTyConApp typeNatDivTyCon [s,t]
tMod :: Type -> Type -> Type
tMod s t = mkTyConApp typeNatModTyCon [s,t]
(.^.) :: Type -> Type -> Type
s .^. t = mkTyConApp typeNatExpTyCon [s,t]
cmpNat :: Type -> Type -> Type
cmpNat s t = mkTyConApp typeNatCmpTyCon [s,t]
cmpSymbol :: Type -> Type -> Type
cmpSymbol s t = mkTyConApp typeSymbolCmpTyCon [s,t]
appendSymbol :: Type -> Type -> Type
appendSymbol s t = mkTyConApp typeSymbolAppendTyCon [s, t]
(===) :: Type -> Type -> Pair Type
x === y = Pair x y
num :: Integer -> Type
num = mkNumLitTy
charSymbolPair :: Type -> Type -> Type
charSymbolPair = mkPromotedPairTy charTy typeSymbolKind
charSymbolPairKind :: Kind
charSymbolPairKind = mkTyConApp pairTyCon [charTy, typeSymbolKind]
orderingKind :: Kind
orderingKind = mkTyConApp orderingTyCon []
ordering :: Ordering -> Type
ordering o =
case o of
LT -> mkTyConApp promotedLTDataCon []
EQ -> mkTyConApp promotedEQDataCon []
GT -> mkTyConApp promotedGTDataCon []
isOrderingLitTy :: Type -> Maybe Ordering
isOrderingLitTy tc =
do (tc1,[]) <- splitTyConApp_maybe tc
case () of
_ | tc1 == promotedLTDataCon -> return LT
| tc1 == promotedEQDataCon -> return EQ
| tc1 == promotedGTDataCon -> return GT
| otherwise -> Nothing
known :: (Integer -> Bool) -> Type -> Bool
known p x = case isNumLitTy x of
Just a -> p a
Nothing -> False
mkUnAxiom :: String -> TyCon -> (Type -> Maybe a) -> (a -> Maybe Type) -> CoAxiomRule
mkUnAxiom str tc isReqTy f =
CoAxiomRule
{ coaxrName = fsLit str
, coaxrAsmpRoles = [Nominal]
, coaxrRole = Nominal
, coaxrProves = \cs ->
do [Pair s1 s2] <- return cs
s2' <- isReqTy s2
z <- f s2'
return (mkTyConApp tc [s1] === z)
}
-- For the definitional axioms
mkBinAxiom :: String -> TyCon ->
(Type -> Maybe a) ->
(Type -> Maybe b) ->
(a -> b -> Maybe Type) -> CoAxiomRule
mkBinAxiom str tc isReqTy1 isReqTy2 f =
CoAxiomRule
{ coaxrName = fsLit str
, coaxrAsmpRoles = [Nominal, Nominal]
, coaxrRole = Nominal
, coaxrProves = \cs ->
do [Pair s1 s2, Pair t1 t2] <- return cs
s2' <- isReqTy1 s2
t2' <- isReqTy2 t2
z <- f s2' t2'
return (mkTyConApp tc [s1,t1] === z)
}
mkAxiom1 :: String -> (TypeEqn -> TypeEqn) -> CoAxiomRule
mkAxiom1 str f =
CoAxiomRule
{ coaxrName = fsLit str
, coaxrAsmpRoles = [Nominal]
, coaxrRole = Nominal
, coaxrProves = \case [eqn] -> Just (f eqn)
_ -> Nothing
}
{-------------------------------------------------------------------------------
Evaluation
-------------------------------------------------------------------------------}
matchFamAdd :: [Type] -> Maybe (CoAxiomRule, [Type], Type)
matchFamAdd [s,t]
| Just 0 <- mbX = Just (axAdd0L, [t], t)
| Just 0 <- mbY = Just (axAdd0R, [s], s)
| Just x <- mbX, Just y <- mbY =
Just (axAddDef, [s,t], num (x + y))
where mbX = isNumLitTy s
mbY = isNumLitTy t
matchFamAdd _ = Nothing
matchFamSub :: [Type] -> Maybe (CoAxiomRule, [Type], Type)
matchFamSub [s,t]
| Just 0 <- mbY = Just (axSub0R, [s], s)
