{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998


Bag: an unordered collection with duplicates
-}

{-# LANGUAGE ScopedTypeVariables, DeriveFunctor, TypeFamilies #-}

module GHC.Data.Bag (
        Bag, -- abstract type

        emptyBag, unitBag, unionBags, unionManyBags,
        mapBag,
        elemBag, lengthBag,
        filterBag, partitionBag, partitionBagWith,
        concatBag, catBagMaybes, foldBag,
        isEmptyBag, isSingletonBag, consBag, snocBag, anyBag, allBag,
        listToBag, nonEmptyToBag, bagToList, headMaybe, mapAccumBagL,
        concatMapBag, concatMapBagPair, mapMaybeBag,
        mapBagM, mapBagM_,
        flatMapBagM, flatMapBagPairM,
        mapAndUnzipBagM, mapAccumBagLM,
        anyBagM, filterBagM
    ) where

import GHC.Prelude

import GHC.Exts ( IsList(..) )
import GHC.Utils.Outputable
import GHC.Utils.Misc
import GHC.Utils.Monad
import Control.Monad
import Data.Data
import Data.Maybe( mapMaybe, listToMaybe )
import Data.List ( partition, mapAccumL )
import Data.List.NonEmpty ( NonEmpty(..) )
import qualified Data.Foldable as Foldable
import qualified Data.Semigroup ( (<>) )

infixr 3 `consBag`
infixl 3 `snocBag`

data Bag a
  = EmptyBag
  | UnitBag a
  | TwoBags (Bag a) (Bag a) -- INVARIANT: neither branch is empty
  | ListBag [a]             -- INVARIANT: the list is non-empty
  deriving (Functor)

emptyBag :: Bag a
emptyBag = EmptyBag

unitBag :: a -> Bag a
unitBag  = UnitBag

lengthBag :: Bag a -> Int
lengthBag EmptyBag        = 0
lengthBag (UnitBag {})    = 1
lengthBag (TwoBags b1 b2) = lengthBag b1 + lengthBag b2
lengthBag (ListBag xs)    = length xs

elemBag :: Eq a => a -> Bag a -> Bool
elemBag _ EmptyBag        = False
elemBag x (UnitBag y)     = x == y
elemBag x (TwoBags b1 b2) = x `elemBag` b1 || x `elemBag` b2
elemBag x (ListBag ys)    = any (x ==) ys

unionManyBags :: [Bag a] -> Bag a
unionManyBags xs = foldr unionBags EmptyBag xs

-- This one is a bit stricter! The bag will get completely evaluated.

unionBags :: Bag a -> Bag a -> Bag a
unionBags EmptyBag b = b
unionBags b EmptyBag = b
unionBags b1 b2      = TwoBags b1 b2

consBag :: a -> Bag a -> Bag a
snocBag :: Bag a -> a -> Bag a

consBag elt bag = (unitBag elt) `unionBags` bag
snocBag bag elt = bag `unionBags` (unitBag elt)

isEmptyBag :: Bag a -> Bool
isEmptyBag EmptyBag = True
isEmptyBag _ = False

isSingletonBag :: Bag a -> Bool
isSingletonBag EmptyBag      = False
isSingletonBag (UnitBag _)   = True
isSingletonBag (TwoBags _ _) = False          -- Neither is empty
isSingletonBag (ListBag xs)  = isSingleton xs

filterBag :: (a -> Bool) -> Bag a -> Bag a
filterBag _    EmptyBag = EmptyBag
filterBag pred b@(UnitBag val) = if pred val then b else EmptyBag
filterBag pred (TwoBags b1 b2) = sat1 `unionBags` sat2
    where sat1 = filterBag pred b1
          sat2 = filterBag pred b2
filterBag pred (ListBag vs)    = listToBag (filter pred vs)

filterBagM :: Monad m => (a -> m Bool) -> Bag a -> m (Bag a)
filterBagM _    EmptyBag = return EmptyBag
filterBagM pred b@(UnitBag val) = do
  flag <- pred val
  if flag then return b
          else return EmptyBag
filterBagM pred (TwoBags b1 b2) = do
  sat1 <- filterBagM pred b1
  sat2 <- filterBagM pred b2
  return (sat1 `unionBags` sat2)
filterBagM pred (ListBag vs) = do
  sat <- filterM pred vs
  return (listToBag sat)