| Just x <- mbX, Just y <- mbY, Just z <- minus x y =
Just (axSubDef, [s,t], num z)
where mbX = isNumLitTy s
mbY = isNumLitTy t
matchFamSub _ = Nothing
matchFamMul :: [Type] -> Maybe (CoAxiomRule, [Type], Type)
matchFamMul [s,t]
| Just 0 <- mbX = Just (axMul0L, [t], num 0)
| Just 0 <- mbY = Just (axMul0R, [s], num 0)
| Just 1 <- mbX = Just (axMul1L, [t], t)
| Just 1 <- mbY = Just (axMul1R, [s], s)
| Just x <- mbX, Just y <- mbY =
Just (axMulDef, [s,t], num (x * y))
where mbX = isNumLitTy s
mbY = isNumLitTy t
matchFamMul _ = Nothing
matchFamDiv :: [Type] -> Maybe (CoAxiomRule, [Type], Type)
matchFamDiv [s,t]
| Just 1 <- mbY = Just (axDiv1, [s], s)
| Just x <- mbX, Just y <- mbY, y /= 0 = Just (axDivDef, [s,t], num (div x y))
where mbX = isNumLitTy s
mbY = isNumLitTy t
matchFamDiv _ = Nothing
matchFamMod :: [Type] -> Maybe (CoAxiomRule, [Type], Type)
matchFamMod [s,t]
| Just 1 <- mbY = Just (axMod1, [s], num 0)
| Just x <- mbX, Just y <- mbY, y /= 0 = Just (axModDef, [s,t], num (mod x y))
where mbX = isNumLitTy s
mbY = isNumLitTy t
matchFamMod _ = Nothing
matchFamExp :: [Type] -> Maybe (CoAxiomRule, [Type], Type)
matchFamExp [s,t]
| Just 0 <- mbY = Just (axExp0R, [s], num 1)
| Just 1 <- mbX = Just (axExp1L, [t], num 1)
| Just 1 <- mbY = Just (axExp1R, [s], s)
| Just x <- mbX, Just y <- mbY =
Just (axExpDef, [s,t], num (x ^ y))
where mbX = isNumLitTy s
mbY = isNumLitTy t
matchFamExp _ = Nothing
matchFamLog :: [Type] -> Maybe (CoAxiomRule, [Type], Type)
matchFamLog [s]
| Just x <- mbX, Just (n,_) <- genLog x 2 = Just (axLogDef, [s], num n)
where mbX = isNumLitTy s
matchFamLog _ = Nothing
matchFamCmpNat :: [Type] -> Maybe (CoAxiomRule, [Type], Type)
matchFamCmpNat [s,t]
| Just x <- mbX, Just y <- mbY =
Just (axCmpNatDef, [s,t], ordering (compare x y))
| tcEqType s t = Just (axCmpNatRefl, [s], ordering EQ)
where mbX = isNumLitTy s
mbY = isNumLitTy t
matchFamCmpNat _ = Nothing
matchFamCmpSymbol :: [Type] -> Maybe (CoAxiomRule, [Type], Type)
matchFamCmpSymbol [s,t]
| Just x <- mbX, Just y <- mbY =
Just (axCmpSymbolDef, [s,t], ordering (lexicalCompareFS x y))
| tcEqType s t = Just (axCmpSymbolRefl, [s], ordering EQ)
where mbX = isStrLitTy s
mbY = isStrLitTy t
matchFamCmpSymbol _ = Nothing
matchFamAppendSymbol :: [Type] -> Maybe (CoAxiomRule, [Type], Type)
matchFamAppendSymbol [s,t]
| Just x <- mbX, nullFS x = Just (axAppendSymbol0R, [t], t)
| Just y <- mbY, nullFS y = Just (axAppendSymbol0L, [s], s)
| Just x <- mbX, Just y <- mbY =
Just (axAppendSymbolDef, [s,t], mkStrLitTy (appendFS x y))
where
mbX = isStrLitTy s
mbY = isStrLitTy t
matchFamAppendSymbol _ = Nothing
matchFamConsSymbol :: [Type] -> Maybe (CoAxiomRule, [Type], Type)
matchFamConsSymbol [s,t]
| Just x <- mbX, Just y <- mbY =
Just (axConsSymbolDef, [s,t], mkStrLitTy (consFS x y))
where
mbX = isCharLitTy s
mbY = isStrLitTy t
matchFamConsSymbol _ = Nothing
computeUncons :: FastString -> Type
computeUncons str = mkPromotedMaybeTy charSymbolPairKind (fmap reifyCharSymbolPairTy (unconsFS str))
where reifyCharSymbolPairTy :: (Char, FastString) -> Type
reifyCharSymbolPairTy (c, s) = charSymbolPair (mkCharLitTy c) (mkStrLitTy s)
matchFamUnconsSymbol :: [Type] -> Maybe (CoAxiomRule, [Type], Type)
matchFamUnconsSymbol [s]
| Just x <- mbX =
Just (axUnconsSymbolDef, [s], computeUncons x)
where
mbX = isStrLitTy s
matchFamUnconsSymbol _ = Nothing
matchFamCharToNat :: [Type] -> Maybe (CoAxiomRule, [Type], Type)
matchFamCharToNat [c]
| Just c' <- isCharLitTy c, n <- charToInteger c'
= Just (axCharToNatDef, [c], mkNumLitTy n)
| otherwise = Nothing
matchFamCharToNat _ = Nothing
matchFamNatToChar :: [Type] -> Maybe (CoAxiomRule, [Type], Type)
matchFamNatToChar [n]
| Just n' <- isNumLitTy n, Just c <- integerToChar n'
= Just (axNatToCharDef, [n], mkCharLitTy c)
| otherwise = Nothing
matchFamNatToChar _ = Nothing
charToInteger :: Char -> Integer
charToInteger c = fromIntegral (Char.ord c)
integerToChar :: Integer -> Maybe Char
integerToChar n | inBounds = Just (Char.chr (fromInteger n))
where inBounds = n >= charToInteger minBound &&
n <= charToInteger maxBound
integerToChar _ = Nothing
{-------------------------------------------------------------------------------
Interact with axioms
-------------------------------------------------------------------------------}
interactTopAdd :: [Xi] -> Xi -> [Pair Type]
interactTopAdd [s,t] r
| Just 0 <- mbZ = [ s === num 0, t === num 0 ] -- (s + t ~ 0) => (s ~ 0, t ~ 0)
| Just x <- mbX, Just z <- mbZ, Just y <- minus z x = [t === num y] -- (5 + t ~ 8) => (t ~ 3)
| Just y <- mbY, Just z <- mbZ, Just x <- minus z y = [s === num x] -- (s + 5 ~ 8) => (s ~ 3)
where
mbX = isNumLitTy s
mbY = isNumLitTy t
mbZ = isNumLitTy r
interactTopAdd _ _ = []
{-
Note [Weakened interaction rule for subtraction]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A simpler interaction here might be:
`s - t ~ r` --> `t + r ~ s`
This would enable us to reuse all the code for addition.
Unfortunately, this works a little too well at the moment.
Consider the following example:
0 - 5 ~ r --> 5 + r ~ 0 --> (5 = 0, r = 0)
This (correctly) spots that the constraint cannot be solved.
However, this may be a problem if the constraint did not
need to be solved in the first place! Consider the following example:
f :: Proxy (If (5 <=? 0) (0 - 5) (5 - 0)) -> Proxy 5
f = id
Currently, GHC is strict while evaluating functions, so this does not
work, because even though the `If` should evaluate to `5 - 0`, we
also evaluate the "then" branch which generates the constraint `0 - 5 ~ r`,
which fails.
So, for the time being, we only add an improvement when the RHS is a constant,
which happens to work OK for the moment, although clearly we need to do
something more general.