allBag :: (a -> Bool) -> Bag a -> Bool
allBag _ EmptyBag        = True
allBag p (UnitBag v)     = p v
allBag p (TwoBags b1 b2) = allBag p b1 && allBag p b2
allBag p (ListBag xs)    = all p xs

anyBag :: (a -> Bool) -> Bag a -> Bool
anyBag _ EmptyBag        = False
anyBag p (UnitBag v)     = p v
anyBag p (TwoBags b1 b2) = anyBag p b1 || anyBag p b2
anyBag p (ListBag xs)    = any p xs

anyBagM :: Monad m => (a -> m Bool) -> Bag a -> m Bool
anyBagM _ EmptyBag        = return False
anyBagM p (UnitBag v)     = p v
anyBagM p (TwoBags b1 b2) = do flag <- anyBagM p b1
                               if flag then return True
                                       else anyBagM p b2
anyBagM p (ListBag xs)    = anyM p xs

concatBag :: Bag (Bag a) -> Bag a
concatBag bss = foldr add emptyBag bss
  where
    add bs rs = bs `unionBags` rs

catBagMaybes :: Bag (Maybe a) -> Bag a
catBagMaybes bs = foldr add emptyBag bs
  where
    add Nothing rs = rs
    add (Just x) rs = x `consBag` rs

partitionBag :: (a -> Bool) -> Bag a -> (Bag a {- Satisfy predicate -},
                                         Bag a {- Don't -})
partitionBag _    EmptyBag = (EmptyBag, EmptyBag)
partitionBag pred b@(UnitBag val)
    = if pred val then (b, EmptyBag) else (EmptyBag, b)
partitionBag pred (TwoBags b1 b2)
    = (sat1 `unionBags` sat2, fail1 `unionBags` fail2)
  where (sat1, fail1) = partitionBag pred b1
        (sat2, fail2) = partitionBag pred b2
partitionBag pred (ListBag vs) = (listToBag sats, listToBag fails)
  where (sats, fails) = partition pred vs


partitionBagWith :: (a -> Either b c) -> Bag a
                    -> (Bag b {- Left  -},
                        Bag c {- Right -})
partitionBagWith _    EmptyBag = (EmptyBag, EmptyBag)
partitionBagWith pred (UnitBag val)
    = case pred val of
         Left a  -> (UnitBag a, EmptyBag)
         Right b -> (EmptyBag, UnitBag b)
partitionBagWith pred (TwoBags b1 b2)
    = (sat1 `unionBags` sat2, fail1 `unionBags` fail2)
  where (sat1, fail1) = partitionBagWith pred b1
        (sat2, fail2) = partitionBagWith pred b2
partitionBagWith pred (ListBag vs) = (listToBag sats, listToBag fails)
  where (sats, fails) = partitionWith pred vs

foldBag :: (r -> r -> r) -- Replace TwoBags with this; should be associative
        -> (a -> r)      -- Replace UnitBag with this
        -> r             -- Replace EmptyBag with this
        -> Bag a
        -> r

{- Standard definition
foldBag t u e EmptyBag        = e
foldBag t u e (UnitBag x)     = u x
foldBag t u e (TwoBags b1 b2) = (foldBag t u e b1) `t` (foldBag t u e b2)
foldBag t u e (ListBag xs)    = foldr (t.u) e xs
-}

-- More tail-recursive definition, exploiting associativity of "t"
foldBag _ _ e EmptyBag        = e
foldBag t u e (UnitBag x)     = u x `t` e
foldBag t u e (TwoBags b1 b2) = foldBag t u (foldBag t u e b2) b1
foldBag t u e (ListBag xs)    = foldr (t.u) e xs

mapBag :: (a -> b) -> Bag a -> Bag b
mapBag = fmap

concatMapBag :: (a -> Bag b) -> Bag a -> Bag b
concatMapBag _ EmptyBag        = EmptyBag
concatMapBag f (UnitBag x)     = f x
concatMapBag f (TwoBags b1 b2) = unionBags (concatMapBag f b1) (concatMapBag f b2)
concatMapBag f (ListBag xs)    = foldr (unionBags . f) emptyBag xs