-}
interactTopSub :: [Xi] -> Xi -> [Pair Type]
interactTopSub [s,t] r
| Just z <- mbZ = [ s === (num z .+. t) ] -- (s - t ~ 5) => (5 + t ~ s)
where
mbZ = isNumLitTy r
interactTopSub _ _ = []
interactTopMul :: [Xi] -> Xi -> [Pair Type]
interactTopMul [s,t] r
| Just 1 <- mbZ = [ s === num 1, t === num 1 ] -- (s * t ~ 1) => (s ~ 1, t ~ 1)
| Just x <- mbX, Just z <- mbZ, Just y <- divide z x = [t === num y] -- (3 * t ~ 15) => (t ~ 5)
| Just y <- mbY, Just z <- mbZ, Just x <- divide z y = [s === num x] -- (s * 3 ~ 15) => (s ~ 5)
where
mbX = isNumLitTy s
mbY = isNumLitTy t
mbZ = isNumLitTy r
interactTopMul _ _ = []
interactTopDiv :: [Xi] -> Xi -> [Pair Type]
interactTopDiv _ _ = [] -- I can't think of anything...
interactTopMod :: [Xi] -> Xi -> [Pair Type]
interactTopMod _ _ = [] -- I can't think of anything...
interactTopExp :: [Xi] -> Xi -> [Pair Type]
interactTopExp [s,t] r
| Just 0 <- mbZ = [ s === num 0 ] -- (s ^ t ~ 0) => (s ~ 0)
| Just x <- mbX, Just z <- mbZ, Just y <- logExact z x = [t === num y] -- (2 ^ t ~ 8) => (t ~ 3)
| Just y <- mbY, Just z <- mbZ, Just x <- rootExact z y = [s === num x] -- (s ^ 2 ~ 9) => (s ~ 3)
where
mbX = isNumLitTy s
mbY = isNumLitTy t
mbZ = isNumLitTy r
interactTopExp _ _ = []
interactTopLog :: [Xi] -> Xi -> [Pair Type]
interactTopLog _ _ = [] -- I can't think of anything...
interactTopCmpNat :: [Xi] -> Xi -> [Pair Type]
interactTopCmpNat [s,t] r
| Just EQ <- isOrderingLitTy r = [ s === t ]
interactTopCmpNat _ _ = []
interactTopCmpSymbol :: [Xi] -> Xi -> [Pair Type]
interactTopCmpSymbol [s,t] r
| Just EQ <- isOrderingLitTy r = [ s === t ]
interactTopCmpSymbol _ _ = []
interactTopAppendSymbol :: [Xi] -> Xi -> [Pair Type]
interactTopAppendSymbol [s,t] r
-- (AppendSymbol a b ~ "") => (a ~ "", b ~ "")
| Just z <- mbZ, nullFS z =
[s === mkStrLitTy nilFS, t === mkStrLitTy nilFS ]
-- (AppendSymbol "foo" b ~ "foobar") => (b ~ "bar")
| Just x <- fmap unpackFS mbX, Just z <- fmap unpackFS mbZ, x `isPrefixOf` z =
[ t === mkStrLitTy (mkFastString $ drop (length x) z) ]
-- (AppendSymbol f "bar" ~ "foobar") => (f ~ "foo")
| Just y <- fmap unpackFS mbY, Just z <- fmap unpackFS mbZ, y `isSuffixOf` z =
[ t === mkStrLitTy (mkFastString $ take (length z - length y) z) ]
where
mbX = isStrLitTy s
mbY = isStrLitTy t
mbZ = isStrLitTy r
interactTopAppendSymbol _ _ = []
interactTopConsSymbol :: [Xi] -> Xi -> [Pair Type]
interactTopConsSymbol [s,t] r
-- ConsSymbol a b ~ "blah" => (a ~ 'b', b ~ "lah")
| Just fs <- isStrLitTy r
, Just (x, xs) <- unconsFS fs =
[ s === mkCharLitTy x, t === mkStrLitTy xs ]
interactTopConsSymbol _ _ = []
interactTopUnconsSymbol :: [Xi] -> Xi -> [Pair Type]
interactTopUnconsSymbol [s] r
-- (UnconsSymbol b ~ Nothing) => (b ~ "")
| Just Nothing <- mbX =
[ s === mkStrLitTy nilFS ]
-- (UnconsSymbol b ~ Just ('f',"oobar")) => (b ~ "foobar")
| Just (Just r) <- mbX
, Just (c, str) <- isPromotedPairType r
, Just chr <- isCharLitTy c
, Just str1 <- isStrLitTy str =
[ s === (mkStrLitTy $ consFS chr str1) ]
where
mbX = isPromotedMaybeTy r
interactTopUnconsSymbol _ _ = []
interactTopCharToNat :: [Xi] -> Xi -> [Pair Type]
interactTopCharToNat [s] r
-- (CharToNat c ~ 122) => (c ~ 'z')
| Just n <- isNumLitTy r
, Just c <- integerToChar n
= [ s === mkCharLitTy c ]
interactTopCharToNat _ _ = []
interactTopNatToChar :: [Xi] -> Xi -> [Pair Type]
interactTopNatToChar [s] r
-- (NatToChar n ~ 'z') => (n ~ 122)
| Just c <- isCharLitTy r
= [ s === mkNumLitTy (charToInteger c) ]
interactTopNatToChar _ _ = []
{-------------------------------------------------------------------------------
Interaction with inerts
-------------------------------------------------------------------------------}
interactInertAdd :: [Xi] -> Xi -> [Xi] -> Xi -> [Pair Type]
interactInertAdd [x1,y1] z1 [x2,y2] z2
| sameZ && tcEqType x1 x2 = [ y1 === y2 ]
| sameZ && tcEqType y1 y2 = [ x1 === x2 ]
where sameZ = tcEqType z1 z2
interactInertAdd _ _ _ _ = []
interactInertSub :: [Xi] -> Xi -> [Xi] -> Xi -> [Pair Type]
interactInertSub [x1,y1] z1 [x2,y2] z2
| sameZ && tcEqType x1 x2 = [ y1 === y2 ]
| sameZ && tcEqType y1 y2 = [ x1 === x2 ]
where sameZ = tcEqType z1 z2
interactInertSub _ _ _ _ = []
interactInertMul :: [Xi] -> Xi -> [Xi] -> Xi -> [Pair Type]
interactInertMul [x1,y1] z1 [x2,y2] z2
| sameZ && known (/= 0) x1 && tcEqType x1 x2 = [ y1 === y2 ]
| sameZ && known (/= 0) y1 && tcEqType y1 y2 = [ x1 === x2 ]
where sameZ = tcEqType z1 z2
interactInertMul _ _ _ _ = []
interactInertDiv :: [Xi] -> Xi -> [Xi] -> Xi -> [Pair Type]
interactInertDiv _ _ _ _ = []
interactInertMod :: [Xi] -> Xi -> [Xi] -> Xi -> [Pair Type]
interactInertMod _ _ _ _ = []
interactInertExp :: [Xi] -> Xi -> [Xi] -> Xi -> [Pair Type]
interactInertExp [x1,y1] z1 [x2,y2] z2
| sameZ && known (> 1) x1 && tcEqType x1 x2 = [ y1 === y2 ]
| sameZ && known (> 0) y1 && tcEqType y1 y2 = [ x1 === x2 ]
where sameZ = tcEqType z1 z2
interactInertExp _ _ _ _ = []
interactInertLog :: [Xi] -> Xi -> [Xi] -> Xi -> [Pair Type]
interactInertLog _ _ _ _ = []
interactInertAppendSymbol :: [Xi] -> Xi -> [Xi] -> Xi -> [Pair Type]
interactInertAppendSymbol [x1,y1] z1 [x2,y2] z2
| sameZ && tcEqType x1 x2 = [ y1 === y2 ]
| sameZ && tcEqType y1 y2 = [ x1 === x2 ]
where sameZ = tcEqType z1 z2
interactInertAppendSymbol _ _ _ _ = []
interactInertConsSymbol :: [Xi] -> Xi -> [Xi] -> Xi -> [Pair Type]
interactInertConsSymbol [x1, y1] z1 [x2, y2] z2
| sameZ = [ x1 === x2, y1 === y2 ]
where sameZ = tcEqType z1 z2
interactInertConsSymbol _ _ _ _ = []
interactInertUnconsSymbol :: [Xi] -> Xi -> [Xi] -> Xi -> [Pair Type]
interactInertUnconsSymbol [x1] z1 [x2] z2
| tcEqType z1 z2 = [ x1 === x2 ]
interactInertUnconsSymbol _ _ _ _ = []
{- -----------------------------------------------------------------------------
These inverse functions are used for simplifying propositions using
concrete natural numbers.