concatMapBagPair :: (a -> (Bag b, Bag c)) -> Bag a -> (Bag b, Bag c)
concatMapBagPair _ EmptyBag        = (EmptyBag, EmptyBag)
concatMapBagPair f (UnitBag x)     = f x
concatMapBagPair f (TwoBags b1 b2) = (unionBags r1 r2, unionBags s1 s2)
  where
    (r1, s1) = concatMapBagPair f b1
    (r2, s2) = concatMapBagPair f b2
concatMapBagPair f (ListBag xs)    = foldr go (emptyBag, emptyBag) xs
  where
    go a (s1, s2) = (unionBags r1 s1, unionBags r2 s2)
      where
        (r1, r2) = f a

mapMaybeBag :: (a -> Maybe b) -> Bag a -> Bag b
mapMaybeBag _ EmptyBag        = EmptyBag
mapMaybeBag f (UnitBag x)     = case f x of
                                  Nothing -> EmptyBag
                                  Just y  -> UnitBag y
mapMaybeBag f (TwoBags b1 b2) = unionBags (mapMaybeBag f b1) (mapMaybeBag f b2)
mapMaybeBag f (ListBag xs)    = ListBag (mapMaybe f xs)

mapBagM :: Monad m => (a -> m b) -> Bag a -> m (Bag b)
mapBagM _ EmptyBag        = return EmptyBag
mapBagM f (UnitBag x)     = do r <- f x
                               return (UnitBag r)
mapBagM f (TwoBags b1 b2) = do r1 <- mapBagM f b1
                               r2 <- mapBagM f b2
                               return (TwoBags r1 r2)
mapBagM f (ListBag    xs) = do rs <- mapM f xs
                               return (ListBag rs)

mapBagM_ :: Monad m => (a -> m b) -> Bag a -> m ()
mapBagM_ _ EmptyBag        = return ()
mapBagM_ f (UnitBag x)     = f x >> return ()
mapBagM_ f (TwoBags b1 b2) = mapBagM_ f b1 >> mapBagM_ f b2
mapBagM_ f (ListBag    xs) = mapM_ f xs

flatMapBagM :: Monad m => (a -> m (Bag b)) -> Bag a -> m (Bag b)
flatMapBagM _ EmptyBag        = return EmptyBag
flatMapBagM f (UnitBag x)     = f x
flatMapBagM f (TwoBags b1 b2) = do r1 <- flatMapBagM f b1
                                   r2 <- flatMapBagM f b2
                                   return (r1 `unionBags` r2)
flatMapBagM f (ListBag    xs) = foldrM k EmptyBag xs
  where
    k x b2 = do { b1 <- f x; return (b1 `unionBags` b2) }

flatMapBagPairM :: Monad m => (a -> m (Bag b, Bag c)) -> Bag a -> m (Bag b, Bag c)
flatMapBagPairM _ EmptyBag        = return (EmptyBag, EmptyBag)
flatMapBagPairM f (UnitBag x)     = f x
flatMapBagPairM f (TwoBags b1 b2) = do (r1,s1) <- flatMapBagPairM f b1
                                       (r2,s2) <- flatMapBagPairM f b2
                                       return (r1 `unionBags` r2, s1 `unionBags` s2)
flatMapBagPairM f (ListBag    xs) = foldrM k (EmptyBag, EmptyBag) xs
  where
    k x (r2,s2) = do { (r1,s1) <- f x
                     ; return (r1 `unionBags` r2, s1 `unionBags` s2) }

mapAndUnzipBagM :: Monad m => (a -> m (b,c)) -> Bag a -> m (Bag b, Bag c)
mapAndUnzipBagM _ EmptyBag        = return (EmptyBag, EmptyBag)
mapAndUnzipBagM f (UnitBag x)     = do (r,s) <- f x
                                       return (UnitBag r, UnitBag s)
mapAndUnzipBagM f (TwoBags b1 b2) = do (r1,s1) <- mapAndUnzipBagM f b1
                                       (r2,s2) <- mapAndUnzipBagM f b2
                                       return (TwoBags r1 r2, TwoBags s1 s2)
mapAndUnzipBagM f (ListBag xs)    = do ts <- mapM f xs
                                       let (rs,ss) = unzip ts
                                       return (ListBag rs, ListBag ss)