----------------------------------------------------------------------------- -}
-- | Subtract two natural numbers.
minus :: Integer -> Integer -> Maybe Integer
minus x y = if x >= y then Just (x - y) else Nothing
-- | Compute the exact logarithm of a natural number.
-- The logarithm base is the second argument.
logExact :: Integer -> Integer -> Maybe Integer
logExact x y = do (z,True) <- genLog x y
return z
-- | Divide two natural numbers.
divide :: Integer -> Integer -> Maybe Integer
divide _ 0 = Nothing
divide x y = case divMod x y of
(a,0) -> Just a
_ -> Nothing
-- | Compute the exact root of a natural number.
-- The second argument specifies which root we are computing.
rootExact :: Integer -> Integer -> Maybe Integer
rootExact x y = do (z,True) <- genRoot x y
return z
{- | Compute the n-th root of a natural number, rounded down to
the closest natural number. The boolean indicates if the result
is exact (i.e., True means no rounding was done, False means rounded down).
The second argument specifies which root we are computing. -}
genRoot :: Integer -> Integer -> Maybe (Integer, Bool)
genRoot _ 0 = Nothing
genRoot x0 1 = Just (x0, True)
genRoot x0 root = Just (search 0 (x0+1))
where
search from to = let x = from + div (to - from) 2
a = x ^ root
in case compare a x0 of
EQ -> (x, True)
LT | x /= from -> search x to
| otherwise -> (from, False)
GT | x /= to -> search from x
| otherwise -> (from, False)
{- | Compute the logarithm of a number in the given base, rounded down to the
closest integer. The boolean indicates if we the result is exact
(i.e., True means no rounding happened, False means we rounded down).
The logarithm base is the second argument. -}
genLog :: Integer -> Integer -> Maybe (Integer, Bool)
genLog x 0 = if x == 1 then Just (0, True) else Nothing
genLog _ 1 = Nothing
genLog 0 _ = Nothing
genLog x base = Just (exactLoop 0 x)
where
exactLoop s i
| i == 1 = (s,True)
| i < base = (s,False)
| otherwise =
let s1 = s + 1
in s1 `seq` case divMod i base of
(j,r)
| r == 0 -> exactLoop s1 j
| otherwise -> (underLoop s1 j, False)
underLoop s i
| i < base = s
| otherwise = let s1 = s + 1 in s1 `seq` underLoop s1 (div i base)
-----------------------------------------------------------------------------
typeCharCmpTyCon :: TyCon
typeCharCmpTyCon =
mkFamilyTyCon name
(mkTemplateAnonTyConBinders [ charTy, charTy ])
orderingKind
Nothing
(BuiltInSynFamTyCon ops)
Nothing
NotInjective
where
name = mkWiredInTyConName UserSyntax gHC_TYPELITS_INTERNAL (fsLit "CmpChar")
typeCharCmpTyFamNameKey typeCharCmpTyCon
ops = BuiltInSynFamily
{ sfMatchFam = matchFamCmpChar
, sfInteractTop = interactTopCmpChar
, sfInteractInert = \_ _ _ _ -> []
}
interactTopCmpChar :: [Xi] -> Xi -> [Pair Type]
interactTopCmpChar [s,t] r
| Just EQ <- isOrderingLitTy r = [ s === t ]
interactTopCmpChar _ _ = []
cmpChar :: Type -> Type -> Type
cmpChar s t = mkTyConApp typeCharCmpTyCon [s,t]
axCmpCharDef, axCmpCharRefl :: CoAxiomRule
axCmpCharDef =
mkBinAxiom "CmpCharDef" typeCharCmpTyCon isCharLitTy isCharLitTy $
\chr1 chr2 -> Just $ ordering $ compare chr1 chr2
axCmpCharRefl = mkAxiom1 "CmpCharRefl"
$ \(Pair s _) -> (cmpChar s s) === ordering EQ
matchFamCmpChar :: [Type] -> Maybe (CoAxiomRule, [Type], Type)
matchFamCmpChar [s,t]
| Just x <- mbX, Just y <- mbY =
Just (axCmpCharDef, [s,t], ordering (compare x y))
| tcEqType s t = Just (axCmpCharRefl, [s], ordering EQ)
where mbX = isCharLitTy s
mbY = isCharLitTy t
matchFamCmpChar _ = Nothing