mapAccumBagL ::(acc -> x -> (acc, y)) -- ^ combining function
            -> acc                    -- ^ initial state
            -> Bag x                  -- ^ inputs
            -> (acc, Bag y)           -- ^ final state, outputs
mapAccumBagL _ s EmptyBag        = (s, EmptyBag)
mapAccumBagL f s (UnitBag x)     = let (s1, x1) = f s x in (s1, UnitBag x1)
mapAccumBagL f s (TwoBags b1 b2) = let (s1, b1') = mapAccumBagL f s  b1
                                       (s2, b2') = mapAccumBagL f s1 b2
                                   in (s2, TwoBags b1' b2')
mapAccumBagL f s (ListBag xs)    = let (s', xs') = mapAccumL f s xs
                                   in (s', ListBag xs')

mapAccumBagLM :: Monad m
            => (acc -> x -> m (acc, y)) -- ^ combining function
            -> acc                      -- ^ initial state
            -> Bag x                    -- ^ inputs
            -> m (acc, Bag y)           -- ^ final state, outputs
mapAccumBagLM _ s EmptyBag        = return (s, EmptyBag)
mapAccumBagLM f s (UnitBag x)     = do { (s1, x1) <- f s x; return (s1, UnitBag x1) }
mapAccumBagLM f s (TwoBags b1 b2) = do { (s1, b1') <- mapAccumBagLM f s  b1
                                       ; (s2, b2') <- mapAccumBagLM f s1 b2
                                       ; return (s2, TwoBags b1' b2') }
mapAccumBagLM f s (ListBag xs)    = do { (s', xs') <- mapAccumLM f s xs
                                       ; return (s', ListBag xs') }

listToBag :: [a] -> Bag a
listToBag [] = EmptyBag
listToBag [x] = UnitBag x
listToBag vs = ListBag vs

nonEmptyToBag :: NonEmpty a -> Bag a
nonEmptyToBag (x :| []) = UnitBag x
nonEmptyToBag (x :| xs) = ListBag (x : xs)

bagToList :: Bag a -> [a]
bagToList b = foldr (:) [] b

headMaybe :: Bag a -> Maybe a
headMaybe EmptyBag = Nothing
headMaybe (UnitBag v) = Just v
headMaybe (TwoBags b1 _) = headMaybe b1
headMaybe (ListBag l) = listToMaybe l

instance (Outputable a) => Outputable (Bag a) where
    ppr bag = braces (pprWithCommas ppr (bagToList bag))

instance Data a => Data (Bag a) where
  gfoldl k z b = z listToBag `k` bagToList b -- traverse abstract type abstractly
  toConstr _   = abstractConstr $ "Bag("++show (typeOf (undefined::a))++")"
  gunfold _ _  = error "gunfold"
  dataTypeOf _ = mkNoRepType "Bag"
  dataCast1 x  = gcast1 x

instance Foldable.Foldable Bag where
  foldr _ z EmptyBag        = z
  foldr k z (UnitBag x)     = k x z
  foldr k z (TwoBags b1 b2) = foldr k (foldr k z b2) b1
  foldr k z (ListBag xs)    = foldr k z xs

  foldl _ z EmptyBag        = z
  foldl k z (UnitBag x)     = k z x
  foldl k z (TwoBags b1 b2) = foldl k (foldl k z b1) b2
  foldl k z (ListBag xs)    = foldl k z xs

  foldl' _ z EmptyBag        = z
  foldl' k z (UnitBag x)     = k z x
  foldl' k z (TwoBags b1 b2) = let r1 = foldl' k z b1 in seq r1 $ foldl' k r1 b2
  foldl' k z (ListBag xs)    = foldl' k z xs

instance Traversable Bag where
  traverse _ EmptyBag        = pure EmptyBag
  traverse f (UnitBag x)     = UnitBag <$> f x
  traverse f (TwoBags b1 b2) = TwoBags <$> traverse f b1 <*> traverse f b2
  traverse f (ListBag xs)    = ListBag <$> traverse f xs

instance IsList (Bag a) where
  type Item (Bag a) = a
  fromList = listToBag
  toList   = bagToList

instance Semigroup (Bag a) where
  (<>) = unionBags

instance Monoid (Bag a) where
  mempty = emptyBag